Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64#define RAID5_MAX_REQ_STRIPES 256
65
66static bool devices_handle_discard_safely = false;
67module_param(devices_handle_discard_safely, bool, 0644);
68MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70static struct workqueue_struct *raid5_wq;
71
72static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75{
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
79
80static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81{
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83}
84
85static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
87{
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90}
91
92static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
94{
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97}
98
99static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
101{
102 int i;
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107}
108
109static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
111{
112 int i;
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
117}
118
119/* Find first data disk in a raid6 stripe */
120static inline int raid6_d0(struct stripe_head *sh)
121{
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130}
131static inline int raid6_next_disk(int disk, int raid_disks)
132{
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135}
136
137/* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
142static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
144{
145 int slot = *count;
146
147 if (sh->ddf_layout)
148 (*count)++;
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
153 if (!sh->ddf_layout)
154 (*count)++;
155 return slot;
156}
157
158static void print_raid5_conf(struct r5conf *conf);
159
160static int stripe_operations_active(struct stripe_head *sh)
161{
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165}
166
167static bool stripe_is_lowprio(struct stripe_head *sh)
168{
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172}
173
174static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
176{
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219}
220
221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
224{
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305}
306
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
310{
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
313}
314
315/*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
322static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325{
326 int size;
327 bool do_wakeup = false;
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
348 do_wakeup = true;
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
362}
363
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
367{
368 struct stripe_head *sh, *t;
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
375 int hash;
376
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
387 count++;
388 }
389
390 return count;
391}
392
393void raid5_release_stripe(struct stripe_head *sh)
394{
395 struct r5conf *conf = sh->raid_conf;
396 unsigned long flags;
397 struct list_head list;
398 int hash;
399 bool wakeup;
400
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413slow_path:
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422}
423
424static inline void remove_hash(struct stripe_head *sh)
425{
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430}
431
432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433{
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440}
441
442/* find an idle stripe, make sure it is unhashed, and return it. */
443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444{
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458out:
459 return sh;
460}
461
462#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463static void free_stripe_pages(struct stripe_head *sh)
464{
465 int i;
466 struct page *p;
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478}
479
480static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481{
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498}
499
500static int
501init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502{
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518}
519#endif
520
521static void shrink_buffers(struct stripe_head *sh)
522{
523 int i;
524 int num = sh->raid_conf->pool_size;
525
526#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
528 struct page *p;
529
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
535 put_page(p);
536 }
537#else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541#endif
542}
543
544static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545{
546 int i;
547 int num = sh->raid_conf->pool_size;
548
549#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
551 struct page *page;
552
553 if (!(page = alloc_page(gfp))) {
554 return 1;
555 }
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
559 }
560#else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
563
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569#endif
570 return 0;
571}
572
573static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
575
576static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577{
578 struct r5conf *conf = sh->raid_conf;
579 int i, seq;
580
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
585
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
588retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 sh->sector = sector;
593 stripe_set_idx(sector, conf, previous, sh);
594 sh->state = 0;
595
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
598
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
605 WARN_ON(1);
606 }
607 dev->flags = 0;
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 }
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
616}
617
618static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 short generation)
620{
621 struct stripe_head *sh;
622
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
626 return sh;
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 return NULL;
629}
630
631static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633{
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672}
673
674/*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
690 */
691int raid5_calc_degraded(struct r5conf *conf)
692{
693 int degraded, degraded2;
694 int i;
695
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743}
744
745static bool has_failed(struct r5conf *conf)
746{
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756}
757
758enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763 STRIPE_WAIT_RESHAPE,
764};
765
766struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784};
785
786/*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
791static bool is_inactive_blocked(struct r5conf *conf, int hash)
792{
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
801}
802
803struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
805 unsigned int flags)
806{
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
810
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812
813 spin_lock_irq(conf->hash_locks + hash);
814
815 for (;;) {
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
832 }
833
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
847
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
851
852 if (flags & R5_GAS_NOBLOCK)
853 break;
854
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx && ctx->batch_last) {
860 raid5_release_stripe(ctx->batch_last);
861 ctx->batch_last = NULL;
862 }
863
864 wait_event_lock_irq(conf->wait_for_stripe,
865 is_inactive_blocked(conf, hash),
866 *(conf->hash_locks + hash));
867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 }
869
870 spin_unlock_irq(conf->hash_locks + hash);
871 return sh;
872}
873
874static bool is_full_stripe_write(struct stripe_head *sh)
875{
876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878}
879
880static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 __acquires(&sh1->stripe_lock)
882 __acquires(&sh2->stripe_lock)
883{
884 if (sh1 > sh2) {
885 spin_lock_irq(&sh2->stripe_lock);
886 spin_lock_nested(&sh1->stripe_lock, 1);
887 } else {
888 spin_lock_irq(&sh1->stripe_lock);
889 spin_lock_nested(&sh2->stripe_lock, 1);
890 }
891}
892
893static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 __releases(&sh1->stripe_lock)
895 __releases(&sh2->stripe_lock)
896{
897 spin_unlock(&sh1->stripe_lock);
898 spin_unlock_irq(&sh2->stripe_lock);
899}
900
901/* Only freshly new full stripe normal write stripe can be added to a batch list */
902static bool stripe_can_batch(struct stripe_head *sh)
903{
904 struct r5conf *conf = sh->raid_conf;
905
906 if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 return false;
908 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
910 is_full_stripe_write(sh);
911}
912
913/* we only do back search */
914static void stripe_add_to_batch_list(struct r5conf *conf,
915 struct stripe_head *sh, struct stripe_head *last_sh)
916{
917 struct stripe_head *head;
918 sector_t head_sector, tmp_sec;
919 int hash;
920 int dd_idx;
921
922 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
923 tmp_sec = sh->sector;
924 if (!sector_div(tmp_sec, conf->chunk_sectors))
925 return;
926 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
927
928 if (last_sh && head_sector == last_sh->sector) {
929 head = last_sh;
930 atomic_inc(&head->count);
931 } else {
932 hash = stripe_hash_locks_hash(conf, head_sector);
933 spin_lock_irq(conf->hash_locks + hash);
934 head = find_get_stripe(conf, head_sector, conf->generation,
935 hash);
936 spin_unlock_irq(conf->hash_locks + hash);
937 if (!head)
938 return;
939 if (!stripe_can_batch(head))
940 goto out;
941 }
942
943 lock_two_stripes(head, sh);
944 /* clear_batch_ready clear the flag */
945 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
946 goto unlock_out;
947
948 if (sh->batch_head)
949 goto unlock_out;
950
951 dd_idx = 0;
952 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
953 dd_idx++;
954 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
955 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
956 goto unlock_out;
957
958 if (head->batch_head) {
959 spin_lock(&head->batch_head->batch_lock);
960 /* This batch list is already running */
961 if (!stripe_can_batch(head)) {
962 spin_unlock(&head->batch_head->batch_lock);
963 goto unlock_out;
964 }
965 /*
966 * We must assign batch_head of this stripe within the
967 * batch_lock, otherwise clear_batch_ready of batch head
968 * stripe could clear BATCH_READY bit of this stripe and
969 * this stripe->batch_head doesn't get assigned, which
970 * could confuse clear_batch_ready for this stripe
971 */
972 sh->batch_head = head->batch_head;
973
974 /*
975 * at this point, head's BATCH_READY could be cleared, but we
976 * can still add the stripe to batch list
977 */
978 list_add(&sh->batch_list, &head->batch_list);
979 spin_unlock(&head->batch_head->batch_lock);
980 } else {
981 head->batch_head = head;
982 sh->batch_head = head->batch_head;
983 spin_lock(&head->batch_lock);
984 list_add_tail(&sh->batch_list, &head->batch_list);
985 spin_unlock(&head->batch_lock);
986 }
987
988 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
989 if (atomic_dec_return(&conf->preread_active_stripes)
990 < IO_THRESHOLD)
991 md_wakeup_thread(conf->mddev->thread);
992
993 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
994 int seq = sh->bm_seq;
995 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
996 sh->batch_head->bm_seq > seq)
997 seq = sh->batch_head->bm_seq;
998 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
999 sh->batch_head->bm_seq = seq;
1000 }
1001
1002 atomic_inc(&sh->count);
1003unlock_out:
1004 unlock_two_stripes(head, sh);
1005out:
1006 raid5_release_stripe(head);
1007}
1008
1009/* Determine if 'data_offset' or 'new_data_offset' should be used
1010 * in this stripe_head.
1011 */
1012static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1013{
1014 sector_t progress = conf->reshape_progress;
1015 /* Need a memory barrier to make sure we see the value
1016 * of conf->generation, or ->data_offset that was set before
1017 * reshape_progress was updated.
1018 */
1019 smp_rmb();
1020 if (progress == MaxSector)
1021 return 0;
1022 if (sh->generation == conf->generation - 1)
1023 return 0;
1024 /* We are in a reshape, and this is a new-generation stripe,
1025 * so use new_data_offset.
1026 */
1027 return 1;
1028}
1029
1030static void dispatch_bio_list(struct bio_list *tmp)
1031{
1032 struct bio *bio;
1033
1034 while ((bio = bio_list_pop(tmp)))
1035 submit_bio_noacct(bio);
1036}
1037
1038static int cmp_stripe(void *priv, const struct list_head *a,
1039 const struct list_head *b)
1040{
1041 const struct r5pending_data *da = list_entry(a,
1042 struct r5pending_data, sibling);
1043 const struct r5pending_data *db = list_entry(b,
1044 struct r5pending_data, sibling);
1045 if (da->sector > db->sector)
1046 return 1;
1047 if (da->sector < db->sector)
1048 return -1;
1049 return 0;
1050}
1051
1052static void dispatch_defer_bios(struct r5conf *conf, int target,
1053 struct bio_list *list)
1054{
1055 struct r5pending_data *data;
1056 struct list_head *first, *next = NULL;
1057 int cnt = 0;
1058
1059 if (conf->pending_data_cnt == 0)
1060 return;
1061
1062 list_sort(NULL, &conf->pending_list, cmp_stripe);
1063
1064 first = conf->pending_list.next;
1065
1066 /* temporarily move the head */
1067 if (conf->next_pending_data)
1068 list_move_tail(&conf->pending_list,
1069 &conf->next_pending_data->sibling);
1070
1071 while (!list_empty(&conf->pending_list)) {
1072 data = list_first_entry(&conf->pending_list,
1073 struct r5pending_data, sibling);
1074 if (&data->sibling == first)
1075 first = data->sibling.next;
1076 next = data->sibling.next;
1077
1078 bio_list_merge(list, &data->bios);
1079 list_move(&data->sibling, &conf->free_list);
1080 cnt++;
1081 if (cnt >= target)
1082 break;
1083 }
1084 conf->pending_data_cnt -= cnt;
1085 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1086
1087 if (next != &conf->pending_list)
1088 conf->next_pending_data = list_entry(next,
1089 struct r5pending_data, sibling);
1090 else
1091 conf->next_pending_data = NULL;
1092 /* list isn't empty */
1093 if (first != &conf->pending_list)
1094 list_move_tail(&conf->pending_list, first);
1095}
1096
1097static void flush_deferred_bios(struct r5conf *conf)
1098{
1099 struct bio_list tmp = BIO_EMPTY_LIST;
1100
1101 if (conf->pending_data_cnt == 0)
1102 return;
1103
1104 spin_lock(&conf->pending_bios_lock);
1105 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1106 BUG_ON(conf->pending_data_cnt != 0);
1107 spin_unlock(&conf->pending_bios_lock);
1108
1109 dispatch_bio_list(&tmp);
1110}
1111
1112static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1113 struct bio_list *bios)
1114{
1115 struct bio_list tmp = BIO_EMPTY_LIST;
1116 struct r5pending_data *ent;
1117
1118 spin_lock(&conf->pending_bios_lock);
1119 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1120 sibling);
1121 list_move_tail(&ent->sibling, &conf->pending_list);
1122 ent->sector = sector;
1123 bio_list_init(&ent->bios);
1124 bio_list_merge(&ent->bios, bios);
1125 conf->pending_data_cnt++;
1126 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1127 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1128
1129 spin_unlock(&conf->pending_bios_lock);
1130
1131 dispatch_bio_list(&tmp);
1132}
1133
1134static void
1135raid5_end_read_request(struct bio *bi);
1136static void
1137raid5_end_write_request(struct bio *bi);
1138
1139static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1140{
1141 struct r5conf *conf = sh->raid_conf;
1142 int i, disks = sh->disks;
1143 struct stripe_head *head_sh = sh;
1144 struct bio_list pending_bios = BIO_EMPTY_LIST;
1145 struct r5dev *dev;
1146 bool should_defer;
1147
1148 might_sleep();
1149
1150 if (log_stripe(sh, s) == 0)
1151 return;
1152
1153 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1154
1155 for (i = disks; i--; ) {
1156 enum req_op op;
1157 blk_opf_t op_flags = 0;
1158 int replace_only = 0;
1159 struct bio *bi, *rbi;
1160 struct md_rdev *rdev, *rrdev = NULL;
1161
1162 sh = head_sh;
1163 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1164 op = REQ_OP_WRITE;
1165 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1166 op_flags = REQ_FUA;
1167 if (test_bit(R5_Discard, &sh->dev[i].flags))
1168 op = REQ_OP_DISCARD;
1169 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1170 op = REQ_OP_READ;
1171 else if (test_and_clear_bit(R5_WantReplace,
1172 &sh->dev[i].flags)) {
1173 op = REQ_OP_WRITE;
1174 replace_only = 1;
1175 } else
1176 continue;
1177 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1178 op_flags |= REQ_SYNC;
1179
1180again:
1181 dev = &sh->dev[i];
1182 bi = &dev->req;
1183 rbi = &dev->rreq; /* For writing to replacement */
1184
1185 rdev = conf->disks[i].rdev;
1186 rrdev = conf->disks[i].replacement;
1187 if (op_is_write(op)) {
1188 if (replace_only)
1189 rdev = NULL;
1190 if (rdev == rrdev)
1191 /* We raced and saw duplicates */
1192 rrdev = NULL;
1193 } else {
1194 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1195 rdev = rrdev;
1196 rrdev = NULL;
1197 }
1198
1199 if (rdev && test_bit(Faulty, &rdev->flags))
1200 rdev = NULL;
1201 if (rdev)
1202 atomic_inc(&rdev->nr_pending);
1203 if (rrdev && test_bit(Faulty, &rrdev->flags))
1204 rrdev = NULL;
1205 if (rrdev)
1206 atomic_inc(&rrdev->nr_pending);
1207
1208 /* We have already checked bad blocks for reads. Now
1209 * need to check for writes. We never accept write errors
1210 * on the replacement, so we don't to check rrdev.
1211 */
1212 while (op_is_write(op) && rdev &&
1213 test_bit(WriteErrorSeen, &rdev->flags)) {
1214 int bad = rdev_has_badblock(rdev, sh->sector,
1215 RAID5_STRIPE_SECTORS(conf));
1216 if (!bad)
1217 break;
1218
1219 if (bad < 0) {
1220 set_bit(BlockedBadBlocks, &rdev->flags);
1221 if (!conf->mddev->external &&
1222 conf->mddev->sb_flags) {
1223 /* It is very unlikely, but we might
1224 * still need to write out the
1225 * bad block log - better give it
1226 * a chance*/
1227 md_check_recovery(conf->mddev);
1228 }
1229 /*
1230 * Because md_wait_for_blocked_rdev
1231 * will dec nr_pending, we must
1232 * increment it first.
1233 */
1234 atomic_inc(&rdev->nr_pending);
1235 md_wait_for_blocked_rdev(rdev, conf->mddev);
1236 } else {
1237 /* Acknowledged bad block - skip the write */
1238 rdev_dec_pending(rdev, conf->mddev);
1239 rdev = NULL;
1240 }
1241 }
1242
1243 if (rdev) {
1244 if (s->syncing || s->expanding || s->expanded
1245 || s->replacing)
1246 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1247
1248 set_bit(STRIPE_IO_STARTED, &sh->state);
1249
1250 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1251 bi->bi_end_io = op_is_write(op)
1252 ? raid5_end_write_request
1253 : raid5_end_read_request;
1254 bi->bi_private = sh;
1255
1256 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1257 __func__, (unsigned long long)sh->sector,
1258 bi->bi_opf, i);
1259 atomic_inc(&sh->count);
1260 if (sh != head_sh)
1261 atomic_inc(&head_sh->count);
1262 if (use_new_offset(conf, sh))
1263 bi->bi_iter.bi_sector = (sh->sector
1264 + rdev->new_data_offset);
1265 else
1266 bi->bi_iter.bi_sector = (sh->sector
1267 + rdev->data_offset);
1268 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1269 bi->bi_opf |= REQ_NOMERGE;
1270
1271 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1272 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1273
1274 if (!op_is_write(op) &&
1275 test_bit(R5_InJournal, &sh->dev[i].flags))
1276 /*
1277 * issuing read for a page in journal, this
1278 * must be preparing for prexor in rmw; read
1279 * the data into orig_page
1280 */
1281 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1282 else
1283 sh->dev[i].vec.bv_page = sh->dev[i].page;
1284 bi->bi_vcnt = 1;
1285 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1286 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1287 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1288 /*
1289 * If this is discard request, set bi_vcnt 0. We don't
1290 * want to confuse SCSI because SCSI will replace payload
1291 */
1292 if (op == REQ_OP_DISCARD)
1293 bi->bi_vcnt = 0;
1294 if (rrdev)
1295 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1296
1297 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1298 if (should_defer && op_is_write(op))
1299 bio_list_add(&pending_bios, bi);
1300 else
1301 submit_bio_noacct(bi);
1302 }
1303 if (rrdev) {
1304 if (s->syncing || s->expanding || s->expanded
1305 || s->replacing)
1306 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1307
1308 set_bit(STRIPE_IO_STARTED, &sh->state);
1309
1310 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1311 BUG_ON(!op_is_write(op));
1312 rbi->bi_end_io = raid5_end_write_request;
1313 rbi->bi_private = sh;
1314
1315 pr_debug("%s: for %llu schedule op %d on "
1316 "replacement disc %d\n",
1317 __func__, (unsigned long long)sh->sector,
1318 rbi->bi_opf, i);
1319 atomic_inc(&sh->count);
1320 if (sh != head_sh)
1321 atomic_inc(&head_sh->count);
1322 if (use_new_offset(conf, sh))
1323 rbi->bi_iter.bi_sector = (sh->sector
1324 + rrdev->new_data_offset);
1325 else
1326 rbi->bi_iter.bi_sector = (sh->sector
1327 + rrdev->data_offset);
1328 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1329 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1330 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1331 rbi->bi_vcnt = 1;
1332 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1333 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1334 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1335 /*
1336 * If this is discard request, set bi_vcnt 0. We don't
1337 * want to confuse SCSI because SCSI will replace payload
1338 */
1339 if (op == REQ_OP_DISCARD)
1340 rbi->bi_vcnt = 0;
1341 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1342 if (should_defer && op_is_write(op))
1343 bio_list_add(&pending_bios, rbi);
1344 else
1345 submit_bio_noacct(rbi);
1346 }
1347 if (!rdev && !rrdev) {
1348 if (op_is_write(op))
1349 set_bit(STRIPE_DEGRADED, &sh->state);
1350 pr_debug("skip op %d on disc %d for sector %llu\n",
1351 bi->bi_opf, i, (unsigned long long)sh->sector);
1352 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1353 set_bit(STRIPE_HANDLE, &sh->state);
1354 }
1355
1356 if (!head_sh->batch_head)
1357 continue;
1358 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1359 batch_list);
1360 if (sh != head_sh)
1361 goto again;
1362 }
1363
1364 if (should_defer && !bio_list_empty(&pending_bios))
1365 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1366}
1367
1368static struct dma_async_tx_descriptor *
1369async_copy_data(int frombio, struct bio *bio, struct page **page,
1370 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1371 struct stripe_head *sh, int no_skipcopy)
1372{
1373 struct bio_vec bvl;
1374 struct bvec_iter iter;
1375 struct page *bio_page;
1376 int page_offset;
1377 struct async_submit_ctl submit;
1378 enum async_tx_flags flags = 0;
1379 struct r5conf *conf = sh->raid_conf;
1380
1381 if (bio->bi_iter.bi_sector >= sector)
1382 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1383 else
1384 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1385
1386 if (frombio)
1387 flags |= ASYNC_TX_FENCE;
1388 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1389
1390 bio_for_each_segment(bvl, bio, iter) {
1391 int len = bvl.bv_len;
1392 int clen;
1393 int b_offset = 0;
1394
1395 if (page_offset < 0) {
1396 b_offset = -page_offset;
1397 page_offset += b_offset;
1398 len -= b_offset;
1399 }
1400
1401 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1402 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1403 else
1404 clen = len;
1405
1406 if (clen > 0) {
1407 b_offset += bvl.bv_offset;
1408 bio_page = bvl.bv_page;
1409 if (frombio) {
1410 if (conf->skip_copy &&
1411 b_offset == 0 && page_offset == 0 &&
1412 clen == RAID5_STRIPE_SIZE(conf) &&
1413 !no_skipcopy)
1414 *page = bio_page;
1415 else
1416 tx = async_memcpy(*page, bio_page, page_offset + poff,
1417 b_offset, clen, &submit);
1418 } else
1419 tx = async_memcpy(bio_page, *page, b_offset,
1420 page_offset + poff, clen, &submit);
1421 }
1422 /* chain the operations */
1423 submit.depend_tx = tx;
1424
1425 if (clen < len) /* hit end of page */
1426 break;
1427 page_offset += len;
1428 }
1429
1430 return tx;
1431}
1432
1433static void ops_complete_biofill(void *stripe_head_ref)
1434{
1435 struct stripe_head *sh = stripe_head_ref;
1436 int i;
1437 struct r5conf *conf = sh->raid_conf;
1438
1439 pr_debug("%s: stripe %llu\n", __func__,
1440 (unsigned long long)sh->sector);
1441
1442 /* clear completed biofills */
1443 for (i = sh->disks; i--; ) {
1444 struct r5dev *dev = &sh->dev[i];
1445
1446 /* acknowledge completion of a biofill operation */
1447 /* and check if we need to reply to a read request,
1448 * new R5_Wantfill requests are held off until
1449 * !STRIPE_BIOFILL_RUN
1450 */
1451 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1452 struct bio *rbi, *rbi2;
1453
1454 BUG_ON(!dev->read);
1455 rbi = dev->read;
1456 dev->read = NULL;
1457 while (rbi && rbi->bi_iter.bi_sector <
1458 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1459 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1460 bio_endio(rbi);
1461 rbi = rbi2;
1462 }
1463 }
1464 }
1465 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1466
1467 set_bit(STRIPE_HANDLE, &sh->state);
1468 raid5_release_stripe(sh);
1469}
1470
1471static void ops_run_biofill(struct stripe_head *sh)
1472{
1473 struct dma_async_tx_descriptor *tx = NULL;
1474 struct async_submit_ctl submit;
1475 int i;
1476 struct r5conf *conf = sh->raid_conf;
1477
1478 BUG_ON(sh->batch_head);
1479 pr_debug("%s: stripe %llu\n", __func__,
1480 (unsigned long long)sh->sector);
1481
1482 for (i = sh->disks; i--; ) {
1483 struct r5dev *dev = &sh->dev[i];
1484 if (test_bit(R5_Wantfill, &dev->flags)) {
1485 struct bio *rbi;
1486 spin_lock_irq(&sh->stripe_lock);
1487 dev->read = rbi = dev->toread;
1488 dev->toread = NULL;
1489 spin_unlock_irq(&sh->stripe_lock);
1490 while (rbi && rbi->bi_iter.bi_sector <
1491 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1492 tx = async_copy_data(0, rbi, &dev->page,
1493 dev->offset,
1494 dev->sector, tx, sh, 0);
1495 rbi = r5_next_bio(conf, rbi, dev->sector);
1496 }
1497 }
1498 }
1499
1500 atomic_inc(&sh->count);
1501 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1502 async_trigger_callback(&submit);
1503}
1504
1505static void mark_target_uptodate(struct stripe_head *sh, int target)
1506{
1507 struct r5dev *tgt;
1508
1509 if (target < 0)
1510 return;
1511
1512 tgt = &sh->dev[target];
1513 set_bit(R5_UPTODATE, &tgt->flags);
1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515 clear_bit(R5_Wantcompute, &tgt->flags);
1516}
1517
1518static void ops_complete_compute(void *stripe_head_ref)
1519{
1520 struct stripe_head *sh = stripe_head_ref;
1521
1522 pr_debug("%s: stripe %llu\n", __func__,
1523 (unsigned long long)sh->sector);
1524
1525 /* mark the computed target(s) as uptodate */
1526 mark_target_uptodate(sh, sh->ops.target);
1527 mark_target_uptodate(sh, sh->ops.target2);
1528
1529 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1530 if (sh->check_state == check_state_compute_run)
1531 sh->check_state = check_state_compute_result;
1532 set_bit(STRIPE_HANDLE, &sh->state);
1533 raid5_release_stripe(sh);
1534}
1535
1536/* return a pointer to the address conversion region of the scribble buffer */
1537static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1538{
1539 return percpu->scribble + i * percpu->scribble_obj_size;
1540}
1541
1542/* return a pointer to the address conversion region of the scribble buffer */
1543static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1544 struct raid5_percpu *percpu, int i)
1545{
1546 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1547}
1548
1549/*
1550 * Return a pointer to record offset address.
1551 */
1552static unsigned int *
1553to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1554{
1555 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1556}
1557
1558static struct dma_async_tx_descriptor *
1559ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1560{
1561 int disks = sh->disks;
1562 struct page **xor_srcs = to_addr_page(percpu, 0);
1563 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1564 int target = sh->ops.target;
1565 struct r5dev *tgt = &sh->dev[target];
1566 struct page *xor_dest = tgt->page;
1567 unsigned int off_dest = tgt->offset;
1568 int count = 0;
1569 struct dma_async_tx_descriptor *tx;
1570 struct async_submit_ctl submit;
1571 int i;
1572
1573 BUG_ON(sh->batch_head);
1574
1575 pr_debug("%s: stripe %llu block: %d\n",
1576 __func__, (unsigned long long)sh->sector, target);
1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1578
1579 for (i = disks; i--; ) {
1580 if (i != target) {
1581 off_srcs[count] = sh->dev[i].offset;
1582 xor_srcs[count++] = sh->dev[i].page;
1583 }
1584 }
1585
1586 atomic_inc(&sh->count);
1587
1588 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1589 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1590 if (unlikely(count == 1))
1591 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593 else
1594 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1595 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1596
1597 return tx;
1598}
1599
1600/* set_syndrome_sources - populate source buffers for gen_syndrome
1601 * @srcs - (struct page *) array of size sh->disks
1602 * @offs - (unsigned int) array of offset for each page
1603 * @sh - stripe_head to parse
1604 *
1605 * Populates srcs in proper layout order for the stripe and returns the
1606 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1607 * destination buffer is recorded in srcs[count] and the Q destination
1608 * is recorded in srcs[count+1]].
1609 */
1610static int set_syndrome_sources(struct page **srcs,
1611 unsigned int *offs,
1612 struct stripe_head *sh,
1613 int srctype)
1614{
1615 int disks = sh->disks;
1616 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1617 int d0_idx = raid6_d0(sh);
1618 int count;
1619 int i;
1620
1621 for (i = 0; i < disks; i++)
1622 srcs[i] = NULL;
1623
1624 count = 0;
1625 i = d0_idx;
1626 do {
1627 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1628 struct r5dev *dev = &sh->dev[i];
1629
1630 if (i == sh->qd_idx || i == sh->pd_idx ||
1631 (srctype == SYNDROME_SRC_ALL) ||
1632 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1633 (test_bit(R5_Wantdrain, &dev->flags) ||
1634 test_bit(R5_InJournal, &dev->flags))) ||
1635 (srctype == SYNDROME_SRC_WRITTEN &&
1636 (dev->written ||
1637 test_bit(R5_InJournal, &dev->flags)))) {
1638 if (test_bit(R5_InJournal, &dev->flags))
1639 srcs[slot] = sh->dev[i].orig_page;
1640 else
1641 srcs[slot] = sh->dev[i].page;
1642 /*
1643 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1644 * not shared page. In that case, dev[i].offset
1645 * is 0.
1646 */
1647 offs[slot] = sh->dev[i].offset;
1648 }
1649 i = raid6_next_disk(i, disks);
1650 } while (i != d0_idx);
1651
1652 return syndrome_disks;
1653}
1654
1655static struct dma_async_tx_descriptor *
1656ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1657{
1658 int disks = sh->disks;
1659 struct page **blocks = to_addr_page(percpu, 0);
1660 unsigned int *offs = to_addr_offs(sh, percpu);
1661 int target;
1662 int qd_idx = sh->qd_idx;
1663 struct dma_async_tx_descriptor *tx;
1664 struct async_submit_ctl submit;
1665 struct r5dev *tgt;
1666 struct page *dest;
1667 unsigned int dest_off;
1668 int i;
1669 int count;
1670
1671 BUG_ON(sh->batch_head);
1672 if (sh->ops.target < 0)
1673 target = sh->ops.target2;
1674 else if (sh->ops.target2 < 0)
1675 target = sh->ops.target;
1676 else
1677 /* we should only have one valid target */
1678 BUG();
1679 BUG_ON(target < 0);
1680 pr_debug("%s: stripe %llu block: %d\n",
1681 __func__, (unsigned long long)sh->sector, target);
1682
1683 tgt = &sh->dev[target];
1684 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1685 dest = tgt->page;
1686 dest_off = tgt->offset;
1687
1688 atomic_inc(&sh->count);
1689
1690 if (target == qd_idx) {
1691 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1692 blocks[count] = NULL; /* regenerating p is not necessary */
1693 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1694 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1695 ops_complete_compute, sh,
1696 to_addr_conv(sh, percpu, 0));
1697 tx = async_gen_syndrome(blocks, offs, count+2,
1698 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1699 } else {
1700 /* Compute any data- or p-drive using XOR */
1701 count = 0;
1702 for (i = disks; i-- ; ) {
1703 if (i == target || i == qd_idx)
1704 continue;
1705 offs[count] = sh->dev[i].offset;
1706 blocks[count++] = sh->dev[i].page;
1707 }
1708
1709 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1710 NULL, ops_complete_compute, sh,
1711 to_addr_conv(sh, percpu, 0));
1712 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1713 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1714 }
1715
1716 return tx;
1717}
1718
1719static struct dma_async_tx_descriptor *
1720ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1721{
1722 int i, count, disks = sh->disks;
1723 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1724 int d0_idx = raid6_d0(sh);
1725 int faila = -1, failb = -1;
1726 int target = sh->ops.target;
1727 int target2 = sh->ops.target2;
1728 struct r5dev *tgt = &sh->dev[target];
1729 struct r5dev *tgt2 = &sh->dev[target2];
1730 struct dma_async_tx_descriptor *tx;
1731 struct page **blocks = to_addr_page(percpu, 0);
1732 unsigned int *offs = to_addr_offs(sh, percpu);
1733 struct async_submit_ctl submit;
1734
1735 BUG_ON(sh->batch_head);
1736 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1737 __func__, (unsigned long long)sh->sector, target, target2);
1738 BUG_ON(target < 0 || target2 < 0);
1739 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1740 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1741
1742 /* we need to open-code set_syndrome_sources to handle the
1743 * slot number conversion for 'faila' and 'failb'
1744 */
1745 for (i = 0; i < disks ; i++) {
1746 offs[i] = 0;
1747 blocks[i] = NULL;
1748 }
1749 count = 0;
1750 i = d0_idx;
1751 do {
1752 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1753
1754 offs[slot] = sh->dev[i].offset;
1755 blocks[slot] = sh->dev[i].page;
1756
1757 if (i == target)
1758 faila = slot;
1759 if (i == target2)
1760 failb = slot;
1761 i = raid6_next_disk(i, disks);
1762 } while (i != d0_idx);
1763
1764 BUG_ON(faila == failb);
1765 if (failb < faila)
1766 swap(faila, failb);
1767 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1768 __func__, (unsigned long long)sh->sector, faila, failb);
1769
1770 atomic_inc(&sh->count);
1771
1772 if (failb == syndrome_disks+1) {
1773 /* Q disk is one of the missing disks */
1774 if (faila == syndrome_disks) {
1775 /* Missing P+Q, just recompute */
1776 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1777 ops_complete_compute, sh,
1778 to_addr_conv(sh, percpu, 0));
1779 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1780 RAID5_STRIPE_SIZE(sh->raid_conf),
1781 &submit);
1782 } else {
1783 struct page *dest;
1784 unsigned int dest_off;
1785 int data_target;
1786 int qd_idx = sh->qd_idx;
1787
1788 /* Missing D+Q: recompute D from P, then recompute Q */
1789 if (target == qd_idx)
1790 data_target = target2;
1791 else
1792 data_target = target;
1793
1794 count = 0;
1795 for (i = disks; i-- ; ) {
1796 if (i == data_target || i == qd_idx)
1797 continue;
1798 offs[count] = sh->dev[i].offset;
1799 blocks[count++] = sh->dev[i].page;
1800 }
1801 dest = sh->dev[data_target].page;
1802 dest_off = sh->dev[data_target].offset;
1803 init_async_submit(&submit,
1804 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1805 NULL, NULL, NULL,
1806 to_addr_conv(sh, percpu, 0));
1807 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1808 RAID5_STRIPE_SIZE(sh->raid_conf),
1809 &submit);
1810
1811 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1812 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1813 ops_complete_compute, sh,
1814 to_addr_conv(sh, percpu, 0));
1815 return async_gen_syndrome(blocks, offs, count+2,
1816 RAID5_STRIPE_SIZE(sh->raid_conf),
1817 &submit);
1818 }
1819 } else {
1820 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1821 ops_complete_compute, sh,
1822 to_addr_conv(sh, percpu, 0));
1823 if (failb == syndrome_disks) {
1824 /* We're missing D+P. */
1825 return async_raid6_datap_recov(syndrome_disks+2,
1826 RAID5_STRIPE_SIZE(sh->raid_conf),
1827 faila,
1828 blocks, offs, &submit);
1829 } else {
1830 /* We're missing D+D. */
1831 return async_raid6_2data_recov(syndrome_disks+2,
1832 RAID5_STRIPE_SIZE(sh->raid_conf),
1833 faila, failb,
1834 blocks, offs, &submit);
1835 }
1836 }
1837}
1838
1839static void ops_complete_prexor(void *stripe_head_ref)
1840{
1841 struct stripe_head *sh = stripe_head_ref;
1842
1843 pr_debug("%s: stripe %llu\n", __func__,
1844 (unsigned long long)sh->sector);
1845
1846 if (r5c_is_writeback(sh->raid_conf->log))
1847 /*
1848 * raid5-cache write back uses orig_page during prexor.
