Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10#include "ext4.h"
11#include "ext4_jbd2.h"
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168#include <trace/events/ext4.h>
169static struct kmem_cache *ext4_fc_dentry_cachep;
170
171static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172{
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185}
186
187static inline void ext4_fc_reset_inode(struct inode *inode)
188{
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193}
194
195void ext4_fc_init_inode(struct inode *inode)
196{
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205}
206
207/* This function must be called with sbi->s_fc_lock held. */
208static void ext4_fc_wait_committing_inode(struct inode *inode)
209__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210{
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214#if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219#else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224#endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230}
231
232static bool ext4_fc_disabled(struct super_block *sb)
233{
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236}
237
238/*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
245void ext4_fc_start_update(struct inode *inode)
246{
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264}
265
266/*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
269void ext4_fc_stop_update(struct inode *inode)
270{
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278}
279
280/*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
284void ext4_fc_del(struct inode *inode)
285{
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293restart:
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330 return;
331}
332
333/*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
338void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339{
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342 bool has_transaction = true;
343 bool is_ineligible;
344
345 if (ext4_fc_disabled(sb))
346 return;
347
348 if (handle && !IS_ERR(handle))
349 tid = handle->h_transaction->t_tid;
350 else {
351 read_lock(&sbi->s_journal->j_state_lock);
352 if (sbi->s_journal->j_running_transaction)
353 tid = sbi->s_journal->j_running_transaction->t_tid;
354 else
355 has_transaction = false;
356 read_unlock(&sbi->s_journal->j_state_lock);
357 }
358 spin_lock(&sbi->s_fc_lock);
359 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 if (has_transaction &&
361 (!is_ineligible ||
362 (is_ineligible && tid_gt(tid, sbi->s_fc_ineligible_tid))))
363 sbi->s_fc_ineligible_tid = tid;
364 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
365 spin_unlock(&sbi->s_fc_lock);
366 WARN_ON(reason >= EXT4_FC_REASON_MAX);
367 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
368}
369
370/*
371 * Generic fast commit tracking function. If this is the first time this we are
372 * called after a full commit, we initialize fast commit fields and then call
373 * __fc_track_fn() with update = 0. If we have already been called after a full
374 * commit, we pass update = 1. Based on that, the track function can determine
375 * if it needs to track a field for the first time or if it needs to just
376 * update the previously tracked value.
377 *
378 * If enqueue is set, this function enqueues the inode in fast commit list.
379 */
380static int ext4_fc_track_template(
381 handle_t *handle, struct inode *inode,
382 int (*__fc_track_fn)(struct inode *, void *, bool),
383 void *args, int enqueue)
384{
385 bool update = false;
386 struct ext4_inode_info *ei = EXT4_I(inode);
387 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
388 tid_t tid = 0;
389 int ret;
390
391 tid = handle->h_transaction->t_tid;
392 mutex_lock(&ei->i_fc_lock);
393 if (tid == ei->i_sync_tid) {
394 update = true;
395 } else {
396 ext4_fc_reset_inode(inode);
397 ei->i_sync_tid = tid;
398 }
399 ret = __fc_track_fn(inode, args, update);
400 mutex_unlock(&ei->i_fc_lock);
401
402 if (!enqueue)
403 return ret;
404
405 spin_lock(&sbi->s_fc_lock);
406 if (list_empty(&EXT4_I(inode)->i_fc_list))
407 list_add_tail(&EXT4_I(inode)->i_fc_list,
408 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
409 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
410 &sbi->s_fc_q[FC_Q_STAGING] :
411 &sbi->s_fc_q[FC_Q_MAIN]);
412 spin_unlock(&sbi->s_fc_lock);
413
414 return ret;
415}
416
417struct __track_dentry_update_args {
418 struct dentry *dentry;
419 int op;
420};
421
422/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
423static int __track_dentry_update(struct inode *inode, void *arg, bool update)
424{
425 struct ext4_fc_dentry_update *node;
426 struct ext4_inode_info *ei = EXT4_I(inode);
427 struct __track_dentry_update_args *dentry_update =
428 (struct __track_dentry_update_args *)arg;
429 struct dentry *dentry = dentry_update->dentry;
430 struct inode *dir = dentry->d_parent->d_inode;
431 struct super_block *sb = inode->i_sb;
432 struct ext4_sb_info *sbi = EXT4_SB(sb);
433
434 mutex_unlock(&ei->i_fc_lock);
435
436 if (IS_ENCRYPTED(dir)) {
437 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
438 NULL);
439 mutex_lock(&ei->i_fc_lock);
440 return -EOPNOTSUPP;
441 }
442
443 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
444 if (!node) {
445 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
446 mutex_lock(&ei->i_fc_lock);
447 return -ENOMEM;
448 }
449
450 node->fcd_op = dentry_update->op;
451 node->fcd_parent = dir->i_ino;
452 node->fcd_ino = inode->i_ino;
453 if (dentry->d_name.len > DNAME_INLINE_LEN) {
454 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
455 if (!node->fcd_name.name) {
456 kmem_cache_free(ext4_fc_dentry_cachep, node);
457 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
458 mutex_lock(&ei->i_fc_lock);
459 return -ENOMEM;
460 }
461 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
462 dentry->d_name.len);
463 } else {
464 memcpy(node->fcd_iname, dentry->d_name.name,
465 dentry->d_name.len);
466 node->fcd_name.name = node->fcd_iname;
467 }
468 node->fcd_name.len = dentry->d_name.len;
469 INIT_LIST_HEAD(&node->fcd_dilist);
470 spin_lock(&sbi->s_fc_lock);
471 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
472 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
473 list_add_tail(&node->fcd_list,
474 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
475 else
476 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
477
478 /*
479 * This helps us keep a track of all fc_dentry updates which is part of
480 * this ext4 inode. So in case the inode is getting unlinked, before
481 * even we get a chance to fsync, we could remove all fc_dentry
482 * references while evicting the inode in ext4_fc_del().
483 * Also with this, we don't need to loop over all the inodes in
484 * sbi->s_fc_q to get the corresponding inode in
485 * ext4_fc_commit_dentry_updates().
