Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_SEQLOCK_H
3#define __LINUX_SEQLOCK_H
4
5/*
6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7 * lockless readers (read-only retry loops), and no writer starvation.
8 *
9 * See Documentation/locking/seqlock.rst
10 *
11 * Copyrights:
12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14 */
15
16#include <linux/compiler.h>
17#include <linux/kcsan-checks.h>
18#include <linux/lockdep.h>
19#include <linux/mutex.h>
20#include <linux/preempt.h>
21#include <linux/seqlock_types.h>
22#include <linux/spinlock.h>
23
24#include <asm/processor.h>
25
26/*
27 * The seqlock seqcount_t interface does not prescribe a precise sequence of
28 * read begin/retry/end. For readers, typically there is a call to
29 * read_seqcount_begin() and read_seqcount_retry(), however, there are more
30 * esoteric cases which do not follow this pattern.
31 *
32 * As a consequence, we take the following best-effort approach for raw usage
33 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
34 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
35 * atomics; if there is a matching read_seqcount_retry() call, no following
36 * memory operations are considered atomic. Usage of the seqlock_t interface
37 * is not affected.
38 */
39#define KCSAN_SEQLOCK_REGION_MAX 1000
40
41static inline void __seqcount_init(seqcount_t *s, const char *name,
42 struct lock_class_key *key)
43{
44 /*
45 * Make sure we are not reinitializing a held lock:
46 */
47 lockdep_init_map(&s->dep_map, name, key, 0);
48 s->sequence = 0;
49}
50
51#ifdef CONFIG_DEBUG_LOCK_ALLOC
52
53# define SEQCOUNT_DEP_MAP_INIT(lockname) \
54 .dep_map = { .name = #lockname }
55
56/**
57 * seqcount_init() - runtime initializer for seqcount_t
58 * @s: Pointer to the seqcount_t instance
59 */
60# define seqcount_init(s) \
61 do { \
62 static struct lock_class_key __key; \
63 __seqcount_init((s), #s, &__key); \
64 } while (0)
65
66static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
67{
68 seqcount_t *l = (seqcount_t *)s;
69 unsigned long flags;
70
71 local_irq_save(flags);
72 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
73 seqcount_release(&l->dep_map, _RET_IP_);
74 local_irq_restore(flags);
75}
76
77#else
78# define SEQCOUNT_DEP_MAP_INIT(lockname)
79# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
80# define seqcount_lockdep_reader_access(x)
81#endif
82
83/**
84 * SEQCNT_ZERO() - static initializer for seqcount_t
85 * @name: Name of the seqcount_t instance
86 */
87#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
88
89/*
90 * Sequence counters with associated locks (seqcount_LOCKNAME_t)
91 *
92 * A sequence counter which associates the lock used for writer
93 * serialization at initialization time. This enables lockdep to validate
94 * that the write side critical section is properly serialized.
95 *
96 * For associated locks which do not implicitly disable preemption,
97 * preemption protection is enforced in the write side function.
98 *
99 * Lockdep is never used in any for the raw write variants.
100 *
101 * See Documentation/locking/seqlock.rst
102 */
103
104/*
105 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
106 * @seqcount: The real sequence counter
107 * @lock: Pointer to the associated lock
108 *
109 * A plain sequence counter with external writer synchronization by
110 * LOCKNAME @lock. The lock is associated to the sequence counter in the
111 * static initializer or init function. This enables lockdep to validate
112 * that the write side critical section is properly serialized.
