Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/*
3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/utsname.h>
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/major.h>
32#include <linux/string.h>
33#include <linux/fcntl.h>
34#include <linux/slab.h>
35#include <linux/random.h>
36#include <linux/poll.h>
37#include <linux/init.h>
38#include <linux/fs.h>
39#include <linux/blkdev.h>
40#include <linux/interrupt.h>
41#include <linux/mm.h>
42#include <linux/nodemask.h>
43#include <linux/spinlock.h>
44#include <linux/kthread.h>
45#include <linux/percpu.h>
46#include <linux/ptrace.h>
47#include <linux/workqueue.h>
48#include <linux/irq.h>
49#include <linux/ratelimit.h>
50#include <linux/syscalls.h>
51#include <linux/completion.h>
52#include <linux/uuid.h>
53#include <linux/uaccess.h>
54#include <linux/suspend.h>
55#include <linux/siphash.h>
56#include <linux/sched/isolation.h>
57#include <crypto/chacha.h>
58#include <crypto/blake2s.h>
59#ifdef CONFIG_VDSO_GETRANDOM
60#include <vdso/getrandom.h>
61#include <vdso/datapage.h>
62#endif
63#include <asm/archrandom.h>
64#include <asm/processor.h>
65#include <asm/irq.h>
66#include <asm/irq_regs.h>
67#include <asm/io.h>
68
69/*********************************************************************
70 *
71 * Initialization and readiness waiting.
72 *
73 * Much of the RNG infrastructure is devoted to various dependencies
74 * being able to wait until the RNG has collected enough entropy and
75 * is ready for safe consumption.
76 *
77 *********************************************************************/
78
79/*
80 * crng_init is protected by base_crng->lock, and only increases
81 * its value (from empty->early->ready).
82 */
83static enum {
84 CRNG_EMPTY = 0, /* Little to no entropy collected */
85 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
86 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
87} crng_init __read_mostly = CRNG_EMPTY;
88static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
89#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
90/* Various types of waiters for crng_init->CRNG_READY transition. */
91static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
92static struct fasync_struct *fasync;
93static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
94
95/* Control how we warn userspace. */
96static struct ratelimit_state urandom_warning =
97 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
98static int ratelimit_disable __read_mostly =
99 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
100module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
101MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
102
103/*
104 * Returns whether or not the input pool has been seeded and thus guaranteed
105 * to supply cryptographically secure random numbers. This applies to: the
106 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
107 * u16,u32,u64,long} family of functions.
108 *
109 * Returns: true if the input pool has been seeded.
110 * false if the input pool has not been seeded.
111 */
112bool rng_is_initialized(void)
113{
114 return crng_ready();
115}
116EXPORT_SYMBOL(rng_is_initialized);
117
118static void __cold crng_set_ready(struct work_struct *work)
119{
120 static_branch_enable(&crng_is_ready);
121}
122
123/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
124static void try_to_generate_entropy(void);
125
126/*
127 * Wait for the input pool to be seeded and thus guaranteed to supply
128 * cryptographically secure random numbers. This applies to: the /dev/urandom
129 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
130 * long} family of functions. Using any of these functions without first
131 * calling this function forfeits the guarantee of security.
132 *
133 * Returns: 0 if the input pool has been seeded.
134 * -ERESTARTSYS if the function was interrupted by a signal.
135 */
136int wait_for_random_bytes(void)
137{
138 while (!crng_ready()) {
139 int ret;
140
141 try_to_generate_entropy();
142 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
143 if (ret)
144 return ret > 0 ? 0 : ret;
145 }
146 return 0;
147}
148EXPORT_SYMBOL(wait_for_random_bytes);
149
150/*
151 * Add a callback function that will be invoked when the crng is initialised,
152 * or immediately if it already has been. Only use this is you are absolutely
153 * sure it is required. Most users should instead be able to test
154 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
155 */
156int __cold execute_with_initialized_rng(struct notifier_block *nb)
157{
158 unsigned long flags;
159 int ret = 0;
160
161 spin_lock_irqsave(&random_ready_notifier.lock, flags);
162 if (crng_ready())
163 nb->notifier_call(nb, 0, NULL);
164 else
165 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
166 spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
167 return ret;
168}
169
170#define warn_unseeded_randomness() \
171 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
172 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
173 __func__, (void *)_RET_IP_, crng_init)
174
175
176/*********************************************************************
177 *
178 * Fast key erasure RNG, the "crng".
179 *
180 * These functions expand entropy from the entropy extractor into
181 * long streams for external consumption using the "fast key erasure"
182 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
183 *
184 * There are a few exported interfaces for use by other drivers:
185 *
186 * void get_random_bytes(void *buf, size_t len)
187 * u8 get_random_u8()
188 * u16 get_random_u16()
189 * u32 get_random_u32()
190 * u32 get_random_u32_below(u32 ceil)
191 * u32 get_random_u32_above(u32 floor)
192 * u32 get_random_u32_inclusive(u32 floor, u32 ceil)
193 * u64 get_random_u64()
194 * unsigned long get_random_long()
195 *
196 * These interfaces will return the requested number of random bytes
197 * into the given buffer or as a return value. This is equivalent to
198 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
199 * functions may be higher performance for one-off random integers,
200 * because they do a bit of buffering and do not invoke reseeding
201 * until the buffer is emptied.
202 *
203 *********************************************************************/
204
205enum {
206 CRNG_RESEED_START_INTERVAL = HZ,
207 CRNG_RESEED_INTERVAL = 60 * HZ
208};
209
210static struct {
211 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
212 unsigned long generation;
213 spinlock_t lock;
214} base_crng = {
215 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
216};
217
218struct crng {
219 u8 key[CHACHA_KEY_SIZE];
220 unsigned long generation;
221 local_lock_t lock;
222};
223
224static DEFINE_PER_CPU(struct crng, crngs) = {
225 .generation = ULONG_MAX,
226 .lock = INIT_LOCAL_LOCK(crngs.lock),
227};
228
229/*
230 * Return the interval until the next reseeding, which is normally
231 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
232 * proportional to the uptime.
