Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/splice.h>
61#include <linux/net.h>
62#include <linux/interrupt.h>
63#include <linux/thread_info.h>
64#include <linux/rcupdate.h>
65#include <linux/netdevice.h>
66#include <linux/proc_fs.h>
67#include <linux/seq_file.h>
68#include <linux/mutex.h>
69#include <linux/if_bridge.h>
70#include <linux/if_vlan.h>
71#include <linux/ptp_classify.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/cache.h>
75#include <linux/module.h>
76#include <linux/highmem.h>
77#include <linux/mount.h>
78#include <linux/pseudo_fs.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/compat.h>
82#include <linux/kmod.h>
83#include <linux/audit.h>
84#include <linux/wireless.h>
85#include <linux/nsproxy.h>
86#include <linux/magic.h>
87#include <linux/slab.h>
88#include <linux/xattr.h>
89#include <linux/nospec.h>
90#include <linux/indirect_call_wrapper.h>
91#include <linux/io_uring/net.h>
92
93#include <linux/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/termios.h>
107#include <linux/sockios.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110#include <linux/ptp_clock_kernel.h>
111#include <trace/events/sock.h>
112
113#ifdef CONFIG_NET_RX_BUSY_POLL
114unsigned int sysctl_net_busy_read __read_mostly;
115unsigned int sysctl_net_busy_poll __read_mostly;
116#endif
117
118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122static int sock_close(struct inode *inode, struct file *file);
123static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126#ifdef CONFIG_COMPAT
127static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129#endif
130static int sock_fasync(int fd, struct file *filp, int on);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134static void sock_splice_eof(struct file *file);
135
136#ifdef CONFIG_PROC_FS
137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138{
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144}
145#else
146#define sock_show_fdinfo NULL
147#endif
148
149/*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .read_iter = sock_read_iter,
157 .write_iter = sock_write_iter,
158 .poll = sock_poll,
159 .unlocked_ioctl = sock_ioctl,
160#ifdef CONFIG_COMPAT
161 .compat_ioctl = compat_sock_ioctl,
162#endif
163 .uring_cmd = io_uring_cmd_sock,
164 .mmap = sock_mmap,
165 .release = sock_close,
166 .fasync = sock_fasync,
167 .splice_write = splice_to_socket,
168 .splice_read = sock_splice_read,
169 .splice_eof = sock_splice_eof,
170 .show_fdinfo = sock_show_fdinfo,
171};
172
173static const char * const pf_family_names[] = {
174 [PF_UNSPEC] = "PF_UNSPEC",
175 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
176 [PF_INET] = "PF_INET",
177 [PF_AX25] = "PF_AX25",
178 [PF_IPX] = "PF_IPX",
179 [PF_APPLETALK] = "PF_APPLETALK",
180 [PF_NETROM] = "PF_NETROM",
181 [PF_BRIDGE] = "PF_BRIDGE",
182 [PF_ATMPVC] = "PF_ATMPVC",
183 [PF_X25] = "PF_X25",
184 [PF_INET6] = "PF_INET6",
185 [PF_ROSE] = "PF_ROSE",
186 [PF_DECnet] = "PF_DECnet",
187 [PF_NETBEUI] = "PF_NETBEUI",
188 [PF_SECURITY] = "PF_SECURITY",
189 [PF_KEY] = "PF_KEY",
190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
191 [PF_PACKET] = "PF_PACKET",
192 [PF_ASH] = "PF_ASH",
193 [PF_ECONET] = "PF_ECONET",
194 [PF_ATMSVC] = "PF_ATMSVC",
195 [PF_RDS] = "PF_RDS",
196 [PF_SNA] = "PF_SNA",
197 [PF_IRDA] = "PF_IRDA",
198 [PF_PPPOX] = "PF_PPPOX",
199 [PF_WANPIPE] = "PF_WANPIPE",
200 [PF_LLC] = "PF_LLC",
201 [PF_IB] = "PF_IB",
202 [PF_MPLS] = "PF_MPLS",
203 [PF_CAN] = "PF_CAN",
204 [PF_TIPC] = "PF_TIPC",
205 [PF_BLUETOOTH] = "PF_BLUETOOTH",
206 [PF_IUCV] = "PF_IUCV",
207 [PF_RXRPC] = "PF_RXRPC",
208 [PF_ISDN] = "PF_ISDN",
209 [PF_PHONET] = "PF_PHONET",
210 [PF_IEEE802154] = "PF_IEEE802154",
211 [PF_CAIF] = "PF_CAIF",
212 [PF_ALG] = "PF_ALG",
213 [PF_NFC] = "PF_NFC",
214 [PF_VSOCK] = "PF_VSOCK",
215 [PF_KCM] = "PF_KCM",
216 [PF_QIPCRTR] = "PF_QIPCRTR",
217 [PF_SMC] = "PF_SMC",
218 [PF_XDP] = "PF_XDP",
219 [PF_MCTP] = "PF_MCTP",
220};
221
222/*
223 * The protocol list. Each protocol is registered in here.
224 */
225
226static DEFINE_SPINLOCK(net_family_lock);
227static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228
229/*
230 * Support routines.
231 * Move socket addresses back and forth across the kernel/user
232 * divide and look after the messy bits.
233 */
234
235/**
236 * move_addr_to_kernel - copy a socket address into kernel space
237 * @uaddr: Address in user space
238 * @kaddr: Address in kernel space
239 * @ulen: Length in user space
240 *
241 * The address is copied into kernel space. If the provided address is
242 * too long an error code of -EINVAL is returned. If the copy gives
243 * invalid addresses -EFAULT is returned. On a success 0 is returned.
244 */
245
246int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247{
248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 return -EINVAL;
250 if (ulen == 0)
251 return 0;
252 if (copy_from_user(kaddr, uaddr, ulen))
253 return -EFAULT;
254 return audit_sockaddr(ulen, kaddr);
255}
256
257/**
258 * move_addr_to_user - copy an address to user space
259 * @kaddr: kernel space address
260 * @klen: length of address in kernel
261 * @uaddr: user space address
262 * @ulen: pointer to user length field
263 *
264 * The value pointed to by ulen on entry is the buffer length available.
265 * This is overwritten with the buffer space used. -EINVAL is returned
266 * if an overlong buffer is specified or a negative buffer size. -EFAULT
267 * is returned if either the buffer or the length field are not
268 * accessible.
269 * After copying the data up to the limit the user specifies, the true
270 * length of the data is written over the length limit the user
271 * specified. Zero is returned for a success.
272 */
273
274static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 void __user *uaddr, int __user *ulen)
276{
277 int err;
278 int len;
279
280 BUG_ON(klen > sizeof(struct sockaddr_storage));
281 err = get_user(len, ulen);
282 if (err)
283 return err;
284 if (len > klen)
285 len = klen;
286 if (len < 0)
287 return -EINVAL;
288 if (len) {
289 if (audit_sockaddr(klen, kaddr))
290 return -ENOMEM;
291 if (copy_to_user(uaddr, kaddr, len))
292 return -EFAULT;
293 }
294 /*
295 * "fromlen shall refer to the value before truncation.."
296 * 1003.1g
297 */
298 return __put_user(klen, ulen);
299}
300
301static struct kmem_cache *sock_inode_cachep __ro_after_init;
302
303static struct inode *sock_alloc_inode(struct super_block *sb)
304{
305 struct socket_alloc *ei;
306
307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 if (!ei)
309 return NULL;
310 init_waitqueue_head(&ei->socket.wq.wait);
311 ei->socket.wq.fasync_list = NULL;
312 ei->socket.wq.flags = 0;
313
314 ei->socket.state = SS_UNCONNECTED;
315 ei->socket.flags = 0;
316 ei->socket.ops = NULL;
317 ei->socket.sk = NULL;
318 ei->socket.file = NULL;
319
320 return &ei->vfs_inode;
321}
322
323static void sock_free_inode(struct inode *inode)
324{
325 struct socket_alloc *ei;
326
327 ei = container_of(inode, struct socket_alloc, vfs_inode);
328 kmem_cache_free(sock_inode_cachep, ei);
329}
330
331static void init_once(void *foo)
332{
333 struct socket_alloc *ei = (struct socket_alloc *)foo;
334
335 inode_init_once(&ei->vfs_inode);
336}
337
338static void init_inodecache(void)
339{
340 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 sizeof(struct socket_alloc),
342 0,
343 (SLAB_HWCACHE_ALIGN |
344 SLAB_RECLAIM_ACCOUNT |
345 SLAB_ACCOUNT),
346 init_once);
347 BUG_ON(sock_inode_cachep == NULL);
348}
349
350static const struct super_operations sockfs_ops = {
351 .alloc_inode = sock_alloc_inode,
352 .free_inode = sock_free_inode,
353 .statfs = simple_statfs,
354};
355
356/*
357 * sockfs_dname() is called from d_path().
358 */
359static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360{
361 return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 d_inode(dentry)->i_ino);
363}
364
365static const struct dentry_operations sockfs_dentry_operations = {
366 .d_dname = sockfs_dname,
367};
368
369static int sockfs_xattr_get(const struct xattr_handler *handler,
370 struct dentry *dentry, struct inode *inode,
371 const char *suffix, void *value, size_t size)
372{
373 if (value) {
374 if (dentry->d_name.len + 1 > size)
375 return -ERANGE;
376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 }
378 return dentry->d_name.len + 1;
379}
380
381#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384
385static const struct xattr_handler sockfs_xattr_handler = {
386 .name = XATTR_NAME_SOCKPROTONAME,
387 .get = sockfs_xattr_get,
388};
389
390static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 struct mnt_idmap *idmap,
392 struct dentry *dentry, struct inode *inode,
393 const char *suffix, const void *value,
394 size_t size, int flags)
395{
396 /* Handled by LSM. */
397 return -EAGAIN;
398}
399
400static const struct xattr_handler sockfs_security_xattr_handler = {
401 .prefix = XATTR_SECURITY_PREFIX,
402 .set = sockfs_security_xattr_set,
403};
404
405static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 &sockfs_xattr_handler,
407 &sockfs_security_xattr_handler,
408 NULL
409};
410
411static int sockfs_init_fs_context(struct fs_context *fc)
412{
413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 if (!ctx)
415 return -ENOMEM;
416 ctx->ops = &sockfs_ops;
417 ctx->dops = &sockfs_dentry_operations;
418 ctx->xattr = sockfs_xattr_handlers;
419 return 0;
420}
421
422static struct vfsmount *sock_mnt __read_mostly;
423
424static struct file_system_type sock_fs_type = {
425 .name = "sockfs",
426 .init_fs_context = sockfs_init_fs_context,
427 .kill_sb = kill_anon_super,
428};
429
430/*
431 * Obtains the first available file descriptor and sets it up for use.
432 *
433 * These functions create file structures and maps them to fd space
434 * of the current process. On success it returns file descriptor
435 * and file struct implicitly stored in sock->file.
436 * Note that another thread may close file descriptor before we return
437 * from this function. We use the fact that now we do not refer
438 * to socket after mapping. If one day we will need it, this
439 * function will increment ref. count on file by 1.
440 *
441 * In any case returned fd MAY BE not valid!
442 * This race condition is unavoidable
443 * with shared fd spaces, we cannot solve it inside kernel,
444 * but we take care of internal coherence yet.
445 */
446
447/**
448 * sock_alloc_file - Bind a &socket to a &file
449 * @sock: socket
450 * @flags: file status flags
451 * @dname: protocol name
452 *
453 * Returns the &file bound with @sock, implicitly storing it
454 * in sock->file. If dname is %NULL, sets to "".
455 *
456 * On failure @sock is released, and an ERR pointer is returned.
457 *
458 * This function uses GFP_KERNEL internally.
459 */
460
461struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462{
463 struct file *file;
464
465 if (!dname)
466 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467
468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 O_RDWR | (flags & O_NONBLOCK),
470 &socket_file_ops);
471 if (IS_ERR(file)) {
472 sock_release(sock);
473 return file;
474 }
475
476 file->f_mode |= FMODE_NOWAIT;
477 sock->file = file;
478 file->private_data = sock;
479 stream_open(SOCK_INODE(sock), file);
480 return file;
481}
482EXPORT_SYMBOL(sock_alloc_file);
483
484static int sock_map_fd(struct socket *sock, int flags)
485{
486 struct file *newfile;
487 int fd = get_unused_fd_flags(flags);
488 if (unlikely(fd < 0)) {
489 sock_release(sock);
490 return fd;
491 }
492
493 newfile = sock_alloc_file(sock, flags, NULL);
494 if (!IS_ERR(newfile)) {
495 fd_install(fd, newfile);
496 return fd;
497 }
498
499 put_unused_fd(fd);
500 return PTR_ERR(newfile);
501}
502
503/**
504 * sock_from_file - Return the &socket bounded to @file.