113 *
114 * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex
115 */
116
117/*
118 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
119 * @s: Pointer to the seqcount_LOCKNAME_t instance
120 * @lock: Pointer to the associated lock
121 */
122
123#define seqcount_LOCKNAME_init(s, _lock, lockname) \
124 do { \
125 seqcount_##lockname##_t *____s = (s); \
126 seqcount_init(&____s->seqcount); \
127 __SEQ_LOCK(____s->lock = (_lock)); \
128 } while (0)
129
130#define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock)
131#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock)
132#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock)
133#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex)
134
135/*
136 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers
137 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t
138 *
139 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t
140 * @locktype: LOCKNAME canonical C data type
141 * @preemptible: preemptibility of above locktype
142 * @lockbase: prefix for associated lock/unlock
143 */
144#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase) \
145static __always_inline seqcount_t * \
146__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \
147{ \
148 return &s->seqcount; \
149} \
150 \
151static __always_inline const seqcount_t * \
152__seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s) \
153{ \
154 return &s->seqcount; \
155} \
156 \
157static __always_inline unsigned \
158__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \
159{ \
160 unsigned seq = smp_load_acquire(&s->seqcount.sequence); \
161 \
162 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
163 return seq; \
164 \
165 if (preemptible && unlikely(seq & 1)) { \
166 __SEQ_LOCK(lockbase##_lock(s->lock)); \
167 __SEQ_LOCK(lockbase##_unlock(s->lock)); \
168 \
169 /* \
170 * Re-read the sequence counter since the (possibly \
171 * preempted) writer made progress. \
172 */ \
173 seq = smp_load_acquire(&s->seqcount.sequence); \
174 } \
175 \
176 return seq; \
177} \
178 \
179static __always_inline bool \
180__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \
181{ \
182 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
183 return preemptible; \
184 \
185 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \
186 return false; \
187} \
188 \
189static __always_inline void \
190__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \
191{ \
192 __SEQ_LOCK(lockdep_assert_held(s->lock)); \
193}
194
195/*
196 * __seqprop() for seqcount_t
197 */
198
199static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
200{
201 return s;
202}
203
204static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s)
205{
206 return s;
207}
208
209static inline unsigned __seqprop_sequence(const seqcount_t *s)
210{
211 return smp_load_acquire(&s->sequence);
212}
213
214static inline bool __seqprop_preemptible(const seqcount_t *s)
215{
216 return false;
217}
218
219static inline void __seqprop_assert(const seqcount_t *s)
220{
221 lockdep_assert_preemption_disabled();
222}
223
224#define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT)
225
226SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, raw_spin)
227SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, spin)
228SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, read)
229SEQCOUNT_LOCKNAME(mutex, struct mutex, true, mutex)
230#undef SEQCOUNT_LOCKNAME
231
232/*
233 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
234 * @name: Name of the seqcount_LOCKNAME_t instance
235 * @lock: Pointer to the associated LOCKNAME
236 */
237
238#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \
239 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \
240 __SEQ_LOCK(.lock = (assoc_lock)) \
241}
242
243#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
244#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
245#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
246#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
247#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
248
249#define __seqprop_case(s, lockname, prop) \
250 seqcount_##lockname##_t: __seqprop_##lockname##_##prop
251
252#define __seqprop(s, prop) _Generic(*(s), \
253 seqcount_t: __seqprop_##prop, \
254 __seqprop_case((s), raw_spinlock, prop), \
255 __seqprop_case((s), spinlock, prop), \
256 __seqprop_case((s), rwlock, prop), \
257 __seqprop_case((s), mutex, prop))
258
259#define seqprop_ptr(s) __seqprop(s, ptr)(s)
260#define seqprop_const_ptr(s) __seqprop(s, const_ptr)(s)
261#define seqprop_sequence(s) __seqprop(s, sequence)(s)
262#define seqprop_preemptible(s) __seqprop(s, preemptible)(s)
263#define seqprop_assert(s) __seqprop(s, assert)(s)
264
265/**
266 * __read_seqcount_begin() - begin a seqcount_t read section
267 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
268 *
269 * Return: count to be passed to read_seqcount_retry()
270 */
271#define __read_seqcount_begin(s) \
272({ \
273 unsigned __seq; \
274 \
275 while ((__seq = seqprop_sequence(s)) & 1) \
276 cpu_relax(); \
277 \
278 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \
279 __seq; \
280})
281
282/**
283 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
284 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
285 *
286 * Return: count to be passed to read_seqcount_retry()
287 */
288#define raw_read_seqcount_begin(s) __read_seqcount_begin(s)
289
290/**
291 * read_seqcount_begin() - begin a seqcount_t read critical section
292 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
293 *
294 * Return: count to be passed to read_seqcount_retry()
295 */
296#define read_seqcount_begin(s) \
297({ \
298 seqcount_lockdep_reader_access(seqprop_const_ptr(s)); \
299 raw_read_seqcount_begin(s); \
300})
301
302/**
303 * raw_read_seqcount() - read the raw seqcount_t counter value
304 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
305 *
306 * raw_read_seqcount opens a read critical section of the given
307 * seqcount_t, without any lockdep checking, and without checking or
308 * masking the sequence counter LSB. Calling code is responsible for
309 * handling that.
