at v6.12-rc2 31 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * workqueue.h --- work queue handling for Linux. 4 */ 5 6#ifndef _LINUX_WORKQUEUE_H 7#define _LINUX_WORKQUEUE_H 8 9#include <linux/timer.h> 10#include <linux/linkage.h> 11#include <linux/bitops.h> 12#include <linux/lockdep.h> 13#include <linux/threads.h> 14#include <linux/atomic.h> 15#include <linux/cpumask_types.h> 16#include <linux/rcupdate.h> 17#include <linux/workqueue_types.h> 18 19/* 20 * The first word is the work queue pointer and the flags rolled into 21 * one 22 */ 23#define work_data_bits(work) ((unsigned long *)(&(work)->data)) 24 25enum work_bits { 26 WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ 27 WORK_STRUCT_INACTIVE_BIT, /* work item is inactive */ 28 WORK_STRUCT_PWQ_BIT, /* data points to pwq */ 29 WORK_STRUCT_LINKED_BIT, /* next work is linked to this one */ 30#ifdef CONFIG_DEBUG_OBJECTS_WORK 31 WORK_STRUCT_STATIC_BIT, /* static initializer (debugobjects) */ 32#endif 33 WORK_STRUCT_FLAG_BITS, 34 35 /* color for workqueue flushing */ 36 WORK_STRUCT_COLOR_SHIFT = WORK_STRUCT_FLAG_BITS, 37 WORK_STRUCT_COLOR_BITS = 4, 38 39 /* 40 * When WORK_STRUCT_PWQ is set, reserve 8 bits off of pwq pointer w/ 41 * debugobjects turned off. This makes pwqs aligned to 256 bytes (512 42 * bytes w/ DEBUG_OBJECTS_WORK) and allows 16 workqueue flush colors. 43 * 44 * MSB 45 * [ pwq pointer ] [ flush color ] [ STRUCT flags ] 46 * 4 bits 4 or 5 bits 47 */ 48 WORK_STRUCT_PWQ_SHIFT = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, 49 50 /* 51 * data contains off-queue information when !WORK_STRUCT_PWQ. 52 * 53 * MSB 54 * [ pool ID ] [ disable depth ] [ OFFQ flags ] [ STRUCT flags ] 55 * 16 bits 1 bit 4 or 5 bits 56 */ 57 WORK_OFFQ_FLAG_SHIFT = WORK_STRUCT_FLAG_BITS, 58 WORK_OFFQ_BH_BIT = WORK_OFFQ_FLAG_SHIFT, 59 WORK_OFFQ_FLAG_END, 60 WORK_OFFQ_FLAG_BITS = WORK_OFFQ_FLAG_END - WORK_OFFQ_FLAG_SHIFT, 61 62 WORK_OFFQ_DISABLE_SHIFT = WORK_OFFQ_FLAG_SHIFT + WORK_OFFQ_FLAG_BITS, 63 WORK_OFFQ_DISABLE_BITS = 16, 64 65 /* 66 * When a work item is off queue, the high bits encode off-queue flags 67 * and the last pool it was on. Cap pool ID to 31 bits and use the 68 * highest number to indicate that no pool is associated. 69 */ 70 WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_DISABLE_SHIFT + WORK_OFFQ_DISABLE_BITS, 71 WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, 72 WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, 73}; 74 75enum work_flags { 76 WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, 77 WORK_STRUCT_INACTIVE = 1 << WORK_STRUCT_INACTIVE_BIT, 78 WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, 79 WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, 80#ifdef CONFIG_DEBUG_OBJECTS_WORK 81 WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, 82#else 83 WORK_STRUCT_STATIC = 0, 84#endif 85}; 86 87enum wq_misc_consts { 88 WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS), 89 90 /* not bound to any CPU, prefer the local CPU */ 91 WORK_CPU_UNBOUND = NR_CPUS, 92 93 /* bit mask for work_busy() return values */ 94 WORK_BUSY_PENDING = 1 << 0, 95 WORK_BUSY_RUNNING = 1 << 1, 96 97 /* maximum string length for set_worker_desc() */ 98 WORKER_DESC_LEN = 32, 99}; 100 101/* Convenience constants - of type 'unsigned long', not 'enum'! */ 102#define WORK_OFFQ_BH (1ul << WORK_OFFQ_BH_BIT) 103#define WORK_OFFQ_FLAG_MASK (((1ul << WORK_OFFQ_FLAG_BITS) - 1) << WORK_OFFQ_FLAG_SHIFT) 104#define WORK_OFFQ_DISABLE_MASK (((1ul << WORK_OFFQ_DISABLE_BITS) - 1) << WORK_OFFQ_DISABLE_SHIFT) 105#define WORK_OFFQ_POOL_NONE ((1ul << WORK_OFFQ_POOL_BITS) - 1) 106#define WORK_STRUCT_NO_POOL (WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT) 107#define WORK_STRUCT_PWQ_MASK (~((1ul << WORK_STRUCT_PWQ_SHIFT) - 1)) 108 109#define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) 110#define WORK_DATA_STATIC_INIT() \ 111 ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) 112 113struct delayed_work { 114 struct work_struct work; 115 struct