486 */
487 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
488 WARN_ON(!list_empty(&ei->i_fc_dilist));
489 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
490 }
491 spin_unlock(&sbi->s_fc_lock);
492 mutex_lock(&ei->i_fc_lock);
493
494 return 0;
495}
496
497void __ext4_fc_track_unlink(handle_t *handle,
498 struct inode *inode, struct dentry *dentry)
499{
500 struct __track_dentry_update_args args;
501 int ret;
502
503 args.dentry = dentry;
504 args.op = EXT4_FC_TAG_UNLINK;
505
506 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 (void *)&args, 0);
508 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
509}
510
511void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
512{
513 struct inode *inode = d_inode(dentry);
514
515 if (ext4_fc_disabled(inode->i_sb))
516 return;
517
518 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
519 return;
520
521 __ext4_fc_track_unlink(handle, inode, dentry);
522}
523
524void __ext4_fc_track_link(handle_t *handle,
525 struct inode *inode, struct dentry *dentry)
526{
527 struct __track_dentry_update_args args;
528 int ret;
529
530 args.dentry = dentry;
531 args.op = EXT4_FC_TAG_LINK;
532
533 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
534 (void *)&args, 0);
535 trace_ext4_fc_track_link(handle, inode, dentry, ret);
536}
537
538void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
539{
540 struct inode *inode = d_inode(dentry);
541
542 if (ext4_fc_disabled(inode->i_sb))
543 return;
544
545 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
546 return;
547
548 __ext4_fc_track_link(handle, inode, dentry);
549}
550
551void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
552 struct dentry *dentry)
553{
554 struct __track_dentry_update_args args;
555 int ret;
556
557 args.dentry = dentry;
558 args.op = EXT4_FC_TAG_CREAT;
559
560 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
561 (void *)&args, 0);
562 trace_ext4_fc_track_create(handle, inode, dentry, ret);
563}
564
565void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
566{
567 struct inode *inode = d_inode(dentry);
568
569 if (ext4_fc_disabled(inode->i_sb))
570 return;
571
572 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
573 return;
574
575 __ext4_fc_track_create(handle, inode, dentry);
576}
577
578/* __track_fn for inode tracking */
579static int __track_inode(struct inode *inode, void *arg, bool update)
580{
581 if (update)
582 return -EEXIST;
583
584 EXT4_I(inode)->i_fc_lblk_len = 0;
585
586 return 0;
587}
588
589void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
590{
591 int ret;
592
593 if (S_ISDIR(inode->i_mode))
594 return;
595
596 if (ext4_fc_disabled(inode->i_sb))
597 return;
598
599 if (ext4_should_journal_data(inode)) {
600 ext4_fc_mark_ineligible(inode->i_sb,
601 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
602 return;
603 }
604
605 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
606 return;
607
608 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
609 trace_ext4_fc_track_inode(handle, inode, ret);
610}
611
612struct __track_range_args {
613 ext4_lblk_t start, end;
614};
615
616/* __track_fn for tracking data updates */
617static int __track_range(struct inode *inode, void *arg, bool update)
618{
619 struct ext4_inode_info *ei = EXT4_I(inode);
620 ext4_lblk_t oldstart;
621 struct __track_range_args *__arg =
622 (struct __track_range_args *)arg;
623
624 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
625 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
626 return -ECANCELED;
627 }
628
629 oldstart = ei->i_fc_lblk_start;
630
631 if (update && ei->i_fc_lblk_len > 0) {
632 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
633 ei->i_fc_lblk_len =
634 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
635 ei->i_fc_lblk_start + 1;
636 } else {
637 ei->i_fc_lblk_start = __arg->start;
638 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
639 }
640
641 return 0;
642}
643
644void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
645 ext4_lblk_t end)
646{
647 struct __track_range_args args;
648 int ret;
649
650 if (S_ISDIR(inode->i_mode))
651 return;
652
653 if (ext4_fc_disabled(inode->i_sb))
654 return;
655
656 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
657 return;
658
659 if (ext4_has_inline_data(inode)) {
660 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
661 handle);
662 return;
663 }
664
665 args.start = start;
666 args.end = end;
667
668 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
669
670 trace_ext4_fc_track_range(handle, inode, start, end, ret);
671}
672
673static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
674{
675 blk_opf_t write_flags = REQ_SYNC;
676 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
677
678 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
679 if (test_opt(sb, BARRIER) && is_tail)
680 write_flags |= REQ_FUA | REQ_PREFLUSH;
681 lock_buffer(bh);
682 set_buffer_dirty(bh);
683 set_buffer_uptodate(bh);
684 bh->b_end_io = ext4_end_buffer_io_sync;
685 submit_bh(REQ_OP_WRITE | write_flags, bh);
686 EXT4_SB(sb)->s_fc_bh = NULL;
687}
688
689/* Ext4 commit path routines */
690
691/*
692 * Allocate len bytes on a fast commit buffer.
693 *
694 * During the commit time this function is used to manage fast commit
695 * block space. We don't split a fast commit log onto different
696 * blocks. So this function makes sure that if there's not enough space
697 * on the current block, the remaining space in the current block is
698 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
699 * new block is from jbd2 and CRC is updated to reflect the padding
700 * we added.
701 */
702static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
703{
704 struct ext4_fc_tl tl;
705 struct ext4_sb_info *sbi = EXT4_SB(sb);
706 struct buffer_head *bh;
707 int bsize = sbi->s_journal->j_blocksize;
708 int ret, off = sbi->s_fc_bytes % bsize;
709 int remaining;
710 u8 *dst;
711
712 /*
713 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
714 * cannot fulfill the request.
715 */
716 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
717 return NULL;
718
719 if (!sbi->s_fc_bh) {
720 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
721 if (ret)
722 return NULL;
723 sbi->s_fc_bh = bh;
724 }
725 dst = sbi->s_fc_bh->b_data + off;
726
727 /*
728 * Allocate the bytes in the current block if we can do so while still
729 * leaving enough space for a PAD tlv.
730 */
731 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
732 if (len <= remaining) {
733 sbi->s_fc_bytes += len;
734 return dst;
735 }
736
737 /*
738 * Else, terminate the current block with a PAD tlv, then allocate a new
739 * block and allocate the bytes at the start of that new block.
740 */
741
742 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
743 tl.fc_len = cpu_to_le16(remaining);
744 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
745 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
746 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
747
748 ext4_fc_submit_bh(sb, false);
749
750 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
751 if (ret)
752 return NULL;
753 sbi->s_fc_bh = bh;
754 sbi->s_fc_bytes += bsize - off + len;
755 return sbi->s_fc_bh->b_data;
756}
757
758/*
759 * Complete a fast commit by writing tail tag.
760 *
761 * Writing tail tag marks the end of a fast commit. In order to guarantee
762 * atomicity, after writing tail tag, even if there's space remaining
763 * in the block, next commit shouldn't use it. That's why tail tag
764 * has the length as that of the remaining space on the block.
765 */
766static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
767{
768 struct ext4_sb_info *sbi = EXT4_SB(sb);
769 struct ext4_fc_tl tl;
770 struct ext4_fc_tail tail;
771 int off, bsize = sbi->s_journal->j_blocksize;
772 u8 *dst;
773
774 /*
775 * ext4_fc_reserve_space takes care of allocating an extra block if
776 * there's no enough space on this block for accommodating this tail.
777 */
778 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
779 if (!dst)
780 return -ENOSPC;
781
782 off = sbi->s_fc_bytes % bsize;
783
784 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
785 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
786 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
787
788 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
789 dst += EXT4_FC_TAG_BASE_LEN;
790 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
791 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
792 dst += sizeof(tail.fc_tid);
793 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
794 dst - (u8 *)sbi->s_fc_bh->b_data);
795 tail.fc_crc = cpu_to_le32(crc);
796 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
797 dst += sizeof(tail.fc_crc);
798 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
799
800 ext4_fc_submit_bh(sb, true);
801
802 return 0;
803}
804
805/*
806 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
807 * Returns false if there's not enough space.
808 */
809static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
810 u32 *crc)
811{
812 struct ext4_fc_tl tl;
813 u8 *dst;
814
815 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
816 if (!dst)
817 return false;
818
819 tl.fc_tag = cpu_to_le16(tag);
820 tl.fc_len = cpu_to_le16(len);
821
822 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
823 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
824
825 return true;
826}
827
828/* Same as above, but adds dentry tlv. */
829static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
830 struct ext4_fc_dentry_update *fc_dentry)
831{
832 struct ext4_fc_dentry_info fcd;
833 struct ext4_fc_tl tl;
834 int dlen = fc_dentry->fcd_name.len;
835 u8 *dst = ext4_fc_reserve_space(sb,
836 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
837
838 if (!dst)
839 return false;
840
841 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
842 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
843 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
844 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
845 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
846 dst += EXT4_FC_TAG_BASE_LEN;
847 memcpy(dst, &fcd, sizeof(fcd));
848 dst += sizeof(fcd);
849 memcpy(dst, fc_dentry->fcd_name.name, dlen);
850
851 return true;
852}
853
854/*
855 * Writes inode in the fast commit space under TLV with tag @tag.
856 * Returns 0 on success, error on failure.