1849 * After prexor, it is time to free orig_page
1850 */
1851 r5c_release_extra_page(sh);
1852}
1853
1854static struct dma_async_tx_descriptor *
1855ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1856 struct dma_async_tx_descriptor *tx)
1857{
1858 int disks = sh->disks;
1859 struct page **xor_srcs = to_addr_page(percpu, 0);
1860 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1861 int count = 0, pd_idx = sh->pd_idx, i;
1862 struct async_submit_ctl submit;
1863
1864 /* existing parity data subtracted */
1865 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1866 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1867
1868 BUG_ON(sh->batch_head);
1869 pr_debug("%s: stripe %llu\n", __func__,
1870 (unsigned long long)sh->sector);
1871
1872 for (i = disks; i--; ) {
1873 struct r5dev *dev = &sh->dev[i];
1874 /* Only process blocks that are known to be uptodate */
1875 if (test_bit(R5_InJournal, &dev->flags)) {
1876 /*
1877 * For this case, PAGE_SIZE must be equal to 4KB and
1878 * page offset is zero.
1879 */
1880 off_srcs[count] = dev->offset;
1881 xor_srcs[count++] = dev->orig_page;
1882 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1883 off_srcs[count] = dev->offset;
1884 xor_srcs[count++] = dev->page;
1885 }
1886 }
1887
1888 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1889 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1890 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1891 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1892
1893 return tx;
1894}
1895
1896static struct dma_async_tx_descriptor *
1897ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1898 struct dma_async_tx_descriptor *tx)
1899{
1900 struct page **blocks = to_addr_page(percpu, 0);
1901 unsigned int *offs = to_addr_offs(sh, percpu);
1902 int count;
1903 struct async_submit_ctl submit;
1904
1905 pr_debug("%s: stripe %llu\n", __func__,
1906 (unsigned long long)sh->sector);
1907
1908 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1909
1910 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1911 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1912 tx = async_gen_syndrome(blocks, offs, count+2,
1913 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1914
1915 return tx;
1916}
1917
1918static struct dma_async_tx_descriptor *
1919ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1920{
1921 struct r5conf *conf = sh->raid_conf;
1922 int disks = sh->disks;
1923 int i;
1924 struct stripe_head *head_sh = sh;
1925
1926 pr_debug("%s: stripe %llu\n", __func__,
1927 (unsigned long long)sh->sector);
1928
1929 for (i = disks; i--; ) {
1930 struct r5dev *dev;
1931 struct bio *chosen;
1932
1933 sh = head_sh;
1934 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1935 struct bio *wbi;
1936
1937again:
1938 dev = &sh->dev[i];
1939 /*
1940 * clear R5_InJournal, so when rewriting a page in
1941 * journal, it is not skipped by r5l_log_stripe()
1942 */
1943 clear_bit(R5_InJournal, &dev->flags);
1944 spin_lock_irq(&sh->stripe_lock);
1945 chosen = dev->towrite;
1946 dev->towrite = NULL;
1947 sh->overwrite_disks = 0;
1948 BUG_ON(dev->written);
1949 wbi = dev->written = chosen;
1950 spin_unlock_irq(&sh->stripe_lock);
1951 WARN_ON(dev->page != dev->orig_page);
1952
1953 while (wbi && wbi->bi_iter.bi_sector <
1954 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1955 if (wbi->bi_opf & REQ_FUA)
1956 set_bit(R5_WantFUA, &dev->flags);
1957 if (wbi->bi_opf & REQ_SYNC)
1958 set_bit(R5_SyncIO, &dev->flags);
1959 if (bio_op(wbi) == REQ_OP_DISCARD)
1960 set_bit(R5_Discard, &dev->flags);
1961 else {
1962 tx = async_copy_data(1, wbi, &dev->page,
1963 dev->offset,
1964 dev->sector, tx, sh,
1965 r5c_is_writeback(conf->log));
1966 if (dev->page != dev->orig_page &&
1967 !r5c_is_writeback(conf->log)) {
1968 set_bit(R5_SkipCopy, &dev->flags);
1969 clear_bit(R5_UPTODATE, &dev->flags);
1970 clear_bit(R5_OVERWRITE, &dev->flags);
1971 }
1972 }
1973 wbi = r5_next_bio(conf, wbi, dev->sector);
1974 }
1975
1976 if (head_sh->batch_head) {
1977 sh = list_first_entry(&sh->batch_list,
1978 struct stripe_head,
1979 batch_list);
1980 if (sh == head_sh)
1981 continue;
1982 goto again;
1983 }
1984 }
1985 }
1986
1987 return tx;
1988}
1989
1990static void ops_complete_reconstruct(void *stripe_head_ref)
1991{
1992 struct stripe_head *sh = stripe_head_ref;
1993 int disks = sh->disks;
1994 int pd_idx = sh->pd_idx;
1995 int qd_idx = sh->qd_idx;
1996 int i;
1997 bool fua = false, sync = false, discard = false;
1998
1999 pr_debug("%s: stripe %llu\n", __func__,
2000 (unsigned long long)sh->sector);
2001
2002 for (i = disks; i--; ) {
2003 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2004 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2005 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2006 }
2007
2008 for (i = disks; i--; ) {
2009 struct r5dev *dev = &sh->dev[i];
2010
2011 if (dev->written || i == pd_idx || i == qd_idx) {
2012 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2013 set_bit(R5_UPTODATE, &dev->flags);
2014 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2015 set_bit(R5_Expanded, &dev->flags);
2016 }
2017 if (fua)
2018 set_bit(R5_WantFUA, &dev->flags);
2019 if (sync)
2020 set_bit(R5_SyncIO, &dev->flags);
2021 }
2022 }
2023
2024 if (sh->reconstruct_state == reconstruct_state_drain_run)
2025 sh->reconstruct_state = reconstruct_state_drain_result;
2026 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2027 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2028 else {
2029 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2030 sh->reconstruct_state = reconstruct_state_result;
2031 }
2032
2033 set_bit(STRIPE_HANDLE, &sh->state);
2034 raid5_release_stripe(sh);
2035}
2036
2037static void
2038ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2039 struct dma_async_tx_descriptor *tx)
2040{
2041 int disks = sh->disks;
2042 struct page **xor_srcs;
2043 unsigned int *off_srcs;
2044 struct async_submit_ctl submit;
2045 int count, pd_idx = sh->pd_idx, i;
2046 struct page *xor_dest;
2047 unsigned int off_dest;
2048 int prexor = 0;
2049 unsigned long flags;
2050 int j = 0;
2051 struct stripe_head *head_sh = sh;
2052 int last_stripe;
2053
2054 pr_debug("%s: stripe %llu\n", __func__,
2055 (unsigned long long)sh->sector);
2056
2057 for (i = 0; i < sh->disks; i++) {
2058 if (pd_idx == i)
2059 continue;
2060 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2061 break;
2062 }
2063 if (i >= sh->disks) {
2064 atomic_inc(&sh->count);
2065 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2066 ops_complete_reconstruct(sh);
2067 return;
2068 }
2069again:
2070 count = 0;
2071 xor_srcs = to_addr_page(percpu, j);
2072 off_srcs = to_addr_offs(sh, percpu);
2073 /* check if prexor is active which means only process blocks
2074 * that are part of a read-modify-write (written)
2075 */
2076 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2077 prexor = 1;
2078 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2079 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2080 for (i = disks; i--; ) {
2081 struct r5dev *dev = &sh->dev[i];
2082 if (head_sh->dev[i].written ||
2083 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2084 off_srcs[count] = dev->offset;
2085 xor_srcs[count++] = dev->page;
2086 }
2087 }
2088 } else {
2089 xor_dest = sh->dev[pd_idx].page;
2090 off_dest = sh->dev[pd_idx].offset;
2091 for (i = disks; i--; ) {
2092 struct r5dev *dev = &sh->dev[i];
2093 if (i != pd_idx) {
2094 off_srcs[count] = dev->offset;
2095 xor_srcs[count++] = dev->page;
2096 }
2097 }
2098 }
2099
2100 /* 1/ if we prexor'd then the dest is reused as a source
2101 * 2/ if we did not prexor then we are redoing the parity
2102 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2103 * for the synchronous xor case
2104 */
2105 last_stripe = !head_sh->batch_head ||
2106 list_first_entry(&sh->batch_list,
2107 struct stripe_head, batch_list) == head_sh;
2108 if (last_stripe) {
2109 flags = ASYNC_TX_ACK |
2110 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2111
2112 atomic_inc(&head_sh->count);
2113 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2114 to_addr_conv(sh, percpu, j));
2115 } else {
2116 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2117 init_async_submit(&submit, flags, tx, NULL, NULL,
2118 to_addr_conv(sh, percpu, j));
2119 }
2120
2121 if (unlikely(count == 1))
2122 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124 else
2125 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2127 if (!last_stripe) {
2128 j++;
2129 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 batch_list);
2131 goto again;
2132 }
2133}
2134
2135static void
2136ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2137 struct dma_async_tx_descriptor *tx)
2138{
2139 struct async_submit_ctl submit;
2140 struct page **blocks;
2141 unsigned int *offs;
2142 int count, i, j = 0;
2143 struct stripe_head *head_sh = sh;
2144 int last_stripe;
2145 int synflags;
2146 unsigned long txflags;
2147
2148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2149
2150 for (i = 0; i < sh->disks; i++) {
2151 if (sh->pd_idx == i || sh->qd_idx == i)
2152 continue;
2153 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2154 break;
2155 }
2156 if (i >= sh->disks) {
2157 atomic_inc(&sh->count);
2158 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2159 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2160 ops_complete_reconstruct(sh);
2161 return;
2162 }
2163
2164again:
2165 blocks = to_addr_page(percpu, j);
2166 offs = to_addr_offs(sh, percpu);
2167
2168 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2169 synflags = SYNDROME_SRC_WRITTEN;
2170 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2171 } else {
2172 synflags = SYNDROME_SRC_ALL;
2173 txflags = ASYNC_TX_ACK;
2174 }
2175
2176 count = set_syndrome_sources(blocks, offs, sh, synflags);
2177 last_stripe = !head_sh->batch_head ||
2178 list_first_entry(&sh->batch_list,
2179 struct stripe_head, batch_list) == head_sh;
2180
2181 if (last_stripe) {
2182 atomic_inc(&head_sh->count);
2183 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2184 head_sh, to_addr_conv(sh, percpu, j));
2185 } else
2186 init_async_submit(&submit, 0, tx, NULL, NULL,
2187 to_addr_conv(sh, percpu, j));
2188 tx = async_gen_syndrome(blocks, offs, count+2,
2189 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2190 if (!last_stripe) {
2191 j++;
2192 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2193 batch_list);
2194 goto again;
2195 }
2196}
2197
2198static void ops_complete_check(void *stripe_head_ref)
2199{
2200 struct stripe_head *sh = stripe_head_ref;
2201
2202 pr_debug("%s: stripe %llu\n", __func__,
2203 (unsigned long long)sh->sector);
2204
2205 sh->check_state = check_state_check_result;
2206 set_bit(STRIPE_HANDLE, &sh->state);
2207 raid5_release_stripe(sh);
2208}
2209
2210static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2211{
2212 int disks = sh->disks;
2213 int pd_idx = sh->pd_idx;
2214 int qd_idx = sh->qd_idx;
2215 struct page *xor_dest;
2216 unsigned int off_dest;
2217 struct page **xor_srcs = to_addr_page(percpu, 0);
2218 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2219 struct dma_async_tx_descriptor *tx;
2220 struct async_submit_ctl submit;
2221 int count;
2222 int i;
2223
2224 pr_debug("%s: stripe %llu\n", __func__,
2225 (unsigned long long)sh->sector);
2226
2227 BUG_ON(sh->batch_head);
2228 count = 0;
2229 xor_dest = sh->dev[pd_idx].page;
2230 off_dest = sh->dev[pd_idx].offset;
2231 off_srcs[count] = off_dest;
2232 xor_srcs[count++] = xor_dest;
2233 for (i = disks; i--; ) {
2234 if (i == pd_idx || i == qd_idx)
2235 continue;
2236 off_srcs[count] = sh->dev[i].offset;
2237 xor_srcs[count++] = sh->dev[i].page;
2238 }
2239
2240 init_async_submit(&submit, 0, NULL, NULL, NULL,
2241 to_addr_conv(sh, percpu, 0));
2242 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2243 RAID5_STRIPE_SIZE(sh->raid_conf),
2244 &sh->ops.zero_sum_result, &submit);
2245
2246 atomic_inc(&sh->count);
2247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2248 tx = async_trigger_callback(&submit);
2249}
2250
2251static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2252{
2253 struct page **srcs = to_addr_page(percpu, 0);
2254 unsigned int *offs = to_addr_offs(sh, percpu);
2255 struct async_submit_ctl submit;
2256 int count;
2257
2258 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2259 (unsigned long long)sh->sector, checkp);
2260
2261 BUG_ON(sh->batch_head);
2262 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2263 if (!checkp)
2264 srcs[count] = NULL;
2265
2266 atomic_inc(&sh->count);
2267 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2268 sh, to_addr_conv(sh, percpu, 0));
2269 async_syndrome_val(srcs, offs, count+2,
2270 RAID5_STRIPE_SIZE(sh->raid_conf),
2271 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2272}
2273
2274static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2275{
2276 int overlap_clear = 0, i, disks = sh->disks;
2277 struct dma_async_tx_descriptor *tx = NULL;
2278 struct r5conf *conf = sh->raid_conf;
2279 int level = conf->level;
2280 struct raid5_percpu *percpu;
2281
2282 local_lock(&conf->percpu->lock);
2283 percpu = this_cpu_ptr(conf->percpu);
2284 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2285 ops_run_biofill(sh);
2286 overlap_clear++;
2287 }
2288
2289 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2290 if (level < 6)
2291 tx = ops_run_compute5(sh, percpu);
2292 else {
2293 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2294 tx = ops_run_compute6_1(sh, percpu);
2295 else
2296 tx = ops_run_compute6_2(sh, percpu);
2297 }
2298 /* terminate the chain if reconstruct is not set to be run */
2299 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2300 async_tx_ack(tx);
2301 }
2302
2303 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2304 if (level < 6)
2305 tx = ops_run_prexor5(sh, percpu, tx);
2306 else
2307 tx = ops_run_prexor6(sh, percpu, tx);
2308 }
2309
2310 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2311 tx = ops_run_partial_parity(sh, percpu, tx);
2312
2313 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2314 tx = ops_run_biodrain(sh, tx);
2315 overlap_clear++;
2316 }
2317
2318 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2319 if (level < 6)
2320 ops_run_reconstruct5(sh, percpu, tx);
2321 else
2322 ops_run_reconstruct6(sh, percpu, tx);
2323 }
2324
2325 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2326 if (sh->check_state == check_state_run)
2327 ops_run_check_p(sh, percpu);
2328 else if (sh->check_state == check_state_run_q)
2329 ops_run_check_pq(sh, percpu, 0);
2330 else if (sh->check_state == check_state_run_pq)
2331 ops_run_check_pq(sh, percpu, 1);
2332 else
2333 BUG();
2334 }
2335
2336 if (overlap_clear && !sh->batch_head) {
2337 for (i = disks; i--; ) {
2338 struct r5dev *dev = &sh->dev[i];
2339 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2340 wake_up(&sh->raid_conf->wait_for_overlap);
2341 }
2342 }
2343 local_unlock(&conf->percpu->lock);
2344}
2345
2346static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2347{
2348#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2349 kfree(sh->pages);
2350#endif
2351 if (sh->ppl_page)
2352 __free_page(sh->ppl_page);
2353 kmem_cache_free(sc, sh);
2354}
2355
2356static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2357 int disks, struct r5conf *conf)
2358{
2359 struct stripe_head *sh;
2360
2361 sh = kmem_cache_zalloc(sc, gfp);
2362 if (sh) {
2363 spin_lock_init(&sh->stripe_lock);
2364 spin_lock_init(&sh->batch_lock);
2365 INIT_LIST_HEAD(&sh->batch_list);
2366 INIT_LIST_HEAD(&sh->lru);
2367 INIT_LIST_HEAD(&sh->r5c);
2368 INIT_LIST_HEAD(&sh->log_list);
2369 atomic_set(&sh->count, 1);
2370 sh->raid_conf = conf;
2371 sh->log_start = MaxSector;
2372
2373 if (raid5_has_ppl(conf)) {
2374 sh->ppl_page = alloc_page(gfp);
2375 if (!sh->ppl_page) {
2376 free_stripe(sc, sh);
2377 return NULL;
2378 }
2379 }
2380#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2381 if (init_stripe_shared_pages(sh, conf, disks)) {
2382 free_stripe(sc, sh);
2383 return NULL;
2384 }
2385#endif
2386 }
2387 return sh;
2388}
2389static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2390{
2391 struct stripe_head *sh;
2392
2393 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2394 if (!sh)
2395 return 0;
2396
2397 if (grow_buffers(sh, gfp)) {
2398 shrink_buffers(sh);
2399 free_stripe(conf->slab_cache, sh);
2400 return 0;
2401 }
2402 sh->hash_lock_index =
2403 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2404 /* we just created an active stripe so... */
2405 atomic_inc(&conf->active_stripes);
2406
2407 raid5_release_stripe(sh);
2408 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2409 return 1;
2410}
2411
2412static int grow_stripes(struct r5conf *conf, int num)
2413{
2414 struct kmem_cache *sc;
2415 size_t namelen = sizeof(conf->cache_name[0]);
2416 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2417
2418 if (mddev_is_dm(conf->mddev))
2419 snprintf(conf->cache_name[0], namelen,
2420 "raid%d-%p", conf->level, conf->mddev);
2421 else
2422 snprintf(conf->cache_name[0], namelen,
2423 "raid%d-%s", conf->level, mdname(conf->mddev));
2424 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2425
2426 conf->active_name = 0;
2427 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2428 struct_size_t(struct stripe_head, dev, devs),
2429 0, 0, NULL);
2430 if (!sc)
2431 return 1;
2432 conf->slab_cache = sc;
2433 conf->pool_size = devs;
2434 while (num--)
2435 if (!grow_one_stripe(conf, GFP_KERNEL))
2436 return 1;
2437
2438 return 0;
2439}
2440
2441/**
2442 * scribble_alloc - allocate percpu scribble buffer for required size
2443 * of the scribble region
2444 * @percpu: from for_each_present_cpu() of the caller
2445 * @num: total number of disks in the array
2446 * @cnt: scribble objs count for required size of the scribble region
2447 *
2448 * The scribble buffer size must be enough to contain:
2449 * 1/ a struct page pointer for each device in the array +2
2450 * 2/ room to convert each entry in (1) to its corresponding dma
2451 * (dma_map_page()) or page (page_address()) address.
2452 *
2453 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2454 * calculate over all devices (not just the data blocks), using zeros in place
2455 * of the P and Q blocks.
2456 */
2457static int scribble_alloc(struct raid5_percpu *percpu,
2458 int num, int cnt)
2459{
2460 size_t obj_size =
2461 sizeof(struct page *) * (num + 2) +
2462 sizeof(addr_conv_t) * (num + 2) +
2463 sizeof(unsigned int) * (num + 2);
2464 void *scribble;
2465
2466 /*
2467 * If here is in raid array suspend context, it is in memalloc noio
2468 * context as well, there is no potential recursive memory reclaim
2469 * I/Os with the GFP_KERNEL flag.
2470 */
2471 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2472 if (!scribble)
2473 return -ENOMEM;
2474
2475 kvfree(percpu->scribble);
2476
2477 percpu->scribble = scribble;
2478 percpu->scribble_obj_size = obj_size;
2479 return 0;
2480}
2481
2482static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2483{
2484 unsigned long cpu;
2485 int err = 0;
2486
2487 /* Never shrink. */
2488 if (conf->scribble_disks >= new_disks &&
2489 conf->scribble_sectors >= new_sectors)
2490 return 0;
2491
2492 raid5_quiesce(conf->mddev, true);
2493 cpus_read_lock();
2494
2495 for_each_present_cpu(cpu) {
2496 struct raid5_percpu *percpu;
2497
2498 percpu = per_cpu_ptr(conf->percpu, cpu);
2499 err = scribble_alloc(percpu, new_disks,
2500 new_sectors / RAID5_STRIPE_SECTORS(conf));
2501 if (err)
2502 break;
2503 }
2504
2505 cpus_read_unlock();
2506 raid5_quiesce(conf->mddev, false);
2507
2508 if (!err) {
2509 conf->scribble_disks = new_disks;
2510 conf->scribble_sectors = new_sectors;
2511 }
2512 return err;
2513}
2514
2515static int resize_stripes(struct r5conf *conf, int newsize)
2516{
2517 /* Make all the stripes able to hold 'newsize' devices.
2518 * New slots in each stripe get 'page' set to a new page.
2519 *
2520 * This happens in stages:
2521 * 1/ create a new kmem_cache and allocate the required number of
2522 * stripe_heads.
2523 * 2/ gather all the old stripe_heads and transfer the pages across
2524 * to the new stripe_heads. This will have the side effect of
2525 * freezing the array as once all stripe_heads have been collected,
2526 * no IO will be possible. Old stripe heads are freed once their
2527 * pages have been transferred over, and the old kmem_cache is
2528 * freed when all stripes are done.
2529 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2530 * we simple return a failure status - no need to clean anything up.
2531 * 4/ allocate new pages for the new slots in the new stripe_heads.
2532 * If this fails, we don't bother trying the shrink the
2533 * stripe_heads down again, we just leave them as they are.
2534 * As each stripe_head is processed the new one is released into
2535 * active service.
2536 *
2537 * Once step2 is started, we cannot afford to wait for a write,
2538 * so we use GFP_NOIO allocations.
2539 */
2540 struct stripe_head *osh, *nsh;
2541 LIST_HEAD(newstripes);
2542 struct disk_info *ndisks;
2543 int err = 0;
2544 struct kmem_cache *sc;
2545 int i;
2546 int hash, cnt;
2547
2548 md_allow_write(conf->mddev);
2549
2550 /* Step 1 */
2551 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2552 struct_size_t(struct stripe_head, dev, newsize),
2553 0, 0, NULL);
2554 if (!sc)
2555 return -ENOMEM;
2556
2557 /* Need to ensure auto-resizing doesn't interfere */
2558 mutex_lock(&conf->cache_size_mutex);
2559
2560 for (i = conf->max_nr_stripes; i; i--) {
2561 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2562 if (!nsh)
2563 break;
2564
2565 list_add(&nsh->lru, &newstripes);
2566 }
2567 if (i) {
2568 /* didn't get enough, give up */
2569 while (!list_empty(&newstripes)) {
2570 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2571 list_del(&nsh->lru);
2572 free_stripe(sc, nsh);
2573 }
2574 kmem_cache_destroy(sc);
2575 mutex_unlock(&conf->cache_size_mutex);
2576 return -ENOMEM;
2577 }
2578 /* Step 2 - Must use GFP_NOIO now.
2579 * OK, we have enough stripes, start collecting inactive
2580 * stripes and copying them over
2581 */
2582 hash = 0;
2583 cnt = 0;
2584 list_for_each_entry(nsh, &newstripes, lru) {
2585 lock_device_hash_lock(conf, hash);
2586 wait_event_cmd(conf->wait_for_stripe,
2587 !list_empty(conf->inactive_list + hash),
2588 unlock_device_hash_lock(conf, hash),
2589 lock_device_hash_lock(conf, hash));
2590 osh = get_free_stripe(conf, hash);
2591 unlock_device_hash_lock(conf, hash);
2592
2593#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2594 for (i = 0; i < osh->nr_pages; i++) {
2595 nsh->pages[i] = osh->pages[i];
2596 osh->pages[i] = NULL;
2597 }
2598#endif
2599 for(i=0; i<conf->pool_size; i++) {
2600 nsh->dev[i].page = osh->dev[i].page;
2601 nsh->dev[i].orig_page = osh->dev[i].page;
2602 nsh->dev[i].offset = osh->dev[i].offset;
2603 }
2604 nsh->hash_lock_index = hash;
2605 free_stripe(conf->slab_cache, osh);
2606 cnt++;
2607 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2608 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2609 hash++;
2610 cnt = 0;
2611 }
2612 }
2613 kmem_cache_destroy(conf->slab_cache);
2614
2615 /* Step 3.
2616 * At this point, we are holding all the stripes so the array
2617 * is completely stalled, so now is a good time to resize
2618 * conf->disks and the scribble region
2619 */
2620 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2621 if (ndisks) {
2622 for (i = 0; i < conf->pool_size; i++)
2623 ndisks[i] = conf->disks[i];
2624
2625 for (i = conf->pool_size; i < newsize; i++) {
2626 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2627 if (!ndisks[i].extra_page)
2628 err = -ENOMEM;
2629 }
2630
2631 if (err) {
2632 for (i = conf->pool_size; i < newsize; i++)
2633 if (ndisks[i].extra_page)
2634 put_page(ndisks[i].extra_page);
2635 kfree(ndisks);
2636 } else {
2637 kfree(conf->disks);
2638 conf->disks = ndisks;
2639 }
2640 } else
2641 err = -ENOMEM;
2642
2643 conf->slab_cache = sc;
2644 conf->active_name = 1-conf->active_name;
2645
2646 /* Step 4, return new stripes to service */
2647 while(!list_empty(&newstripes)) {
2648 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2649 list_del_init(&nsh->lru);
2650
2651#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2652 for (i = 0; i < nsh->nr_pages; i++) {
2653 if (nsh->pages[i])
2654 continue;
2655 nsh->pages[i] = alloc_page(GFP_NOIO);
2656 if (!nsh->pages[i])
2657 err = -ENOMEM;
2658 }
2659
2660 for (i = conf->raid_disks; i < newsize; i++) {
2661 if (nsh->dev[i].page)
2662 continue;
2663 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2664 nsh->dev[i].orig_page = nsh->dev[i].page;
2665 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2666 }
2667#else
2668 for (i=conf->raid_disks; i < newsize; i++)
2669 if (nsh->dev[i].page == NULL) {
2670 struct page *p = alloc_page(GFP_NOIO);
2671 nsh->dev[i].page = p;
2672 nsh->dev[i].orig_page = p;
2673 nsh->dev[i].offset = 0;
2674 if (!p)
2675 err = -ENOMEM;
2676 }
2677#endif
2678 raid5_release_stripe(nsh);
2679 }
2680 /* critical section pass, GFP_NOIO no longer needed */
2681
2682 if (!err)
2683 conf->pool_size = newsize;
2684 mutex_unlock(&conf->cache_size_mutex);
2685
2686 return err;
2687}
2688
2689static int drop_one_stripe(struct r5conf *conf)
2690{
2691 struct stripe_head *sh;
2692 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2693
2694 spin_lock_irq(conf->hash_locks + hash);
2695 sh = get_free_stripe(conf, hash);
2696 spin_unlock_irq(conf->hash_locks + hash);
2697 if (!sh)
2698 return 0;
2699 BUG_ON(atomic_read(&sh->count));
2700 shrink_buffers(sh);
2701 free_stripe(conf->slab_cache, sh);
2702 atomic_dec(&conf->active_stripes);
2703 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2704 return 1;
2705}
2706
2707static void shrink_stripes(struct r5conf *conf)
2708{
2709 while (conf->max_nr_stripes &&
2710 drop_one_stripe(conf))
2711 ;
2712
2713 kmem_cache_destroy(conf->slab_cache);
2714 conf->slab_cache = NULL;
2715}
2716
2717static void raid5_end_read_request(struct bio * bi)
2718{
2719 struct stripe_head *sh = bi->bi_private;
2720 struct r5conf *conf = sh->raid_conf;
2721 int disks = sh->disks, i;
2722 struct md_rdev *rdev = NULL;
2723 sector_t s;
2724
2725 for (i=0 ; i<disks; i++)
2726 if (bi == &sh->dev[i].req)
2727 break;
2728
2729 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2730 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2731 bi->bi_status);
2732 if (i == disks) {
2733 BUG();
2734 return;
2735 }
2736 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2737 /* If replacement finished while this request was outstanding,
2738 * 'replacement' might be NULL already.
2739 * In that case it moved down to 'rdev'.
2740 * rdev is not removed until all requests are finished.
2741 */
2742 rdev = conf->disks[i].replacement;
2743 if (!rdev)
2744 rdev = conf->disks[i].rdev;
2745
2746 if (use_new_offset(conf, sh))
2747 s = sh->sector + rdev->new_data_offset;
2748 else
2749 s = sh->sector + rdev->data_offset;
2750 if (!bi->bi_status) {
2751 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2752 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2753 /* Note that this cannot happen on a
2754 * replacement device. We just fail those on
2755 * any error
2756 */
2757 pr_info_ratelimited(
2758 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2759 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2760 (unsigned long long)s,
2761 rdev->bdev);
2762 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2763 clear_bit(R5_ReadError, &sh->dev[i].flags);
2764 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2765 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2766 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2767
2768 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2769 /*
2770 * end read for a page in journal, this
2771 * must be preparing for prexor in rmw
2772 */
2773 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2774
2775 if (atomic_read(&rdev->read_errors))
2776 atomic_set(&rdev->read_errors, 0);
2777 } else {
2778 int retry = 0;
2779 int set_bad = 0;
2780
2781 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2782 if (!(bi->bi_status == BLK_STS_PROTECTION))
2783 atomic_inc(&rdev->read_errors);
2784 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2785 pr_warn_ratelimited(
2786 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2787 mdname(conf->mddev),
2788 (unsigned long long)s,
2789 rdev->bdev);
2790 else if (conf->mddev->degraded >= conf->max_degraded) {
2791 set_bad = 1;
2792 pr_warn_ratelimited(
2793 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2794 mdname(conf->mddev),
2795 (unsigned long long)s,
2796 rdev->bdev);
2797 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2798 /* Oh, no!!! */
2799 set_bad = 1;
2800 pr_warn_ratelimited(
2801 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2802 mdname(conf->mddev),
2803 (unsigned long long)s,
2804 rdev->bdev);
2805 } else if (atomic_read(&rdev->read_errors)
2806 > conf->max_nr_stripes) {
2807 if (!test_bit(Faulty, &rdev->flags)) {
2808 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2809 mdname(conf->mddev),
2810 atomic_read(&rdev->read_errors),
2811 conf->max_nr_stripes);
2812 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2813 mdname(conf->mddev), rdev->bdev);
2814 }
2815 } else
2816 retry = 1;
2817 if (set_bad && test_bit(In_sync, &rdev->flags)
2818 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2819 retry = 1;
2820 if (retry)
2821 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2822 set_bit(R5_ReadError, &sh->dev[i].flags);
2823 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2824 set_bit(R5_ReadError, &sh->dev[i].flags);
2825 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2826 } else
2827 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2828 else {
2829 clear_bit(R5_ReadError, &sh->dev[i].flags);
2830 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2831 if (!(set_bad
2832 && test_bit(In_sync, &rdev->flags)
2833 && rdev_set_badblocks(
2834 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2835 md_error(conf->mddev, rdev);
2836 }
2837 }
2838 rdev_dec_pending(rdev, conf->mddev);
2839 bio_uninit(bi);
2840 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2841 set_bit(STRIPE_HANDLE, &sh->state);
2842 raid5_release_stripe(sh);
2843}
2844
2845static void raid5_end_write_request(struct bio *bi)
2846{
2847 struct stripe_head *sh = bi->bi_private;
2848 struct r5conf *conf = sh->raid_conf;
2849 int disks = sh->disks, i;
2850 struct md_rdev *rdev;
2851 int replacement = 0;
2852
2853 for (i = 0 ; i < disks; i++) {
2854 if (bi == &sh->dev[i].req) {
2855 rdev = conf->disks[i].rdev;
2856 break;
2857 }
2858 if (bi == &sh->dev[i].rreq) {
2859 rdev = conf->disks[i].replacement;
2860 if (rdev)
2861 replacement = 1;
2862 else
2863 /* rdev was removed and 'replacement'
2864 * replaced it. rdev is not removed
2865 * until all requests are finished.