233 */
234static unsigned int crng_reseed_interval(void)
235{
236 static bool early_boot = true;
237
238 if (unlikely(READ_ONCE(early_boot))) {
239 time64_t uptime = ktime_get_seconds();
240 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
241 WRITE_ONCE(early_boot, false);
242 else
243 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
244 (unsigned int)uptime / 2 * HZ);
245 }
246 return CRNG_RESEED_INTERVAL;
247}
248
249/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
250static void extract_entropy(void *buf, size_t len);
251
252/* This extracts a new crng key from the input pool. */
253static void crng_reseed(struct work_struct *work)
254{
255 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
256 unsigned long flags;
257 unsigned long next_gen;
258 u8 key[CHACHA_KEY_SIZE];
259
260 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
261 if (likely(system_unbound_wq))
262 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
263
264 extract_entropy(key, sizeof(key));
265
266 /*
267 * We copy the new key into the base_crng, overwriting the old one,
268 * and update the generation counter. We avoid hitting ULONG_MAX,
269 * because the per-cpu crngs are initialized to ULONG_MAX, so this
270 * forces new CPUs that come online to always initialize.
271 */
272 spin_lock_irqsave(&base_crng.lock, flags);
273 memcpy(base_crng.key, key, sizeof(base_crng.key));
274 next_gen = base_crng.generation + 1;
275 if (next_gen == ULONG_MAX)
276 ++next_gen;
277 WRITE_ONCE(base_crng.generation, next_gen);
278#ifdef CONFIG_VDSO_GETRANDOM
279 /* base_crng.generation's invalid value is ULONG_MAX, while
280 * _vdso_rng_data.generation's invalid value is 0, so add one to the
281 * former to arrive at the latter. Use smp_store_release so that this
282 * is ordered with the write above to base_crng.generation. Pairs with
283 * the smp_rmb() before the syscall in the vDSO code.
284 */
285 smp_store_release(&_vdso_rng_data.generation, next_gen + 1);
286#endif
287 if (!static_branch_likely(&crng_is_ready))
288 crng_init = CRNG_READY;
289 spin_unlock_irqrestore(&base_crng.lock, flags);
290 memzero_explicit(key, sizeof(key));
291}
292
293/*
294 * This generates a ChaCha block using the provided key, and then
295 * immediately overwrites that key with half the block. It returns
296 * the resultant ChaCha state to the user, along with the second
297 * half of the block containing 32 bytes of random data that may
298 * be used; random_data_len may not be greater than 32.
299 *
300 * The returned ChaCha state contains within it a copy of the old
301 * key value, at index 4, so the state should always be zeroed out
302 * immediately after using in order to maintain forward secrecy.
303 * If the state cannot be erased in a timely manner, then it is
304 * safer to set the random_data parameter to &chacha_state[4] so
305 * that this function overwrites it before returning.
306 */
307static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
308 u32 chacha_state[CHACHA_STATE_WORDS],
309 u8 *random_data, size_t random_data_len)
310{
311 u8 first_block[CHACHA_BLOCK_SIZE];
312
313 BUG_ON(random_data_len > 32);
314
315 chacha_init_consts(chacha_state);
316 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
317 memset(&chacha_state[12], 0, sizeof(u32) * 4);
318 chacha20_block(chacha_state, first_block);
319
320 memcpy(key, first_block, CHACHA_KEY_SIZE);
321 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
322 memzero_explicit(first_block, sizeof(first_block));
323}
324
325/*
326 * This function returns a ChaCha state that you may use for generating
327 * random data. It also returns up to 32 bytes on its own of random data
328 * that may be used; random_data_len may not be greater than 32.
329 */
330static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
331 u8 *random_data, size_t random_data_len)
332{
333 unsigned long flags;
334 struct crng *crng;
335
336 BUG_ON(random_data_len > 32);
337
338 /*
339 * For the fast path, we check whether we're ready, unlocked first, and
340 * then re-check once locked later. In the case where we're really not
341 * ready, we do fast key erasure with the base_crng directly, extracting
342 * when crng_init is CRNG_EMPTY.
343 */
344 if (!crng_ready()) {
345 bool ready;
346
347 spin_lock_irqsave(&base_crng.lock, flags);
348 ready = crng_ready();
349 if (!ready) {
350 if (crng_init == CRNG_EMPTY)
351 extract_entropy(base_crng.key, sizeof(base_crng.key));
352 crng_fast_key_erasure(base_crng.key, chacha_state,
353 random_data, random_data_len);
354 }
355 spin_unlock_irqrestore(&base_crng.lock, flags);
356 if (!ready)
357 return;
358 }
359
360 local_lock_irqsave(&crngs.lock, flags);
361 crng = raw_cpu_ptr(&crngs);
362
363 /*
364 * If our per-cpu crng is older than the base_crng, then it means
365 * somebody reseeded the base_crng. In that case, we do fast key
366 * erasure on the base_crng, and use its output as the new key
367 * for our per-cpu crng. This brings us up to date with base_crng.
368 */
369 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
370 spin_lock(&base_crng.lock);
371 crng_fast_key_erasure(base_crng.key, chacha_state,
372 crng->key, sizeof(crng->key));
373 crng->generation = base_crng.generation;
374 spin_unlock(&base_crng.lock);
375 }
376
377 /*
378 * Finally, when we've made it this far, our per-cpu crng has an up
379 * to date key, and we can do fast key erasure with it to produce
380 * some random data and a ChaCha state for the caller. All other
381 * branches of this function are "unlikely", so most of the time we
382 * should wind up here immediately.
383 */
384 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
385 local_unlock_irqrestore(&crngs.lock, flags);
386}
387
388static void _get_random_bytes(void *buf, size_t len)
389{
390 u32 chacha_state[CHACHA_STATE_WORDS];
391 u8 tmp[CHACHA_BLOCK_SIZE];
392 size_t first_block_len;
393
394 if (!len)
395 return;
396
397 first_block_len = min_t(size_t, 32, len);
398 crng_make_state(chacha_state, buf, first_block_len);
399 len -= first_block_len;
400 buf += first_block_len;
401
402 while (len) {
403 if (len < CHACHA_BLOCK_SIZE) {
404 chacha20_block(chacha_state, tmp);
405 memcpy(buf, tmp, len);
406 memzero_explicit(tmp, sizeof(tmp));
407 break;
408 }
409
410 chacha20_block(chacha_state, buf);
411 if (unlikely(chacha_state[12] == 0))
412 ++chacha_state[13];
413 len -= CHACHA_BLOCK_SIZE;
414 buf += CHACHA_BLOCK_SIZE;
415 }
416
417 memzero_explicit(chacha_state, sizeof(chacha_state));
418}
419
420/*
421 * This returns random bytes in arbitrary quantities. The quality of the
422 * random bytes is good as /dev/urandom. In order to ensure that the
423 * randomness provided by this function is okay, the function
424 * wait_for_random_bytes() should be called and return 0 at least once
425 * at any point prior.