timer_list timer; 116 117 /* target workqueue and CPU ->timer uses to queue ->work */ 118 struct workqueue_struct *wq; 119 int cpu; 120}; 121 122struct rcu_work { 123 struct work_struct work; 124 struct rcu_head rcu; 125 126 /* target workqueue ->rcu uses to queue ->work */ 127 struct workqueue_struct *wq; 128}; 129 130enum wq_affn_scope { 131 WQ_AFFN_DFL, /* use system default */ 132 WQ_AFFN_CPU, /* one pod per CPU */ 133 WQ_AFFN_SMT, /* one pod poer SMT */ 134 WQ_AFFN_CACHE, /* one pod per LLC */ 135 WQ_AFFN_NUMA, /* one pod per NUMA node */ 136 WQ_AFFN_SYSTEM, /* one pod across the whole system */ 137 138 WQ_AFFN_NR_TYPES, 139}; 140 141/** 142 * struct workqueue_attrs - A struct for workqueue attributes. 143 * 144 * This can be used to change attributes of an unbound workqueue. 145 */ 146struct workqueue_attrs { 147 /** 148 * @nice: nice level 149 */ 150 int nice; 151 152 /** 153 * @cpumask: allowed CPUs 154 * 155 * Work items in this workqueue are affine to these CPUs and not allowed 156 * to execute on other CPUs. A pool serving a workqueue must have the 157 * same @cpumask. 158 */ 159 cpumask_var_t cpumask; 160 161 /** 162 * @__pod_cpumask: internal attribute used to create per-pod pools 163 * 164 * Internal use only. 165 * 166 * Per-pod unbound worker pools are used to improve locality. Always a 167 * subset of ->cpumask. A workqueue can be associated with multiple 168 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement 169 * of a pool's @__pod_cpumask is strict depends on @affn_strict. 170 */ 171 cpumask_var_t __pod_cpumask; 172 173 /** 174 * @affn_strict: affinity scope is strict 175 * 176 * If clear, workqueue will make a best-effort attempt at starting the 177 * worker inside @__pod_cpumask but the scheduler is free to migrate it 178 * outside. 179 * 180 * If set, workers are only allowed to run inside @__pod_cpumask. 181 */ 182 bool affn_strict; 183 184 /* 185 * Below fields aren't properties of a worker_pool. They only modify how 186 * :c:func:`apply_workqueue_attrs` select pools and thus don't 187 * participate in pool hash calculations or equality comparisons. 188 * 189 * If @affn_strict is set, @cpumask isn't a property of a worker_pool 190 * either. 191 */ 192 193 /** 194 * @affn_scope: unbound CPU affinity scope 195 * 196 * CPU pods are used to improve execution locality of unbound work 197 * items. There are multiple pod types, one for each wq_affn_scope, and 198 * every CPU in the system belongs to one pod in every pod type. CPUs 199 * that belong to the same pod share the worker pool. For example, 200 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker 201 * pool for each NUMA node. 202 */ 203 enum wq_affn_scope affn_scope; 204 205 /** 206 * @ordered: work items must be executed one by one in queueing order 207 */ 208 bool ordered; 209}; 210 211static inline struct delayed_work *to_delayed_work(struct work_struct *work) 212{ 213 return container_of(work, struct delayed_work, work); 214} 215 216static inline struct rcu_work *to_rcu_work(struct work_struct *work) 217{ 218 return container_of(work, struct rcu_work, work); 219} 220 221struct execute_work { 222 struct work_struct work; 223}; 224 225#ifdef CONFIG_LOCKDEP 226/* 227 * NB: because we have to copy the lockdep_map, setting _key 228 * here is required, otherwise it could get initialised to the 229 * copy of the lockdep_map! 230 */ 231#define __WORK_INIT_LOCKDEP_MAP(n, k) \ 232 .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), 233#else 234#define __WORK_INIT_LOCKDEP_MAP(n, k) 235#endif 236 237#define __WORK_INITIALIZER(n, f) { \ 238 .data = WORK_DATA_STATIC_INIT(), \ 239 .entry = { &(n).entry, &(n).entry }, \ 240 .func = (f), \ 241 __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ 242 } 243 244#define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ 245 .work = __WORK_INITIALIZER((n).work, (f)), \ 246 .