2866 */
2867 rdev = conf->disks[i].rdev;
2868 break;
2869 }
2870 }
2871 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2872 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2873 bi->bi_status);
2874 if (i == disks) {
2875 BUG();
2876 return;
2877 }
2878
2879 if (replacement) {
2880 if (bi->bi_status)
2881 md_error(conf->mddev, rdev);
2882 else if (rdev_has_badblock(rdev, sh->sector,
2883 RAID5_STRIPE_SECTORS(conf)))
2884 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2885 } else {
2886 if (bi->bi_status) {
2887 set_bit(STRIPE_DEGRADED, &sh->state);
2888 set_bit(WriteErrorSeen, &rdev->flags);
2889 set_bit(R5_WriteError, &sh->dev[i].flags);
2890 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2891 set_bit(MD_RECOVERY_NEEDED,
2892 &rdev->mddev->recovery);
2893 } else if (rdev_has_badblock(rdev, sh->sector,
2894 RAID5_STRIPE_SECTORS(conf))) {
2895 set_bit(R5_MadeGood, &sh->dev[i].flags);
2896 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2897 /* That was a successful write so make
2898 * sure it looks like we already did
2899 * a re-write.
2900 */
2901 set_bit(R5_ReWrite, &sh->dev[i].flags);
2902 }
2903 }
2904 rdev_dec_pending(rdev, conf->mddev);
2905
2906 if (sh->batch_head && bi->bi_status && !replacement)
2907 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2908
2909 bio_uninit(bi);
2910 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2911 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2912 set_bit(STRIPE_HANDLE, &sh->state);
2913
2914 if (sh->batch_head && sh != sh->batch_head)
2915 raid5_release_stripe(sh->batch_head);
2916 raid5_release_stripe(sh);
2917}
2918
2919static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2920{
2921 struct r5conf *conf = mddev->private;
2922 unsigned long flags;
2923 pr_debug("raid456: error called\n");
2924
2925 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2926 mdname(mddev), rdev->bdev);
2927
2928 spin_lock_irqsave(&conf->device_lock, flags);
2929 set_bit(Faulty, &rdev->flags);
2930 clear_bit(In_sync, &rdev->flags);
2931 mddev->degraded = raid5_calc_degraded(conf);
2932
2933 if (has_failed(conf)) {
2934 set_bit(MD_BROKEN, &conf->mddev->flags);
2935 conf->recovery_disabled = mddev->recovery_disabled;
2936
2937 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2938 mdname(mddev), mddev->degraded, conf->raid_disks);
2939 } else {
2940 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2941 mdname(mddev), conf->raid_disks - mddev->degraded);
2942 }
2943
2944 spin_unlock_irqrestore(&conf->device_lock, flags);
2945 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2946
2947 set_bit(Blocked, &rdev->flags);
2948 set_mask_bits(&mddev->sb_flags, 0,
2949 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2950 r5c_update_on_rdev_error(mddev, rdev);
2951}
2952
2953/*
2954 * Input: a 'big' sector number,
2955 * Output: index of the data and parity disk, and the sector # in them.
2956 */
2957sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2958 int previous, int *dd_idx,
2959 struct stripe_head *sh)
2960{
2961 sector_t stripe, stripe2;
2962 sector_t chunk_number;
2963 unsigned int chunk_offset;
2964 int pd_idx, qd_idx;
2965 int ddf_layout = 0;
2966 sector_t new_sector;
2967 int algorithm = previous ? conf->prev_algo
2968 : conf->algorithm;
2969 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2970 : conf->chunk_sectors;
2971 int raid_disks = previous ? conf->previous_raid_disks
2972 : conf->raid_disks;
2973 int data_disks = raid_disks - conf->max_degraded;
2974
2975 /* First compute the information on this sector */
2976
2977 /*
2978 * Compute the chunk number and the sector offset inside the chunk
2979 */
2980 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2981 chunk_number = r_sector;
2982
2983 /*
2984 * Compute the stripe number
2985 */
2986 stripe = chunk_number;
2987 *dd_idx = sector_div(stripe, data_disks);
2988 stripe2 = stripe;
2989 /*
2990 * Select the parity disk based on the user selected algorithm.
2991 */
2992 pd_idx = qd_idx = -1;
2993 switch(conf->level) {
2994 case 4:
2995 pd_idx = data_disks;
2996 break;
2997 case 5:
2998 switch (algorithm) {
2999 case ALGORITHM_LEFT_ASYMMETRIC:
3000 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3001 if (*dd_idx >= pd_idx)
3002 (*dd_idx)++;
3003 break;
3004 case ALGORITHM_RIGHT_ASYMMETRIC:
3005 pd_idx = sector_div(stripe2, raid_disks);
3006 if (*dd_idx >= pd_idx)
3007 (*dd_idx)++;
3008 break;
3009 case ALGORITHM_LEFT_SYMMETRIC:
3010 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012 break;
3013 case ALGORITHM_RIGHT_SYMMETRIC:
3014 pd_idx = sector_div(stripe2, raid_disks);
3015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3016 break;
3017 case ALGORITHM_PARITY_0:
3018 pd_idx = 0;
3019 (*dd_idx)++;
3020 break;
3021 case ALGORITHM_PARITY_N:
3022 pd_idx = data_disks;
3023 break;
3024 default:
3025 BUG();
3026 }
3027 break;
3028 case 6:
3029
3030 switch (algorithm) {
3031 case ALGORITHM_LEFT_ASYMMETRIC:
3032 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3033 qd_idx = pd_idx + 1;
3034 if (pd_idx == raid_disks-1) {
3035 (*dd_idx)++; /* Q D D D P */
3036 qd_idx = 0;
3037 } else if (*dd_idx >= pd_idx)
3038 (*dd_idx) += 2; /* D D P Q D */
3039 break;
3040 case ALGORITHM_RIGHT_ASYMMETRIC:
3041 pd_idx = sector_div(stripe2, raid_disks);
3042 qd_idx = pd_idx + 1;
3043 if (pd_idx == raid_disks-1) {
3044 (*dd_idx)++; /* Q D D D P */
3045 qd_idx = 0;
3046 } else if (*dd_idx >= pd_idx)
3047 (*dd_idx) += 2; /* D D P Q D */
3048 break;
3049 case ALGORITHM_LEFT_SYMMETRIC:
3050 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3051 qd_idx = (pd_idx + 1) % raid_disks;
3052 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3053 break;
3054 case ALGORITHM_RIGHT_SYMMETRIC:
3055 pd_idx = sector_div(stripe2, raid_disks);
3056 qd_idx = (pd_idx + 1) % raid_disks;
3057 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3058 break;
3059
3060 case ALGORITHM_PARITY_0:
3061 pd_idx = 0;
3062 qd_idx = 1;
3063 (*dd_idx) += 2;
3064 break;
3065 case ALGORITHM_PARITY_N:
3066 pd_idx = data_disks;
3067 qd_idx = data_disks + 1;
3068 break;
3069
3070 case ALGORITHM_ROTATING_ZERO_RESTART:
3071 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3072 * of blocks for computing Q is different.
3073 */
3074 pd_idx = sector_div(stripe2, raid_disks);
3075 qd_idx = pd_idx + 1;
3076 if (pd_idx == raid_disks-1) {
3077 (*dd_idx)++; /* Q D D D P */
3078 qd_idx = 0;
3079 } else if (*dd_idx >= pd_idx)
3080 (*dd_idx) += 2; /* D D P Q D */
3081 ddf_layout = 1;
3082 break;
3083
3084 case ALGORITHM_ROTATING_N_RESTART:
3085 /* Same a left_asymmetric, by first stripe is
3086 * D D D P Q rather than
3087 * Q D D D P
3088 */
3089 stripe2 += 1;
3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3091 qd_idx = pd_idx + 1;
3092 if (pd_idx == raid_disks-1) {
3093 (*dd_idx)++; /* Q D D D P */
3094 qd_idx = 0;
3095 } else if (*dd_idx >= pd_idx)
3096 (*dd_idx) += 2; /* D D P Q D */
3097 ddf_layout = 1;
3098 break;
3099
3100 case ALGORITHM_ROTATING_N_CONTINUE:
3101 /* Same as left_symmetric but Q is before P */
3102 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3103 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3104 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3105 ddf_layout = 1;
3106 break;
3107
3108 case ALGORITHM_LEFT_ASYMMETRIC_6:
3109 /* RAID5 left_asymmetric, with Q on last device */
3110 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3111 if (*dd_idx >= pd_idx)
3112 (*dd_idx)++;
3113 qd_idx = raid_disks - 1;
3114 break;
3115
3116 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3117 pd_idx = sector_div(stripe2, raid_disks-1);
3118 if (*dd_idx >= pd_idx)
3119 (*dd_idx)++;
3120 qd_idx = raid_disks - 1;
3121 break;
3122
3123 case ALGORITHM_LEFT_SYMMETRIC_6:
3124 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3125 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3126 qd_idx = raid_disks - 1;
3127 break;
3128
3129 case ALGORITHM_RIGHT_SYMMETRIC_6:
3130 pd_idx = sector_div(stripe2, raid_disks-1);
3131 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3132 qd_idx = raid_disks - 1;
3133 break;
3134
3135 case ALGORITHM_PARITY_0_6:
3136 pd_idx = 0;
3137 (*dd_idx)++;
3138 qd_idx = raid_disks - 1;
3139 break;
3140
3141 default:
3142 BUG();
3143 }
3144 break;
3145 }
3146
3147 if (sh) {
3148 sh->pd_idx = pd_idx;
3149 sh->qd_idx = qd_idx;
3150 sh->ddf_layout = ddf_layout;
3151 }
3152 /*
3153 * Finally, compute the new sector number
3154 */
3155 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3156 return new_sector;
3157}
3158
3159sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3160{
3161 struct r5conf *conf = sh->raid_conf;
3162 int raid_disks = sh->disks;
3163 int data_disks = raid_disks - conf->max_degraded;
3164 sector_t new_sector = sh->sector, check;
3165 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3166 : conf->chunk_sectors;
3167 int algorithm = previous ? conf->prev_algo
3168 : conf->algorithm;
3169 sector_t stripe;
3170 int chunk_offset;
3171 sector_t chunk_number;
3172 int dummy1, dd_idx = i;
3173 sector_t r_sector;
3174 struct stripe_head sh2;
3175
3176 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3177 stripe = new_sector;
3178
3179 if (i == sh->pd_idx)
3180 return 0;
3181 switch(conf->level) {
3182 case 4: break;
3183 case 5:
3184 switch (algorithm) {
3185 case ALGORITHM_LEFT_ASYMMETRIC:
3186 case ALGORITHM_RIGHT_ASYMMETRIC:
3187 if (i > sh->pd_idx)
3188 i--;
3189 break;
3190 case ALGORITHM_LEFT_SYMMETRIC:
3191 case ALGORITHM_RIGHT_SYMMETRIC:
3192 if (i < sh->pd_idx)
3193 i += raid_disks;
3194 i -= (sh->pd_idx + 1);
3195 break;
3196 case ALGORITHM_PARITY_0:
3197 i -= 1;
3198 break;
3199 case ALGORITHM_PARITY_N:
3200 break;
3201 default:
3202 BUG();
3203 }
3204 break;
3205 case 6:
3206 if (i == sh->qd_idx)
3207 return 0; /* It is the Q disk */
3208 switch (algorithm) {
3209 case ALGORITHM_LEFT_ASYMMETRIC:
3210 case ALGORITHM_RIGHT_ASYMMETRIC:
3211 case ALGORITHM_ROTATING_ZERO_RESTART:
3212 case ALGORITHM_ROTATING_N_RESTART:
3213 if (sh->pd_idx == raid_disks-1)
3214 i--; /* Q D D D P */
3215 else if (i > sh->pd_idx)
3216 i -= 2; /* D D P Q D */
3217 break;
3218 case ALGORITHM_LEFT_SYMMETRIC:
3219 case ALGORITHM_RIGHT_SYMMETRIC:
3220 if (sh->pd_idx == raid_disks-1)
3221 i--; /* Q D D D P */
3222 else {
3223 /* D D P Q D */
3224 if (i < sh->pd_idx)
3225 i += raid_disks;
3226 i -= (sh->pd_idx + 2);
3227 }
3228 break;
3229 case ALGORITHM_PARITY_0:
3230 i -= 2;
3231 break;
3232 case ALGORITHM_PARITY_N:
3233 break;
3234 case ALGORITHM_ROTATING_N_CONTINUE:
3235 /* Like left_symmetric, but P is before Q */
3236 if (sh->pd_idx == 0)
3237 i--; /* P D D D Q */
3238 else {
3239 /* D D Q P D */
3240 if (i < sh->pd_idx)
3241 i += raid_disks;
3242 i -= (sh->pd_idx + 1);
3243 }
3244 break;
3245 case ALGORITHM_LEFT_ASYMMETRIC_6:
3246 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3247 if (i > sh->pd_idx)
3248 i--;
3249 break;
3250 case ALGORITHM_LEFT_SYMMETRIC_6:
3251 case ALGORITHM_RIGHT_SYMMETRIC_6:
3252 if (i < sh->pd_idx)
3253 i += data_disks + 1;
3254 i -= (sh->pd_idx + 1);
3255 break;
3256 case ALGORITHM_PARITY_0_6:
3257 i -= 1;
3258 break;
3259 default:
3260 BUG();
3261 }
3262 break;
3263 }
3264
3265 chunk_number = stripe * data_disks + i;
3266 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3267
3268 check = raid5_compute_sector(conf, r_sector,
3269 previous, &dummy1, &sh2);
3270 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3271 || sh2.qd_idx != sh->qd_idx) {
3272 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3273 mdname(conf->mddev));
3274 return 0;
3275 }
3276 return r_sector;
3277}
3278
3279/*
3280 * There are cases where we want handle_stripe_dirtying() and
3281 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3282 *
3283 * This function checks whether we want to delay the towrite. Specifically,
3284 * we delay the towrite when:
3285 *
3286 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3287 * stripe has data in journal (for other devices).
3288 *
3289 * In this case, when reading data for the non-overwrite dev, it is
3290 * necessary to handle complex rmw of write back cache (prexor with
3291 * orig_page, and xor with page). To keep read path simple, we would
3292 * like to flush data in journal to RAID disks first, so complex rmw
3293 * is handled in the write patch (handle_stripe_dirtying).
3294 *
3295 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3296 *
3297 * It is important to be able to flush all stripes in raid5-cache.
3298 * Therefore, we need reserve some space on the journal device for
3299 * these flushes. If flush operation includes pending writes to the
3300 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3301 * for the flush out. If we exclude these pending writes from flush
3302 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3303 * Therefore, excluding pending writes in these cases enables more
3304 * efficient use of the journal device.
3305 *
3306 * Note: To make sure the stripe makes progress, we only delay
3307 * towrite for stripes with data already in journal (injournal > 0).
3308 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3309 * no_space_stripes list.
3310 *
3311 * 3. during journal failure
3312 * In journal failure, we try to flush all cached data to raid disks
3313 * based on data in stripe cache. The array is read-only to upper
3314 * layers, so we would skip all pending writes.
3315 *
3316 */
3317static inline bool delay_towrite(struct r5conf *conf,
3318 struct r5dev *dev,
3319 struct stripe_head_state *s)
3320{
3321 /* case 1 above */
3322 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3323 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3324 return true;
3325 /* case 2 above */
3326 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3327 s->injournal > 0)
3328 return true;
3329 /* case 3 above */
3330 if (s->log_failed && s->injournal)
3331 return true;
3332 return false;
3333}
3334
3335static void
3336schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3337 int rcw, int expand)
3338{
3339 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3340 struct r5conf *conf = sh->raid_conf;
3341 int level = conf->level;
3342
3343 if (rcw) {
3344 /*
3345 * In some cases, handle_stripe_dirtying initially decided to
3346 * run rmw and allocates extra page for prexor. However, rcw is
3347 * cheaper later on. We need to free the extra page now,
3348 * because we won't be able to do that in ops_complete_prexor().
3349 */
3350 r5c_release_extra_page(sh);
3351
3352 for (i = disks; i--; ) {
3353 struct r5dev *dev = &sh->dev[i];
3354
3355 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3356 set_bit(R5_LOCKED, &dev->flags);
3357 set_bit(R5_Wantdrain, &dev->flags);
3358 if (!expand)
3359 clear_bit(R5_UPTODATE, &dev->flags);
3360 s->locked++;
3361 } else if (test_bit(R5_InJournal, &dev->flags)) {
3362 set_bit(R5_LOCKED, &dev->flags);
3363 s->locked++;
3364 }
3365 }
3366 /* if we are not expanding this is a proper write request, and
3367 * there will be bios with new data to be drained into the
3368 * stripe cache
3369 */
3370 if (!expand) {
3371 if (!s->locked)
3372 /* False alarm, nothing to do */
3373 return;
3374 sh->reconstruct_state = reconstruct_state_drain_run;
3375 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3376 } else
3377 sh->reconstruct_state = reconstruct_state_run;
3378
3379 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3380
3381 if (s->locked + conf->max_degraded == disks)
3382 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3383 atomic_inc(&conf->pending_full_writes);
3384 } else {
3385 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3386 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3387 BUG_ON(level == 6 &&
3388 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3389 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3390
3391 for (i = disks; i--; ) {
3392 struct r5dev *dev = &sh->dev[i];
3393 if (i == pd_idx || i == qd_idx)
3394 continue;
3395
3396 if (dev->towrite &&
3397 (test_bit(R5_UPTODATE, &dev->flags) ||
3398 test_bit(R5_Wantcompute, &dev->flags))) {
3399 set_bit(R5_Wantdrain, &dev->flags);
3400 set_bit(R5_LOCKED, &dev->flags);
3401 clear_bit(R5_UPTODATE, &dev->flags);
3402 s->locked++;
3403 } else if (test_bit(R5_InJournal, &dev->flags)) {
3404 set_bit(R5_LOCKED, &dev->flags);
3405 s->locked++;
3406 }
3407 }
3408 if (!s->locked)
3409 /* False alarm - nothing to do */
3410 return;
3411 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3412 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3413 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3414 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3415 }
3416
3417 /* keep the parity disk(s) locked while asynchronous operations
3418 * are in flight
3419 */
3420 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3421 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3422 s->locked++;
3423
3424 if (level == 6) {
3425 int qd_idx = sh->qd_idx;
3426 struct r5dev *dev = &sh->dev[qd_idx];
3427
3428 set_bit(R5_LOCKED, &dev->flags);
3429 clear_bit(R5_UPTODATE, &dev->flags);
3430 s->locked++;
3431 }
3432
3433 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3434 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3435 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3436 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3437 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3438
3439 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3440 __func__, (unsigned long long)sh->sector,
3441 s->locked, s->ops_request);
3442}
3443
3444static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3445 int dd_idx, int forwrite)
3446{
3447 struct r5conf *conf = sh->raid_conf;
3448 struct bio **bip;
3449
3450 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3451 bi->bi_iter.bi_sector, sh->sector);
3452
3453 /* Don't allow new IO added to stripes in batch list */
3454 if (sh->batch_head)
3455 return true;
3456
3457 if (forwrite)
3458 bip = &sh->dev[dd_idx].towrite;
3459 else
3460 bip = &sh->dev[dd_idx].toread;
3461
3462 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3463 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3464 return true;
3465 bip = &(*bip)->bi_next;
3466 }
3467
3468 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3469 return true;
3470
3471 if (forwrite && raid5_has_ppl(conf)) {
3472 /*
3473 * With PPL only writes to consecutive data chunks within a
3474 * stripe are allowed because for a single stripe_head we can
3475 * only have one PPL entry at a time, which describes one data
3476 * range. Not really an overlap, but wait_for_overlap can be
3477 * used to handle this.
3478 */
3479 sector_t sector;
3480 sector_t first = 0;
3481 sector_t last = 0;
3482 int count = 0;
3483 int i;
3484
3485 for (i = 0; i < sh->disks; i++) {
3486 if (i != sh->pd_idx &&
3487 (i == dd_idx || sh->dev[i].towrite)) {
3488 sector = sh->dev[i].sector;
3489 if (count == 0 || sector < first)
3490 first = sector;
3491 if (sector > last)
3492 last = sector;
3493 count++;
3494 }
3495 }
3496
3497 if (first + conf->chunk_sectors * (count - 1) != last)
3498 return true;
3499 }
3500
3501 return false;
3502}
3503
3504static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3505 int dd_idx, int forwrite, int previous)
3506{
3507 struct r5conf *conf = sh->raid_conf;
3508 struct bio **bip;
3509 int firstwrite = 0;
3510
3511 if (forwrite) {
3512 bip = &sh->dev[dd_idx].towrite;
3513 if (!*bip)
3514 firstwrite = 1;
3515 } else {
3516 bip = &sh->dev[dd_idx].toread;
3517 }
3518
3519 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3520 bip = &(*bip)->bi_next;
3521
3522 if (!forwrite || previous)
3523 clear_bit(STRIPE_BATCH_READY, &sh->state);
3524
3525 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3526 if (*bip)
3527 bi->bi_next = *bip;
3528 *bip = bi;
3529 bio_inc_remaining(bi);
3530 md_write_inc(conf->mddev, bi);
3531
3532 if (forwrite) {
3533 /* check if page is covered */
3534 sector_t sector = sh->dev[dd_idx].sector;
3535 for (bi=sh->dev[dd_idx].towrite;
3536 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3537 bi && bi->bi_iter.bi_sector <= sector;
3538 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3539 if (bio_end_sector(bi) >= sector)
3540 sector = bio_end_sector(bi);
3541 }
3542 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3543 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3544 sh->overwrite_disks++;
3545 }
3546
3547 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3548 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3549 sh->dev[dd_idx].sector);
3550
3551 if (conf->mddev->bitmap && firstwrite) {
3552 /* Cannot hold spinlock over bitmap_startwrite,
3553 * but must ensure this isn't added to a batch until
3554 * we have added to the bitmap and set bm_seq.
3555 * So set STRIPE_BITMAP_PENDING to prevent
3556 * batching.
3557 * If multiple __add_stripe_bio() calls race here they
3558 * much all set STRIPE_BITMAP_PENDING. So only the first one
3559 * to complete "bitmap_startwrite" gets to set
3560 * STRIPE_BIT_DELAY. This is important as once a stripe
3561 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3562 * any more.
3563 */
3564 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3565 spin_unlock_irq(&sh->stripe_lock);
3566 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3567 RAID5_STRIPE_SECTORS(conf), 0);
3568 spin_lock_irq(&sh->stripe_lock);
3569 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3570 if (!sh->batch_head) {
3571 sh->bm_seq = conf->seq_flush+1;
3572 set_bit(STRIPE_BIT_DELAY, &sh->state);
3573 }
3574 }
3575}
3576
3577/*
3578 * Each stripe/dev can have one or more bios attached.
3579 * toread/towrite point to the first in a chain.
3580 * The bi_next chain must be in order.
3581 */
3582static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3583 int dd_idx, int forwrite, int previous)
3584{
3585 spin_lock_irq(&sh->stripe_lock);
3586
3587 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3588 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3589 spin_unlock_irq(&sh->stripe_lock);
3590 return false;
3591 }
3592
3593 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3594 spin_unlock_irq(&sh->stripe_lock);
3595 return true;
3596}
3597
3598static void end_reshape(struct r5conf *conf);
3599
3600static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3601 struct stripe_head *sh)
3602{
3603 int sectors_per_chunk =
3604 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3605 int dd_idx;
3606 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3607 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3608
3609 raid5_compute_sector(conf,
3610 stripe * (disks - conf->max_degraded)
3611 *sectors_per_chunk + chunk_offset,
3612 previous,
3613 &dd_idx, sh);
3614}
3615
3616static void
3617handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3618 struct stripe_head_state *s, int disks)
3619{
3620 int i;
3621 BUG_ON(sh->batch_head);
3622 for (i = disks; i--; ) {
3623 struct bio *bi;
3624 int bitmap_end = 0;
3625
3626 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3627 struct md_rdev *rdev = conf->disks[i].rdev;
3628
3629 if (rdev && test_bit(In_sync, &rdev->flags) &&
3630 !test_bit(Faulty, &rdev->flags))
3631 atomic_inc(&rdev->nr_pending);
3632 else
3633 rdev = NULL;
3634 if (rdev) {
3635 if (!rdev_set_badblocks(
3636 rdev,
3637 sh->sector,
3638 RAID5_STRIPE_SECTORS(conf), 0))
3639 md_error(conf->mddev, rdev);
3640 rdev_dec_pending(rdev, conf->mddev);
3641 }
3642 }
3643 spin_lock_irq(&sh->stripe_lock);
3644 /* fail all writes first */
3645 bi = sh->dev[i].towrite;
3646 sh->dev[i].towrite = NULL;
3647 sh->overwrite_disks = 0;
3648 spin_unlock_irq(&sh->stripe_lock);
3649 if (bi)
3650 bitmap_end = 1;
3651
3652 log_stripe_write_finished(sh);
3653
3654 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3655 wake_up(&conf->wait_for_overlap);
3656
3657 while (bi && bi->bi_iter.bi_sector <
3658 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3659 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3660
3661 md_write_end(conf->mddev);
3662 bio_io_error(bi);
3663 bi = nextbi;
3664 }
3665 if (bitmap_end)
3666 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3667 RAID5_STRIPE_SECTORS(conf), 0, 0);
3668 bitmap_end = 0;
3669 /* and fail all 'written' */
3670 bi = sh->dev[i].written;
3671 sh->dev[i].written = NULL;
3672 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3673 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3674 sh->dev[i].page = sh->dev[i].orig_page;
3675 }
3676
3677 if (bi) bitmap_end = 1;
3678 while (bi && bi->bi_iter.bi_sector <
3679 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3680 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3681
3682 md_write_end(conf->mddev);
3683 bio_io_error(bi);
3684 bi = bi2;
3685 }
3686
3687 /* fail any reads if this device is non-operational and
3688 * the data has not reached the cache yet.
3689 */
3690 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3691 s->failed > conf->max_degraded &&
3692 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3693 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3694 spin_lock_irq(&sh->stripe_lock);
3695 bi = sh->dev[i].toread;
3696 sh->dev[i].toread = NULL;
3697 spin_unlock_irq(&sh->stripe_lock);
3698 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3699 wake_up(&conf->wait_for_overlap);
3700 if (bi)
3701 s->to_read--;
3702 while (bi && bi->bi_iter.bi_sector <
3703 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3704 struct bio *nextbi =
3705 r5_next_bio(conf, bi, sh->dev[i].sector);
3706
3707 bio_io_error(bi);
3708 bi = nextbi;
3709 }
3710 }
3711 if (bitmap_end)
3712 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3713 RAID5_STRIPE_SECTORS(conf), 0, 0);
3714 /* If we were in the middle of a write the parity block might
3715 * still be locked - so just clear all R5_LOCKED flags
3716 */
3717 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3718 }
3719 s->to_write = 0;
3720 s->written = 0;
3721
3722 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3723 if (atomic_dec_and_test(&conf->pending_full_writes))
3724 md_wakeup_thread(conf->mddev->thread);
3725}
3726
3727static void
3728handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3729 struct stripe_head_state *s)
3730{
3731 int abort = 0;
3732 int i;
3733
3734 BUG_ON(sh->batch_head);
3735 clear_bit(STRIPE_SYNCING, &sh->state);
3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3737 wake_up(&conf->wait_for_overlap);
3738 s->syncing = 0;
3739 s->replacing = 0;
3740 /* There is nothing more to do for sync/check/repair.
3741 * Don't even need to abort as that is handled elsewhere
3742 * if needed, and not always wanted e.g. if there is a known
3743 * bad block here.
3744 * For recover/replace we need to record a bad block on all
3745 * non-sync devices, or abort the recovery
3746 */
3747 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3748 /* During recovery devices cannot be removed, so
3749 * locking and refcounting of rdevs is not needed
3750 */
3751 for (i = 0; i < conf->raid_disks; i++) {
3752 struct md_rdev *rdev = conf->disks[i].rdev;
3753
3754 if (rdev
3755 && !test_bit(Faulty, &rdev->flags)
3756 && !test_bit(In_sync, &rdev->flags)
3757 && !rdev_set_badblocks(rdev, sh->sector,
3758 RAID5_STRIPE_SECTORS(conf), 0))
3759 abort = 1;
3760 rdev = conf->disks[i].replacement;
3761
3762 if (rdev
3763 && !test_bit(Faulty, &rdev->flags)
3764 && !test_bit(In_sync, &rdev->flags)
3765 && !rdev_set_badblocks(rdev, sh->sector,
3766 RAID5_STRIPE_SECTORS(conf), 0))
3767 abort = 1;
3768 }
3769 if (abort)
3770 conf->recovery_disabled =
3771 conf->mddev->recovery_disabled;
3772 }
3773 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3774}
3775
3776static int want_replace(struct stripe_head *sh, int disk_idx)
3777{
3778 struct md_rdev *rdev;
3779 int rv = 0;
3780
3781 rdev = sh->raid_conf->disks[disk_idx].replacement;
3782 if (rdev
3783 && !test_bit(Faulty, &rdev->flags)
3784 && !test_bit(In_sync, &rdev->flags)
3785 && (rdev->recovery_offset <= sh->sector
3786 || rdev->mddev->recovery_cp <= sh->sector))
3787 rv = 1;
3788 return rv;
3789}
3790
3791static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3792 int disk_idx, int disks)
3793{
3794 struct r5dev *dev = &sh->dev[disk_idx];
3795 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3796 &sh->dev[s->failed_num[1]] };
3797 int i;
3798 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3799
3800
3801 if (test_bit(R5_LOCKED, &dev->flags) ||
3802 test_bit(R5_UPTODATE, &dev->flags))
3803 /* No point reading this as we already have it or have
3804 * decided to get it.
3805 */
3806 return 0;
3807
3808 if (dev->toread ||
3809 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3810 /* We need this block to directly satisfy a request */
3811 return 1;
3812
3813 if (s->syncing || s->expanding ||
3814 (s->replacing && want_replace(sh, disk_idx)))
3815 /* When syncing, or expanding we read everything.
3816 * When replacing, we need the replaced block.
3817 */
3818 return 1;
3819
3820 if ((s->failed >= 1 && fdev[0]->toread) ||
3821 (s->failed >= 2 && fdev[1]->toread))
3822 /* If we want to read from a failed device, then
3823 * we need to actually read every other device.
3824 */
3825 return 1;
3826
3827 /* Sometimes neither read-modify-write nor reconstruct-write
3828 * cycles can work. In those cases we read every block we
3829 * can. Then the parity-update is certain to have enough to
3830 * work with.
3831 * This can only be a problem when we need to write something,
3832 * and some device has failed. If either of those tests
3833 * fail we need look no further.
3834 */
3835 if (!s->failed || !s->to_write)
3836 return 0;
3837
3838 if (test_bit(R5_Insync, &dev->flags) &&
3839 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3840 /* Pre-reads at not permitted until after short delay
3841 * to gather multiple requests. However if this
3842 * device is no Insync, the block could only be computed
3843 * and there is no need to delay that.
3844 */
3845 return 0;
3846
3847 for (i = 0; i < s->failed && i < 2; i++) {
3848 if (fdev[i]->towrite &&
3849 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3850 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3851 /* If we have a partial write to a failed
3852 * device, then we will need to reconstruct
3853 * the content of that device, so all other
3854 * devices must be read.
3855 */
3856 return 1;
3857
3858 if (s->failed >= 2 &&
3859 (fdev[i]->towrite ||
3860 s->failed_num[i] == sh->pd_idx ||
3861 s->failed_num[i] == sh->qd_idx) &&
3862 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3863 /* In max degraded raid6, If the failed disk is P, Q,
3864 * or we want to read the failed disk, we need to do
3865 * reconstruct-write.
3866 */
3867 force_rcw = true;
3868 }
3869
3870 /* If we are forced to do a reconstruct-write, because parity
3871 * cannot be trusted and we are currently recovering it, there
3872 * is extra need to be careful.
3873 * If one of the devices that we would need to read, because
3874 * it is not being overwritten (and maybe not written at all)
3875 * is missing/faulty, then we need to read everything we can.
3876 */
3877 if (!force_rcw &&
3878 sh->sector < sh->raid_conf->mddev->recovery_cp)
3879 /* reconstruct-write isn't being forced */
3880 return 0;
3881 for (i = 0; i < s->failed && i < 2; i++) {
3882 if (s->failed_num[i] != sh->pd_idx &&
3883 s->failed_num[i] != sh->qd_idx &&
3884 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3885 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3886 return 1;
3887 }
3888
3889 return 0;
3890}
3891
3892/* fetch_block - checks the given member device to see if its data needs
3893 * to be read or computed to satisfy a request.
3894 *
3895 * Returns 1 when no more member devices need to be checked, otherwise returns
3896 * 0 to tell the loop in handle_stripe_fill to continue
3897 */
3898static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3899 int disk_idx, int disks)
3900{
3901 struct r5dev *dev = &sh->dev[disk_idx];
3902
3903 /* is the data in this block needed, and can we get it? */
3904 if (need_this_block(sh, s, disk_idx, disks)) {
3905 /* we would like to get this block, possibly by computing it,
3906 * otherwise read it if the backing disk is insync
3907 */
3908 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3909 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3910 BUG_ON(sh->batch_head);
3911
3912 /*
3913 * In the raid6 case if the only non-uptodate disk is P
3914 * then we already trusted P to compute the other failed
3915 * drives. It is safe to compute rather than re-read P.
3916 * In other cases we only compute blocks from failed
3917 * devices, otherwise check/repair might fail to detect
3918 * a real inconsistency.