426 */
427void get_random_bytes(void *buf, size_t len)
428{
429 warn_unseeded_randomness();
430 _get_random_bytes(buf, len);
431}
432EXPORT_SYMBOL(get_random_bytes);
433
434static ssize_t get_random_bytes_user(struct iov_iter *iter)
435{
436 u32 chacha_state[CHACHA_STATE_WORDS];
437 u8 block[CHACHA_BLOCK_SIZE];
438 size_t ret = 0, copied;
439
440 if (unlikely(!iov_iter_count(iter)))
441 return 0;
442
443 /*
444 * Immediately overwrite the ChaCha key at index 4 with random
445 * bytes, in case userspace causes copy_to_iter() below to sleep
446 * forever, so that we still retain forward secrecy in that case.
447 */
448 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
449 /*
450 * However, if we're doing a read of len <= 32, we don't need to
451 * use chacha_state after, so we can simply return those bytes to
452 * the user directly.
453 */
454 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
455 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
456 goto out_zero_chacha;
457 }
458
459 for (;;) {
460 chacha20_block(chacha_state, block);
461 if (unlikely(chacha_state[12] == 0))
462 ++chacha_state[13];
463
464 copied = copy_to_iter(block, sizeof(block), iter);
465 ret += copied;
466 if (!iov_iter_count(iter) || copied != sizeof(block))
467 break;
468
469 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
470 if (ret % PAGE_SIZE == 0) {
471 if (signal_pending(current))
472 break;
473 cond_resched();
474 }
475 }
476
477 memzero_explicit(block, sizeof(block));
478out_zero_chacha:
479 memzero_explicit(chacha_state, sizeof(chacha_state));
480 return ret ? ret : -EFAULT;
481}
482
483/*
484 * Batched entropy returns random integers. The quality of the random
485 * number is good as /dev/urandom. In order to ensure that the randomness
486 * provided by this function is okay, the function wait_for_random_bytes()
487 * should be called and return 0 at least once at any point prior.
488 */
489
490#define DEFINE_BATCHED_ENTROPY(type) \
491struct batch_ ##type { \
492 /* \
493 * We make this 1.5x a ChaCha block, so that we get the \
494 * remaining 32 bytes from fast key erasure, plus one full \
495 * block from the detached ChaCha state. We can increase \
496 * the size of this later if needed so long as we keep the \
497 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
498 */ \
499 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
500 local_lock_t lock; \
501 unsigned long generation; \
502 unsigned int position; \
503}; \
504 \
505static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
506 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
507 .position = UINT_MAX \
508}; \
509 \
510type get_random_ ##type(void) \
511{ \
512 type ret; \
513 unsigned long flags; \
514 struct batch_ ##type *batch; \
515 unsigned long next_gen; \
516 \
517 warn_unseeded_randomness(); \
518 \
519 if (!crng_ready()) { \
520 _get_random_bytes(&ret, sizeof(ret)); \
521 return ret; \
522 } \
523 \
524 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
525 batch = raw_cpu_ptr(&batched_entropy_##type); \
526 \
527 next_gen = READ_ONCE(base_crng.generation); \
528 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
529 next_gen != batch->generation) { \
530 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
531 batch->position = 0; \
532 batch->generation = next_gen; \
533 } \
534 \
535 ret = batch->entropy[batch->position]; \
536 batch->entropy[batch->position] = 0; \
537 ++batch->position; \
538 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
539 return ret; \
540} \
541EXPORT_SYMBOL(get_random_ ##type);
542
543DEFINE_BATCHED_ENTROPY(u8)
544DEFINE_BATCHED_ENTROPY(u16)
545DEFINE_BATCHED_ENTROPY(u32)
546DEFINE_BATCHED_ENTROPY(u64)
547
548u32 __get_random_u32_below(u32 ceil)
549{
550 /*
551 * This is the slow path for variable ceil. It is still fast, most of
552 * the time, by doing traditional reciprocal multiplication and
553 * opportunistically comparing the lower half to ceil itself, before
554 * falling back to computing a larger bound, and then rejecting samples
555 * whose lower half would indicate a range indivisible by ceil. The use
556 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
557 * in 32-bits.
558 */
559 u32 rand = get_random_u32();
560 u64 mult;
561
562 /*
563 * This function is technically undefined for ceil == 0, and in fact
564 * for the non-underscored constant version in the header, we build bug
565 * on that. But for the non-constant case, it's convenient to have that
566 * evaluate to being a straight call to get_random_u32(), so that
567 * get_random_u32_inclusive() can work over its whole range without
568 * undefined behavior.
569 */
570 if (unlikely(!ceil))
571 return rand;
572
573 mult = (u64)ceil * rand;
574 if (unlikely((u32)mult < ceil)) {
575 u32 bound = -ceil % ceil;
576 while (unlikely((u32)mult < bound))
577 mult = (u64)ceil * get_random_u32();
578 }
579 return mult >> 32;
580}
581EXPORT_SYMBOL(__get_random_u32_below);
582
583#ifdef CONFIG_SMP
584/*
585 * This function is called when the CPU is coming up, with entry
586 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
587 */
588int __cold random_prepare_cpu(unsigned int cpu)
589{
590 /*
591 * When the cpu comes back online, immediately invalidate both
592 * the per-cpu crng and all batches, so that we serve fresh
593 * randomness.
594 */
595 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
596 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
597 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
598 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
599 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
600 return 0;
601}
602#endif
603
604
605/**********************************************************************
606 *
607 * Entropy accumulation and extraction routines.
608 *
609 * Callers may add entropy via:
610 *
611 * static void mix_pool_bytes(const void *buf, size_t len)
612 *
613 * After which, if added entropy should be credited:
614 *
615 * static void credit_init_bits(size_t bits)
616 *
617 * Finally, extract entropy via:
618 *
619 * static void extract_entropy(void *buf, size_t len)
620 *
621 **********************************************************************/
622
623enum {
624 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
625 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
626 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
627};
628
629static struct {
630 struct blake2s_state hash;
631 spinlock_t lock;
632 unsigned int init_bits;
633} input_pool = {
634 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
635 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
636 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
637 .hash.outlen = BLAKE2S_HASH_SIZE,
638 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
639};
640
641static void _mix_pool_bytes(const void *buf, size_t len)
642{
643 blake2s_update(&input_pool.hash, buf, len);
644}
645
646/*
647 * This function adds bytes into the input pool. It does not
648 * update the initialization bit counter; the caller should call
649 * credit_init_bits if this is appropriate.
