Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched/signal.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/set_memory.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/list.h>
25#include <linux/notifier.h>
26#include <linux/rbtree.h>
27#include <linux/xarray.h>
28#include <linux/io.h>
29#include <linux/rcupdate.h>
30#include <linux/pfn.h>
31#include <linux/kmemleak.h>
32#include <linux/atomic.h>
33#include <linux/compiler.h>
34#include <linux/memcontrol.h>
35#include <linux/llist.h>
36#include <linux/uio.h>
37#include <linux/bitops.h>
38#include <linux/rbtree_augmented.h>
39#include <linux/overflow.h>
40#include <linux/pgtable.h>
41#include <linux/hugetlb.h>
42#include <linux/sched/mm.h>
43#include <asm/tlbflush.h>
44#include <asm/shmparam.h>
45#include <linux/page_owner.h>
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/vmalloc.h>
49
50#include "internal.h"
51#include "pgalloc-track.h"
52
53#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55
56static int __init set_nohugeiomap(char *str)
57{
58 ioremap_max_page_shift = PAGE_SHIFT;
59 return 0;
60}
61early_param("nohugeiomap", set_nohugeiomap);
62#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65
66#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67static bool __ro_after_init vmap_allow_huge = true;
68
69static int __init set_nohugevmalloc(char *str)
70{
71 vmap_allow_huge = false;
72 return 0;
73}
74early_param("nohugevmalloc", set_nohugevmalloc);
75#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76static const bool vmap_allow_huge = false;
77#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78
79bool is_vmalloc_addr(const void *x)
80{
81 unsigned long addr = (unsigned long)kasan_reset_tag(x);
82
83 return addr >= VMALLOC_START && addr < VMALLOC_END;
84}
85EXPORT_SYMBOL(is_vmalloc_addr);
86
87struct vfree_deferred {
88 struct llist_head list;
89 struct work_struct wq;
90};
91static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92
93/*** Page table manipulation functions ***/
94static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 phys_addr_t phys_addr, pgprot_t prot,
96 unsigned int max_page_shift, pgtbl_mod_mask *mask)
97{
98 pte_t *pte;
99 u64 pfn;
100 struct page *page;
101 unsigned long size = PAGE_SIZE;
102
103 pfn = phys_addr >> PAGE_SHIFT;
104 pte = pte_alloc_kernel_track(pmd, addr, mask);
105 if (!pte)
106 return -ENOMEM;
107 do {
108 if (!pte_none(ptep_get(pte))) {
109 if (pfn_valid(pfn)) {
110 page = pfn_to_page(pfn);
111 dump_page(page, "remapping already mapped page");
112 }
113 BUG();
114 }
115
116#ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
120
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126#endif
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132}
133
134static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137{
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157}
158
159static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182}
183
184static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187{
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207}
208
209static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212{
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233}
234
235static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238{
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258}
259
260static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263{
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284}
285
286static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289{
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313}
314
315int vmap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
317{
318 int err;
319
320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 ioremap_max_page_shift);
322 flush_cache_vmap(addr, end);
323 if (!err)
324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 ioremap_max_page_shift);
326 return err;
327}
328
329int ioremap_page_range(unsigned long addr, unsigned long end,
330 phys_addr_t phys_addr, pgprot_t prot)
331{
332 struct vm_struct *area;
333
334 area = find_vm_area((void *)addr);
335 if (!area || !(area->flags & VM_IOREMAP)) {
336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 return -EINVAL;
338 }
339 if (addr != (unsigned long)area->addr ||
340 (void *)end != area->addr + get_vm_area_size(area)) {
341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 addr, end, (long)area->addr,
343 (long)area->addr + get_vm_area_size(area));
344 return -ERANGE;
345 }
346 return vmap_page_range(addr, end, phys_addr, prot);
347}
348
349static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 pgtbl_mod_mask *mask)
351{
352 pte_t *pte;
353
354 pte = pte_offset_kernel(pmd, addr);
355 do {
356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 } while (pte++, addr += PAGE_SIZE, addr != end);
359 *mask |= PGTBL_PTE_MODIFIED;
360}
361
362static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 pgtbl_mod_mask *mask)
364{
365 pmd_t *pmd;
366 unsigned long next;
367 int cleared;
368
369 pmd = pmd_offset(pud, addr);
370 do {
371 next = pmd_addr_end(addr, end);
372
373 cleared = pmd_clear_huge(pmd);
374 if (cleared || pmd_bad(*pmd))
375 *mask |= PGTBL_PMD_MODIFIED;
376
377 if (cleared)
378 continue;
379 if (pmd_none_or_clear_bad(pmd))
380 continue;
381 vunmap_pte_range(pmd, addr, next, mask);
382
383 cond_resched();
384 } while (pmd++, addr = next, addr != end);
385}
386
387static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
389{
390 pud_t *pud;
391 unsigned long next;
392 int cleared;
393
394 pud = pud_offset(p4d, addr);
395 do {
396 next = pud_addr_end(addr, end);
397
398 cleared = pud_clear_huge(pud);
399 if (cleared || pud_bad(*pud))
400 *mask |= PGTBL_PUD_MODIFIED;
401
402 if (cleared)
403 continue;
404 if (pud_none_or_clear_bad(pud))
405 continue;
406 vunmap_pmd_range(pud, addr, next, mask);
407 } while (pud++, addr = next, addr != end);
408}
409
410static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 pgtbl_mod_mask *mask)
412{
413 p4d_t *p4d;
414 unsigned long next;
415
416 p4d = p4d_offset(pgd, addr);
417 do {
418 next = p4d_addr_end(addr, end);
419
420 p4d_clear_huge(p4d);
421 if (p4d_bad(*p4d))
422 *mask |= PGTBL_P4D_MODIFIED;
423
424 if (p4d_none_or_clear_bad(p4d))
425 continue;
426 vunmap_pud_range(p4d, addr, next, mask);
427 } while (p4d++, addr = next, addr != end);
428}
429
430/*
431 * vunmap_range_noflush is similar to vunmap_range, but does not
432 * flush caches or TLBs.
433 *
434 * The caller is responsible for calling flush_cache_vmap() before calling
435 * this function, and flush_tlb_kernel_range after it has returned
436 * successfully (and before the addresses are expected to cause a page fault
437 * or be re-mapped for something else, if TLB flushes are being delayed or
438 * coalesced).
439 *
440 * This is an internal function only. Do not use outside mm/.
441 */
442void __vunmap_range_noflush(unsigned long start, unsigned long end)
443{
444 unsigned long next;
445 pgd_t *pgd;
446 unsigned long addr = start;
447 pgtbl_mod_mask mask = 0;
448
449 BUG_ON(addr >= end);
450 pgd = pgd_offset_k(addr);
451 do {
452 next = pgd_addr_end(addr, end);
453 if (pgd_bad(*pgd))
454 mask |= PGTBL_PGD_MODIFIED;
455 if (pgd_none_or_clear_bad(pgd))
456 continue;
457 vunmap_p4d_range(pgd, addr, next, &mask);
458 } while (pgd++, addr = next, addr != end);
459
460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 arch_sync_kernel_mappings(start, end);
462}
463
464void vunmap_range_noflush(unsigned long start, unsigned long end)
465{
466 kmsan_vunmap_range_noflush(start, end);
467 __vunmap_range_noflush(start, end);
468}
469
470/**
471 * vunmap_range - unmap kernel virtual addresses
472 * @addr: start of the VM area to unmap
473 * @end: end of the VM area to unmap (non-inclusive)
474 *
475 * Clears any present PTEs in the virtual address range, flushes TLBs and
476 * caches. Any subsequent access to the address before it has been re-mapped
477 * is a kernel bug.
478 */
479void vunmap_range(unsigned long addr, unsigned long end)
480{
481 flush_cache_vunmap(addr, end);
482 vunmap_range_noflush(addr, end);
483 flush_tlb_kernel_range(addr, end);
484}
485
486static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 pgtbl_mod_mask *mask)
489{
490 pte_t *pte;
491
492 /*
493 * nr is a running index into the array which helps higher level
494 * callers keep track of where we're up to.