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ 247 (tflags) | TIMER_IRQSAFE), \ 248 } 249 250#define DECLARE_WORK(n, f) \ 251 struct work_struct n = __WORK_INITIALIZER(n, f) 252 253#define DECLARE_DELAYED_WORK(n, f) \ 254 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) 255 256#define DECLARE_DEFERRABLE_WORK(n, f) \ 257 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) 258 259#ifdef CONFIG_DEBUG_OBJECTS_WORK 260extern void __init_work(struct work_struct *work, int onstack); 261extern void destroy_work_on_stack(struct work_struct *work); 262extern void destroy_delayed_work_on_stack(struct delayed_work *work); 263static inline unsigned int work_static(struct work_struct *work) 264{ 265 return *work_data_bits(work) & WORK_STRUCT_STATIC; 266} 267#else 268static inline void __init_work(struct work_struct *work, int onstack) { } 269static inline void destroy_work_on_stack(struct work_struct *work) { } 270static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } 271static inline unsigned int work_static(struct work_struct *work) { return 0; } 272#endif 273 274/* 275 * initialize all of a work item in one go 276 * 277 * NOTE! No point in using "atomic_long_set()": using a direct 278 * assignment of the work data initializer allows the compiler 279 * to generate better code. 280 */ 281#ifdef CONFIG_LOCKDEP 282#define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ 283 do { \ 284 __init_work((_work), _onstack); \ 285 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 286 lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \ 287 INIT_LIST_HEAD(&(_work)->entry); \ 288 (_work)->func = (_func); \ 289 } while (0) 290#else 291#define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ 292 do { \ 293 __init_work((_work), _onstack); \ 294 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 295 INIT_LIST_HEAD(&(_work)->entry); \ 296 (_work)->func = (_func); \ 297 } while (0) 298#endif 299 300#define __INIT_WORK(_work, _func, _onstack) \ 301 do { \ 302 static __maybe_unused struct lock_class_key __key; \ 303 \ 304 __INIT_WORK_KEY(_work, _func, _onstack, &__key); \ 305 } while (0) 306 307#define INIT_WORK(_work, _func) \ 308 __INIT_WORK((_work), (_func), 0) 309 310#define INIT_WORK_ONSTACK(_work, _func) \ 311 __INIT_WORK((_work), (_func), 1) 312 313#define INIT_WORK_ONSTACK_KEY(_work, _func, _key) \ 314 __INIT_WORK_KEY((_work), (_func), 1, _key) 315 316#define __INIT_DELAYED_WORK(_work, _func, _tflags) \ 317 do { \ 318 INIT_WORK(&(_work)->work, (_func)); \ 319 __init_timer(&(_work)->timer, \ 320 delayed_work_timer_fn, \ 321 (_tflags) | TIMER_IRQSAFE); \ 322 } while (0) 323 324#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ 325 do { \ 326 INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ 327 __init_timer_on_stack(&(_work)->timer, \ 328 delayed_work_timer_fn, \ 329 (_tflags) | TIMER_IRQSAFE); \ 330 } while (0) 331 332#define INIT_DELAYED_WORK(_work, _func) \ 333 __INIT_DELAYED_WORK(_work, _func, 0) 334 335#define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ 336 __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) 337 338#define INIT_DEFERRABLE_WORK(_work, _func) \ 339 __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) 340 341#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ 342 __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) 343 344#define INIT_RCU_WORK(_work, _func) \ 345 INIT_WORK(&(_work)->work, (_func)) 346 347#define INIT_RCU_WORK_ONSTACK(_work, _func) \ 348 INIT_WORK_ONSTACK(&(_work)->work, (_func)) 349 350/** 351 * work_pending - Find out whether a work item is currently pending 352 * @work: The work item in question 353 */ 354#define work_pending(work) \ 355 test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) 356 357/** 358 * delayed_work_pending - Find out whether a delayable work item is currently 359 * pending 360 * @w: The work item in question 361 */ 362#define delayed_work_pending(w) \ 363 work_pending(&(w)->work) 364 365/* 366 * Workqueue flags and constants. For details, please refer to 367 * Documentation/core-api/workqueue.rst. 368 */ 369enum wq_flags { 370 WQ_BH = 1 << 0, /* execute