310 *
311 * Return: count to be passed to read_seqcount_retry()
312 */
313#define raw_read_seqcount(s) \
314({ \
315 unsigned __seq = seqprop_sequence(s); \
316 \
317 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \
318 __seq; \
319})
320
321/**
322 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
323 * lockdep and w/o counter stabilization
324 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
325 *
326 * raw_seqcount_begin opens a read critical section of the given
327 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
328 * for the count to stabilize. If a writer is active when it begins, it
329 * will fail the read_seqcount_retry() at the end of the read critical
330 * section instead of stabilizing at the beginning of it.
331 *
332 * Use this only in special kernel hot paths where the read section is
333 * small and has a high probability of success through other external
334 * means. It will save a single branching instruction.
335 *
336 * Return: count to be passed to read_seqcount_retry()
337 */
338#define raw_seqcount_begin(s) \
339({ \
340 /* \
341 * If the counter is odd, let read_seqcount_retry() fail \
342 * by decrementing the counter. \
343 */ \
344 raw_read_seqcount(s) & ~1; \
345})
346
347/**
348 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
349 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
350 * @start: count, from read_seqcount_begin()
351 *
352 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
353 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
354 * provided before actually loading any of the variables that are to be
355 * protected in this critical section.
356 *
357 * Use carefully, only in critical code, and comment how the barrier is
358 * provided.
359 *
360 * Return: true if a read section retry is required, else false
361 */
362#define __read_seqcount_retry(s, start) \
363 do___read_seqcount_retry(seqprop_const_ptr(s), start)
364
365static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
366{
367 kcsan_atomic_next(0);
368 return unlikely(READ_ONCE(s->sequence) != start);
369}
370
371/**
372 * read_seqcount_retry() - end a seqcount_t read critical section
373 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
374 * @start: count, from read_seqcount_begin()
375 *
376 * read_seqcount_retry closes the read critical section of given
377 * seqcount_t. If the critical section was invalid, it must be ignored
378 * (and typically retried).
379 *
380 * Return: true if a read section retry is required, else false
381 */
382#define read_seqcount_retry(s, start) \
383 do_read_seqcount_retry(seqprop_const_ptr(s), start)
384
385static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
386{
387 smp_rmb();
388 return do___read_seqcount_retry(s, start);
389}
390
391/**
392 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
393 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
394 *
395 * Context: check write_seqcount_begin()
396 */
397#define raw_write_seqcount_begin(s) \
398do { \
399 if (seqprop_preemptible(s)) \
400 preempt_disable(); \
401 \
402 do_raw_write_seqcount_begin(seqprop_ptr(s)); \
403} while (0)
404
405static inline void do_raw_write_seqcount_begin(seqcount_t *s)
406{
407 kcsan_nestable_atomic_begin();
408 s->sequence++;
409 smp_wmb();
410}
411
412/**
413 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
414 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
415 *
416 * Context: check write_seqcount_end()
417 */
418#define raw_write_seqcount_end(s) \
419do { \
420 do_raw_write_seqcount_end(seqprop_ptr(s)); \
421 \
422 if (seqprop_preemptible(s)) \
423 preempt_enable(); \
424} while (0)
425
426static inline void do_raw_write_seqcount_end(seqcount_t *s)
427{
428 smp_wmb();
429 s->sequence++;
430 kcsan_nestable_atomic_end();
431}
432
433/**
434 * write_seqcount_begin_nested() - start a seqcount_t write section with
435 * custom lockdep nesting level
436 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
437 * @subclass: lockdep nesting level
438 *
439 * See Documentation/locking/lockdep-design.rst
440 * Context: check write_seqcount_begin()
441 */
442#define write_seqcount_begin_nested(s, subclass) \
443do { \
444 seqprop_assert(s); \
445 \
446 if (seqprop_preemptible(s)) \
447 preempt_disable(); \
448 \
449 do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \
450} while (0)
451
452static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
453{
454 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
455 do_raw_write_seqcount_begin(s);
456}
457
458/**
459 * write_seqcount_begin() - start a seqcount_t write side critical section
460 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
461 *
462 * Context: sequence counter write side sections must be serialized and
463 * non-preemptible. Preemption will be automatically disabled if and
464 * only if the seqcount write serialization lock is associated, and
465 * preemptible. If readers can be invoked from hardirq or softirq
466 * context, interrupts or bottom halves must be respectively disabled.
