Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/pm.h>
23#include <linux/poll.h>
24#include <linux/device.h>
25#include <linux/kstrtox.h>
26#include <linux/mutex.h>
27#include <linux/rcupdate.h>
28#include "input-compat.h"
29#include "input-core-private.h"
30#include "input-poller.h"
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53static const unsigned int input_max_code[EV_CNT] = {
54 [EV_KEY] = KEY_MAX,
55 [EV_REL] = REL_MAX,
56 [EV_ABS] = ABS_MAX,
57 [EV_MSC] = MSC_MAX,
58 [EV_SW] = SW_MAX,
59 [EV_LED] = LED_MAX,
60 [EV_SND] = SND_MAX,
61 [EV_FF] = FF_MAX,
62};
63
64static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
66{
67 return code <= max && test_bit(code, bm);
68}
69
70static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71{
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 return old_val;
75
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
78
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
81 }
82
83 return value;
84}
85
86static void input_start_autorepeat(struct input_dev *dev, int code)
87{
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 }
95}
96
97static void input_stop_autorepeat(struct input_dev *dev)
98{
99 del_timer(&dev->timer);
100}
101
102/*
103 * Pass values first through all filters and then, if event has not been
104 * filtered out, through all open handles. This order is achieved by placing
105 * filters at the head of the list of handles attached to the device, and
106 * placing regular handles at the tail of the list.
107 *
108 * This function is called with dev->event_lock held and interrupts disabled.
109 */
110static void input_pass_values(struct input_dev *dev,
111 struct input_value *vals, unsigned int count)
112{
113 struct input_handle *handle;
114 struct input_value *v;
115
116 lockdep_assert_held(&dev->event_lock);
117
118 rcu_read_lock();
119
120 handle = rcu_dereference(dev->grab);
121 if (handle) {
122 count = handle->handler->events(handle, vals, count);
123 } else {
124 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 if (handle->open) {
126 count = handle->handler->events(handle, vals,
127 count);
128 if (!count)
129 break;
130 }
131 }
132
133 rcu_read_unlock();
134
135 /* trigger auto repeat for key events */
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 for (v = vals; v != vals + count; v++) {
138 if (v->type == EV_KEY && v->value != 2) {
139 if (v->value)
140 input_start_autorepeat(dev, v->code);
141 else
142 input_stop_autorepeat(dev);
143 }
144 }
145 }
146}
147
148#define INPUT_IGNORE_EVENT 0
149#define INPUT_PASS_TO_HANDLERS 1
150#define INPUT_PASS_TO_DEVICE 2
151#define INPUT_SLOT 4
152#define INPUT_FLUSH 8
153#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154
155static int input_handle_abs_event(struct input_dev *dev,
156 unsigned int code, int *pval)
157{
158 struct input_mt *mt = dev->mt;
159 bool is_new_slot = false;
160 bool is_mt_event;
161 int *pold;
162
163 if (code == ABS_MT_SLOT) {
164 /*
165 * "Stage" the event; we'll flush it later, when we
166 * get actual touch data.
167 */
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
169 mt->slot = *pval;
170
171 return INPUT_IGNORE_EVENT;
172 }
173
174 is_mt_event = input_is_mt_value(code);
175
176 if (!is_mt_event) {
177 pold = &dev->absinfo[code].value;
178 } else if (mt) {
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 } else {
182 /*
183 * Bypass filtering for multi-touch events when
184 * not employing slots.
185 */
186 pold = NULL;
187 }
188
189 if (pold) {
190 *pval = input_defuzz_abs_event(*pval, *pold,
191 dev->absinfo[code].fuzz);
192 if (*pold == *pval)
193 return INPUT_IGNORE_EVENT;
194
195 *pold = *pval;
196 }
197
198 /* Flush pending "slot" event */
199 if (is_new_slot) {
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 }
203
204 return INPUT_PASS_TO_HANDLERS;
205}
206
207static int input_get_disposition(struct input_dev *dev,
208 unsigned int type, unsigned int code, int *pval)
209{
210 int disposition = INPUT_IGNORE_EVENT;
211 int value = *pval;
212
213 /* filter-out events from inhibited devices */
214 if (dev->inhibited)
215 return INPUT_IGNORE_EVENT;
216
217 switch (type) {
218
219 case EV_SYN:
220 switch (code) {
221 case SYN_CONFIG:
222 disposition = INPUT_PASS_TO_ALL;
223 break;
224
225 case SYN_REPORT:
226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 break;
228 case SYN_MT_REPORT:
229 disposition = INPUT_PASS_TO_HANDLERS;
230 break;
231 }
232 break;
233
234 case EV_KEY:
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236
237 /* auto-repeat bypasses state updates */
238 if (value == 2) {
239 disposition = INPUT_PASS_TO_HANDLERS;
240 break;
241 }
242
243 if (!!test_bit(code, dev->key) != !!value) {
244
245 __change_bit(code, dev->key);
246 disposition = INPUT_PASS_TO_HANDLERS;
247 }
248 }
249 break;
250
251 case EV_SW:
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
254
255 __change_bit(code, dev->sw);
256 disposition = INPUT_PASS_TO_HANDLERS;
257 }
258 break;
259
260 case EV_ABS:
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
262 disposition = input_handle_abs_event(dev, code, &value);
263
264 break;
265
266 case EV_REL:
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 disposition = INPUT_PASS_TO_HANDLERS;
269
270 break;
271
272 case EV_MSC:
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 disposition = INPUT_PASS_TO_ALL;
275
276 break;
277
278 case EV_LED:
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
281
282 __change_bit(code, dev->led);
283 disposition = INPUT_PASS_TO_ALL;
284 }
285 break;
286
287 case EV_SND:
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
292 disposition = INPUT_PASS_TO_ALL;
293 }
294 break;
295
296 case EV_REP:
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
299 disposition = INPUT_PASS_TO_ALL;
300 }
301 break;
302
303 case EV_FF:
304 if (value >= 0)
305 disposition = INPUT_PASS_TO_ALL;
306 break;
307
308 case EV_PWR:
309 disposition = INPUT_PASS_TO_ALL;
310 break;
311 }
312
313 *pval = value;
314 return disposition;
315}
316
317static void input_event_dispose(struct input_dev *dev, int disposition,
318 unsigned int type, unsigned int code, int value)
319{
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
322
323 if (disposition & INPUT_PASS_TO_HANDLERS) {
324 struct input_value *v;
325
326 if (disposition & INPUT_SLOT) {
327 v = &dev->vals[dev->num_vals++];
328 v->type = EV_ABS;
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
331 }
332
333 v = &dev->vals[dev->num_vals++];
334 v->type = type;
335 v->code = code;
336 v->value = value;
337 }
338
339 if (disposition & INPUT_FLUSH) {
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
342 dev->num_vals = 0;
343 /*
344 * Reset the timestamp on flush so we won't end up
345 * with a stale one. Note we only need to reset the
346 * monolithic one as we use its presence when deciding
347 * whether to generate a synthetic timestamp.
348 */
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
353 dev->num_vals = 0;
354 }
355}
356
357void input_handle_event(struct input_dev *dev,
358 unsigned int type, unsigned int code, int value)
359{
360 int disposition;
361
362 lockdep_assert_held(&dev->event_lock);
363
364 disposition = input_get_disposition(dev, type, code, &value);
365 if (disposition != INPUT_IGNORE_EVENT) {
366 if (type != EV_SYN)
367 add_input_randomness(type, code, value);
368
369 input_event_dispose(dev, disposition, type, code, value);
370 }
371}
372
373/**
374 * input_event() - report new input event
375 * @dev: device that generated the event
376 * @type: type of the event
377 * @code: event code
378 * @value: value of the event
379 *
380 * This function should be used by drivers implementing various input
381 * devices to report input events. See also input_inject_event().
382 *
383 * NOTE: input_event() may be safely used right after input device was
384 * allocated with input_allocate_device(), even before it is registered
385 * with input_register_device(), but the event will not reach any of the
386 * input handlers. Such early invocation of input_event() may be used
387 * to 'seed' initial state of a switch or initial position of absolute
388 * axis, etc.
389 */
390void input_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
392{
393 unsigned long flags;
394
395 if (is_event_supported(type, dev->evbit, EV_MAX)) {
396
397 spin_lock_irqsave(&dev->event_lock, flags);
398 input_handle_event(dev, type, code, value);
399 spin_unlock_irqrestore(&dev->event_lock, flags);
400 }
401}
402EXPORT_SYMBOL(input_event);
403
404/**
405 * input_inject_event() - send input event from input handler
406 * @handle: input handle to send event through
407 * @type: type of the event
408 * @code: event code
409 * @value: value of the event
410 *
411 * Similar to input_event() but will ignore event if device is
412 * "grabbed" and handle injecting event is not the one that owns
413 * the device.
414 */
415void input_inject_event(struct input_handle *handle,
416 unsigned int type, unsigned int code, int value)
417{
418 struct input_dev *dev = handle->dev;
419 struct input_handle *grab;
420 unsigned long flags;
421
422 if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 spin_lock_irqsave(&dev->event_lock, flags);
424
425 rcu_read_lock();
426 grab = rcu_dereference(dev->grab);
427 if (!grab || grab == handle)
428 input_handle_event(dev, type, code, value);
429 rcu_read_unlock();
430
431 spin_unlock_irqrestore(&dev->event_lock, flags);
432 }
433}
434EXPORT_SYMBOL(input_inject_event);
435
436/**
437 * input_alloc_absinfo - allocates array of input_absinfo structs
438 * @dev: the input device emitting absolute events
439 *
440 * If the absinfo struct the caller asked for is already allocated, this
441 * functions will not do anything.
442 */
443void input_alloc_absinfo(struct input_dev *dev)
444{
445 if (dev->absinfo)
446 return;
447
448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 if (!dev->absinfo) {
450 dev_err(dev->dev.parent ?: &dev->dev,
451 "%s: unable to allocate memory\n", __func__);
452 /*
453 * We will handle this allocation failure in
454 * input_register_device() when we refuse to register input
455 * device with ABS bits but without absinfo.