3919 */
3920
3921 if ((s->uptodate == disks - 1) &&
3922 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3923 (s->failed && (disk_idx == s->failed_num[0] ||
3924 disk_idx == s->failed_num[1])))) {
3925 /* have disk failed, and we're requested to fetch it;
3926 * do compute it
3927 */
3928 pr_debug("Computing stripe %llu block %d\n",
3929 (unsigned long long)sh->sector, disk_idx);
3930 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3931 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3932 set_bit(R5_Wantcompute, &dev->flags);
3933 sh->ops.target = disk_idx;
3934 sh->ops.target2 = -1; /* no 2nd target */
3935 s->req_compute = 1;
3936 /* Careful: from this point on 'uptodate' is in the eye
3937 * of raid_run_ops which services 'compute' operations
3938 * before writes. R5_Wantcompute flags a block that will
3939 * be R5_UPTODATE by the time it is needed for a
3940 * subsequent operation.
3941 */
3942 s->uptodate++;
3943 return 1;
3944 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3945 /* Computing 2-failure is *very* expensive; only
3946 * do it if failed >= 2
3947 */
3948 int other;
3949 for (other = disks; other--; ) {
3950 if (other == disk_idx)
3951 continue;
3952 if (!test_bit(R5_UPTODATE,
3953 &sh->dev[other].flags))
3954 break;
3955 }
3956 BUG_ON(other < 0);
3957 pr_debug("Computing stripe %llu blocks %d,%d\n",
3958 (unsigned long long)sh->sector,
3959 disk_idx, other);
3960 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3961 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3962 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3963 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3964 sh->ops.target = disk_idx;
3965 sh->ops.target2 = other;
3966 s->uptodate += 2;
3967 s->req_compute = 1;
3968 return 1;
3969 } else if (test_bit(R5_Insync, &dev->flags)) {
3970 set_bit(R5_LOCKED, &dev->flags);
3971 set_bit(R5_Wantread, &dev->flags);
3972 s->locked++;
3973 pr_debug("Reading block %d (sync=%d)\n",
3974 disk_idx, s->syncing);
3975 }
3976 }
3977
3978 return 0;
3979}
3980
3981/*
3982 * handle_stripe_fill - read or compute data to satisfy pending requests.
3983 */
3984static void handle_stripe_fill(struct stripe_head *sh,
3985 struct stripe_head_state *s,
3986 int disks)
3987{
3988 int i;
3989
3990 /* look for blocks to read/compute, skip this if a compute
3991 * is already in flight, or if the stripe contents are in the
3992 * midst of changing due to a write
3993 */
3994 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3995 !sh->reconstruct_state) {
3996
3997 /*
3998 * For degraded stripe with data in journal, do not handle
3999 * read requests yet, instead, flush the stripe to raid
4000 * disks first, this avoids handling complex rmw of write
4001 * back cache (prexor with orig_page, and then xor with
4002 * page) in the read path
4003 */
4004 if (s->to_read && s->injournal && s->failed) {
4005 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4006 r5c_make_stripe_write_out(sh);
4007 goto out;
4008 }
4009
4010 for (i = disks; i--; )
4011 if (fetch_block(sh, s, i, disks))
4012 break;
4013 }
4014out:
4015 set_bit(STRIPE_HANDLE, &sh->state);
4016}
4017
4018static void break_stripe_batch_list(struct stripe_head *head_sh,
4019 unsigned long handle_flags);
4020/* handle_stripe_clean_event
4021 * any written block on an uptodate or failed drive can be returned.
4022 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4023 * never LOCKED, so we don't need to test 'failed' directly.
4024 */
4025static void handle_stripe_clean_event(struct r5conf *conf,
4026 struct stripe_head *sh, int disks)
4027{
4028 int i;
4029 struct r5dev *dev;
4030 int discard_pending = 0;
4031 struct stripe_head *head_sh = sh;
4032 bool do_endio = false;
4033
4034 for (i = disks; i--; )
4035 if (sh->dev[i].written) {
4036 dev = &sh->dev[i];
4037 if (!test_bit(R5_LOCKED, &dev->flags) &&
4038 (test_bit(R5_UPTODATE, &dev->flags) ||
4039 test_bit(R5_Discard, &dev->flags) ||
4040 test_bit(R5_SkipCopy, &dev->flags))) {
4041 /* We can return any write requests */
4042 struct bio *wbi, *wbi2;
4043 pr_debug("Return write for disc %d\n", i);
4044 if (test_and_clear_bit(R5_Discard, &dev->flags))
4045 clear_bit(R5_UPTODATE, &dev->flags);
4046 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4047 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4048 }
4049 do_endio = true;
4050
4051returnbi:
4052 dev->page = dev->orig_page;
4053 wbi = dev->written;
4054 dev->written = NULL;
4055 while (wbi && wbi->bi_iter.bi_sector <
4056 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4057 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4058 md_write_end(conf->mddev);
4059 bio_endio(wbi);
4060 wbi = wbi2;
4061 }
4062 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4063 RAID5_STRIPE_SECTORS(conf),
4064 !test_bit(STRIPE_DEGRADED, &sh->state),
4065 0);
4066 if (head_sh->batch_head) {
4067 sh = list_first_entry(&sh->batch_list,
4068 struct stripe_head,
4069 batch_list);
4070 if (sh != head_sh) {
4071 dev = &sh->dev[i];
4072 goto returnbi;
4073 }
4074 }
4075 sh = head_sh;
4076 dev = &sh->dev[i];
4077 } else if (test_bit(R5_Discard, &dev->flags))
4078 discard_pending = 1;
4079 }
4080
4081 log_stripe_write_finished(sh);
4082
4083 if (!discard_pending &&
4084 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4085 int hash;
4086 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4087 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4088 if (sh->qd_idx >= 0) {
4089 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4090 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4091 }
4092 /* now that discard is done we can proceed with any sync */
4093 clear_bit(STRIPE_DISCARD, &sh->state);
4094 /*
4095 * SCSI discard will change some bio fields and the stripe has
4096 * no updated data, so remove it from hash list and the stripe
4097 * will be reinitialized
4098 */
4099unhash:
4100 hash = sh->hash_lock_index;
4101 spin_lock_irq(conf->hash_locks + hash);
4102 remove_hash(sh);
4103 spin_unlock_irq(conf->hash_locks + hash);
4104 if (head_sh->batch_head) {
4105 sh = list_first_entry(&sh->batch_list,
4106 struct stripe_head, batch_list);
4107 if (sh != head_sh)
4108 goto unhash;
4109 }
4110 sh = head_sh;
4111
4112 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4113 set_bit(STRIPE_HANDLE, &sh->state);
4114
4115 }
4116
4117 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4118 if (atomic_dec_and_test(&conf->pending_full_writes))
4119 md_wakeup_thread(conf->mddev->thread);
4120
4121 if (head_sh->batch_head && do_endio)
4122 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4123}
4124
4125/*
4126 * For RMW in write back cache, we need extra page in prexor to store the
4127 * old data. This page is stored in dev->orig_page.
4128 *
4129 * This function checks whether we have data for prexor. The exact logic
4130 * is:
4131 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4132 */
4133static inline bool uptodate_for_rmw(struct r5dev *dev)
4134{
4135 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4136 (!test_bit(R5_InJournal, &dev->flags) ||
4137 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4138}
4139
4140static int handle_stripe_dirtying(struct r5conf *conf,
4141 struct stripe_head *sh,
4142 struct stripe_head_state *s,
4143 int disks)
4144{
4145 int rmw = 0, rcw = 0, i;
4146 sector_t recovery_cp = conf->mddev->recovery_cp;
4147
4148 /* Check whether resync is now happening or should start.
4149 * If yes, then the array is dirty (after unclean shutdown or
4150 * initial creation), so parity in some stripes might be inconsistent.
4151 * In this case, we need to always do reconstruct-write, to ensure
4152 * that in case of drive failure or read-error correction, we
4153 * generate correct data from the parity.
4154 */
4155 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4156 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4157 s->failed == 0)) {
4158 /* Calculate the real rcw later - for now make it
4159 * look like rcw is cheaper
4160 */
4161 rcw = 1; rmw = 2;
4162 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4163 conf->rmw_level, (unsigned long long)recovery_cp,
4164 (unsigned long long)sh->sector);
4165 } else for (i = disks; i--; ) {
4166 /* would I have to read this buffer for read_modify_write */
4167 struct r5dev *dev = &sh->dev[i];
4168 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4169 i == sh->pd_idx || i == sh->qd_idx ||
4170 test_bit(R5_InJournal, &dev->flags)) &&
4171 !test_bit(R5_LOCKED, &dev->flags) &&
4172 !(uptodate_for_rmw(dev) ||
4173 test_bit(R5_Wantcompute, &dev->flags))) {
4174 if (test_bit(R5_Insync, &dev->flags))
4175 rmw++;
4176 else
4177 rmw += 2*disks; /* cannot read it */
4178 }
4179 /* Would I have to read this buffer for reconstruct_write */
4180 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4181 i != sh->pd_idx && i != sh->qd_idx &&
4182 !test_bit(R5_LOCKED, &dev->flags) &&
4183 !(test_bit(R5_UPTODATE, &dev->flags) ||
4184 test_bit(R5_Wantcompute, &dev->flags))) {
4185 if (test_bit(R5_Insync, &dev->flags))
4186 rcw++;
4187 else
4188 rcw += 2*disks;
4189 }
4190 }
4191
4192 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4193 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4194 set_bit(STRIPE_HANDLE, &sh->state);
4195 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4196 /* prefer read-modify-write, but need to get some data */
4197 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4198 sh->sector, rmw);
4199
4200 for (i = disks; i--; ) {
4201 struct r5dev *dev = &sh->dev[i];
4202 if (test_bit(R5_InJournal, &dev->flags) &&
4203 dev->page == dev->orig_page &&
4204 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4205 /* alloc page for prexor */
4206 struct page *p = alloc_page(GFP_NOIO);
4207
4208 if (p) {
4209 dev->orig_page = p;
4210 continue;
4211 }
4212
4213 /*
4214 * alloc_page() failed, try use
4215 * disk_info->extra_page
4216 */
4217 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4218 &conf->cache_state)) {
4219 r5c_use_extra_page(sh);
4220 break;
4221 }
4222
4223 /* extra_page in use, add to delayed_list */
4224 set_bit(STRIPE_DELAYED, &sh->state);
4225 s->waiting_extra_page = 1;
4226 return -EAGAIN;
4227 }
4228 }
4229
4230 for (i = disks; i--; ) {
4231 struct r5dev *dev = &sh->dev[i];
4232 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4233 i == sh->pd_idx || i == sh->qd_idx ||
4234 test_bit(R5_InJournal, &dev->flags)) &&
4235 !test_bit(R5_LOCKED, &dev->flags) &&
4236 !(uptodate_for_rmw(dev) ||
4237 test_bit(R5_Wantcompute, &dev->flags)) &&
4238 test_bit(R5_Insync, &dev->flags)) {
4239 if (test_bit(STRIPE_PREREAD_ACTIVE,
4240 &sh->state)) {
4241 pr_debug("Read_old block %d for r-m-w\n",
4242 i);
4243 set_bit(R5_LOCKED, &dev->flags);
4244 set_bit(R5_Wantread, &dev->flags);
4245 s->locked++;
4246 } else
4247 set_bit(STRIPE_DELAYED, &sh->state);
4248 }
4249 }
4250 }
4251 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4252 /* want reconstruct write, but need to get some data */
4253 int qread =0;
4254 rcw = 0;
4255 for (i = disks; i--; ) {
4256 struct r5dev *dev = &sh->dev[i];
4257 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4258 i != sh->pd_idx && i != sh->qd_idx &&
4259 !test_bit(R5_LOCKED, &dev->flags) &&
4260 !(test_bit(R5_UPTODATE, &dev->flags) ||
4261 test_bit(R5_Wantcompute, &dev->flags))) {
4262 rcw++;
4263 if (test_bit(R5_Insync, &dev->flags) &&
4264 test_bit(STRIPE_PREREAD_ACTIVE,
4265 &sh->state)) {
4266 pr_debug("Read_old block "
4267 "%d for Reconstruct\n", i);
4268 set_bit(R5_LOCKED, &dev->flags);
4269 set_bit(R5_Wantread, &dev->flags);
4270 s->locked++;
4271 qread++;
4272 } else
4273 set_bit(STRIPE_DELAYED, &sh->state);
4274 }
4275 }
4276 if (rcw && !mddev_is_dm(conf->mddev))
4277 blk_add_trace_msg(conf->mddev->gendisk->queue,
4278 "raid5 rcw %llu %d %d %d",
4279 (unsigned long long)sh->sector, rcw, qread,
4280 test_bit(STRIPE_DELAYED, &sh->state));
4281 }
4282
4283 if (rcw > disks && rmw > disks &&
4284 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4285 set_bit(STRIPE_DELAYED, &sh->state);
4286
4287 /* now if nothing is locked, and if we have enough data,
4288 * we can start a write request
4289 */
4290 /* since handle_stripe can be called at any time we need to handle the
4291 * case where a compute block operation has been submitted and then a
4292 * subsequent call wants to start a write request. raid_run_ops only
4293 * handles the case where compute block and reconstruct are requested
4294 * simultaneously. If this is not the case then new writes need to be
4295 * held off until the compute completes.
4296 */
4297 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4298 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4299 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4300 schedule_reconstruction(sh, s, rcw == 0, 0);
4301 return 0;
4302}
4303
4304static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4305 struct stripe_head_state *s, int disks)
4306{
4307 struct r5dev *dev = NULL;
4308
4309 BUG_ON(sh->batch_head);
4310 set_bit(STRIPE_HANDLE, &sh->state);
4311
4312 switch (sh->check_state) {
4313 case check_state_idle:
4314 /* start a new check operation if there are no failures */
4315 if (s->failed == 0) {
4316 BUG_ON(s->uptodate != disks);
4317 sh->check_state = check_state_run;
4318 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4319 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4320 s->uptodate--;
4321 break;
4322 }
4323 dev = &sh->dev[s->failed_num[0]];
4324 fallthrough;
4325 case check_state_compute_result:
4326 sh->check_state = check_state_idle;
4327 if (!dev)
4328 dev = &sh->dev[sh->pd_idx];
4329
4330 /* check that a write has not made the stripe insync */
4331 if (test_bit(STRIPE_INSYNC, &sh->state))
4332 break;
4333
4334 /* either failed parity check, or recovery is happening */
4335 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4336 BUG_ON(s->uptodate != disks);
4337
4338 set_bit(R5_LOCKED, &dev->flags);
4339 s->locked++;
4340 set_bit(R5_Wantwrite, &dev->flags);
4341
4342 clear_bit(STRIPE_DEGRADED, &sh->state);
4343 set_bit(STRIPE_INSYNC, &sh->state);
4344 break;
4345 case check_state_run:
4346 break; /* we will be called again upon completion */
4347 case check_state_check_result:
4348 sh->check_state = check_state_idle;
4349
4350 /* if a failure occurred during the check operation, leave
4351 * STRIPE_INSYNC not set and let the stripe be handled again
4352 */
4353 if (s->failed)
4354 break;
4355
4356 /* handle a successful check operation, if parity is correct
4357 * we are done. Otherwise update the mismatch count and repair
4358 * parity if !MD_RECOVERY_CHECK
4359 */
4360 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4361 /* parity is correct (on disc,
4362 * not in buffer any more)
4363 */
4364 set_bit(STRIPE_INSYNC, &sh->state);
4365 else {
4366 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4367 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4368 /* don't try to repair!! */
4369 set_bit(STRIPE_INSYNC, &sh->state);
4370 pr_warn_ratelimited("%s: mismatch sector in range "
4371 "%llu-%llu\n", mdname(conf->mddev),
4372 (unsigned long long) sh->sector,
4373 (unsigned long long) sh->sector +
4374 RAID5_STRIPE_SECTORS(conf));
4375 } else {
4376 sh->check_state = check_state_compute_run;
4377 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4378 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4379 set_bit(R5_Wantcompute,
4380 &sh->dev[sh->pd_idx].flags);
4381 sh->ops.target = sh->pd_idx;
4382 sh->ops.target2 = -1;
4383 s->uptodate++;
4384 }
4385 }
4386 break;
4387 case check_state_compute_run:
4388 break;
4389 default:
4390 pr_err("%s: unknown check_state: %d sector: %llu\n",
4391 __func__, sh->check_state,
4392 (unsigned long long) sh->sector);
4393 BUG();
4394 }
4395}
4396
4397static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4398 struct stripe_head_state *s,
4399 int disks)
4400{
4401 int pd_idx = sh->pd_idx;
4402 int qd_idx = sh->qd_idx;
4403 struct r5dev *dev;
4404
4405 BUG_ON(sh->batch_head);
4406 set_bit(STRIPE_HANDLE, &sh->state);
4407
4408 BUG_ON(s->failed > 2);
4409
4410 /* Want to check and possibly repair P and Q.
4411 * However there could be one 'failed' device, in which
4412 * case we can only check one of them, possibly using the
4413 * other to generate missing data
4414 */
4415
4416 switch (sh->check_state) {
4417 case check_state_idle:
4418 /* start a new check operation if there are < 2 failures */
4419 if (s->failed == s->q_failed) {
4420 /* The only possible failed device holds Q, so it
4421 * makes sense to check P (If anything else were failed,
4422 * we would have used P to recreate it).
4423 */
4424 sh->check_state = check_state_run;
4425 }
4426 if (!s->q_failed && s->failed < 2) {
4427 /* Q is not failed, and we didn't use it to generate
4428 * anything, so it makes sense to check it
4429 */
4430 if (sh->check_state == check_state_run)
4431 sh->check_state = check_state_run_pq;
4432 else
4433 sh->check_state = check_state_run_q;
4434 }
4435
4436 /* discard potentially stale zero_sum_result */
4437 sh->ops.zero_sum_result = 0;
4438
4439 if (sh->check_state == check_state_run) {
4440 /* async_xor_zero_sum destroys the contents of P */
4441 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4442 s->uptodate--;
4443 }
4444 if (sh->check_state >= check_state_run &&
4445 sh->check_state <= check_state_run_pq) {
4446 /* async_syndrome_zero_sum preserves P and Q, so
4447 * no need to mark them !uptodate here
4448 */
4449 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4450 break;
4451 }
4452
4453 /* we have 2-disk failure */
4454 BUG_ON(s->failed != 2);
4455 fallthrough;
4456 case check_state_compute_result:
4457 sh->check_state = check_state_idle;
4458
4459 /* check that a write has not made the stripe insync */
4460 if (test_bit(STRIPE_INSYNC, &sh->state))
4461 break;
4462
4463 /* now write out any block on a failed drive,
4464 * or P or Q if they were recomputed
4465 */
4466 dev = NULL;
4467 if (s->failed == 2) {
4468 dev = &sh->dev[s->failed_num[1]];
4469 s->locked++;
4470 set_bit(R5_LOCKED, &dev->flags);
4471 set_bit(R5_Wantwrite, &dev->flags);
4472 }
4473 if (s->failed >= 1) {
4474 dev = &sh->dev[s->failed_num[0]];
4475 s->locked++;
4476 set_bit(R5_LOCKED, &dev->flags);
4477 set_bit(R5_Wantwrite, &dev->flags);
4478 }
4479 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4480 dev = &sh->dev[pd_idx];
4481 s->locked++;
4482 set_bit(R5_LOCKED, &dev->flags);
4483 set_bit(R5_Wantwrite, &dev->flags);
4484 }
4485 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4486 dev = &sh->dev[qd_idx];
4487 s->locked++;
4488 set_bit(R5_LOCKED, &dev->flags);
4489 set_bit(R5_Wantwrite, &dev->flags);
4490 }
4491 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4492 "%s: disk%td not up to date\n",
4493 mdname(conf->mddev),
4494 dev - (struct r5dev *) &sh->dev)) {
4495 clear_bit(R5_LOCKED, &dev->flags);
4496 clear_bit(R5_Wantwrite, &dev->flags);
4497 s->locked--;
4498 }
4499 clear_bit(STRIPE_DEGRADED, &sh->state);
4500
4501 set_bit(STRIPE_INSYNC, &sh->state);
4502 break;
4503 case check_state_run:
4504 case check_state_run_q:
4505 case check_state_run_pq:
4506 break; /* we will be called again upon completion */
4507 case check_state_check_result:
4508 sh->check_state = check_state_idle;
4509
4510 /* handle a successful check operation, if parity is correct
4511 * we are done. Otherwise update the mismatch count and repair
4512 * parity if !MD_RECOVERY_CHECK
4513 */
4514 if (sh->ops.zero_sum_result == 0) {
4515 /* both parities are correct */
4516 if (!s->failed)
4517 set_bit(STRIPE_INSYNC, &sh->state);
4518 else {
4519 /* in contrast to the raid5 case we can validate
4520 * parity, but still have a failure to write
4521 * back
4522 */
4523 sh->check_state = check_state_compute_result;
4524 /* Returning at this point means that we may go
4525 * off and bring p and/or q uptodate again so
4526 * we make sure to check zero_sum_result again
4527 * to verify if p or q need writeback
4528 */
4529 }
4530 } else {
4531 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4532 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4533 /* don't try to repair!! */
4534 set_bit(STRIPE_INSYNC, &sh->state);
4535 pr_warn_ratelimited("%s: mismatch sector in range "
4536 "%llu-%llu\n", mdname(conf->mddev),
4537 (unsigned long long) sh->sector,
4538 (unsigned long long) sh->sector +
4539 RAID5_STRIPE_SECTORS(conf));
4540 } else {
4541 int *target = &sh->ops.target;
4542
4543 sh->ops.target = -1;
4544 sh->ops.target2 = -1;
4545 sh->check_state = check_state_compute_run;
4546 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4547 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4548 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4549 set_bit(R5_Wantcompute,
4550 &sh->dev[pd_idx].flags);
4551 *target = pd_idx;
4552 target = &sh->ops.target2;
4553 s->uptodate++;
4554 }
4555 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4556 set_bit(R5_Wantcompute,
4557 &sh->dev[qd_idx].flags);
4558 *target = qd_idx;
4559 s->uptodate++;
4560 }
4561 }
4562 }
4563 break;
4564 case check_state_compute_run:
4565 break;
4566 default:
4567 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4568 __func__, sh->check_state,
4569 (unsigned long long) sh->sector);
4570 BUG();
4571 }
4572}
4573
4574static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4575{
4576 int i;
4577
4578 /* We have read all the blocks in this stripe and now we need to
4579 * copy some of them into a target stripe for expand.
4580 */
4581 struct dma_async_tx_descriptor *tx = NULL;
4582 BUG_ON(sh->batch_head);
4583 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4584 for (i = 0; i < sh->disks; i++)
4585 if (i != sh->pd_idx && i != sh->qd_idx) {
4586 int dd_idx, j;
4587 struct stripe_head *sh2;
4588 struct async_submit_ctl submit;
4589
4590 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4591 sector_t s = raid5_compute_sector(conf, bn, 0,
4592 &dd_idx, NULL);
4593 sh2 = raid5_get_active_stripe(conf, NULL, s,
4594 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4595 if (sh2 == NULL)
4596 /* so far only the early blocks of this stripe
4597 * have been requested. When later blocks
4598 * get requested, we will try again
4599 */
4600 continue;
4601 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4602 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4603 /* must have already done this block */
4604 raid5_release_stripe(sh2);
4605 continue;
4606 }
4607
4608 /* place all the copies on one channel */
4609 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4610 tx = async_memcpy(sh2->dev[dd_idx].page,
4611 sh->dev[i].page, sh2->dev[dd_idx].offset,
4612 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4613 &submit);
4614
4615 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4616 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4617 for (j = 0; j < conf->raid_disks; j++)
4618 if (j != sh2->pd_idx &&
4619 j != sh2->qd_idx &&
4620 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4621 break;
4622 if (j == conf->raid_disks) {
4623 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4624 set_bit(STRIPE_HANDLE, &sh2->state);
4625 }
4626 raid5_release_stripe(sh2);
4627
4628 }
4629 /* done submitting copies, wait for them to complete */
4630 async_tx_quiesce(&tx);
4631}
4632
4633/*
4634 * handle_stripe - do things to a stripe.
4635 *
4636 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4637 * state of various bits to see what needs to be done.
4638 * Possible results:
4639 * return some read requests which now have data
4640 * return some write requests which are safely on storage
4641 * schedule a read on some buffers
4642 * schedule a write of some buffers
4643 * return confirmation of parity correctness
4644 *
4645 */
4646
4647static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4648{
4649 struct r5conf *conf = sh->raid_conf;
4650 int disks = sh->disks;
4651 struct r5dev *dev;
4652 int i;
4653 int do_recovery = 0;
4654
4655 memset(s, 0, sizeof(*s));
4656
4657 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4658 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4659 s->failed_num[0] = -1;
4660 s->failed_num[1] = -1;
4661 s->log_failed = r5l_log_disk_error(conf);
4662
4663 /* Now to look around and see what can be done */
4664 for (i=disks; i--; ) {
4665 struct md_rdev *rdev;
4666 int is_bad = 0;
4667
4668 dev = &sh->dev[i];
4669
4670 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4671 i, dev->flags,
4672 dev->toread, dev->towrite, dev->written);
4673 /* maybe we can reply to a read
4674 *
4675 * new wantfill requests are only permitted while
4676 * ops_complete_biofill is guaranteed to be inactive
4677 */
4678 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4679 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4680 set_bit(R5_Wantfill, &dev->flags);
4681
4682 /* now count some things */
4683 if (test_bit(R5_LOCKED, &dev->flags))
4684 s->locked++;
4685 if (test_bit(R5_UPTODATE, &dev->flags))
4686 s->uptodate++;
4687 if (test_bit(R5_Wantcompute, &dev->flags)) {
4688 s->compute++;
4689 BUG_ON(s->compute > 2);
4690 }
4691
4692 if (test_bit(R5_Wantfill, &dev->flags))
4693 s->to_fill++;
4694 else if (dev->toread)
4695 s->to_read++;
4696 if (dev->towrite) {
4697 s->to_write++;
4698 if (!test_bit(R5_OVERWRITE, &dev->flags))
4699 s->non_overwrite++;
4700 }
4701 if (dev->written)
4702 s->written++;
4703 /* Prefer to use the replacement for reads, but only
4704 * if it is recovered enough and has no bad blocks.
4705 */
4706 rdev = conf->disks[i].replacement;
4707 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4708 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4709 !rdev_has_badblock(rdev, sh->sector,
4710 RAID5_STRIPE_SECTORS(conf)))
4711 set_bit(R5_ReadRepl, &dev->flags);
4712 else {
4713 if (rdev && !test_bit(Faulty, &rdev->flags))
4714 set_bit(R5_NeedReplace, &dev->flags);
4715 else
4716 clear_bit(R5_NeedReplace, &dev->flags);
4717 rdev = conf->disks[i].rdev;
4718 clear_bit(R5_ReadRepl, &dev->flags);
4719 }
4720 if (rdev && test_bit(Faulty, &rdev->flags))
4721 rdev = NULL;
4722 if (rdev) {
4723 is_bad = rdev_has_badblock(rdev, sh->sector,
4724 RAID5_STRIPE_SECTORS(conf));
4725 if (s->blocked_rdev == NULL
4726 && (test_bit(Blocked, &rdev->flags)
4727 || is_bad < 0)) {
4728 if (is_bad < 0)
4729 set_bit(BlockedBadBlocks,
4730 &rdev->flags);
4731 s->blocked_rdev = rdev;
4732 atomic_inc(&rdev->nr_pending);
4733 }
4734 }
4735 clear_bit(R5_Insync, &dev->flags);
4736 if (!rdev)
4737 /* Not in-sync */;
4738 else if (is_bad) {
4739 /* also not in-sync */
4740 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4741 test_bit(R5_UPTODATE, &dev->flags)) {
4742 /* treat as in-sync, but with a read error
4743 * which we can now try to correct
4744 */
4745 set_bit(R5_Insync, &dev->flags);
4746 set_bit(R5_ReadError, &dev->flags);
4747 }
4748 } else if (test_bit(In_sync, &rdev->flags))
4749 set_bit(R5_Insync, &dev->flags);
4750 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4751 /* in sync if before recovery_offset */
4752 set_bit(R5_Insync, &dev->flags);
4753 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4754 test_bit(R5_Expanded, &dev->flags))
4755 /* If we've reshaped into here, we assume it is Insync.
4756 * We will shortly update recovery_offset to make
4757 * it official.
4758 */
4759 set_bit(R5_Insync, &dev->flags);
4760
4761 if (test_bit(R5_WriteError, &dev->flags)) {
4762 /* This flag does not apply to '.replacement'
4763 * only to .rdev, so make sure to check that*/
4764 struct md_rdev *rdev2 = conf->disks[i].rdev;
4765
4766 if (rdev2 == rdev)
4767 clear_bit(R5_Insync, &dev->flags);
4768 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4769 s->handle_bad_blocks = 1;
4770 atomic_inc(&rdev2->nr_pending);
4771 } else
4772 clear_bit(R5_WriteError, &dev->flags);
4773 }
4774 if (test_bit(R5_MadeGood, &dev->flags)) {
4775 /* This flag does not apply to '.replacement'
4776 * only to .rdev, so make sure to check that*/
4777 struct md_rdev *rdev2 = conf->disks[i].rdev;
4778
4779 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4780 s->handle_bad_blocks = 1;
4781 atomic_inc(&rdev2->nr_pending);
4782 } else
4783 clear_bit(R5_MadeGood, &dev->flags);
4784 }
4785 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4786 struct md_rdev *rdev2 = conf->disks[i].replacement;
4787
4788 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4789 s->handle_bad_blocks = 1;
4790 atomic_inc(&rdev2->nr_pending);
4791 } else
4792 clear_bit(R5_MadeGoodRepl, &dev->flags);
4793 }
4794 if (!test_bit(R5_Insync, &dev->flags)) {
4795 /* The ReadError flag will just be confusing now */
4796 clear_bit(R5_ReadError, &dev->flags);
4797 clear_bit(R5_ReWrite, &dev->flags);
4798 }
4799 if (test_bit(R5_ReadError, &dev->flags))
4800 clear_bit(R5_Insync, &dev->flags);
4801 if (!test_bit(R5_Insync, &dev->flags)) {
4802 if (s->failed < 2)
4803 s->failed_num[s->failed] = i;
4804 s->failed++;
4805 if (rdev && !test_bit(Faulty, &rdev->flags))
4806 do_recovery = 1;
4807 else if (!rdev) {
4808 rdev = conf->disks[i].replacement;
4809 if (rdev && !test_bit(Faulty, &rdev->flags))
4810 do_recovery = 1;
4811 }
4812 }
4813
4814 if (test_bit(R5_InJournal, &dev->flags))
4815 s->injournal++;
4816 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4817 s->just_cached++;
4818 }
4819 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4820 /* If there is a failed device being replaced,
4821 * we must be recovering.
4822 * else if we are after recovery_cp, we must be syncing
4823 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4824 * else we can only be replacing
4825 * sync and recovery both need to read all devices, and so
4826 * use the same flag.
4827 */
4828 if (do_recovery ||
4829 sh->sector >= conf->mddev->recovery_cp ||
4830 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4831 s->syncing = 1;
4832 else
4833 s->replacing = 1;
4834 }
4835}
4836
4837/*
4838 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4839 * a head which can now be handled.
4840 */
4841static int clear_batch_ready(struct stripe_head *sh)
4842{
4843 struct stripe_head *tmp;
4844 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4845 return (sh->batch_head && sh->batch_head != sh);
4846 spin_lock(&sh->stripe_lock);
4847 if (!sh->batch_head) {
4848 spin_unlock(&sh->stripe_lock);
4849 return 0;
4850 }
4851
4852 /*
4853 * this stripe could be added to a batch list before we check
4854 * BATCH_READY, skips it
4855 */
4856 if (sh->batch_head != sh) {
4857 spin_unlock(&sh->stripe_lock);
4858 return 1;
4859 }
4860 spin_lock(&sh->batch_lock);
4861 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4862 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4863 spin_unlock(&sh->batch_lock);
4864 spin_unlock(&sh->stripe_lock);
4865
4866 /*
4867 * BATCH_READY is cleared, no new stripes can be added.