467 */
468#define write_seqcount_begin(s) \
469do { \
470 seqprop_assert(s); \
471 \
472 if (seqprop_preemptible(s)) \
473 preempt_disable(); \
474 \
475 do_write_seqcount_begin(seqprop_ptr(s)); \
476} while (0)
477
478static inline void do_write_seqcount_begin(seqcount_t *s)
479{
480 do_write_seqcount_begin_nested(s, 0);
481}
482
483/**
484 * write_seqcount_end() - end a seqcount_t write side critical section
485 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
486 *
487 * Context: Preemption will be automatically re-enabled if and only if
488 * the seqcount write serialization lock is associated, and preemptible.
489 */
490#define write_seqcount_end(s) \
491do { \
492 do_write_seqcount_end(seqprop_ptr(s)); \
493 \
494 if (seqprop_preemptible(s)) \
495 preempt_enable(); \
496} while (0)
497
498static inline void do_write_seqcount_end(seqcount_t *s)
499{
500 seqcount_release(&s->dep_map, _RET_IP_);
501 do_raw_write_seqcount_end(s);
502}
503
504/**
505 * raw_write_seqcount_barrier() - do a seqcount_t write barrier
506 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
507 *
508 * This can be used to provide an ordering guarantee instead of the usual
509 * consistency guarantee. It is one wmb cheaper, because it can collapse
510 * the two back-to-back wmb()s.
511 *
512 * Note that writes surrounding the barrier should be declared atomic (e.g.
513 * via WRITE_ONCE): a) to ensure the writes become visible to other threads
514 * atomically, avoiding compiler optimizations; b) to document which writes are
515 * meant to propagate to the reader critical section. This is necessary because
516 * neither writes before nor after the barrier are enclosed in a seq-writer
517 * critical section that would ensure readers are aware of ongoing writes::
518 *
519 * seqcount_t seq;
520 * bool X = true, Y = false;
521 *
522 * void read(void)
523 * {
524 * bool x, y;
525 *
526 * do {
527 * int s = read_seqcount_begin(&seq);
528 *
529 * x = X; y = Y;
530 *
531 * } while (read_seqcount_retry(&seq, s));
532 *
533 * BUG_ON(!x && !y);
534 * }
535 *
536 * void write(void)
537 * {
538 * WRITE_ONCE(Y, true);
539 *
540 * raw_write_seqcount_barrier(seq);
541 *
542 * WRITE_ONCE(X, false);
543 * }
544 */
545#define raw_write_seqcount_barrier(s) \
546 do_raw_write_seqcount_barrier(seqprop_ptr(s))
547
548static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
549{
550 kcsan_nestable_atomic_begin();
551 s->sequence++;
552 smp_wmb();
553 s->sequence++;
554 kcsan_nestable_atomic_end();
555}
556
557/**
558 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
559 * side operations
560 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
561 *
562 * After write_seqcount_invalidate, no seqcount_t read side operations
563 * will complete successfully and see data older than this.
564 */
565#define write_seqcount_invalidate(s) \
566 do_write_seqcount_invalidate(seqprop_ptr(s))
567
568static inline void do_write_seqcount_invalidate(seqcount_t *s)
569{
570 smp_wmb();
571 kcsan_nestable_atomic_begin();
572 s->sequence+=2;
573 kcsan_nestable_atomic_end();
574}
575
576/*
577 * Latch sequence counters (seqcount_latch_t)
578 *
579 * A sequence counter variant where the counter even/odd value is used to
580 * switch between two copies of protected data. This allows the read path,
581 * typically NMIs, to safely interrupt the write side critical section.
582 *
583 * As the write sections are fully preemptible, no special handling for
584 * PREEMPT_RT is needed.
585 */
586typedef struct {
587 seqcount_t seqcount;
588} seqcount_latch_t;
589
590/**
591 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
592 * @seq_name: Name of the seqcount_latch_t instance
593 */
594#define SEQCNT_LATCH_ZERO(seq_name) { \
595 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \
596}
597
598/**
599 * seqcount_latch_init() - runtime initializer for seqcount_latch_t
600 * @s: Pointer to the seqcount_latch_t instance
601 */
602#define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
603
604/**
605 * raw_read_seqcount_latch() - pick even/odd latch data copy
606 * @s: Pointer to seqcount_latch_t
607 *
608 * See raw_write_seqcount_latch() for details and a full reader/writer
609 * usage example.