505 * @file: file
506 *
507 * On failure returns %NULL.
508 */
509
510struct socket *sock_from_file(struct file *file)
511{
512 if (file->f_op == &socket_file_ops)
513 return file->private_data; /* set in sock_alloc_file */
514
515 return NULL;
516}
517EXPORT_SYMBOL(sock_from_file);
518
519/**
520 * sockfd_lookup - Go from a file number to its socket slot
521 * @fd: file handle
522 * @err: pointer to an error code return
523 *
524 * The file handle passed in is locked and the socket it is bound
525 * to is returned. If an error occurs the err pointer is overwritten
526 * with a negative errno code and NULL is returned. The function checks
527 * for both invalid handles and passing a handle which is not a socket.
528 *
529 * On a success the socket object pointer is returned.
530 */
531
532struct socket *sockfd_lookup(int fd, int *err)
533{
534 struct file *file;
535 struct socket *sock;
536
537 file = fget(fd);
538 if (!file) {
539 *err = -EBADF;
540 return NULL;
541 }
542
543 sock = sock_from_file(file);
544 if (!sock) {
545 *err = -ENOTSOCK;
546 fput(file);
547 }
548 return sock;
549}
550EXPORT_SYMBOL(sockfd_lookup);
551
552static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
553{
554 struct fd f = fdget(fd);
555 struct socket *sock;
556
557 *err = -EBADF;
558 if (fd_file(f)) {
559 sock = sock_from_file(fd_file(f));
560 if (likely(sock)) {
561 *fput_needed = f.word & FDPUT_FPUT;
562 return sock;
563 }
564 *err = -ENOTSOCK;
565 fdput(f);
566 }
567 return NULL;
568}
569
570static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
571 size_t size)
572{
573 ssize_t len;
574 ssize_t used = 0;
575
576 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
577 if (len < 0)
578 return len;
579 used += len;
580 if (buffer) {
581 if (size < used)
582 return -ERANGE;
583 buffer += len;
584 }
585
586 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
587 used += len;
588 if (buffer) {
589 if (size < used)
590 return -ERANGE;
591 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
592 buffer += len;
593 }
594
595 return used;
596}
597
598static int sockfs_setattr(struct mnt_idmap *idmap,
599 struct dentry *dentry, struct iattr *iattr)
600{
601 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
602
603 if (!err && (iattr->ia_valid & ATTR_UID)) {
604 struct socket *sock = SOCKET_I(d_inode(dentry));
605
606 if (sock->sk)
607 sock->sk->sk_uid = iattr->ia_uid;
608 else
609 err = -ENOENT;
610 }
611
612 return err;
613}
614
615static const struct inode_operations sockfs_inode_ops = {
616 .listxattr = sockfs_listxattr,
617 .setattr = sockfs_setattr,
618};
619
620/**
621 * sock_alloc - allocate a socket
622 *
623 * Allocate a new inode and socket object. The two are bound together
624 * and initialised. The socket is then returned. If we are out of inodes
625 * NULL is returned. This functions uses GFP_KERNEL internally.
626 */
627
628struct socket *sock_alloc(void)
629{
630 struct inode *inode;
631 struct socket *sock;
632
633 inode = new_inode_pseudo(sock_mnt->mnt_sb);
634 if (!inode)
635 return NULL;
636
637 sock = SOCKET_I(inode);
638
639 inode->i_ino = get_next_ino();
640 inode->i_mode = S_IFSOCK | S_IRWXUGO;
641 inode->i_uid = current_fsuid();
642 inode->i_gid = current_fsgid();
643 inode->i_op = &sockfs_inode_ops;
644
645 return sock;
646}
647EXPORT_SYMBOL(sock_alloc);
648
649static void __sock_release(struct socket *sock, struct inode *inode)
650{
651 const struct proto_ops *ops = READ_ONCE(sock->ops);
652
653 if (ops) {
654 struct module *owner = ops->owner;
655
656 if (inode)
657 inode_lock(inode);
658 ops->release(sock);
659 sock->sk = NULL;
660 if (inode)
661 inode_unlock(inode);
662 sock->ops = NULL;
663 module_put(owner);
664 }
665
666 if (sock->wq.fasync_list)
667 pr_err("%s: fasync list not empty!\n", __func__);
668
669 if (!sock->file) {
670 iput(SOCK_INODE(sock));
671 return;
672 }
673 sock->file = NULL;
674}
675
676/**
677 * sock_release - close a socket
678 * @sock: socket to close
679 *
680 * The socket is released from the protocol stack if it has a release
681 * callback, and the inode is then released if the socket is bound to
682 * an inode not a file.
683 */
684void sock_release(struct socket *sock)
685{
686 __sock_release(sock, NULL);
687}
688EXPORT_SYMBOL(sock_release);
689
690void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
691{
692 u8 flags = *tx_flags;
693
694 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
695 flags |= SKBTX_HW_TSTAMP;
696
697 /* PTP hardware clocks can provide a free running cycle counter
698 * as a time base for virtual clocks. Tell driver to use the
699 * free running cycle counter for timestamp if socket is bound
700 * to virtual clock.
701 */
702 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
703 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
704 }
705
706 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
707 flags |= SKBTX_SW_TSTAMP;
708
709 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
710 flags |= SKBTX_SCHED_TSTAMP;
711
712 *tx_flags = flags;
713}
714EXPORT_SYMBOL(__sock_tx_timestamp);
715
716INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
717 size_t));
718INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
719 size_t));
720
721static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
722 int flags)
723{
724 trace_sock_send_length(sk, ret, 0);
725}
726
727static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
728{
729 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
730 inet_sendmsg, sock, msg,
731 msg_data_left(msg));
732 BUG_ON(ret == -EIOCBQUEUED);
733
734 if (trace_sock_send_length_enabled())
735 call_trace_sock_send_length(sock->sk, ret, 0);
736 return ret;
737}
738
739static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
740{
741 int err = security_socket_sendmsg(sock, msg,
742 msg_data_left(msg));
743
744 return err ?: sock_sendmsg_nosec(sock, msg);
745}
746
747/**
748 * sock_sendmsg - send a message through @sock
749 * @sock: socket
750 * @msg: message to send
751 *
752 * Sends @msg through @sock, passing through LSM.
753 * Returns the number of bytes sent, or an error code.
754 */
755int sock_sendmsg(struct socket *sock, struct msghdr *msg)
756{
757 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
758 struct sockaddr_storage address;
759 int save_len = msg->msg_namelen;
760 int ret;
761
762 if (msg->msg_name) {
763 memcpy(&address, msg->msg_name, msg->msg_namelen);
764 msg->msg_name = &address;
765 }
766
767 ret = __sock_sendmsg(sock, msg);
768 msg->msg_name = save_addr;
769 msg->msg_namelen = save_len;
770
771 return ret;
772}
773EXPORT_SYMBOL(sock_sendmsg);
774
775/**
776 * kernel_sendmsg - send a message through @sock (kernel-space)
777 * @sock: socket
778 * @msg: message header
779 * @vec: kernel vec
780 * @num: vec array length
781 * @size: total message data size
782 *
783 * Builds the message data with @vec and sends it through @sock.
784 * Returns the number of bytes sent, or an error code.
785 */
786
787int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
788 struct kvec *vec, size_t num, size_t size)
789{
790 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
791 return sock_sendmsg(sock, msg);
792}
793EXPORT_SYMBOL(kernel_sendmsg);
794
795/**
796 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
797 * @sk: sock
798 * @msg: message header
799 * @vec: output s/g array
800 * @num: output s/g array length
801 * @size: total message data size
802 *
803 * Builds the message data with @vec and sends it through @sock.
804 * Returns the number of bytes sent, or an error code.
805 * Caller must hold @sk.
806 */
807
808int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
809 struct kvec *vec, size_t num, size_t size)
810{
811 struct socket *sock = sk->sk_socket;
812 const struct proto_ops *ops = READ_ONCE(sock->ops);
813
814 if (!ops->sendmsg_locked)
815 return sock_no_sendmsg_locked(sk, msg, size);
816
817 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
818
819 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
820}
821EXPORT_SYMBOL(kernel_sendmsg_locked);
822
823static bool skb_is_err_queue(const struct sk_buff *skb)
824{
825 /* pkt_type of skbs enqueued on the error queue are set to
826 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
827 * in recvmsg, since skbs received on a local socket will never
828 * have a pkt_type of PACKET_OUTGOING.
829 */
830 return skb->pkt_type == PACKET_OUTGOING;
831}
832
833/* On transmit, software and hardware timestamps are returned independently.
834 * As the two skb clones share the hardware timestamp, which may be updated
835 * before the software timestamp is received, a hardware TX timestamp may be
836 * returned only if there is no software TX timestamp. Ignore false software
837 * timestamps, which may be made in the __sock_recv_timestamp() call when the
838 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
839 * hardware timestamp.
840 */
841static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
842{
843 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
844}
845
846static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
847{
848 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
849 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
850 struct net_device *orig_dev;
851 ktime_t hwtstamp;
852
853 rcu_read_lock();
854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 if (orig_dev) {
856 *if_index = orig_dev->ifindex;
857 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
858 } else {
859 hwtstamp = shhwtstamps->hwtstamp;
860 }
861 rcu_read_unlock();
862
863 return hwtstamp;
864}
865
866static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
867 int if_index)
868{
869 struct scm_ts_pktinfo ts_pktinfo;
870 struct net_device *orig_dev;
871
872 if (!skb_mac_header_was_set(skb))
873 return;
874
875 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
876
877 if (!if_index) {
878 rcu_read_lock();
879 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
880 if (orig_dev)
881 if_index = orig_dev->ifindex;
882 rcu_read_unlock();
883 }
884 ts_pktinfo.if_index = if_index;
885
886 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
887 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
888 sizeof(ts_pktinfo), &ts_pktinfo);
889}
890
891/*
892 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
893 */
894void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
895 struct sk_buff *skb)
896{
897 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
898 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
899 struct scm_timestamping_internal tss;
900 int empty = 1, false_tstamp = 0;
901 struct skb_shared_hwtstamps *shhwtstamps =
902 skb_hwtstamps(skb);
903 int if_index;
904 ktime_t hwtstamp;
905 u32 tsflags;
906
907 /* Race occurred between timestamp enabling and packet
908 receiving. Fill in the current time for now. */
909 if (need_software_tstamp && skb->tstamp == 0) {
910 __net_timestamp(skb);
911 false_tstamp = 1;
912 }
913
914 if (need_software_tstamp) {
915 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
916 if (new_tstamp) {
917 struct __kernel_sock_timeval tv;
918
919 skb_get_new_timestamp(skb, &tv);
920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
921 sizeof(tv), &tv);
922 } else {
923 struct __kernel_old_timeval tv;
924
925 skb_get_timestamp(skb, &tv);
926 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
927 sizeof(tv), &tv);
928 }
929 } else {
930 if (new_tstamp) {
931 struct __kernel_timespec ts;
932
933 skb_get_new_timestampns(skb, &ts);
934 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
935 sizeof(ts), &ts);
936 } else {
937 struct __kernel_old_timespec ts;
938
939 skb_get_timestampns(skb, &ts);
940 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
941 sizeof(ts), &ts);
942 }
943 }
944 }
945
946 memset(&tss, 0, sizeof(tss));
947 tsflags = READ_ONCE(sk->sk_tsflags);
948 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
949 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
950 skb_is_err_queue(skb) ||
951 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
952 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
953 empty = 0;
954 if (shhwtstamps &&
955 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
956 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
957 skb_is_err_queue(skb) ||
958 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
959 !skb_is_swtx_tstamp(skb, false_tstamp)) {
960 if_index = 0;
961 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
962 hwtstamp = get_timestamp(sk, skb, &if_index);
963 else
964 hwtstamp = shhwtstamps->hwtstamp;
965
966 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
967 hwtstamp = ptp_convert_timestamp(&hwtstamp,
968 READ_ONCE(sk->sk_bind_phc));
969
970 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
971 empty = 0;
972
973 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
974 !skb_is_err_queue(skb))
975 put_ts_pktinfo(msg, skb, if_index);
976 }
977 }
978 if (!empty) {
979 if (sock_flag(sk, SOCK_TSTAMP_NEW))
980 put_cmsg_scm_timestamping64(msg, &tss);
981 else
982 put_cmsg_scm_timestamping(msg, &tss);
983
984 if (skb_is_err_queue(skb) && skb->len &&
985 SKB_EXT_ERR(skb)->opt_stats)
986 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
987 skb->len, skb->data);
988 }
989}
990EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
991
992#ifdef CONFIG_WIRELESS
993void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
994 struct sk_buff *skb)
995{
996 int ack;
997
998 if (!sock_flag(sk, SOCK_WIFI_STATUS))
999 return;
1000 if (!skb->wifi_acked_valid)
1001 return;
1002
1003 ack = skb->wifi_acked;
1004
1005 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1006}
1007EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1008#endif
1009
1010static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1011 struct sk_buff *skb)
1012{
1013 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1014 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1015 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1016}
1017
1018static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1019 struct sk_buff *skb)
1020{
1021 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1022 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1023 __u32 mark = skb->mark;
1024
1025 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1026 }
1027}
1028
1029void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1030 struct sk_buff *skb)
1031{
1032 sock_recv_timestamp(msg, sk, skb);
1033 sock_recv_drops(msg, sk, skb);
1034 sock_recv_mark(msg, sk, skb);
1035}
1036EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1037
1038INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1039 size_t, int));
1040INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1041 size_t, int));
1042
1043static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1044{
1045 trace_sock_recv_length(sk, ret, flags);
1046}
1047
1048static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1049 int flags)
1050{
1051 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1052 inet6_recvmsg,
1053 inet_recvmsg, sock, msg,
1054 msg_data_left(msg), flags);
1055 if (trace_sock_recv_length_enabled())
1056 call_trace_sock_recv_length(sock->sk, ret, flags);
1057 return ret;
1058}
1059
1060/**
1061 * sock_recvmsg - receive a message from @sock
1062 * @sock: socket
1063 * @msg: message to receive
1064 * @flags: message flags
1065 *
1066 * Receives @msg from @sock, passing through LSM. Returns the total number
1067 * of bytes received, or an error.