in bottom half (softirq) context */ 371 WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ 372 WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ 373 WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ 374 WQ_HIGHPRI = 1 << 4, /* high priority */ 375 WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ 376 WQ_SYSFS = 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */ 377 378 /* 379 * Per-cpu workqueues are generally preferred because they tend to 380 * show better performance thanks to cache locality. Per-cpu 381 * workqueues exclude the scheduler from choosing the CPU to 382 * execute the worker threads, which has an unfortunate side effect 383 * of increasing power consumption. 384 * 385 * The scheduler considers a CPU idle if it doesn't have any task 386 * to execute and tries to keep idle cores idle to conserve power; 387 * however, for example, a per-cpu work item scheduled from an 388 * interrupt handler on an idle CPU will force the scheduler to 389 * execute the work item on that CPU breaking the idleness, which in 390 * turn may lead to more scheduling choices which are sub-optimal 391 * in terms of power consumption. 392 * 393 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default 394 * but become unbound if workqueue.power_efficient kernel param is 395 * specified. Per-cpu workqueues which are identified to 396 * contribute significantly to power-consumption are identified and 397 * marked with this flag and enabling the power_efficient mode 398 * leads to noticeable power saving at the cost of small 399 * performance disadvantage. 400 * 401 * http://thread.gmane.org/gmane.linux.kernel/1480396 402 */ 403 WQ_POWER_EFFICIENT = 1 << 7, 404 405 __WQ_DESTROYING = 1 << 15, /* internal: workqueue is destroying */ 406 __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ 407 __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ 408 __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ 409 410 /* BH wq only allows the following flags */ 411 __WQ_BH_ALLOWS = WQ_BH | WQ_HIGHPRI, 412}; 413 414enum wq_consts { 415 WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ 416 WQ_UNBOUND_MAX_ACTIVE = WQ_MAX_ACTIVE, 417 WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, 418 419 /* 420 * Per-node default cap on min_active. Unless explicitly set, min_active 421 * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see 422 * workqueue_struct->min_active definition. 423 */ 424 WQ_DFL_MIN_ACTIVE = 8, 425}; 426 427/* 428 * System-wide workqueues which are always present. 429 * 430 * system_wq is the one used by schedule[_delayed]_work[_on](). 431 * Multi-CPU multi-threaded. There are users which expect relatively 432 * short queue flush time. Don't queue works which can run for too 433 * long. 434 * 435 * system_highpri_wq is similar to system_wq but for work items which 436 * require WQ_HIGHPRI. 437 * 438 * system_long_wq is similar to system_wq but may host long running 439 * works. Queue flushing might take relatively long. 440 * 441 * system_unbound_wq is unbound workqueue. Workers are not bound to 442 * any specific CPU, not concurrency managed, and all queued works are 443 * executed immediately as long as max_active limit is not reached and 444 * resources are available. 445 * 446 * system_freezable_wq is equivalent to system_wq except that it's 447 * freezable. 448 * 449 * *_power_efficient_wq are inclined towards saving power and converted 450 * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, 451 * they are same as their non-power-efficient counterparts - e.g. 452 * system_power_efficient_wq is identical to system_wq if 453 * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. 454 * 455 * system_bh[_highpri]_wq are convenience interface to softirq. BH work items 456 * are executed in the queueing CPU's BH context in the queueing order. 