456 */
457 }
458}
459EXPORT_SYMBOL(input_alloc_absinfo);
460
461void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 int min, int max, int fuzz, int flat)
463{
464 struct input_absinfo *absinfo;
465
466 __set_bit(EV_ABS, dev->evbit);
467 __set_bit(axis, dev->absbit);
468
469 input_alloc_absinfo(dev);
470 if (!dev->absinfo)
471 return;
472
473 absinfo = &dev->absinfo[axis];
474 absinfo->minimum = min;
475 absinfo->maximum = max;
476 absinfo->fuzz = fuzz;
477 absinfo->flat = flat;
478}
479EXPORT_SYMBOL(input_set_abs_params);
480
481/**
482 * input_copy_abs - Copy absinfo from one input_dev to another
483 * @dst: Destination input device to copy the abs settings to
484 * @dst_axis: ABS_* value selecting the destination axis
485 * @src: Source input device to copy the abs settings from
486 * @src_axis: ABS_* value selecting the source axis
487 *
488 * Set absinfo for the selected destination axis by copying it from
489 * the specified source input device's source axis.
490 * This is useful to e.g. setup a pen/stylus input-device for combined
491 * touchscreen/pen hardware where the pen uses the same coordinates as
492 * the touchscreen.
493 */
494void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 const struct input_dev *src, unsigned int src_axis)
496{
497 /* src must have EV_ABS and src_axis set */
498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 test_bit(src_axis, src->absbit))))
500 return;
501
502 /*
503 * input_alloc_absinfo() may have failed for the source. Our caller is
504 * expected to catch this when registering the input devices, which may
505 * happen after the input_copy_abs() call.
506 */
507 if (!src->absinfo)
508 return;
509
510 input_set_capability(dst, EV_ABS, dst_axis);
511 if (!dst->absinfo)
512 return;
513
514 dst->absinfo[dst_axis] = src->absinfo[src_axis];
515}
516EXPORT_SYMBOL(input_copy_abs);
517
518/**
519 * input_grab_device - grabs device for exclusive use
520 * @handle: input handle that wants to own the device
521 *
522 * When a device is grabbed by an input handle all events generated by
523 * the device are delivered only to this handle. Also events injected
524 * by other input handles are ignored while device is grabbed.
525 */
526int input_grab_device(struct input_handle *handle)
527{
528 struct input_dev *dev = handle->dev;
529 int retval;
530
531 retval = mutex_lock_interruptible(&dev->mutex);
532 if (retval)
533 return retval;
534
535 if (dev->grab) {
536 retval = -EBUSY;
537 goto out;
538 }
539
540 rcu_assign_pointer(dev->grab, handle);
541
542 out:
543 mutex_unlock(&dev->mutex);
544 return retval;
545}
546EXPORT_SYMBOL(input_grab_device);
547
548static void __input_release_device(struct input_handle *handle)
549{
550 struct input_dev *dev = handle->dev;
551 struct input_handle *grabber;
552
553 grabber = rcu_dereference_protected(dev->grab,
554 lockdep_is_held(&dev->mutex));
555 if (grabber == handle) {
556 rcu_assign_pointer(dev->grab, NULL);
557 /* Make sure input_pass_values() notices that grab is gone */
558 synchronize_rcu();
559
560 list_for_each_entry(handle, &dev->h_list, d_node)
561 if (handle->open && handle->handler->start)
562 handle->handler->start(handle);
563 }
564}
565
566/**
567 * input_release_device - release previously grabbed device
568 * @handle: input handle that owns the device
569 *
570 * Releases previously grabbed device so that other input handles can
571 * start receiving input events. Upon release all handlers attached
572 * to the device have their start() method called so they have a change
573 * to synchronize device state with the rest of the system.
574 */
575void input_release_device(struct input_handle *handle)
576{
577 struct input_dev *dev = handle->dev;
578
579 mutex_lock(&dev->mutex);
580 __input_release_device(handle);
581 mutex_unlock(&dev->mutex);
582}
583EXPORT_SYMBOL(input_release_device);
584
585/**
586 * input_open_device - open input device
587 * @handle: handle through which device is being accessed
588 *
589 * This function should be called by input handlers when they
590 * want to start receive events from given input device.
591 */
592int input_open_device(struct input_handle *handle)
593{
594 struct input_dev *dev = handle->dev;
595 int retval;
596
597 retval = mutex_lock_interruptible(&dev->mutex);
598 if (retval)
599 return retval;
600
601 if (dev->going_away) {
602 retval = -ENODEV;
603 goto out;
604 }
605
606 handle->open++;
607
608 if (dev->users++ || dev->inhibited) {
609 /*
610 * Device is already opened and/or inhibited,
611 * so we can exit immediately and report success.
612 */
613 goto out;
614 }
615
616 if (dev->open) {
617 retval = dev->open(dev);
618 if (retval) {
619 dev->users--;
620 handle->open--;
621 /*
622 * Make sure we are not delivering any more events
623 * through this handle
624 */
625 synchronize_rcu();
626 goto out;
627 }
628 }
629
630 if (dev->poller)
631 input_dev_poller_start(dev->poller);
632
633 out:
634 mutex_unlock(&dev->mutex);
635 return retval;
636}
637EXPORT_SYMBOL(input_open_device);
638
639int input_flush_device(struct input_handle *handle, struct file *file)
640{
641 struct input_dev *dev = handle->dev;
642 int retval;
643
644 retval = mutex_lock_interruptible(&dev->mutex);
645 if (retval)
646 return retval;
647
648 if (dev->flush)
649 retval = dev->flush(dev, file);
650
651 mutex_unlock(&dev->mutex);
652 return retval;
653}
654EXPORT_SYMBOL(input_flush_device);
655
656/**
657 * input_close_device - close input device
658 * @handle: handle through which device is being accessed
659 *
660 * This function should be called by input handlers when they
661 * want to stop receive events from given input device.
662 */
663void input_close_device(struct input_handle *handle)
664{
665 struct input_dev *dev = handle->dev;
666
667 mutex_lock(&dev->mutex);
668
669 __input_release_device(handle);
670
671 if (!--dev->users && !dev->inhibited) {
672 if (dev->poller)
673 input_dev_poller_stop(dev->poller);
674 if (dev->close)
675 dev->close(dev);
676 }
677
678 if (!--handle->open) {
679 /*
680 * synchronize_rcu() makes sure that input_pass_values()
681 * completed and that no more input events are delivered
682 * through this handle
683 */
684 synchronize_rcu();
685 }
686
687 mutex_unlock(&dev->mutex);
688}
689EXPORT_SYMBOL(input_close_device);
690
691/*
692 * Simulate keyup events for all keys that are marked as pressed.
693 * The function must be called with dev->event_lock held.
694 */
695static bool input_dev_release_keys(struct input_dev *dev)
696{
697 bool need_sync = false;
698 int code;
699
700 lockdep_assert_held(&dev->event_lock);
701
702 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703 for_each_set_bit(code, dev->key, KEY_CNT) {
704 input_handle_event(dev, EV_KEY, code, 0);
705 need_sync = true;
706 }
707 }
708
709 return need_sync;
710}
711
712/*
713 * Prepare device for unregistering
714 */
715static void input_disconnect_device(struct input_dev *dev)
716{
717 struct input_handle *handle;
718
719 /*
720 * Mark device as going away. Note that we take dev->mutex here
721 * not to protect access to dev->going_away but rather to ensure
722 * that there are no threads in the middle of input_open_device()
723 */
724 mutex_lock(&dev->mutex);
725 dev->going_away = true;
726 mutex_unlock(&dev->mutex);
727
728 spin_lock_irq(&dev->event_lock);
729
730 /*
731 * Simulate keyup events for all pressed keys so that handlers
732 * are not left with "stuck" keys. The driver may continue
733 * generate events even after we done here but they will not
734 * reach any handlers.
735 */
736 if (input_dev_release_keys(dev))
737 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
738
739 list_for_each_entry(handle, &dev->h_list, d_node)
740 handle->open = 0;
741
742 spin_unlock_irq(&dev->event_lock);
743}
744
745/**
746 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747 * @ke: keymap entry containing scancode to be converted.
748 * @scancode: pointer to the location where converted scancode should
749 * be stored.
750 *
751 * This function is used to convert scancode stored in &struct keymap_entry
752 * into scalar form understood by legacy keymap handling methods. These
753 * methods expect scancodes to be represented as 'unsigned int'.
754 */
755int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756 unsigned int *scancode)
757{
758 switch (ke->len) {
759 case 1:
760 *scancode = *((u8 *)ke->scancode);
761 break;
762
763 case 2:
764 *scancode = *((u16 *)ke->scancode);
765 break;
766
767 case 4:
768 *scancode = *((u32 *)ke->scancode);
769 break;
770
771 default:
772 return -EINVAL;
773 }
774
775 return 0;
776}
777EXPORT_SYMBOL(input_scancode_to_scalar);
778
779/*
780 * Those routines handle the default case where no [gs]etkeycode() is
781 * defined. In this case, an array indexed by the scancode is used.