4868 * batch_list can be accessed without lock
4869 */
4870 return 0;
4871}
4872
4873static void break_stripe_batch_list(struct stripe_head *head_sh,
4874 unsigned long handle_flags)
4875{
4876 struct stripe_head *sh, *next;
4877 int i;
4878 int do_wakeup = 0;
4879
4880 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4881
4882 list_del_init(&sh->batch_list);
4883
4884 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4885 (1 << STRIPE_SYNCING) |
4886 (1 << STRIPE_REPLACED) |
4887 (1 << STRIPE_DELAYED) |
4888 (1 << STRIPE_BIT_DELAY) |
4889 (1 << STRIPE_FULL_WRITE) |
4890 (1 << STRIPE_BIOFILL_RUN) |
4891 (1 << STRIPE_COMPUTE_RUN) |
4892 (1 << STRIPE_DISCARD) |
4893 (1 << STRIPE_BATCH_READY) |
4894 (1 << STRIPE_BATCH_ERR) |
4895 (1 << STRIPE_BITMAP_PENDING)),
4896 "stripe state: %lx\n", sh->state);
4897 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4898 (1 << STRIPE_REPLACED)),
4899 "head stripe state: %lx\n", head_sh->state);
4900
4901 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4902 (1 << STRIPE_PREREAD_ACTIVE) |
4903 (1 << STRIPE_DEGRADED) |
4904 (1 << STRIPE_ON_UNPLUG_LIST)),
4905 head_sh->state & (1 << STRIPE_INSYNC));
4906
4907 sh->check_state = head_sh->check_state;
4908 sh->reconstruct_state = head_sh->reconstruct_state;
4909 spin_lock_irq(&sh->stripe_lock);
4910 sh->batch_head = NULL;
4911 spin_unlock_irq(&sh->stripe_lock);
4912 for (i = 0; i < sh->disks; i++) {
4913 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4914 do_wakeup = 1;
4915 sh->dev[i].flags = head_sh->dev[i].flags &
4916 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4917 }
4918 if (handle_flags == 0 ||
4919 sh->state & handle_flags)
4920 set_bit(STRIPE_HANDLE, &sh->state);
4921 raid5_release_stripe(sh);
4922 }
4923 spin_lock_irq(&head_sh->stripe_lock);
4924 head_sh->batch_head = NULL;
4925 spin_unlock_irq(&head_sh->stripe_lock);
4926 for (i = 0; i < head_sh->disks; i++)
4927 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4928 do_wakeup = 1;
4929 if (head_sh->state & handle_flags)
4930 set_bit(STRIPE_HANDLE, &head_sh->state);
4931
4932 if (do_wakeup)
4933 wake_up(&head_sh->raid_conf->wait_for_overlap);
4934}
4935
4936static void handle_stripe(struct stripe_head *sh)
4937{
4938 struct stripe_head_state s;
4939 struct r5conf *conf = sh->raid_conf;
4940 int i;
4941 int prexor;
4942 int disks = sh->disks;
4943 struct r5dev *pdev, *qdev;
4944
4945 clear_bit(STRIPE_HANDLE, &sh->state);
4946
4947 /*
4948 * handle_stripe should not continue handle the batched stripe, only
4949 * the head of batch list or lone stripe can continue. Otherwise we
4950 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4951 * is set for the batched stripe.
4952 */
4953 if (clear_batch_ready(sh))
4954 return;
4955
4956 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4957 /* already being handled, ensure it gets handled
4958 * again when current action finishes */
4959 set_bit(STRIPE_HANDLE, &sh->state);
4960 return;
4961 }
4962
4963 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4964 break_stripe_batch_list(sh, 0);
4965
4966 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4967 spin_lock(&sh->stripe_lock);
4968 /*
4969 * Cannot process 'sync' concurrently with 'discard'.
4970 * Flush data in r5cache before 'sync'.
4971 */
4972 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4973 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4974 !test_bit(STRIPE_DISCARD, &sh->state) &&
4975 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4976 set_bit(STRIPE_SYNCING, &sh->state);
4977 clear_bit(STRIPE_INSYNC, &sh->state);
4978 clear_bit(STRIPE_REPLACED, &sh->state);
4979 }
4980 spin_unlock(&sh->stripe_lock);
4981 }
4982 clear_bit(STRIPE_DELAYED, &sh->state);
4983
4984 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4985 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4986 (unsigned long long)sh->sector, sh->state,
4987 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4988 sh->check_state, sh->reconstruct_state);
4989
4990 analyse_stripe(sh, &s);
4991
4992 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4993 goto finish;
4994
4995 if (s.handle_bad_blocks ||
4996 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4997 set_bit(STRIPE_HANDLE, &sh->state);
4998 goto finish;
4999 }
5000
5001 if (unlikely(s.blocked_rdev)) {
5002 if (s.syncing || s.expanding || s.expanded ||
5003 s.replacing || s.to_write || s.written) {
5004 set_bit(STRIPE_HANDLE, &sh->state);
5005 goto finish;
5006 }
5007 /* There is nothing for the blocked_rdev to block */
5008 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5009 s.blocked_rdev = NULL;
5010 }
5011
5012 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5013 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5014 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5015 }
5016
5017 pr_debug("locked=%d uptodate=%d to_read=%d"
5018 " to_write=%d failed=%d failed_num=%d,%d\n",
5019 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5020 s.failed_num[0], s.failed_num[1]);
5021 /*
5022 * check if the array has lost more than max_degraded devices and,
5023 * if so, some requests might need to be failed.
5024 *
5025 * When journal device failed (log_failed), we will only process
5026 * the stripe if there is data need write to raid disks
5027 */
5028 if (s.failed > conf->max_degraded ||
5029 (s.log_failed && s.injournal == 0)) {
5030 sh->check_state = 0;
5031 sh->reconstruct_state = 0;
5032 break_stripe_batch_list(sh, 0);
5033 if (s.to_read+s.to_write+s.written)
5034 handle_failed_stripe(conf, sh, &s, disks);
5035 if (s.syncing + s.replacing)
5036 handle_failed_sync(conf, sh, &s);
5037 }
5038
5039 /* Now we check to see if any write operations have recently
5040 * completed
5041 */
5042 prexor = 0;
5043 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5044 prexor = 1;
5045 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5046 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5047 sh->reconstruct_state = reconstruct_state_idle;
5048
5049 /* All the 'written' buffers and the parity block are ready to
5050 * be written back to disk
5051 */
5052 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5053 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5054 BUG_ON(sh->qd_idx >= 0 &&
5055 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5056 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5057 for (i = disks; i--; ) {
5058 struct r5dev *dev = &sh->dev[i];
5059 if (test_bit(R5_LOCKED, &dev->flags) &&
5060 (i == sh->pd_idx || i == sh->qd_idx ||
5061 dev->written || test_bit(R5_InJournal,
5062 &dev->flags))) {
5063 pr_debug("Writing block %d\n", i);
5064 set_bit(R5_Wantwrite, &dev->flags);
5065 if (prexor)
5066 continue;
5067 if (s.failed > 1)
5068 continue;
5069 if (!test_bit(R5_Insync, &dev->flags) ||
5070 ((i == sh->pd_idx || i == sh->qd_idx) &&
5071 s.failed == 0))
5072 set_bit(STRIPE_INSYNC, &sh->state);
5073 }
5074 }
5075 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5076 s.dec_preread_active = 1;
5077 }
5078
5079 /*
5080 * might be able to return some write requests if the parity blocks
5081 * are safe, or on a failed drive
5082 */
5083 pdev = &sh->dev[sh->pd_idx];
5084 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5085 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5086 qdev = &sh->dev[sh->qd_idx];
5087 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5088 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5089 || conf->level < 6;
5090
5091 if (s.written &&
5092 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5093 && !test_bit(R5_LOCKED, &pdev->flags)
5094 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5095 test_bit(R5_Discard, &pdev->flags))))) &&
5096 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5097 && !test_bit(R5_LOCKED, &qdev->flags)
5098 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5099 test_bit(R5_Discard, &qdev->flags))))))
5100 handle_stripe_clean_event(conf, sh, disks);
5101
5102 if (s.just_cached)
5103 r5c_handle_cached_data_endio(conf, sh, disks);
5104 log_stripe_write_finished(sh);
5105
5106 /* Now we might consider reading some blocks, either to check/generate
5107 * parity, or to satisfy requests
5108 * or to load a block that is being partially written.
5109 */
5110 if (s.to_read || s.non_overwrite
5111 || (s.to_write && s.failed)
5112 || (s.syncing && (s.uptodate + s.compute < disks))
5113 || s.replacing
5114 || s.expanding)
5115 handle_stripe_fill(sh, &s, disks);
5116
5117 /*
5118 * When the stripe finishes full journal write cycle (write to journal
5119 * and raid disk), this is the clean up procedure so it is ready for
5120 * next operation.
5121 */
5122 r5c_finish_stripe_write_out(conf, sh, &s);
5123
5124 /*
5125 * Now to consider new write requests, cache write back and what else,
5126 * if anything should be read. We do not handle new writes when:
5127 * 1/ A 'write' operation (copy+xor) is already in flight.
5128 * 2/ A 'check' operation is in flight, as it may clobber the parity
5129 * block.
5130 * 3/ A r5c cache log write is in flight.
5131 */
5132
5133 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5134 if (!r5c_is_writeback(conf->log)) {
5135 if (s.to_write)
5136 handle_stripe_dirtying(conf, sh, &s, disks);
5137 } else { /* write back cache */
5138 int ret = 0;
5139
5140 /* First, try handle writes in caching phase */
5141 if (s.to_write)
5142 ret = r5c_try_caching_write(conf, sh, &s,
5143 disks);
5144 /*
5145 * If caching phase failed: ret == -EAGAIN
5146 * OR
5147 * stripe under reclaim: !caching && injournal
5148 *
5149 * fall back to handle_stripe_dirtying()
5150 */
5151 if (ret == -EAGAIN ||
5152 /* stripe under reclaim: !caching && injournal */
5153 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5154 s.injournal > 0)) {
5155 ret = handle_stripe_dirtying(conf, sh, &s,
5156 disks);
5157 if (ret == -EAGAIN)
5158 goto finish;
5159 }
5160 }
5161 }
5162
5163 /* maybe we need to check and possibly fix the parity for this stripe
5164 * Any reads will already have been scheduled, so we just see if enough
5165 * data is available. The parity check is held off while parity
5166 * dependent operations are in flight.
5167 */
5168 if (sh->check_state ||
5169 (s.syncing && s.locked == 0 &&
5170 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5171 !test_bit(STRIPE_INSYNC, &sh->state))) {
5172 if (conf->level == 6)
5173 handle_parity_checks6(conf, sh, &s, disks);
5174 else
5175 handle_parity_checks5(conf, sh, &s, disks);
5176 }
5177
5178 if ((s.replacing || s.syncing) && s.locked == 0
5179 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5180 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5181 /* Write out to replacement devices where possible */
5182 for (i = 0; i < conf->raid_disks; i++)
5183 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5184 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5185 set_bit(R5_WantReplace, &sh->dev[i].flags);
5186 set_bit(R5_LOCKED, &sh->dev[i].flags);
5187 s.locked++;
5188 }
5189 if (s.replacing)
5190 set_bit(STRIPE_INSYNC, &sh->state);
5191 set_bit(STRIPE_REPLACED, &sh->state);
5192 }
5193 if ((s.syncing || s.replacing) && s.locked == 0 &&
5194 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5195 test_bit(STRIPE_INSYNC, &sh->state)) {
5196 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5197 clear_bit(STRIPE_SYNCING, &sh->state);
5198 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5199 wake_up(&conf->wait_for_overlap);
5200 }
5201
5202 /* If the failed drives are just a ReadError, then we might need
5203 * to progress the repair/check process
5204 */
5205 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5206 for (i = 0; i < s.failed; i++) {
5207 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5208 if (test_bit(R5_ReadError, &dev->flags)
5209 && !test_bit(R5_LOCKED, &dev->flags)
5210 && test_bit(R5_UPTODATE, &dev->flags)
5211 ) {
5212 if (!test_bit(R5_ReWrite, &dev->flags)) {
5213 set_bit(R5_Wantwrite, &dev->flags);
5214 set_bit(R5_ReWrite, &dev->flags);
5215 } else
5216 /* let's read it back */
5217 set_bit(R5_Wantread, &dev->flags);
5218 set_bit(R5_LOCKED, &dev->flags);
5219 s.locked++;
5220 }
5221 }
5222
5223 /* Finish reconstruct operations initiated by the expansion process */
5224 if (sh->reconstruct_state == reconstruct_state_result) {
5225 struct stripe_head *sh_src
5226 = raid5_get_active_stripe(conf, NULL, sh->sector,
5227 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5228 R5_GAS_NOQUIESCE);
5229 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5230 /* sh cannot be written until sh_src has been read.
5231 * so arrange for sh to be delayed a little
5232 */
5233 set_bit(STRIPE_DELAYED, &sh->state);
5234 set_bit(STRIPE_HANDLE, &sh->state);
5235 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5236 &sh_src->state))
5237 atomic_inc(&conf->preread_active_stripes);
5238 raid5_release_stripe(sh_src);
5239 goto finish;
5240 }
5241 if (sh_src)
5242 raid5_release_stripe(sh_src);
5243
5244 sh->reconstruct_state = reconstruct_state_idle;
5245 clear_bit(STRIPE_EXPANDING, &sh->state);
5246 for (i = conf->raid_disks; i--; ) {
5247 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5248 set_bit(R5_LOCKED, &sh->dev[i].flags);
5249 s.locked++;
5250 }
5251 }
5252
5253 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5254 !sh->reconstruct_state) {
5255 /* Need to write out all blocks after computing parity */
5256 sh->disks = conf->raid_disks;
5257 stripe_set_idx(sh->sector, conf, 0, sh);
5258 schedule_reconstruction(sh, &s, 1, 1);
5259 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5260 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5261 atomic_dec(&conf->reshape_stripes);
5262 wake_up(&conf->wait_for_overlap);
5263 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5264 }
5265
5266 if (s.expanding && s.locked == 0 &&
5267 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5268 handle_stripe_expansion(conf, sh);
5269
5270finish:
5271 /* wait for this device to become unblocked */
5272 if (unlikely(s.blocked_rdev)) {
5273 if (conf->mddev->external)
5274 md_wait_for_blocked_rdev(s.blocked_rdev,
5275 conf->mddev);
5276 else
5277 /* Internal metadata will immediately
5278 * be written by raid5d, so we don't
5279 * need to wait here.
5280 */
5281 rdev_dec_pending(s.blocked_rdev,
5282 conf->mddev);
5283 }
5284
5285 if (s.handle_bad_blocks)
5286 for (i = disks; i--; ) {
5287 struct md_rdev *rdev;
5288 struct r5dev *dev = &sh->dev[i];
5289 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5290 /* We own a safe reference to the rdev */
5291 rdev = conf->disks[i].rdev;
5292 if (!rdev_set_badblocks(rdev, sh->sector,
5293 RAID5_STRIPE_SECTORS(conf), 0))
5294 md_error(conf->mddev, rdev);
5295 rdev_dec_pending(rdev, conf->mddev);
5296 }
5297 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5298 rdev = conf->disks[i].rdev;
5299 rdev_clear_badblocks(rdev, sh->sector,
5300 RAID5_STRIPE_SECTORS(conf), 0);
5301 rdev_dec_pending(rdev, conf->mddev);
5302 }
5303 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5304 rdev = conf->disks[i].replacement;
5305 if (!rdev)
5306 /* rdev have been moved down */
5307 rdev = conf->disks[i].rdev;
5308 rdev_clear_badblocks(rdev, sh->sector,
5309 RAID5_STRIPE_SECTORS(conf), 0);
5310 rdev_dec_pending(rdev, conf->mddev);
5311 }
5312 }
5313
5314 if (s.ops_request)
5315 raid_run_ops(sh, s.ops_request);
5316
5317 ops_run_io(sh, &s);
5318
5319 if (s.dec_preread_active) {
5320 /* We delay this until after ops_run_io so that if make_request
5321 * is waiting on a flush, it won't continue until the writes
5322 * have actually been submitted.
5323 */
5324 atomic_dec(&conf->preread_active_stripes);
5325 if (atomic_read(&conf->preread_active_stripes) <
5326 IO_THRESHOLD)
5327 md_wakeup_thread(conf->mddev->thread);
5328 }
5329
5330 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5331}
5332
5333static void raid5_activate_delayed(struct r5conf *conf)
5334 __must_hold(&conf->device_lock)
5335{
5336 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5337 while (!list_empty(&conf->delayed_list)) {
5338 struct list_head *l = conf->delayed_list.next;
5339 struct stripe_head *sh;
5340 sh = list_entry(l, struct stripe_head, lru);
5341 list_del_init(l);
5342 clear_bit(STRIPE_DELAYED, &sh->state);
5343 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5344 atomic_inc(&conf->preread_active_stripes);
5345 list_add_tail(&sh->lru, &conf->hold_list);
5346 raid5_wakeup_stripe_thread(sh);
5347 }
5348 }
5349}
5350
5351static void activate_bit_delay(struct r5conf *conf,
5352 struct list_head *temp_inactive_list)
5353 __must_hold(&conf->device_lock)
5354{
5355 struct list_head head;
5356 list_add(&head, &conf->bitmap_list);
5357 list_del_init(&conf->bitmap_list);
5358 while (!list_empty(&head)) {
5359 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5360 int hash;
5361 list_del_init(&sh->lru);
5362 atomic_inc(&sh->count);
5363 hash = sh->hash_lock_index;
5364 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5365 }
5366}
5367
5368static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5369{
5370 struct r5conf *conf = mddev->private;
5371 sector_t sector = bio->bi_iter.bi_sector;
5372 unsigned int chunk_sectors;
5373 unsigned int bio_sectors = bio_sectors(bio);
5374
5375 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5376 return chunk_sectors >=
5377 ((sector & (chunk_sectors - 1)) + bio_sectors);
5378}
5379
5380/*
5381 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5382 * later sampled by raid5d.
5383 */
5384static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5385{
5386 unsigned long flags;
5387
5388 spin_lock_irqsave(&conf->device_lock, flags);
5389
5390 bi->bi_next = conf->retry_read_aligned_list;
5391 conf->retry_read_aligned_list = bi;
5392
5393 spin_unlock_irqrestore(&conf->device_lock, flags);
5394 md_wakeup_thread(conf->mddev->thread);
5395}
5396
5397static struct bio *remove_bio_from_retry(struct r5conf *conf,
5398 unsigned int *offset)
5399{
5400 struct bio *bi;
5401
5402 bi = conf->retry_read_aligned;
5403 if (bi) {
5404 *offset = conf->retry_read_offset;
5405 conf->retry_read_aligned = NULL;
5406 return bi;
5407 }
5408 bi = conf->retry_read_aligned_list;
5409 if(bi) {
5410 conf->retry_read_aligned_list = bi->bi_next;
5411 bi->bi_next = NULL;
5412 *offset = 0;
5413 }
5414
5415 return bi;
5416}
5417
5418/*
5419 * The "raid5_align_endio" should check if the read succeeded and if it
5420 * did, call bio_endio on the original bio (having bio_put the new bio
5421 * first).
5422 * If the read failed..
5423 */
5424static void raid5_align_endio(struct bio *bi)
5425{
5426 struct bio *raid_bi = bi->bi_private;
5427 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5428 struct mddev *mddev = rdev->mddev;
5429 struct r5conf *conf = mddev->private;
5430 blk_status_t error = bi->bi_status;
5431
5432 bio_put(bi);
5433 raid_bi->bi_next = NULL;
5434 rdev_dec_pending(rdev, conf->mddev);
5435
5436 if (!error) {
5437 bio_endio(raid_bi);
5438 if (atomic_dec_and_test(&conf->active_aligned_reads))
5439 wake_up(&conf->wait_for_quiescent);
5440 return;
5441 }
5442
5443 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5444
5445 add_bio_to_retry(raid_bi, conf);
5446}
5447
5448static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5449{
5450 struct r5conf *conf = mddev->private;
5451 struct bio *align_bio;
5452 struct md_rdev *rdev;
5453 sector_t sector, end_sector;
5454 int dd_idx;
5455 bool did_inc;
5456
5457 if (!in_chunk_boundary(mddev, raid_bio)) {
5458 pr_debug("%s: non aligned\n", __func__);
5459 return 0;
5460 }
5461
5462 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5463 &dd_idx, NULL);
5464 end_sector = sector + bio_sectors(raid_bio);
5465
5466 if (r5c_big_stripe_cached(conf, sector))
5467 return 0;
5468
5469 rdev = conf->disks[dd_idx].replacement;
5470 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5471 rdev->recovery_offset < end_sector) {
5472 rdev = conf->disks[dd_idx].rdev;
5473 if (!rdev)
5474 return 0;
5475 if (test_bit(Faulty, &rdev->flags) ||
5476 !(test_bit(In_sync, &rdev->flags) ||
5477 rdev->recovery_offset >= end_sector))
5478 return 0;
5479 }
5480
5481 atomic_inc(&rdev->nr_pending);
5482
5483 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5484 rdev_dec_pending(rdev, mddev);
5485 return 0;
5486 }
5487
5488 md_account_bio(mddev, &raid_bio);
5489 raid_bio->bi_next = (void *)rdev;
5490
5491 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5492 &mddev->bio_set);
5493 align_bio->bi_end_io = raid5_align_endio;
5494 align_bio->bi_private = raid_bio;
5495 align_bio->bi_iter.bi_sector = sector;
5496
5497 /* No reshape active, so we can trust rdev->data_offset */
5498 align_bio->bi_iter.bi_sector += rdev->data_offset;
5499
5500 did_inc = false;
5501 if (conf->quiesce == 0) {
5502 atomic_inc(&conf->active_aligned_reads);
5503 did_inc = true;
5504 }
5505 /* need a memory barrier to detect the race with raid5_quiesce() */
5506 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5507 /* quiesce is in progress, so we need to undo io activation and wait
5508 * for it to finish
5509 */
5510 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5511 wake_up(&conf->wait_for_quiescent);
5512 spin_lock_irq(&conf->device_lock);
5513 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5514 conf->device_lock);
5515 atomic_inc(&conf->active_aligned_reads);
5516 spin_unlock_irq(&conf->device_lock);
5517 }
5518
5519 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5520 submit_bio_noacct(align_bio);
5521 return 1;
5522}
5523
5524static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5525{
5526 struct bio *split;
5527 sector_t sector = raid_bio->bi_iter.bi_sector;
5528 unsigned chunk_sects = mddev->chunk_sectors;
5529 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5530
5531 if (sectors < bio_sectors(raid_bio)) {
5532 struct r5conf *conf = mddev->private;
5533 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5534 bio_chain(split, raid_bio);
5535 submit_bio_noacct(raid_bio);
5536 raid_bio = split;
5537 }
5538
5539 if (!raid5_read_one_chunk(mddev, raid_bio))
5540 return raid_bio;
5541
5542 return NULL;
5543}
5544
5545/* __get_priority_stripe - get the next stripe to process
5546 *
5547 * Full stripe writes are allowed to pass preread active stripes up until
5548 * the bypass_threshold is exceeded. In general the bypass_count
5549 * increments when the handle_list is handled before the hold_list; however, it
5550 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5551 * stripe with in flight i/o. The bypass_count will be reset when the
5552 * head of the hold_list has changed, i.e. the head was promoted to the
5553 * handle_list.
5554 */
5555static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5556 __must_hold(&conf->device_lock)
5557{
5558 struct stripe_head *sh, *tmp;
5559 struct list_head *handle_list = NULL;
5560 struct r5worker_group *wg;
5561 bool second_try = !r5c_is_writeback(conf->log) &&
5562 !r5l_log_disk_error(conf);
5563 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5564 r5l_log_disk_error(conf);
5565
5566again:
5567 wg = NULL;
5568 sh = NULL;
5569 if (conf->worker_cnt_per_group == 0) {
5570 handle_list = try_loprio ? &conf->loprio_list :
5571 &conf->handle_list;
5572 } else if (group != ANY_GROUP) {
5573 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5574 &conf->worker_groups[group].handle_list;
5575 wg = &conf->worker_groups[group];
5576 } else {
5577 int i;
5578 for (i = 0; i < conf->group_cnt; i++) {
5579 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5580 &conf->worker_groups[i].handle_list;
5581 wg = &conf->worker_groups[i];
5582 if (!list_empty(handle_list))
5583 break;
5584 }
5585 }
5586
5587 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5588 __func__,
5589 list_empty(handle_list) ? "empty" : "busy",
5590 list_empty(&conf->hold_list) ? "empty" : "busy",
5591 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5592
5593 if (!list_empty(handle_list)) {
5594 sh = list_entry(handle_list->next, typeof(*sh), lru);
5595
5596 if (list_empty(&conf->hold_list))
5597 conf->bypass_count = 0;
5598 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5599 if (conf->hold_list.next == conf->last_hold)
5600 conf->bypass_count++;
5601 else {
5602 conf->last_hold = conf->hold_list.next;
5603 conf->bypass_count -= conf->bypass_threshold;
5604 if (conf->bypass_count < 0)
5605 conf->bypass_count = 0;
5606 }
5607 }
5608 } else if (!list_empty(&conf->hold_list) &&
5609 ((conf->bypass_threshold &&
5610 conf->bypass_count > conf->bypass_threshold) ||
5611 atomic_read(&conf->pending_full_writes) == 0)) {
5612
5613 list_for_each_entry(tmp, &conf->hold_list, lru) {
5614 if (conf->worker_cnt_per_group == 0 ||
5615 group == ANY_GROUP ||
5616 !cpu_online(tmp->cpu) ||
5617 cpu_to_group(tmp->cpu) == group) {
5618 sh = tmp;
5619 break;
5620 }
5621 }
5622
5623 if (sh) {
5624 conf->bypass_count -= conf->bypass_threshold;
5625 if (conf->bypass_count < 0)
5626 conf->bypass_count = 0;
5627 }
5628 wg = NULL;
5629 }
5630
5631 if (!sh) {
5632 if (second_try)
5633 return NULL;
5634 second_try = true;
5635 try_loprio = !try_loprio;
5636 goto again;
5637 }
5638
5639 if (wg) {
5640 wg->stripes_cnt--;
5641 sh->group = NULL;
5642 }
5643 list_del_init(&sh->lru);
5644 BUG_ON(atomic_inc_return(&sh->count) != 1);
5645 return sh;
5646}
5647
5648struct raid5_plug_cb {
5649 struct blk_plug_cb cb;
5650 struct list_head list;
5651 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5652};
5653
5654static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5655{
5656 struct raid5_plug_cb *cb = container_of(
5657 blk_cb, struct raid5_plug_cb, cb);
5658 struct stripe_head *sh;
5659 struct mddev *mddev = cb->cb.data;
5660 struct r5conf *conf = mddev->private;
5661 int cnt = 0;
5662 int hash;
5663
5664 if (cb->list.next && !list_empty(&cb->list)) {
5665 spin_lock_irq(&conf->device_lock);
5666 while (!list_empty(&cb->list)) {
5667 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5668 list_del_init(&sh->lru);
5669 /*
5670 * avoid race release_stripe_plug() sees
5671 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5672 * is still in our list
5673 */
5674 smp_mb__before_atomic();
5675 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5676 /*
5677 * STRIPE_ON_RELEASE_LIST could be set here. In that
5678 * case, the count is always > 1 here
5679 */
5680 hash = sh->hash_lock_index;
5681 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5682 cnt++;
5683 }
5684 spin_unlock_irq(&conf->device_lock);
5685 }
5686 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5687 NR_STRIPE_HASH_LOCKS);
5688 if (!mddev_is_dm(mddev))
5689 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5690 kfree(cb);
5691}
5692
5693static void release_stripe_plug(struct mddev *mddev,
5694 struct stripe_head *sh)
5695{
5696 struct blk_plug_cb *blk_cb = blk_check_plugged(
5697 raid5_unplug, mddev,
5698 sizeof(struct raid5_plug_cb));
5699 struct raid5_plug_cb *cb;
5700
5701 if (!blk_cb) {
5702 raid5_release_stripe(sh);
5703 return;
5704 }
5705
5706 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5707
5708 if (cb->list.next == NULL) {
5709 int i;
5710 INIT_LIST_HEAD(&cb->list);
5711 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5712 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5713 }
5714
5715 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5716 list_add_tail(&sh->lru, &cb->list);
5717 else
5718 raid5_release_stripe(sh);
5719}
5720
5721static void make_discard_request(struct mddev *mddev, struct bio *bi)
5722{
5723 struct r5conf *conf = mddev->private;
5724 sector_t logical_sector, last_sector;
5725 struct stripe_head *sh;
5726 int stripe_sectors;
5727
5728 /* We need to handle this when io_uring supports discard/trim */
5729 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5730 return;
5731
5732 if (mddev->reshape_position != MaxSector)
5733 /* Skip discard while reshape is happening */
5734 return;
5735
5736 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5737 last_sector = bio_end_sector(bi);
5738
5739 bi->bi_next = NULL;
5740
5741 stripe_sectors = conf->chunk_sectors *
5742 (conf->raid_disks - conf->max_degraded);
5743 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5744 stripe_sectors);
5745 sector_div(last_sector, stripe_sectors);
5746
5747 logical_sector *= conf->chunk_sectors;
5748 last_sector *= conf->chunk_sectors;
5749
5750 for (; logical_sector < last_sector;
5751 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5752 DEFINE_WAIT(w);
5753 int d;
5754 again:
5755 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5756 prepare_to_wait(&conf->wait_for_overlap, &w,
5757 TASK_UNINTERRUPTIBLE);
5758 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5759 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5760 raid5_release_stripe(sh);
5761 schedule();
5762 goto again;
5763 }
5764 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5765 spin_lock_irq(&sh->stripe_lock);
5766 for (d = 0; d < conf->raid_disks; d++) {
5767 if (d == sh->pd_idx || d == sh->qd_idx)
5768 continue;
5769 if (sh->dev[d].towrite || sh->dev[d].toread) {
5770 set_bit(R5_Overlap, &sh->dev[d].flags);
5771 spin_unlock_irq(&sh->stripe_lock);
5772 raid5_release_stripe(sh);
5773 schedule();
5774 goto again;
5775 }
5776 }
5777 set_bit(STRIPE_DISCARD, &sh->state);
5778 finish_wait(&conf->wait_for_overlap, &w);
5779 sh->overwrite_disks = 0;
5780 for (d = 0; d < conf->raid_disks; d++) {
5781 if (d == sh->pd_idx || d == sh->qd_idx)
5782 continue;
5783 sh->dev[d].towrite = bi;
5784 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5785 bio_inc_remaining(bi);
5786 md_write_inc(mddev, bi);
5787 sh->overwrite_disks++;
5788 }
5789 spin_unlock_irq(&sh->stripe_lock);
5790 if (conf->mddev->bitmap) {
5791 for (d = 0;
5792 d < conf->raid_disks - conf->max_degraded;
5793 d++)
5794 md_bitmap_startwrite(mddev->bitmap,
5795 sh->sector,
5796 RAID5_STRIPE_SECTORS(conf),
5797 0);
5798 sh->bm_seq = conf->seq_flush + 1;
5799 set_bit(STRIPE_BIT_DELAY, &sh->state);
5800 }
5801
5802 set_bit(STRIPE_HANDLE, &sh->state);
5803 clear_bit(STRIPE_DELAYED, &sh->state);
5804 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5805 atomic_inc(&conf->preread_active_stripes);
5806 release_stripe_plug(mddev, sh);
5807 }
5808
5809 bio_endio(bi);
5810}
5811
5812static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5813 sector_t reshape_sector)
5814{
5815 return mddev->reshape_backwards ? sector < reshape_sector :
5816 sector >= reshape_sector;
5817}
5818
5819static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5820 sector_t max, sector_t reshape_sector)
5821{
5822 return mddev->reshape_backwards ? max < reshape_sector :
5823 min >= reshape_sector;
5824}
5825
5826static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5827 struct stripe_head *sh)
5828{
5829 sector_t max_sector = 0, min_sector = MaxSector;
5830 bool ret = false;
5831 int dd_idx;
5832
5833 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5834 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5835 continue;
5836
5837 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5838 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5839 }
5840
5841 spin_lock_irq(&conf->device_lock);
5842
5843 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5844 conf->reshape_progress))
5845 /* mismatch, need to try again */
5846 ret = true;
5847
5848 spin_unlock_irq(&conf->device_lock);
5849
5850 return ret;
5851}
5852
5853static int add_all_stripe_bios(struct r5conf *conf,
5854 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5855 struct bio *bi, int forwrite, int previous)
5856{
5857 int dd_idx;
5858 int ret = 1;
5859
5860 spin_lock_irq(&sh->stripe_lock);
5861
5862 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5863 struct r5dev *dev = &sh->dev[dd_idx];
5864
5865 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5866 continue;
5867
5868 if (dev->sector < ctx->first_sector ||
5869 dev->sector >= ctx->last_sector)
5870 continue;
5871
5872 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5873 set_bit(R5_Overlap, &dev->flags);
5874 ret = 0;
5875 continue;
5876 }
5877 }
5878
5879 if (!ret)
5880 goto out;
5881
5882 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5883 struct r5dev *dev = &sh->dev[dd_idx];
5884
5885 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5886 continue;
5887
5888 if (dev->sector < ctx->first_sector ||
5889 dev->sector >= ctx->last_sector)
5890 continue;
5891
5892 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5893 clear_bit((dev->sector - ctx->first_sector) >>
5894 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5895 }
5896
5897out:
5898 spin_unlock_irq(&sh->stripe_lock);
5899 return ret;
5900}
5901
5902enum reshape_loc {
5903 LOC_NO_RESHAPE,
5904 LOC_AHEAD_OF_RESHAPE,
5905 LOC_INSIDE_RESHAPE,
5906 LOC_BEHIND_RESHAPE,
5907};
5908
5909static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5910 struct r5conf *conf, sector_t logical_sector)
5911{
5912 sector_t reshape_progress, reshape_safe;
5913 /*
5914 * Spinlock is needed as reshape_progress may be
5915 * 64bit on a 32bit platform, and so it might be
5916 * possible to see a half-updated value
5917 * Of course reshape_progress could change after
5918 * the lock is dropped, so once we get a reference
5919 * to the stripe that we think it is, we will have
5920 * to check again.