650 */
651static void mix_pool_bytes(const void *buf, size_t len)
652{
653 unsigned long flags;
654
655 spin_lock_irqsave(&input_pool.lock, flags);
656 _mix_pool_bytes(buf, len);
657 spin_unlock_irqrestore(&input_pool.lock, flags);
658}
659
660/*
661 * This is an HKDF-like construction for using the hashed collected entropy
662 * as a PRF key, that's then expanded block-by-block.
663 */
664static void extract_entropy(void *buf, size_t len)
665{
666 unsigned long flags;
667 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
668 struct {
669 unsigned long rdseed[32 / sizeof(long)];
670 size_t counter;
671 } block;
672 size_t i, longs;
673
674 for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
675 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
676 if (longs) {
677 i += longs;
678 continue;
679 }
680 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
681 if (longs) {
682 i += longs;
683 continue;
684 }
685 block.rdseed[i++] = random_get_entropy();
686 }
687
688 spin_lock_irqsave(&input_pool.lock, flags);
689
690 /* seed = HASHPRF(last_key, entropy_input) */
691 blake2s_final(&input_pool.hash, seed);
692
693 /* next_key = HASHPRF(seed, RDSEED || 0) */
694 block.counter = 0;
695 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
696 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
697
698 spin_unlock_irqrestore(&input_pool.lock, flags);
699 memzero_explicit(next_key, sizeof(next_key));
700
701 while (len) {
702 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
703 /* output = HASHPRF(seed, RDSEED || ++counter) */
704 ++block.counter;
705 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
706 len -= i;
707 buf += i;
708 }
709
710 memzero_explicit(seed, sizeof(seed));
711 memzero_explicit(&block, sizeof(block));
712}
713
714#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
715
716static void __cold _credit_init_bits(size_t bits)
717{
718 static DECLARE_WORK(set_ready, crng_set_ready);
719 unsigned int new, orig, add;
720 unsigned long flags;
721
722 if (!bits)
723 return;
724
725 add = min_t(size_t, bits, POOL_BITS);
726
727 orig = READ_ONCE(input_pool.init_bits);
728 do {
729 new = min_t(unsigned int, POOL_BITS, orig + add);
730 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
731
732 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
733 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
734 if (static_key_initialized && system_unbound_wq)
735 queue_work(system_unbound_wq, &set_ready);
736 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
737#ifdef CONFIG_VDSO_GETRANDOM
738 WRITE_ONCE(_vdso_rng_data.is_ready, true);
739#endif
740 wake_up_interruptible(&crng_init_wait);
741 kill_fasync(&fasync, SIGIO, POLL_IN);
742 pr_notice("crng init done\n");
743 if (urandom_warning.missed)
744 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
745 urandom_warning.missed);
746 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
747 spin_lock_irqsave(&base_crng.lock, flags);
748 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
749 if (crng_init == CRNG_EMPTY) {
750 extract_entropy(base_crng.key, sizeof(base_crng.key));
751 crng_init = CRNG_EARLY;
752 }
753 spin_unlock_irqrestore(&base_crng.lock, flags);
754 }
755}
756
757
758/**********************************************************************
759 *
760 * Entropy collection routines.
761 *
762 * The following exported functions are used for pushing entropy into
763 * the above entropy accumulation routines:
764 *
765 * void add_device_randomness(const void *buf, size_t len);
766 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
767 * void add_bootloader_randomness(const void *buf, size_t len);
768 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
769 * void add_interrupt_randomness(int irq);
770 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
771 * void add_disk_randomness(struct gendisk *disk);
772 *
773 * add_device_randomness() adds data to the input pool that
774 * is likely to differ between two devices (or possibly even per boot).
775 * This would be things like MAC addresses or serial numbers, or the
776 * read-out of the RTC. This does *not* credit any actual entropy to
777 * the pool, but it initializes the pool to different values for devices
778 * that might otherwise be identical and have very little entropy
779 * available to them (particularly common in the embedded world).
780 *
781 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
782 * entropy as specified by the caller. If the entropy pool is full it will
783 * block until more entropy is needed.
784 *
785 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
786 * and device tree, and credits its input depending on whether or not the
787 * command line option 'random.trust_bootloader'.
788 *
789 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
790 * representing the current instance of a VM to the pool, without crediting,
791 * and then force-reseeds the crng so that it takes effect immediately.
792 *
793 * add_interrupt_randomness() uses the interrupt timing as random
794 * inputs to the entropy pool. Using the cycle counters and the irq source
795 * as inputs, it feeds the input pool roughly once a second or after 64
796 * interrupts, crediting 1 bit of entropy for whichever comes first.
797 *
798 * add_input_randomness() uses the input layer interrupt timing, as well
799 * as the event type information from the hardware.
800 *
801 * add_disk_randomness() uses what amounts to the seek time of block
802 * layer request events, on a per-disk_devt basis, as input to the
803 * entropy pool. Note that high-speed solid state drives with very low
804 * seek times do not make for good sources of entropy, as their seek
805 * times are usually fairly consistent.
806 *
807 * The last two routines try to estimate how many bits of entropy
808 * to credit. They do this by keeping track of the first and second
809 * order deltas of the event timings.
810 *
811 **********************************************************************/
812
813static bool trust_cpu __initdata = true;
814static bool trust_bootloader __initdata = true;
815static int __init parse_trust_cpu(char *arg)
816{
817 return kstrtobool(arg, &trust_cpu);
818}
819static int __init parse_trust_bootloader(char *arg)
820{
821 return kstrtobool(arg, &trust_bootloader);
822}
823early_param("random.trust_cpu", parse_trust_cpu);
824early_param("random.trust_bootloader", parse_trust_bootloader);
825
826static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
827{
828 unsigned long flags, entropy = random_get_entropy();
829
830 /*
831 * Encode a representation of how long the system has been suspended,
832 * in a way that is distinct from prior system suspends.
833 */
834 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
835
836 spin_lock_irqsave(&input_pool.lock, flags);
837 _mix_pool_bytes(&action, sizeof(action));
838 _mix_pool_bytes(stamps, sizeof(stamps));
839 _mix_pool_bytes(&entropy, sizeof(entropy));
840 spin_unlock_irqrestore(&input_pool.lock, flags);
841
842 if (crng_ready() && (action == PM_RESTORE_PREPARE ||
843 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
844 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
845 crng_reseed(NULL);
846 pr_notice("crng reseeded on system resumption\n");
847 }
848 return 0;
849}
850
851static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
852
853/*
854 * This is called extremely early, before time keeping functionality is
855 * available, but arch randomness is. Interrupts are not yet enabled.