610 *
611 * Return: sequence counter raw value. Use the lowest bit as an index for
612 * picking which data copy to read. The full counter must then be checked
613 * with raw_read_seqcount_latch_retry().
614 */
615static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
616{
617 /*
618 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
619 * Due to the dependent load, a full smp_rmb() is not needed.
620 */
621 return READ_ONCE(s->seqcount.sequence);
622}
623
624/**
625 * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section
626 * @s: Pointer to seqcount_latch_t
627 * @start: count, from raw_read_seqcount_latch()
628 *
629 * Return: true if a read section retry is required, else false
630 */
631static __always_inline int
632raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
633{
634 smp_rmb();
635 return unlikely(READ_ONCE(s->seqcount.sequence) != start);
636}
637
638/**
639 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
640 * @s: Pointer to seqcount_latch_t
641 *
642 * The latch technique is a multiversion concurrency control method that allows
643 * queries during non-atomic modifications. If you can guarantee queries never
644 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
645 * -- you most likely do not need this.
646 *
647 * Where the traditional RCU/lockless data structures rely on atomic
648 * modifications to ensure queries observe either the old or the new state the
649 * latch allows the same for non-atomic updates. The trade-off is doubling the
650 * cost of storage; we have to maintain two copies of the entire data
651 * structure.
652 *
653 * Very simply put: we first modify one copy and then the other. This ensures
654 * there is always one copy in a stable state, ready to give us an answer.
655 *
656 * The basic form is a data structure like::
657 *
658 * struct latch_struct {
659 * seqcount_latch_t seq;
660 * struct data_struct data[2];
661 * };
662 *
663 * Where a modification, which is assumed to be externally serialized, does the
664 * following::
665 *
666 * void latch_modify(struct latch_struct *latch, ...)
667 * {
668 * smp_wmb(); // Ensure that the last data[1] update is visible
669 * latch->seq.sequence++;
670 * smp_wmb(); // Ensure that the seqcount update is visible
671 *
672 * modify(latch->data[0], ...);
673 *
674 * smp_wmb(); // Ensure that the data[0] update is visible
675 * latch->seq.sequence++;
676 * smp_wmb(); // Ensure that the seqcount update is visible
677 *
678 * modify(latch->data[1], ...);
679 * }
680 *
681 * The query will have a form like::
682 *
683 * struct entry *latch_query(struct latch_struct *latch, ...)
684 * {
685 * struct entry *entry;
686 * unsigned seq, idx;
687 *
688 * do {
689 * seq = raw_read_seqcount_latch(&latch->seq);
690 *
691 * idx = seq & 0x01;
692 * entry = data_query(latch->data[idx], ...);
693 *
694 * // This includes needed smp_rmb()
695 * } while (raw_read_seqcount_latch_retry(&latch->seq, seq));
696 *
697 * return entry;
698 * }
699 *
700 * So during the modification, queries are first redirected to data[1]. Then we
701 * modify data[0]. When that is complete, we redirect queries back to data[0]
702 * and we can modify data[1].
703 *
704 * NOTE:
705 *
706 * The non-requirement for atomic modifications does _NOT_ include
707 * the publishing of new entries in the case where data is a dynamic
708 * data structure.
709 *
710 * An iteration might start in data[0] and get suspended long enough
711 * to miss an entire modification sequence, once it resumes it might
712 * observe the new entry.
713 *
714 * NOTE2:
715 *
716 * When data is a dynamic data structure; one should use regular RCU
717 * patterns to manage the lifetimes of the objects within.