457 */ 458extern struct workqueue_struct *system_wq; 459extern struct workqueue_struct *system_highpri_wq; 460extern struct workqueue_struct *system_long_wq; 461extern struct workqueue_struct *system_unbound_wq; 462extern struct workqueue_struct *system_freezable_wq; 463extern struct workqueue_struct *system_power_efficient_wq; 464extern struct workqueue_struct *system_freezable_power_efficient_wq; 465extern struct workqueue_struct *system_bh_wq; 466extern struct workqueue_struct *system_bh_highpri_wq; 467 468void workqueue_softirq_action(bool highpri); 469void workqueue_softirq_dead(unsigned int cpu); 470 471/** 472 * alloc_workqueue - allocate a workqueue 473 * @fmt: printf format for the name of the workqueue 474 * @flags: WQ_* flags 475 * @max_active: max in-flight work items, 0 for default 476 * @...: args for @fmt 477 * 478 * For a per-cpu workqueue, @max_active limits the number of in-flight work 479 * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be 480 * executing at most one work item for the workqueue. 481 * 482 * For unbound workqueues, @max_active limits the number of in-flight work items 483 * for the whole system. e.g. @max_active of 16 indicates that that there can be 484 * at most 16 work items executing for the workqueue in the whole system. 485 * 486 * As sharing the same active counter for an unbound workqueue across multiple 487 * NUMA nodes can be expensive, @max_active is distributed to each NUMA node 488 * according to the proportion of the number of online CPUs and enforced 489 * independently. 490 * 491 * Depending on online CPU distribution, a node may end up with per-node 492 * max_active which is significantly lower than @max_active, which can lead to 493 * deadlocks if the per-node concurrency limit is lower than the maximum number 494 * of interdependent work items for the workqueue. 495 * 496 * To guarantee forward progress regardless of online CPU distribution, the 497 * concurrency limit on every node is guaranteed to be equal to or greater than 498 * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means 499 * that the sum of per-node max_active's may be larger than @max_active. 500 * 501 * For detailed information on %WQ_* flags, please refer to 502 * Documentation/core-api/workqueue.rst. 503 * 504 * RETURNS: 505 * Pointer to the allocated workqueue on success, %NULL on failure. 506 */ 507__printf(1, 4) struct workqueue_struct * 508alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); 509 510#ifdef CONFIG_LOCKDEP 511/** 512 * alloc_workqueue_lockdep_map - allocate a workqueue with user-defined lockdep_map 513 * @fmt: printf format for the name of the workqueue 514 * @flags: WQ_* flags 515 * @max_active: max in-flight work items, 0 for default 516 * @lockdep_map: user-defined lockdep_map 517 * @...: args for @fmt 518 * 519 * Same as alloc_workqueue but with the a user-define lockdep_map. Useful for 520 * workqueues created with the same purpose and to avoid leaking a lockdep_map 521 * on each workqueue creation. 522 * 523 * RETURNS: 524 * Pointer to the allocated workqueue on success, %NULL on failure. 525 */ 526__printf(1, 5) struct workqueue_struct * 527alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, int max_active, 528 struct lockdep_map *lockdep_map, ...); 529 530/** 531 * alloc_ordered_workqueue_lockdep_map - allocate an ordered workqueue with 532 * user-defined lockdep_map 533 * 534 * @fmt: printf format for the name of the workqueue 535 * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) 536 * @lockdep_map: user-defined lockdep_map 537 * @args: args for @fmt 538 * 539 * Same as alloc_ordered_workqueue but with the a user-define lockdep_map. 540 * Useful for workqueues created with the same purpose and to avoid leaking a 541 * lockdep_map on each workqueue creation. 542 * 543 * RETURNS: 544 * Pointer to the allocated workqueue on success, %NULL on failure. 