1068 */
1069int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1070{
1071 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1072
1073 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1074}
1075EXPORT_SYMBOL(sock_recvmsg);
1076
1077/**
1078 * kernel_recvmsg - Receive a message from a socket (kernel space)
1079 * @sock: The socket to receive the message from
1080 * @msg: Received message
1081 * @vec: Input s/g array for message data
1082 * @num: Size of input s/g array
1083 * @size: Number of bytes to read
1084 * @flags: Message flags (MSG_DONTWAIT, etc...)
1085 *
1086 * On return the msg structure contains the scatter/gather array passed in the
1087 * vec argument. The array is modified so that it consists of the unfilled
1088 * portion of the original array.
1089 *
1090 * The returned value is the total number of bytes received, or an error.
1091 */
1092
1093int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1094 struct kvec *vec, size_t num, size_t size, int flags)
1095{
1096 msg->msg_control_is_user = false;
1097 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1098 return sock_recvmsg(sock, msg, flags);
1099}
1100EXPORT_SYMBOL(kernel_recvmsg);
1101
1102static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1103 struct pipe_inode_info *pipe, size_t len,
1104 unsigned int flags)
1105{
1106 struct socket *sock = file->private_data;
1107 const struct proto_ops *ops;
1108
1109 ops = READ_ONCE(sock->ops);
1110 if (unlikely(!ops->splice_read))
1111 return copy_splice_read(file, ppos, pipe, len, flags);
1112
1113 return ops->splice_read(sock, ppos, pipe, len, flags);
1114}
1115
1116static void sock_splice_eof(struct file *file)
1117{
1118 struct socket *sock = file->private_data;
1119 const struct proto_ops *ops;
1120
1121 ops = READ_ONCE(sock->ops);
1122 if (ops->splice_eof)
1123 ops->splice_eof(sock);
1124}
1125
1126static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1127{
1128 struct file *file = iocb->ki_filp;
1129 struct socket *sock = file->private_data;
1130 struct msghdr msg = {.msg_iter = *to,
1131 .msg_iocb = iocb};
1132 ssize_t res;
1133
1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1135 msg.msg_flags = MSG_DONTWAIT;
1136
1137 if (iocb->ki_pos != 0)
1138 return -ESPIPE;
1139
1140 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1141 return 0;
1142
1143 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1144 *to = msg.msg_iter;
1145 return res;
1146}
1147
1148static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1149{
1150 struct file *file = iocb->ki_filp;
1151 struct socket *sock = file->private_data;
1152 struct msghdr msg = {.msg_iter = *from,
1153 .msg_iocb = iocb};
1154 ssize_t res;
1155
1156 if (iocb->ki_pos != 0)
1157 return -ESPIPE;
1158
1159 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1160 msg.msg_flags = MSG_DONTWAIT;
1161
1162 if (sock->type == SOCK_SEQPACKET)
1163 msg.msg_flags |= MSG_EOR;
1164
1165 res = __sock_sendmsg(sock, &msg);
1166 *from = msg.msg_iter;
1167 return res;
1168}
1169
1170/*
1171 * Atomic setting of ioctl hooks to avoid race
1172 * with module unload.
1173 */
1174
1175static DEFINE_MUTEX(br_ioctl_mutex);
1176static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1177 unsigned int cmd, struct ifreq *ifr,
1178 void __user *uarg);
1179
1180void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1181 unsigned int cmd, struct ifreq *ifr,
1182 void __user *uarg))
1183{
1184 mutex_lock(&br_ioctl_mutex);
1185 br_ioctl_hook = hook;
1186 mutex_unlock(&br_ioctl_mutex);
1187}
1188EXPORT_SYMBOL(brioctl_set);
1189
1190int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1191 struct ifreq *ifr, void __user *uarg)
1192{
1193 int err = -ENOPKG;
1194
1195 if (!br_ioctl_hook)
1196 request_module("bridge");
1197
1198 mutex_lock(&br_ioctl_mutex);
1199 if (br_ioctl_hook)
1200 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1201 mutex_unlock(&br_ioctl_mutex);
1202
1203 return err;
1204}
1205
1206static DEFINE_MUTEX(vlan_ioctl_mutex);
1207static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1208
1209void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1210{
1211 mutex_lock(&vlan_ioctl_mutex);
1212 vlan_ioctl_hook = hook;
1213 mutex_unlock(&vlan_ioctl_mutex);
1214}
1215EXPORT_SYMBOL(vlan_ioctl_set);
1216
1217static long sock_do_ioctl(struct net *net, struct socket *sock,
1218 unsigned int cmd, unsigned long arg)
1219{
1220 const struct proto_ops *ops = READ_ONCE(sock->ops);
1221 struct ifreq ifr;
1222 bool need_copyout;
1223 int err;
1224 void __user *argp = (void __user *)arg;
1225 void __user *data;
1226
1227 err = ops->ioctl(sock, cmd, arg);
1228
1229 /*
1230 * If this ioctl is unknown try to hand it down
1231 * to the NIC driver.
1232 */
1233 if (err != -ENOIOCTLCMD)
1234 return err;
1235
1236 if (!is_socket_ioctl_cmd(cmd))
1237 return -ENOTTY;
1238
1239 if (get_user_ifreq(&ifr, &data, argp))
1240 return -EFAULT;
1241 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1242 if (!err && need_copyout)
1243 if (put_user_ifreq(&ifr, argp))
1244 return -EFAULT;
1245
1246 return err;
1247}
1248
1249/*
1250 * With an ioctl, arg may well be a user mode pointer, but we don't know
1251 * what to do with it - that's up to the protocol still.
1252 */
1253
1254static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1255{
1256 const struct proto_ops *ops;
1257 struct socket *sock;
1258 struct sock *sk;
1259 void __user *argp = (void __user *)arg;
1260 int pid, err;
1261 struct net *net;
1262
1263 sock = file->private_data;
1264 ops = READ_ONCE(sock->ops);
1265 sk = sock->sk;
1266 net = sock_net(sk);
1267 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1268 struct ifreq ifr;
1269 void __user *data;
1270 bool need_copyout;
1271 if (get_user_ifreq(&ifr, &data, argp))
1272 return -EFAULT;
1273 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1274 if (!err && need_copyout)
1275 if (put_user_ifreq(&ifr, argp))
1276 return -EFAULT;
1277 } else
1278#ifdef CONFIG_WEXT_CORE
1279 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1280 err = wext_handle_ioctl(net, cmd, argp);
1281 } else
1282#endif
1283 switch (cmd) {
1284 case FIOSETOWN:
1285 case SIOCSPGRP:
1286 err = -EFAULT;
1287 if (get_user(pid, (int __user *)argp))
1288 break;
1289 err = f_setown(sock->file, pid, 1);
1290 break;
1291 case FIOGETOWN:
1292 case SIOCGPGRP:
1293 err = put_user(f_getown(sock->file),
1294 (int __user *)argp);
1295 break;
1296 case SIOCGIFBR:
1297 case SIOCSIFBR:
1298 case SIOCBRADDBR:
1299 case SIOCBRDELBR:
1300 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1301 break;
1302 case SIOCGIFVLAN:
1303 case SIOCSIFVLAN:
1304 err = -ENOPKG;
1305 if (!vlan_ioctl_hook)
1306 request_module("8021q");
1307
1308 mutex_lock(&vlan_ioctl_mutex);
1309 if (vlan_ioctl_hook)
1310 err = vlan_ioctl_hook(net, argp);
1311 mutex_unlock(&vlan_ioctl_mutex);
1312 break;
1313 case SIOCGSKNS:
1314 err = -EPERM;
1315 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1316 break;
1317
1318 err = open_related_ns(&net->ns, get_net_ns);
1319 break;
1320 case SIOCGSTAMP_OLD:
1321 case SIOCGSTAMPNS_OLD:
1322 if (!ops->gettstamp) {
1323 err = -ENOIOCTLCMD;
1324 break;
1325 }
1326 err = ops->gettstamp(sock, argp,
1327 cmd == SIOCGSTAMP_OLD,
1328 !IS_ENABLED(CONFIG_64BIT));
1329 break;
1330 case SIOCGSTAMP_NEW:
1331 case SIOCGSTAMPNS_NEW:
1332 if (!ops->gettstamp) {
1333 err = -ENOIOCTLCMD;
1334 break;
1335 }
1336 err = ops->gettstamp(sock, argp,
1337 cmd == SIOCGSTAMP_NEW,
1338 false);
1339 break;
1340
1341 case SIOCGIFCONF:
1342 err = dev_ifconf(net, argp);
1343 break;
1344
1345 default:
1346 err = sock_do_ioctl(net, sock, cmd, arg);
1347 break;
1348 }
1349 return err;
1350}
1351
1352/**
1353 * sock_create_lite - creates a socket
1354 * @family: protocol family (AF_INET, ...)
1355 * @type: communication type (SOCK_STREAM, ...)
1356 * @protocol: protocol (0, ...)
1357 * @res: new socket
1358 *
1359 * Creates a new socket and assigns it to @res, passing through LSM.
1360 * The new socket initialization is not complete, see kernel_accept().
1361 * Returns 0 or an error. On failure @res is set to %NULL.
1362 * This function internally uses GFP_KERNEL.
1363 */
1364
1365int sock_create_lite(int family, int type, int protocol, struct socket **res)
1366{
1367 int err;
1368 struct socket *sock = NULL;
1369
1370 err = security_socket_create(family, type, protocol, 1);
1371 if (err)
1372 goto out;
1373
1374 sock = sock_alloc();
1375 if (!sock) {
1376 err = -ENOMEM;
1377 goto out;
1378 }
1379
1380 sock->type = type;
1381 err = security_socket_post_create(sock, family, type, protocol, 1);
1382 if (err)
1383 goto out_release;
1384
1385out:
1386 *res = sock;
1387 return err;
1388out_release:
1389 sock_release(sock);
1390 sock = NULL;
1391 goto out;
1392}
1393EXPORT_SYMBOL(sock_create_lite);
1394
1395/* No kernel lock held - perfect */
1396static __poll_t sock_poll(struct file *file, poll_table *wait)
1397{
1398 struct socket *sock = file->private_data;
1399 const struct proto_ops *ops = READ_ONCE(sock->ops);
1400 __poll_t events = poll_requested_events(wait), flag = 0;
1401
1402 if (!ops->poll)
1403 return 0;
1404
1405 if (sk_can_busy_loop(sock->sk)) {
1406 /* poll once if requested by the syscall */
1407 if (events & POLL_BUSY_LOOP)
1408 sk_busy_loop(sock->sk, 1);
1409
1410 /* if this socket can poll_ll, tell the system call */
1411 flag = POLL_BUSY_LOOP;
1412 }
1413
1414 return ops->poll(file, sock, wait) | flag;
1415}
1416
1417static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1418{
1419 struct socket *sock = file->private_data;
1420
1421 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1422}
1423
1424static int sock_close(struct inode *inode, struct file *filp)
1425{
1426 __sock_release(SOCKET_I(inode), inode);
1427 return 0;
1428}
1429
1430/*
1431 * Update the socket async list
1432 *
1433 * Fasync_list locking strategy.