718 */
719static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
720{
721 smp_wmb(); /* prior stores before incrementing "sequence" */
722 s->seqcount.sequence++;
723 smp_wmb(); /* increment "sequence" before following stores */
724}
725
726#define __SEQLOCK_UNLOCKED(lockname) \
727 { \
728 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
729 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
730 }
731
732/**
733 * seqlock_init() - dynamic initializer for seqlock_t
734 * @sl: Pointer to the seqlock_t instance
735 */
736#define seqlock_init(sl) \
737 do { \
738 spin_lock_init(&(sl)->lock); \
739 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \
740 } while (0)
741
742/**
743 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
744 * @sl: Name of the seqlock_t instance
745 */
746#define DEFINE_SEQLOCK(sl) \
747 seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
748
749/**
750 * read_seqbegin() - start a seqlock_t read side critical section
751 * @sl: Pointer to seqlock_t
752 *
753 * Return: count, to be passed to read_seqretry()
754 */
755static inline unsigned read_seqbegin(const seqlock_t *sl)
756{
757 unsigned ret = read_seqcount_begin(&sl->seqcount);
758
759 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */
760 kcsan_flat_atomic_begin();
761 return ret;
762}
763
764/**
765 * read_seqretry() - end a seqlock_t read side section
766 * @sl: Pointer to seqlock_t
767 * @start: count, from read_seqbegin()
768 *
769 * read_seqretry closes the read side critical section of given seqlock_t.
770 * If the critical section was invalid, it must be ignored (and typically
771 * retried).
772 *
773 * Return: true if a read section retry is required, else false
774 */
775static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
776{
777 /*
778 * Assume not nested: read_seqretry() may be called multiple times when
779 * completing read critical section.
780 */
781 kcsan_flat_atomic_end();
782
783 return read_seqcount_retry(&sl->seqcount, start);
784}
785
786/*
787 * For all seqlock_t write side functions, use the internal
788 * do_write_seqcount_begin() instead of generic write_seqcount_begin().
789 * This way, no redundant lockdep_assert_held() checks are added.
790 */
791
792/**
793 * write_seqlock() - start a seqlock_t write side critical section
794 * @sl: Pointer to seqlock_t
795 *
796 * write_seqlock opens a write side critical section for the given
797 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside
798 * that sequential lock. All seqlock_t write side sections are thus
799 * automatically serialized and non-preemptible.
800 *
801 * Context: if the seqlock_t read section, or other write side critical
802 * sections, can be invoked from hardirq or softirq contexts, use the
803 * _irqsave or _bh variants of this function instead.
804 */
805static inline void write_seqlock(seqlock_t *sl)
806{
807 spin_lock(&sl->lock);
808 do_write_seqcount_begin(&sl->seqcount.seqcount);
809}
810
811/**
812 * write_sequnlock() - end a seqlock_t write side critical section
813 * @sl: Pointer to seqlock_t
814 *
815 * write_sequnlock closes the (serialized and non-preemptible) write side
816 * critical section of given seqlock_t.
817 */
818static inline void write_sequnlock(seqlock_t *sl)
819{
820 do_write_seqcount_end(&sl->seqcount.seqcount);
821 spin_unlock(&sl->lock);
822}
823
824/**
825 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
826 * @sl: Pointer to seqlock_t
827 *
828 * _bh variant of write_seqlock(). Use only if the read side section, or
829 * other write side sections, can be invoked from softirq contexts.
830 */
831static inline void write_seqlock_bh(seqlock_t *sl)
832{
833 spin_lock_bh(&sl->lock);
834 do_write_seqcount_begin(&sl->seqcount.seqcount);
835}
836
837/**
838 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
839 * @sl: Pointer to seqlock_t
840 *
841 * write_sequnlock_bh closes the serialized, non-preemptible, and
842 * softirqs-disabled, seqlock_t write side critical section opened with
843 * write_seqlock_bh().
844 */
845static inline void write_sequnlock_bh(seqlock_t *sl)
846{
847 do_write_seqcount_end(&sl->seqcount.seqcount);
848 spin_unlock_bh(&sl->lock);
849}
850
851/**
852 * write_seqlock_irq() - start a non-interruptible seqlock_t write section
853 * @sl: Pointer to seqlock_t
854 *
855 * _irq variant of write_seqlock(). Use only if the read side section, or
856 * other write sections, can be invoked from hardirq contexts.
857 */
858static inline void write_seqlock_irq(seqlock_t *sl)
859{
860 spin_lock_irq(&sl->lock);
861 do_write_seqcount_begin(&sl->seqcount.seqcount);
862}
863
864/**
865 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
866 * @sl: Pointer to seqlock_t
867 *
868 * write_sequnlock_irq closes the serialized and non-interruptible
869 * seqlock_t write side section opened with write_seqlock_irq().