545 */ 546#define alloc_ordered_workqueue_lockdep_map(fmt, flags, lockdep_map, args...) \ 547 alloc_workqueue_lockdep_map(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), \ 548 1, lockdep_map, ##args) 549#endif 550 551/** 552 * alloc_ordered_workqueue - allocate an ordered workqueue 553 * @fmt: printf format for the name of the workqueue 554 * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) 555 * @args: args for @fmt 556 * 557 * Allocate an ordered workqueue. An ordered workqueue executes at 558 * most one work item at any given time in the queued order. They are 559 * implemented as unbound workqueues with @max_active of one. 560 * 561 * RETURNS: 562 * Pointer to the allocated workqueue on success, %NULL on failure. 563 */ 564#define alloc_ordered_workqueue(fmt, flags, args...) \ 565 alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args) 566 567#define create_workqueue(name) \ 568 alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) 569#define create_freezable_workqueue(name) \ 570 alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ 571 WQ_MEM_RECLAIM, 1, (name)) 572#define create_singlethread_workqueue(name) \ 573 alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) 574 575#define from_work(var, callback_work, work_fieldname) \ 576 container_of(callback_work, typeof(*var), work_fieldname) 577 578extern void destroy_workqueue(struct workqueue_struct *wq); 579 580struct workqueue_attrs *alloc_workqueue_attrs(void); 581void free_workqueue_attrs(struct workqueue_attrs *attrs); 582int apply_workqueue_attrs(struct workqueue_struct *wq, 583 const struct workqueue_attrs *attrs); 584extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask); 585 586extern bool queue_work_on(int cpu, struct workqueue_struct *wq, 587 struct work_struct *work); 588extern bool queue_work_node(int node, struct workqueue_struct *wq, 589 struct work_struct *work); 590extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 591 struct delayed_work *work, unsigned long delay); 592extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 593 struct delayed_work *dwork, unsigned long delay); 594extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); 595 596extern void __flush_workqueue(struct workqueue_struct *wq); 597extern void drain_workqueue(struct workqueue_struct *wq); 598 599extern int schedule_on_each_cpu(work_func_t func); 600 601int execute_in_process_context(work_func_t fn, struct execute_work *); 602 603extern bool flush_work(struct work_struct *work); 604extern bool cancel_work(struct work_struct *work); 605extern bool cancel_work_sync(struct work_struct *work); 606 607extern bool flush_delayed_work(struct delayed_work *dwork); 608extern bool cancel_delayed_work(struct delayed_work *dwork); 609extern bool cancel_delayed_work_sync(struct delayed_work *dwork); 610 611extern bool disable_work(struct work_struct *work); 612extern bool disable_work_sync(struct work_struct *work); 613extern bool enable_work(struct work_struct *work); 614 615extern bool disable_delayed_work(struct delayed_work *dwork); 616extern bool disable_delayed_work_sync(struct delayed_work *dwork); 617extern bool enable_delayed_work(struct delayed_work *dwork); 618 619extern bool flush_rcu_work(struct rcu_work *rwork); 620 621extern void workqueue_set_max_active(struct workqueue_struct *wq, 622 int max_active); 623extern void workqueue_set_min_active(struct workqueue_struct *wq, 624 int min_active); 625extern struct work_struct *current_work(void); 626extern bool current_is_workqueue_rescuer(void); 627extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); 628extern unsigned int work_busy(struct work_struct *work); 629extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); 630extern void print_worker_info(const char *log_lvl, struct task_struct *task); 631extern void show_all_workqueues(void); 632extern void show_freezable_workqueues(void); 633extern void show_one_workqueue(struct workqueue_struct *wq); 634extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); 635 636/** 637 * queue_work - queue work on a workqueue 638 * @wq: workqueue to use 639 * @work: work to queue 640 * 641 * Returns %false if @work was already on a queue, %true otherwise. 