1434 *
1435 * 1. fasync_list is modified only under process context socket lock
1436 * i.e. under semaphore.
1437 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1438 * or under socket lock
1439 */
1440
1441static int sock_fasync(int fd, struct file *filp, int on)
1442{
1443 struct socket *sock = filp->private_data;
1444 struct sock *sk = sock->sk;
1445 struct socket_wq *wq = &sock->wq;
1446
1447 if (sk == NULL)
1448 return -EINVAL;
1449
1450 lock_sock(sk);
1451 fasync_helper(fd, filp, on, &wq->fasync_list);
1452
1453 if (!wq->fasync_list)
1454 sock_reset_flag(sk, SOCK_FASYNC);
1455 else
1456 sock_set_flag(sk, SOCK_FASYNC);
1457
1458 release_sock(sk);
1459 return 0;
1460}
1461
1462/* This function may be called only under rcu_lock */
1463
1464int sock_wake_async(struct socket_wq *wq, int how, int band)
1465{
1466 if (!wq || !wq->fasync_list)
1467 return -1;
1468
1469 switch (how) {
1470 case SOCK_WAKE_WAITD:
1471 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1472 break;
1473 goto call_kill;
1474 case SOCK_WAKE_SPACE:
1475 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1476 break;
1477 fallthrough;
1478 case SOCK_WAKE_IO:
1479call_kill:
1480 kill_fasync(&wq->fasync_list, SIGIO, band);
1481 break;
1482 case SOCK_WAKE_URG:
1483 kill_fasync(&wq->fasync_list, SIGURG, band);
1484 }
1485
1486 return 0;
1487}
1488EXPORT_SYMBOL(sock_wake_async);
1489
1490/**
1491 * __sock_create - creates a socket
1492 * @net: net namespace
1493 * @family: protocol family (AF_INET, ...)
1494 * @type: communication type (SOCK_STREAM, ...)
1495 * @protocol: protocol (0, ...)
1496 * @res: new socket
1497 * @kern: boolean for kernel space sockets
1498 *
1499 * Creates a new socket and assigns it to @res, passing through LSM.
1500 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1501 * be set to true if the socket resides in kernel space.
1502 * This function internally uses GFP_KERNEL.
1503 */
1504
1505int __sock_create(struct net *net, int family, int type, int protocol,
1506 struct socket **res, int kern)
1507{
1508 int err;
1509 struct socket *sock;
1510 const struct net_proto_family *pf;
1511
1512 /*
1513 * Check protocol is in range
1514 */
1515 if (family < 0 || family >= NPROTO)
1516 return -EAFNOSUPPORT;
1517 if (type < 0 || type >= SOCK_MAX)
1518 return -EINVAL;
1519
1520 /* Compatibility.
1521
1522 This uglymoron is moved from INET layer to here to avoid
1523 deadlock in module load.
1524 */
1525 if (family == PF_INET && type == SOCK_PACKET) {
1526 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1527 current->comm);
1528 family = PF_PACKET;
1529 }
1530
1531 err = security_socket_create(family, type, protocol, kern);
1532 if (err)
1533 return err;
1534
1535 /*
1536 * Allocate the socket and allow the family to set things up. if
1537 * the protocol is 0, the family is instructed to select an appropriate
1538 * default.
1539 */
1540 sock = sock_alloc();
1541 if (!sock) {
1542 net_warn_ratelimited("socket: no more sockets\n");
1543 return -ENFILE; /* Not exactly a match, but its the
1544 closest posix thing */
1545 }
1546
1547 sock->type = type;
1548
1549#ifdef CONFIG_MODULES
1550 /* Attempt to load a protocol module if the find failed.
1551 *
1552 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1553 * requested real, full-featured networking support upon configuration.
1554 * Otherwise module support will break!
1555 */
1556 if (rcu_access_pointer(net_families[family]) == NULL)
1557 request_module("net-pf-%d", family);
1558#endif
1559
1560 rcu_read_lock();
1561 pf = rcu_dereference(net_families[family]);
1562 err = -EAFNOSUPPORT;
1563 if (!pf)
1564 goto out_release;
1565
1566 /*
1567 * We will call the ->create function, that possibly is in a loadable
1568 * module, so we have to bump that loadable module refcnt first.
1569 */
1570 if (!try_module_get(pf->owner))
1571 goto out_release;
1572
1573 /* Now protected by module ref count */
1574 rcu_read_unlock();
1575
1576 err = pf->create(net, sock, protocol, kern);
1577 if (err < 0)
1578 goto out_module_put;
1579
1580 /*
1581 * Now to bump the refcnt of the [loadable] module that owns this
1582 * socket at sock_release time we decrement its refcnt.
1583 */
1584 if (!try_module_get(sock->ops->owner))
1585 goto out_module_busy;
1586
1587 /*
1588 * Now that we're done with the ->create function, the [loadable]
1589 * module can have its refcnt decremented
1590 */
1591 module_put(pf->owner);
1592 err = security_socket_post_create(sock, family, type, protocol, kern);
1593 if (err)
1594 goto out_sock_release;
1595 *res = sock;
1596
1597 return 0;
1598
1599out_module_busy:
1600 err = -EAFNOSUPPORT;
1601out_module_put:
1602 sock->ops = NULL;
1603 module_put(pf->owner);
1604out_sock_release:
1605 sock_release(sock);
1606 return err;
1607
1608out_release:
1609 rcu_read_unlock();
1610 goto out_sock_release;
1611}
1612EXPORT_SYMBOL(__sock_create);
1613
1614/**
1615 * sock_create - creates a socket
1616 * @family: protocol family (AF_INET, ...)
1617 * @type: communication type (SOCK_STREAM, ...)
1618 * @protocol: protocol (0, ...)
1619 * @res: new socket
1620 *
1621 * A wrapper around __sock_create().
1622 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1623 */
1624
1625int sock_create(int family, int type, int protocol, struct socket **res)
1626{
1627 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1628}
1629EXPORT_SYMBOL(sock_create);
1630
1631/**
1632 * sock_create_kern - creates a socket (kernel space)
1633 * @net: net namespace
1634 * @family: protocol family (AF_INET, ...)
1635 * @type: communication type (SOCK_STREAM, ...)
1636 * @protocol: protocol (0, ...)
1637 * @res: new socket
1638 *
1639 * A wrapper around __sock_create().
1640 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1641 */
1642
1643int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1644{
1645 return __sock_create(net, family, type, protocol, res, 1);
1646}
1647EXPORT_SYMBOL(sock_create_kern);
1648
1649static struct socket *__sys_socket_create(int family, int type, int protocol)
1650{
1651 struct socket *sock;
1652 int retval;
1653
1654 /* Check the SOCK_* constants for consistency. */
1655 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1656 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1657 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1658 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1659
1660 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1661 return ERR_PTR(-EINVAL);
1662 type &= SOCK_TYPE_MASK;
1663
1664 retval = sock_create(family, type, protocol, &sock);
1665 if (retval < 0)
1666 return ERR_PTR(retval);
1667
1668 return sock;
1669}
1670
1671struct file *__sys_socket_file(int family, int type, int protocol)
1672{
1673 struct socket *sock;
1674 int flags;
1675
1676 sock = __sys_socket_create(family, type, protocol);
1677 if (IS_ERR(sock))
1678 return ERR_CAST(sock);
1679
1680 flags = type & ~SOCK_TYPE_MASK;
1681 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1682 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1683
1684 return sock_alloc_file(sock, flags, NULL);
1685}
1686
1687/* A hook for bpf progs to attach to and update socket protocol.
1688 *
1689 * A static noinline declaration here could cause the compiler to
1690 * optimize away the function. A global noinline declaration will
1691 * keep the definition, but may optimize away the callsite.
1692 * Therefore, __weak is needed to ensure that the call is still
1693 * emitted, by telling the compiler that we don't know what the
1694 * function might eventually be.
1695 */
1696
1697__bpf_hook_start();
1698
1699__weak noinline int update_socket_protocol(int family, int type, int protocol)
1700{
1701 return protocol;
1702}
1703
1704__bpf_hook_end();
1705
1706int __sys_socket(int family, int type, int protocol)
1707{
1708 struct socket *sock;
1709 int flags;
1710
1711 sock = __sys_socket_create(family, type,
1712 update_socket_protocol(family, type, protocol));
1713 if (IS_ERR(sock))
1714 return PTR_ERR(sock);
1715
1716 flags = type & ~SOCK_TYPE_MASK;
1717 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1718 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1719
1720 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1721}
1722
1723SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1724{
1725 return __sys_socket(family, type, protocol);
1726}
1727
1728/*
1729 * Create a pair of connected sockets.
1730 */
1731
1732int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1733{
1734 struct socket *sock1, *sock2;
1735 int fd1, fd2, err;
1736 struct file *newfile1, *newfile2;
1737 int flags;
1738
1739 flags = type & ~SOCK_TYPE_MASK;
1740 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1741 return -EINVAL;
1742 type &= SOCK_TYPE_MASK;
1743
1744 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1745 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1746
1747 /*
1748 * reserve descriptors and make sure we won't fail
1749 * to return them to userland.
1750 */
1751 fd1 = get_unused_fd_flags(flags);
1752 if (unlikely(fd1 < 0))
1753 return fd1;
1754
1755 fd2 = get_unused_fd_flags(flags);
1756 if (unlikely(fd2 < 0)) {
1757 put_unused_fd(fd1);
1758 return fd2;
1759 }
1760
1761 err = put_user(fd1, &usockvec[0]);
1762 if (err)
1763 goto out;
1764
1765 err = put_user(fd2, &usockvec[1]);
1766 if (err)
1767 goto out;
1768
1769 /*
1770 * Obtain the first socket and check if the underlying protocol
1771 * supports the socketpair call.
1772 */
1773
1774 err = sock_create(family, type, protocol, &sock1);
1775 if (unlikely(err < 0))
1776 goto out;
1777
1778 err = sock_create(family, type, protocol, &sock2);
1779 if (unlikely(err < 0)) {
1780 sock_release(sock1);
1781 goto out;
1782 }
1783
1784 err = security_socket_socketpair(sock1, sock2);
1785 if (unlikely(err)) {
1786 sock_release(sock2);
1787 sock_release(sock1);
1788 goto out;
1789 }
1790
1791 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1792 if (unlikely(err < 0)) {
1793 sock_release(sock2);
1794 sock_release(sock1);
1795 goto out;
1796 }
1797
1798 newfile1 = sock_alloc_file(sock1, flags, NULL);
1799 if (IS_ERR(newfile1)) {
1800 err = PTR_ERR(newfile1);
1801 sock_release(sock2);
1802 goto out;
1803 }
1804
1805 newfile2 = sock_alloc_file(sock2, flags, NULL);
1806 if (IS_ERR(newfile2)) {
1807 err = PTR_ERR(newfile2);
1808 fput(newfile1);
1809 goto out;
1810 }
1811
1812 audit_fd_pair(fd1, fd2);
1813
1814 fd_install(fd1, newfile1);
1815 fd_install(fd2, newfile2);
1816 return 0;
1817
1818out:
1819 put_unused_fd(fd2);
1820 put_unused_fd(fd1);
1821 return err;
1822}
1823
1824SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1825 int __user *, usockvec)
1826{
1827 return __sys_socketpair(family, type, protocol, usockvec);
1828}
1829
1830int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1831 int addrlen)
1832{
1833 int err;
1834
1835 err = security_socket_bind(sock, (struct sockaddr *)address,
1836 addrlen);
1837 if (!err)
1838 err = READ_ONCE(sock->ops)->bind(sock,
1839 (struct sockaddr *)address,
1840 addrlen);
1841 return err;
1842}
1843
1844/*
1845 * Bind a name to a socket. Nothing much to do here since it's
1846 * the protocol's responsibility to handle the local address.
1847 *
1848 * We move the socket address to kernel space before we call
1849 * the protocol layer (having also checked the address is ok).
1850 */
1851
1852int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1853{
1854 struct socket *sock;
1855 struct sockaddr_storage address;
1856 int err, fput_needed;
1857
1858 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1859 if (sock) {
1860 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1861 if (!err)
1862 err = __sys_bind_socket(sock, &address, addrlen);
1863 fput_light(sock->file, fput_needed);
1864 }
1865 return err;
1866}
1867
1868SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1869{
1870 return __sys_bind(fd, umyaddr, addrlen);
1871}
1872
1873/*
1874 * Perform a listen. Basically, we allow the protocol to do anything
1875 * necessary for a listen, and if that works, we mark the socket as
1876 * ready for listening.