495 */
496
497 pte = pte_alloc_kernel_track(pmd, addr, mask);
498 if (!pte)
499 return -ENOMEM;
500 do {
501 struct page *page = pages[*nr];
502
503 if (WARN_ON(!pte_none(ptep_get(pte))))
504 return -EBUSY;
505 if (WARN_ON(!page))
506 return -ENOMEM;
507 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 return -EINVAL;
509
510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 (*nr)++;
512 } while (pte++, addr += PAGE_SIZE, addr != end);
513 *mask |= PGTBL_PTE_MODIFIED;
514 return 0;
515}
516
517static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 pgtbl_mod_mask *mask)
520{
521 pmd_t *pmd;
522 unsigned long next;
523
524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 if (!pmd)
526 return -ENOMEM;
527 do {
528 next = pmd_addr_end(addr, end);
529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 return -ENOMEM;
531 } while (pmd++, addr = next, addr != end);
532 return 0;
533}
534
535static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 pgtbl_mod_mask *mask)
538{
539 pud_t *pud;
540 unsigned long next;
541
542 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 if (!pud)
544 return -ENOMEM;
545 do {
546 next = pud_addr_end(addr, end);
547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 return -ENOMEM;
549 } while (pud++, addr = next, addr != end);
550 return 0;
551}
552
553static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 pgtbl_mod_mask *mask)
556{
557 p4d_t *p4d;
558 unsigned long next;
559
560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 if (!p4d)
562 return -ENOMEM;
563 do {
564 next = p4d_addr_end(addr, end);
565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 return -ENOMEM;
567 } while (p4d++, addr = next, addr != end);
568 return 0;
569}
570
571static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 pgprot_t prot, struct page **pages)
573{
574 unsigned long start = addr;
575 pgd_t *pgd;
576 unsigned long next;
577 int err = 0;
578 int nr = 0;
579 pgtbl_mod_mask mask = 0;
580
581 BUG_ON(addr >= end);
582 pgd = pgd_offset_k(addr);
583 do {
584 next = pgd_addr_end(addr, end);
585 if (pgd_bad(*pgd))
586 mask |= PGTBL_PGD_MODIFIED;
587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 if (err)
589 return err;
590 } while (pgd++, addr = next, addr != end);
591
592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 arch_sync_kernel_mappings(start, end);
594
595 return 0;
596}
597
598/*
599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600 * flush caches.
601 *
602 * The caller is responsible for calling flush_cache_vmap() after this
603 * function returns successfully and before the addresses are accessed.
604 *
605 * This is an internal function only. Do not use outside mm/.
606 */
607int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 pgprot_t prot, struct page **pages, unsigned int page_shift)
609{
610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611
612 WARN_ON(page_shift < PAGE_SHIFT);
613
614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 page_shift == PAGE_SHIFT)
616 return vmap_small_pages_range_noflush(addr, end, prot, pages);
617
618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 int err;
620
621 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 page_to_phys(pages[i]), prot,
623 page_shift);
624 if (err)
625 return err;
626
627 addr += 1UL << page_shift;
628 }
629
630 return 0;
631}
632
633int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 pgprot_t prot, struct page **pages, unsigned int page_shift)
635{
636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 page_shift);
638
639 if (ret)
640 return ret;
641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642}
643
644/**
645 * vmap_pages_range - map pages to a kernel virtual address
646 * @addr: start of the VM area to map
647 * @end: end of the VM area to map (non-inclusive)
648 * @prot: page protection flags to use
649 * @pages: pages to map (always PAGE_SIZE pages)
650 * @page_shift: maximum shift that the pages may be mapped with, @pages must
651 * be aligned and contiguous up to at least this shift.
652 *
653 * RETURNS:
654 * 0 on success, -errno on failure.
655 */
656static int vmap_pages_range(unsigned long addr, unsigned long end,
657 pgprot_t prot, struct page **pages, unsigned int page_shift)
658{
659 int err;
660
661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 flush_cache_vmap(addr, end);
663 return err;
664}
665
666static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 unsigned long end)
668{
669 might_sleep();
670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 return -EINVAL;
672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 return -EINVAL;
674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 return -EINVAL;
676 if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 return -E2BIG;
678 if (start < (unsigned long)area->addr ||
679 (void *)end > area->addr + get_vm_area_size(area))
680 return -ERANGE;
681 return 0;
682}
683
684/**
685 * vm_area_map_pages - map pages inside given sparse vm_area
686 * @area: vm_area
687 * @start: start address inside vm_area
688 * @end: end address inside vm_area
689 * @pages: pages to map (always PAGE_SIZE pages)
690 */
691int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 unsigned long end, struct page **pages)
693{
694 int err;
695
696 err = check_sparse_vm_area(area, start, end);
697 if (err)
698 return err;
699
700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701}
702
703/**
704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705 * @area: vm_area
706 * @start: start address inside vm_area
707 * @end: end address inside vm_area
708 */
709void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 unsigned long end)
711{
712 if (check_sparse_vm_area(area, start, end))
713 return;
714
715 vunmap_range(start, end);
716}
717
718int is_vmalloc_or_module_addr(const void *x)
719{
720 /*
721 * ARM, x86-64 and sparc64 put modules in a special place,
722 * and fall back on vmalloc() if that fails. Others
723 * just put it in the vmalloc space.
724 */
725#if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 if (addr >= MODULES_VADDR && addr < MODULES_END)
728 return 1;
729#endif
730 return is_vmalloc_addr(x);
731}
732EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733
734/*
735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736 * return the tail page that corresponds to the base page address, which
737 * matches small vmap mappings.
738 */
739struct page *vmalloc_to_page(const void *vmalloc_addr)
740{
741 unsigned long addr = (unsigned long) vmalloc_addr;
742 struct page *page = NULL;
743 pgd_t *pgd = pgd_offset_k(addr);
744 p4d_t *p4d;
745 pud_t *pud;
746 pmd_t *pmd;
747 pte_t *ptep, pte;
748
749 /*
750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 * architectures that do not vmalloc module space
752 */
753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754
755 if (pgd_none(*pgd))
756 return NULL;
757 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 return NULL; /* XXX: no allowance for huge pgd */
759 if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 return NULL;
761
762 p4d = p4d_offset(pgd, addr);
763 if (p4d_none(*p4d))
764 return NULL;
765 if (p4d_leaf(*p4d))
766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 return NULL;
769
770 pud = pud_offset(p4d, addr);
771 if (pud_none(*pud))
772 return NULL;
773 if (pud_leaf(*pud))
774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 if (WARN_ON_ONCE(pud_bad(*pud)))
776 return NULL;
777
778 pmd = pmd_offset(pud, addr);
779 if (pmd_none(*pmd))
780 return NULL;
781 if (pmd_leaf(*pmd))
782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 return NULL;
785
786 ptep = pte_offset_kernel(pmd, addr);
787 pte = ptep_get(ptep);
788 if (pte_present(pte))
789 page = pte_page(pte);
790
791 return page;
792}
793EXPORT_SYMBOL(vmalloc_to_page);
794
795/*
796 * Map a vmalloc()-space virtual address to the physical page frame number.
797 */
798unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799{
800 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801}
802EXPORT_SYMBOL(vmalloc_to_pfn);
803
804
805/*** Global kva allocator ***/
806
807#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809
810
811static DEFINE_SPINLOCK(free_vmap_area_lock);
812static bool vmap_initialized __read_mostly;
813
814/*
815 * This kmem_cache is used for vmap_area objects. Instead of
816 * allocating from slab we reuse an object from this cache to
817 * make things faster. Especially in "no edge" splitting of
818 * free block.
819 */
820static struct kmem_cache *vmap_area_cachep;
821
822/*
823 * This linked list is used in pair with free_vmap_area_root.
824 * It gives O(1) access to prev/next to perform fast coalescing.
825 */
826static LIST_HEAD(free_vmap_area_list);
827
828/*
829 * This augment red-black tree represents the free vmap space.
830 * All vmap_area objects in this tree are sorted by va->va_start
831 * address. It is used for allocation and merging when a vmap
832 * object is released.
833 *
834 * Each vmap_area node contains a maximum available free block
835 * of its sub-tree, right or left. Therefore it is possible to
836 * find a lowest match of free area.
837 */
838static struct rb_root free_vmap_area_root = RB_ROOT;
839
840/*
841 * Preload a CPU with one object for "no edge" split case. The
842 * aim is to get rid of allocations from the atomic context, thus
843 * to use more permissive allocation masks.
844 */
845static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846
847/*
848 * This structure defines a single, solid model where a list and
849 * rb-tree are part of one entity protected by the lock. Nodes are
850 * sorted in ascending order, thus for O(1) access to left/right
851 * neighbors a list is used as well as for sequential traversal.
852 */
853struct rb_list {
854 struct rb_root root;
855 struct list_head head;
856 spinlock_t lock;
857};
858
859/*
860 * A fast size storage contains VAs up to 1M size. A pool consists
861 * of linked between each other ready to go VAs of certain sizes.
862 * An index in the pool-array corresponds to number of pages + 1.
863 */
864#define MAX_VA_SIZE_PAGES 256
865
866struct vmap_pool {
867 struct list_head head;
868 unsigned long len;
869};
870
871/*
872 * An effective vmap-node logic. Users make use of nodes instead
873 * of a global heap. It allows to balance an access and mitigate
874 * contention.
875 */
876static struct vmap_node {
877 /* Simple size segregated storage. */
878 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 spinlock_t pool_lock;
880 bool skip_populate;
881
882 /* Bookkeeping data of this node. */
883 struct rb_list busy;
884 struct rb_list lazy;
885
886 /*
887 * Ready-to-free areas.
888 */
889 struct list_head purge_list;
890 struct work_struct purge_work;
891 unsigned long nr_purged;
892} single;
893
894/*
895 * Initial setup consists of one single node, i.e. a balancing
896 * is fully disabled. Later on, after vmap is initialized these
897 * parameters are updated based on a system capacity.