856 */
857void __init random_init_early(const char *command_line)
858{
859 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
860 size_t i, longs, arch_bits;
861
862#if defined(LATENT_ENTROPY_PLUGIN)
863 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
864 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
865#endif
866
867 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
868 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
869 if (longs) {
870 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
871 i += longs;
872 continue;
873 }
874 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
875 if (longs) {
876 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
877 i += longs;
878 continue;
879 }
880 arch_bits -= sizeof(*entropy) * 8;
881 ++i;
882 }
883
884 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
885 _mix_pool_bytes(command_line, strlen(command_line));
886
887 /* Reseed if already seeded by earlier phases. */
888 if (crng_ready())
889 crng_reseed(NULL);
890 else if (trust_cpu)
891 _credit_init_bits(arch_bits);
892}
893
894/*
895 * This is called a little bit after the prior function, and now there is
896 * access to timestamps counters. Interrupts are not yet enabled.
897 */
898void __init random_init(void)
899{
900 unsigned long entropy = random_get_entropy();
901 ktime_t now = ktime_get_real();
902
903 _mix_pool_bytes(&now, sizeof(now));
904 _mix_pool_bytes(&entropy, sizeof(entropy));
905 add_latent_entropy();
906
907 /*
908 * If we were initialized by the cpu or bootloader before jump labels
909 * or workqueues are initialized, then we should enable the static
910 * branch here, where it's guaranteed that these have been initialized.
911 */
912 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
913 crng_set_ready(NULL);
914
915 /* Reseed if already seeded by earlier phases. */
916 if (crng_ready())
917 crng_reseed(NULL);
918
919 WARN_ON(register_pm_notifier(&pm_notifier));
920
921 WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
922 "entropy collection will consequently suffer.");
923}
924
925/*
926 * Add device- or boot-specific data to the input pool to help
927 * initialize it.
928 *
929 * None of this adds any entropy; it is meant to avoid the problem of
930 * the entropy pool having similar initial state across largely
931 * identical devices.
932 */
933void add_device_randomness(const void *buf, size_t len)
934{
935 unsigned long entropy = random_get_entropy();
936 unsigned long flags;
937
938 spin_lock_irqsave(&input_pool.lock, flags);
939 _mix_pool_bytes(&entropy, sizeof(entropy));
940 _mix_pool_bytes(buf, len);
941 spin_unlock_irqrestore(&input_pool.lock, flags);
942}
943EXPORT_SYMBOL(add_device_randomness);
944
945/*
946 * Interface for in-kernel drivers of true hardware RNGs. Those devices
947 * may produce endless random bits, so this function will sleep for
948 * some amount of time after, if the sleep_after parameter is true.
949 */
950void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
951{
952 mix_pool_bytes(buf, len);
953 credit_init_bits(entropy);
954
955 /*
956 * Throttle writing to once every reseed interval, unless we're not yet
957 * initialized or no entropy is credited.
958 */
959 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
960 schedule_timeout_interruptible(crng_reseed_interval());
961}
962EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
963
964/*
965 * Handle random seed passed by bootloader, and credit it depending
966 * on the command line option 'random.trust_bootloader'.
967 */
968void __init add_bootloader_randomness(const void *buf, size_t len)
969{
970 mix_pool_bytes(buf, len);
971 if (trust_bootloader)
972 credit_init_bits(len * 8);
973}
974
975#if IS_ENABLED(CONFIG_VMGENID)
976static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
977
978/*
979 * Handle a new unique VM ID, which is unique, not secret, so we
980 * don't credit it, but we do immediately force a reseed after so
981 * that it's used by the crng posthaste.
982 */
983void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
984{
985 add_device_randomness(unique_vm_id, len);
986 if (crng_ready()) {
987 crng_reseed(NULL);
988 pr_notice("crng reseeded due to virtual machine fork\n");
989 }
990 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
991}
992#if IS_MODULE(CONFIG_VMGENID)
993EXPORT_SYMBOL_GPL(add_vmfork_randomness);
994#endif
995
996int __cold register_random_vmfork_notifier(struct notifier_block *nb)
997{
998 return blocking_notifier_chain_register(&vmfork_chain, nb);
999}
1000EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1001
1002int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1003{
1004 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1005}
1006EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1007#endif
1008
1009struct fast_pool {
1010 unsigned long pool[4];
1011 unsigned long last;
1012 unsigned int count;
1013 struct timer_list mix;
1014};
1015
1016static void mix_interrupt_randomness(struct timer_list *work);
1017
1018static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1019#ifdef CONFIG_64BIT
1020#define FASTMIX_PERM SIPHASH_PERMUTATION
1021 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1022#else
1023#define FASTMIX_PERM HSIPHASH_PERMUTATION
1024 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1025#endif
1026 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1027};
1028
1029/*
1030 * This is [Half]SipHash-1-x, starting from an empty key. Because
1031 * the key is fixed, it assumes that its inputs are non-malicious,
1032 * and therefore this has no security on its own. s represents the
1033 * four-word SipHash state, while v represents a two-word input.
1034 */
1035static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1036{
1037 s[3] ^= v1;
1038 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1039 s[0] ^= v1;
1040 s[3] ^= v2;
1041 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1042 s[0] ^= v2;
1043}
1044
1045#ifdef CONFIG_SMP
1046/*
1047 * This function is called when the CPU has just come online, with
1048 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1049 */
1050int __cold random_online_cpu(unsigned int cpu)
1051{
1052 /*
1053 * During CPU shutdown and before CPU onlining, add_interrupt_
1054 * randomness() may schedule mix_interrupt_randomness(), and
1055 * set the MIX_INFLIGHT flag. However, because the worker can
1056 * be scheduled on a different CPU during this period, that
1057 * flag will never be cleared. For that reason, we zero out
1058 * the flag here, which runs just after workqueues are onlined
1059 * for the CPU again. This also has the effect of setting the
1060 * irq randomness count to zero so that new accumulated irqs
1061 * are fresh.
1062 */
1063 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1064 return 0;
1065}
1066#endif
1067
1068static void mix_interrupt_randomness(struct timer_list *work)
1069{
1070 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1071 /*
1072 * The size of the copied stack pool is explicitly 2 longs so that we
1073 * only ever ingest half of the siphash output each time, retaining
1074 * the other half as the next "key" that carries over. The entropy is
1075 * supposed to be sufficiently dispersed between bits so on average
1076 * we don't wind up "losing" some.