857 */
858static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
859{
860 struct ext4_inode_info *ei = EXT4_I(inode);
861 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
862 int ret;
863 struct ext4_iloc iloc;
864 struct ext4_fc_inode fc_inode;
865 struct ext4_fc_tl tl;
866 u8 *dst;
867
868 ret = ext4_get_inode_loc(inode, &iloc);
869 if (ret)
870 return ret;
871
872 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
873 inode_len = EXT4_INODE_SIZE(inode->i_sb);
874 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
875 inode_len += ei->i_extra_isize;
876
877 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
878 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
879 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
880
881 ret = -ECANCELED;
882 dst = ext4_fc_reserve_space(inode->i_sb,
883 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
884 if (!dst)
885 goto err;
886
887 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
888 dst += EXT4_FC_TAG_BASE_LEN;
889 memcpy(dst, &fc_inode, sizeof(fc_inode));
890 dst += sizeof(fc_inode);
891 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
892 ret = 0;
893err:
894 brelse(iloc.bh);
895 return ret;
896}
897
898/*
899 * Writes updated data ranges for the inode in question. Updates CRC.
900 * Returns 0 on success, error otherwise.
901 */
902static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
903{
904 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
905 struct ext4_inode_info *ei = EXT4_I(inode);
906 struct ext4_map_blocks map;
907 struct ext4_fc_add_range fc_ext;
908 struct ext4_fc_del_range lrange;
909 struct ext4_extent *ex;
910 int ret;
911
912 mutex_lock(&ei->i_fc_lock);
913 if (ei->i_fc_lblk_len == 0) {
914 mutex_unlock(&ei->i_fc_lock);
915 return 0;
916 }
917 old_blk_size = ei->i_fc_lblk_start;
918 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
919 ei->i_fc_lblk_len = 0;
920 mutex_unlock(&ei->i_fc_lock);
921
922 cur_lblk_off = old_blk_size;
923 ext4_debug("will try writing %d to %d for inode %ld\n",
924 cur_lblk_off, new_blk_size, inode->i_ino);
925
926 while (cur_lblk_off <= new_blk_size) {
927 map.m_lblk = cur_lblk_off;
928 map.m_len = new_blk_size - cur_lblk_off + 1;
929 ret = ext4_map_blocks(NULL, inode, &map, 0);
930 if (ret < 0)
931 return -ECANCELED;
932
933 if (map.m_len == 0) {
934 cur_lblk_off++;
935 continue;
936 }
937
938 if (ret == 0) {
939 lrange.fc_ino = cpu_to_le32(inode->i_ino);
940 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
941 lrange.fc_len = cpu_to_le32(map.m_len);
942 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
943 sizeof(lrange), (u8 *)&lrange, crc))
944 return -ENOSPC;
945 } else {
946 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
947 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
948
949 /* Limit the number of blocks in one extent */
950 map.m_len = min(max, map.m_len);
951
952 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
953 ex = (struct ext4_extent *)&fc_ext.fc_ex;
954 ex->ee_block = cpu_to_le32(map.m_lblk);
955 ex->ee_len = cpu_to_le16(map.m_len);
956 ext4_ext_store_pblock(ex, map.m_pblk);
957 if (map.m_flags & EXT4_MAP_UNWRITTEN)
958 ext4_ext_mark_unwritten(ex);
959 else
960 ext4_ext_mark_initialized(ex);
961 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
962 sizeof(fc_ext), (u8 *)&fc_ext, crc))
963 return -ENOSPC;
964 }
965
966 cur_lblk_off += map.m_len;
967 }
968
969 return 0;
970}
971
972
973/* Submit data for all the fast commit inodes */
974static int ext4_fc_submit_inode_data_all(journal_t *journal)
975{
976 struct super_block *sb = journal->j_private;
977 struct ext4_sb_info *sbi = EXT4_SB(sb);
978 struct ext4_inode_info *ei;
979 int ret = 0;
980
981 spin_lock(&sbi->s_fc_lock);
982 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
983 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
984 while (atomic_read(&ei->i_fc_updates)) {
985 DEFINE_WAIT(wait);
986
987 prepare_to_wait(&ei->i_fc_wait, &wait,
988 TASK_UNINTERRUPTIBLE);
989 if (atomic_read(&ei->i_fc_updates)) {
990 spin_unlock(&sbi->s_fc_lock);
991 schedule();
992 spin_lock(&sbi->s_fc_lock);
993 }
994 finish_wait(&ei->i_fc_wait, &wait);
995 }
996 spin_unlock(&sbi->s_fc_lock);
997 ret = jbd2_submit_inode_data(journal, ei->jinode);
998 if (ret)
999 return ret;
1000 spin_lock(&sbi->s_fc_lock);
1001 }
1002 spin_unlock(&sbi->s_fc_lock);
1003
1004 return ret;
1005}
1006
1007/* Wait for completion of data for all the fast commit inodes */
1008static int ext4_fc_wait_inode_data_all(journal_t *journal)
1009{
1010 struct super_block *sb = journal->j_private;
1011 struct ext4_sb_info *sbi = EXT4_SB(sb);
1012 struct ext4_inode_info *pos, *n;
1013 int ret = 0;
1014
1015 spin_lock(&sbi->s_fc_lock);
1016 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1017 if (!ext4_test_inode_state(&pos->vfs_inode,
1018 EXT4_STATE_FC_COMMITTING))
1019 continue;
1020 spin_unlock(&sbi->s_fc_lock);
1021
1022 ret = jbd2_wait_inode_data(journal, pos->jinode);
1023 if (ret)
1024 return ret;
1025 spin_lock(&sbi->s_fc_lock);
1026 }
1027 spin_unlock(&sbi->s_fc_lock);
1028
1029 return 0;
1030}
1031
1032/* Commit all the directory entry updates */
1033static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1034__acquires(&sbi->s_fc_lock)
1035__releases(&sbi->s_fc_lock)
1036{
1037 struct super_block *sb = journal->j_private;
1038 struct ext4_sb_info *sbi = EXT4_SB(sb);
1039 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1040 struct inode *inode;
1041 struct ext4_inode_info *ei;
1042 int ret;
1043
1044 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1045 return 0;
1046 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1047 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1048 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1049 spin_unlock(&sbi->s_fc_lock);
1050 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1051 ret = -ENOSPC;
1052 goto lock_and_exit;
1053 }
1054 spin_lock(&sbi->s_fc_lock);
1055 continue;
1056 }
1057 /*
1058 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1059 * corresponding inode pointer
1060 */
1061 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1062 ei = list_first_entry(&fc_dentry->fcd_dilist,
1063 struct ext4_inode_info, i_fc_dilist);
1064 inode = &ei->vfs_inode;
1065 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1066
1067 spin_unlock(&sbi->s_fc_lock);
1068
1069 /*
1070 * We first write the inode and then the create dirent. This
1071 * allows the recovery code to create an unnamed inode first
1072 * and then link it to a directory entry. This allows us
1073 * to use namei.c routines almost as is and simplifies
1074 * the recovery code.
1075 */
1076 ret = ext4_fc_write_inode(inode, crc);
1077 if (ret)
1078 goto lock_and_exit;
1079
1080 ret = ext4_fc_write_inode_data(inode, crc);
1081 if (ret)
1082 goto lock_and_exit;
1083
1084 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1085 ret = -ENOSPC;
1086 goto lock_and_exit;
1087 }
1088
1089 spin_lock(&sbi->s_fc_lock);
1090 }
1091 return 0;
1092lock_and_exit:
1093 spin_lock(&sbi->s_fc_lock);
1094 return ret;
1095}
1096
1097static int ext4_fc_perform_commit(journal_t *journal)
1098{
1099 struct super_block *sb = journal->j_private;
1100 struct ext4_sb_info *sbi = EXT4_SB(sb);
1101 struct ext4_inode_info *iter;
1102 struct ext4_fc_head head;
1103 struct inode *inode;
1104 struct blk_plug plug;
1105 int ret = 0;
1106 u32 crc = 0;
1107
1108 ret = ext4_fc_submit_inode_data_all(journal);
1109 if (ret)
1110 return ret;
1111
1112 ret = ext4_fc_wait_inode_data_all(journal);
1113 if (ret)
1114 return ret;
1115
1116 /*
1117 * If file system device is different from journal device, issue a cache
1118 * flush before we start writing fast commit blocks.