898 */
899static struct vmap_node *vmap_nodes = &single;
900static __read_mostly unsigned int nr_vmap_nodes = 1;
901static __read_mostly unsigned int vmap_zone_size = 1;
902
903static inline unsigned int
904addr_to_node_id(unsigned long addr)
905{
906 return (addr / vmap_zone_size) % nr_vmap_nodes;
907}
908
909static inline struct vmap_node *
910addr_to_node(unsigned long addr)
911{
912 return &vmap_nodes[addr_to_node_id(addr)];
913}
914
915static inline struct vmap_node *
916id_to_node(unsigned int id)
917{
918 return &vmap_nodes[id % nr_vmap_nodes];
919}
920
921/*
922 * We use the value 0 to represent "no node", that is why
923 * an encoded value will be the node-id incremented by 1.
924 * It is always greater then 0. A valid node_id which can
925 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926 * is not valid 0 is returned.
927 */
928static unsigned int
929encode_vn_id(unsigned int node_id)
930{
931 /* Can store U8_MAX [0:254] nodes. */
932 if (node_id < nr_vmap_nodes)
933 return (node_id + 1) << BITS_PER_BYTE;
934
935 /* Warn and no node encoded. */
936 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
937 return 0;
938}
939
940/*
941 * Returns an encoded node-id, the valid range is within
942 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943 * returned if extracted data is wrong.
944 */
945static unsigned int
946decode_vn_id(unsigned int val)
947{
948 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
949
950 /* Can store U8_MAX [0:254] nodes. */
951 if (node_id < nr_vmap_nodes)
952 return node_id;
953
954 /* If it was _not_ zero, warn. */
955 WARN_ONCE(node_id != UINT_MAX,
956 "Decode wrong node id (%d)\n", node_id);
957
958 return nr_vmap_nodes;
959}
960
961static bool
962is_vn_id_valid(unsigned int node_id)
963{
964 if (node_id < nr_vmap_nodes)
965 return true;
966
967 return false;
968}
969
970static __always_inline unsigned long
971va_size(struct vmap_area *va)
972{
973 return (va->va_end - va->va_start);
974}
975
976static __always_inline unsigned long
977get_subtree_max_size(struct rb_node *node)
978{
979 struct vmap_area *va;
980
981 va = rb_entry_safe(node, struct vmap_area, rb_node);
982 return va ? va->subtree_max_size : 0;
983}
984
985RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
986 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
987
988static void reclaim_and_purge_vmap_areas(void);
989static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
990static void drain_vmap_area_work(struct work_struct *work);
991static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
992
993static atomic_long_t nr_vmalloc_pages;
994
995unsigned long vmalloc_nr_pages(void)
996{
997 return atomic_long_read(&nr_vmalloc_pages);
998}
999
1000static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1001{
1002 struct rb_node *n = root->rb_node;
1003
1004 addr = (unsigned long)kasan_reset_tag((void *)addr);
1005
1006 while (n) {
1007 struct vmap_area *va;
1008
1009 va = rb_entry(n, struct vmap_area, rb_node);
1010 if (addr < va->va_start)
1011 n = n->rb_left;
1012 else if (addr >= va->va_end)
1013 n = n->rb_right;
1014 else
1015 return va;
1016 }
1017
1018 return NULL;
1019}
1020
1021/* Look up the first VA which satisfies addr < va_end, NULL if none. */
1022static struct vmap_area *
1023__find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1024{
1025 struct vmap_area *va = NULL;
1026 struct rb_node *n = root->rb_node;
1027
1028 addr = (unsigned long)kasan_reset_tag((void *)addr);
1029
1030 while (n) {
1031 struct vmap_area *tmp;
1032
1033 tmp = rb_entry(n, struct vmap_area, rb_node);
1034 if (tmp->va_end > addr) {
1035 va = tmp;
1036 if (tmp->va_start <= addr)
1037 break;
1038
1039 n = n->rb_left;
1040 } else
1041 n = n->rb_right;
1042 }
1043
1044 return va;
1045}
1046
1047/*
1048 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049 * If success, a node is locked. A user is responsible to unlock it when a
1050 * VA is no longer needed to be accessed.
1051 *
1052 * Returns NULL if nothing found.
1053 */
1054static struct vmap_node *
1055find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1056{
1057 unsigned long va_start_lowest;
1058 struct vmap_node *vn;
1059 int i;
1060
1061repeat:
1062 for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1063 vn = &vmap_nodes[i];
1064
1065 spin_lock(&vn->busy.lock);
1066 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1067
1068 if (*va)
1069 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1070 va_start_lowest = (*va)->va_start;
1071 spin_unlock(&vn->busy.lock);
1072 }
1073
1074 /*
1075 * Check if found VA exists, it might have gone away. In this case we
1076 * repeat the search because a VA has been removed concurrently and we
1077 * need to proceed to the next one, which is a rare case.
1078 */
1079 if (va_start_lowest) {
1080 vn = addr_to_node(va_start_lowest);
1081
1082 spin_lock(&vn->busy.lock);
1083 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1084
1085 if (*va)
1086 return vn;
1087
1088 spin_unlock(&vn->busy.lock);
1089 goto repeat;
1090 }
1091
1092 return NULL;
1093}
1094
1095/*
1096 * This function returns back addresses of parent node
1097 * and its left or right link for further processing.
1098 *
1099 * Otherwise NULL is returned. In that case all further
1100 * steps regarding inserting of conflicting overlap range
1101 * have to be declined and actually considered as a bug.
1102 */
1103static __always_inline struct rb_node **
1104find_va_links(struct vmap_area *va,
1105 struct rb_root *root, struct rb_node *from,
1106 struct rb_node **parent)
1107{
1108 struct vmap_area *tmp_va;
1109 struct rb_node **link;
1110
1111 if (root) {
1112 link = &root->rb_node;
1113 if (unlikely(!*link)) {
1114 *parent = NULL;
1115 return link;
1116 }
1117 } else {
1118 link = &from;
1119 }
1120
1121 /*
1122 * Go to the bottom of the tree. When we hit the last point
1123 * we end up with parent rb_node and correct direction, i name
1124 * it link, where the new va->rb_node will be attached to.
1125 */
1126 do {
1127 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1128
1129 /*
1130 * During the traversal we also do some sanity check.
1131 * Trigger the BUG() if there are sides(left/right)
1132 * or full overlaps.
1133 */
1134 if (va->va_end <= tmp_va->va_start)
1135 link = &(*link)->rb_left;
1136 else if (va->va_start >= tmp_va->va_end)
1137 link = &(*link)->rb_right;
1138 else {
1139 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1141
1142 return NULL;
1143 }
1144 } while (*link);
1145
1146 *parent = &tmp_va->rb_node;
1147 return link;
1148}
1149
1150static __always_inline struct list_head *
1151get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1152{
1153 struct list_head *list;
1154
1155 if (unlikely(!parent))
1156 /*
1157 * The red-black tree where we try to find VA neighbors
1158 * before merging or inserting is empty, i.e. it means
1159 * there is no free vmap space. Normally it does not
1160 * happen but we handle this case anyway.
1161 */
1162 return NULL;
1163
1164 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1165 return (&parent->rb_right == link ? list->next : list);
1166}
1167
1168static __always_inline void
1169__link_va(struct vmap_area *va, struct rb_root *root,
1170 struct rb_node *parent, struct rb_node **link,
1171 struct list_head *head, bool augment)
1172{
1173 /*
1174 * VA is still not in the list, but we can
1175 * identify its future previous list_head node.
1176 */
1177 if (likely(parent)) {
1178 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1179 if (&parent->rb_right != link)
1180 head = head->prev;
1181 }
1182
1183 /* Insert to the rb-tree */
1184 rb_link_node(&va->rb_node, parent, link);
1185 if (augment) {
1186 /*
1187 * Some explanation here. Just perform simple insertion
1188 * to the tree. We do not set va->subtree_max_size to
1189 * its current size before calling rb_insert_augmented().
1190 * It is because we populate the tree from the bottom
1191 * to parent levels when the node _is_ in the tree.
1192 *
1193 * Therefore we set subtree_max_size to zero after insertion,
1194 * to let __augment_tree_propagate_from() puts everything to
1195 * the correct order later on.