870 */
871static inline void write_sequnlock_irq(seqlock_t *sl)
872{
873 do_write_seqcount_end(&sl->seqcount.seqcount);
874 spin_unlock_irq(&sl->lock);
875}
876
877static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
878{
879 unsigned long flags;
880
881 spin_lock_irqsave(&sl->lock, flags);
882 do_write_seqcount_begin(&sl->seqcount.seqcount);
883 return flags;
884}
885
886/**
887 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
888 * section
889 * @lock: Pointer to seqlock_t
890 * @flags: Stack-allocated storage for saving caller's local interrupt
891 * state, to be passed to write_sequnlock_irqrestore().
892 *
893 * _irqsave variant of write_seqlock(). Use it only if the read side
894 * section, or other write sections, can be invoked from hardirq context.
895 */
896#define write_seqlock_irqsave(lock, flags) \
897 do { flags = __write_seqlock_irqsave(lock); } while (0)
898
899/**
900 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
901 * section
902 * @sl: Pointer to seqlock_t
903 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
904 *
905 * write_sequnlock_irqrestore closes the serialized and non-interruptible
906 * seqlock_t write section previously opened with write_seqlock_irqsave().
907 */
908static inline void
909write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
910{
911 do_write_seqcount_end(&sl->seqcount.seqcount);
912 spin_unlock_irqrestore(&sl->lock, flags);
913}
914
915/**
916 * read_seqlock_excl() - begin a seqlock_t locking reader section
917 * @sl: Pointer to seqlock_t
918 *
919 * read_seqlock_excl opens a seqlock_t locking reader critical section. A
920 * locking reader exclusively locks out *both* other writers *and* other
921 * locking readers, but it does not update the embedded sequence number.
922 *
923 * Locking readers act like a normal spin_lock()/spin_unlock().
924 *
925 * Context: if the seqlock_t write section, *or other read sections*, can
926 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
927 * variant of this function instead.
928 *
929 * The opened read section must be closed with read_sequnlock_excl().
930 */
931static inline void read_seqlock_excl(seqlock_t *sl)
932{
933 spin_lock(&sl->lock);
934}
935
936/**
937 * read_sequnlock_excl() - end a seqlock_t locking reader critical section
938 * @sl: Pointer to seqlock_t
939 */
940static inline void read_sequnlock_excl(seqlock_t *sl)
941{
942 spin_unlock(&sl->lock);
943}
944
945/**
946 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
947 * softirqs disabled
948 * @sl: Pointer to seqlock_t
949 *
950 * _bh variant of read_seqlock_excl(). Use this variant only if the
951 * seqlock_t write side section, *or other read sections*, can be invoked
952 * from softirq contexts.
953 */
954static inline void read_seqlock_excl_bh(seqlock_t *sl)
955{
956 spin_lock_bh(&sl->lock);
957}
958
959/**
960 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
961 * reader section
962 * @sl: Pointer to seqlock_t
963 */
964static inline void read_sequnlock_excl_bh(seqlock_t *sl)
965{
966 spin_unlock_bh(&sl->lock);
967}
968
969/**
970 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
971 * reader section
972 * @sl: Pointer to seqlock_t
973 *
974 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
975 * write side section, *or other read sections*, can be invoked from a
976 * hardirq context.
977 */
978static inline void read_seqlock_excl_irq(seqlock_t *sl)
979{
980 spin_lock_irq(&sl->lock);
981}
982
983/**
984 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
985 * locking reader section
986 * @sl: Pointer to seqlock_t
987 */
988static inline void read_sequnlock_excl_irq(seqlock_t *sl)
989{
990 spin_unlock_irq(&sl->lock);
991}
992
993static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
994{
995 unsigned long flags;
996
997 spin_lock_irqsave(&sl->lock, flags);
998 return flags;
999}
1000
1001/**
1002 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1003 * locking reader section
1004 * @lock: Pointer to seqlock_t
1005 * @flags: Stack-allocated storage for saving caller's local interrupt
1006 * state, to be passed to read_sequnlock_excl_irqrestore().
1007 *
1008 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1009 * write side section, *or other read sections*, can be invoked from a
1010 * hardirq context.