1119 */
1120 if (journal->j_fs_dev != journal->j_dev)
1121 blkdev_issue_flush(journal->j_fs_dev);
1122
1123 blk_start_plug(&plug);
1124 if (sbi->s_fc_bytes == 0) {
1125 /*
1126 * Add a head tag only if this is the first fast commit
1127 * in this TID.
1128 */
1129 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1130 head.fc_tid = cpu_to_le32(
1131 sbi->s_journal->j_running_transaction->t_tid);
1132 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1133 (u8 *)&head, &crc)) {
1134 ret = -ENOSPC;
1135 goto out;
1136 }
1137 }
1138
1139 spin_lock(&sbi->s_fc_lock);
1140 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1141 if (ret) {
1142 spin_unlock(&sbi->s_fc_lock);
1143 goto out;
1144 }
1145
1146 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1147 inode = &iter->vfs_inode;
1148 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1149 continue;
1150
1151 spin_unlock(&sbi->s_fc_lock);
1152 ret = ext4_fc_write_inode_data(inode, &crc);
1153 if (ret)
1154 goto out;
1155 ret = ext4_fc_write_inode(inode, &crc);
1156 if (ret)
1157 goto out;
1158 spin_lock(&sbi->s_fc_lock);
1159 }
1160 spin_unlock(&sbi->s_fc_lock);
1161
1162 ret = ext4_fc_write_tail(sb, crc);
1163
1164out:
1165 blk_finish_plug(&plug);
1166 return ret;
1167}
1168
1169static void ext4_fc_update_stats(struct super_block *sb, int status,
1170 u64 commit_time, int nblks, tid_t commit_tid)
1171{
1172 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1173
1174 ext4_debug("Fast commit ended with status = %d for tid %u",
1175 status, commit_tid);
1176 if (status == EXT4_FC_STATUS_OK) {
1177 stats->fc_num_commits++;
1178 stats->fc_numblks += nblks;
1179 if (likely(stats->s_fc_avg_commit_time))
1180 stats->s_fc_avg_commit_time =
1181 (commit_time +
1182 stats->s_fc_avg_commit_time * 3) / 4;
1183 else
1184 stats->s_fc_avg_commit_time = commit_time;
1185 } else if (status == EXT4_FC_STATUS_FAILED ||
1186 status == EXT4_FC_STATUS_INELIGIBLE) {
1187 if (status == EXT4_FC_STATUS_FAILED)
1188 stats->fc_failed_commits++;
1189 stats->fc_ineligible_commits++;
1190 } else {
1191 stats->fc_skipped_commits++;
1192 }
1193 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1194}
1195
1196/*
1197 * The main commit entry point. Performs a fast commit for transaction
1198 * commit_tid if needed. If it's not possible to perform a fast commit
1199 * due to various reasons, we fall back to full commit. Returns 0
1200 * on success, error otherwise.
1201 */
1202int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1203{
1204 struct super_block *sb = journal->j_private;
1205 struct ext4_sb_info *sbi = EXT4_SB(sb);
1206 int nblks = 0, ret, bsize = journal->j_blocksize;
1207 int subtid = atomic_read(&sbi->s_fc_subtid);
1208 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1209 ktime_t start_time, commit_time;
1210
1211 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1212 return jbd2_complete_transaction(journal, commit_tid);
1213
1214 trace_ext4_fc_commit_start(sb, commit_tid);
1215
1216 start_time = ktime_get();
1217
1218restart_fc:
1219 ret = jbd2_fc_begin_commit(journal, commit_tid);
1220 if (ret == -EALREADY) {
1221 /* There was an ongoing commit, check if we need to restart */
1222 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1223 tid_gt(commit_tid, journal->j_commit_sequence))
1224 goto restart_fc;
1225 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1226 commit_tid);
1227 return 0;
1228 } else if (ret) {
1229 /*
1230 * Commit couldn't start. Just update stats and perform a
1231 * full commit.
1232 */
1233 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1234 commit_tid);
1235 return jbd2_complete_transaction(journal, commit_tid);
1236 }
1237
1238 /*
1239 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1240 * if we are fast commit ineligible.
1241 */
1242 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1243 status = EXT4_FC_STATUS_INELIGIBLE;
1244 goto fallback;
1245 }
1246
1247 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1248 ret = ext4_fc_perform_commit(journal);
1249 if (ret < 0) {
1250 status = EXT4_FC_STATUS_FAILED;
1251 goto fallback;
1252 }
1253 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1254 ret = jbd2_fc_wait_bufs(journal, nblks);
1255 if (ret < 0) {
1256 status = EXT4_FC_STATUS_FAILED;
1257 goto fallback;
1258 }
1259 atomic_inc(&sbi->s_fc_subtid);
1260 ret = jbd2_fc_end_commit(journal);
1261 /*
1262 * weight the commit time higher than the average time so we
1263 * don't react too strongly to vast changes in the commit time
1264 */
1265 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1266 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1267 return ret;
1268
1269fallback:
1270 ret = jbd2_fc_end_commit_fallback(journal);
1271 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1272 return ret;
1273}
1274
1275/*
1276 * Fast commit cleanup routine. This is called after every fast commit and
1277 * full commit. full is true if we are called after a full commit.
1278 */
1279static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1280{
1281 struct super_block *sb = journal->j_private;
1282 struct ext4_sb_info *sbi = EXT4_SB(sb);
1283 struct ext4_inode_info *iter, *iter_n;
1284 struct ext4_fc_dentry_update *fc_dentry;
1285
1286 if (full && sbi->s_fc_bh)
1287 sbi->s_fc_bh = NULL;
1288
1289 trace_ext4_fc_cleanup(journal, full, tid);
1290 jbd2_fc_release_bufs(journal);
1291
1292 spin_lock(&sbi->s_fc_lock);
1293 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1294 i_fc_list) {
1295 list_del_init(&iter->i_fc_list);
1296 ext4_clear_inode_state(&iter->vfs_inode,
1297 EXT4_STATE_FC_COMMITTING);
1298 if (tid_geq(tid, iter->i_sync_tid)) {
1299 ext4_fc_reset_inode(&iter->vfs_inode);
1300 } else if (full) {
1301 /*
1302 * We are called after a full commit, inode has been
1303 * modified while the commit was running. Re-enqueue
1304 * the inode into STAGING, which will then be splice
1305 * back into MAIN. This cannot happen during
1306 * fastcommit because the journal is locked all the
1307 * time in that case (and tid doesn't increase so
1308 * tid check above isn't reliable).