1196 */
1197 rb_insert_augmented(&va->rb_node,
1198 root, &free_vmap_area_rb_augment_cb);
1199 va->subtree_max_size = 0;
1200 } else {
1201 rb_insert_color(&va->rb_node, root);
1202 }
1203
1204 /* Address-sort this list */
1205 list_add(&va->list, head);
1206}
1207
1208static __always_inline void
1209link_va(struct vmap_area *va, struct rb_root *root,
1210 struct rb_node *parent, struct rb_node **link,
1211 struct list_head *head)
1212{
1213 __link_va(va, root, parent, link, head, false);
1214}
1215
1216static __always_inline void
1217link_va_augment(struct vmap_area *va, struct rb_root *root,
1218 struct rb_node *parent, struct rb_node **link,
1219 struct list_head *head)
1220{
1221 __link_va(va, root, parent, link, head, true);
1222}
1223
1224static __always_inline void
1225__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1226{
1227 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1228 return;
1229
1230 if (augment)
1231 rb_erase_augmented(&va->rb_node,
1232 root, &free_vmap_area_rb_augment_cb);
1233 else
1234 rb_erase(&va->rb_node, root);
1235
1236 list_del_init(&va->list);
1237 RB_CLEAR_NODE(&va->rb_node);
1238}
1239
1240static __always_inline void
1241unlink_va(struct vmap_area *va, struct rb_root *root)
1242{
1243 __unlink_va(va, root, false);
1244}
1245
1246static __always_inline void
1247unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1248{
1249 __unlink_va(va, root, true);
1250}
1251
1252#if DEBUG_AUGMENT_PROPAGATE_CHECK
1253/*
1254 * Gets called when remove the node and rotate.
1255 */
1256static __always_inline unsigned long
1257compute_subtree_max_size(struct vmap_area *va)
1258{
1259 return max3(va_size(va),
1260 get_subtree_max_size(va->rb_node.rb_left),
1261 get_subtree_max_size(va->rb_node.rb_right));
1262}
1263
1264static void
1265augment_tree_propagate_check(void)
1266{
1267 struct vmap_area *va;
1268 unsigned long computed_size;
1269
1270 list_for_each_entry(va, &free_vmap_area_list, list) {
1271 computed_size = compute_subtree_max_size(va);
1272 if (computed_size != va->subtree_max_size)
1273 pr_emerg("tree is corrupted: %lu, %lu\n",
1274 va_size(va), va->subtree_max_size);
1275 }
1276}
1277#endif
1278
1279/*
1280 * This function populates subtree_max_size from bottom to upper
1281 * levels starting from VA point. The propagation must be done
1282 * when VA size is modified by changing its va_start/va_end. Or
1283 * in case of newly inserting of VA to the tree.
1284 *
1285 * It means that __augment_tree_propagate_from() must be called:
1286 * - After VA has been inserted to the tree(free path);
1287 * - After VA has been shrunk(allocation path);
1288 * - After VA has been increased(merging path).
1289 *
1290 * Please note that, it does not mean that upper parent nodes
1291 * and their subtree_max_size are recalculated all the time up
1292 * to the root node.
1293 *
1294 * 4--8
1295 * /\
1296 * / \
1297 * / \
1298 * 2--2 8--8
1299 *
1300 * For example if we modify the node 4, shrinking it to 2, then
1301 * no any modification is required. If we shrink the node 2 to 1
1302 * its subtree_max_size is updated only, and set to 1. If we shrink
1303 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304 * node becomes 4--6.
1305 */
1306static __always_inline void
1307augment_tree_propagate_from(struct vmap_area *va)
1308{
1309 /*
1310 * Populate the tree from bottom towards the root until
1311 * the calculated maximum available size of checked node
1312 * is equal to its current one.
1313 */
1314 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1315
1316#if DEBUG_AUGMENT_PROPAGATE_CHECK
1317 augment_tree_propagate_check();
1318#endif
1319}
1320
1321static void
1322insert_vmap_area(struct vmap_area *va,
1323 struct rb_root *root, struct list_head *head)
1324{
1325 struct rb_node **link;
1326 struct rb_node *parent;
1327
1328 link = find_va_links(va, root, NULL, &parent);
1329 if (link)
1330 link_va(va, root, parent, link, head);
1331}
1332
1333static void
1334insert_vmap_area_augment(struct vmap_area *va,
1335 struct rb_node *from, struct rb_root *root,
1336 struct list_head *head)
1337{
1338 struct rb_node **link;
1339 struct rb_node *parent;
1340
1341 if (from)
1342 link = find_va_links(va, NULL, from, &parent);
1343 else
1344 link = find_va_links(va, root, NULL, &parent);
1345
1346 if (link) {
1347 link_va_augment(va, root, parent, link, head);
1348 augment_tree_propagate_from(va);
1349 }
1350}
1351
1352/*
1353 * Merge de-allocated chunk of VA memory with previous
1354 * and next free blocks. If coalesce is not done a new
1355 * free area is inserted. If VA has been merged, it is
1356 * freed.
1357 *
1358 * Please note, it can return NULL in case of overlap
1359 * ranges, followed by WARN() report. Despite it is a
1360 * buggy behaviour, a system can be alive and keep
1361 * ongoing.
1362 */
1363static __always_inline struct vmap_area *
1364__merge_or_add_vmap_area(struct vmap_area *va,
1365 struct rb_root *root, struct list_head *head, bool augment)
1366{
1367 struct vmap_area *sibling;
1368 struct list_head *next;
1369 struct rb_node **link;
1370 struct rb_node *parent;
1371 bool merged = false;
1372
1373 /*
1374 * Find a place in the tree where VA potentially will be
1375 * inserted, unless it is merged with its sibling/siblings.
1376 */
1377 link = find_va_links(va, root, NULL, &parent);
1378 if (!link)
1379 return NULL;
1380
1381 /*
1382 * Get next node of VA to check if merging can be done.
1383 */
1384 next = get_va_next_sibling(parent, link);
1385 if (unlikely(next == NULL))
1386 goto insert;
1387
1388 /*
1389 * start end
1390 * | |
1391 * |<------VA------>|<-----Next----->|
1392 * | |
1393 * start end
1394 */
1395 if (next != head) {
1396 sibling = list_entry(next, struct vmap_area, list);
1397 if (sibling->va_start == va->va_end) {
1398 sibling->va_start = va->va_start;
1399
1400 /* Free vmap_area object. */
1401 kmem_cache_free(vmap_area_cachep, va);
1402
1403 /* Point to the new merged area. */
1404 va = sibling;
1405 merged = true;
1406 }
1407 }
1408
1409 /*
1410 * start end
1411 * | |
1412 * |<-----Prev----->|<------VA------>|
1413 * | |
1414 * start end
1415 */
1416 if (next->prev != head) {
1417 sibling = list_entry(next->prev, struct vmap_area, list);
1418 if (sibling->va_end == va->va_start) {
1419 /*
1420 * If both neighbors are coalesced, it is important
1421 * to unlink the "next" node first, followed by merging
1422 * with "previous" one. Otherwise the tree might not be
1423 * fully populated if a sibling's augmented value is
1424 * "normalized" because of rotation operations.
1425 */
1426 if (merged)
1427 __unlink_va(va, root, augment);
1428
1429 sibling->va_end = va->va_end;
1430
1431 /* Free vmap_area object. */
1432 kmem_cache_free(vmap_area_cachep, va);
1433
1434 /* Point to the new merged area. */
1435 va = sibling;
1436 merged = true;
1437 }
1438 }
1439
1440insert:
1441 if (!merged)
1442 __link_va(va, root, parent, link, head, augment);
1443
1444 return va;
1445}
1446
1447static __always_inline struct vmap_area *
1448merge_or_add_vmap_area(struct vmap_area *va,
1449 struct rb_root *root, struct list_head *head)
1450{
1451 return __merge_or_add_vmap_area(va, root, head, false);
1452}
1453
1454static __always_inline struct vmap_area *
1455merge_or_add_vmap_area_augment(struct vmap_area *va,
1456 struct rb_root *root, struct list_head *head)
1457{
1458 va = __merge_or_add_vmap_area(va, root, head, true);
1459 if (va)
1460 augment_tree_propagate_from(va);
1461
1462 return va;
1463}
1464
1465static __always_inline bool
1466is_within_this_va(struct vmap_area *va, unsigned long size,
1467 unsigned long align, unsigned long vstart)
1468{
1469 unsigned long nva_start_addr;
1470
1471 if (va->va_start > vstart)
1472 nva_start_addr = ALIGN(va->va_start, align);
1473 else
1474 nva_start_addr = ALIGN(vstart, align);
1475
1476 /* Can be overflowed due to big size or alignment. */
1477 if (nva_start_addr + size < nva_start_addr ||
1478 nva_start_addr < vstart)
1479 return false;
1480
1481 return (nva_start_addr + size <= va->va_end);
1482}
1483
1484/*
1485 * Find the first free block(lowest start address) in the tree,
1486 * that will accomplish the request corresponding to passing
1487 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488 * a search length is adjusted to account for worst case alignment
1489 * overhead.
1490 */
1491static __always_inline struct vmap_area *
1492find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1493 unsigned long align, unsigned long vstart, bool adjust_search_size)
1494{
1495 struct vmap_area *va;
1496 struct rb_node *node;
1497 unsigned long length;
1498
1499 /* Start from the root. */
1500 node = root->rb_node;
1501
1502 /* Adjust the search size for alignment overhead. */
1503 length = adjust_search_size ? size + align - 1 : size;
1504
1505 while (node) {
1506 va = rb_entry(node, struct vmap_area, rb_node);
1507
1508 if (get_subtree_max_size(node->rb_left) >= length &&
1509 vstart < va->va_start) {
1510 node = node->rb_left;
1511 } else {
1512 if (is_within_this_va(va, size, align, vstart))
1513 return va;
1514
1515 /*
1516 * Does not make sense to go deeper towards the right
1517 * sub-tree if it does not have a free block that is
1518 * equal or bigger to the requested search length.