5921 */
5922 spin_lock_irq(&conf->device_lock);
5923 reshape_progress = conf->reshape_progress;
5924 reshape_safe = conf->reshape_safe;
5925 spin_unlock_irq(&conf->device_lock);
5926 if (reshape_progress == MaxSector)
5927 return LOC_NO_RESHAPE;
5928 if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5929 return LOC_AHEAD_OF_RESHAPE;
5930 if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5931 return LOC_INSIDE_RESHAPE;
5932 return LOC_BEHIND_RESHAPE;
5933}
5934
5935static enum stripe_result make_stripe_request(struct mddev *mddev,
5936 struct r5conf *conf, struct stripe_request_ctx *ctx,
5937 sector_t logical_sector, struct bio *bi)
5938{
5939 const int rw = bio_data_dir(bi);
5940 enum stripe_result ret;
5941 struct stripe_head *sh;
5942 sector_t new_sector;
5943 int previous = 0, flags = 0;
5944 int seq, dd_idx;
5945
5946 seq = read_seqcount_begin(&conf->gen_lock);
5947
5948 if (unlikely(conf->reshape_progress != MaxSector)) {
5949 enum reshape_loc loc = get_reshape_loc(mddev, conf,
5950 logical_sector);
5951 if (loc == LOC_INSIDE_RESHAPE) {
5952 ret = STRIPE_SCHEDULE_AND_RETRY;
5953 goto out;
5954 }
5955 if (loc == LOC_AHEAD_OF_RESHAPE)
5956 previous = 1;
5957 }
5958
5959 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5960 &dd_idx, NULL);
5961 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5962 new_sector, logical_sector);
5963
5964 if (previous)
5965 flags |= R5_GAS_PREVIOUS;
5966 if (bi->bi_opf & REQ_RAHEAD)
5967 flags |= R5_GAS_NOBLOCK;
5968 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5969 if (unlikely(!sh)) {
5970 /* cannot get stripe, just give-up */
5971 bi->bi_status = BLK_STS_IOERR;
5972 return STRIPE_FAIL;
5973 }
5974
5975 if (unlikely(previous) &&
5976 stripe_ahead_of_reshape(mddev, conf, sh)) {
5977 /*
5978 * Expansion moved on while waiting for a stripe.
5979 * Expansion could still move past after this
5980 * test, but as we are holding a reference to
5981 * 'sh', we know that if that happens,
5982 * STRIPE_EXPANDING will get set and the expansion
5983 * won't proceed until we finish with the stripe.
5984 */
5985 ret = STRIPE_SCHEDULE_AND_RETRY;
5986 goto out_release;
5987 }
5988
5989 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5990 /* Might have got the wrong stripe_head by accident */
5991 ret = STRIPE_RETRY;
5992 goto out_release;
5993 }
5994
5995 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5996 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5997 /*
5998 * Stripe is busy expanding or add failed due to
5999 * overlap. Flush everything and wait a while.
6000 */
6001 md_wakeup_thread(mddev->thread);
6002 ret = STRIPE_SCHEDULE_AND_RETRY;
6003 goto out_release;
6004 }
6005
6006 if (stripe_can_batch(sh)) {
6007 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6008 if (ctx->batch_last)
6009 raid5_release_stripe(ctx->batch_last);
6010 atomic_inc(&sh->count);
6011 ctx->batch_last = sh;
6012 }
6013
6014 if (ctx->do_flush) {
6015 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6016 /* we only need flush for one stripe */
6017 ctx->do_flush = false;
6018 }
6019
6020 set_bit(STRIPE_HANDLE, &sh->state);
6021 clear_bit(STRIPE_DELAYED, &sh->state);
6022 if ((!sh->batch_head || sh == sh->batch_head) &&
6023 (bi->bi_opf & REQ_SYNC) &&
6024 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6025 atomic_inc(&conf->preread_active_stripes);
6026
6027 release_stripe_plug(mddev, sh);
6028 return STRIPE_SUCCESS;
6029
6030out_release:
6031 raid5_release_stripe(sh);
6032out:
6033 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6034 bi->bi_status = BLK_STS_RESOURCE;
6035 ret = STRIPE_WAIT_RESHAPE;
6036 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6037 }
6038 return ret;
6039}
6040
6041/*
6042 * If the bio covers multiple data disks, find sector within the bio that has
6043 * the lowest chunk offset in the first chunk.
6044 */
6045static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6046 struct bio *bi)
6047{
6048 int sectors_per_chunk = conf->chunk_sectors;
6049 int raid_disks = conf->raid_disks;
6050 int dd_idx;
6051 struct stripe_head sh;
6052 unsigned int chunk_offset;
6053 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6054 sector_t sector;
6055
6056 /* We pass in fake stripe_head to get back parity disk numbers */
6057 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6058 chunk_offset = sector_div(sector, sectors_per_chunk);
6059 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6060 return r_sector;
6061 /*
6062 * Bio crosses to the next data disk. Check whether it's in the same
6063 * chunk.
6064 */
6065 dd_idx++;
6066 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6067 dd_idx++;
6068 if (dd_idx >= raid_disks)
6069 return r_sector;
6070 return r_sector + sectors_per_chunk - chunk_offset;
6071}
6072
6073static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6074{
6075 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6076 struct r5conf *conf = mddev->private;
6077 sector_t logical_sector;
6078 struct stripe_request_ctx ctx = {};
6079 const int rw = bio_data_dir(bi);
6080 enum stripe_result res;
6081 int s, stripe_cnt;
6082
6083 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6084 int ret = log_handle_flush_request(conf, bi);
6085
6086 if (ret == 0)
6087 return true;
6088 if (ret == -ENODEV) {
6089 if (md_flush_request(mddev, bi))
6090 return true;
6091 }
6092 /* ret == -EAGAIN, fallback */
6093 /*
6094 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6095 * we need to flush journal device
6096 */
6097 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6098 }
6099
6100 md_write_start(mddev, bi);
6101 /*
6102 * If array is degraded, better not do chunk aligned read because
6103 * later we might have to read it again in order to reconstruct
6104 * data on failed drives.
6105 */
6106 if (rw == READ && mddev->degraded == 0 &&
6107 mddev->reshape_position == MaxSector) {
6108 bi = chunk_aligned_read(mddev, bi);
6109 if (!bi)
6110 return true;
6111 }
6112
6113 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6114 make_discard_request(mddev, bi);
6115 md_write_end(mddev);
6116 return true;
6117 }
6118
6119 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6120 ctx.first_sector = logical_sector;
6121 ctx.last_sector = bio_end_sector(bi);
6122 bi->bi_next = NULL;
6123
6124 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6125 RAID5_STRIPE_SECTORS(conf));
6126 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6127
6128 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6129 bi->bi_iter.bi_sector, ctx.last_sector);
6130
6131 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6132 if ((bi->bi_opf & REQ_NOWAIT) &&
6133 (conf->reshape_progress != MaxSector) &&
6134 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6135 bio_wouldblock_error(bi);
6136 if (rw == WRITE)
6137 md_write_end(mddev);
6138 return true;
6139 }
6140 md_account_bio(mddev, &bi);
6141
6142 /*
6143 * Lets start with the stripe with the lowest chunk offset in the first
6144 * chunk. That has the best chances of creating IOs adjacent to
6145 * previous IOs in case of sequential IO and thus creates the most
6146 * sequential IO pattern. We don't bother with the optimization when
6147 * reshaping as the performance benefit is not worth the complexity.
6148 */
6149 if (likely(conf->reshape_progress == MaxSector))
6150 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6151 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6152
6153 add_wait_queue(&conf->wait_for_overlap, &wait);
6154 while (1) {
6155 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6156 bi);
6157 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6158 break;
6159
6160 if (res == STRIPE_RETRY)
6161 continue;
6162
6163 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6164 /*
6165 * Must release the reference to batch_last before
6166 * scheduling and waiting for work to be done,
6167 * otherwise the batch_last stripe head could prevent
6168 * raid5_activate_delayed() from making progress
6169 * and thus deadlocking.
6170 */
6171 if (ctx.batch_last) {
6172 raid5_release_stripe(ctx.batch_last);
6173 ctx.batch_last = NULL;
6174 }
6175
6176 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6177 MAX_SCHEDULE_TIMEOUT);
6178 continue;
6179 }
6180
6181 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6182 if (s == stripe_cnt)
6183 break;
6184
6185 logical_sector = ctx.first_sector +
6186 (s << RAID5_STRIPE_SHIFT(conf));
6187 }
6188 remove_wait_queue(&conf->wait_for_overlap, &wait);
6189
6190 if (ctx.batch_last)
6191 raid5_release_stripe(ctx.batch_last);
6192
6193 if (rw == WRITE)
6194 md_write_end(mddev);
6195 if (res == STRIPE_WAIT_RESHAPE) {
6196 md_free_cloned_bio(bi);
6197 return false;
6198 }
6199
6200 bio_endio(bi);
6201 return true;
6202}
6203
6204static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6205
6206static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6207{
6208 /* reshaping is quite different to recovery/resync so it is
6209 * handled quite separately ... here.
6210 *
6211 * On each call to sync_request, we gather one chunk worth of
6212 * destination stripes and flag them as expanding.
6213 * Then we find all the source stripes and request reads.
6214 * As the reads complete, handle_stripe will copy the data
6215 * into the destination stripe and release that stripe.
6216 */
6217 struct r5conf *conf = mddev->private;
6218 struct stripe_head *sh;
6219 struct md_rdev *rdev;
6220 sector_t first_sector, last_sector;
6221 int raid_disks = conf->previous_raid_disks;
6222 int data_disks = raid_disks - conf->max_degraded;
6223 int new_data_disks = conf->raid_disks - conf->max_degraded;
6224 int i;
6225 int dd_idx;
6226 sector_t writepos, readpos, safepos;
6227 sector_t stripe_addr;
6228 int reshape_sectors;
6229 struct list_head stripes;
6230 sector_t retn;
6231
6232 if (sector_nr == 0) {
6233 /* If restarting in the middle, skip the initial sectors */
6234 if (mddev->reshape_backwards &&
6235 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6236 sector_nr = raid5_size(mddev, 0, 0)
6237 - conf->reshape_progress;
6238 } else if (mddev->reshape_backwards &&
6239 conf->reshape_progress == MaxSector) {
6240 /* shouldn't happen, but just in case, finish up.*/
6241 sector_nr = MaxSector;
6242 } else if (!mddev->reshape_backwards &&
6243 conf->reshape_progress > 0)
6244 sector_nr = conf->reshape_progress;
6245 sector_div(sector_nr, new_data_disks);
6246 if (sector_nr) {
6247 mddev->curr_resync_completed = sector_nr;
6248 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6249 *skipped = 1;
6250 retn = sector_nr;
6251 goto finish;
6252 }
6253 }
6254
6255 /* We need to process a full chunk at a time.
6256 * If old and new chunk sizes differ, we need to process the
6257 * largest of these
6258 */
6259
6260 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6261
6262 /* We update the metadata at least every 10 seconds, or when
6263 * the data about to be copied would over-write the source of
6264 * the data at the front of the range. i.e. one new_stripe
6265 * along from reshape_progress new_maps to after where
6266 * reshape_safe old_maps to
6267 */
6268 writepos = conf->reshape_progress;
6269 sector_div(writepos, new_data_disks);
6270 readpos = conf->reshape_progress;
6271 sector_div(readpos, data_disks);
6272 safepos = conf->reshape_safe;
6273 sector_div(safepos, data_disks);
6274 if (mddev->reshape_backwards) {
6275 if (WARN_ON(writepos < reshape_sectors))
6276 return MaxSector;
6277
6278 writepos -= reshape_sectors;
6279 readpos += reshape_sectors;
6280 safepos += reshape_sectors;
6281 } else {
6282 writepos += reshape_sectors;
6283 /* readpos and safepos are worst-case calculations.
6284 * A negative number is overly pessimistic, and causes
6285 * obvious problems for unsigned storage. So clip to 0.
6286 */
6287 readpos -= min_t(sector_t, reshape_sectors, readpos);
6288 safepos -= min_t(sector_t, reshape_sectors, safepos);
6289 }
6290
6291 /* Having calculated the 'writepos' possibly use it
6292 * to set 'stripe_addr' which is where we will write to.
6293 */
6294 if (mddev->reshape_backwards) {
6295 if (WARN_ON(conf->reshape_progress == 0))
6296 return MaxSector;
6297
6298 stripe_addr = writepos;
6299 if (WARN_ON((mddev->dev_sectors &
6300 ~((sector_t)reshape_sectors - 1)) -
6301 reshape_sectors - stripe_addr != sector_nr))
6302 return MaxSector;
6303 } else {
6304 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6305 return MaxSector;
6306
6307 stripe_addr = sector_nr;
6308 }
6309
6310 /* 'writepos' is the most advanced device address we might write.
6311 * 'readpos' is the least advanced device address we might read.
6312 * 'safepos' is the least address recorded in the metadata as having
6313 * been reshaped.
6314 * If there is a min_offset_diff, these are adjusted either by
6315 * increasing the safepos/readpos if diff is negative, or
6316 * increasing writepos if diff is positive.
6317 * If 'readpos' is then behind 'writepos', there is no way that we can
6318 * ensure safety in the face of a crash - that must be done by userspace
6319 * making a backup of the data. So in that case there is no particular
6320 * rush to update metadata.
6321 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6322 * update the metadata to advance 'safepos' to match 'readpos' so that
6323 * we can be safe in the event of a crash.
6324 * So we insist on updating metadata if safepos is behind writepos and
6325 * readpos is beyond writepos.
6326 * In any case, update the metadata every 10 seconds.
6327 * Maybe that number should be configurable, but I'm not sure it is
6328 * worth it.... maybe it could be a multiple of safemode_delay???
6329 */
6330 if (conf->min_offset_diff < 0) {
6331 safepos += -conf->min_offset_diff;
6332 readpos += -conf->min_offset_diff;
6333 } else
6334 writepos += conf->min_offset_diff;
6335
6336 if ((mddev->reshape_backwards
6337 ? (safepos > writepos && readpos < writepos)
6338 : (safepos < writepos && readpos > writepos)) ||
6339 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6340 /* Cannot proceed until we've updated the superblock... */
6341 wait_event(conf->wait_for_overlap,
6342 atomic_read(&conf->reshape_stripes)==0
6343 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6344 if (atomic_read(&conf->reshape_stripes) != 0)
6345 return 0;
6346 mddev->reshape_position = conf->reshape_progress;
6347 mddev->curr_resync_completed = sector_nr;
6348 if (!mddev->reshape_backwards)
6349 /* Can update recovery_offset */
6350 rdev_for_each(rdev, mddev)
6351 if (rdev->raid_disk >= 0 &&
6352 !test_bit(Journal, &rdev->flags) &&
6353 !test_bit(In_sync, &rdev->flags) &&
6354 rdev->recovery_offset < sector_nr)
6355 rdev->recovery_offset = sector_nr;
6356
6357 conf->reshape_checkpoint = jiffies;
6358 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6359 md_wakeup_thread(mddev->thread);
6360 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6361 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6362 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6363 return 0;
6364 spin_lock_irq(&conf->device_lock);
6365 conf->reshape_safe = mddev->reshape_position;
6366 spin_unlock_irq(&conf->device_lock);
6367 wake_up(&conf->wait_for_overlap);
6368 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6369 }
6370
6371 INIT_LIST_HEAD(&stripes);
6372 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6373 int j;
6374 int skipped_disk = 0;
6375 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6376 R5_GAS_NOQUIESCE);
6377 set_bit(STRIPE_EXPANDING, &sh->state);
6378 atomic_inc(&conf->reshape_stripes);
6379 /* If any of this stripe is beyond the end of the old
6380 * array, then we need to zero those blocks
6381 */
6382 for (j=sh->disks; j--;) {
6383 sector_t s;
6384 if (j == sh->pd_idx)
6385 continue;
6386 if (conf->level == 6 &&
6387 j == sh->qd_idx)
6388 continue;
6389 s = raid5_compute_blocknr(sh, j, 0);
6390 if (s < raid5_size(mddev, 0, 0)) {
6391 skipped_disk = 1;
6392 continue;
6393 }
6394 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6395 set_bit(R5_Expanded, &sh->dev[j].flags);
6396 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6397 }
6398 if (!skipped_disk) {
6399 set_bit(STRIPE_EXPAND_READY, &sh->state);
6400 set_bit(STRIPE_HANDLE, &sh->state);
6401 }
6402 list_add(&sh->lru, &stripes);
6403 }
6404 spin_lock_irq(&conf->device_lock);
6405 if (mddev->reshape_backwards)
6406 conf->reshape_progress -= reshape_sectors * new_data_disks;
6407 else
6408 conf->reshape_progress += reshape_sectors * new_data_disks;
6409 spin_unlock_irq(&conf->device_lock);
6410 /* Ok, those stripe are ready. We can start scheduling
6411 * reads on the source stripes.
6412 * The source stripes are determined by mapping the first and last
6413 * block on the destination stripes.
6414 */
6415 first_sector =
6416 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6417 1, &dd_idx, NULL);
6418 last_sector =
6419 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6420 * new_data_disks - 1),
6421 1, &dd_idx, NULL);
6422 if (last_sector >= mddev->dev_sectors)
6423 last_sector = mddev->dev_sectors - 1;
6424 while (first_sector <= last_sector) {
6425 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6426 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6427 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6428 set_bit(STRIPE_HANDLE, &sh->state);
6429 raid5_release_stripe(sh);
6430 first_sector += RAID5_STRIPE_SECTORS(conf);
6431 }
6432 /* Now that the sources are clearly marked, we can release
6433 * the destination stripes
6434 */
6435 while (!list_empty(&stripes)) {
6436 sh = list_entry(stripes.next, struct stripe_head, lru);
6437 list_del_init(&sh->lru);
6438 raid5_release_stripe(sh);
6439 }
6440 /* If this takes us to the resync_max point where we have to pause,
6441 * then we need to write out the superblock.
6442 */
6443 sector_nr += reshape_sectors;
6444 retn = reshape_sectors;
6445finish:
6446 if (mddev->curr_resync_completed > mddev->resync_max ||
6447 (sector_nr - mddev->curr_resync_completed) * 2
6448 >= mddev->resync_max - mddev->curr_resync_completed) {
6449 /* Cannot proceed until we've updated the superblock... */
6450 wait_event(conf->wait_for_overlap,
6451 atomic_read(&conf->reshape_stripes) == 0
6452 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6453 if (atomic_read(&conf->reshape_stripes) != 0)
6454 goto ret;
6455 mddev->reshape_position = conf->reshape_progress;
6456 mddev->curr_resync_completed = sector_nr;
6457 if (!mddev->reshape_backwards)
6458 /* Can update recovery_offset */
6459 rdev_for_each(rdev, mddev)
6460 if (rdev->raid_disk >= 0 &&
6461 !test_bit(Journal, &rdev->flags) &&
6462 !test_bit(In_sync, &rdev->flags) &&
6463 rdev->recovery_offset < sector_nr)
6464 rdev->recovery_offset = sector_nr;
6465 conf->reshape_checkpoint = jiffies;
6466 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6467 md_wakeup_thread(mddev->thread);
6468 wait_event(mddev->sb_wait,
6469 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6470 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6471 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6472 goto ret;
6473 spin_lock_irq(&conf->device_lock);
6474 conf->reshape_safe = mddev->reshape_position;
6475 spin_unlock_irq(&conf->device_lock);
6476 wake_up(&conf->wait_for_overlap);
6477 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6478 }
6479ret:
6480 return retn;
6481}
6482
6483static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6484 sector_t max_sector, int *skipped)
6485{
6486 struct r5conf *conf = mddev->private;
6487 struct stripe_head *sh;
6488 sector_t sync_blocks;
6489 int still_degraded = 0;
6490 int i;
6491
6492 if (sector_nr >= max_sector) {
6493 /* just being told to finish up .. nothing much to do */
6494
6495 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6496 end_reshape(conf);
6497 return 0;
6498 }
6499
6500 if (mddev->curr_resync < max_sector) /* aborted */
6501 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6502 &sync_blocks, 1);
6503 else /* completed sync */
6504 conf->fullsync = 0;
6505 md_bitmap_close_sync(mddev->bitmap);
6506
6507 return 0;
6508 }
6509
6510 /* Allow raid5_quiesce to complete */
6511 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6512
6513 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6514 return reshape_request(mddev, sector_nr, skipped);
6515
6516 /* No need to check resync_max as we never do more than one
6517 * stripe, and as resync_max will always be on a chunk boundary,
6518 * if the check in md_do_sync didn't fire, there is no chance
6519 * of overstepping resync_max here
6520 */
6521
6522 /* if there is too many failed drives and we are trying
6523 * to resync, then assert that we are finished, because there is
6524 * nothing we can do.
6525 */
6526 if (mddev->degraded >= conf->max_degraded &&
6527 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6528 sector_t rv = mddev->dev_sectors - sector_nr;
6529 *skipped = 1;
6530 return rv;
6531 }
6532 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6533 !conf->fullsync &&
6534 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6535 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6536 /* we can skip this block, and probably more */
6537 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6538 *skipped = 1;
6539 /* keep things rounded to whole stripes */
6540 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6541 }
6542
6543 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6544
6545 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6546 R5_GAS_NOBLOCK);
6547 if (sh == NULL) {
6548 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6549 /* make sure we don't swamp the stripe cache if someone else
6550 * is trying to get access
6551 */
6552 schedule_timeout_uninterruptible(1);
6553 }
6554 /* Need to check if array will still be degraded after recovery/resync
6555 * Note in case of > 1 drive failures it's possible we're rebuilding
6556 * one drive while leaving another faulty drive in array.
6557 */
6558 for (i = 0; i < conf->raid_disks; i++) {
6559 struct md_rdev *rdev = conf->disks[i].rdev;
6560
6561 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6562 still_degraded = 1;
6563 }
6564
6565 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6566
6567 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6568 set_bit(STRIPE_HANDLE, &sh->state);
6569
6570 raid5_release_stripe(sh);
6571
6572 return RAID5_STRIPE_SECTORS(conf);
6573}
6574
6575static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6576 unsigned int offset)
6577{
6578 /* We may not be able to submit a whole bio at once as there
6579 * may not be enough stripe_heads available.
6580 * We cannot pre-allocate enough stripe_heads as we may need
6581 * more than exist in the cache (if we allow ever large chunks).
6582 * So we do one stripe head at a time and record in
6583 * ->bi_hw_segments how many have been done.
6584 *
6585 * We *know* that this entire raid_bio is in one chunk, so
6586 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6587 */
6588 struct stripe_head *sh;
6589 int dd_idx;
6590 sector_t sector, logical_sector, last_sector;
6591 int scnt = 0;
6592 int handled = 0;
6593
6594 logical_sector = raid_bio->bi_iter.bi_sector &
6595 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6596 sector = raid5_compute_sector(conf, logical_sector,
6597 0, &dd_idx, NULL);
6598 last_sector = bio_end_sector(raid_bio);
6599
6600 for (; logical_sector < last_sector;
6601 logical_sector += RAID5_STRIPE_SECTORS(conf),
6602 sector += RAID5_STRIPE_SECTORS(conf),
6603 scnt++) {
6604
6605 if (scnt < offset)
6606 /* already done this stripe */
6607 continue;
6608
6609 sh = raid5_get_active_stripe(conf, NULL, sector,
6610 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6611 if (!sh) {
6612 /* failed to get a stripe - must wait */
6613 conf->retry_read_aligned = raid_bio;
6614 conf->retry_read_offset = scnt;
6615 return handled;
6616 }
6617
6618 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6619 raid5_release_stripe(sh);
6620 conf->retry_read_aligned = raid_bio;
6621 conf->retry_read_offset = scnt;
6622 return handled;
6623 }
6624
6625 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6626 handle_stripe(sh);
6627 raid5_release_stripe(sh);
6628 handled++;
6629 }
6630
6631 bio_endio(raid_bio);
6632
6633 if (atomic_dec_and_test(&conf->active_aligned_reads))
6634 wake_up(&conf->wait_for_quiescent);
6635 return handled;
6636}
6637
6638static int handle_active_stripes(struct r5conf *conf, int group,
6639 struct r5worker *worker,
6640 struct list_head *temp_inactive_list)
6641 __must_hold(&conf->device_lock)
6642{
6643 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6644 int i, batch_size = 0, hash;
6645 bool release_inactive = false;
6646
6647 while (batch_size < MAX_STRIPE_BATCH &&
6648 (sh = __get_priority_stripe(conf, group)) != NULL)
6649 batch[batch_size++] = sh;
6650
6651 if (batch_size == 0) {
6652 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6653 if (!list_empty(temp_inactive_list + i))
6654 break;
6655 if (i == NR_STRIPE_HASH_LOCKS) {
6656 spin_unlock_irq(&conf->device_lock);
6657 log_flush_stripe_to_raid(conf);
6658 spin_lock_irq(&conf->device_lock);
6659 return batch_size;
6660 }
6661 release_inactive = true;
6662 }
6663 spin_unlock_irq(&conf->device_lock);
6664
6665 release_inactive_stripe_list(conf, temp_inactive_list,
6666 NR_STRIPE_HASH_LOCKS);
6667
6668 r5l_flush_stripe_to_raid(conf->log);
6669 if (release_inactive) {
6670 spin_lock_irq(&conf->device_lock);
6671 return 0;
6672 }
6673
6674 for (i = 0; i < batch_size; i++)
6675 handle_stripe(batch[i]);
6676 log_write_stripe_run(conf);
6677
6678 cond_resched();
6679
6680 spin_lock_irq(&conf->device_lock);
6681 for (i = 0; i < batch_size; i++) {
6682 hash = batch[i]->hash_lock_index;
6683 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6684 }
6685 return batch_size;
6686}
6687
6688static void raid5_do_work(struct work_struct *work)
6689{
6690 struct r5worker *worker = container_of(work, struct r5worker, work);
6691 struct r5worker_group *group = worker->group;
6692 struct r5conf *conf = group->conf;
6693 struct mddev *mddev = conf->mddev;
6694 int group_id = group - conf->worker_groups;
6695 int handled;
6696 struct blk_plug plug;
6697
6698 pr_debug("+++ raid5worker active\n");
6699
6700 blk_start_plug(&plug);
6701 handled = 0;
6702 spin_lock_irq(&conf->device_lock);
6703 while (1) {
6704 int batch_size, released;
6705
6706 released = release_stripe_list(conf, worker->temp_inactive_list);
6707
6708 batch_size = handle_active_stripes(conf, group_id, worker,
6709 worker->temp_inactive_list);
6710 worker->working = false;
6711 if (!batch_size && !released)
6712 break;
6713 handled += batch_size;
6714 wait_event_lock_irq(mddev->sb_wait,
6715 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6716 conf->device_lock);
6717 }
6718 pr_debug("%d stripes handled\n", handled);
6719
6720 spin_unlock_irq(&conf->device_lock);
6721
6722 flush_deferred_bios(conf);
6723
6724 r5l_flush_stripe_to_raid(conf->log);
6725
6726 async_tx_issue_pending_all();
6727 blk_finish_plug(&plug);
6728
6729 pr_debug("--- raid5worker inactive\n");
6730}
6731
6732/*
6733 * This is our raid5 kernel thread.
6734 *
6735 * We scan the hash table for stripes which can be handled now.
6736 * During the scan, completed stripes are saved for us by the interrupt
6737 * handler, so that they will not have to wait for our next wakeup.
6738 */
6739static void raid5d(struct md_thread *thread)
6740{
6741 struct mddev *mddev = thread->mddev;
6742 struct r5conf *conf = mddev->private;
6743 int handled;
6744 struct blk_plug plug;
6745
6746 pr_debug("+++ raid5d active\n");
6747
6748 md_check_recovery(mddev);
6749
6750 blk_start_plug(&plug);
6751 handled = 0;
6752 spin_lock_irq(&conf->device_lock);
6753 while (1) {
6754 struct bio *bio;
6755 int batch_size, released;
6756 unsigned int offset;
6757
6758 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6759 break;
6760
6761 released = release_stripe_list(conf, conf->temp_inactive_list);
6762 if (released)
6763 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6764
6765 if (
6766 !list_empty(&conf->bitmap_list)) {
6767 /* Now is a good time to flush some bitmap updates */
6768 conf->seq_flush++;
6769 spin_unlock_irq(&conf->device_lock);
6770 md_bitmap_unplug(mddev->bitmap);
6771 spin_lock_irq(&conf->device_lock);
6772 conf->seq_write = conf->seq_flush;
6773 activate_bit_delay(conf, conf->temp_inactive_list);
6774 }
6775 raid5_activate_delayed(conf);
6776
6777 while ((bio = remove_bio_from_retry(conf, &offset))) {
6778 int ok;
6779 spin_unlock_irq(&conf->device_lock);
6780 ok = retry_aligned_read(conf, bio, offset);
6781 spin_lock_irq(&conf->device_lock);
6782 if (!ok)
6783 break;
6784 handled++;
6785 }
6786
6787 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6788 conf->temp_inactive_list);
6789 if (!batch_size && !released)
6790 break;
6791 handled += batch_size;
6792
6793 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6794 spin_unlock_irq(&conf->device_lock);
6795 md_check_recovery(mddev);
6796 spin_lock_irq(&conf->device_lock);
6797 }
6798 }
6799 pr_debug("%d stripes handled\n", handled);
6800
6801 spin_unlock_irq(&conf->device_lock);
6802 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6803 mutex_trylock(&conf->cache_size_mutex)) {
6804 grow_one_stripe(conf, __GFP_NOWARN);
6805 /* Set flag even if allocation failed. This helps
6806 * slow down allocation requests when mem is short
6807 */
6808 set_bit(R5_DID_ALLOC, &conf->cache_state);
6809 mutex_unlock(&conf->cache_size_mutex);
6810 }
6811
6812 flush_deferred_bios(conf);
6813
6814 r5l_flush_stripe_to_raid(conf->log);
6815
6816 async_tx_issue_pending_all();
6817 blk_finish_plug(&plug);
6818
6819 pr_debug("--- raid5d inactive\n");
6820}
6821
6822static ssize_t
6823raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6824{
6825 struct r5conf *conf;
6826 int ret = 0;
6827 spin_lock(&mddev->lock);
6828 conf = mddev->private;
6829 if (conf)
6830 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6831 spin_unlock(&mddev->lock);
6832 return ret;
6833}
6834
6835int
6836raid5_set_cache_size(struct mddev *mddev, int size)
6837{
6838 int result = 0;
6839 struct r5conf *conf = mddev->private;
6840
6841 if (size <= 16 || size > 32768)
6842 return -EINVAL;
6843
6844 WRITE_ONCE(conf->min_nr_stripes, size);
6845 mutex_lock(&conf->cache_size_mutex);
6846 while (size < conf->max_nr_stripes &&
6847 drop_one_stripe(conf))
6848 ;
6849 mutex_unlock(&conf->cache_size_mutex);
6850
6851 md_allow_write(mddev);
6852
6853 mutex_lock(&conf->cache_size_mutex);
6854 while (size > conf->max_nr_stripes)
6855 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6856 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6857 result = -ENOMEM;
6858 break;
6859 }
6860 mutex_unlock(&conf->cache_size_mutex);
6861
6862 return result;
6863}
6864EXPORT_SYMBOL(raid5_set_cache_size);
6865
6866static ssize_t
6867raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6868{
6869 struct r5conf *conf;
6870 unsigned long new;
6871 int err;
6872
6873 if (len >= PAGE_SIZE)
6874 return -EINVAL;
6875 if (kstrtoul(page, 10, &new))
6876 return -EINVAL;
6877 err = mddev_lock(mddev);
6878 if (err)
6879 return err;
6880 conf = mddev->private;
6881 if (!conf)
6882 err = -ENODEV;
6883 else
6884 err = raid5_set_cache_size(mddev, new);
6885 mddev_unlock(mddev);
6886
6887 return err ?: len;
6888}
6889
6890static struct md_sysfs_entry
6891raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6892 raid5_show_stripe_cache_size,
6893 raid5_store_stripe_cache_size);
6894
6895static ssize_t
6896raid5_show_rmw_level(struct mddev *mddev, char *page)
6897{
6898 struct r5conf *conf = mddev->private;
6899 if (conf)
6900 return sprintf(page, "%d\n", conf->rmw_level);
6901 else
6902 return 0;
6903}
6904
6905static ssize_t
6906raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6907{
6908 struct r5conf *conf = mddev->private;
6909 unsigned long new;
6910
6911 if (!conf)
6912 return -ENODEV;
6913
6914 if (len >= PAGE_SIZE)
6915 return -EINVAL;
6916
6917 if (kstrtoul(page, 10, &new))
6918 return -EINVAL;
6919
6920 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6921 return -EINVAL;
6922
6923 if (new != PARITY_DISABLE_RMW &&
6924 new != PARITY_ENABLE_RMW &&
6925 new != PARITY_PREFER_RMW)
6926 return -EINVAL;
6927
6928 conf->rmw_level = new;
6929 return len;
6930}
6931
6932static struct md_sysfs_entry
6933raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6934 raid5_show_rmw_level,
6935 raid5_store_rmw_level);
6936
6937static ssize_t
6938raid5_show_stripe_size(struct mddev *mddev, char *page)
6939{
6940 struct r5conf *conf;
6941 int ret = 0;
6942
6943 spin_lock(&mddev->lock);
6944 conf = mddev->private;
6945 if (conf)
6946 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6947 spin_unlock(&mddev->lock);
6948 return ret;
6949}
6950
6951#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6952static ssize_t
6953raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6954{
6955 struct r5conf *conf;
6956 unsigned long new;
6957 int err;
6958 int size;
6959
6960 if (len >= PAGE_SIZE)
6961 return -EINVAL;
6962 if (kstrtoul(page, 10, &new))
6963 return -EINVAL;
6964
6965 /*
6966 * The value should not be bigger than PAGE_SIZE. It requires to
6967 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6968 * of two.