782 */
783
784static unsigned int input_fetch_keycode(struct input_dev *dev,
785 unsigned int index)
786{
787 switch (dev->keycodesize) {
788 case 1:
789 return ((u8 *)dev->keycode)[index];
790
791 case 2:
792 return ((u16 *)dev->keycode)[index];
793
794 default:
795 return ((u32 *)dev->keycode)[index];
796 }
797}
798
799static int input_default_getkeycode(struct input_dev *dev,
800 struct input_keymap_entry *ke)
801{
802 unsigned int index;
803 int error;
804
805 if (!dev->keycodesize)
806 return -EINVAL;
807
808 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
809 index = ke->index;
810 else {
811 error = input_scancode_to_scalar(ke, &index);
812 if (error)
813 return error;
814 }
815
816 if (index >= dev->keycodemax)
817 return -EINVAL;
818
819 ke->keycode = input_fetch_keycode(dev, index);
820 ke->index = index;
821 ke->len = sizeof(index);
822 memcpy(ke->scancode, &index, sizeof(index));
823
824 return 0;
825}
826
827static int input_default_setkeycode(struct input_dev *dev,
828 const struct input_keymap_entry *ke,
829 unsigned int *old_keycode)
830{
831 unsigned int index;
832 int error;
833 int i;
834
835 if (!dev->keycodesize)
836 return -EINVAL;
837
838 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
839 index = ke->index;
840 } else {
841 error = input_scancode_to_scalar(ke, &index);
842 if (error)
843 return error;
844 }
845
846 if (index >= dev->keycodemax)
847 return -EINVAL;
848
849 if (dev->keycodesize < sizeof(ke->keycode) &&
850 (ke->keycode >> (dev->keycodesize * 8)))
851 return -EINVAL;
852
853 switch (dev->keycodesize) {
854 case 1: {
855 u8 *k = (u8 *)dev->keycode;
856 *old_keycode = k[index];
857 k[index] = ke->keycode;
858 break;
859 }
860 case 2: {
861 u16 *k = (u16 *)dev->keycode;
862 *old_keycode = k[index];
863 k[index] = ke->keycode;
864 break;
865 }
866 default: {
867 u32 *k = (u32 *)dev->keycode;
868 *old_keycode = k[index];
869 k[index] = ke->keycode;
870 break;
871 }
872 }
873
874 if (*old_keycode <= KEY_MAX) {
875 __clear_bit(*old_keycode, dev->keybit);
876 for (i = 0; i < dev->keycodemax; i++) {
877 if (input_fetch_keycode(dev, i) == *old_keycode) {
878 __set_bit(*old_keycode, dev->keybit);
879 /* Setting the bit twice is useless, so break */
880 break;
881 }
882 }
883 }
884
885 __set_bit(ke->keycode, dev->keybit);
886 return 0;
887}
888
889/**
890 * input_get_keycode - retrieve keycode currently mapped to a given scancode
891 * @dev: input device which keymap is being queried
892 * @ke: keymap entry
893 *
894 * This function should be called by anyone interested in retrieving current
895 * keymap. Presently evdev handlers use it.
896 */
897int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
898{
899 unsigned long flags;
900 int retval;
901
902 spin_lock_irqsave(&dev->event_lock, flags);
903 retval = dev->getkeycode(dev, ke);
904 spin_unlock_irqrestore(&dev->event_lock, flags);
905
906 return retval;
907}
908EXPORT_SYMBOL(input_get_keycode);
909
910/**
911 * input_set_keycode - attribute a keycode to a given scancode
912 * @dev: input device which keymap is being updated
913 * @ke: new keymap entry
914 *
915 * This function should be called by anyone needing to update current
916 * keymap. Presently keyboard and evdev handlers use it.
917 */
918int input_set_keycode(struct input_dev *dev,
919 const struct input_keymap_entry *ke)
920{
921 unsigned long flags;
922 unsigned int old_keycode;
923 int retval;
924
925 if (ke->keycode > KEY_MAX)
926 return -EINVAL;
927
928 spin_lock_irqsave(&dev->event_lock, flags);
929
930 retval = dev->setkeycode(dev, ke, &old_keycode);
931 if (retval)
932 goto out;
933
934 /* Make sure KEY_RESERVED did not get enabled. */
935 __clear_bit(KEY_RESERVED, dev->keybit);
936
937 /*
938 * Simulate keyup event if keycode is not present
939 * in the keymap anymore
940 */
941 if (old_keycode > KEY_MAX) {
942 dev_warn(dev->dev.parent ?: &dev->dev,
943 "%s: got too big old keycode %#x\n",
944 __func__, old_keycode);
945 } else if (test_bit(EV_KEY, dev->evbit) &&
946 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947 __test_and_clear_bit(old_keycode, dev->key)) {
948 /*
949 * We have to use input_event_dispose() here directly instead
950 * of input_handle_event() because the key we want to release
951 * here is considered no longer supported by the device and
952 * input_handle_event() will ignore it.
953 */
954 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955 EV_KEY, old_keycode, 0);
956 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957 EV_SYN, SYN_REPORT, 1);
958 }
959
960 out:
961 spin_unlock_irqrestore(&dev->event_lock, flags);
962
963 return retval;
964}
965EXPORT_SYMBOL(input_set_keycode);
966
967bool input_match_device_id(const struct input_dev *dev,
968 const struct input_device_id *id)
969{
970 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971 if (id->bustype != dev->id.bustype)
972 return false;
973
974 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975 if (id->vendor != dev->id.vendor)
976 return false;
977
978 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979 if (id->product != dev->id.product)
980 return false;
981
982 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983 if (id->version != dev->id.version)
984 return false;
985
986 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
996 return false;
997 }
998
999 return true;
1000}
1001EXPORT_SYMBOL(input_match_device_id);
1002
1003static const struct input_device_id *input_match_device(struct input_handler *handler,
1004 struct input_dev *dev)
1005{
1006 const struct input_device_id *id;
1007
1008 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009 if (input_match_device_id(dev, id) &&
1010 (!handler->match || handler->match(handler, dev))) {
1011 return id;
1012 }
1013 }
1014
1015 return NULL;
1016}
1017
1018static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1019{
1020 const struct input_device_id *id;
1021 int error;
1022
1023 id = input_match_device(handler, dev);
1024 if (!id)
1025 return -ENODEV;
1026
1027 error = handler->connect(handler, dev, id);
1028 if (error && error != -ENODEV)
1029 pr_err("failed to attach handler %s to device %s, error: %d\n",
1030 handler->name, kobject_name(&dev->dev.kobj), error);
1031
1032 return error;
1033}
1034
1035#ifdef CONFIG_COMPAT
1036
1037static int input_bits_to_string(char *buf, int buf_size,
1038 unsigned long bits, bool skip_empty)
1039{
1040 int len = 0;
1041
1042 if (in_compat_syscall()) {
1043 u32 dword = bits >> 32;
1044 if (dword || !skip_empty)
1045 len += snprintf(buf, buf_size, "%x ", dword);
1046
1047 dword = bits & 0xffffffffUL;
1048 if (dword || !skip_empty || len)
1049 len += snprintf(buf + len, max(buf_size - len, 0),
1050 "%x", dword);
1051 } else {
1052 if (bits || !skip_empty)
1053 len += snprintf(buf, buf_size, "%lx", bits);
1054 }
1055
1056 return len;
1057}
1058
1059#else /* !CONFIG_COMPAT */
1060
1061static int input_bits_to_string(char *buf, int buf_size,
1062 unsigned long bits, bool skip_empty)
1063{
1064 return bits || !skip_empty ?
1065 snprintf(buf, buf_size, "%lx", bits) : 0;
1066}
1067
1068#endif
1069
1070#ifdef CONFIG_PROC_FS
1071
1072static struct proc_dir_entry *proc_bus_input_dir;
1073static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074static int input_devices_state;
1075
1076static inline void input_wakeup_procfs_readers(void)
1077{
1078 input_devices_state++;
1079 wake_up(&input_devices_poll_wait);
1080}
1081
1082static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1083{
1084 poll_wait(file, &input_devices_poll_wait, wait);
1085 if (file->f_version != input_devices_state) {
1086 file->f_version = input_devices_state;
1087 return EPOLLIN | EPOLLRDNORM;
1088 }
1089
1090 return 0;
1091}
1092
1093union input_seq_state {
1094 struct {
1095 unsigned short pos;
1096 bool mutex_acquired;
1097 };
1098 void *p;
1099};
1100
1101static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1102{
1103 union input_seq_state *state = (union input_seq_state *)&seq->private;
1104 int error;
1105
1106 /* We need to fit into seq->private pointer */
1107 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1108
1109 error = mutex_lock_interruptible(&input_mutex);
1110 if (error) {
1111 state->mutex_acquired = false;
1112 return ERR_PTR(error);
1113 }
1114
1115 state->mutex_acquired = true;
1116
1117 return seq_list_start(&input_dev_list, *pos);
1118}
1119
1120static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1121{
1122 return seq_list_next(v, &input_dev_list, pos);
1123}
1124
1125static void input_seq_stop(struct seq_file *seq, void *v)
1126{
1127 union input_seq_state *state = (union input_seq_state *)&seq->private;
1128
1129 if (state->mutex_acquired)
1130 mutex_unlock(&input_mutex);
1131}
1132
1133static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1134 unsigned long *bitmap, int max)
1135{
1136 int i;
1137 bool skip_empty = true;
1138 char buf[18];
1139
1140 seq_printf(seq, "B: %s=", name);
1141
1142 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1143 if (input_bits_to_string(buf, sizeof(buf),
1144 bitmap[i], skip_empty)) {
1145 skip_empty = false;
1146 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1147 }
1148 }
1149
1150 /*
1151 * If no output was produced print a single 0.