1077 */
1078 unsigned long pool[2];
1079 unsigned int count;
1080
1081 /* Check to see if we're running on the wrong CPU due to hotplug. */
1082 local_irq_disable();
1083 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1084 local_irq_enable();
1085 return;
1086 }
1087
1088 /*
1089 * Copy the pool to the stack so that the mixer always has a
1090 * consistent view, before we reenable irqs again.
1091 */
1092 memcpy(pool, fast_pool->pool, sizeof(pool));
1093 count = fast_pool->count;
1094 fast_pool->count = 0;
1095 fast_pool->last = jiffies;
1096 local_irq_enable();
1097
1098 mix_pool_bytes(pool, sizeof(pool));
1099 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1100
1101 memzero_explicit(pool, sizeof(pool));
1102}
1103
1104void add_interrupt_randomness(int irq)
1105{
1106 enum { MIX_INFLIGHT = 1U << 31 };
1107 unsigned long entropy = random_get_entropy();
1108 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1109 struct pt_regs *regs = get_irq_regs();
1110 unsigned int new_count;
1111
1112 fast_mix(fast_pool->pool, entropy,
1113 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1114 new_count = ++fast_pool->count;
1115
1116 if (new_count & MIX_INFLIGHT)
1117 return;
1118
1119 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1120 return;
1121
1122 fast_pool->count |= MIX_INFLIGHT;
1123 if (!timer_pending(&fast_pool->mix)) {
1124 fast_pool->mix.expires = jiffies;
1125 add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1126 }
1127}
1128EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1129
1130/* There is one of these per entropy source */
1131struct timer_rand_state {
1132 unsigned long last_time;
1133 long last_delta, last_delta2;
1134};
1135
1136/*
1137 * This function adds entropy to the entropy "pool" by using timing
1138 * delays. It uses the timer_rand_state structure to make an estimate
1139 * of how many bits of entropy this call has added to the pool. The
1140 * value "num" is also added to the pool; it should somehow describe
1141 * the type of event that just happened.
1142 */
1143static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1144{
1145 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1146 long delta, delta2, delta3;
1147 unsigned int bits;
1148
1149 /*
1150 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1151 * sometime after, so mix into the fast pool.
1152 */
1153 if (in_hardirq()) {
1154 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1155 } else {
1156 spin_lock_irqsave(&input_pool.lock, flags);
1157 _mix_pool_bytes(&entropy, sizeof(entropy));
1158 _mix_pool_bytes(&num, sizeof(num));
1159 spin_unlock_irqrestore(&input_pool.lock, flags);
1160 }
1161
1162 if (crng_ready())
1163 return;
1164
1165 /*
1166 * Calculate number of bits of randomness we probably added.
1167 * We take into account the first, second and third-order deltas
1168 * in order to make our estimate.
1169 */
1170 delta = now - READ_ONCE(state->last_time);
1171 WRITE_ONCE(state->last_time, now);
1172
1173 delta2 = delta - READ_ONCE(state->last_delta);
1174 WRITE_ONCE(state->last_delta, delta);
1175
1176 delta3 = delta2 - READ_ONCE(state->last_delta2);
1177 WRITE_ONCE(state->last_delta2, delta2);
1178
1179 if (delta < 0)
1180 delta = -delta;
1181 if (delta2 < 0)
1182 delta2 = -delta2;
1183 if (delta3 < 0)
1184 delta3 = -delta3;
1185 if (delta > delta2)
1186 delta = delta2;
1187 if (delta > delta3)
1188 delta = delta3;
1189
1190 /*
1191 * delta is now minimum absolute delta. Round down by 1 bit
1192 * on general principles, and limit entropy estimate to 11 bits.
1193 */
1194 bits = min(fls(delta >> 1), 11);
1195
1196 /*
1197 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1198 * will run after this, which uses a different crediting scheme of 1 bit
1199 * per every 64 interrupts. In order to let that function do accounting
1200 * close to the one in this function, we credit a full 64/64 bit per bit,
1201 * and then subtract one to account for the extra one added.
1202 */
1203 if (in_hardirq())
1204 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1205 else
1206 _credit_init_bits(bits);
1207}
1208
1209void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1210{
1211 static unsigned char last_value;
1212 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1213
1214 /* Ignore autorepeat and the like. */
1215 if (value == last_value)
1216 return;
1217
1218 last_value = value;
1219 add_timer_randomness(&input_timer_state,
1220 (type << 4) ^ code ^ (code >> 4) ^ value);
1221}
1222EXPORT_SYMBOL_GPL(add_input_randomness);
1223
1224#ifdef CONFIG_BLOCK
1225void add_disk_randomness(struct gendisk *disk)
1226{
1227 if (!disk || !disk->random)
1228 return;
1229 /* First major is 1, so we get >= 0x200 here. */
1230 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1231}
1232EXPORT_SYMBOL_GPL(add_disk_randomness);
1233
1234void __cold rand_initialize_disk(struct gendisk *disk)
1235{
1236 struct timer_rand_state *state;
1237
1238 /*
1239 * If kzalloc returns null, we just won't use that entropy
1240 * source.
1241 */
1242 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1243 if (state) {
1244 state->last_time = INITIAL_JIFFIES;
1245 disk->random = state;
1246 }
1247}
1248#endif
1249
1250struct entropy_timer_state {
1251 unsigned long entropy;
1252 struct timer_list timer;
1253 atomic_t samples;
1254 unsigned int samples_per_bit;
1255};
1256
1257/*
1258 * Each time the timer fires, we expect that we got an unpredictable jump in
1259 * the cycle counter. Even if the timer is running on another CPU, the timer
1260 * activity will be touching the stack of the CPU that is generating entropy.
1261 *
1262 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1263 * scheduled away, since that just makes the load more complex, but we do not
1264 * want the timer to keep ticking unless the entropy loop is running.
1265 *
1266 * So the re-arming always happens in the entropy loop itself.
1267 */
1268static void __cold entropy_timer(struct timer_list *timer)
1269{
1270 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1271 unsigned long entropy = random_get_entropy();
1272
1273 mix_pool_bytes(&entropy, sizeof(entropy));
1274 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1275 credit_init_bits(1);
1276}
1277
1278/*
1279 * If we have an actual cycle counter, see if we can generate enough entropy
1280 * with timing noise.