6969 */
6970 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6971 new > PAGE_SIZE || new == 0 ||
6972 new != roundup_pow_of_two(new))
6973 return -EINVAL;
6974
6975 err = mddev_suspend_and_lock(mddev);
6976 if (err)
6977 return err;
6978
6979 conf = mddev->private;
6980 if (!conf) {
6981 err = -ENODEV;
6982 goto out_unlock;
6983 }
6984
6985 if (new == conf->stripe_size)
6986 goto out_unlock;
6987
6988 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6989 conf->stripe_size, new);
6990
6991 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6992 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6993 err = -EBUSY;
6994 goto out_unlock;
6995 }
6996
6997 mutex_lock(&conf->cache_size_mutex);
6998 size = conf->max_nr_stripes;
6999
7000 shrink_stripes(conf);
7001
7002 conf->stripe_size = new;
7003 conf->stripe_shift = ilog2(new) - 9;
7004 conf->stripe_sectors = new >> 9;
7005 if (grow_stripes(conf, size)) {
7006 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7007 mdname(mddev));
7008 err = -ENOMEM;
7009 }
7010 mutex_unlock(&conf->cache_size_mutex);
7011
7012out_unlock:
7013 mddev_unlock_and_resume(mddev);
7014 return err ?: len;
7015}
7016
7017static struct md_sysfs_entry
7018raid5_stripe_size = __ATTR(stripe_size, 0644,
7019 raid5_show_stripe_size,
7020 raid5_store_stripe_size);
7021#else
7022static struct md_sysfs_entry
7023raid5_stripe_size = __ATTR(stripe_size, 0444,
7024 raid5_show_stripe_size,
7025 NULL);
7026#endif
7027
7028static ssize_t
7029raid5_show_preread_threshold(struct mddev *mddev, char *page)
7030{
7031 struct r5conf *conf;
7032 int ret = 0;
7033 spin_lock(&mddev->lock);
7034 conf = mddev->private;
7035 if (conf)
7036 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7037 spin_unlock(&mddev->lock);
7038 return ret;
7039}
7040
7041static ssize_t
7042raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7043{
7044 struct r5conf *conf;
7045 unsigned long new;
7046 int err;
7047
7048 if (len >= PAGE_SIZE)
7049 return -EINVAL;
7050 if (kstrtoul(page, 10, &new))
7051 return -EINVAL;
7052
7053 err = mddev_lock(mddev);
7054 if (err)
7055 return err;
7056 conf = mddev->private;
7057 if (!conf)
7058 err = -ENODEV;
7059 else if (new > conf->min_nr_stripes)
7060 err = -EINVAL;
7061 else
7062 conf->bypass_threshold = new;
7063 mddev_unlock(mddev);
7064 return err ?: len;
7065}
7066
7067static struct md_sysfs_entry
7068raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7069 S_IRUGO | S_IWUSR,
7070 raid5_show_preread_threshold,
7071 raid5_store_preread_threshold);
7072
7073static ssize_t
7074raid5_show_skip_copy(struct mddev *mddev, char *page)
7075{
7076 struct r5conf *conf;
7077 int ret = 0;
7078 spin_lock(&mddev->lock);
7079 conf = mddev->private;
7080 if (conf)
7081 ret = sprintf(page, "%d\n", conf->skip_copy);
7082 spin_unlock(&mddev->lock);
7083 return ret;
7084}
7085
7086static ssize_t
7087raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7088{
7089 struct r5conf *conf;
7090 unsigned long new;
7091 int err;
7092
7093 if (len >= PAGE_SIZE)
7094 return -EINVAL;
7095 if (kstrtoul(page, 10, &new))
7096 return -EINVAL;
7097 new = !!new;
7098
7099 err = mddev_suspend_and_lock(mddev);
7100 if (err)
7101 return err;
7102 conf = mddev->private;
7103 if (!conf)
7104 err = -ENODEV;
7105 else if (new != conf->skip_copy) {
7106 struct request_queue *q = mddev->gendisk->queue;
7107 struct queue_limits lim = queue_limits_start_update(q);
7108
7109 conf->skip_copy = new;
7110 if (new)
7111 lim.features |= BLK_FEAT_STABLE_WRITES;
7112 else
7113 lim.features &= ~BLK_FEAT_STABLE_WRITES;
7114 err = queue_limits_commit_update(q, &lim);
7115 }
7116 mddev_unlock_and_resume(mddev);
7117 return err ?: len;
7118}
7119
7120static struct md_sysfs_entry
7121raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7122 raid5_show_skip_copy,
7123 raid5_store_skip_copy);
7124
7125static ssize_t
7126stripe_cache_active_show(struct mddev *mddev, char *page)
7127{
7128 struct r5conf *conf = mddev->private;
7129 if (conf)
7130 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7131 else
7132 return 0;
7133}
7134
7135static struct md_sysfs_entry
7136raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7137
7138static ssize_t
7139raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7140{
7141 struct r5conf *conf;
7142 int ret = 0;
7143 spin_lock(&mddev->lock);
7144 conf = mddev->private;
7145 if (conf)
7146 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7147 spin_unlock(&mddev->lock);
7148 return ret;
7149}
7150
7151static int alloc_thread_groups(struct r5conf *conf, int cnt,
7152 int *group_cnt,
7153 struct r5worker_group **worker_groups);
7154static ssize_t
7155raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7156{
7157 struct r5conf *conf;
7158 unsigned int new;
7159 int err;
7160 struct r5worker_group *new_groups, *old_groups;
7161 int group_cnt;
7162
7163 if (len >= PAGE_SIZE)
7164 return -EINVAL;
7165 if (kstrtouint(page, 10, &new))
7166 return -EINVAL;
7167 /* 8192 should be big enough */
7168 if (new > 8192)
7169 return -EINVAL;
7170
7171 err = mddev_suspend_and_lock(mddev);
7172 if (err)
7173 return err;
7174 conf = mddev->private;
7175 if (!conf)
7176 err = -ENODEV;
7177 else if (new != conf->worker_cnt_per_group) {
7178 old_groups = conf->worker_groups;
7179 if (old_groups)
7180 flush_workqueue(raid5_wq);
7181
7182 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7183 if (!err) {
7184 spin_lock_irq(&conf->device_lock);
7185 conf->group_cnt = group_cnt;
7186 conf->worker_cnt_per_group = new;
7187 conf->worker_groups = new_groups;
7188 spin_unlock_irq(&conf->device_lock);
7189
7190 if (old_groups)
7191 kfree(old_groups[0].workers);
7192 kfree(old_groups);
7193 }
7194 }
7195 mddev_unlock_and_resume(mddev);
7196
7197 return err ?: len;
7198}
7199
7200static struct md_sysfs_entry
7201raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7202 raid5_show_group_thread_cnt,
7203 raid5_store_group_thread_cnt);
7204
7205static struct attribute *raid5_attrs[] = {
7206 &raid5_stripecache_size.attr,
7207 &raid5_stripecache_active.attr,
7208 &raid5_preread_bypass_threshold.attr,
7209 &raid5_group_thread_cnt.attr,
7210 &raid5_skip_copy.attr,
7211 &raid5_rmw_level.attr,
7212 &raid5_stripe_size.attr,
7213 &r5c_journal_mode.attr,
7214 &ppl_write_hint.attr,
7215 NULL,
7216};
7217static const struct attribute_group raid5_attrs_group = {
7218 .name = NULL,
7219 .attrs = raid5_attrs,
7220};
7221
7222static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7223 struct r5worker_group **worker_groups)
7224{
7225 int i, j, k;
7226 ssize_t size;
7227 struct r5worker *workers;
7228
7229 if (cnt == 0) {
7230 *group_cnt = 0;
7231 *worker_groups = NULL;
7232 return 0;
7233 }
7234 *group_cnt = num_possible_nodes();
7235 size = sizeof(struct r5worker) * cnt;
7236 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7237 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7238 GFP_NOIO);
7239 if (!*worker_groups || !workers) {
7240 kfree(workers);
7241 kfree(*worker_groups);
7242 return -ENOMEM;
7243 }
7244
7245 for (i = 0; i < *group_cnt; i++) {
7246 struct r5worker_group *group;
7247
7248 group = &(*worker_groups)[i];
7249 INIT_LIST_HEAD(&group->handle_list);
7250 INIT_LIST_HEAD(&group->loprio_list);
7251 group->conf = conf;
7252 group->workers = workers + i * cnt;
7253
7254 for (j = 0; j < cnt; j++) {
7255 struct r5worker *worker = group->workers + j;
7256 worker->group = group;
7257 INIT_WORK(&worker->work, raid5_do_work);
7258
7259 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7260 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7261 }
7262 }
7263
7264 return 0;
7265}
7266
7267static void free_thread_groups(struct r5conf *conf)
7268{
7269 if (conf->worker_groups)
7270 kfree(conf->worker_groups[0].workers);
7271 kfree(conf->worker_groups);
7272 conf->worker_groups = NULL;
7273}
7274
7275static sector_t
7276raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7277{
7278 struct r5conf *conf = mddev->private;
7279
7280 if (!sectors)
7281 sectors = mddev->dev_sectors;
7282 if (!raid_disks)
7283 /* size is defined by the smallest of previous and new size */
7284 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7285
7286 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7287 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7288 return sectors * (raid_disks - conf->max_degraded);
7289}
7290
7291static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7292{
7293 safe_put_page(percpu->spare_page);
7294 percpu->spare_page = NULL;
7295 kvfree(percpu->scribble);
7296 percpu->scribble = NULL;
7297}
7298
7299static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7300{
7301 if (conf->level == 6 && !percpu->spare_page) {
7302 percpu->spare_page = alloc_page(GFP_KERNEL);
7303 if (!percpu->spare_page)
7304 return -ENOMEM;
7305 }
7306
7307 if (scribble_alloc(percpu,
7308 max(conf->raid_disks,
7309 conf->previous_raid_disks),
7310 max(conf->chunk_sectors,
7311 conf->prev_chunk_sectors)
7312 / RAID5_STRIPE_SECTORS(conf))) {
7313 free_scratch_buffer(conf, percpu);
7314 return -ENOMEM;
7315 }
7316
7317 local_lock_init(&percpu->lock);
7318 return 0;
7319}
7320
7321static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7322{
7323 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7324
7325 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7326 return 0;
7327}
7328
7329static void raid5_free_percpu(struct r5conf *conf)
7330{
7331 if (!conf->percpu)
7332 return;
7333
7334 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7335 free_percpu(conf->percpu);
7336}
7337
7338static void free_conf(struct r5conf *conf)
7339{
7340 int i;
7341
7342 log_exit(conf);
7343
7344 shrinker_free(conf->shrinker);
7345 free_thread_groups(conf);
7346 shrink_stripes(conf);
7347 raid5_free_percpu(conf);
7348 for (i = 0; i < conf->pool_size; i++)
7349 if (conf->disks[i].extra_page)
7350 put_page(conf->disks[i].extra_page);
7351 kfree(conf->disks);
7352 bioset_exit(&conf->bio_split);
7353 kfree(conf->stripe_hashtbl);
7354 kfree(conf->pending_data);
7355 kfree(conf);
7356}
7357
7358static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7359{
7360 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7361 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7362
7363 if (alloc_scratch_buffer(conf, percpu)) {
7364 pr_warn("%s: failed memory allocation for cpu%u\n",
7365 __func__, cpu);
7366 return -ENOMEM;
7367 }
7368 return 0;
7369}
7370
7371static int raid5_alloc_percpu(struct r5conf *conf)
7372{
7373 int err = 0;
7374
7375 conf->percpu = alloc_percpu(struct raid5_percpu);
7376 if (!conf->percpu)
7377 return -ENOMEM;
7378
7379 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7380 if (!err) {
7381 conf->scribble_disks = max(conf->raid_disks,
7382 conf->previous_raid_disks);
7383 conf->scribble_sectors = max(conf->chunk_sectors,
7384 conf->prev_chunk_sectors);
7385 }
7386 return err;
7387}
7388
7389static unsigned long raid5_cache_scan(struct shrinker *shrink,
7390 struct shrink_control *sc)
7391{
7392 struct r5conf *conf = shrink->private_data;
7393 unsigned long ret = SHRINK_STOP;
7394
7395 if (mutex_trylock(&conf->cache_size_mutex)) {
7396 ret= 0;
7397 while (ret < sc->nr_to_scan &&
7398 conf->max_nr_stripes > conf->min_nr_stripes) {
7399 if (drop_one_stripe(conf) == 0) {
7400 ret = SHRINK_STOP;
7401 break;
7402 }
7403 ret++;
7404 }
7405 mutex_unlock(&conf->cache_size_mutex);
7406 }
7407 return ret;
7408}
7409
7410static unsigned long raid5_cache_count(struct shrinker *shrink,
7411 struct shrink_control *sc)
7412{
7413 struct r5conf *conf = shrink->private_data;
7414 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7415 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7416
7417 if (max_stripes < min_stripes)
7418 /* unlikely, but not impossible */
7419 return 0;
7420 return max_stripes - min_stripes;
7421}
7422
7423static struct r5conf *setup_conf(struct mddev *mddev)
7424{
7425 struct r5conf *conf;
7426 int raid_disk, memory, max_disks;
7427 struct md_rdev *rdev;
7428 struct disk_info *disk;
7429 char pers_name[6];
7430 int i;
7431 int group_cnt;
7432 struct r5worker_group *new_group;
7433 int ret = -ENOMEM;
7434
7435 if (mddev->new_level != 5
7436 && mddev->new_level != 4
7437 && mddev->new_level != 6) {
7438 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7439 mdname(mddev), mddev->new_level);
7440 return ERR_PTR(-EIO);
7441 }
7442 if ((mddev->new_level == 5
7443 && !algorithm_valid_raid5(mddev->new_layout)) ||
7444 (mddev->new_level == 6
7445 && !algorithm_valid_raid6(mddev->new_layout))) {
7446 pr_warn("md/raid:%s: layout %d not supported\n",
7447 mdname(mddev), mddev->new_layout);
7448 return ERR_PTR(-EIO);
7449 }
7450 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7451 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7452 mdname(mddev), mddev->raid_disks);
7453 return ERR_PTR(-EINVAL);
7454 }
7455
7456 if (!mddev->new_chunk_sectors ||
7457 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7458 !is_power_of_2(mddev->new_chunk_sectors)) {
7459 pr_warn("md/raid:%s: invalid chunk size %d\n",
7460 mdname(mddev), mddev->new_chunk_sectors << 9);
7461 return ERR_PTR(-EINVAL);
7462 }
7463
7464 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7465 if (conf == NULL)
7466 goto abort;
7467
7468#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7469 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7470 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7471 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7472#endif
7473 INIT_LIST_HEAD(&conf->free_list);
7474 INIT_LIST_HEAD(&conf->pending_list);
7475 conf->pending_data = kcalloc(PENDING_IO_MAX,
7476 sizeof(struct r5pending_data),
7477 GFP_KERNEL);
7478 if (!conf->pending_data)
7479 goto abort;
7480 for (i = 0; i < PENDING_IO_MAX; i++)
7481 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7482 /* Don't enable multi-threading by default*/
7483 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7484 conf->group_cnt = group_cnt;
7485 conf->worker_cnt_per_group = 0;
7486 conf->worker_groups = new_group;
7487 } else
7488 goto abort;
7489 spin_lock_init(&conf->device_lock);
7490 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7491 mutex_init(&conf->cache_size_mutex);
7492
7493 init_waitqueue_head(&conf->wait_for_quiescent);
7494 init_waitqueue_head(&conf->wait_for_stripe);
7495 init_waitqueue_head(&conf->wait_for_overlap);
7496 INIT_LIST_HEAD(&conf->handle_list);
7497 INIT_LIST_HEAD(&conf->loprio_list);
7498 INIT_LIST_HEAD(&conf->hold_list);
7499 INIT_LIST_HEAD(&conf->delayed_list);
7500 INIT_LIST_HEAD(&conf->bitmap_list);
7501 init_llist_head(&conf->released_stripes);
7502 atomic_set(&conf->active_stripes, 0);
7503 atomic_set(&conf->preread_active_stripes, 0);
7504 atomic_set(&conf->active_aligned_reads, 0);
7505 spin_lock_init(&conf->pending_bios_lock);
7506 conf->batch_bio_dispatch = true;
7507 rdev_for_each(rdev, mddev) {
7508 if (test_bit(Journal, &rdev->flags))
7509 continue;
7510 if (bdev_nonrot(rdev->bdev)) {
7511 conf->batch_bio_dispatch = false;
7512 break;
7513 }
7514 }
7515
7516 conf->bypass_threshold = BYPASS_THRESHOLD;
7517 conf->recovery_disabled = mddev->recovery_disabled - 1;
7518
7519 conf->raid_disks = mddev->raid_disks;
7520 if (mddev->reshape_position == MaxSector)
7521 conf->previous_raid_disks = mddev->raid_disks;
7522 else
7523 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7524 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7525
7526 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7527 GFP_KERNEL);
7528
7529 if (!conf->disks)
7530 goto abort;
7531
7532 for (i = 0; i < max_disks; i++) {
7533 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7534 if (!conf->disks[i].extra_page)
7535 goto abort;
7536 }
7537
7538 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7539 if (ret)
7540 goto abort;
7541 conf->mddev = mddev;
7542
7543 ret = -ENOMEM;
7544 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7545 if (!conf->stripe_hashtbl)
7546 goto abort;
7547
7548 /* We init hash_locks[0] separately to that it can be used
7549 * as the reference lock in the spin_lock_nest_lock() call
7550 * in lock_all_device_hash_locks_irq in order to convince
7551 * lockdep that we know what we are doing.
7552 */
7553 spin_lock_init(conf->hash_locks);
7554 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7555 spin_lock_init(conf->hash_locks + i);
7556
7557 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7558 INIT_LIST_HEAD(conf->inactive_list + i);
7559
7560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7561 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7562
7563 atomic_set(&conf->r5c_cached_full_stripes, 0);
7564 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7565 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7566 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7567 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7568 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7569
7570 conf->level = mddev->new_level;
7571 conf->chunk_sectors = mddev->new_chunk_sectors;
7572 ret = raid5_alloc_percpu(conf);
7573 if (ret)
7574 goto abort;
7575
7576 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7577
7578 ret = -EIO;
7579 rdev_for_each(rdev, mddev) {
7580 raid_disk = rdev->raid_disk;
7581 if (raid_disk >= max_disks
7582 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7583 continue;
7584 disk = conf->disks + raid_disk;
7585
7586 if (test_bit(Replacement, &rdev->flags)) {
7587 if (disk->replacement)
7588 goto abort;
7589 disk->replacement = rdev;
7590 } else {
7591 if (disk->rdev)
7592 goto abort;
7593 disk->rdev = rdev;
7594 }
7595
7596 if (test_bit(In_sync, &rdev->flags)) {
7597 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7598 mdname(mddev), rdev->bdev, raid_disk);
7599 } else if (rdev->saved_raid_disk != raid_disk)
7600 /* Cannot rely on bitmap to complete recovery */
7601 conf->fullsync = 1;
7602 }
7603
7604 conf->level = mddev->new_level;
7605 if (conf->level == 6) {
7606 conf->max_degraded = 2;
7607 if (raid6_call.xor_syndrome)
7608 conf->rmw_level = PARITY_ENABLE_RMW;
7609 else
7610 conf->rmw_level = PARITY_DISABLE_RMW;
7611 } else {
7612 conf->max_degraded = 1;
7613 conf->rmw_level = PARITY_ENABLE_RMW;
7614 }
7615 conf->algorithm = mddev->new_layout;
7616 conf->reshape_progress = mddev->reshape_position;
7617 if (conf->reshape_progress != MaxSector) {
7618 conf->prev_chunk_sectors = mddev->chunk_sectors;
7619 conf->prev_algo = mddev->layout;
7620 } else {
7621 conf->prev_chunk_sectors = conf->chunk_sectors;
7622 conf->prev_algo = conf->algorithm;
7623 }
7624
7625 conf->min_nr_stripes = NR_STRIPES;
7626 if (mddev->reshape_position != MaxSector) {
7627 int stripes = max_t(int,
7628 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7629 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7630 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7631 if (conf->min_nr_stripes != NR_STRIPES)
7632 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7633 mdname(mddev), conf->min_nr_stripes);
7634 }
7635 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7636 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7637 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7638 if (grow_stripes(conf, conf->min_nr_stripes)) {
7639 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7640 mdname(mddev), memory);
7641 ret = -ENOMEM;
7642 goto abort;
7643 } else
7644 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7645 /*
7646 * Losing a stripe head costs more than the time to refill it,
7647 * it reduces the queue depth and so can hurt throughput.
7648 * So set it rather large, scaled by number of devices.
7649 */
7650 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7651 if (!conf->shrinker) {
7652 ret = -ENOMEM;
7653 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7654 mdname(mddev));
7655 goto abort;
7656 }
7657
7658 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7659 conf->shrinker->scan_objects = raid5_cache_scan;
7660 conf->shrinker->count_objects = raid5_cache_count;
7661 conf->shrinker->batch = 128;
7662 conf->shrinker->private_data = conf;
7663
7664 shrinker_register(conf->shrinker);
7665
7666 sprintf(pers_name, "raid%d", mddev->new_level);
7667 rcu_assign_pointer(conf->thread,
7668 md_register_thread(raid5d, mddev, pers_name));
7669 if (!conf->thread) {
7670 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7671 mdname(mddev));
7672 ret = -ENOMEM;
7673 goto abort;
7674 }
7675
7676 return conf;
7677
7678 abort:
7679 if (conf)
7680 free_conf(conf);
7681 return ERR_PTR(ret);
7682}
7683
7684static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7685{
7686 switch (algo) {
7687 case ALGORITHM_PARITY_0:
7688 if (raid_disk < max_degraded)
7689 return 1;
7690 break;
7691 case ALGORITHM_PARITY_N:
7692 if (raid_disk >= raid_disks - max_degraded)
7693 return 1;
7694 break;
7695 case ALGORITHM_PARITY_0_6:
7696 if (raid_disk == 0 ||
7697 raid_disk == raid_disks - 1)
7698 return 1;
7699 break;
7700 case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 if (raid_disk == raid_disks - 1)
7705 return 1;
7706 }
7707 return 0;
7708}
7709
7710static int raid5_set_limits(struct mddev *mddev)
7711{
7712 struct r5conf *conf = mddev->private;
7713 struct queue_limits lim;
7714 int data_disks, stripe;
7715 struct md_rdev *rdev;
7716
7717 /*
7718 * The read-ahead size must cover two whole stripes, which is
7719 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7720 */
7721 data_disks = conf->previous_raid_disks - conf->max_degraded;
7722
7723 /*
7724 * We can only discard a whole stripe. It doesn't make sense to
7725 * discard data disk but write parity disk
7726 */
7727 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7728
7729 md_init_stacking_limits(&lim);
7730 lim.io_min = mddev->chunk_sectors << 9;
7731 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7732 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7733 lim.discard_granularity = stripe;
7734 lim.max_write_zeroes_sectors = 0;
7735 mddev_stack_rdev_limits(mddev, &lim, 0);
7736 rdev_for_each(rdev, mddev)
7737 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7738 mddev->gendisk->disk_name);
7739
7740 /*
7741 * Zeroing is required for discard, otherwise data could be lost.
7742 *
7743 * Consider a scenario: discard a stripe (the stripe could be
7744 * inconsistent if discard_zeroes_data is 0); write one disk of the
7745 * stripe (the stripe could be inconsistent again depending on which
7746 * disks are used to calculate parity); the disk is broken; The stripe
7747 * data of this disk is lost.
7748 *
7749 * We only allow DISCARD if the sysadmin has confirmed that only safe
7750 * devices are in use by setting a module parameter. A better idea
7751 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7752 * required to be safe.
7753 */
7754 if (!devices_handle_discard_safely ||
7755 lim.max_discard_sectors < (stripe >> 9) ||
7756 lim.discard_granularity < stripe)
7757 lim.max_hw_discard_sectors = 0;
7758
7759 /*
7760 * Requests require having a bitmap for each stripe.
7761 * Limit the max sectors based on this.
7762 */
7763 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7764
7765 /* No restrictions on the number of segments in the request */
7766 lim.max_segments = USHRT_MAX;
7767
7768 return queue_limits_set(mddev->gendisk->queue, &lim);
7769}
7770
7771static int raid5_run(struct mddev *mddev)
7772{
7773 struct r5conf *conf;
7774 int dirty_parity_disks = 0;
7775 struct md_rdev *rdev;
7776 struct md_rdev *journal_dev = NULL;
7777 sector_t reshape_offset = 0;
7778 int i;
7779 long long min_offset_diff = 0;
7780 int first = 1;
7781 int ret = -EIO;
7782
7783 if (mddev->recovery_cp != MaxSector)
7784 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7785 mdname(mddev));
7786
7787 rdev_for_each(rdev, mddev) {
7788 long long diff;
7789
7790 if (test_bit(Journal, &rdev->flags)) {
7791 journal_dev = rdev;
7792 continue;
7793 }
7794 if (rdev->raid_disk < 0)
7795 continue;
7796 diff = (rdev->new_data_offset - rdev->data_offset);
7797 if (first) {
7798 min_offset_diff = diff;
7799 first = 0;
7800 } else if (mddev->reshape_backwards &&
7801 diff < min_offset_diff)
7802 min_offset_diff = diff;
7803 else if (!mddev->reshape_backwards &&
7804 diff > min_offset_diff)
7805 min_offset_diff = diff;
7806 }
7807
7808 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7809 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7810 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7811 mdname(mddev));
7812 return -EINVAL;
7813 }
7814
7815 if (mddev->reshape_position != MaxSector) {
7816 /* Check that we can continue the reshape.
7817 * Difficulties arise if the stripe we would write to
7818 * next is at or after the stripe we would read from next.
7819 * For a reshape that changes the number of devices, this
7820 * is only possible for a very short time, and mdadm makes
7821 * sure that time appears to have past before assembling
7822 * the array. So we fail if that time hasn't passed.
7823 * For a reshape that keeps the number of devices the same
7824 * mdadm must be monitoring the reshape can keeping the
7825 * critical areas read-only and backed up. It will start
7826 * the array in read-only mode, so we check for that.
7827 */
7828 sector_t here_new, here_old;
7829 int old_disks;
7830 int max_degraded = (mddev->level == 6 ? 2 : 1);
7831 int chunk_sectors;
7832 int new_data_disks;
7833
7834 if (journal_dev) {
7835 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7836 mdname(mddev));
7837 return -EINVAL;
7838 }
7839
7840 if (mddev->new_level != mddev->level) {
7841 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7842 mdname(mddev));
7843 return -EINVAL;
7844 }
7845 old_disks = mddev->raid_disks - mddev->delta_disks;
7846 /* reshape_position must be on a new-stripe boundary, and one
7847 * further up in new geometry must map after here in old
7848 * geometry.
7849 * If the chunk sizes are different, then as we perform reshape
7850 * in units of the largest of the two, reshape_position needs
7851 * be a multiple of the largest chunk size times new data disks.
7852 */
7853 here_new = mddev->reshape_position;
7854 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7855 new_data_disks = mddev->raid_disks - max_degraded;
7856 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7857 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7858 mdname(mddev));
7859 return -EINVAL;
7860 }
7861 reshape_offset = here_new * chunk_sectors;
7862 /* here_new is the stripe we will write to */
7863 here_old = mddev->reshape_position;
7864 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7865 /* here_old is the first stripe that we might need to read
7866 * from */
7867 if (mddev->delta_disks == 0) {
7868 /* We cannot be sure it is safe to start an in-place
7869 * reshape. It is only safe if user-space is monitoring
7870 * and taking constant backups.
7871 * mdadm always starts a situation like this in
7872 * readonly mode so it can take control before
7873 * allowing any writes. So just check for that.
7874 */
7875 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7876 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7877 /* not really in-place - so OK */;
7878 else if (mddev->ro == 0) {
7879 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7880 mdname(mddev));
7881 return -EINVAL;
7882 }
7883 } else if (mddev->reshape_backwards
7884 ? (here_new * chunk_sectors + min_offset_diff <=
7885 here_old * chunk_sectors)
7886 : (here_new * chunk_sectors >=
7887 here_old * chunk_sectors + (-min_offset_diff))) {
7888 /* Reading from the same stripe as writing to - bad */
7889 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7890 mdname(mddev));
7891 return -EINVAL;
7892 }
7893 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7894 /* OK, we should be able to continue; */
7895 } else {
7896 BUG_ON(mddev->level != mddev->new_level);
7897 BUG_ON(mddev->layout != mddev->new_layout);
7898 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7899 BUG_ON(mddev->delta_disks != 0);
7900 }
7901
7902 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7903 test_bit(MD_HAS_PPL, &mddev->flags)) {
7904 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7905 mdname(mddev));
7906 clear_bit(MD_HAS_PPL, &mddev->flags);
7907 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7908 }
7909
7910 if (mddev->private == NULL)
7911 conf = setup_conf(mddev);
7912 else
7913 conf = mddev->private;
7914
7915 if (IS_ERR(conf))
7916 return PTR_ERR(conf);
7917
7918 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7919 if (!journal_dev) {
7920 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7921 mdname(mddev));
7922 mddev->ro = 1;
7923 set_disk_ro(mddev->gendisk, 1);
7924 } else if (mddev->recovery_cp == MaxSector)
7925 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7926 }
7927
7928 conf->min_offset_diff = min_offset_diff;
7929 rcu_assign_pointer(mddev->thread, conf->thread);
7930 rcu_assign_pointer(conf->thread, NULL);
7931 mddev->private = conf;
7932
7933 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7934 i++) {
7935 rdev = conf->disks[i].rdev;
7936 if (!rdev)
7937 continue;
7938 if (conf->disks[i].replacement &&
7939 conf->reshape_progress != MaxSector) {
7940 /* replacements and reshape simply do not mix. */
7941 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7942 goto abort;
7943 }
7944 if (test_bit(In_sync, &rdev->flags))
7945 continue;
7946 /* This disc is not fully in-sync. However if it
7947 * just stored parity (beyond the recovery_offset),
7948 * when we don't need to be concerned about the
7949 * array being dirty.
7950 * When reshape goes 'backwards', we never have
7951 * partially completed devices, so we only need
7952 * to worry about reshape going forwards.
7953 */
7954 /* Hack because v0.91 doesn't store recovery_offset properly. */
7955 if (mddev->major_version == 0 &&
7956 mddev->minor_version > 90)
7957 rdev->recovery_offset = reshape_offset;
7958
7959 if (rdev->recovery_offset < reshape_offset) {
7960 /* We need to check old and new layout */
7961 if (!only_parity(rdev->raid_disk,
7962 conf->algorithm,
7963 conf->raid_disks,
7964 conf->max_degraded))
7965 continue;
7966 }
7967 if (!only_parity(rdev->raid_disk,
7968 conf->prev_algo,
7969 conf->previous_raid_disks,
7970 conf->max_degraded))
7971 continue;
7972 dirty_parity_disks++;
7973 }
7974
7975 /*
7976 * 0 for a fully functional array, 1 or 2 for a degraded array.
7977 */
7978 mddev->degraded = raid5_calc_degraded(conf);
7979
7980 if (has_failed(conf)) {
7981 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7982 mdname(mddev), mddev->degraded, conf->raid_disks);
7983 goto abort;
7984 }
7985
7986 /* device size must be a multiple of chunk size */
7987 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7988 mddev->resync_max_sectors = mddev->dev_sectors;
7989
7990 if (mddev->degraded > dirty_parity_disks &&
7991 mddev->recovery_cp != MaxSector) {
7992 if (test_bit(MD_HAS_PPL, &mddev->flags))
7993 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7994 mdname(mddev));
7995 else if (mddev->ok_start_degraded)
7996 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7997 mdname(mddev));
7998 else {
7999 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8000 mdname(mddev));
8001 goto abort;
8002 }
8003 }
8004
8005 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8006 mdname(mddev), conf->level,
8007 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8008 mddev->new_layout);
8009
8010 print_raid5_conf(conf);
8011
8012 if (conf->reshape_progress != MaxSector) {
8013 conf->reshape_safe = conf->reshape_progress;
8014 atomic_set(&conf->reshape_stripes, 0);
8015 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8016 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8017 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8019 }
8020
8021 /* Ok, everything is just fine now */
8022 if (mddev->to_remove == &raid5_attrs_group)
8023 mddev->to_remove = NULL;
8024 else if (mddev->kobj.sd &&
8025 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8026 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8027 mdname(mddev));
8028 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8029
8030 if (!mddev_is_dm(mddev)) {
8031 ret = raid5_set_limits(mddev);
8032 if (ret)
8033 goto abort;
8034 }
8035
8036 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8037 goto abort;
8038
8039 return 0;
8040abort:
8041 md_unregister_thread(mddev, &mddev->thread);
8042 print_raid5_conf(conf);
8043 free_conf(conf);
8044 mddev->private = NULL;
8045 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8046 return ret;
8047}
8048
8049static void raid5_free(struct mddev *mddev, void *priv)
8050{
8051 struct r5conf *conf = priv;
8052
8053 free_conf(conf);
8054 mddev->to_remove = &raid5_attrs_group;
8055}
8056
8057static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8058{
8059 struct r5conf *conf = mddev->private;
8060 int i;
8061
8062 lockdep_assert_held(&mddev->lock);
8063
8064 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8065 conf->chunk_sectors / 2, mddev->layout);
8066 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8067 for (i = 0; i < conf->raid_disks; i++) {
8068 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8069
8070 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8071 }
8072 seq_printf (seq, "]");
8073}
8074
8075static void print_raid5_conf(struct r5conf *conf)
8076{
8077 struct md_rdev *rdev;
8078 int i;
8079
8080 pr_debug("RAID conf printout:\n");
8081 if (!conf) {
8082 pr_debug("(conf==NULL)\n");
8083 return;
8084 }
8085 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8086 conf->raid_disks,
8087 conf->raid_disks - conf->mddev->degraded);
8088
8089 for (i = 0; i < conf->raid_disks; i++) {
8090 rdev = conf->disks[i].rdev;
8091 if (rdev)
8092 pr_debug(" disk %d, o:%d, dev:%pg\n",
8093 i, !test_bit(Faulty, &rdev->flags),
8094 rdev->bdev);
8095 }
8096}
8097
8098static int raid5_spare_active(struct mddev *mddev)
8099{
8100 int i;
8101 struct r5conf *conf = mddev->private;
8102 struct md_rdev *rdev, *replacement;
8103 int count = 0;
8104 unsigned long flags;
8105
8106 for (i = 0; i < conf->raid_disks; i++) {
8107 rdev = conf->disks[i].rdev;
8108 replacement = conf->disks[i].replacement;
8109 if (replacement
8110 && replacement->recovery_offset == MaxSector
8111 && !test_bit(Faulty, &replacement->flags)
8112 && !test_and_set_bit(In_sync, &replacement->flags)) {
8113 /* Replacement has just become active. */
8114 if (!rdev
8115 || !test_and_clear_bit(In_sync, &rdev->flags))
8116 count++;
8117 if (rdev) {
8118 /* Replaced device not technically faulty,
8119 * but we need to be sure it gets removed
8120 * and never re-added.