1877 */
1878int __sys_listen_socket(struct socket *sock, int backlog)
1879{
1880 int somaxconn, err;
1881
1882 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1883 if ((unsigned int)backlog > somaxconn)
1884 backlog = somaxconn;
1885
1886 err = security_socket_listen(sock, backlog);
1887 if (!err)
1888 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1889 return err;
1890}
1891
1892int __sys_listen(int fd, int backlog)
1893{
1894 struct socket *sock;
1895 int err, fput_needed;
1896
1897 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1898 if (sock) {
1899 err = __sys_listen_socket(sock, backlog);
1900 fput_light(sock->file, fput_needed);
1901 }
1902 return err;
1903}
1904
1905SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1906{
1907 return __sys_listen(fd, backlog);
1908}
1909
1910struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1911 struct sockaddr __user *upeer_sockaddr,
1912 int __user *upeer_addrlen, int flags)
1913{
1914 struct socket *sock, *newsock;
1915 struct file *newfile;
1916 int err, len;
1917 struct sockaddr_storage address;
1918 const struct proto_ops *ops;
1919
1920 sock = sock_from_file(file);
1921 if (!sock)
1922 return ERR_PTR(-ENOTSOCK);
1923
1924 newsock = sock_alloc();
1925 if (!newsock)
1926 return ERR_PTR(-ENFILE);
1927 ops = READ_ONCE(sock->ops);
1928
1929 newsock->type = sock->type;
1930 newsock->ops = ops;
1931
1932 /*
1933 * We don't need try_module_get here, as the listening socket (sock)
1934 * has the protocol module (sock->ops->owner) held.
1935 */
1936 __module_get(ops->owner);
1937
1938 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1939 if (IS_ERR(newfile))
1940 return newfile;
1941
1942 err = security_socket_accept(sock, newsock);
1943 if (err)
1944 goto out_fd;
1945
1946 arg->flags |= sock->file->f_flags;
1947 err = ops->accept(sock, newsock, arg);
1948 if (err < 0)
1949 goto out_fd;
1950
1951 if (upeer_sockaddr) {
1952 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1953 if (len < 0) {
1954 err = -ECONNABORTED;
1955 goto out_fd;
1956 }
1957 err = move_addr_to_user(&address,
1958 len, upeer_sockaddr, upeer_addrlen);
1959 if (err < 0)
1960 goto out_fd;
1961 }
1962
1963 /* File flags are not inherited via accept() unlike another OSes. */
1964 return newfile;
1965out_fd:
1966 fput(newfile);
1967 return ERR_PTR(err);
1968}
1969
1970static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1971 int __user *upeer_addrlen, int flags)
1972{
1973 struct proto_accept_arg arg = { };
1974 struct file *newfile;
1975 int newfd;
1976
1977 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1978 return -EINVAL;
1979
1980 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1981 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1982
1983 newfd = get_unused_fd_flags(flags);
1984 if (unlikely(newfd < 0))
1985 return newfd;
1986
1987 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1988 flags);
1989 if (IS_ERR(newfile)) {
1990 put_unused_fd(newfd);
1991 return PTR_ERR(newfile);
1992 }
1993 fd_install(newfd, newfile);
1994 return newfd;
1995}
1996
1997/*
1998 * For accept, we attempt to create a new socket, set up the link
1999 * with the client, wake up the client, then return the new
2000 * connected fd. We collect the address of the connector in kernel
2001 * space and move it to user at the very end. This is unclean because
2002 * we open the socket then return an error.
2003 *
2004 * 1003.1g adds the ability to recvmsg() to query connection pending
2005 * status to recvmsg. We need to add that support in a way thats
2006 * clean when we restructure accept also.
2007 */
2008
2009int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2010 int __user *upeer_addrlen, int flags)
2011{
2012 int ret = -EBADF;
2013 struct fd f;
2014
2015 f = fdget(fd);
2016 if (fd_file(f)) {
2017 ret = __sys_accept4_file(fd_file(f), upeer_sockaddr,
2018 upeer_addrlen, flags);
2019 fdput(f);
2020 }
2021
2022 return ret;
2023}
2024
2025SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2026 int __user *, upeer_addrlen, int, flags)
2027{
2028 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2029}
2030
2031SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2032 int __user *, upeer_addrlen)
2033{
2034 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2035}
2036
2037/*
2038 * Attempt to connect to a socket with the server address. The address
2039 * is in user space so we verify it is OK and move it to kernel space.
2040 *
2041 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2042 * break bindings
2043 *
2044 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2045 * other SEQPACKET protocols that take time to connect() as it doesn't
2046 * include the -EINPROGRESS status for such sockets.
2047 */
2048
2049int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2050 int addrlen, int file_flags)
2051{
2052 struct socket *sock;
2053 int err;
2054
2055 sock = sock_from_file(file);
2056 if (!sock) {
2057 err = -ENOTSOCK;
2058 goto out;
2059 }
2060
2061 err =
2062 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2063 if (err)
2064 goto out;
2065
2066 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2067 addrlen, sock->file->f_flags | file_flags);
2068out:
2069 return err;
2070}
2071
2072int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2073{
2074 int ret = -EBADF;
2075 struct fd f;
2076
2077 f = fdget(fd);
2078 if (fd_file(f)) {
2079 struct sockaddr_storage address;
2080
2081 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2082 if (!ret)
2083 ret = __sys_connect_file(fd_file(f), &address, addrlen, 0);
2084 fdput(f);
2085 }
2086
2087 return ret;
2088}
2089
2090SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2091 int, addrlen)
2092{
2093 return __sys_connect(fd, uservaddr, addrlen);
2094}
2095
2096/*
2097 * Get the local address ('name') of a socket object. Move the obtained
2098 * name to user space.
2099 */
2100
2101int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2102 int __user *usockaddr_len)
2103{
2104 struct socket *sock;
2105 struct sockaddr_storage address;
2106 int err, fput_needed;
2107
2108 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109 if (!sock)
2110 goto out;
2111
2112 err = security_socket_getsockname(sock);
2113 if (err)
2114 goto out_put;
2115
2116 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2117 if (err < 0)
2118 goto out_put;
2119 /* "err" is actually length in this case */
2120 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2121
2122out_put:
2123 fput_light(sock->file, fput_needed);
2124out:
2125 return err;
2126}
2127
2128SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2129 int __user *, usockaddr_len)
2130{
2131 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2132}
2133
2134/*
2135 * Get the remote address ('name') of a socket object. Move the obtained
2136 * name to user space.
2137 */
2138
2139int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2140 int __user *usockaddr_len)
2141{
2142 struct socket *sock;
2143 struct sockaddr_storage address;
2144 int err, fput_needed;
2145
2146 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147 if (sock != NULL) {
2148 const struct proto_ops *ops = READ_ONCE(sock->ops);
2149
2150 err = security_socket_getpeername(sock);
2151 if (err) {
2152 fput_light(sock->file, fput_needed);
2153 return err;
2154 }
2155
2156 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2157 if (err >= 0)
2158 /* "err" is actually length in this case */
2159 err = move_addr_to_user(&address, err, usockaddr,
2160 usockaddr_len);
2161 fput_light(sock->file, fput_needed);
2162 }
2163 return err;
2164}
2165
2166SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2167 int __user *, usockaddr_len)
2168{
2169 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2170}
2171
2172/*
2173 * Send a datagram to a given address. We move the address into kernel
2174 * space and check the user space data area is readable before invoking
2175 * the protocol.
2176 */
2177int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2178 struct sockaddr __user *addr, int addr_len)
2179{
2180 struct socket *sock;
2181 struct sockaddr_storage address;
2182 int err;
2183 struct msghdr msg;
2184 int fput_needed;
2185
2186 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2187 if (unlikely(err))
2188 return err;
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (!sock)
2191 goto out;
2192
2193 msg.msg_name = NULL;
2194 msg.msg_control = NULL;
2195 msg.msg_controllen = 0;
2196 msg.msg_namelen = 0;
2197 msg.msg_ubuf = NULL;
2198 if (addr) {
2199 err = move_addr_to_kernel(addr, addr_len, &address);
2200 if (err < 0)
2201 goto out_put;
2202 msg.msg_name = (struct sockaddr *)&address;
2203 msg.msg_namelen = addr_len;
2204 }
2205 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2206 if (sock->file->f_flags & O_NONBLOCK)
2207 flags |= MSG_DONTWAIT;
2208 msg.msg_flags = flags;
2209 err = __sock_sendmsg(sock, &msg);
2210
2211out_put:
2212 fput_light(sock->file, fput_needed);
2213out:
2214 return err;
2215}
2216
2217SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2218 unsigned int, flags, struct sockaddr __user *, addr,
2219 int, addr_len)
2220{
2221 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2222}
2223
2224/*
2225 * Send a datagram down a socket.
2226 */
2227
2228SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2229 unsigned int, flags)
2230{
2231 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2232}
2233
2234/*
2235 * Receive a frame from the socket and optionally record the address of the
2236 * sender. We verify the buffers are writable and if needed move the
2237 * sender address from kernel to user space.
2238 */
2239int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2240 struct sockaddr __user *addr, int __user *addr_len)
2241{
2242 struct sockaddr_storage address;
2243 struct msghdr msg = {
2244 /* Save some cycles and don't copy the address if not needed */
2245 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2246 };
2247 struct socket *sock;
2248 int err, err2;
2249 int fput_needed;
2250
2251 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2252 if (unlikely(err))
2253 return err;
2254 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2255 if (!sock)
2256 goto out;
2257
2258 if (sock->file->f_flags & O_NONBLOCK)
2259 flags |= MSG_DONTWAIT;
2260 err = sock_recvmsg(sock, &msg, flags);
2261
2262 if (err >= 0 && addr != NULL) {
2263 err2 = move_addr_to_user(&address,
2264 msg.msg_namelen, addr, addr_len);
2265 if (err2 < 0)
2266 err = err2;
2267 }
2268
2269 fput_light(sock->file, fput_needed);
2270out:
2271 return err;
2272}
2273
2274SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2275 unsigned int, flags, struct sockaddr __user *, addr,
2276 int __user *, addr_len)
2277{
2278 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2279}
2280
2281/*
2282 * Receive a datagram from a socket.
2283 */
2284
2285SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2286 unsigned int, flags)
2287{
2288 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2289}
2290
2291static bool sock_use_custom_sol_socket(const struct socket *sock)
2292{
2293 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2294}
2295
2296int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2297 int optname, sockptr_t optval, int optlen)
2298{
2299 const struct proto_ops *ops;
2300 char *kernel_optval = NULL;
2301 int err;
2302
2303 if (optlen < 0)
2304 return -EINVAL;
2305
2306 err = security_socket_setsockopt(sock, level, optname);
2307 if (err)
2308 goto out_put;
2309
2310 if (!compat)
2311 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2312 optval, &optlen,
2313 &kernel_optval);
2314 if (err < 0)
2315 goto out_put;
2316 if (err > 0) {
2317 err = 0;
2318 goto out_put;
2319 }
2320
2321 if (kernel_optval)
2322 optval = KERNEL_SOCKPTR(kernel_optval);
2323 ops = READ_ONCE(sock->ops);
2324 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2325 err = sock_setsockopt(sock, level, optname, optval, optlen);
2326 else if (unlikely(!ops->setsockopt))
2327 err = -EOPNOTSUPP;
2328 else
2329 err = ops->setsockopt(sock, level, optname, optval,
2330 optlen);
2331 kfree(kernel_optval);
2332out_put:
2333 return err;
2334}
2335EXPORT_SYMBOL(do_sock_setsockopt);
2336
2337/* Set a socket option. Because we don't know the option lengths we have
2338 * to pass the user mode parameter for the protocols to sort out.
2339 */
2340int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2341 int optlen)
2342{
2343 sockptr_t optval = USER_SOCKPTR(user_optval);
2344 bool compat = in_compat_syscall();
2345 int err, fput_needed;
2346 struct socket *sock;
2347
2348 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2349 if (!sock)
2350 return err;
2351
2352 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2353
2354 fput_light(sock->file, fput_needed);
2355 return err;
2356}
2357
2358SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2359 char __user *, optval, int, optlen)
2360{
2361 return __sys_setsockopt(fd, level, optname, optval, optlen);
2362}
2363
2364INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2365 int optname));
2366
2367int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2368 int optname, sockptr_t optval, sockptr_t optlen)
2369{
2370 int max_optlen __maybe_unused = 0;
2371 const struct proto_ops *ops;
2372 int err;
2373
2374 err = security_socket_getsockopt(sock, level, optname);
2375 if (err)
2376 return err;
2377
2378 if (!compat)
2379 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2380
2381 ops = READ_ONCE(sock->ops);
2382 if (level == SOL_SOCKET) {
2383 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2384 } else if (unlikely(!ops->getsockopt)) {
2385 err = -EOPNOTSUPP;
2386 } else {
2387 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2388 "Invalid argument type"))
2389 return -EOPNOTSUPP;
2390
2391 err = ops->getsockopt(sock, level, optname, optval.user,
2392 optlen.user);
2393 }
2394
2395 if (!compat)
2396 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2397 optval, optlen, max_optlen,
2398 err);
2399
2400 return err;
2401}
2402EXPORT_SYMBOL(do_sock_getsockopt);
2403
2404/*
2405 * Get a socket option. Because we don't know the option lengths we have
2406 * to pass a user mode parameter for the protocols to sort out.