642 * 643 * We queue the work to the CPU on which it was submitted, but if the CPU dies 644 * it can be processed by another CPU. 645 * 646 * Memory-ordering properties: If it returns %true, guarantees that all stores 647 * preceding the call to queue_work() in the program order will be visible from 648 * the CPU which will execute @work by the time such work executes, e.g., 649 * 650 * { x is initially 0 } 651 * 652 * CPU0 CPU1 653 * 654 * WRITE_ONCE(x, 1); [ @work is being executed ] 655 * r0 = queue_work(wq, work); r1 = READ_ONCE(x); 656 * 657 * Forbids: r0 == true && r1 == 0 658 */ 659static inline bool queue_work(struct workqueue_struct *wq, 660 struct work_struct *work) 661{ 662 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 663} 664 665/** 666 * queue_delayed_work - queue work on a workqueue after delay 667 * @wq: workqueue to use 668 * @dwork: delayable work to queue 669 * @delay: number of jiffies to wait before queueing 670 * 671 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 672 */ 673static inline bool queue_delayed_work(struct workqueue_struct *wq, 674 struct delayed_work *dwork, 675 unsigned long delay) 676{ 677 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 678} 679 680/** 681 * mod_delayed_work - modify delay of or queue a delayed work 682 * @wq: workqueue to use 683 * @dwork: work to queue 684 * @delay: number of jiffies to wait before queueing 685 * 686 * mod_delayed_work_on() on local CPU. 687 */ 688static inline bool mod_delayed_work(struct workqueue_struct *wq, 689 struct delayed_work *dwork, 690 unsigned long delay) 691{ 692 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 693} 694 695/** 696 * schedule_work_on - put work task on a specific cpu 697 * @cpu: cpu to put the work task on 698 * @work: job to be done 699 * 700 * This puts a job on a specific cpu 701 */ 702static inline bool schedule_work_on(int cpu, struct work_struct *work) 703{ 704 return queue_work_on(cpu, system_wq, work); 705} 706 707/** 708 * schedule_work - put work task in global workqueue 709 * @work: job to be done 710 * 711 * Returns %false if @work was already on the kernel-global workqueue and 712 * %true otherwise. 713 * 714 * This puts a job in the kernel-global workqueue if it was not already 715 * queued and leaves it in the same position on the kernel-global 716 * workqueue otherwise. 717 * 718 * Shares the same memory-ordering properties of queue_work(), cf. the 719 * DocBook header of queue_work(). 720 */ 721static inline bool schedule_work(struct work_struct *work) 722{ 723 return queue_work(system_wq, work); 724} 725 726/** 727 * enable_and_queue_work - Enable and queue a work item on a specific workqueue 728 * @wq: The target workqueue 729 * @work: The work item to be enabled and queued 730 * 731 * This function combines the operations of enable_work() and queue_work(), 732 * providing a convenient way to enable and queue a work item in a single call. 733 * It invokes enable_work() on @work and then queues it if the disable depth 734 * reached 0. Returns %true if the disable depth reached 0 and @work is queued, 735 * and %false otherwise. 736 * 737 * Note that @work is always queued when disable depth reaches zero. If the 738 * desired behavior is queueing only if certain events took place while @work is 739 * disabled, the user should implement the necessary state tracking and perform 740 * explicit conditional queueing after enable_work(). 741 */ 742static inline bool enable_and_queue_work(struct workqueue_struct *wq, 743 struct work_struct *work) 744{ 745 if (enable_work(work)) { 746 queue_work(wq, work); 747 return true; 748 } 749 return false; 750} 751 752/* 753 * Detect attempt to flush system-wide workqueues at compile time when possible. 754 * Warn attempt to flush system-wide workqueues at runtime. 755 * 756 * See https://lkml.kernel.org/r/49925af7-78a8-a3dd-bce6-cfc02e1a9236@I-love.SAKURA.ne.jp 757 * for reasons and steps for converting system-wide workqueues into local workqueues. 