1309 */
1310 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1311 &sbi->s_fc_q[FC_Q_STAGING]);
1312 }
1313 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1314 smp_mb();
1315#if (BITS_PER_LONG < 64)
1316 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1317#else
1318 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1319#endif
1320 }
1321
1322 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1323 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1324 struct ext4_fc_dentry_update,
1325 fcd_list);
1326 list_del_init(&fc_dentry->fcd_list);
1327 list_del_init(&fc_dentry->fcd_dilist);
1328 spin_unlock(&sbi->s_fc_lock);
1329
1330 if (fc_dentry->fcd_name.name &&
1331 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1332 kfree(fc_dentry->fcd_name.name);
1333 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1334 spin_lock(&sbi->s_fc_lock);
1335 }
1336
1337 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1338 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1339 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1340 &sbi->s_fc_q[FC_Q_MAIN]);
1341
1342 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1343 sbi->s_fc_ineligible_tid = 0;
1344 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1345 }
1346
1347 if (full)
1348 sbi->s_fc_bytes = 0;
1349 spin_unlock(&sbi->s_fc_lock);
1350 trace_ext4_fc_stats(sb);
1351}
1352
1353/* Ext4 Replay Path Routines */
1354
1355/* Helper struct for dentry replay routines */
1356struct dentry_info_args {
1357 int parent_ino, dname_len, ino, inode_len;
1358 char *dname;
1359};
1360
1361/* Same as struct ext4_fc_tl, but uses native endianness fields */
1362struct ext4_fc_tl_mem {
1363 u16 fc_tag;
1364 u16 fc_len;
1365};
1366
1367static inline void tl_to_darg(struct dentry_info_args *darg,
1368 struct ext4_fc_tl_mem *tl, u8 *val)
1369{
1370 struct ext4_fc_dentry_info fcd;
1371
1372 memcpy(&fcd, val, sizeof(fcd));
1373
1374 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1375 darg->ino = le32_to_cpu(fcd.fc_ino);
1376 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1377 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1378}
1379
1380static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1381{
1382 struct ext4_fc_tl tl_disk;
1383
1384 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1385 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1386 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1387}
1388
1389/* Unlink replay function */
1390static int ext4_fc_replay_unlink(struct super_block *sb,
1391 struct ext4_fc_tl_mem *tl, u8 *val)
1392{
1393 struct inode *inode, *old_parent;
1394 struct qstr entry;
1395 struct dentry_info_args darg;
1396 int ret = 0;
1397
1398 tl_to_darg(&darg, tl, val);
1399
1400 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1401 darg.parent_ino, darg.dname_len);
1402
1403 entry.name = darg.dname;
1404 entry.len = darg.dname_len;
1405 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1406
1407 if (IS_ERR(inode)) {
1408 ext4_debug("Inode %d not found", darg.ino);
1409 return 0;
1410 }
1411
1412 old_parent = ext4_iget(sb, darg.parent_ino,
1413 EXT4_IGET_NORMAL);
1414 if (IS_ERR(old_parent)) {
1415 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1416 iput(inode);
1417 return 0;
1418 }
1419
1420 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1421 /* -ENOENT ok coz it might not exist anymore. */
1422 if (ret == -ENOENT)
1423 ret = 0;
1424 iput(old_parent);
1425 iput(inode);
1426 return ret;
1427}
1428
1429static int ext4_fc_replay_link_internal(struct super_block *sb,
1430 struct dentry_info_args *darg,
1431 struct inode *inode)
1432{
1433 struct inode *dir = NULL;
1434 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1435 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1436 int ret = 0;
1437
1438 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1439 if (IS_ERR(dir)) {
1440 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1441 dir = NULL;
1442 goto out;
1443 }
1444
1445 dentry_dir = d_obtain_alias(dir);
1446 if (IS_ERR(dentry_dir)) {
1447 ext4_debug("Failed to obtain dentry");
1448 dentry_dir = NULL;
1449 goto out;
1450 }
1451
1452 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1453 if (!dentry_inode) {
1454 ext4_debug("Inode dentry not created.");
1455 ret = -ENOMEM;
1456 goto out;
1457 }
1458
1459 ret = __ext4_link(dir, inode, dentry_inode);
1460 /*
1461 * It's possible that link already existed since data blocks
1462 * for the dir in question got persisted before we crashed OR
1463 * we replayed this tag and crashed before the entire replay
1464 * could complete.
1465 */
1466 if (ret && ret != -EEXIST) {
1467 ext4_debug("Failed to link\n");
1468 goto out;
1469 }
1470
1471 ret = 0;
1472out:
1473 if (dentry_dir) {
1474 d_drop(dentry_dir);
1475 dput(dentry_dir);
1476 } else if (dir) {
1477 iput(dir);
1478 }
1479 if (dentry_inode) {
1480 d_drop(dentry_inode);
1481 dput(dentry_inode);
1482 }
1483
1484 return ret;
1485}
1486
1487/* Link replay function */
1488static int ext4_fc_replay_link(struct super_block *sb,
1489 struct ext4_fc_tl_mem *tl, u8 *val)
1490{
1491 struct inode *inode;
1492 struct dentry_info_args darg;
1493 int ret = 0;
1494
1495 tl_to_darg(&darg, tl, val);
1496 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1497 darg.parent_ino, darg.dname_len);
1498
1499 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1500 if (IS_ERR(inode)) {
1501 ext4_debug("Inode not found.");
1502 return 0;
1503 }
1504
1505 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1506 iput(inode);
1507 return ret;
1508}
1509
1510/*
1511 * Record all the modified inodes during replay. We use this later to setup
1512 * block bitmaps correctly.
1513 */
1514static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1515{
1516 struct ext4_fc_replay_state *state;
1517 int i;
1518
1519 state = &EXT4_SB(sb)->s_fc_replay_state;
1520 for (i = 0; i < state->fc_modified_inodes_used; i++)
1521 if (state->fc_modified_inodes[i] == ino)
1522 return 0;
1523 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1524 int *fc_modified_inodes;
1525
1526 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1527 sizeof(int) * (state->fc_modified_inodes_size +
1528 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1529 GFP_KERNEL);
1530 if (!fc_modified_inodes)
1531 return -ENOMEM;
1532 state->fc_modified_inodes = fc_modified_inodes;
1533 state->fc_modified_inodes_size +=
1534 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1535 }
1536 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1537 return 0;
1538}
1539
1540/*
1541 * Inode replay function
1542 */
1543static int ext4_fc_replay_inode(struct super_block *sb,
1544 struct ext4_fc_tl_mem *tl, u8 *val)
1545{
1546 struct ext4_fc_inode fc_inode;
1547 struct ext4_inode *raw_inode;
1548 struct ext4_inode *raw_fc_inode;
1549 struct inode *inode = NULL;
1550 struct ext4_iloc iloc;
1551 int inode_len, ino, ret, tag = tl->fc_tag;
1552 struct ext4_extent_header *eh;
1553 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1554
1555 memcpy(&fc_inode, val, sizeof(fc_inode));
1556
1557 ino = le32_to_cpu(fc_inode.fc_ino);
1558 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1559
1560 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1561 if (!IS_ERR(inode)) {
1562 ext4_ext_clear_bb(inode);
1563 iput(inode);
1564 }
1565 inode = NULL;
1566
1567 ret = ext4_fc_record_modified_inode(sb, ino);
1568 if (ret)
1569 goto out;
1570
1571 raw_fc_inode = (struct ext4_inode *)
1572 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1573 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1574 if (ret)
1575 goto out;
1576
1577 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1578 raw_inode = ext4_raw_inode(&iloc);
1579
1580 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1581 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1582 inode_len - off_gen);
1583 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1584 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1585 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1586 memset(eh, 0, sizeof(*eh));
1587 eh->eh_magic = EXT4_EXT_MAGIC;
1588 eh->eh_max = cpu_to_le16(
1589 (sizeof(raw_inode->i_block) -
1590 sizeof(struct ext4_extent_header))
1591 / sizeof(struct ext4_extent));
1592 }
1593 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1594 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1595 sizeof(raw_inode->i_block));
1596 }
1597
1598 /* Immediately update the inode on disk. */
1599 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1600 if (ret)
1601 goto out;
1602 ret = sync_dirty_buffer(iloc.bh);
1603 if (ret)
1604 goto out;
1605 ret = ext4_mark_inode_used(sb, ino);
1606 if (ret)
1607 goto out;
1608
1609 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1610 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1611 if (IS_ERR(inode)) {
1612 ext4_debug("Inode not found.");
1613 return -EFSCORRUPTED;
1614 }
1615
1616 /*
1617 * Our allocator could have made different decisions than before
1618 * crashing. This should be fixed but until then, we calculate
1619 * the number of blocks the inode.