1152 */
1153 if (skip_empty)
1154 seq_putc(seq, '0');
1155
1156 seq_putc(seq, '\n');
1157}
1158
1159static int input_devices_seq_show(struct seq_file *seq, void *v)
1160{
1161 struct input_dev *dev = container_of(v, struct input_dev, node);
1162 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1163 struct input_handle *handle;
1164
1165 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1166 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1167
1168 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1169 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1170 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1171 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1172 seq_puts(seq, "H: Handlers=");
1173
1174 list_for_each_entry(handle, &dev->h_list, d_node)
1175 seq_printf(seq, "%s ", handle->name);
1176 seq_putc(seq, '\n');
1177
1178 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1179
1180 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1181 if (test_bit(EV_KEY, dev->evbit))
1182 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1183 if (test_bit(EV_REL, dev->evbit))
1184 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1185 if (test_bit(EV_ABS, dev->evbit))
1186 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1187 if (test_bit(EV_MSC, dev->evbit))
1188 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1189 if (test_bit(EV_LED, dev->evbit))
1190 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1191 if (test_bit(EV_SND, dev->evbit))
1192 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1193 if (test_bit(EV_FF, dev->evbit))
1194 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1195 if (test_bit(EV_SW, dev->evbit))
1196 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1197
1198 seq_putc(seq, '\n');
1199
1200 kfree(path);
1201 return 0;
1202}
1203
1204static const struct seq_operations input_devices_seq_ops = {
1205 .start = input_devices_seq_start,
1206 .next = input_devices_seq_next,
1207 .stop = input_seq_stop,
1208 .show = input_devices_seq_show,
1209};
1210
1211static int input_proc_devices_open(struct inode *inode, struct file *file)
1212{
1213 return seq_open(file, &input_devices_seq_ops);
1214}
1215
1216static const struct proc_ops input_devices_proc_ops = {
1217 .proc_open = input_proc_devices_open,
1218 .proc_poll = input_proc_devices_poll,
1219 .proc_read = seq_read,
1220 .proc_lseek = seq_lseek,
1221 .proc_release = seq_release,
1222};
1223
1224static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1225{
1226 union input_seq_state *state = (union input_seq_state *)&seq->private;
1227 int error;
1228
1229 /* We need to fit into seq->private pointer */
1230 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1231
1232 error = mutex_lock_interruptible(&input_mutex);
1233 if (error) {
1234 state->mutex_acquired = false;
1235 return ERR_PTR(error);
1236 }
1237
1238 state->mutex_acquired = true;
1239 state->pos = *pos;
1240
1241 return seq_list_start(&input_handler_list, *pos);
1242}
1243
1244static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1245{
1246 union input_seq_state *state = (union input_seq_state *)&seq->private;
1247
1248 state->pos = *pos + 1;
1249 return seq_list_next(v, &input_handler_list, pos);
1250}
1251
1252static int input_handlers_seq_show(struct seq_file *seq, void *v)
1253{
1254 struct input_handler *handler = container_of(v, struct input_handler, node);
1255 union input_seq_state *state = (union input_seq_state *)&seq->private;
1256
1257 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1258 if (handler->filter)
1259 seq_puts(seq, " (filter)");
1260 if (handler->legacy_minors)
1261 seq_printf(seq, " Minor=%d", handler->minor);
1262 seq_putc(seq, '\n');
1263
1264 return 0;
1265}
1266
1267static const struct seq_operations input_handlers_seq_ops = {
1268 .start = input_handlers_seq_start,
1269 .next = input_handlers_seq_next,
1270 .stop = input_seq_stop,
1271 .show = input_handlers_seq_show,
1272};
1273
1274static int input_proc_handlers_open(struct inode *inode, struct file *file)
1275{
1276 return seq_open(file, &input_handlers_seq_ops);
1277}
1278
1279static const struct proc_ops input_handlers_proc_ops = {
1280 .proc_open = input_proc_handlers_open,
1281 .proc_read = seq_read,
1282 .proc_lseek = seq_lseek,
1283 .proc_release = seq_release,
1284};
1285
1286static int __init input_proc_init(void)
1287{
1288 struct proc_dir_entry *entry;
1289
1290 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1291 if (!proc_bus_input_dir)
1292 return -ENOMEM;
1293
1294 entry = proc_create("devices", 0, proc_bus_input_dir,
1295 &input_devices_proc_ops);
1296 if (!entry)
1297 goto fail1;
1298
1299 entry = proc_create("handlers", 0, proc_bus_input_dir,
1300 &input_handlers_proc_ops);
1301 if (!entry)
1302 goto fail2;
1303
1304 return 0;
1305
1306 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1307 fail1: remove_proc_entry("bus/input", NULL);
1308 return -ENOMEM;
1309}
1310
1311static void input_proc_exit(void)
1312{
1313 remove_proc_entry("devices", proc_bus_input_dir);
1314 remove_proc_entry("handlers", proc_bus_input_dir);
1315 remove_proc_entry("bus/input", NULL);
1316}
1317
1318#else /* !CONFIG_PROC_FS */
1319static inline void input_wakeup_procfs_readers(void) { }
1320static inline int input_proc_init(void) { return 0; }
1321static inline void input_proc_exit(void) { }
1322#endif
1323
1324#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1325static ssize_t input_dev_show_##name(struct device *dev, \
1326 struct device_attribute *attr, \
1327 char *buf) \
1328{ \
1329 struct input_dev *input_dev = to_input_dev(dev); \
1330 \
1331 return sysfs_emit(buf, "%s\n", \
1332 input_dev->name ? input_dev->name : ""); \
1333} \
1334static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1335
1336INPUT_DEV_STRING_ATTR_SHOW(name);
1337INPUT_DEV_STRING_ATTR_SHOW(phys);
1338INPUT_DEV_STRING_ATTR_SHOW(uniq);
1339
1340static int input_print_modalias_bits(char *buf, int size,
1341 char name, const unsigned long *bm,
1342 unsigned int min_bit, unsigned int max_bit)
1343{
1344 int bit = min_bit;
1345 int len = 0;
1346
1347 len += snprintf(buf, max(size, 0), "%c", name);
1348 for_each_set_bit_from(bit, bm, max_bit)
1349 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1350 return len;
1351}
1352
1353static int input_print_modalias_parts(char *buf, int size, int full_len,
1354 const struct input_dev *id)
1355{
1356 int len, klen, remainder, space;
1357
1358 len = snprintf(buf, max(size, 0),
1359 "input:b%04Xv%04Xp%04Xe%04X-",
1360 id->id.bustype, id->id.vendor,
1361 id->id.product, id->id.version);
1362
1363 len += input_print_modalias_bits(buf + len, size - len,
1364 'e', id->evbit, 0, EV_MAX);
1365
1366 /*
1367 * Calculate the remaining space in the buffer making sure we
1368 * have place for the terminating 0.
1369 */
1370 space = max(size - (len + 1), 0);
1371
1372 klen = input_print_modalias_bits(buf + len, size - len,
1373 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1374 len += klen;
1375
1376 /*
1377 * If we have more data than we can fit in the buffer, check
1378 * if we can trim key data to fit in the rest. We will indicate
1379 * that key data is incomplete by adding "+" sign at the end, like
1380 * this: * "k1,2,3,45,+,".
1381 *
1382 * Note that we shortest key info (if present) is "k+," so we
1383 * can only try to trim if key data is longer than that.
1384 */
1385 if (full_len && size < full_len + 1 && klen > 3) {
1386 remainder = full_len - len;
1387 /*
1388 * We can only trim if we have space for the remainder
1389 * and also for at least "k+," which is 3 more characters.
1390 */
1391 if (remainder <= space - 3) {
1392 /*
1393 * We are guaranteed to have 'k' in the buffer, so
1394 * we need at least 3 additional bytes for storing
1395 * "+," in addition to the remainder.
1396 */
1397 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1398 if (buf[i] == 'k' || buf[i] == ',') {
1399 strcpy(buf + i + 1, "+,");
1400 len = i + 3; /* Not counting '\0' */
1401 break;
1402 }
1403 }
1404 }
1405 }
1406
1407 len += input_print_modalias_bits(buf + len, size - len,
1408 'r', id->relbit, 0, REL_MAX);
1409 len += input_print_modalias_bits(buf + len, size - len,
1410 'a', id->absbit, 0, ABS_MAX);
1411 len += input_print_modalias_bits(buf + len, size - len,
1412 'm', id->mscbit, 0, MSC_MAX);
1413 len += input_print_modalias_bits(buf + len, size - len,
1414 'l', id->ledbit, 0, LED_MAX);
1415 len += input_print_modalias_bits(buf + len, size - len,
1416 's', id->sndbit, 0, SND_MAX);
1417 len += input_print_modalias_bits(buf + len, size - len,
1418 'f', id->ffbit, 0, FF_MAX);
1419 len += input_print_modalias_bits(buf + len, size - len,
1420 'w', id->swbit, 0, SW_MAX);
1421
1422 return len;
1423}
1424
1425static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1426{
1427 int full_len;
1428
1429 /*
1430 * Printing is done in 2 passes: first one figures out total length
1431 * needed for the modalias string, second one will try to trim key
1432 * data in case when buffer is too small for the entire modalias.
1433 * If the buffer is too small regardless, it will fill as much as it
1434 * can (without trimming key data) into the buffer and leave it to
1435 * the caller to figure out what to do with the result.