2407 */
2408int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2409 int __user *optlen)
2410{
2411 int err, fput_needed;
2412 struct socket *sock;
2413 bool compat;
2414
2415 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2416 if (!sock)
2417 return err;
2418
2419 compat = in_compat_syscall();
2420 err = do_sock_getsockopt(sock, compat, level, optname,
2421 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2422
2423 fput_light(sock->file, fput_needed);
2424 return err;
2425}
2426
2427SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2428 char __user *, optval, int __user *, optlen)
2429{
2430 return __sys_getsockopt(fd, level, optname, optval, optlen);
2431}
2432
2433/*
2434 * Shutdown a socket.
2435 */
2436
2437int __sys_shutdown_sock(struct socket *sock, int how)
2438{
2439 int err;
2440
2441 err = security_socket_shutdown(sock, how);
2442 if (!err)
2443 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2444
2445 return err;
2446}
2447
2448int __sys_shutdown(int fd, int how)
2449{
2450 int err, fput_needed;
2451 struct socket *sock;
2452
2453 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2454 if (sock != NULL) {
2455 err = __sys_shutdown_sock(sock, how);
2456 fput_light(sock->file, fput_needed);
2457 }
2458 return err;
2459}
2460
2461SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2462{
2463 return __sys_shutdown(fd, how);
2464}
2465
2466/* A couple of helpful macros for getting the address of the 32/64 bit
2467 * fields which are the same type (int / unsigned) on our platforms.
2468 */
2469#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2470#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2471#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2472
2473struct used_address {
2474 struct sockaddr_storage name;
2475 unsigned int name_len;
2476};
2477
2478int __copy_msghdr(struct msghdr *kmsg,
2479 struct user_msghdr *msg,
2480 struct sockaddr __user **save_addr)
2481{
2482 ssize_t err;
2483
2484 kmsg->msg_control_is_user = true;
2485 kmsg->msg_get_inq = 0;
2486 kmsg->msg_control_user = msg->msg_control;
2487 kmsg->msg_controllen = msg->msg_controllen;
2488 kmsg->msg_flags = msg->msg_flags;
2489
2490 kmsg->msg_namelen = msg->msg_namelen;
2491 if (!msg->msg_name)
2492 kmsg->msg_namelen = 0;
2493
2494 if (kmsg->msg_namelen < 0)
2495 return -EINVAL;
2496
2497 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2498 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2499
2500 if (save_addr)
2501 *save_addr = msg->msg_name;
2502
2503 if (msg->msg_name && kmsg->msg_namelen) {
2504 if (!save_addr) {
2505 err = move_addr_to_kernel(msg->msg_name,
2506 kmsg->msg_namelen,
2507 kmsg->msg_name);
2508 if (err < 0)
2509 return err;
2510 }
2511 } else {
2512 kmsg->msg_name = NULL;
2513 kmsg->msg_namelen = 0;
2514 }
2515
2516 if (msg->msg_iovlen > UIO_MAXIOV)
2517 return -EMSGSIZE;
2518
2519 kmsg->msg_iocb = NULL;
2520 kmsg->msg_ubuf = NULL;
2521 return 0;
2522}
2523
2524static int copy_msghdr_from_user(struct msghdr *kmsg,
2525 struct user_msghdr __user *umsg,
2526 struct sockaddr __user **save_addr,
2527 struct iovec **iov)
2528{
2529 struct user_msghdr msg;
2530 ssize_t err;
2531
2532 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2533 return -EFAULT;
2534
2535 err = __copy_msghdr(kmsg, &msg, save_addr);
2536 if (err)
2537 return err;
2538
2539 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2540 msg.msg_iov, msg.msg_iovlen,
2541 UIO_FASTIOV, iov, &kmsg->msg_iter);
2542 return err < 0 ? err : 0;
2543}
2544
2545static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2546 unsigned int flags, struct used_address *used_address,
2547 unsigned int allowed_msghdr_flags)
2548{
2549 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2550 __aligned(sizeof(__kernel_size_t));
2551 /* 20 is size of ipv6_pktinfo */
2552 unsigned char *ctl_buf = ctl;
2553 int ctl_len;
2554 ssize_t err;
2555
2556 err = -ENOBUFS;
2557
2558 if (msg_sys->msg_controllen > INT_MAX)
2559 goto out;
2560 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2561 ctl_len = msg_sys->msg_controllen;
2562 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2563 err =
2564 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2565 sizeof(ctl));
2566 if (err)
2567 goto out;
2568 ctl_buf = msg_sys->msg_control;
2569 ctl_len = msg_sys->msg_controllen;
2570 } else if (ctl_len) {
2571 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2572 CMSG_ALIGN(sizeof(struct cmsghdr)));
2573 if (ctl_len > sizeof(ctl)) {
2574 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2575 if (ctl_buf == NULL)
2576 goto out;
2577 }
2578 err = -EFAULT;
2579 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2580 goto out_freectl;
2581 msg_sys->msg_control = ctl_buf;
2582 msg_sys->msg_control_is_user = false;
2583 }
2584 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2585 msg_sys->msg_flags = flags;
2586
2587 if (sock->file->f_flags & O_NONBLOCK)
2588 msg_sys->msg_flags |= MSG_DONTWAIT;
2589 /*
2590 * If this is sendmmsg() and current destination address is same as
2591 * previously succeeded address, omit asking LSM's decision.
2592 * used_address->name_len is initialized to UINT_MAX so that the first
2593 * destination address never matches.
2594 */
2595 if (used_address && msg_sys->msg_name &&
2596 used_address->name_len == msg_sys->msg_namelen &&
2597 !memcmp(&used_address->name, msg_sys->msg_name,
2598 used_address->name_len)) {
2599 err = sock_sendmsg_nosec(sock, msg_sys);
2600 goto out_freectl;
2601 }
2602 err = __sock_sendmsg(sock, msg_sys);
2603 /*
2604 * If this is sendmmsg() and sending to current destination address was
2605 * successful, remember it.
2606 */
2607 if (used_address && err >= 0) {
2608 used_address->name_len = msg_sys->msg_namelen;
2609 if (msg_sys->msg_name)
2610 memcpy(&used_address->name, msg_sys->msg_name,
2611 used_address->name_len);
2612 }
2613
2614out_freectl:
2615 if (ctl_buf != ctl)
2616 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2617out:
2618 return err;
2619}
2620
2621static int sendmsg_copy_msghdr(struct msghdr *msg,
2622 struct user_msghdr __user *umsg, unsigned flags,
2623 struct iovec **iov)
2624{
2625 int err;
2626
2627 if (flags & MSG_CMSG_COMPAT) {
2628 struct compat_msghdr __user *msg_compat;
2629
2630 msg_compat = (struct compat_msghdr __user *) umsg;
2631 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2632 } else {
2633 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2634 }
2635 if (err < 0)
2636 return err;
2637
2638 return 0;
2639}
2640
2641static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2642 struct msghdr *msg_sys, unsigned int flags,
2643 struct used_address *used_address,
2644 unsigned int allowed_msghdr_flags)
2645{
2646 struct sockaddr_storage address;
2647 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2648 ssize_t err;
2649
2650 msg_sys->msg_name = &address;
2651
2652 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2653 if (err < 0)
2654 return err;
2655
2656 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2657 allowed_msghdr_flags);
2658 kfree(iov);
2659 return err;
2660}
2661
2662/*
2663 * BSD sendmsg interface
2664 */
2665long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2666 unsigned int flags)
2667{
2668 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2669}
2670
2671long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672 bool forbid_cmsg_compat)
2673{
2674 int fput_needed, err;
2675 struct msghdr msg_sys;
2676 struct socket *sock;
2677
2678 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679 return -EINVAL;
2680
2681 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682 if (!sock)
2683 goto out;
2684
2685 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2686
2687 fput_light(sock->file, fput_needed);
2688out:
2689 return err;
2690}
2691
2692SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2693{
2694 return __sys_sendmsg(fd, msg, flags, true);
2695}
2696
2697/*
2698 * Linux sendmmsg interface
2699 */
2700
2701int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2702 unsigned int flags, bool forbid_cmsg_compat)
2703{
2704 int fput_needed, err, datagrams;
2705 struct socket *sock;
2706 struct mmsghdr __user *entry;
2707 struct compat_mmsghdr __user *compat_entry;
2708 struct msghdr msg_sys;
2709 struct used_address used_address;
2710 unsigned int oflags = flags;
2711
2712 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2713 return -EINVAL;
2714
2715 if (vlen > UIO_MAXIOV)
2716 vlen = UIO_MAXIOV;
2717
2718 datagrams = 0;
2719
2720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2721 if (!sock)
2722 return err;
2723
2724 used_address.name_len = UINT_MAX;
2725 entry = mmsg;
2726 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2727 err = 0;
2728 flags |= MSG_BATCH;
2729
2730 while (datagrams < vlen) {
2731 if (datagrams == vlen - 1)
2732 flags = oflags;
2733
2734 if (MSG_CMSG_COMPAT & flags) {
2735 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2736 &msg_sys, flags, &used_address, MSG_EOR);
2737 if (err < 0)
2738 break;
2739 err = __put_user(err, &compat_entry->msg_len);
2740 ++compat_entry;
2741 } else {
2742 err = ___sys_sendmsg(sock,
2743 (struct user_msghdr __user *)entry,
2744 &msg_sys, flags, &used_address, MSG_EOR);
2745 if (err < 0)
2746 break;
2747 err = put_user(err, &entry->msg_len);
2748 ++entry;
2749 }
2750
2751 if (err)
2752 break;
2753 ++datagrams;
2754 if (msg_data_left(&msg_sys))
2755 break;
2756 cond_resched();
2757 }
2758
2759 fput_light(sock->file, fput_needed);
2760
2761 /* We only return an error if no datagrams were able to be sent */
2762 if (datagrams != 0)
2763 return datagrams;
2764
2765 return err;
2766}
2767
2768SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2769 unsigned int, vlen, unsigned int, flags)
2770{
2771 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2772}
2773
2774static int recvmsg_copy_msghdr(struct msghdr *msg,
2775 struct user_msghdr __user *umsg, unsigned flags,
2776 struct sockaddr __user **uaddr,
2777 struct iovec **iov)
2778{
2779 ssize_t err;
2780
2781 if (MSG_CMSG_COMPAT & flags) {
2782 struct compat_msghdr __user *msg_compat;
2783
2784 msg_compat = (struct compat_msghdr __user *) umsg;
2785 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2786 } else {
2787 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2788 }
2789 if (err < 0)
2790 return err;
2791
2792 return 0;
2793}
2794
2795static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2796 struct user_msghdr __user *msg,
2797 struct sockaddr __user *uaddr,
2798 unsigned int flags, int nosec)
2799{
2800 struct compat_msghdr __user *msg_compat =
2801 (struct compat_msghdr __user *) msg;
2802 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2803 struct sockaddr_storage addr;
2804 unsigned long cmsg_ptr;
2805 int len;
2806 ssize_t err;
2807
2808 msg_sys->msg_name = &addr;
2809 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2810 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2811
2812 /* We assume all kernel code knows the size of sockaddr_storage */
2813 msg_sys->msg_namelen = 0;
2814
2815 if (sock->file->f_flags & O_NONBLOCK)
2816 flags |= MSG_DONTWAIT;
2817
2818 if (unlikely(nosec))
2819 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2820 else
2821 err = sock_recvmsg(sock, msg_sys, flags);
2822
2823 if (err < 0)
2824 goto out;
2825 len = err;
2826
2827 if (uaddr != NULL) {
2828 err = move_addr_to_user(&addr,
2829 msg_sys->msg_namelen, uaddr,
2830 uaddr_len);
2831 if (err < 0)
2832 goto out;
2833 }
2834 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2835 COMPAT_FLAGS(msg));
2836 if (err)
2837 goto out;
2838 if (MSG_CMSG_COMPAT & flags)
2839 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2840 &msg_compat->msg_controllen);
2841 else
2842 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2843 &msg->msg_controllen);
2844 if (err)
2845 goto out;
2846 err = len;
2847out:
2848 return err;
2849}
2850
2851static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2852 struct msghdr *msg_sys, unsigned int flags, int nosec)
2853{
2854 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2855 /* user mode address pointers */
2856 struct sockaddr __user *uaddr;
2857 ssize_t err;
2858
2859 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2860 if (err < 0)
2861 return err;
2862
2863 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2864 kfree(iov);
2865 return err;
2866}
2867
2868/*
2869 * BSD recvmsg interface
2870 */
2871
2872long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2873 struct user_msghdr __user *umsg,
2874 struct sockaddr __user *uaddr, unsigned int flags)
2875{
2876 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2877}
2878
2879long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2880 bool forbid_cmsg_compat)
2881{
2882 int fput_needed, err;
2883 struct msghdr msg_sys;
2884 struct socket *sock;
2885
2886 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2887 return -EINVAL;
2888
2889 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2890 if (!sock)
2891 goto out;
2892
2893 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2894
2895 fput_light(sock->file, fput_needed);
2896out:
2897 return err;
2898}
2899
2900SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2901 unsigned int, flags)
2902{
2903 return __sys_recvmsg(fd, msg, flags, true);
2904}
2905
2906/*
2907 * Linux recvmmsg interface
2908 */
2909
2910static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2911 unsigned int vlen, unsigned int flags,
2912 struct timespec64 *timeout)
2913{
2914 int fput_needed, err, datagrams;
2915 struct socket *sock;
2916 struct mmsghdr __user *entry;
2917 struct compat_mmsghdr __user *compat_entry;
2918 struct msghdr msg_sys;
2919 struct timespec64 end_time;
2920 struct timespec64 timeout64;
2921
2922 if (timeout &&
2923 poll_select_set_timeout(&end_time, timeout->tv_sec,
2924 timeout->tv_nsec))
2925 return -EINVAL;
2926
2927 datagrams = 0;
2928
2929 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2930 if (!sock)
2931 return err;
2932
2933 if (likely(!(flags & MSG_ERRQUEUE))) {
2934 err = sock_error(sock->sk);
2935 if (err) {
2936 datagrams = err;
2937 goto out_put;
2938 }
2939 }
2940
2941 entry = mmsg;
2942 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2943
2944 while (datagrams < vlen) {
2945 /*
2946 * No need to ask LSM for more than the first datagram.