1519 */
1520 if (get_subtree_max_size(node->rb_right) >= length) {
1521 node = node->rb_right;
1522 continue;
1523 }
1524
1525 /*
1526 * OK. We roll back and find the first right sub-tree,
1527 * that will satisfy the search criteria. It can happen
1528 * due to "vstart" restriction or an alignment overhead
1529 * that is bigger then PAGE_SIZE.
1530 */
1531 while ((node = rb_parent(node))) {
1532 va = rb_entry(node, struct vmap_area, rb_node);
1533 if (is_within_this_va(va, size, align, vstart))
1534 return va;
1535
1536 if (get_subtree_max_size(node->rb_right) >= length &&
1537 vstart <= va->va_start) {
1538 /*
1539 * Shift the vstart forward. Please note, we update it with
1540 * parent's start address adding "1" because we do not want
1541 * to enter same sub-tree after it has already been checked
1542 * and no suitable free block found there.
1543 */
1544 vstart = va->va_start + 1;
1545 node = node->rb_right;
1546 break;
1547 }
1548 }
1549 }
1550 }
1551
1552 return NULL;
1553}
1554
1555#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556#include <linux/random.h>
1557
1558static struct vmap_area *
1559find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1560 unsigned long align, unsigned long vstart)
1561{
1562 struct vmap_area *va;
1563
1564 list_for_each_entry(va, head, list) {
1565 if (!is_within_this_va(va, size, align, vstart))
1566 continue;
1567
1568 return va;
1569 }
1570
1571 return NULL;
1572}
1573
1574static void
1575find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1576 unsigned long size, unsigned long align)
1577{
1578 struct vmap_area *va_1, *va_2;
1579 unsigned long vstart;
1580 unsigned int rnd;
1581
1582 get_random_bytes(&rnd, sizeof(rnd));
1583 vstart = VMALLOC_START + rnd;
1584
1585 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1586 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1587
1588 if (va_1 != va_2)
1589 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590 va_1, va_2, vstart);
1591}
1592#endif
1593
1594enum fit_type {
1595 NOTHING_FIT = 0,
1596 FL_FIT_TYPE = 1, /* full fit */
1597 LE_FIT_TYPE = 2, /* left edge fit */
1598 RE_FIT_TYPE = 3, /* right edge fit */
1599 NE_FIT_TYPE = 4 /* no edge fit */
1600};
1601
1602static __always_inline enum fit_type
1603classify_va_fit_type(struct vmap_area *va,
1604 unsigned long nva_start_addr, unsigned long size)
1605{
1606 enum fit_type type;
1607
1608 /* Check if it is within VA. */
1609 if (nva_start_addr < va->va_start ||
1610 nva_start_addr + size > va->va_end)
1611 return NOTHING_FIT;
1612
1613 /* Now classify. */
1614 if (va->va_start == nva_start_addr) {
1615 if (va->va_end == nva_start_addr + size)
1616 type = FL_FIT_TYPE;
1617 else
1618 type = LE_FIT_TYPE;
1619 } else if (va->va_end == nva_start_addr + size) {
1620 type = RE_FIT_TYPE;
1621 } else {
1622 type = NE_FIT_TYPE;
1623 }
1624
1625 return type;
1626}
1627
1628static __always_inline int
1629va_clip(struct rb_root *root, struct list_head *head,
1630 struct vmap_area *va, unsigned long nva_start_addr,
1631 unsigned long size)
1632{
1633 struct vmap_area *lva = NULL;
1634 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1635
1636 if (type == FL_FIT_TYPE) {
1637 /*
1638 * No need to split VA, it fully fits.
1639 *
1640 * | |
1641 * V NVA V
1642 * |---------------|
1643 */
1644 unlink_va_augment(va, root);
1645 kmem_cache_free(vmap_area_cachep, va);
1646 } else if (type == LE_FIT_TYPE) {
1647 /*
1648 * Split left edge of fit VA.
1649 *
1650 * | |
1651 * V NVA V R
1652 * |-------|-------|
1653 */
1654 va->va_start += size;
1655 } else if (type == RE_FIT_TYPE) {
1656 /*
1657 * Split right edge of fit VA.
1658 *
1659 * | |
1660 * L V NVA V
1661 * |-------|-------|
1662 */
1663 va->va_end = nva_start_addr;
1664 } else if (type == NE_FIT_TYPE) {
1665 /*
1666 * Split no edge of fit VA.
1667 *
1668 * | |
1669 * L V NVA V R
1670 * |---|-------|---|
1671 */
1672 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1673 if (unlikely(!lva)) {
1674 /*
1675 * For percpu allocator we do not do any pre-allocation
1676 * and leave it as it is. The reason is it most likely
1677 * never ends up with NE_FIT_TYPE splitting. In case of
1678 * percpu allocations offsets and sizes are aligned to
1679 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680 * are its main fitting cases.
1681 *
1682 * There are a few exceptions though, as an example it is
1683 * a first allocation (early boot up) when we have "one"
1684 * big free space that has to be split.
1685 *
1686 * Also we can hit this path in case of regular "vmap"
1687 * allocations, if "this" current CPU was not preloaded.
1688 * See the comment in alloc_vmap_area() why. If so, then
1689 * GFP_NOWAIT is used instead to get an extra object for
1690 * split purpose. That is rare and most time does not
1691 * occur.
1692 *
1693 * What happens if an allocation gets failed. Basically,
1694 * an "overflow" path is triggered to purge lazily freed
1695 * areas to free some memory, then, the "retry" path is
1696 * triggered to repeat one more time. See more details
1697 * in alloc_vmap_area() function.
1698 */
1699 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1700 if (!lva)
1701 return -1;
1702 }
1703
1704 /*
1705 * Build the remainder.
1706 */
1707 lva->va_start = va->va_start;
1708 lva->va_end = nva_start_addr;
1709
1710 /*
1711 * Shrink this VA to remaining size.
1712 */
1713 va->va_start = nva_start_addr + size;
1714 } else {
1715 return -1;
1716 }
1717
1718 if (type != FL_FIT_TYPE) {
1719 augment_tree_propagate_from(va);
1720
1721 if (lva) /* type == NE_FIT_TYPE */
1722 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1723 }
1724
1725 return 0;
1726}
1727
1728static unsigned long
1729va_alloc(struct vmap_area *va,
1730 struct rb_root *root, struct list_head *head,
1731 unsigned long size, unsigned long align,
1732 unsigned long vstart, unsigned long vend)
1733{
1734 unsigned long nva_start_addr;
1735 int ret;
1736
1737 if (va->va_start > vstart)
1738 nva_start_addr = ALIGN(va->va_start, align);
1739 else
1740 nva_start_addr = ALIGN(vstart, align);
1741
1742 /* Check the "vend" restriction. */
1743 if (nva_start_addr + size > vend)
1744 return vend;
1745
1746 /* Update the free vmap_area. */
1747 ret = va_clip(root, head, va, nva_start_addr, size);
1748 if (WARN_ON_ONCE(ret))
1749 return vend;
1750
1751 return nva_start_addr;
1752}
1753
1754/*
1755 * Returns a start address of the newly allocated area, if success.
1756 * Otherwise a vend is returned that indicates failure.
1757 */
1758static __always_inline unsigned long
1759__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1760 unsigned long size, unsigned long align,
1761 unsigned long vstart, unsigned long vend)
1762{
1763 bool adjust_search_size = true;
1764 unsigned long nva_start_addr;
1765 struct vmap_area *va;
1766
1767 /*
1768 * Do not adjust when:
1769 * a) align <= PAGE_SIZE, because it does not make any sense.
1770 * All blocks(their start addresses) are at least PAGE_SIZE
1771 * aligned anyway;
1772 * b) a short range where a requested size corresponds to exactly
1773 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774 * With adjusted search length an allocation would not succeed.
1775 */
1776 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1777 adjust_search_size = false;
1778
1779 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1780 if (unlikely(!va))
1781 return vend;
1782
1783 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1784 if (nva_start_addr == vend)
1785 return vend;
1786
1787#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1788 find_vmap_lowest_match_check(root, head, size, align);
1789#endif
1790
1791 return nva_start_addr;
1792}
1793
1794/*
1795 * Free a region of KVA allocated by alloc_vmap_area
1796 */
1797static void free_vmap_area(struct vmap_area *va)
1798{
1799 struct vmap_node *vn = addr_to_node(va->va_start);
1800
1801 /*
1802 * Remove from the busy tree/list.