1620 */
1621 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1622 ext4_ext_replay_set_iblocks(inode);
1623
1624 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1625 ext4_reset_inode_seed(inode);
1626
1627 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1628 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1629 sync_dirty_buffer(iloc.bh);
1630 brelse(iloc.bh);
1631out:
1632 iput(inode);
1633 if (!ret)
1634 blkdev_issue_flush(sb->s_bdev);
1635
1636 return 0;
1637}
1638
1639/*
1640 * Dentry create replay function.
1641 *
1642 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1643 * inode for which we are trying to create a dentry here, should already have
1644 * been replayed before we start here.
1645 */
1646static int ext4_fc_replay_create(struct super_block *sb,
1647 struct ext4_fc_tl_mem *tl, u8 *val)
1648{
1649 int ret = 0;
1650 struct inode *inode = NULL;
1651 struct inode *dir = NULL;
1652 struct dentry_info_args darg;
1653
1654 tl_to_darg(&darg, tl, val);
1655
1656 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1657 darg.parent_ino, darg.dname_len);
1658
1659 /* This takes care of update group descriptor and other metadata */
1660 ret = ext4_mark_inode_used(sb, darg.ino);
1661 if (ret)
1662 goto out;
1663
1664 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1665 if (IS_ERR(inode)) {
1666 ext4_debug("inode %d not found.", darg.ino);
1667 inode = NULL;
1668 ret = -EINVAL;
1669 goto out;
1670 }
1671
1672 if (S_ISDIR(inode->i_mode)) {
1673 /*
1674 * If we are creating a directory, we need to make sure that the
1675 * dot and dot dot dirents are setup properly.
1676 */
1677 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1678 if (IS_ERR(dir)) {
1679 ext4_debug("Dir %d not found.", darg.ino);
1680 goto out;
1681 }
1682 ret = ext4_init_new_dir(NULL, dir, inode);
1683 iput(dir);
1684 if (ret) {
1685 ret = 0;
1686 goto out;
1687 }
1688 }
1689 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1690 if (ret)
1691 goto out;
1692 set_nlink(inode, 1);
1693 ext4_mark_inode_dirty(NULL, inode);
1694out:
1695 iput(inode);
1696 return ret;
1697}
1698
1699/*
1700 * Record physical disk regions which are in use as per fast commit area,
1701 * and used by inodes during replay phase. Our simple replay phase
1702 * allocator excludes these regions from allocation.
1703 */
1704int ext4_fc_record_regions(struct super_block *sb, int ino,
1705 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1706{
1707 struct ext4_fc_replay_state *state;
1708 struct ext4_fc_alloc_region *region;
1709
1710 state = &EXT4_SB(sb)->s_fc_replay_state;
1711 /*
1712 * during replay phase, the fc_regions_valid may not same as
1713 * fc_regions_used, update it when do new additions.
1714 */
1715 if (replay && state->fc_regions_used != state->fc_regions_valid)
1716 state->fc_regions_used = state->fc_regions_valid;
1717 if (state->fc_regions_used == state->fc_regions_size) {
1718 struct ext4_fc_alloc_region *fc_regions;
1719
1720 fc_regions = krealloc(state->fc_regions,
1721 sizeof(struct ext4_fc_alloc_region) *
1722 (state->fc_regions_size +
1723 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1724 GFP_KERNEL);
1725 if (!fc_regions)
1726 return -ENOMEM;
1727 state->fc_regions_size +=
1728 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1729 state->fc_regions = fc_regions;
1730 }
1731 region = &state->fc_regions[state->fc_regions_used++];
1732 region->ino = ino;
1733 region->lblk = lblk;
1734 region->pblk = pblk;
1735 region->len = len;
1736
1737 if (replay)
1738 state->fc_regions_valid++;
1739
1740 return 0;
1741}
1742
1743/* Replay add range tag */
1744static int ext4_fc_replay_add_range(struct super_block *sb,
1745 struct ext4_fc_tl_mem *tl, u8 *val)
1746{
1747 struct ext4_fc_add_range fc_add_ex;
1748 struct ext4_extent newex, *ex;
1749 struct inode *inode;
1750 ext4_lblk_t start, cur;
1751 int remaining, len;
1752 ext4_fsblk_t start_pblk;
1753 struct ext4_map_blocks map;
1754 struct ext4_ext_path *path = NULL;
1755 int ret;
1756
1757 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1758 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1759
1760 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1761 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1762 ext4_ext_get_actual_len(ex));
1763
1764 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1765 if (IS_ERR(inode)) {
1766 ext4_debug("Inode not found.");
1767 return 0;
1768 }
1769
1770 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1771 if (ret)
1772 goto out;
1773
1774 start = le32_to_cpu(ex->ee_block);
1775 start_pblk = ext4_ext_pblock(ex);
1776 len = ext4_ext_get_actual_len(ex);
1777
1778 cur = start;
1779 remaining = len;
1780 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1781 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1782 inode->i_ino);
1783
1784 while (remaining > 0) {
1785 map.m_lblk = cur;
1786 map.m_len = remaining;
1787 map.m_pblk = 0;
1788 ret = ext4_map_blocks(NULL, inode, &map, 0);
1789
1790 if (ret < 0)
1791 goto out;
1792
1793 if (ret == 0) {
1794 /* Range is not mapped */
1795 path = ext4_find_extent(inode, cur, path, 0);
1796 if (IS_ERR(path))
1797 goto out;
1798 memset(&newex, 0, sizeof(newex));
1799 newex.ee_block = cpu_to_le32(cur);
1800 ext4_ext_store_pblock(
1801 &newex, start_pblk + cur - start);
1802 newex.ee_len = cpu_to_le16(map.m_len);
1803 if (ext4_ext_is_unwritten(ex))
1804 ext4_ext_mark_unwritten(&newex);
1805 down_write(&EXT4_I(inode)->i_data_sem);
1806 path = ext4_ext_insert_extent(NULL, inode,
1807 path, &newex, 0);
1808 up_write((&EXT4_I(inode)->i_data_sem));
1809 if (IS_ERR(path))
1810 goto out;
1811 goto next;
1812 }
1813
1814 if (start_pblk + cur - start != map.m_pblk) {
1815 /*
1816 * Logical to physical mapping changed. This can happen
1817 * if this range was removed and then reallocated to
1818 * map to new physical blocks during a fast commit.
1819 */
1820 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1821 ext4_ext_is_unwritten(ex),
1822 start_pblk + cur - start);
1823 if (ret)
1824 goto out;
1825 /*
1826 * Mark the old blocks as free since they aren't used
1827 * anymore. We maintain an array of all the modified
1828 * inodes. In case these blocks are still used at either
1829 * a different logical range in the same inode or in
1830 * some different inode, we will mark them as allocated
1831 * at the end of the FC replay using our array of
1832 * modified inodes.
1833 */
1834 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1835 goto next;
1836 }
1837
1838 /* Range is mapped and needs a state change */
1839 ext4_debug("Converting from %ld to %d %lld",
1840 map.m_flags & EXT4_MAP_UNWRITTEN,
1841 ext4_ext_is_unwritten(ex), map.m_pblk);
1842 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1843 ext4_ext_is_unwritten(ex), map.m_pblk);
1844 if (ret)
1845 goto out;
1846 /*
1847 * We may have split the extent tree while toggling the state.
1848 * Try to shrink the extent tree now.