1281 */
1282static void __cold try_to_generate_entropy(void)
1283{
1284 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1285 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1286 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1287 unsigned int i, num_different = 0;
1288 unsigned long last = random_get_entropy();
1289 int cpu = -1;
1290
1291 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1292 stack->entropy = random_get_entropy();
1293 if (stack->entropy != last)
1294 ++num_different;
1295 last = stack->entropy;
1296 }
1297 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1298 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1299 return;
1300
1301 atomic_set(&stack->samples, 0);
1302 timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1303 while (!crng_ready() && !signal_pending(current)) {
1304 /*
1305 * Check !timer_pending() and then ensure that any previous callback has finished
1306 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1307 */
1308 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1309 struct cpumask timer_cpus;
1310 unsigned int num_cpus;
1311
1312 /*
1313 * Preemption must be disabled here, both to read the current CPU number
1314 * and to avoid scheduling a timer on a dead CPU.
1315 */
1316 preempt_disable();
1317
1318 /* Only schedule callbacks on timer CPUs that are online. */
1319 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1320 num_cpus = cpumask_weight(&timer_cpus);
1321 /* In very bizarre case of misconfiguration, fallback to all online. */
1322 if (unlikely(num_cpus == 0)) {
1323 timer_cpus = *cpu_online_mask;
1324 num_cpus = cpumask_weight(&timer_cpus);
1325 }
1326
1327 /* Basic CPU round-robin, which avoids the current CPU. */
1328 do {
1329 cpu = cpumask_next(cpu, &timer_cpus);
1330 if (cpu >= nr_cpu_ids)
1331 cpu = cpumask_first(&timer_cpus);
1332 } while (cpu == smp_processor_id() && num_cpus > 1);
1333
1334 /* Expiring the timer at `jiffies` means it's the next tick. */
1335 stack->timer.expires = jiffies;
1336
1337 add_timer_on(&stack->timer, cpu);
1338
1339 preempt_enable();
1340 }
1341 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1342 schedule();
1343 stack->entropy = random_get_entropy();
1344 }
1345 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1346
1347 del_timer_sync(&stack->timer);
1348 destroy_timer_on_stack(&stack->timer);
1349}
1350
1351
1352/**********************************************************************
1353 *
1354 * Userspace reader/writer interfaces.
1355 *
1356 * getrandom(2) is the primary modern interface into the RNG and should
1357 * be used in preference to anything else.
1358 *
1359 * Reading from /dev/random has the same functionality as calling
1360 * getrandom(2) with flags=0. In earlier versions, however, it had
1361 * vastly different semantics and should therefore be avoided, to
1362 * prevent backwards compatibility issues.
1363 *
1364 * Reading from /dev/urandom has the same functionality as calling
1365 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1366 * waiting for the RNG to be ready, it should not be used.
1367 *
1368 * Writing to either /dev/random or /dev/urandom adds entropy to
1369 * the input pool but does not credit it.
1370 *
1371 * Polling on /dev/random indicates when the RNG is initialized, on
1372 * the read side, and when it wants new entropy, on the write side.
1373 *
1374 * Both /dev/random and /dev/urandom have the same set of ioctls for
1375 * adding entropy, getting the entropy count, zeroing the count, and
1376 * reseeding the crng.
1377 *
1378 **********************************************************************/
1379
1380SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1381{
1382 struct iov_iter iter;
1383 int ret;
1384
1385 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1386 return -EINVAL;
1387
1388 /*
1389 * Requesting insecure and blocking randomness at the same time makes
1390 * no sense.
1391 */
1392 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1393 return -EINVAL;
1394
1395 if (!crng_ready() && !(flags & GRND_INSECURE)) {
1396 if (flags & GRND_NONBLOCK)
1397 return -EAGAIN;
1398 ret = wait_for_random_bytes();
1399 if (unlikely(ret))
1400 return ret;
1401 }
1402
1403 ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1404 if (unlikely(ret))
1405 return ret;
1406 return get_random_bytes_user(&iter);
1407}
1408
1409static __poll_t random_poll(struct file *file, poll_table *wait)
1410{
1411 poll_wait(file, &crng_init_wait, wait);
1412 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1413}
1414
1415static ssize_t write_pool_user(struct iov_iter *iter)
1416{
1417 u8 block[BLAKE2S_BLOCK_SIZE];
1418 ssize_t ret = 0;
1419 size_t copied;
1420
1421 if (unlikely(!iov_iter_count(iter)))
1422 return 0;
1423
1424 for (;;) {
1425 copied = copy_from_iter(block, sizeof(block), iter);
1426 ret += copied;
1427 mix_pool_bytes(block, copied);
1428 if (!iov_iter_count(iter) || copied != sizeof(block))
1429 break;
1430
1431 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1432 if (ret % PAGE_SIZE == 0) {
1433 if (signal_pending(current))
1434 break;
1435 cond_resched();
1436 }
1437 }
1438
1439 memzero_explicit(block, sizeof(block));
1440 return ret ? ret : -EFAULT;
1441}
1442
1443static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1444{
1445 return write_pool_user(iter);
1446}
1447
1448static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1449{
1450 static int maxwarn = 10;
1451
1452 /*
1453 * Opportunistically attempt to initialize the RNG on platforms that
1454 * have fast cycle counters, but don't (for now) require it to succeed.