1436 */
1437 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1438 return input_print_modalias_parts(buf, size, full_len, id);
1439}
1440
1441static ssize_t input_dev_show_modalias(struct device *dev,
1442 struct device_attribute *attr,
1443 char *buf)
1444{
1445 struct input_dev *id = to_input_dev(dev);
1446 ssize_t len;
1447
1448 len = input_print_modalias(buf, PAGE_SIZE, id);
1449 if (len < PAGE_SIZE - 2)
1450 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1451
1452 return min_t(int, len, PAGE_SIZE);
1453}
1454static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1455
1456static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1457 int max, int add_cr);
1458
1459static ssize_t input_dev_show_properties(struct device *dev,
1460 struct device_attribute *attr,
1461 char *buf)
1462{
1463 struct input_dev *input_dev = to_input_dev(dev);
1464 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1465 INPUT_PROP_MAX, true);
1466 return min_t(int, len, PAGE_SIZE);
1467}
1468static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1469
1470static int input_inhibit_device(struct input_dev *dev);
1471static int input_uninhibit_device(struct input_dev *dev);
1472
1473static ssize_t inhibited_show(struct device *dev,
1474 struct device_attribute *attr,
1475 char *buf)
1476{
1477 struct input_dev *input_dev = to_input_dev(dev);
1478
1479 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1480}
1481
1482static ssize_t inhibited_store(struct device *dev,
1483 struct device_attribute *attr, const char *buf,
1484 size_t len)
1485{
1486 struct input_dev *input_dev = to_input_dev(dev);
1487 ssize_t rv;
1488 bool inhibited;
1489
1490 if (kstrtobool(buf, &inhibited))
1491 return -EINVAL;
1492
1493 if (inhibited)
1494 rv = input_inhibit_device(input_dev);
1495 else
1496 rv = input_uninhibit_device(input_dev);
1497
1498 if (rv != 0)
1499 return rv;
1500
1501 return len;
1502}
1503
1504static DEVICE_ATTR_RW(inhibited);
1505
1506static struct attribute *input_dev_attrs[] = {
1507 &dev_attr_name.attr,
1508 &dev_attr_phys.attr,
1509 &dev_attr_uniq.attr,
1510 &dev_attr_modalias.attr,
1511 &dev_attr_properties.attr,
1512 &dev_attr_inhibited.attr,
1513 NULL
1514};
1515
1516static const struct attribute_group input_dev_attr_group = {
1517 .attrs = input_dev_attrs,
1518};
1519
1520#define INPUT_DEV_ID_ATTR(name) \
1521static ssize_t input_dev_show_id_##name(struct device *dev, \
1522 struct device_attribute *attr, \
1523 char *buf) \
1524{ \
1525 struct input_dev *input_dev = to_input_dev(dev); \
1526 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1527} \
1528static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1529
1530INPUT_DEV_ID_ATTR(bustype);
1531INPUT_DEV_ID_ATTR(vendor);
1532INPUT_DEV_ID_ATTR(product);
1533INPUT_DEV_ID_ATTR(version);
1534
1535static struct attribute *input_dev_id_attrs[] = {
1536 &dev_attr_bustype.attr,
1537 &dev_attr_vendor.attr,
1538 &dev_attr_product.attr,
1539 &dev_attr_version.attr,
1540 NULL
1541};
1542
1543static const struct attribute_group input_dev_id_attr_group = {
1544 .name = "id",
1545 .attrs = input_dev_id_attrs,
1546};
1547
1548static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1549 int max, int add_cr)
1550{
1551 int i;
1552 int len = 0;
1553 bool skip_empty = true;
1554
1555 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1556 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1557 bitmap[i], skip_empty);
1558 if (len) {
1559 skip_empty = false;
1560 if (i > 0)
1561 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1562 }
1563 }
1564
1565 /*
1566 * If no output was produced print a single 0.
1567 */
1568 if (len == 0)
1569 len = snprintf(buf, buf_size, "%d", 0);
1570
1571 if (add_cr)
1572 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1573
1574 return len;
1575}
1576
1577#define INPUT_DEV_CAP_ATTR(ev, bm) \
1578static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1579 struct device_attribute *attr, \
1580 char *buf) \
1581{ \
1582 struct input_dev *input_dev = to_input_dev(dev); \
1583 int len = input_print_bitmap(buf, PAGE_SIZE, \
1584 input_dev->bm##bit, ev##_MAX, \
1585 true); \
1586 return min_t(int, len, PAGE_SIZE); \
1587} \
1588static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1589
1590INPUT_DEV_CAP_ATTR(EV, ev);
1591INPUT_DEV_CAP_ATTR(KEY, key);
1592INPUT_DEV_CAP_ATTR(REL, rel);
1593INPUT_DEV_CAP_ATTR(ABS, abs);
1594INPUT_DEV_CAP_ATTR(MSC, msc);
1595INPUT_DEV_CAP_ATTR(LED, led);
1596INPUT_DEV_CAP_ATTR(SND, snd);
1597INPUT_DEV_CAP_ATTR(FF, ff);
1598INPUT_DEV_CAP_ATTR(SW, sw);
1599
1600static struct attribute *input_dev_caps_attrs[] = {
1601 &dev_attr_ev.attr,
1602 &dev_attr_key.attr,
1603 &dev_attr_rel.attr,
1604 &dev_attr_abs.attr,
1605 &dev_attr_msc.attr,
1606 &dev_attr_led.attr,
1607 &dev_attr_snd.attr,
1608 &dev_attr_ff.attr,
1609 &dev_attr_sw.attr,
1610 NULL
1611};
1612
1613static const struct attribute_group input_dev_caps_attr_group = {
1614 .name = "capabilities",
1615 .attrs = input_dev_caps_attrs,
1616};
1617
1618static const struct attribute_group *input_dev_attr_groups[] = {
1619 &input_dev_attr_group,
1620 &input_dev_id_attr_group,
1621 &input_dev_caps_attr_group,
1622 &input_poller_attribute_group,
1623 NULL
1624};
1625
1626static void input_dev_release(struct device *device)
1627{
1628 struct input_dev *dev = to_input_dev(device);
1629
1630 input_ff_destroy(dev);
1631 input_mt_destroy_slots(dev);
1632 kfree(dev->poller);
1633 kfree(dev->absinfo);
1634 kfree(dev->vals);
1635 kfree(dev);
1636
1637 module_put(THIS_MODULE);
1638}
1639
1640/*
1641 * Input uevent interface - loading event handlers based on
1642 * device bitfields.
1643 */
1644static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1645 const char *name, const unsigned long *bitmap, int max)
1646{
1647 int len;
1648
1649 if (add_uevent_var(env, "%s", name))
1650 return -ENOMEM;
1651
1652 len = input_print_bitmap(&env->buf[env->buflen - 1],
1653 sizeof(env->buf) - env->buflen,
1654 bitmap, max, false);
1655 if (len >= (sizeof(env->buf) - env->buflen))
1656 return -ENOMEM;
1657
1658 env->buflen += len;
1659 return 0;
1660}
1661
1662/*
1663 * This is a pretty gross hack. When building uevent data the driver core
1664 * may try adding more environment variables to kobj_uevent_env without
1665 * telling us, so we have no idea how much of the buffer we can use to
1666 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1667 * reduce amount of memory we will use for the modalias environment variable.
1668 *
1669 * The potential additions are:
1670 *
1671 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1672 * HOME=/ (6 bytes)
1673 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1674 *
1675 * 68 bytes total. Allow extra buffer - 96 bytes
1676 */
1677#define UEVENT_ENV_EXTRA_LEN 96
1678
1679static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1680 const struct input_dev *dev)
1681{
1682 int len;
1683
1684 if (add_uevent_var(env, "MODALIAS="))
1685 return -ENOMEM;
1686
1687 len = input_print_modalias(&env->buf[env->buflen - 1],
1688 (int)sizeof(env->buf) - env->buflen -
1689 UEVENT_ENV_EXTRA_LEN,
1690 dev);
1691 if (len >= ((int)sizeof(env->buf) - env->buflen -
1692 UEVENT_ENV_EXTRA_LEN))
1693 return -ENOMEM;
1694
1695 env->buflen += len;
1696 return 0;
1697}
1698
1699#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1700 do { \
1701 int err = add_uevent_var(env, fmt, val); \
1702 if (err) \
1703 return err; \
1704 } while (0)
1705
1706#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1707 do { \
1708 int err = input_add_uevent_bm_var(env, name, bm, max); \
1709 if (err) \
1710 return err; \
1711 } while (0)
1712
1713#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1714 do { \
1715 int err = input_add_uevent_modalias_var(env, dev); \
1716 if (err) \
1717 return err; \
1718 } while (0)
1719
1720static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1721{
1722 const struct input_dev *dev = to_input_dev(device);
1723
1724 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1725 dev->id.bustype, dev->id.vendor,
1726 dev->id.product, dev->id.version);
1727 if (dev->name)
1728 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1729 if (dev->phys)
1730 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1731 if (dev->uniq)
1732 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1733
1734 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1735
1736 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1737 if (test_bit(EV_KEY, dev->evbit))
1738 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1739 if (test_bit(EV_REL, dev->evbit))
1740 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1741 if (test_bit(EV_ABS, dev->evbit))
1742 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1743 if (test_bit(EV_MSC, dev->evbit))
1744 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1745 if (test_bit(EV_LED, dev->evbit))
1746 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1747 if (test_bit(EV_SND, dev->evbit))
1748 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1749 if (test_bit(EV_FF, dev->evbit))
1750 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1751 if (test_bit(EV_SW, dev->evbit))
1752 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1753
1754 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1755
1756 return 0;
1757}
1758
1759#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1760 do { \
1761 int i; \
1762 bool active; \
1763 \
1764 if (!test_bit(EV_##type, dev->evbit)) \
1765 break; \
1766 \
1767 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1768 active = test_bit(i, dev->bits); \
1769 if (!active && !on) \
1770 continue; \
1771 \
1772 dev->event(dev, EV_##type, i, on ? active : 0); \
1773 } \
1774 } while (0)
1775
1776static void input_dev_toggle(struct input_dev *dev, bool activate)
1777{
1778 if (!dev->event)
1779 return;
1780
1781 INPUT_DO_TOGGLE(dev, LED, led, activate);
1782 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1783
1784 if (activate && test_bit(EV_REP, dev->evbit)) {
1785 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1786 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1787 }
1788}
1789
1790/**
1791 * input_reset_device() - reset/restore the state of input device
1792 * @dev: input device whose state needs to be reset
1793 *
1794 * This function tries to reset the state of an opened input device and
1795 * bring internal state and state if the hardware in sync with each other.
1796 * We mark all keys as released, restore LED state, repeat rate, etc.