1849 */
1850 ext4_ext_replay_shrink_inode(inode, start + len);
1851next:
1852 cur += map.m_len;
1853 remaining -= map.m_len;
1854 }
1855 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1856 sb->s_blocksize_bits);
1857out:
1858 ext4_free_ext_path(path);
1859 iput(inode);
1860 return 0;
1861}
1862
1863/* Replay DEL_RANGE tag */
1864static int
1865ext4_fc_replay_del_range(struct super_block *sb,
1866 struct ext4_fc_tl_mem *tl, u8 *val)
1867{
1868 struct inode *inode;
1869 struct ext4_fc_del_range lrange;
1870 struct ext4_map_blocks map;
1871 ext4_lblk_t cur, remaining;
1872 int ret;
1873
1874 memcpy(&lrange, val, sizeof(lrange));
1875 cur = le32_to_cpu(lrange.fc_lblk);
1876 remaining = le32_to_cpu(lrange.fc_len);
1877
1878 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1879 le32_to_cpu(lrange.fc_ino), cur, remaining);
1880
1881 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1882 if (IS_ERR(inode)) {
1883 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1884 return 0;
1885 }
1886
1887 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1888 if (ret)
1889 goto out;
1890
1891 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1892 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1893 le32_to_cpu(lrange.fc_len));
1894 while (remaining > 0) {
1895 map.m_lblk = cur;
1896 map.m_len = remaining;
1897
1898 ret = ext4_map_blocks(NULL, inode, &map, 0);
1899 if (ret < 0)
1900 goto out;
1901 if (ret > 0) {
1902 remaining -= ret;
1903 cur += ret;
1904 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1905 } else {
1906 remaining -= map.m_len;
1907 cur += map.m_len;
1908 }
1909 }
1910
1911 down_write(&EXT4_I(inode)->i_data_sem);
1912 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1913 le32_to_cpu(lrange.fc_lblk) +
1914 le32_to_cpu(lrange.fc_len) - 1);
1915 up_write(&EXT4_I(inode)->i_data_sem);
1916 if (ret)
1917 goto out;
1918 ext4_ext_replay_shrink_inode(inode,
1919 i_size_read(inode) >> sb->s_blocksize_bits);
1920 ext4_mark_inode_dirty(NULL, inode);
1921out:
1922 iput(inode);
1923 return 0;
1924}
1925
1926static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1927{
1928 struct ext4_fc_replay_state *state;
1929 struct inode *inode;
1930 struct ext4_ext_path *path = NULL;
1931 struct ext4_map_blocks map;
1932 int i, ret, j;
1933 ext4_lblk_t cur, end;
1934
1935 state = &EXT4_SB(sb)->s_fc_replay_state;
1936 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1937 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1938 EXT4_IGET_NORMAL);
1939 if (IS_ERR(inode)) {
1940 ext4_debug("Inode %d not found.",
1941 state->fc_modified_inodes[i]);
1942 continue;
1943 }
1944 cur = 0;
1945 end = EXT_MAX_BLOCKS;
1946 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1947 iput(inode);
1948 continue;
1949 }
1950 while (cur < end) {
1951 map.m_lblk = cur;
1952 map.m_len = end - cur;
1953
1954 ret = ext4_map_blocks(NULL, inode, &map, 0);
1955 if (ret < 0)
1956 break;
1957
1958 if (ret > 0) {
1959 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1960 if (!IS_ERR(path)) {
1961 for (j = 0; j < path->p_depth; j++)
1962 ext4_mb_mark_bb(inode->i_sb,
1963 path[j].p_block, 1, true);
1964 } else {
1965 path = NULL;
1966 }
1967 cur += ret;
1968 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1969 map.m_len, true);
1970 } else {
1971 cur = cur + (map.m_len ? map.m_len : 1);
1972 }
1973 }
1974 iput(inode);
1975 }
1976
1977 ext4_free_ext_path(path);
1978}
1979
1980/*
1981 * Check if block is in excluded regions for block allocation. The simple
1982 * allocator that runs during replay phase is calls this function to see
1983 * if it is okay to use a block.
1984 */
1985bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1986{
1987 int i;
1988 struct ext4_fc_replay_state *state;
1989
1990 state = &EXT4_SB(sb)->s_fc_replay_state;
1991 for (i = 0; i < state->fc_regions_valid; i++) {
1992 if (state->fc_regions[i].ino == 0 ||
1993 state->fc_regions[i].len == 0)
1994 continue;
1995 if (in_range(blk, state->fc_regions[i].pblk,
1996 state->fc_regions[i].len))
1997 return true;
1998 }
1999 return false;
2000}
2001
2002/* Cleanup function called after replay */
2003void ext4_fc_replay_cleanup(struct super_block *sb)
2004{
2005 struct ext4_sb_info *sbi = EXT4_SB(sb);
2006
2007 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2008 kfree(sbi->s_fc_replay_state.fc_regions);
2009 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2010}
2011
2012static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2013 int tag, int len)
2014{
2015 switch (tag) {
2016 case EXT4_FC_TAG_ADD_RANGE:
2017 return len == sizeof(struct ext4_fc_add_range);
2018 case EXT4_FC_TAG_DEL_RANGE:
2019 return len == sizeof(struct ext4_fc_del_range);
2020 case EXT4_FC_TAG_CREAT:
2021 case EXT4_FC_TAG_LINK:
2022 case EXT4_FC_TAG_UNLINK:
2023 len -= sizeof(struct ext4_fc_dentry_info);
2024 return len >= 1 && len <= EXT4_NAME_LEN;
2025 case EXT4_FC_TAG_INODE:
2026 len -= sizeof(struct ext4_fc_inode);
2027 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2028 len <= sbi->s_inode_size;
2029 case EXT4_FC_TAG_PAD:
2030 return true; /* padding can have any length */
2031 case EXT4_FC_TAG_TAIL:
2032 return len >= sizeof(struct ext4_fc_tail);
2033 case EXT4_FC_TAG_HEAD:
2034 return len == sizeof(struct ext4_fc_head);
2035 }
2036 return false;
2037}
2038
2039/*
2040 * Recovery Scan phase handler
2041 *
2042 * This function is called during the scan phase and is responsible
2043 * for doing following things:
2044 * - Make sure the fast commit area has valid tags for replay
2045 * - Count number of tags that need to be replayed by the replay handler
2046 * - Verify CRC
2047 * - Create a list of excluded blocks for allocation during replay phase
2048 *
2049 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2050 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2051 * to indicate that scan has finished and JBD2 can now start replay phase.
2052 * It returns a negative error to indicate that there was an error. At the end
2053 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2054 * to indicate the number of tags that need to replayed during the replay phase.
2055 */
2056static int ext4_fc_replay_scan(journal_t *journal,
2057 struct buffer_head *bh, int off,
2058 tid_t expected_tid)
2059{
2060 struct super_block *sb = journal->j_private;
2061 struct ext4_sb_info *sbi = EXT4_SB(sb);
2062 struct ext4_fc_replay_state *state;
2063 int ret = JBD2_FC_REPLAY_CONTINUE;
2064 struct ext4_fc_add_range ext;
2065 struct ext4_fc_tl_mem tl;
2066 struct ext4_fc_tail tail;
2067 __u8 *start, *end, *cur, *val;
2068 struct ext4_fc_head head;
2069 struct ext4_extent *ex;
2070
2071 state = &sbi->s_fc_replay_state;
2072
2073 start = (u8 *)bh->b_data;
2074 end = start + journal->j_blocksize;
2075
2076 if (state->fc_replay_expected_off == 0) {
2077 state->fc_cur_tag = 0;
2078 state->fc_replay_num_tags = 0;
2079 state->fc_crc = 0;
2080 state->fc_regions = NULL;
2081 state->fc_regions_valid = state->fc_regions_used =
2082 state->fc_regions_size = 0;
2083 /* Check if we can stop early */
2084 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2085 != EXT4_FC_TAG_HEAD)
2086 return 0;
2087 }
2088
2089 if (off != state->fc_replay_expected_off) {
2090 ret = -EFSCORRUPTED;
2091 goto out_err;
2092 }
2093
2094 state->fc_replay_expected_off++;
2095 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2096 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2097 ext4_fc_get_tl(&tl, cur);
2098 val = cur + EXT4_FC_TAG_BASE_LEN;
2099 if (tl.fc_len > end - val ||
2100 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2101 ret = state->fc_replay_num_tags ?