2947 */
2948 if (MSG_CMSG_COMPAT & flags) {
2949 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2950 &msg_sys, flags & ~MSG_WAITFORONE,
2951 datagrams);
2952 if (err < 0)
2953 break;
2954 err = __put_user(err, &compat_entry->msg_len);
2955 ++compat_entry;
2956 } else {
2957 err = ___sys_recvmsg(sock,
2958 (struct user_msghdr __user *)entry,
2959 &msg_sys, flags & ~MSG_WAITFORONE,
2960 datagrams);
2961 if (err < 0)
2962 break;
2963 err = put_user(err, &entry->msg_len);
2964 ++entry;
2965 }
2966
2967 if (err)
2968 break;
2969 ++datagrams;
2970
2971 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2972 if (flags & MSG_WAITFORONE)
2973 flags |= MSG_DONTWAIT;
2974
2975 if (timeout) {
2976 ktime_get_ts64(&timeout64);
2977 *timeout = timespec64_sub(end_time, timeout64);
2978 if (timeout->tv_sec < 0) {
2979 timeout->tv_sec = timeout->tv_nsec = 0;
2980 break;
2981 }
2982
2983 /* Timeout, return less than vlen datagrams */
2984 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2985 break;
2986 }
2987
2988 /* Out of band data, return right away */
2989 if (msg_sys.msg_flags & MSG_OOB)
2990 break;
2991 cond_resched();
2992 }
2993
2994 if (err == 0)
2995 goto out_put;
2996
2997 if (datagrams == 0) {
2998 datagrams = err;
2999 goto out_put;
3000 }
3001
3002 /*
3003 * We may return less entries than requested (vlen) if the
3004 * sock is non block and there aren't enough datagrams...
3005 */
3006 if (err != -EAGAIN) {
3007 /*
3008 * ... or if recvmsg returns an error after we
3009 * received some datagrams, where we record the
3010 * error to return on the next call or if the
3011 * app asks about it using getsockopt(SO_ERROR).
3012 */
3013 WRITE_ONCE(sock->sk->sk_err, -err);
3014 }
3015out_put:
3016 fput_light(sock->file, fput_needed);
3017
3018 return datagrams;
3019}
3020
3021int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3022 unsigned int vlen, unsigned int flags,
3023 struct __kernel_timespec __user *timeout,
3024 struct old_timespec32 __user *timeout32)
3025{
3026 int datagrams;
3027 struct timespec64 timeout_sys;
3028
3029 if (timeout && get_timespec64(&timeout_sys, timeout))
3030 return -EFAULT;
3031
3032 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3033 return -EFAULT;
3034
3035 if (!timeout && !timeout32)
3036 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3037
3038 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3039
3040 if (datagrams <= 0)
3041 return datagrams;
3042
3043 if (timeout && put_timespec64(&timeout_sys, timeout))
3044 datagrams = -EFAULT;
3045
3046 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3047 datagrams = -EFAULT;
3048
3049 return datagrams;
3050}
3051
3052SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3053 unsigned int, vlen, unsigned int, flags,
3054 struct __kernel_timespec __user *, timeout)
3055{
3056 if (flags & MSG_CMSG_COMPAT)
3057 return -EINVAL;
3058
3059 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3060}
3061
3062#ifdef CONFIG_COMPAT_32BIT_TIME
3063SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3064 unsigned int, vlen, unsigned int, flags,
3065 struct old_timespec32 __user *, timeout)
3066{
3067 if (flags & MSG_CMSG_COMPAT)
3068 return -EINVAL;
3069
3070 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3071}
3072#endif
3073
3074#ifdef __ARCH_WANT_SYS_SOCKETCALL
3075/* Argument list sizes for sys_socketcall */
3076#define AL(x) ((x) * sizeof(unsigned long))
3077static const unsigned char nargs[21] = {
3078 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3079 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3080 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3081 AL(4), AL(5), AL(4)
3082};
3083
3084#undef AL
3085
3086/*
3087 * System call vectors.
3088 *
3089 * Argument checking cleaned up. Saved 20% in size.
3090 * This function doesn't need to set the kernel lock because
3091 * it is set by the callees.
3092 */
3093
3094SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3095{
3096 unsigned long a[AUDITSC_ARGS];
3097 unsigned long a0, a1;
3098 int err;
3099 unsigned int len;
3100
3101 if (call < 1 || call > SYS_SENDMMSG)
3102 return -EINVAL;
3103 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3104
3105 len = nargs[call];
3106 if (len > sizeof(a))
3107 return -EINVAL;
3108
3109 /* copy_from_user should be SMP safe. */
3110 if (copy_from_user(a, args, len))
3111 return -EFAULT;
3112
3113 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3114 if (err)
3115 return err;
3116
3117 a0 = a[0];
3118 a1 = a[1];
3119
3120 switch (call) {
3121 case SYS_SOCKET:
3122 err = __sys_socket(a0, a1, a[2]);
3123 break;
3124 case SYS_BIND:
3125 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3126 break;
3127 case SYS_CONNECT:
3128 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3129 break;
3130 case SYS_LISTEN:
3131 err = __sys_listen(a0, a1);
3132 break;
3133 case SYS_ACCEPT:
3134 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3135 (int __user *)a[2], 0);
3136 break;
3137 case SYS_GETSOCKNAME:
3138 err =
3139 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3140 (int __user *)a[2]);
3141 break;
3142 case SYS_GETPEERNAME:
3143 err =
3144 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3145 (int __user *)a[2]);
3146 break;
3147 case SYS_SOCKETPAIR:
3148 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3149 break;
3150 case SYS_SEND:
3151 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3152 NULL, 0);
3153 break;
3154 case SYS_SENDTO:
3155 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3156 (struct sockaddr __user *)a[4], a[5]);
3157 break;
3158 case SYS_RECV:
3159 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3160 NULL, NULL);
3161 break;
3162 case SYS_RECVFROM:
3163 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3164 (struct sockaddr __user *)a[4],
3165 (int __user *)a[5]);
3166 break;
3167 case SYS_SHUTDOWN:
3168 err = __sys_shutdown(a0, a1);
3169 break;
3170 case SYS_SETSOCKOPT:
3171 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3172 a[4]);
3173 break;
3174 case SYS_GETSOCKOPT:
3175 err =
3176 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3177 (int __user *)a[4]);
3178 break;
3179 case SYS_SENDMSG:
3180 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3181 a[2], true);
3182 break;
3183 case SYS_SENDMMSG:
3184 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3185 a[3], true);
3186 break;
3187 case SYS_RECVMSG:
3188 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3189 a[2], true);
3190 break;
3191 case SYS_RECVMMSG:
3192 if (IS_ENABLED(CONFIG_64BIT))
3193 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3194 a[2], a[3],
3195 (struct __kernel_timespec __user *)a[4],
3196 NULL);
3197 else
3198 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3199 a[2], a[3], NULL,
3200 (struct old_timespec32 __user *)a[4]);
3201 break;
3202 case SYS_ACCEPT4:
3203 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3204 (int __user *)a[2], a[3]);
3205 break;
3206 default:
3207 err = -EINVAL;
3208 break;
3209 }
3210 return err;
3211}
3212
3213#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3214
3215/**
3216 * sock_register - add a socket protocol handler
3217 * @ops: description of protocol
3218 *
3219 * This function is called by a protocol handler that wants to
3220 * advertise its address family, and have it linked into the
3221 * socket interface. The value ops->family corresponds to the
3222 * socket system call protocol family.
3223 */
3224int sock_register(const struct net_proto_family *ops)
3225{
3226 int err;
3227
3228 if (ops->family >= NPROTO) {
3229 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3230 return -ENOBUFS;
3231 }
3232
3233 spin_lock(&net_family_lock);
3234 if (rcu_dereference_protected(net_families[ops->family],
3235 lockdep_is_held(&net_family_lock)))
3236 err = -EEXIST;
3237 else {
3238 rcu_assign_pointer(net_families[ops->family], ops);
3239 err = 0;
3240 }
3241 spin_unlock(&net_family_lock);
3242
3243 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3244 return err;
3245}
3246EXPORT_SYMBOL(sock_register);
3247
3248/**
3249 * sock_unregister - remove a protocol handler
3250 * @family: protocol family to remove
3251 *
3252 * This function is called by a protocol handler that wants to
3253 * remove its address family, and have it unlinked from the
3254 * new socket creation.
3255 *
3256 * If protocol handler is a module, then it can use module reference
3257 * counts to protect against new references. If protocol handler is not
3258 * a module then it needs to provide its own protection in
3259 * the ops->create routine.
3260 */
3261void sock_unregister(int family)
3262{
3263 BUG_ON(family < 0 || family >= NPROTO);
3264
3265 spin_lock(&net_family_lock);
3266 RCU_INIT_POINTER(net_families[family], NULL);
3267 spin_unlock(&net_family_lock);
3268
3269 synchronize_rcu();
3270
3271 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3272}
3273EXPORT_SYMBOL(sock_unregister);
3274
3275bool sock_is_registered(int family)
3276{
3277 return family < NPROTO && rcu_access_pointer(net_families[family]);
3278}
3279
3280static int __init sock_init(void)
3281{
3282 int err;
3283 /*
3284 * Initialize the network sysctl infrastructure.
3285 */
3286 err = net_sysctl_init();
3287 if (err)
3288 goto out;
3289
3290 /*
3291 * Initialize skbuff SLAB cache
3292 */
3293 skb_init();
3294
3295 /*
3296 * Initialize the protocols module.
3297 */
3298
3299 init_inodecache();
3300
3301 err = register_filesystem(&sock_fs_type);
3302 if (err)
3303 goto out;
3304 sock_mnt = kern_mount(&sock_fs_type);
3305 if (IS_ERR(sock_mnt)) {
3306 err = PTR_ERR(sock_mnt);
3307 goto out_mount;
3308 }
3309
3310 /* The real protocol initialization is performed in later initcalls.