1797 */
1798void input_reset_device(struct input_dev *dev)
1799{
1800 unsigned long flags;
1801
1802 mutex_lock(&dev->mutex);
1803 spin_lock_irqsave(&dev->event_lock, flags);
1804
1805 input_dev_toggle(dev, true);
1806 if (input_dev_release_keys(dev))
1807 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1808
1809 spin_unlock_irqrestore(&dev->event_lock, flags);
1810 mutex_unlock(&dev->mutex);
1811}
1812EXPORT_SYMBOL(input_reset_device);
1813
1814static int input_inhibit_device(struct input_dev *dev)
1815{
1816 mutex_lock(&dev->mutex);
1817
1818 if (dev->inhibited)
1819 goto out;
1820
1821 if (dev->users) {
1822 if (dev->close)
1823 dev->close(dev);
1824 if (dev->poller)
1825 input_dev_poller_stop(dev->poller);
1826 }
1827
1828 spin_lock_irq(&dev->event_lock);
1829 input_mt_release_slots(dev);
1830 input_dev_release_keys(dev);
1831 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1832 input_dev_toggle(dev, false);
1833 spin_unlock_irq(&dev->event_lock);
1834
1835 dev->inhibited = true;
1836
1837out:
1838 mutex_unlock(&dev->mutex);
1839 return 0;
1840}
1841
1842static int input_uninhibit_device(struct input_dev *dev)
1843{
1844 int ret = 0;
1845
1846 mutex_lock(&dev->mutex);
1847
1848 if (!dev->inhibited)
1849 goto out;
1850
1851 if (dev->users) {
1852 if (dev->open) {
1853 ret = dev->open(dev);
1854 if (ret)
1855 goto out;
1856 }
1857 if (dev->poller)
1858 input_dev_poller_start(dev->poller);
1859 }
1860
1861 dev->inhibited = false;
1862 spin_lock_irq(&dev->event_lock);
1863 input_dev_toggle(dev, true);
1864 spin_unlock_irq(&dev->event_lock);
1865
1866out:
1867 mutex_unlock(&dev->mutex);
1868 return ret;
1869}
1870
1871static int input_dev_suspend(struct device *dev)
1872{
1873 struct input_dev *input_dev = to_input_dev(dev);
1874
1875 spin_lock_irq(&input_dev->event_lock);
1876
1877 /*
1878 * Keys that are pressed now are unlikely to be
1879 * still pressed when we resume.
1880 */
1881 if (input_dev_release_keys(input_dev))
1882 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1883
1884 /* Turn off LEDs and sounds, if any are active. */
1885 input_dev_toggle(input_dev, false);
1886
1887 spin_unlock_irq(&input_dev->event_lock);
1888
1889 return 0;
1890}
1891
1892static int input_dev_resume(struct device *dev)
1893{
1894 struct input_dev *input_dev = to_input_dev(dev);
1895
1896 spin_lock_irq(&input_dev->event_lock);
1897
1898 /* Restore state of LEDs and sounds, if any were active. */
1899 input_dev_toggle(input_dev, true);
1900
1901 spin_unlock_irq(&input_dev->event_lock);
1902
1903 return 0;
1904}
1905
1906static int input_dev_freeze(struct device *dev)
1907{
1908 struct input_dev *input_dev = to_input_dev(dev);
1909
1910 spin_lock_irq(&input_dev->event_lock);
1911
1912 /*
1913 * Keys that are pressed now are unlikely to be
1914 * still pressed when we resume.
1915 */
1916 if (input_dev_release_keys(input_dev))
1917 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1918
1919 spin_unlock_irq(&input_dev->event_lock);
1920
1921 return 0;
1922}
1923
1924static int input_dev_poweroff(struct device *dev)
1925{
1926 struct input_dev *input_dev = to_input_dev(dev);
1927
1928 spin_lock_irq(&input_dev->event_lock);
1929
1930 /* Turn off LEDs and sounds, if any are active. */
1931 input_dev_toggle(input_dev, false);
1932
1933 spin_unlock_irq(&input_dev->event_lock);
1934
1935 return 0;
1936}
1937
1938static const struct dev_pm_ops input_dev_pm_ops = {
1939 .suspend = input_dev_suspend,
1940 .resume = input_dev_resume,
1941 .freeze = input_dev_freeze,
1942 .poweroff = input_dev_poweroff,
1943 .restore = input_dev_resume,
1944};
1945
1946static const struct device_type input_dev_type = {
1947 .groups = input_dev_attr_groups,
1948 .release = input_dev_release,
1949 .uevent = input_dev_uevent,
1950 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1951};
1952
1953static char *input_devnode(const struct device *dev, umode_t *mode)
1954{
1955 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1956}
1957
1958const struct class input_class = {
1959 .name = "input",
1960 .devnode = input_devnode,
1961};
1962EXPORT_SYMBOL_GPL(input_class);
1963
1964/**
1965 * input_allocate_device - allocate memory for new input device
1966 *
1967 * Returns prepared struct input_dev or %NULL.
1968 *
1969 * NOTE: Use input_free_device() to free devices that have not been
1970 * registered; input_unregister_device() should be used for already
1971 * registered devices.
1972 */
1973struct input_dev *input_allocate_device(void)
1974{
1975 static atomic_t input_no = ATOMIC_INIT(-1);
1976 struct input_dev *dev;
1977
1978 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1979 if (!dev)
1980 return NULL;
1981
1982 /*
1983 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1984 * see input_estimate_events_per_packet(). We will tune the number
1985 * when we register the device.
1986 */
1987 dev->max_vals = 10;
1988 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1989 if (!dev->vals) {
1990 kfree(dev);
1991 return NULL;
1992 }
1993
1994 mutex_init(&dev->mutex);
1995 spin_lock_init(&dev->event_lock);
1996 timer_setup(&dev->timer, NULL, 0);
1997 INIT_LIST_HEAD(&dev->h_list);
1998 INIT_LIST_HEAD(&dev->node);
1999
2000 dev->dev.type = &input_dev_type;
2001 dev->dev.class = &input_class;
2002 device_initialize(&dev->dev);
2003 /*
2004 * From this point on we can no longer simply "kfree(dev)", we need
2005 * to use input_free_device() so that device core properly frees its
2006 * resources associated with the input device.
2007 */
2008
2009 dev_set_name(&dev->dev, "input%lu",
2010 (unsigned long)atomic_inc_return(&input_no));
2011
2012 __module_get(THIS_MODULE);
2013
2014 return dev;
2015}
2016EXPORT_SYMBOL(input_allocate_device);
2017
2018struct input_devres {
2019 struct input_dev *input;
2020};
2021
2022static int devm_input_device_match(struct device *dev, void *res, void *data)
2023{
2024 struct input_devres *devres = res;
2025
2026 return devres->input == data;
2027}
2028
2029static void devm_input_device_release(struct device *dev, void *res)
2030{
2031 struct input_devres *devres = res;
2032 struct input_dev *input = devres->input;
2033
2034 dev_dbg(dev, "%s: dropping reference to %s\n",
2035 __func__, dev_name(&input->dev));
2036 input_put_device(input);
2037}
2038
2039/**
2040 * devm_input_allocate_device - allocate managed input device
2041 * @dev: device owning the input device being created
2042 *
2043 * Returns prepared struct input_dev or %NULL.
2044 *
2045 * Managed input devices do not need to be explicitly unregistered or
2046 * freed as it will be done automatically when owner device unbinds from
2047 * its driver (or binding fails). Once managed input device is allocated,
2048 * it is ready to be set up and registered in the same fashion as regular
2049 * input device. There are no special devm_input_device_[un]register()
2050 * variants, regular ones work with both managed and unmanaged devices,
2051 * should you need them. In most cases however, managed input device need
2052 * not be explicitly unregistered or freed.
2053 *
2054 * NOTE: the owner device is set up as parent of input device and users
2055 * should not override it.
2056 */
2057struct input_dev *devm_input_allocate_device(struct device *dev)
2058{
2059 struct input_dev *input;
2060 struct input_devres *devres;
2061
2062 devres = devres_alloc(devm_input_device_release,
2063 sizeof(*devres), GFP_KERNEL);
2064 if (!devres)
2065 return NULL;
2066
2067 input = input_allocate_device();
2068 if (!input) {
2069 devres_free(devres);
2070 return NULL;
2071 }
2072
2073 input->dev.parent = dev;
2074 input->devres_managed = true;
2075
2076 devres->input = input;
2077 devres_add(dev, devres);
2078
2079 return input;
2080}
2081EXPORT_SYMBOL(devm_input_allocate_device);
2082
2083/**
2084 * input_free_device - free memory occupied by input_dev structure
2085 * @dev: input device to free
2086 *
2087 * This function should only be used if input_register_device()
2088 * was not called yet or if it failed. Once device was registered
2089 * use input_unregister_device() and memory will be freed once last
2090 * reference to the device is dropped.
2091 *
2092 * Device should be allocated by input_allocate_device().
2093 *
2094 * NOTE: If there are references to the input device then memory
2095 * will not be freed until last reference is dropped.
2096 */
2097void input_free_device(struct input_dev *dev)
2098{
2099 if (dev) {
2100 if (dev->devres_managed)
2101 WARN_ON(devres_destroy(dev->dev.parent,
2102 devm_input_device_release,
2103 devm_input_device_match,
2104 dev));
2105 input_put_device(dev);
2106 }
2107}
2108EXPORT_SYMBOL(input_free_device);
2109
2110/**
2111 * input_set_timestamp - set timestamp for input events
2112 * @dev: input device to set timestamp for
2113 * @timestamp: the time at which the event has occurred
2114 * in CLOCK_MONOTONIC
2115 *
2116 * This function is intended to provide to the input system a more
2117 * accurate time of when an event actually occurred. The driver should
2118 * call this function as soon as a timestamp is acquired ensuring
2119 * clock conversions in input_set_timestamp are done correctly.
2120 *
2121 * The system entering suspend state between timestamp acquisition and
2122 * calling input_set_timestamp can result in inaccurate conversions.
2123 */
2124void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2125{
2126 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2127 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2128 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2129 TK_OFFS_BOOT);
2130}
2131EXPORT_SYMBOL(input_set_timestamp);
2132
2133/**
2134 * input_get_timestamp - get timestamp for input events
2135 * @dev: input device to get timestamp from
2136 *
2137 * A valid timestamp is a timestamp of non-zero value.
2138 */
2139ktime_t *input_get_timestamp(struct input_dev *dev)
2140{
2141 const ktime_t invalid_timestamp = ktime_set(0, 0);
2142
2143 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2144 input_set_timestamp(dev, ktime_get());
2145
2146 return dev->timestamp;
2147}
2148EXPORT_SYMBOL(input_get_timestamp);
2149
2150/**
2151 * input_set_capability - mark device as capable of a certain event
2152 * @dev: device that is capable of emitting or accepting event
2153 * @type: type of the event (EV_KEY, EV_REL, etc...)
2154 * @code: event code
2155 *
2156 * In addition to setting up corresponding bit in appropriate capability
2157 * bitmap the function also adjusts dev->evbit.