2102 JBD2_FC_REPLAY_STOP : -ECANCELED;
2103 goto out_err;
2104 }
2105 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2106 tag2str(tl.fc_tag), bh->b_blocknr);
2107 switch (tl.fc_tag) {
2108 case EXT4_FC_TAG_ADD_RANGE:
2109 memcpy(&ext, val, sizeof(ext));
2110 ex = (struct ext4_extent *)&ext.fc_ex;
2111 ret = ext4_fc_record_regions(sb,
2112 le32_to_cpu(ext.fc_ino),
2113 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2114 ext4_ext_get_actual_len(ex), 0);
2115 if (ret < 0)
2116 break;
2117 ret = JBD2_FC_REPLAY_CONTINUE;
2118 fallthrough;
2119 case EXT4_FC_TAG_DEL_RANGE:
2120 case EXT4_FC_TAG_LINK:
2121 case EXT4_FC_TAG_UNLINK:
2122 case EXT4_FC_TAG_CREAT:
2123 case EXT4_FC_TAG_INODE:
2124 case EXT4_FC_TAG_PAD:
2125 state->fc_cur_tag++;
2126 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2127 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2128 break;
2129 case EXT4_FC_TAG_TAIL:
2130 state->fc_cur_tag++;
2131 memcpy(&tail, val, sizeof(tail));
2132 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2133 EXT4_FC_TAG_BASE_LEN +
2134 offsetof(struct ext4_fc_tail,
2135 fc_crc));
2136 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2137 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2138 state->fc_replay_num_tags = state->fc_cur_tag;
2139 state->fc_regions_valid =
2140 state->fc_regions_used;
2141 } else {
2142 ret = state->fc_replay_num_tags ?
2143 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2144 }
2145 state->fc_crc = 0;
2146 break;
2147 case EXT4_FC_TAG_HEAD:
2148 memcpy(&head, val, sizeof(head));
2149 if (le32_to_cpu(head.fc_features) &
2150 ~EXT4_FC_SUPPORTED_FEATURES) {
2151 ret = -EOPNOTSUPP;
2152 break;
2153 }
2154 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2155 ret = JBD2_FC_REPLAY_STOP;
2156 break;
2157 }
2158 state->fc_cur_tag++;
2159 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2160 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2161 break;
2162 default:
2163 ret = state->fc_replay_num_tags ?
2164 JBD2_FC_REPLAY_STOP : -ECANCELED;
2165 }
2166 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2167 break;
2168 }
2169
2170out_err:
2171 trace_ext4_fc_replay_scan(sb, ret, off);
2172 return ret;
2173}
2174
2175/*
2176 * Main recovery path entry point.
2177 * The meaning of return codes is similar as above.
2178 */
2179static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2180 enum passtype pass, int off, tid_t expected_tid)
2181{
2182 struct super_block *sb = journal->j_private;
2183 struct ext4_sb_info *sbi = EXT4_SB(sb);
2184 struct ext4_fc_tl_mem tl;
2185 __u8 *start, *end, *cur, *val;
2186 int ret = JBD2_FC_REPLAY_CONTINUE;
2187 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2188 struct ext4_fc_tail tail;
2189
2190 if (pass == PASS_SCAN) {
2191 state->fc_current_pass = PASS_SCAN;
2192 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2193 }
2194
2195 if (state->fc_current_pass != pass) {
2196 state->fc_current_pass = pass;
2197 sbi->s_mount_state |= EXT4_FC_REPLAY;
2198 }
2199 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2200 ext4_debug("Replay stops\n");
2201 ext4_fc_set_bitmaps_and_counters(sb);
2202 return 0;
2203 }
2204
2205#ifdef CONFIG_EXT4_DEBUG
2206 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2207 pr_warn("Dropping fc block %d because max_replay set\n", off);
2208 return JBD2_FC_REPLAY_STOP;
2209 }
2210#endif
2211
2212 start = (u8 *)bh->b_data;
2213 end = start + journal->j_blocksize;
2214
2215 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2216 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2217 ext4_fc_get_tl(&tl, cur);
2218 val = cur + EXT4_FC_TAG_BASE_LEN;
2219
2220 if (state->fc_replay_num_tags == 0) {
2221 ret = JBD2_FC_REPLAY_STOP;
2222 ext4_fc_set_bitmaps_and_counters(sb);
2223 break;
2224 }
2225
2226 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2227 state->fc_replay_num_tags--;
2228 switch (tl.fc_tag) {
2229 case EXT4_FC_TAG_LINK:
2230 ret = ext4_fc_replay_link(sb, &tl, val);
2231 break;
2232 case EXT4_FC_TAG_UNLINK:
2233 ret = ext4_fc_replay_unlink(sb, &tl, val);
2234 break;
2235 case EXT4_FC_TAG_ADD_RANGE:
2236 ret = ext4_fc_replay_add_range(sb, &tl, val);
2237 break;
2238 case EXT4_FC_TAG_CREAT:
2239 ret = ext4_fc_replay_create(sb, &tl, val);
2240 break;
2241 case EXT4_FC_TAG_DEL_RANGE:
2242 ret = ext4_fc_replay_del_range(sb, &tl, val);
2243 break;
2244 case EXT4_FC_TAG_INODE:
2245 ret = ext4_fc_replay_inode(sb, &tl, val);
2246 break;
2247 case EXT4_FC_TAG_PAD:
2248 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2249 tl.fc_len, 0);
2250 break;
2251 case EXT4_FC_TAG_TAIL:
2252 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2253 0, tl.fc_len, 0);
2254 memcpy(&tail, val, sizeof(tail));
2255 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2256 break;
2257 case EXT4_FC_TAG_HEAD:
2258 break;
2259 default:
2260 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2261 ret = -ECANCELED;
2262 break;
2263 }
2264 if (ret < 0)
2265 break;
2266 ret = JBD2_FC_REPLAY_CONTINUE;
2267 }
2268 return ret;
2269}
2270
2271void ext4_fc_init(struct super_block *sb, journal_t *journal)
2272{
2273 /*
2274 * We set replay callback even if fast commit disabled because we may
2275 * could still have fast commit blocks that need to be replayed even if
2276 * fast commit has now been turned off.
2277 */
2278 journal->j_fc_replay_callback = ext4_fc_replay;
2279 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2280 return;
2281 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2282}
2283
2284static const char * const fc_ineligible_reasons[] = {
2285 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2286 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2287 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2288 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2289 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2290 [EXT4_FC_REASON_RESIZE] = "Resize",
2291 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2292 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2293 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2294 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2295};
2296
2297int ext4_fc_info_show(struct seq_file *seq, void *v)
2298{
2299 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2300 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2301 int i;
2302
2303 if (v != SEQ_START_TOKEN)
2304 return 0;
2305
2306 seq_printf(seq,
2307 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2308 stats->fc_num_commits, stats->fc_ineligible_commits,
2309 stats->fc_numblks,
2310 div_u64(stats->s_fc_avg_commit_time, 1000));
2311 seq_puts(seq, "Ineligible reasons:\n");
2312 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2313 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2314 stats->fc_ineligible_reason_count[i]);
2315
2316 return 0;
2317}
2318
2319int __init ext4_fc_init_dentry_cache(void)
2320{
2321 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2322 SLAB_RECLAIM_ACCOUNT);
2323
2324 if (ext4_fc_dentry_cachep == NULL)
2325 return -ENOMEM;
2326
2327 return 0;
2328}
2329
2330void ext4_fc_destroy_dentry_cache(void)
2331{
2332 kmem_cache_destroy(ext4_fc_dentry_cachep);
2333}