1011 */
1012#define read_seqlock_excl_irqsave(lock, flags) \
1013 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1014
1015/**
1016 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1017 * locking reader section
1018 * @sl: Pointer to seqlock_t
1019 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1020 */
1021static inline void
1022read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1023{
1024 spin_unlock_irqrestore(&sl->lock, flags);
1025}
1026
1027/**
1028 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1029 * @lock: Pointer to seqlock_t
1030 * @seq : Marker and return parameter. If the passed value is even, the
1031 * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1032 * If the passed value is odd, the reader will become a *locking* reader
1033 * as in read_seqlock_excl(). In the first call to this function, the
1034 * caller *must* initialize and pass an even value to @seq; this way, a
1035 * lockless read can be optimistically tried first.
1036 *
1037 * read_seqbegin_or_lock is an API designed to optimistically try a normal
1038 * lockless seqlock_t read section first. If an odd counter is found, the
1039 * lockless read trial has failed, and the next read iteration transforms
1040 * itself into a full seqlock_t locking reader.
1041 *
1042 * This is typically used to avoid seqlock_t lockless readers starvation
1043 * (too much retry loops) in the case of a sharp spike in write side
1044 * activity.
1045 *
1046 * Context: if the seqlock_t write section, *or other read sections*, can
1047 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1048 * variant of this function instead.
1049 *
1050 * Check Documentation/locking/seqlock.rst for template example code.
1051 *
1052 * Return: the encountered sequence counter value, through the @seq
1053 * parameter, which is overloaded as a return parameter. This returned
1054 * value must be checked with need_seqretry(). If the read section need to
1055 * be retried, this returned value must also be passed as the @seq
1056 * parameter of the next read_seqbegin_or_lock() iteration.
1057 */
1058static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1059{
1060 if (!(*seq & 1)) /* Even */
1061 *seq = read_seqbegin(lock);
1062 else /* Odd */
1063 read_seqlock_excl(lock);
1064}
1065
1066/**
1067 * need_seqretry() - validate seqlock_t "locking or lockless" read section
1068 * @lock: Pointer to seqlock_t
1069 * @seq: sequence count, from read_seqbegin_or_lock()
1070 *
1071 * Return: true if a read section retry is required, false otherwise
1072 */
1073static inline int need_seqretry(seqlock_t *lock, int seq)
1074{
1075 return !(seq & 1) && read_seqretry(lock, seq);
1076}
1077
1078/**
1079 * done_seqretry() - end seqlock_t "locking or lockless" reader section
1080 * @lock: Pointer to seqlock_t
1081 * @seq: count, from read_seqbegin_or_lock()
1082 *
1083 * done_seqretry finishes the seqlock_t read side critical section started
1084 * with read_seqbegin_or_lock() and validated by need_seqretry().
1085 */
1086static inline void done_seqretry(seqlock_t *lock, int seq)
1087{
1088 if (seq & 1)
1089 read_sequnlock_excl(lock);
1090}
1091
1092/**
1093 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1094 * a non-interruptible locking reader
1095 * @lock: Pointer to seqlock_t
1096 * @seq: Marker and return parameter. Check read_seqbegin_or_lock().
1097 *
1098 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1099 * the seqlock_t write section, *or other read sections*, can be invoked
1100 * from hardirq context.
1101 *
1102 * Note: Interrupts will be disabled only for "locking reader" mode.
1103 *
1104 * Return:
1105 *
1106 * 1. The saved local interrupts state in case of a locking reader, to
1107 * be passed to done_seqretry_irqrestore().
1108 *
1109 * 2. The encountered sequence counter value, returned through @seq
1110 * overloaded as a return parameter. Check read_seqbegin_or_lock().
1111 */
1112static inline unsigned long
1113read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1114{
1115 unsigned long flags = 0;
1116
1117 if (!(*seq & 1)) /* Even */
1118 *seq = read_seqbegin(lock);
1119 else /* Odd */
1120 read_seqlock_excl_irqsave(lock, flags);
1121
1122 return flags;
1123}
1124
1125/**
1126 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1127 * non-interruptible locking reader section
1128 * @lock: Pointer to seqlock_t
1129 * @seq: Count, from read_seqbegin_or_lock_irqsave()
1130 * @flags: Caller's saved local interrupt state in case of a locking
1131 * reader, also from read_seqbegin_or_lock_irqsave()
1132 *
1133 * This is the _irqrestore variant of done_seqretry(). The read section
1134 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1135 * by need_seqretry().
1136 */
1137static inline void
1138done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1139{
1140 if (seq & 1)
1141 read_sequnlock_excl_irqrestore(lock, flags);
1142}
1143#endif /* __LINUX_SEQLOCK_H */