2158 */
2159void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2160{
2161 if (type < EV_CNT && input_max_code[type] &&
2162 code > input_max_code[type]) {
2163 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2164 type);
2165 dump_stack();
2166 return;
2167 }
2168
2169 switch (type) {
2170 case EV_KEY:
2171 __set_bit(code, dev->keybit);
2172 break;
2173
2174 case EV_REL:
2175 __set_bit(code, dev->relbit);
2176 break;
2177
2178 case EV_ABS:
2179 input_alloc_absinfo(dev);
2180 __set_bit(code, dev->absbit);
2181 break;
2182
2183 case EV_MSC:
2184 __set_bit(code, dev->mscbit);
2185 break;
2186
2187 case EV_SW:
2188 __set_bit(code, dev->swbit);
2189 break;
2190
2191 case EV_LED:
2192 __set_bit(code, dev->ledbit);
2193 break;
2194
2195 case EV_SND:
2196 __set_bit(code, dev->sndbit);
2197 break;
2198
2199 case EV_FF:
2200 __set_bit(code, dev->ffbit);
2201 break;
2202
2203 case EV_PWR:
2204 /* do nothing */
2205 break;
2206
2207 default:
2208 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2209 dump_stack();
2210 return;
2211 }
2212
2213 __set_bit(type, dev->evbit);
2214}
2215EXPORT_SYMBOL(input_set_capability);
2216
2217static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2218{
2219 int mt_slots;
2220 int i;
2221 unsigned int events;
2222
2223 if (dev->mt) {
2224 mt_slots = dev->mt->num_slots;
2225 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2226 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2227 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2228 mt_slots = clamp(mt_slots, 2, 32);
2229 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2230 mt_slots = 2;
2231 } else {
2232 mt_slots = 0;
2233 }
2234
2235 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2236
2237 if (test_bit(EV_ABS, dev->evbit))
2238 for_each_set_bit(i, dev->absbit, ABS_CNT)
2239 events += input_is_mt_axis(i) ? mt_slots : 1;
2240
2241 if (test_bit(EV_REL, dev->evbit))
2242 events += bitmap_weight(dev->relbit, REL_CNT);
2243
2244 /* Make room for KEY and MSC events */
2245 events += 7;
2246
2247 return events;
2248}
2249
2250#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2251 do { \
2252 if (!test_bit(EV_##type, dev->evbit)) \
2253 memset(dev->bits##bit, 0, \
2254 sizeof(dev->bits##bit)); \
2255 } while (0)
2256
2257static void input_cleanse_bitmasks(struct input_dev *dev)
2258{
2259 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2260 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2261 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2262 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2263 INPUT_CLEANSE_BITMASK(dev, LED, led);
2264 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2265 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2266 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2267}
2268
2269static void __input_unregister_device(struct input_dev *dev)
2270{
2271 struct input_handle *handle, *next;
2272
2273 input_disconnect_device(dev);
2274
2275 mutex_lock(&input_mutex);
2276
2277 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2278 handle->handler->disconnect(handle);
2279 WARN_ON(!list_empty(&dev->h_list));
2280
2281 del_timer_sync(&dev->timer);
2282 list_del_init(&dev->node);
2283
2284 input_wakeup_procfs_readers();
2285
2286 mutex_unlock(&input_mutex);
2287
2288 device_del(&dev->dev);
2289}
2290
2291static void devm_input_device_unregister(struct device *dev, void *res)
2292{
2293 struct input_devres *devres = res;
2294 struct input_dev *input = devres->input;
2295
2296 dev_dbg(dev, "%s: unregistering device %s\n",
2297 __func__, dev_name(&input->dev));
2298 __input_unregister_device(input);
2299}
2300
2301/*
2302 * Generate software autorepeat event. Note that we take
2303 * dev->event_lock here to avoid racing with input_event
2304 * which may cause keys get "stuck".
2305 */
2306static void input_repeat_key(struct timer_list *t)
2307{
2308 struct input_dev *dev = from_timer(dev, t, timer);
2309 unsigned long flags;
2310
2311 spin_lock_irqsave(&dev->event_lock, flags);
2312
2313 if (!dev->inhibited &&
2314 test_bit(dev->repeat_key, dev->key) &&
2315 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2316
2317 input_set_timestamp(dev, ktime_get());
2318 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2319 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2320
2321 if (dev->rep[REP_PERIOD])
2322 mod_timer(&dev->timer, jiffies +
2323 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2324 }
2325
2326 spin_unlock_irqrestore(&dev->event_lock, flags);
2327}
2328
2329/**
2330 * input_enable_softrepeat - enable software autorepeat
2331 * @dev: input device
2332 * @delay: repeat delay
2333 * @period: repeat period
2334 *
2335 * Enable software autorepeat on the input device.
2336 */
2337void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2338{
2339 dev->timer.function = input_repeat_key;
2340 dev->rep[REP_DELAY] = delay;
2341 dev->rep[REP_PERIOD] = period;
2342}
2343EXPORT_SYMBOL(input_enable_softrepeat);
2344
2345bool input_device_enabled(struct input_dev *dev)
2346{
2347 lockdep_assert_held(&dev->mutex);
2348
2349 return !dev->inhibited && dev->users > 0;
2350}
2351EXPORT_SYMBOL_GPL(input_device_enabled);
2352
2353static int input_device_tune_vals(struct input_dev *dev)
2354{
2355 struct input_value *vals;
2356 unsigned int packet_size;
2357 unsigned int max_vals;
2358
2359 packet_size = input_estimate_events_per_packet(dev);
2360 if (dev->hint_events_per_packet < packet_size)
2361 dev->hint_events_per_packet = packet_size;
2362
2363 max_vals = dev->hint_events_per_packet + 2;
2364 if (dev->max_vals >= max_vals)
2365 return 0;
2366
2367 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2368 if (!vals)
2369 return -ENOMEM;
2370
2371 spin_lock_irq(&dev->event_lock);
2372 dev->max_vals = max_vals;
2373 swap(dev->vals, vals);
2374 spin_unlock_irq(&dev->event_lock);
2375
2376 /* Because of swap() above, this frees the old vals memory */
2377 kfree(vals);
2378
2379 return 0;
2380}
2381
2382/**
2383 * input_register_device - register device with input core
2384 * @dev: device to be registered
2385 *
2386 * This function registers device with input core. The device must be
2387 * allocated with input_allocate_device() and all it's capabilities
2388 * set up before registering.
2389 * If function fails the device must be freed with input_free_device().
2390 * Once device has been successfully registered it can be unregistered
2391 * with input_unregister_device(); input_free_device() should not be
2392 * called in this case.
2393 *
2394 * Note that this function is also used to register managed input devices
2395 * (ones allocated with devm_input_allocate_device()). Such managed input
2396 * devices need not be explicitly unregistered or freed, their tear down
2397 * is controlled by the devres infrastructure. It is also worth noting
2398 * that tear down of managed input devices is internally a 2-step process:
2399 * registered managed input device is first unregistered, but stays in
2400 * memory and can still handle input_event() calls (although events will
2401 * not be delivered anywhere). The freeing of managed input device will
2402 * happen later, when devres stack is unwound to the point where device
2403 * allocation was made.
2404 */
2405int input_register_device(struct input_dev *dev)
2406{
2407 struct input_devres *devres = NULL;
2408 struct input_handler *handler;
2409 const char *path;
2410 int error;
2411
2412 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2413 dev_err(&dev->dev,
2414 "Absolute device without dev->absinfo, refusing to register\n");
2415 return -EINVAL;
2416 }
2417
2418 if (dev->devres_managed) {
2419 devres = devres_alloc(devm_input_device_unregister,
2420 sizeof(*devres), GFP_KERNEL);
2421 if (!devres)
2422 return -ENOMEM;
2423
2424 devres->input = dev;
2425 }
2426
2427 /* Every input device generates EV_SYN/SYN_REPORT events. */
2428 __set_bit(EV_SYN, dev->evbit);
2429
2430 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2431 __clear_bit(KEY_RESERVED, dev->keybit);
2432
2433 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2434 input_cleanse_bitmasks(dev);
2435
2436 error = input_device_tune_vals(dev);
2437 if (error)
2438 goto err_devres_free;
2439
2440 /*
2441 * If delay and period are pre-set by the driver, then autorepeating
2442 * is handled by the driver itself and we don't do it in input.c.
2443 */
2444 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2445 input_enable_softrepeat(dev, 250, 33);
2446
2447 if (!dev->getkeycode)
2448 dev->getkeycode = input_default_getkeycode;
2449
2450 if (!dev->setkeycode)
2451 dev->setkeycode = input_default_setkeycode;
2452
2453 if (dev->poller)
2454 input_dev_poller_finalize(dev->poller);
2455
2456 error = device_add(&dev->dev);
2457 if (error)
2458 goto err_devres_free;
2459
2460 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2461 pr_info("%s as %s\n",
2462 dev->name ? dev->name : "Unspecified device",
2463 path ? path : "N/A");
2464 kfree(path);
2465
2466 error = mutex_lock_interruptible(&input_mutex);
2467 if (error)
2468 goto err_device_del;
2469
2470 list_add_tail(&dev->node, &input_dev_list);
2471
2472 list_for_each_entry(handler, &input_handler_list, node)
2473 input_attach_handler(dev, handler);
2474
2475 input_wakeup_procfs_readers();
2476
2477 mutex_unlock(&input_mutex);
2478
2479 if (dev->devres_managed) {
2480 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2481 __func__, dev_name(&dev->dev));
2482 devres_add(dev->dev.parent, devres);
2483 }
2484 return 0;
2485
2486err_device_del:
2487 device_del(&dev->dev);
2488err_devres_free:
2489 devres_free(devres);
2490 return error;
2491}
2492EXPORT_SYMBOL(input_register_device);
2493
2494/**
2495 * input_unregister_device - unregister previously registered device
2496 * @dev: device to be unregistered
2497 *
2498 * This function unregisters an input device. Once device is unregistered
2499 * the caller should not try to access it as it may get freed at any moment.