758 */ 759extern void __warn_flushing_systemwide_wq(void) 760 __compiletime_warning("Please avoid flushing system-wide workqueues."); 761 762/* Please stop using this function, for this function will be removed in near future. */ 763#define flush_scheduled_work() \ 764({ \ 765 __warn_flushing_systemwide_wq(); \ 766 __flush_workqueue(system_wq); \ 767}) 768 769#define flush_workqueue(wq) \ 770({ \ 771 struct workqueue_struct *_wq = (wq); \ 772 \ 773 if ((__builtin_constant_p(_wq == system_wq) && \ 774 _wq == system_wq) || \ 775 (__builtin_constant_p(_wq == system_highpri_wq) && \ 776 _wq == system_highpri_wq) || \ 777 (__builtin_constant_p(_wq == system_long_wq) && \ 778 _wq == system_long_wq) || \ 779 (__builtin_constant_p(_wq == system_unbound_wq) && \ 780 _wq == system_unbound_wq) || \ 781 (__builtin_constant_p(_wq == system_freezable_wq) && \ 782 _wq == system_freezable_wq) || \ 783 (__builtin_constant_p(_wq == system_power_efficient_wq) && \ 784 _wq == system_power_efficient_wq) || \ 785 (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \ 786 _wq == system_freezable_power_efficient_wq)) \ 787 __warn_flushing_systemwide_wq(); \ 788 __flush_workqueue(_wq); \ 789}) 790 791/** 792 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 793 * @cpu: cpu to use 794 * @dwork: job to be done 795 * @delay: number of jiffies to wait 796 * 797 * After waiting for a given time this puts a job in the kernel-global 798 * workqueue on the specified CPU. 799 */ 800static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 801 unsigned long delay) 802{ 803 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 804} 805 806/** 807 * schedule_delayed_work - put work task in global workqueue after delay 808 * @dwork: job to be done 809 * @delay: number of jiffies to wait or 0 for immediate execution 810 * 811 * After waiting for a given time this puts a job in the kernel-global 812 * workqueue. 813 */ 814static inline bool schedule_delayed_work(struct delayed_work *dwork, 815 unsigned long delay) 816{ 817 return queue_delayed_work(system_wq, dwork, delay); 818} 819 820#ifndef CONFIG_SMP 821static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 822{ 823 return fn(arg); 824} 825static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 826{ 827 return fn(arg); 828} 829#else 830long work_on_cpu_key(int cpu, long (*fn)(void *), 831 void *arg, struct lock_class_key *key); 832/* 833 * A new key is defined for each caller to make sure the work 834 * associated with the function doesn't share its locking class. 835 */ 836#define work_on_cpu(_cpu, _fn, _arg) \ 837({ \ 838 static struct lock_class_key __key; \ 839 \ 840 work_on_cpu_key(_cpu, _fn, _arg, &__key); \ 841}) 842 843long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 844 void *arg, struct lock_class_key *key); 845 846/* 847 * A new key is defined for each caller to make sure the work 848 * associated with the function doesn't share its locking class. 849 */ 850#define work_on_cpu_safe(_cpu, _fn, _arg) \ 851({ \ 852 static struct lock_class_key __key; \ 853 \ 854 work_on_cpu_safe_key(_cpu, _fn, _arg, &__key); \ 855}) 856#endif /* CONFIG_SMP */ 857 858#ifdef CONFIG_FREEZER 859extern void freeze_workqueues_begin(void); 860extern bool freeze_workqueues_busy(void); 861extern void thaw_workqueues(void); 862#endif /* CONFIG_FREEZER */ 863 864#ifdef CONFIG_SYSFS 865int workqueue_sysfs_register(struct workqueue_struct *wq); 866#else /* CONFIG_SYSFS */ 867static inline int workqueue_sysfs_register(struct workqueue_struct *wq) 868{ return 0; } 869#endif /* CONFIG_SYSFS */ 870 871#ifdef CONFIG_WQ_WATCHDOG 872void wq_watchdog_touch(int cpu); 873#else /* CONFIG_WQ_WATCHDOG */ 874static inline void wq_watchdog_touch(int cpu) { } 875#endif /* CONFIG_WQ_WATCHDOG */ 876 877#ifdef CONFIG_SMP 878int workqueue_prepare_cpu(unsigned int cpu); 879int workqueue_online_cpu(unsigned int cpu); 880int workqueue_offline_cpu(unsigned int cpu); 881#endif 882 883void __init workqueue_init_early(void); 884void __init workqueue_init(void); 885void __init workqueue_init_topology(void); 886 887#endif