1803 */
1804 spin_lock(&vn->busy.lock);
1805 unlink_va(va, &vn->busy.root);
1806 spin_unlock(&vn->busy.lock);
1807
1808 /*
1809 * Insert/Merge it back to the free tree/list.
1810 */
1811 spin_lock(&free_vmap_area_lock);
1812 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1813 spin_unlock(&free_vmap_area_lock);
1814}
1815
1816static inline void
1817preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1818{
1819 struct vmap_area *va = NULL, *tmp;
1820
1821 /*
1822 * Preload this CPU with one extra vmap_area object. It is used
1823 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824 * a CPU that does an allocation is preloaded.
1825 *
1826 * We do it in non-atomic context, thus it allows us to use more
1827 * permissive allocation masks to be more stable under low memory
1828 * condition and high memory pressure.
1829 */
1830 if (!this_cpu_read(ne_fit_preload_node))
1831 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1832
1833 spin_lock(lock);
1834
1835 tmp = NULL;
1836 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1837 kmem_cache_free(vmap_area_cachep, va);
1838}
1839
1840static struct vmap_pool *
1841size_to_va_pool(struct vmap_node *vn, unsigned long size)
1842{
1843 unsigned int idx = (size - 1) / PAGE_SIZE;
1844
1845 if (idx < MAX_VA_SIZE_PAGES)
1846 return &vn->pool[idx];
1847
1848 return NULL;
1849}
1850
1851static bool
1852node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1853{
1854 struct vmap_pool *vp;
1855
1856 vp = size_to_va_pool(n, va_size(va));
1857 if (!vp)
1858 return false;
1859
1860 spin_lock(&n->pool_lock);
1861 list_add(&va->list, &vp->head);
1862 WRITE_ONCE(vp->len, vp->len + 1);
1863 spin_unlock(&n->pool_lock);
1864
1865 return true;
1866}
1867
1868static struct vmap_area *
1869node_pool_del_va(struct vmap_node *vn, unsigned long size,
1870 unsigned long align, unsigned long vstart,
1871 unsigned long vend)
1872{
1873 struct vmap_area *va = NULL;
1874 struct vmap_pool *vp;
1875 int err = 0;
1876
1877 vp = size_to_va_pool(vn, size);
1878 if (!vp || list_empty(&vp->head))
1879 return NULL;
1880
1881 spin_lock(&vn->pool_lock);
1882 if (!list_empty(&vp->head)) {
1883 va = list_first_entry(&vp->head, struct vmap_area, list);
1884
1885 if (IS_ALIGNED(va->va_start, align)) {
1886 /*
1887 * Do some sanity check and emit a warning
1888 * if one of below checks detects an error.
1889 */
1890 err |= (va_size(va) != size);
1891 err |= (va->va_start < vstart);
1892 err |= (va->va_end > vend);
1893
1894 if (!WARN_ON_ONCE(err)) {
1895 list_del_init(&va->list);
1896 WRITE_ONCE(vp->len, vp->len - 1);
1897 } else {
1898 va = NULL;
1899 }
1900 } else {
1901 list_move_tail(&va->list, &vp->head);
1902 va = NULL;
1903 }
1904 }
1905 spin_unlock(&vn->pool_lock);
1906
1907 return va;
1908}
1909
1910static struct vmap_area *
1911node_alloc(unsigned long size, unsigned long align,
1912 unsigned long vstart, unsigned long vend,
1913 unsigned long *addr, unsigned int *vn_id)
1914{
1915 struct vmap_area *va;
1916
1917 *vn_id = 0;
1918 *addr = vend;
1919
1920 /*
1921 * Fallback to a global heap if not vmalloc or there
1922 * is only one node.
1923 */
1924 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1925 nr_vmap_nodes == 1)
1926 return NULL;
1927
1928 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1929 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1930 *vn_id = encode_vn_id(*vn_id);
1931
1932 if (va)
1933 *addr = va->va_start;
1934
1935 return va;
1936}
1937
1938static inline void setup_vmalloc_vm(struct vm_struct *vm,
1939 struct vmap_area *va, unsigned long flags, const void *caller)
1940{
1941 vm->flags = flags;
1942 vm->addr = (void *)va->va_start;
1943 vm->size = va->va_end - va->va_start;
1944 vm->caller = caller;
1945 va->vm = vm;
1946}
1947
1948/*
1949 * Allocate a region of KVA of the specified size and alignment, within the
1950 * vstart and vend. If vm is passed in, the two will also be bound.
1951 */
1952static struct vmap_area *alloc_vmap_area(unsigned long size,
1953 unsigned long align,
1954 unsigned long vstart, unsigned long vend,
1955 int node, gfp_t gfp_mask,
1956 unsigned long va_flags, struct vm_struct *vm)
1957{
1958 struct vmap_node *vn;
1959 struct vmap_area *va;
1960 unsigned long freed;
1961 unsigned long addr;
1962 unsigned int vn_id;
1963 int purged = 0;
1964 int ret;
1965
1966 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1967 return ERR_PTR(-EINVAL);
1968
1969 if (unlikely(!vmap_initialized))
1970 return ERR_PTR(-EBUSY);
1971
1972 might_sleep();
1973
1974 /*
1975 * If a VA is obtained from a global heap(if it fails here)
1976 * it is anyway marked with this "vn_id" so it is returned
1977 * to this pool's node later. Such way gives a possibility
1978 * to populate pools based on users demand.
1979 *
1980 * On success a ready to go VA is returned.
1981 */
1982 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1983 if (!va) {
1984 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1985
1986 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1987 if (unlikely(!va))
1988 return ERR_PTR(-ENOMEM);
1989
1990 /*
1991 * Only scan the relevant parts containing pointers to other objects
1992 * to avoid false negatives.
1993 */
1994 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1995 }
1996
1997retry:
1998 if (addr == vend) {
1999 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2000 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2001 size, align, vstart, vend);
2002 spin_unlock(&free_vmap_area_lock);
2003 }
2004
2005 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2006
2007 /*
2008 * If an allocation fails, the "vend" address is
2009 * returned. Therefore trigger the overflow path.
2010 */
2011 if (unlikely(addr == vend))
2012 goto overflow;
2013
2014 va->va_start = addr;
2015 va->va_end = addr + size;
2016 va->vm = NULL;
2017 va->flags = (va_flags | vn_id);
2018
2019 if (vm) {
2020 vm->addr = (void *)va->va_start;
2021 vm->size = va->va_end - va->va_start;
2022 va->vm = vm;
2023 }
2024
2025 vn = addr_to_node(va->va_start);
2026
2027 spin_lock(&vn->busy.lock);
2028 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2029 spin_unlock(&vn->busy.lock);
2030
2031 BUG_ON(!IS_ALIGNED(va->va_start, align));
2032 BUG_ON(va->va_start < vstart);
2033 BUG_ON(va->va_end > vend);
2034
2035 ret = kasan_populate_vmalloc(addr, size);
2036 if (ret) {
2037 free_vmap_area(va);
2038 return ERR_PTR(ret);
2039 }
2040
2041 return va;
2042
2043overflow:
2044 if (!purged) {
2045 reclaim_and_purge_vmap_areas();
2046 purged = 1;
2047 goto retry;
2048 }
2049
2050 freed = 0;
2051 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2052
2053 if (freed > 0) {
2054 purged = 0;
2055 goto retry;
2056 }
2057
2058 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2059 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2060 size, vstart, vend);
2061
2062 kmem_cache_free(vmap_area_cachep, va);
2063 return ERR_PTR(-EBUSY);
2064}
2065
2066int register_vmap_purge_notifier(struct notifier_block *nb)
2067{
2068 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2069}
2070EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2071
2072int unregister_vmap_purge_notifier(struct notifier_block *nb)
2073{
2074 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2075}
2076EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2077
2078/*
2079 * lazy_max_pages is the maximum amount of virtual address space we gather up
2080 * before attempting to purge with a TLB flush.
2081 *
2082 * There is a tradeoff here: a larger number will cover more kernel page tables
2083 * and take slightly longer to purge, but it will linearly reduce the number of
2084 * global TLB flushes that must be performed. It would seem natural to scale
2085 * this number up linearly with the number of CPUs (because vmapping activity
2086 * could also scale linearly with the number of CPUs), however it is likely
2087 * that in practice, workloads might be constrained in other ways that mean
2088 * vmap activity will not scale linearly with CPUs. Also, I want to be
2089 * conservative and not introduce a big latency on huge systems, so go with
2090 * a less aggressive log scale. It will still be an improvement over the old
2091 * code, and it will be simple to change the scale factor if we find that it
2092 * becomes a problem on bigger systems.
2093 */
2094static unsigned long lazy_max_pages(void)
2095{
2096 unsigned int log;
2097
2098 log = fls(num_online_cpus());
2099
2100 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2101}
2102
2103static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2104
2105/*
2106 * Serialize vmap purging. There is no actual critical section protected
2107 * by this lock, but we want to avoid concurrent calls for performance
2108 * reasons and to make the pcpu_get_vm_areas more deterministic.