3311 */
3312
3313#ifdef CONFIG_NETFILTER
3314 err = netfilter_init();
3315 if (err)
3316 goto out;
3317#endif
3318
3319 ptp_classifier_init();
3320
3321out:
3322 return err;
3323
3324out_mount:
3325 unregister_filesystem(&sock_fs_type);
3326 goto out;
3327}
3328
3329core_initcall(sock_init); /* early initcall */
3330
3331#ifdef CONFIG_PROC_FS
3332void socket_seq_show(struct seq_file *seq)
3333{
3334 seq_printf(seq, "sockets: used %d\n",
3335 sock_inuse_get(seq->private));
3336}
3337#endif /* CONFIG_PROC_FS */
3338
3339/* Handle the fact that while struct ifreq has the same *layout* on
3340 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3341 * which are handled elsewhere, it still has different *size* due to
3342 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3343 * resulting in struct ifreq being 32 and 40 bytes respectively).
3344 * As a result, if the struct happens to be at the end of a page and
3345 * the next page isn't readable/writable, we get a fault. To prevent
3346 * that, copy back and forth to the full size.
3347 */
3348int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3349{
3350 if (in_compat_syscall()) {
3351 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3352
3353 memset(ifr, 0, sizeof(*ifr));
3354 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3355 return -EFAULT;
3356
3357 if (ifrdata)
3358 *ifrdata = compat_ptr(ifr32->ifr_data);
3359
3360 return 0;
3361 }
3362
3363 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3364 return -EFAULT;
3365
3366 if (ifrdata)
3367 *ifrdata = ifr->ifr_data;
3368
3369 return 0;
3370}
3371EXPORT_SYMBOL(get_user_ifreq);
3372
3373int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3374{
3375 size_t size = sizeof(*ifr);
3376
3377 if (in_compat_syscall())
3378 size = sizeof(struct compat_ifreq);
3379
3380 if (copy_to_user(arg, ifr, size))
3381 return -EFAULT;
3382
3383 return 0;
3384}
3385EXPORT_SYMBOL(put_user_ifreq);
3386
3387#ifdef CONFIG_COMPAT
3388static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3389{
3390 compat_uptr_t uptr32;
3391 struct ifreq ifr;
3392 void __user *saved;
3393 int err;
3394
3395 if (get_user_ifreq(&ifr, NULL, uifr32))
3396 return -EFAULT;
3397
3398 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3399 return -EFAULT;
3400
3401 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3402 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3403
3404 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3405 if (!err) {
3406 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3407 if (put_user_ifreq(&ifr, uifr32))
3408 err = -EFAULT;
3409 }
3410 return err;
3411}
3412
3413/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3414static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3415 struct compat_ifreq __user *u_ifreq32)
3416{
3417 struct ifreq ifreq;
3418 void __user *data;
3419
3420 if (!is_socket_ioctl_cmd(cmd))
3421 return -ENOTTY;
3422 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3423 return -EFAULT;
3424 ifreq.ifr_data = data;
3425
3426 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3427}
3428
3429static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3430 unsigned int cmd, unsigned long arg)
3431{
3432 void __user *argp = compat_ptr(arg);
3433 struct sock *sk = sock->sk;
3434 struct net *net = sock_net(sk);
3435 const struct proto_ops *ops;
3436
3437 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3438 return sock_ioctl(file, cmd, (unsigned long)argp);
3439
3440 switch (cmd) {
3441 case SIOCWANDEV:
3442 return compat_siocwandev(net, argp);
3443 case SIOCGSTAMP_OLD:
3444 case SIOCGSTAMPNS_OLD:
3445 ops = READ_ONCE(sock->ops);
3446 if (!ops->gettstamp)
3447 return -ENOIOCTLCMD;
3448 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3449 !COMPAT_USE_64BIT_TIME);
3450
3451 case SIOCETHTOOL:
3452 case SIOCBONDSLAVEINFOQUERY:
3453 case SIOCBONDINFOQUERY:
3454 case SIOCSHWTSTAMP:
3455 case SIOCGHWTSTAMP:
3456 return compat_ifr_data_ioctl(net, cmd, argp);
3457
3458 case FIOSETOWN:
3459 case SIOCSPGRP:
3460 case FIOGETOWN:
3461 case SIOCGPGRP:
3462 case SIOCBRADDBR:
3463 case SIOCBRDELBR:
3464 case SIOCGIFVLAN:
3465 case SIOCSIFVLAN:
3466 case SIOCGSKNS:
3467 case SIOCGSTAMP_NEW:
3468 case SIOCGSTAMPNS_NEW:
3469 case SIOCGIFCONF:
3470 case SIOCSIFBR:
3471 case SIOCGIFBR:
3472 return sock_ioctl(file, cmd, arg);
3473
3474 case SIOCGIFFLAGS:
3475 case SIOCSIFFLAGS:
3476 case SIOCGIFMAP:
3477 case SIOCSIFMAP:
3478 case SIOCGIFMETRIC:
3479 case SIOCSIFMETRIC:
3480 case SIOCGIFMTU:
3481 case SIOCSIFMTU:
3482 case SIOCGIFMEM:
3483 case SIOCSIFMEM:
3484 case SIOCGIFHWADDR:
3485 case SIOCSIFHWADDR:
3486 case SIOCADDMULTI:
3487 case SIOCDELMULTI:
3488 case SIOCGIFINDEX:
3489 case SIOCGIFADDR:
3490 case SIOCSIFADDR:
3491 case SIOCSIFHWBROADCAST:
3492 case SIOCDIFADDR:
3493 case SIOCGIFBRDADDR:
3494 case SIOCSIFBRDADDR:
3495 case SIOCGIFDSTADDR:
3496 case SIOCSIFDSTADDR:
3497 case SIOCGIFNETMASK:
3498 case SIOCSIFNETMASK:
3499 case SIOCSIFPFLAGS:
3500 case SIOCGIFPFLAGS:
3501 case SIOCGIFTXQLEN:
3502 case SIOCSIFTXQLEN:
3503 case SIOCBRADDIF:
3504 case SIOCBRDELIF:
3505 case SIOCGIFNAME:
3506 case SIOCSIFNAME:
3507 case SIOCGMIIPHY:
3508 case SIOCGMIIREG:
3509 case SIOCSMIIREG:
3510 case SIOCBONDENSLAVE:
3511 case SIOCBONDRELEASE:
3512 case SIOCBONDSETHWADDR:
3513 case SIOCBONDCHANGEACTIVE:
3514 case SIOCSARP:
3515 case SIOCGARP:
3516 case SIOCDARP:
3517 case SIOCOUTQ:
3518 case SIOCOUTQNSD:
3519 case SIOCATMARK:
3520 return sock_do_ioctl(net, sock, cmd, arg);
3521 }
3522
3523 return -ENOIOCTLCMD;
3524}
3525
3526static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3527 unsigned long arg)
3528{
3529 struct socket *sock = file->private_data;
3530 const struct proto_ops *ops = READ_ONCE(sock->ops);
3531 int ret = -ENOIOCTLCMD;
3532 struct sock *sk;
3533 struct net *net;
3534
3535 sk = sock->sk;
3536 net = sock_net(sk);
3537
3538 if (ops->compat_ioctl)
3539 ret = ops->compat_ioctl(sock, cmd, arg);
3540
3541 if (ret == -ENOIOCTLCMD &&
3542 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3543 ret = compat_wext_handle_ioctl(net, cmd, arg);
3544
3545 if (ret == -ENOIOCTLCMD)
3546 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3547
3548 return ret;
3549}
3550#endif
3551
3552/**
3553 * kernel_bind - bind an address to a socket (kernel space)
3554 * @sock: socket
3555 * @addr: address
3556 * @addrlen: length of address
3557 *
3558 * Returns 0 or an error.
3559 */
3560
3561int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3562{
3563 struct sockaddr_storage address;
3564
3565 memcpy(&address, addr, addrlen);
3566
3567 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3568 addrlen);
3569}
3570EXPORT_SYMBOL(kernel_bind);
3571
3572/**
3573 * kernel_listen - move socket to listening state (kernel space)
3574 * @sock: socket
3575 * @backlog: pending connections queue size
3576 *
3577 * Returns 0 or an error.
3578 */
3579
3580int kernel_listen(struct socket *sock, int backlog)
3581{
3582 return READ_ONCE(sock->ops)->listen(sock, backlog);
3583}
3584EXPORT_SYMBOL(kernel_listen);
3585
3586/**
3587 * kernel_accept - accept a connection (kernel space)
3588 * @sock: listening socket
3589 * @newsock: new connected socket
3590 * @flags: flags
3591 *
3592 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3593 * If it fails, @newsock is guaranteed to be %NULL.
3594 * Returns 0 or an error.
3595 */
3596
3597int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3598{
3599 struct sock *sk = sock->sk;
3600 const struct proto_ops *ops = READ_ONCE(sock->ops);
3601 struct proto_accept_arg arg = {
3602 .flags = flags,
3603 .kern = true,
3604 };
3605 int err;
3606
3607 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3608 newsock);
3609 if (err < 0)
3610 goto done;
3611
3612 err = ops->accept(sock, *newsock, &arg);
3613 if (err < 0) {
3614 sock_release(*newsock);
3615 *newsock = NULL;
3616 goto done;
3617 }
3618
3619 (*newsock)->ops = ops;
3620 __module_get(ops->owner);
3621
3622done:
3623 return err;
3624}
3625EXPORT_SYMBOL(kernel_accept);
3626
3627/**
3628 * kernel_connect - connect a socket (kernel space)
3629 * @sock: socket
3630 * @addr: address
3631 * @addrlen: address length
3632 * @flags: flags (O_NONBLOCK, ...)
3633 *
3634 * For datagram sockets, @addr is the address to which datagrams are sent
3635 * by default, and the only address from which datagrams are received.
3636 * For stream sockets, attempts to connect to @addr.
3637 * Returns 0 or an error code.
3638 */
3639
3640int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3641 int flags)
3642{
3643 struct sockaddr_storage address;
3644
3645 memcpy(&address, addr, addrlen);
3646
3647 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3648 addrlen, flags);
3649}
3650EXPORT_SYMBOL(kernel_connect);
3651
3652/**
3653 * kernel_getsockname - get the address which the socket is bound (kernel space)
3654 * @sock: socket
3655 * @addr: address holder
3656 *
3657 * Fills the @addr pointer with the address which the socket is bound.
3658 * Returns the length of the address in bytes or an error code.
3659 */
3660
3661int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3662{
3663 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3664}
3665EXPORT_SYMBOL(kernel_getsockname);
3666
3667/**
3668 * kernel_getpeername - get the address which the socket is connected (kernel space)
3669 * @sock: socket
3670 * @addr: address holder
3671 *
3672 * Fills the @addr pointer with the address which the socket is connected.
3673 * Returns the length of the address in bytes or an error code.
3674 */
3675
3676int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3677{
3678 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3679}
3680EXPORT_SYMBOL(kernel_getpeername);
3681
3682/**
3683 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3684 * @sock: socket
3685 * @how: connection part
3686 *
3687 * Returns 0 or an error.
3688 */
3689
3690int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3691{
3692 return READ_ONCE(sock->ops)->shutdown(sock, how);
3693}
3694EXPORT_SYMBOL(kernel_sock_shutdown);
3695
3696/**
3697 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3698 * @sk: socket
3699 *
3700 * This routine returns the IP overhead imposed by a socket i.e.
3701 * the length of the underlying IP header, depending on whether
3702 * this is an IPv4 or IPv6 socket and the length from IP options turned
3703 * on at the socket. Assumes that the caller has a lock on the socket.
3704 */
3705
3706u32 kernel_sock_ip_overhead(struct sock *sk)
3707{
3708 struct inet_sock *inet;
3709 struct ip_options_rcu *opt;
3710 u32 overhead = 0;
3711#if IS_ENABLED(CONFIG_IPV6)
3712 struct ipv6_pinfo *np;
3713 struct ipv6_txoptions *optv6 = NULL;
3714#endif /* IS_ENABLED(CONFIG_IPV6) */
3715
3716 if (!sk)
3717 return overhead;
3718
3719 switch (sk->sk_family) {
3720 case AF_INET:
3721 inet = inet_sk(sk);
3722 overhead += sizeof(struct iphdr);
3723 opt = rcu_dereference_protected(inet->inet_opt,
3724 sock_owned_by_user(sk));
3725 if (opt)
3726 overhead += opt->opt.optlen;
3727 return overhead;
3728#if IS_ENABLED(CONFIG_IPV6)
3729 case AF_INET6:
3730 np = inet6_sk(sk);
3731 overhead += sizeof(struct ipv6hdr);
3732 if (np)
3733 optv6 = rcu_dereference_protected(np->opt,
3734 sock_owned_by_user(sk));
3735 if (optv6)
3736 overhead += (optv6->opt_flen + optv6->opt_nflen);
3737 return overhead;
3738#endif /* IS_ENABLED(CONFIG_IPV6) */
3739 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3740 return overhead;
3741 }
3742}
3743EXPORT_SYMBOL(kernel_sock_ip_overhead);