8121 */
8122 set_bit(Faulty, &rdev->flags);
8123 sysfs_notify_dirent_safe(
8124 rdev->sysfs_state);
8125 }
8126 sysfs_notify_dirent_safe(replacement->sysfs_state);
8127 } else if (rdev
8128 && rdev->recovery_offset == MaxSector
8129 && !test_bit(Faulty, &rdev->flags)
8130 && !test_and_set_bit(In_sync, &rdev->flags)) {
8131 count++;
8132 sysfs_notify_dirent_safe(rdev->sysfs_state);
8133 }
8134 }
8135 spin_lock_irqsave(&conf->device_lock, flags);
8136 mddev->degraded = raid5_calc_degraded(conf);
8137 spin_unlock_irqrestore(&conf->device_lock, flags);
8138 print_raid5_conf(conf);
8139 return count;
8140}
8141
8142static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8143{
8144 struct r5conf *conf = mddev->private;
8145 int err = 0;
8146 int number = rdev->raid_disk;
8147 struct md_rdev **rdevp;
8148 struct disk_info *p;
8149 struct md_rdev *tmp;
8150
8151 print_raid5_conf(conf);
8152 if (test_bit(Journal, &rdev->flags) && conf->log) {
8153 /*
8154 * we can't wait pending write here, as this is called in
8155 * raid5d, wait will deadlock.
8156 * neilb: there is no locking about new writes here,
8157 * so this cannot be safe.
8158 */
8159 if (atomic_read(&conf->active_stripes) ||
8160 atomic_read(&conf->r5c_cached_full_stripes) ||
8161 atomic_read(&conf->r5c_cached_partial_stripes)) {
8162 return -EBUSY;
8163 }
8164 log_exit(conf);
8165 return 0;
8166 }
8167 if (unlikely(number >= conf->pool_size))
8168 return 0;
8169 p = conf->disks + number;
8170 if (rdev == p->rdev)
8171 rdevp = &p->rdev;
8172 else if (rdev == p->replacement)
8173 rdevp = &p->replacement;
8174 else
8175 return 0;
8176
8177 if (number >= conf->raid_disks &&
8178 conf->reshape_progress == MaxSector)
8179 clear_bit(In_sync, &rdev->flags);
8180
8181 if (test_bit(In_sync, &rdev->flags) ||
8182 atomic_read(&rdev->nr_pending)) {
8183 err = -EBUSY;
8184 goto abort;
8185 }
8186 /* Only remove non-faulty devices if recovery
8187 * isn't possible.
8188 */
8189 if (!test_bit(Faulty, &rdev->flags) &&
8190 mddev->recovery_disabled != conf->recovery_disabled &&
8191 !has_failed(conf) &&
8192 (!p->replacement || p->replacement == rdev) &&
8193 number < conf->raid_disks) {
8194 err = -EBUSY;
8195 goto abort;
8196 }
8197 WRITE_ONCE(*rdevp, NULL);
8198 if (!err) {
8199 err = log_modify(conf, rdev, false);
8200 if (err)
8201 goto abort;
8202 }
8203
8204 tmp = p->replacement;
8205 if (tmp) {
8206 /* We must have just cleared 'rdev' */
8207 WRITE_ONCE(p->rdev, tmp);
8208 clear_bit(Replacement, &tmp->flags);
8209 WRITE_ONCE(p->replacement, NULL);
8210
8211 if (!err)
8212 err = log_modify(conf, tmp, true);
8213 }
8214
8215 clear_bit(WantReplacement, &rdev->flags);
8216abort:
8217
8218 print_raid5_conf(conf);
8219 return err;
8220}
8221
8222static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8223{
8224 struct r5conf *conf = mddev->private;
8225 int ret, err = -EEXIST;
8226 int disk;
8227 struct disk_info *p;
8228 struct md_rdev *tmp;
8229 int first = 0;
8230 int last = conf->raid_disks - 1;
8231
8232 if (test_bit(Journal, &rdev->flags)) {
8233 if (conf->log)
8234 return -EBUSY;
8235
8236 rdev->raid_disk = 0;
8237 /*
8238 * The array is in readonly mode if journal is missing, so no
8239 * write requests running. We should be safe
8240 */
8241 ret = log_init(conf, rdev, false);
8242 if (ret)
8243 return ret;
8244
8245 ret = r5l_start(conf->log);
8246 if (ret)
8247 return ret;
8248
8249 return 0;
8250 }
8251 if (mddev->recovery_disabled == conf->recovery_disabled)
8252 return -EBUSY;
8253
8254 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8255 /* no point adding a device */
8256 return -EINVAL;
8257
8258 if (rdev->raid_disk >= 0)
8259 first = last = rdev->raid_disk;
8260
8261 /*
8262 * find the disk ... but prefer rdev->saved_raid_disk
8263 * if possible.
8264 */
8265 if (rdev->saved_raid_disk >= first &&
8266 rdev->saved_raid_disk <= last &&
8267 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8268 first = rdev->saved_raid_disk;
8269
8270 for (disk = first; disk <= last; disk++) {
8271 p = conf->disks + disk;
8272 if (p->rdev == NULL) {
8273 clear_bit(In_sync, &rdev->flags);
8274 rdev->raid_disk = disk;
8275 if (rdev->saved_raid_disk != disk)
8276 conf->fullsync = 1;
8277 WRITE_ONCE(p->rdev, rdev);
8278
8279 err = log_modify(conf, rdev, true);
8280
8281 goto out;
8282 }
8283 }
8284 for (disk = first; disk <= last; disk++) {
8285 p = conf->disks + disk;
8286 tmp = p->rdev;
8287 if (test_bit(WantReplacement, &tmp->flags) &&
8288 mddev->reshape_position == MaxSector &&
8289 p->replacement == NULL) {
8290 clear_bit(In_sync, &rdev->flags);
8291 set_bit(Replacement, &rdev->flags);
8292 rdev->raid_disk = disk;
8293 err = 0;
8294 conf->fullsync = 1;
8295 WRITE_ONCE(p->replacement, rdev);
8296 break;
8297 }
8298 }
8299out:
8300 print_raid5_conf(conf);
8301 return err;
8302}
8303
8304static int raid5_resize(struct mddev *mddev, sector_t sectors)
8305{
8306 /* no resync is happening, and there is enough space
8307 * on all devices, so we can resize.
8308 * We need to make sure resync covers any new space.
8309 * If the array is shrinking we should possibly wait until
8310 * any io in the removed space completes, but it hardly seems
8311 * worth it.
8312 */
8313 sector_t newsize;
8314 struct r5conf *conf = mddev->private;
8315
8316 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8317 return -EINVAL;
8318 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8319 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8320 if (mddev->external_size &&
8321 mddev->array_sectors > newsize)
8322 return -EINVAL;
8323 if (mddev->bitmap) {
8324 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8325 if (ret)
8326 return ret;
8327 }
8328 md_set_array_sectors(mddev, newsize);
8329 if (sectors > mddev->dev_sectors &&
8330 mddev->recovery_cp > mddev->dev_sectors) {
8331 mddev->recovery_cp = mddev->dev_sectors;
8332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8333 }
8334 mddev->dev_sectors = sectors;
8335 mddev->resync_max_sectors = sectors;
8336 return 0;
8337}
8338
8339static int check_stripe_cache(struct mddev *mddev)
8340{
8341 /* Can only proceed if there are plenty of stripe_heads.
8342 * We need a minimum of one full stripe,, and for sensible progress
8343 * it is best to have about 4 times that.
8344 * If we require 4 times, then the default 256 4K stripe_heads will
8345 * allow for chunk sizes up to 256K, which is probably OK.
8346 * If the chunk size is greater, user-space should request more
8347 * stripe_heads first.
8348 */
8349 struct r5conf *conf = mddev->private;
8350 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8351 > conf->min_nr_stripes ||
8352 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8353 > conf->min_nr_stripes) {
8354 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8355 mdname(mddev),
8356 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8357 / RAID5_STRIPE_SIZE(conf))*4);
8358 return 0;
8359 }
8360 return 1;
8361}
8362
8363static int check_reshape(struct mddev *mddev)
8364{
8365 struct r5conf *conf = mddev->private;
8366
8367 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8368 return -EINVAL;
8369 if (mddev->delta_disks == 0 &&
8370 mddev->new_layout == mddev->layout &&
8371 mddev->new_chunk_sectors == mddev->chunk_sectors)
8372 return 0; /* nothing to do */
8373 if (has_failed(conf))
8374 return -EINVAL;
8375 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8376 /* We might be able to shrink, but the devices must
8377 * be made bigger first.
8378 * For raid6, 4 is the minimum size.
8379 * Otherwise 2 is the minimum
8380 */
8381 int min = 2;
8382 if (mddev->level == 6)
8383 min = 4;
8384 if (mddev->raid_disks + mddev->delta_disks < min)
8385 return -EINVAL;
8386 }
8387
8388 if (!check_stripe_cache(mddev))
8389 return -ENOSPC;
8390
8391 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8392 mddev->delta_disks > 0)
8393 if (resize_chunks(conf,
8394 conf->previous_raid_disks
8395 + max(0, mddev->delta_disks),
8396 max(mddev->new_chunk_sectors,
8397 mddev->chunk_sectors)
8398 ) < 0)
8399 return -ENOMEM;
8400
8401 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8402 return 0; /* never bother to shrink */
8403 return resize_stripes(conf, (conf->previous_raid_disks
8404 + mddev->delta_disks));
8405}
8406
8407static int raid5_start_reshape(struct mddev *mddev)
8408{
8409 struct r5conf *conf = mddev->private;
8410 struct md_rdev *rdev;
8411 int spares = 0;
8412 int i;
8413 unsigned long flags;
8414
8415 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8416 return -EBUSY;
8417
8418 if (!check_stripe_cache(mddev))
8419 return -ENOSPC;
8420
8421 if (has_failed(conf))
8422 return -EINVAL;
8423
8424 /* raid5 can't handle concurrent reshape and recovery */
8425 if (mddev->recovery_cp < MaxSector)
8426 return -EBUSY;
8427 for (i = 0; i < conf->raid_disks; i++)
8428 if (conf->disks[i].replacement)
8429 return -EBUSY;
8430
8431 rdev_for_each(rdev, mddev) {
8432 if (!test_bit(In_sync, &rdev->flags)
8433 && !test_bit(Faulty, &rdev->flags))
8434 spares++;
8435 }
8436
8437 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8438 /* Not enough devices even to make a degraded array
8439 * of that size
8440 */
8441 return -EINVAL;
8442
8443 /* Refuse to reduce size of the array. Any reductions in
8444 * array size must be through explicit setting of array_size
8445 * attribute.
8446 */
8447 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8448 < mddev->array_sectors) {
8449 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8450 mdname(mddev));
8451 return -EINVAL;
8452 }
8453
8454 atomic_set(&conf->reshape_stripes, 0);
8455 spin_lock_irq(&conf->device_lock);
8456 write_seqcount_begin(&conf->gen_lock);
8457 conf->previous_raid_disks = conf->raid_disks;
8458 conf->raid_disks += mddev->delta_disks;
8459 conf->prev_chunk_sectors = conf->chunk_sectors;
8460 conf->chunk_sectors = mddev->new_chunk_sectors;
8461 conf->prev_algo = conf->algorithm;
8462 conf->algorithm = mddev->new_layout;
8463 conf->generation++;
8464 /* Code that selects data_offset needs to see the generation update
8465 * if reshape_progress has been set - so a memory barrier needed.
8466 */
8467 smp_mb();
8468 if (mddev->reshape_backwards)
8469 conf->reshape_progress = raid5_size(mddev, 0, 0);
8470 else
8471 conf->reshape_progress = 0;
8472 conf->reshape_safe = conf->reshape_progress;
8473 write_seqcount_end(&conf->gen_lock);
8474 spin_unlock_irq(&conf->device_lock);
8475
8476 /* Now make sure any requests that proceeded on the assumption
8477 * the reshape wasn't running - like Discard or Read - have
8478 * completed.
8479 */
8480 raid5_quiesce(mddev, true);
8481 raid5_quiesce(mddev, false);
8482
8483 /* Add some new drives, as many as will fit.
8484 * We know there are enough to make the newly sized array work.
8485 * Don't add devices if we are reducing the number of
8486 * devices in the array. This is because it is not possible
8487 * to correctly record the "partially reconstructed" state of
8488 * such devices during the reshape and confusion could result.
8489 */
8490 if (mddev->delta_disks >= 0) {
8491 rdev_for_each(rdev, mddev)
8492 if (rdev->raid_disk < 0 &&
8493 !test_bit(Faulty, &rdev->flags)) {
8494 if (raid5_add_disk(mddev, rdev) == 0) {
8495 if (rdev->raid_disk
8496 >= conf->previous_raid_disks)
8497 set_bit(In_sync, &rdev->flags);
8498 else
8499 rdev->recovery_offset = 0;
8500
8501 /* Failure here is OK */
8502 sysfs_link_rdev(mddev, rdev);
8503 }
8504 } else if (rdev->raid_disk >= conf->previous_raid_disks
8505 && !test_bit(Faulty, &rdev->flags)) {
8506 /* This is a spare that was manually added */
8507 set_bit(In_sync, &rdev->flags);
8508 }
8509
8510 /* When a reshape changes the number of devices,
8511 * ->degraded is measured against the larger of the
8512 * pre and post number of devices.
8513 */
8514 spin_lock_irqsave(&conf->device_lock, flags);
8515 mddev->degraded = raid5_calc_degraded(conf);
8516 spin_unlock_irqrestore(&conf->device_lock, flags);
8517 }
8518 mddev->raid_disks = conf->raid_disks;
8519 mddev->reshape_position = conf->reshape_progress;
8520 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8521
8522 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8523 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8524 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8525 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8526 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8527 conf->reshape_checkpoint = jiffies;
8528 md_new_event();
8529 return 0;
8530}
8531
8532/* This is called from the reshape thread and should make any
8533 * changes needed in 'conf'
8534 */
8535static void end_reshape(struct r5conf *conf)
8536{
8537
8538 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8539 struct md_rdev *rdev;
8540
8541 spin_lock_irq(&conf->device_lock);
8542 conf->previous_raid_disks = conf->raid_disks;
8543 md_finish_reshape(conf->mddev);
8544 smp_wmb();
8545 conf->reshape_progress = MaxSector;
8546 conf->mddev->reshape_position = MaxSector;
8547 rdev_for_each(rdev, conf->mddev)
8548 if (rdev->raid_disk >= 0 &&
8549 !test_bit(Journal, &rdev->flags) &&
8550 !test_bit(In_sync, &rdev->flags))
8551 rdev->recovery_offset = MaxSector;
8552 spin_unlock_irq(&conf->device_lock);
8553 wake_up(&conf->wait_for_overlap);
8554
8555 mddev_update_io_opt(conf->mddev,
8556 conf->raid_disks - conf->max_degraded);
8557 }
8558}
8559
8560/* This is called from the raid5d thread with mddev_lock held.
8561 * It makes config changes to the device.
8562 */
8563static void raid5_finish_reshape(struct mddev *mddev)
8564{
8565 struct r5conf *conf = mddev->private;
8566 struct md_rdev *rdev;
8567
8568 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8569
8570 if (mddev->delta_disks <= 0) {
8571 int d;
8572 spin_lock_irq(&conf->device_lock);
8573 mddev->degraded = raid5_calc_degraded(conf);
8574 spin_unlock_irq(&conf->device_lock);
8575 for (d = conf->raid_disks ;
8576 d < conf->raid_disks - mddev->delta_disks;
8577 d++) {
8578 rdev = conf->disks[d].rdev;
8579 if (rdev)
8580 clear_bit(In_sync, &rdev->flags);
8581 rdev = conf->disks[d].replacement;
8582 if (rdev)
8583 clear_bit(In_sync, &rdev->flags);
8584 }
8585 }
8586 mddev->layout = conf->algorithm;
8587 mddev->chunk_sectors = conf->chunk_sectors;
8588 mddev->reshape_position = MaxSector;
8589 mddev->delta_disks = 0;
8590 mddev->reshape_backwards = 0;
8591 }
8592}
8593
8594static void raid5_quiesce(struct mddev *mddev, int quiesce)
8595{
8596 struct r5conf *conf = mddev->private;
8597
8598 if (quiesce) {
8599 /* stop all writes */
8600 lock_all_device_hash_locks_irq(conf);
8601 /* '2' tells resync/reshape to pause so that all
8602 * active stripes can drain
8603 */
8604 r5c_flush_cache(conf, INT_MAX);
8605 /* need a memory barrier to make sure read_one_chunk() sees
8606 * quiesce started and reverts to slow (locked) path.
8607 */
8608 smp_store_release(&conf->quiesce, 2);
8609 wait_event_cmd(conf->wait_for_quiescent,
8610 atomic_read(&conf->active_stripes) == 0 &&
8611 atomic_read(&conf->active_aligned_reads) == 0,
8612 unlock_all_device_hash_locks_irq(conf),
8613 lock_all_device_hash_locks_irq(conf));
8614 conf->quiesce = 1;
8615 unlock_all_device_hash_locks_irq(conf);
8616 /* allow reshape to continue */
8617 wake_up(&conf->wait_for_overlap);
8618 } else {
8619 /* re-enable writes */
8620 lock_all_device_hash_locks_irq(conf);
8621 conf->quiesce = 0;
8622 wake_up(&conf->wait_for_quiescent);
8623 wake_up(&conf->wait_for_overlap);
8624 unlock_all_device_hash_locks_irq(conf);
8625 }
8626 log_quiesce(conf, quiesce);
8627}
8628
8629static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8630{
8631 struct r0conf *raid0_conf = mddev->private;
8632 sector_t sectors;
8633
8634 /* for raid0 takeover only one zone is supported */
8635 if (raid0_conf->nr_strip_zones > 1) {
8636 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8637 mdname(mddev));
8638 return ERR_PTR(-EINVAL);
8639 }
8640
8641 sectors = raid0_conf->strip_zone[0].zone_end;
8642 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8643 mddev->dev_sectors = sectors;
8644 mddev->new_level = level;
8645 mddev->new_layout = ALGORITHM_PARITY_N;
8646 mddev->new_chunk_sectors = mddev->chunk_sectors;
8647 mddev->raid_disks += 1;
8648 mddev->delta_disks = 1;
8649 /* make sure it will be not marked as dirty */
8650 mddev->recovery_cp = MaxSector;
8651
8652 return setup_conf(mddev);
8653}
8654
8655static void *raid5_takeover_raid1(struct mddev *mddev)
8656{
8657 int chunksect;
8658 void *ret;
8659
8660 if (mddev->raid_disks != 2 ||
8661 mddev->degraded > 1)
8662 return ERR_PTR(-EINVAL);
8663
8664 /* Should check if there are write-behind devices? */
8665
8666 chunksect = 64*2; /* 64K by default */
8667
8668 /* The array must be an exact multiple of chunksize */
8669 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8670 chunksect >>= 1;
8671
8672 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8673 /* array size does not allow a suitable chunk size */
8674 return ERR_PTR(-EINVAL);
8675
8676 mddev->new_level = 5;
8677 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8678 mddev->new_chunk_sectors = chunksect;
8679
8680 ret = setup_conf(mddev);
8681 if (!IS_ERR(ret))
8682 mddev_clear_unsupported_flags(mddev,
8683 UNSUPPORTED_MDDEV_FLAGS);
8684 return ret;
8685}
8686
8687static void *raid5_takeover_raid6(struct mddev *mddev)
8688{
8689 int new_layout;
8690
8691 switch (mddev->layout) {
8692 case ALGORITHM_LEFT_ASYMMETRIC_6:
8693 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8694 break;
8695 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8696 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8697 break;
8698 case ALGORITHM_LEFT_SYMMETRIC_6:
8699 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8700 break;
8701 case ALGORITHM_RIGHT_SYMMETRIC_6:
8702 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8703 break;
8704 case ALGORITHM_PARITY_0_6:
8705 new_layout = ALGORITHM_PARITY_0;
8706 break;
8707 case ALGORITHM_PARITY_N:
8708 new_layout = ALGORITHM_PARITY_N;
8709 break;
8710 default:
8711 return ERR_PTR(-EINVAL);
8712 }
8713 mddev->new_level = 5;
8714 mddev->new_layout = new_layout;
8715 mddev->delta_disks = -1;
8716 mddev->raid_disks -= 1;
8717 return setup_conf(mddev);
8718}
8719
8720static int raid5_check_reshape(struct mddev *mddev)
8721{
8722 /* For a 2-drive array, the layout and chunk size can be changed
8723 * immediately as not restriping is needed.
8724 * For larger arrays we record the new value - after validation
8725 * to be used by a reshape pass.
8726 */
8727 struct r5conf *conf = mddev->private;
8728 int new_chunk = mddev->new_chunk_sectors;
8729
8730 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8731 return -EINVAL;
8732 if (new_chunk > 0) {
8733 if (!is_power_of_2(new_chunk))
8734 return -EINVAL;
8735 if (new_chunk < (PAGE_SIZE>>9))
8736 return -EINVAL;
8737 if (mddev->array_sectors & (new_chunk-1))
8738 /* not factor of array size */
8739 return -EINVAL;
8740 }
8741
8742 /* They look valid */
8743
8744 if (mddev->raid_disks == 2) {
8745 /* can make the change immediately */
8746 if (mddev->new_layout >= 0) {
8747 conf->algorithm = mddev->new_layout;
8748 mddev->layout = mddev->new_layout;
8749 }
8750 if (new_chunk > 0) {
8751 conf->chunk_sectors = new_chunk ;
8752 mddev->chunk_sectors = new_chunk;
8753 }
8754 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8755 md_wakeup_thread(mddev->thread);
8756 }
8757 return check_reshape(mddev);
8758}
8759
8760static int raid6_check_reshape(struct mddev *mddev)
8761{
8762 int new_chunk = mddev->new_chunk_sectors;
8763
8764 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8765 return -EINVAL;
8766 if (new_chunk > 0) {
8767 if (!is_power_of_2(new_chunk))
8768 return -EINVAL;
8769 if (new_chunk < (PAGE_SIZE >> 9))
8770 return -EINVAL;
8771 if (mddev->array_sectors & (new_chunk-1))
8772 /* not factor of array size */
8773 return -EINVAL;
8774 }
8775
8776 /* They look valid */
8777 return check_reshape(mddev);
8778}
8779
8780static void *raid5_takeover(struct mddev *mddev)
8781{
8782 /* raid5 can take over:
8783 * raid0 - if there is only one strip zone - make it a raid4 layout
8784 * raid1 - if there are two drives. We need to know the chunk size
8785 * raid4 - trivial - just use a raid4 layout.
8786 * raid6 - Providing it is a *_6 layout
8787 */
8788 if (mddev->level == 0)
8789 return raid45_takeover_raid0(mddev, 5);
8790 if (mddev->level == 1)
8791 return raid5_takeover_raid1(mddev);
8792 if (mddev->level == 4) {
8793 mddev->new_layout = ALGORITHM_PARITY_N;
8794 mddev->new_level = 5;
8795 return setup_conf(mddev);
8796 }
8797 if (mddev->level == 6)
8798 return raid5_takeover_raid6(mddev);
8799
8800 return ERR_PTR(-EINVAL);
8801}
8802
8803static void *raid4_takeover(struct mddev *mddev)
8804{
8805 /* raid4 can take over:
8806 * raid0 - if there is only one strip zone
8807 * raid5 - if layout is right
8808 */
8809 if (mddev->level == 0)
8810 return raid45_takeover_raid0(mddev, 4);
8811 if (mddev->level == 5 &&
8812 mddev->layout == ALGORITHM_PARITY_N) {
8813 mddev->new_layout = 0;
8814 mddev->new_level = 4;
8815 return setup_conf(mddev);
8816 }
8817 return ERR_PTR(-EINVAL);
8818}
8819
8820static struct md_personality raid5_personality;
8821
8822static void *raid6_takeover(struct mddev *mddev)
8823{
8824 /* Currently can only take over a raid5. We map the
8825 * personality to an equivalent raid6 personality
8826 * with the Q block at the end.
8827 */
8828 int new_layout;
8829
8830 if (mddev->pers != &raid5_personality)
8831 return ERR_PTR(-EINVAL);
8832 if (mddev->degraded > 1)
8833 return ERR_PTR(-EINVAL);
8834 if (mddev->raid_disks > 253)
8835 return ERR_PTR(-EINVAL);
8836 if (mddev->raid_disks < 3)
8837 return ERR_PTR(-EINVAL);
8838
8839 switch (mddev->layout) {
8840 case ALGORITHM_LEFT_ASYMMETRIC:
8841 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8842 break;
8843 case ALGORITHM_RIGHT_ASYMMETRIC:
8844 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8845 break;
8846 case ALGORITHM_LEFT_SYMMETRIC:
8847 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8848 break;
8849 case ALGORITHM_RIGHT_SYMMETRIC:
8850 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8851 break;
8852 case ALGORITHM_PARITY_0:
8853 new_layout = ALGORITHM_PARITY_0_6;
8854 break;
8855 case ALGORITHM_PARITY_N:
8856 new_layout = ALGORITHM_PARITY_N;
8857 break;
8858 default:
8859 return ERR_PTR(-EINVAL);
8860 }
8861 mddev->new_level = 6;
8862 mddev->new_layout = new_layout;
8863 mddev->delta_disks = 1;
8864 mddev->raid_disks += 1;
8865 return setup_conf(mddev);
8866}
8867
8868static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8869{
8870 struct r5conf *conf;
8871 int err;
8872
8873 err = mddev_suspend_and_lock(mddev);
8874 if (err)
8875 return err;
8876 conf = mddev->private;
8877 if (!conf) {
8878 mddev_unlock_and_resume(mddev);
8879 return -ENODEV;
8880 }
8881
8882 if (strncmp(buf, "ppl", 3) == 0) {
8883 /* ppl only works with RAID 5 */
8884 if (!raid5_has_ppl(conf) && conf->level == 5) {
8885 err = log_init(conf, NULL, true);
8886 if (!err) {
8887 err = resize_stripes(conf, conf->pool_size);
8888 if (err)
8889 log_exit(conf);
8890 }
8891 } else
8892 err = -EINVAL;
8893 } else if (strncmp(buf, "resync", 6) == 0) {
8894 if (raid5_has_ppl(conf)) {
8895 log_exit(conf);
8896 err = resize_stripes(conf, conf->pool_size);
8897 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8898 r5l_log_disk_error(conf)) {
8899 bool journal_dev_exists = false;
8900 struct md_rdev *rdev;
8901
8902 rdev_for_each(rdev, mddev)
8903 if (test_bit(Journal, &rdev->flags)) {
8904 journal_dev_exists = true;
8905 break;
8906 }
8907
8908 if (!journal_dev_exists)
8909 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8910 else /* need remove journal device first */
8911 err = -EBUSY;
8912 } else
8913 err = -EINVAL;
8914 } else {
8915 err = -EINVAL;
8916 }
8917
8918 if (!err)
8919 md_update_sb(mddev, 1);
8920
8921 mddev_unlock_and_resume(mddev);
8922
8923 return err;
8924}
8925
8926static int raid5_start(struct mddev *mddev)
8927{
8928 struct r5conf *conf = mddev->private;
8929
8930 return r5l_start(conf->log);
8931}
8932
8933/*
8934 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8935 * if rehsape is still in progress, io that is waiting for reshape can never be
8936 * done now, hence wake up and handle those IO.
8937 */
8938static void raid5_prepare_suspend(struct mddev *mddev)
8939{
8940 struct r5conf *conf = mddev->private;
8941
8942 wake_up(&conf->wait_for_overlap);
8943}
8944
8945static struct md_personality raid6_personality =
8946{
8947 .name = "raid6",
8948 .level = 6,
8949 .owner = THIS_MODULE,
8950 .make_request = raid5_make_request,
8951 .run = raid5_run,
8952 .start = raid5_start,
8953 .free = raid5_free,
8954 .status = raid5_status,
8955 .error_handler = raid5_error,
8956 .hot_add_disk = raid5_add_disk,
8957 .hot_remove_disk= raid5_remove_disk,
8958 .spare_active = raid5_spare_active,
8959 .sync_request = raid5_sync_request,
8960 .resize = raid5_resize,
8961 .size = raid5_size,
8962 .check_reshape = raid6_check_reshape,
8963 .start_reshape = raid5_start_reshape,
8964 .finish_reshape = raid5_finish_reshape,
8965 .quiesce = raid5_quiesce,
8966 .takeover = raid6_takeover,
8967 .change_consistency_policy = raid5_change_consistency_policy,
8968 .prepare_suspend = raid5_prepare_suspend,
8969};
8970static struct md_personality raid5_personality =
8971{
8972 .name = "raid5",
8973 .level = 5,
8974 .owner = THIS_MODULE,
8975 .make_request = raid5_make_request,
8976 .run = raid5_run,
8977 .start = raid5_start,
8978 .free = raid5_free,
8979 .status = raid5_status,
8980 .error_handler = raid5_error,
8981 .hot_add_disk = raid5_add_disk,
8982 .hot_remove_disk= raid5_remove_disk,
8983 .spare_active = raid5_spare_active,
8984 .sync_request = raid5_sync_request,
8985 .resize = raid5_resize,
8986 .size = raid5_size,
8987 .check_reshape = raid5_check_reshape,
8988 .start_reshape = raid5_start_reshape,
8989 .finish_reshape = raid5_finish_reshape,
8990 .quiesce = raid5_quiesce,
8991 .takeover = raid5_takeover,
8992 .change_consistency_policy = raid5_change_consistency_policy,
8993 .prepare_suspend = raid5_prepare_suspend,
8994};
8995
8996static struct md_personality raid4_personality =
8997{
8998 .name = "raid4",
8999 .level = 4,
9000 .owner = THIS_MODULE,
9001 .make_request = raid5_make_request,
9002 .run = raid5_run,
9003 .start = raid5_start,
9004 .free = raid5_free,
9005 .status = raid5_status,
9006 .error_handler = raid5_error,
9007 .hot_add_disk = raid5_add_disk,
9008 .hot_remove_disk= raid5_remove_disk,
9009 .spare_active = raid5_spare_active,
9010 .sync_request = raid5_sync_request,
9011 .resize = raid5_resize,
9012 .size = raid5_size,
9013 .check_reshape = raid5_check_reshape,
9014 .start_reshape = raid5_start_reshape,
9015 .finish_reshape = raid5_finish_reshape,
9016 .quiesce = raid5_quiesce,
9017 .takeover = raid4_takeover,
9018 .change_consistency_policy = raid5_change_consistency_policy,
9019 .prepare_suspend = raid5_prepare_suspend,
9020};
9021
9022static int __init raid5_init(void)
9023{
9024 int ret;
9025
9026 raid5_wq = alloc_workqueue("raid5wq",
9027 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9028 if (!raid5_wq)
9029 return -ENOMEM;
9030
9031 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9032 "md/raid5:prepare",
9033 raid456_cpu_up_prepare,
9034 raid456_cpu_dead);
9035 if (ret) {
9036 destroy_workqueue(raid5_wq);
9037 return ret;
9038 }
9039 register_md_personality(&raid6_personality);
9040 register_md_personality(&raid5_personality);
9041 register_md_personality(&raid4_personality);
9042 return 0;
9043}
9044
9045static void raid5_exit(void)
9046{
9047 unregister_md_personality(&raid6_personality);
9048 unregister_md_personality(&raid5_personality);
9049 unregister_md_personality(&raid4_personality);
9050 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9051 destroy_workqueue(raid5_wq);
9052}
9053
9054module_init(raid5_init);
9055module_exit(raid5_exit);
9056MODULE_LICENSE("GPL");
9057MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9058MODULE_ALIAS("md-personality-4"); /* RAID5 */
9059MODULE_ALIAS("md-raid5");
9060MODULE_ALIAS("md-raid4");
9061MODULE_ALIAS("md-level-5");
9062MODULE_ALIAS("md-level-4");
9063MODULE_ALIAS("md-personality-8"); /* RAID6 */
9064MODULE_ALIAS("md-raid6");
9065MODULE_ALIAS("md-level-6");
9066
9067/* This used to be two separate modules, they were: */
9068MODULE_ALIAS("raid5");
9069MODULE_ALIAS("raid6");