2109 */
2110static DEFINE_MUTEX(vmap_purge_lock);
2111
2112/* for per-CPU blocks */
2113static void purge_fragmented_blocks_allcpus(void);
2114static cpumask_t purge_nodes;
2115
2116static void
2117reclaim_list_global(struct list_head *head)
2118{
2119 struct vmap_area *va, *n;
2120
2121 if (list_empty(head))
2122 return;
2123
2124 spin_lock(&free_vmap_area_lock);
2125 list_for_each_entry_safe(va, n, head, list)
2126 merge_or_add_vmap_area_augment(va,
2127 &free_vmap_area_root, &free_vmap_area_list);
2128 spin_unlock(&free_vmap_area_lock);
2129}
2130
2131static void
2132decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2133{
2134 struct vmap_area *va, *nva;
2135 struct list_head decay_list;
2136 struct rb_root decay_root;
2137 unsigned long n_decay;
2138 int i;
2139
2140 decay_root = RB_ROOT;
2141 INIT_LIST_HEAD(&decay_list);
2142
2143 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2144 struct list_head tmp_list;
2145
2146 if (list_empty(&vn->pool[i].head))
2147 continue;
2148
2149 INIT_LIST_HEAD(&tmp_list);
2150
2151 /* Detach the pool, so no-one can access it. */
2152 spin_lock(&vn->pool_lock);
2153 list_replace_init(&vn->pool[i].head, &tmp_list);
2154 spin_unlock(&vn->pool_lock);
2155
2156 if (full_decay)
2157 WRITE_ONCE(vn->pool[i].len, 0);
2158
2159 /* Decay a pool by ~25% out of left objects. */
2160 n_decay = vn->pool[i].len >> 2;
2161
2162 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2163 list_del_init(&va->list);
2164 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2165
2166 if (!full_decay) {
2167 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2168
2169 if (!--n_decay)
2170 break;
2171 }
2172 }
2173
2174 /*
2175 * Attach the pool back if it has been partly decayed.
2176 * Please note, it is supposed that nobody(other contexts)
2177 * can populate the pool therefore a simple list replace
2178 * operation takes place here.
2179 */
2180 if (!full_decay && !list_empty(&tmp_list)) {
2181 spin_lock(&vn->pool_lock);
2182 list_replace_init(&tmp_list, &vn->pool[i].head);
2183 spin_unlock(&vn->pool_lock);
2184 }
2185 }
2186
2187 reclaim_list_global(&decay_list);
2188}
2189
2190static void purge_vmap_node(struct work_struct *work)
2191{
2192 struct vmap_node *vn = container_of(work,
2193 struct vmap_node, purge_work);
2194 struct vmap_area *va, *n_va;
2195 LIST_HEAD(local_list);
2196
2197 vn->nr_purged = 0;
2198
2199 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2200 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
2201 unsigned long orig_start = va->va_start;
2202 unsigned long orig_end = va->va_end;
2203 unsigned int vn_id = decode_vn_id(va->flags);
2204
2205 list_del_init(&va->list);
2206
2207 if (is_vmalloc_or_module_addr((void *)orig_start))
2208 kasan_release_vmalloc(orig_start, orig_end,
2209 va->va_start, va->va_end);
2210
2211 atomic_long_sub(nr, &vmap_lazy_nr);
2212 vn->nr_purged++;
2213
2214 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2215 if (node_pool_add_va(vn, va))
2216 continue;
2217
2218 /* Go back to global. */
2219 list_add(&va->list, &local_list);
2220 }
2221
2222 reclaim_list_global(&local_list);
2223}
2224
2225/*
2226 * Purges all lazily-freed vmap areas.
2227 */
2228static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2229 bool full_pool_decay)
2230{
2231 unsigned long nr_purged_areas = 0;
2232 unsigned int nr_purge_helpers;
2233 unsigned int nr_purge_nodes;
2234 struct vmap_node *vn;
2235 int i;
2236
2237 lockdep_assert_held(&vmap_purge_lock);
2238
2239 /*
2240 * Use cpumask to mark which node has to be processed.
2241 */
2242 purge_nodes = CPU_MASK_NONE;
2243
2244 for (i = 0; i < nr_vmap_nodes; i++) {
2245 vn = &vmap_nodes[i];
2246
2247 INIT_LIST_HEAD(&vn->purge_list);
2248 vn->skip_populate = full_pool_decay;
2249 decay_va_pool_node(vn, full_pool_decay);
2250
2251 if (RB_EMPTY_ROOT(&vn->lazy.root))
2252 continue;
2253
2254 spin_lock(&vn->lazy.lock);
2255 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2256 list_replace_init(&vn->lazy.head, &vn->purge_list);
2257 spin_unlock(&vn->lazy.lock);
2258
2259 start = min(start, list_first_entry(&vn->purge_list,
2260 struct vmap_area, list)->va_start);
2261
2262 end = max(end, list_last_entry(&vn->purge_list,
2263 struct vmap_area, list)->va_end);
2264
2265 cpumask_set_cpu(i, &purge_nodes);
2266 }
2267
2268 nr_purge_nodes = cpumask_weight(&purge_nodes);
2269 if (nr_purge_nodes > 0) {
2270 flush_tlb_kernel_range(start, end);
2271
2272 /* One extra worker is per a lazy_max_pages() full set minus one. */
2273 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2274 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2275
2276 for_each_cpu(i, &purge_nodes) {
2277 vn = &vmap_nodes[i];
2278
2279 if (nr_purge_helpers > 0) {
2280 INIT_WORK(&vn->purge_work, purge_vmap_node);
2281
2282 if (cpumask_test_cpu(i, cpu_online_mask))
2283 schedule_work_on(i, &vn->purge_work);
2284 else
2285 schedule_work(&vn->purge_work);
2286
2287 nr_purge_helpers--;
2288 } else {
2289 vn->purge_work.func = NULL;
2290 purge_vmap_node(&vn->purge_work);
2291 nr_purged_areas += vn->nr_purged;
2292 }
2293 }
2294
2295 for_each_cpu(i, &purge_nodes) {
2296 vn = &vmap_nodes[i];
2297
2298 if (vn->purge_work.func) {
2299 flush_work(&vn->purge_work);
2300 nr_purged_areas += vn->nr_purged;
2301 }
2302 }
2303 }
2304
2305 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2306 return nr_purged_areas > 0;
2307}
2308
2309/*
2310 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2311 */
2312static void reclaim_and_purge_vmap_areas(void)
2313
2314{
2315 mutex_lock(&vmap_purge_lock);
2316 purge_fragmented_blocks_allcpus();
2317 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2318 mutex_unlock(&vmap_purge_lock);
2319}
2320
2321static void drain_vmap_area_work(struct work_struct *work)
2322{
2323 mutex_lock(&vmap_purge_lock);
2324 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2325 mutex_unlock(&vmap_purge_lock);
2326}
2327
2328/*
2329 * Free a vmap area, caller ensuring that the area has been unmapped,
2330 * unlinked and flush_cache_vunmap had been called for the correct
2331 * range previously.
2332 */
2333static void free_vmap_area_noflush(struct vmap_area *va)
2334{
2335 unsigned long nr_lazy_max = lazy_max_pages();
2336 unsigned long va_start = va->va_start;
2337 unsigned int vn_id = decode_vn_id(va->flags);
2338 struct vmap_node *vn;
2339 unsigned long nr_lazy;
2340
2341 if (WARN_ON_ONCE(!list_empty(&va->list)))
2342 return;
2343
2344 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2345 PAGE_SHIFT, &vmap_lazy_nr);
2346
2347 /*
2348 * If it was request by a certain node we would like to
2349 * return it to that node, i.e. its pool for later reuse.
2350 */
2351 vn = is_vn_id_valid(vn_id) ?
2352 id_to_node(vn_id):addr_to_node(va->va_start);
2353
2354 spin_lock(&vn->lazy.lock);
2355 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2356 spin_unlock(&vn->lazy.lock);
2357
2358 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2359
2360 /* After this point, we may free va at any time */
2361 if (unlikely(nr_lazy > nr_lazy_max))
2362 schedule_work(&drain_vmap_work);
2363}
2364
2365/*
2366 * Free and unmap a vmap area
2367 */
2368static void free_unmap_vmap_area(struct vmap_area *va)
2369{
2370 flush_cache_vunmap(va->va_start, va->va_end);
2371 vunmap_range_noflush(va->va_start, va->va_end);
2372 if (debug_pagealloc_enabled_static())
2373 flush_tlb_kernel_range(va->va_start, va->va_end);
2374
2375 free_vmap_area_noflush(va);
2376}
2377
2378struct vmap_area *find_vmap_area(unsigned long addr)
2379{
2380 struct vmap_node *vn;
2381 struct vmap_area *va;
2382 int i, j;
2383
2384 if (unlikely(!vmap_initialized))
2385 return NULL;
2386
2387 /*
2388 * An addr_to_node_id(addr) converts an address to a node index
2389 * where a VA is located. If VA spans several zones and passed
2390 * addr is not the same as va->va_start, what is not common, we
2391 * may need to scan extra nodes. See an example:
2392 *
2393 * <----va---->
2394 * -|-----|-----|-----|-----|-
2395 * 1 2 0 1
2396 *
2397 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2398 * addr is within 2 or 0 nodes we should do extra work.