1455 */
1456 if (!crng_ready())
1457 try_to_generate_entropy();
1458
1459 if (!crng_ready()) {
1460 if (!ratelimit_disable && maxwarn <= 0)
1461 ++urandom_warning.missed;
1462 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1463 --maxwarn;
1464 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1465 current->comm, iov_iter_count(iter));
1466 }
1467 }
1468
1469 return get_random_bytes_user(iter);
1470}
1471
1472static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1473{
1474 int ret;
1475
1476 if (!crng_ready() &&
1477 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1478 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1479 return -EAGAIN;
1480
1481 ret = wait_for_random_bytes();
1482 if (ret != 0)
1483 return ret;
1484 return get_random_bytes_user(iter);
1485}
1486
1487static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1488{
1489 int __user *p = (int __user *)arg;
1490 int ent_count;
1491
1492 switch (cmd) {
1493 case RNDGETENTCNT:
1494 /* Inherently racy, no point locking. */
1495 if (put_user(input_pool.init_bits, p))
1496 return -EFAULT;
1497 return 0;
1498 case RNDADDTOENTCNT:
1499 if (!capable(CAP_SYS_ADMIN))
1500 return -EPERM;
1501 if (get_user(ent_count, p))
1502 return -EFAULT;
1503 if (ent_count < 0)
1504 return -EINVAL;
1505 credit_init_bits(ent_count);
1506 return 0;
1507 case RNDADDENTROPY: {
1508 struct iov_iter iter;
1509 ssize_t ret;
1510 int len;
1511
1512 if (!capable(CAP_SYS_ADMIN))
1513 return -EPERM;
1514 if (get_user(ent_count, p++))
1515 return -EFAULT;
1516 if (ent_count < 0)
1517 return -EINVAL;
1518 if (get_user(len, p++))
1519 return -EFAULT;
1520 ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1521 if (unlikely(ret))
1522 return ret;
1523 ret = write_pool_user(&iter);
1524 if (unlikely(ret < 0))
1525 return ret;
1526 /* Since we're crediting, enforce that it was all written into the pool. */
1527 if (unlikely(ret != len))
1528 return -EFAULT;
1529 credit_init_bits(ent_count);
1530 return 0;
1531 }
1532 case RNDZAPENTCNT:
1533 case RNDCLEARPOOL:
1534 /* No longer has any effect. */
1535 if (!capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537 return 0;
1538 case RNDRESEEDCRNG:
1539 if (!capable(CAP_SYS_ADMIN))
1540 return -EPERM;
1541 if (!crng_ready())
1542 return -ENODATA;
1543 crng_reseed(NULL);
1544 return 0;
1545 default:
1546 return -EINVAL;
1547 }
1548}
1549
1550static int random_fasync(int fd, struct file *filp, int on)
1551{
1552 return fasync_helper(fd, filp, on, &fasync);
1553}
1554
1555const struct file_operations random_fops = {
1556 .read_iter = random_read_iter,
1557 .write_iter = random_write_iter,
1558 .poll = random_poll,
1559 .unlocked_ioctl = random_ioctl,
1560 .compat_ioctl = compat_ptr_ioctl,
1561 .fasync = random_fasync,
1562 .llseek = noop_llseek,
1563 .splice_read = copy_splice_read,
1564 .splice_write = iter_file_splice_write,
1565};
1566
1567const struct file_operations urandom_fops = {
1568 .read_iter = urandom_read_iter,
1569 .write_iter = random_write_iter,
1570 .unlocked_ioctl = random_ioctl,
1571 .compat_ioctl = compat_ptr_ioctl,
1572 .fasync = random_fasync,
1573 .llseek = noop_llseek,
1574 .splice_read = copy_splice_read,
1575 .splice_write = iter_file_splice_write,
1576};
1577
1578
1579/********************************************************************
1580 *
1581 * Sysctl interface.
1582 *
1583 * These are partly unused legacy knobs with dummy values to not break
1584 * userspace and partly still useful things. They are usually accessible
1585 * in /proc/sys/kernel/random/ and are as follows:
1586 *
1587 * - boot_id - a UUID representing the current boot.
1588 *
1589 * - uuid - a random UUID, different each time the file is read.
1590 *
1591 * - poolsize - the number of bits of entropy that the input pool can
1592 * hold, tied to the POOL_BITS constant.
1593 *
1594 * - entropy_avail - the number of bits of entropy currently in the
1595 * input pool. Always <= poolsize.
1596 *
1597 * - write_wakeup_threshold - the amount of entropy in the input pool
1598 * below which write polls to /dev/random will unblock, requesting
1599 * more entropy, tied to the POOL_READY_BITS constant. It is writable
1600 * to avoid breaking old userspaces, but writing to it does not
1601 * change any behavior of the RNG.
1602 *
1603 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1604 * It is writable to avoid breaking old userspaces, but writing
1605 * to it does not change any behavior of the RNG.
1606 *
1607 ********************************************************************/
1608
1609#ifdef CONFIG_SYSCTL
1610
1611#include <linux/sysctl.h>
1612
1613static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1614static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1615static int sysctl_poolsize = POOL_BITS;
1616static u8 sysctl_bootid[UUID_SIZE];
1617
1618/*
1619 * This function is used to return both the bootid UUID, and random
1620 * UUID. The difference is in whether table->data is NULL; if it is,
1621 * then a new UUID is generated and returned to the user.
1622 */
1623static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1624 size_t *lenp, loff_t *ppos)
1625{
1626 u8 tmp_uuid[UUID_SIZE], *uuid;
1627 char uuid_string[UUID_STRING_LEN + 1];
1628 struct ctl_table fake_table = {
1629 .data = uuid_string,
1630 .maxlen = UUID_STRING_LEN
1631 };
1632
1633 if (write)
1634 return -EPERM;
1635
1636 uuid = table->data;
1637 if (!uuid) {
1638 uuid = tmp_uuid;
1639 generate_random_uuid(uuid);
1640 } else {
1641 static DEFINE_SPINLOCK(bootid_spinlock);
1642
1643 spin_lock(&bootid_spinlock);
1644 if (!uuid[8])
1645 generate_random_uuid(uuid);
1646 spin_unlock(&bootid_spinlock);
1647 }
1648
1649 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1650 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1651}
1652
1653/* The same as proc_dointvec, but writes don't change anything. */
1654static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1655 size_t *lenp, loff_t *ppos)
1656{
1657 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1658}
1659
1660static struct ctl_table random_table[] = {
1661 {
1662 .procname = "poolsize",
1663 .data = &sysctl_poolsize,
1664 .maxlen = sizeof(int),
1665 .mode = 0444,
1666 .proc_handler = proc_dointvec,
1667 },
1668 {
1669 .procname = "entropy_avail",
1670 .data = &input_pool.init_bits,
1671 .maxlen = sizeof(int),
1672 .mode = 0444,
1673 .proc_handler = proc_dointvec,
1674 },
1675 {
1676 .procname = "write_wakeup_threshold",
1677 .data = &sysctl_random_write_wakeup_bits,
1678 .maxlen = sizeof(int),
1679 .mode = 0644,
1680 .proc_handler = proc_do_rointvec,
1681 },
1682 {
1683 .procname = "urandom_min_reseed_secs",
1684 .data = &sysctl_random_min_urandom_seed,
1685 .maxlen = sizeof(int),
1686 .mode = 0644,
1687 .proc_handler = proc_do_rointvec,
1688 },
1689 {
1690 .procname = "boot_id",
1691 .data = &sysctl_bootid,
1692 .mode = 0444,
1693 .proc_handler = proc_do_uuid,
1694 },
1695 {
1696 .procname = "uuid",
1697 .mode = 0444,
1698 .proc_handler = proc_do_uuid,
1699 },
1700};
1701
1702/*
1703 * random_init() is called before sysctl_init(),
1704 * so we cannot call register_sysctl_init() in random_init()
1705 */
1706static int __init random_sysctls_init(void)
1707{
1708 register_sysctl_init("kernel/random", random_table);
1709 return 0;
1710}
1711device_initcall(random_sysctls_init);
1712#endif