2500 */
2501void input_unregister_device(struct input_dev *dev)
2502{
2503 if (dev->devres_managed) {
2504 WARN_ON(devres_destroy(dev->dev.parent,
2505 devm_input_device_unregister,
2506 devm_input_device_match,
2507 dev));
2508 __input_unregister_device(dev);
2509 /*
2510 * We do not do input_put_device() here because it will be done
2511 * when 2nd devres fires up.
2512 */
2513 } else {
2514 __input_unregister_device(dev);
2515 input_put_device(dev);
2516 }
2517}
2518EXPORT_SYMBOL(input_unregister_device);
2519
2520static int input_handler_check_methods(const struct input_handler *handler)
2521{
2522 int count = 0;
2523
2524 if (handler->filter)
2525 count++;
2526 if (handler->events)
2527 count++;
2528 if (handler->event)
2529 count++;
2530
2531 if (count > 1) {
2532 pr_err("%s: only one event processing method can be defined (%s)\n",
2533 __func__, handler->name);
2534 return -EINVAL;
2535 }
2536
2537 return 0;
2538}
2539
2540/*
2541 * An implementation of input_handler's events() method that simply
2542 * invokes handler->event() method for each event one by one.
2543 */
2544static unsigned int input_handler_events_default(struct input_handle *handle,
2545 struct input_value *vals,
2546 unsigned int count)
2547{
2548 struct input_handler *handler = handle->handler;
2549 struct input_value *v;
2550
2551 for (v = vals; v != vals + count; v++)
2552 handler->event(handle, v->type, v->code, v->value);
2553
2554 return count;
2555}
2556
2557/*
2558 * An implementation of input_handler's events() method that invokes
2559 * handler->filter() method for each event one by one and removes events
2560 * that were filtered out from the "vals" array.
2561 */
2562static unsigned int input_handler_events_filter(struct input_handle *handle,
2563 struct input_value *vals,
2564 unsigned int count)
2565{
2566 struct input_handler *handler = handle->handler;
2567 struct input_value *end = vals;
2568 struct input_value *v;
2569
2570 for (v = vals; v != vals + count; v++) {
2571 if (handler->filter(handle, v->type, v->code, v->value))
2572 continue;
2573 if (end != v)
2574 *end = *v;
2575 end++;
2576 }
2577
2578 return end - vals;
2579}
2580
2581/*
2582 * An implementation of input_handler's events() method that does nothing.
2583 */
2584static unsigned int input_handler_events_null(struct input_handle *handle,
2585 struct input_value *vals,
2586 unsigned int count)
2587{
2588 return count;
2589}
2590
2591/**
2592 * input_register_handler - register a new input handler
2593 * @handler: handler to be registered
2594 *
2595 * This function registers a new input handler (interface) for input
2596 * devices in the system and attaches it to all input devices that
2597 * are compatible with the handler.
2598 */
2599int input_register_handler(struct input_handler *handler)
2600{
2601 struct input_dev *dev;
2602 int error;
2603
2604 error = input_handler_check_methods(handler);
2605 if (error)
2606 return error;
2607
2608 INIT_LIST_HEAD(&handler->h_list);
2609
2610 if (handler->filter)
2611 handler->events = input_handler_events_filter;
2612 else if (handler->event)
2613 handler->events = input_handler_events_default;
2614 else if (!handler->events)
2615 handler->events = input_handler_events_null;
2616
2617 error = mutex_lock_interruptible(&input_mutex);
2618 if (error)
2619 return error;
2620
2621 list_add_tail(&handler->node, &input_handler_list);
2622
2623 list_for_each_entry(dev, &input_dev_list, node)
2624 input_attach_handler(dev, handler);
2625
2626 input_wakeup_procfs_readers();
2627
2628 mutex_unlock(&input_mutex);
2629 return 0;
2630}
2631EXPORT_SYMBOL(input_register_handler);
2632
2633/**
2634 * input_unregister_handler - unregisters an input handler
2635 * @handler: handler to be unregistered
2636 *
2637 * This function disconnects a handler from its input devices and
2638 * removes it from lists of known handlers.
2639 */
2640void input_unregister_handler(struct input_handler *handler)
2641{
2642 struct input_handle *handle, *next;
2643
2644 mutex_lock(&input_mutex);
2645
2646 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2647 handler->disconnect(handle);
2648 WARN_ON(!list_empty(&handler->h_list));
2649
2650 list_del_init(&handler->node);
2651
2652 input_wakeup_procfs_readers();
2653
2654 mutex_unlock(&input_mutex);
2655}
2656EXPORT_SYMBOL(input_unregister_handler);
2657
2658/**
2659 * input_handler_for_each_handle - handle iterator
2660 * @handler: input handler to iterate
2661 * @data: data for the callback
2662 * @fn: function to be called for each handle
2663 *
2664 * Iterate over @bus's list of devices, and call @fn for each, passing
2665 * it @data and stop when @fn returns a non-zero value. The function is
2666 * using RCU to traverse the list and therefore may be using in atomic
2667 * contexts. The @fn callback is invoked from RCU critical section and
2668 * thus must not sleep.
2669 */
2670int input_handler_for_each_handle(struct input_handler *handler, void *data,
2671 int (*fn)(struct input_handle *, void *))
2672{
2673 struct input_handle *handle;
2674 int retval = 0;
2675
2676 rcu_read_lock();
2677
2678 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2679 retval = fn(handle, data);
2680 if (retval)
2681 break;
2682 }
2683
2684 rcu_read_unlock();
2685
2686 return retval;
2687}
2688EXPORT_SYMBOL(input_handler_for_each_handle);
2689
2690/**
2691 * input_register_handle - register a new input handle
2692 * @handle: handle to register
2693 *
2694 * This function puts a new input handle onto device's
2695 * and handler's lists so that events can flow through
2696 * it once it is opened using input_open_device().
2697 *
2698 * This function is supposed to be called from handler's
2699 * connect() method.
2700 */
2701int input_register_handle(struct input_handle *handle)
2702{
2703 struct input_handler *handler = handle->handler;
2704 struct input_dev *dev = handle->dev;
2705 int error;
2706
2707 /*
2708 * We take dev->mutex here to prevent race with
2709 * input_release_device().
2710 */
2711 error = mutex_lock_interruptible(&dev->mutex);
2712 if (error)
2713 return error;
2714
2715 /*
2716 * Filters go to the head of the list, normal handlers
2717 * to the tail.
2718 */
2719 if (handler->filter)
2720 list_add_rcu(&handle->d_node, &dev->h_list);
2721 else
2722 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2723
2724 mutex_unlock(&dev->mutex);
2725
2726 /*
2727 * Since we are supposed to be called from ->connect()
2728 * which is mutually exclusive with ->disconnect()
2729 * we can't be racing with input_unregister_handle()
2730 * and so separate lock is not needed here.
2731 */
2732 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2733
2734 if (handler->start)
2735 handler->start(handle);
2736
2737 return 0;
2738}
2739EXPORT_SYMBOL(input_register_handle);
2740
2741/**
2742 * input_unregister_handle - unregister an input handle
2743 * @handle: handle to unregister
2744 *
2745 * This function removes input handle from device's
2746 * and handler's lists.
2747 *
2748 * This function is supposed to be called from handler's
2749 * disconnect() method.
2750 */
2751void input_unregister_handle(struct input_handle *handle)
2752{
2753 struct input_dev *dev = handle->dev;
2754
2755 list_del_rcu(&handle->h_node);
2756
2757 /*
2758 * Take dev->mutex to prevent race with input_release_device().
2759 */
2760 mutex_lock(&dev->mutex);
2761 list_del_rcu(&handle->d_node);
2762 mutex_unlock(&dev->mutex);
2763
2764 synchronize_rcu();
2765}
2766EXPORT_SYMBOL(input_unregister_handle);
2767
2768/**
2769 * input_get_new_minor - allocates a new input minor number
2770 * @legacy_base: beginning or the legacy range to be searched
2771 * @legacy_num: size of legacy range
2772 * @allow_dynamic: whether we can also take ID from the dynamic range
2773 *
2774 * This function allocates a new device minor for from input major namespace.
2775 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2776 * parameters and whether ID can be allocated from dynamic range if there are
2777 * no free IDs in legacy range.
2778 */
2779int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2780 bool allow_dynamic)
2781{
2782 /*
2783 * This function should be called from input handler's ->connect()
2784 * methods, which are serialized with input_mutex, so no additional
2785 * locking is needed here.
2786 */
2787 if (legacy_base >= 0) {
2788 int minor = ida_alloc_range(&input_ida, legacy_base,
2789 legacy_base + legacy_num - 1,
2790 GFP_KERNEL);
2791 if (minor >= 0 || !allow_dynamic)
2792 return minor;
2793 }
2794
2795 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2796 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2797}
2798EXPORT_SYMBOL(input_get_new_minor);
2799
2800/**
2801 * input_free_minor - release previously allocated minor
2802 * @minor: minor to be released
2803 *
2804 * This function releases previously allocated input minor so that it can be
2805 * reused later.
2806 */
2807void input_free_minor(unsigned int minor)
2808{
2809 ida_free(&input_ida, minor);
2810}
2811EXPORT_SYMBOL(input_free_minor);
2812
2813static int __init input_init(void)
2814{
2815 int err;
2816
2817 err = class_register(&input_class);
2818 if (err) {
2819 pr_err("unable to register input_dev class\n");
2820 return err;
2821 }
2822
2823 err = input_proc_init();
2824 if (err)
2825 goto fail1;
2826
2827 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2828 INPUT_MAX_CHAR_DEVICES, "input");
2829 if (err) {
2830 pr_err("unable to register char major %d", INPUT_MAJOR);
2831 goto fail2;
2832 }
2833
2834 return 0;
2835
2836 fail2: input_proc_exit();
2837 fail1: class_unregister(&input_class);
2838 return err;
2839}
2840
2841static void __exit input_exit(void)
2842{
2843 input_proc_exit();
2844 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2845 INPUT_MAX_CHAR_DEVICES);
2846 class_unregister(&input_class);
2847}
2848
2849subsys_initcall(input_init);
2850module_exit(input_exit);