2399 */
2400 i = j = addr_to_node_id(addr);
2401 do {
2402 vn = &vmap_nodes[i];
2403
2404 spin_lock(&vn->busy.lock);
2405 va = __find_vmap_area(addr, &vn->busy.root);
2406 spin_unlock(&vn->busy.lock);
2407
2408 if (va)
2409 return va;
2410 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2411
2412 return NULL;
2413}
2414
2415static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2416{
2417 struct vmap_node *vn;
2418 struct vmap_area *va;
2419 int i, j;
2420
2421 /*
2422 * Check the comment in the find_vmap_area() about the loop.
2423 */
2424 i = j = addr_to_node_id(addr);
2425 do {
2426 vn = &vmap_nodes[i];
2427
2428 spin_lock(&vn->busy.lock);
2429 va = __find_vmap_area(addr, &vn->busy.root);
2430 if (va)
2431 unlink_va(va, &vn->busy.root);
2432 spin_unlock(&vn->busy.lock);
2433
2434 if (va)
2435 return va;
2436 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2437
2438 return NULL;
2439}
2440
2441/*** Per cpu kva allocator ***/
2442
2443/*
2444 * vmap space is limited especially on 32 bit architectures. Ensure there is
2445 * room for at least 16 percpu vmap blocks per CPU.
2446 */
2447/*
2448 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2449 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2450 * instead (we just need a rough idea)
2451 */
2452#if BITS_PER_LONG == 32
2453#define VMALLOC_SPACE (128UL*1024*1024)
2454#else
2455#define VMALLOC_SPACE (128UL*1024*1024*1024)
2456#endif
2457
2458#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2459#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2460#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2461#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2462#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2463#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2464#define VMAP_BBMAP_BITS \
2465 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2466 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2467 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2468
2469#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2470
2471/*
2472 * Purge threshold to prevent overeager purging of fragmented blocks for
2473 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2474 */
2475#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2476
2477#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2478#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2479#define VMAP_FLAGS_MASK 0x3
2480
2481struct vmap_block_queue {
2482 spinlock_t lock;
2483 struct list_head free;
2484
2485 /*
2486 * An xarray requires an extra memory dynamically to
2487 * be allocated. If it is an issue, we can use rb-tree
2488 * instead.
2489 */
2490 struct xarray vmap_blocks;
2491};
2492
2493struct vmap_block {
2494 spinlock_t lock;
2495 struct vmap_area *va;
2496 unsigned long free, dirty;
2497 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2498 unsigned long dirty_min, dirty_max; /*< dirty range */
2499 struct list_head free_list;
2500 struct rcu_head rcu_head;
2501 struct list_head purge;
2502 unsigned int cpu;
2503};
2504
2505/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2506static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2507
2508/*
2509 * In order to fast access to any "vmap_block" associated with a
2510 * specific address, we use a hash.
2511 *
2512 * A per-cpu vmap_block_queue is used in both ways, to serialize
2513 * an access to free block chains among CPUs(alloc path) and it
2514 * also acts as a vmap_block hash(alloc/free paths). It means we
2515 * overload it, since we already have the per-cpu array which is
2516 * used as a hash table. When used as a hash a 'cpu' passed to
2517 * per_cpu() is not actually a CPU but rather a hash index.
2518 *
2519 * A hash function is addr_to_vb_xa() which hashes any address
2520 * to a specific index(in a hash) it belongs to. This then uses a
2521 * per_cpu() macro to access an array with generated index.
2522 *
2523 * An example:
2524 *
2525 * CPU_1 CPU_2 CPU_0
2526 * | | |
2527 * V V V
2528 * 0 10 20 30 40 50 60
2529 * |------|------|------|------|------|------|...<vmap address space>
2530 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2531 *
2532 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2533 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2534 *
2535 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2536 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2537 *
2538 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2539 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2540 *
2541 * This technique almost always avoids lock contention on insert/remove,
2542 * however xarray spinlocks protect against any contention that remains.
2543 */
2544static struct xarray *
2545addr_to_vb_xa(unsigned long addr)
2546{
2547 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2548
2549 /*
2550 * Please note, nr_cpu_ids points on a highest set
2551 * possible bit, i.e. we never invoke cpumask_next()
2552 * if an index points on it which is nr_cpu_ids - 1.
2553 */
2554 if (!cpu_possible(index))
2555 index = cpumask_next(index, cpu_possible_mask);
2556
2557 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2558}
2559
2560/*
2561 * We should probably have a fallback mechanism to allocate virtual memory
2562 * out of partially filled vmap blocks. However vmap block sizing should be
2563 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2564 * big problem.
2565 */
2566
2567static unsigned long addr_to_vb_idx(unsigned long addr)
2568{
2569 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2570 addr /= VMAP_BLOCK_SIZE;
2571 return addr;
2572}
2573
2574static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2575{
2576 unsigned long addr;
2577
2578 addr = va_start + (pages_off << PAGE_SHIFT);
2579 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2580 return (void *)addr;
2581}
2582
2583/**
2584 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2585 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2586 * @order: how many 2^order pages should be occupied in newly allocated block
2587 * @gfp_mask: flags for the page level allocator
2588 *
2589 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2590 */
2591static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2592{
2593 struct vmap_block_queue *vbq;
2594 struct vmap_block *vb;
2595 struct vmap_area *va;
2596 struct xarray *xa;
2597 unsigned long vb_idx;
2598 int node, err;
2599 void *vaddr;
2600
2601 node = numa_node_id();
2602
2603 vb = kmalloc_node(sizeof(struct vmap_block),
2604 gfp_mask & GFP_RECLAIM_MASK, node);
2605 if (unlikely(!vb))
2606 return ERR_PTR(-ENOMEM);
2607
2608 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2609 VMALLOC_START, VMALLOC_END,
2610 node, gfp_mask,
2611 VMAP_RAM|VMAP_BLOCK, NULL);
2612 if (IS_ERR(va)) {
2613 kfree(vb);
2614 return ERR_CAST(va);
2615 }
2616
2617 vaddr = vmap_block_vaddr(va->va_start, 0);
2618 spin_lock_init(&vb->lock);
2619 vb->va = va;
2620 /* At least something should be left free */
2621 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2622 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2623 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2624 vb->dirty = 0;
2625 vb->dirty_min = VMAP_BBMAP_BITS;
2626 vb->dirty_max = 0;
2627 bitmap_set(vb->used_map, 0, (1UL << order));
2628 INIT_LIST_HEAD(&vb->free_list);
2629
2630 xa = addr_to_vb_xa(va->va_start);
2631 vb_idx = addr_to_vb_idx(va->va_start);
2632 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2633 if (err) {
2634 kfree(vb);
2635 free_vmap_area(va);
2636 return ERR_PTR(err);
2637 }
2638 /*
2639 * list_add_tail_rcu could happened in another core
2640 * rather than vb->cpu due to task migration, which
2641 * is safe as list_add_tail_rcu will ensure the list's
2642 * integrity together with list_for_each_rcu from read
2643 * side.
2644 */
2645 vb->cpu = raw_smp_processor_id();
2646 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2647 spin_lock(&vbq->lock);
2648 list_add_tail_rcu(&vb->free_list, &vbq->free);
2649 spin_unlock(&vbq->lock);
2650
2651 return vaddr;
2652}
2653
2654static void free_vmap_block(struct vmap_block *vb)
2655{
2656 struct vmap_node *vn;
2657 struct vmap_block *tmp;
2658 struct xarray *xa;
2659
2660 xa = addr_to_vb_xa(vb->va->va_start);
2661 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2662 BUG_ON(tmp != vb);
2663
2664 vn = addr_to_node(vb->va->va_start);
2665 spin_lock(&vn->busy.lock);
2666 unlink_va(vb->va, &vn->busy.root);
2667 spin_unlock(&vn->busy.lock);
2668
2669 free_vmap_area_noflush(vb->va);
2670 kfree_rcu(vb, rcu_head);
2671}
2672
2673static bool purge_fragmented_block(struct vmap_block *vb,
2674 struct list_head *purge_list, bool force_purge)
2675{
2676 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2677
2678 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2679 vb->dirty == VMAP_BBMAP_BITS)
2680 return false;
2681
2682 /* Don't overeagerly purge usable blocks unless requested */
2683 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2684 return false;
2685
2686 /* prevent further allocs after releasing lock */
2687 WRITE_ONCE(vb->free, 0);
2688 /* prevent purging it again */
2689 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2690 vb->dirty_min = 0;
2691 vb->dirty_max = VMAP_BBMAP_BITS;
2692 spin_lock(&vbq->lock);
2693 list_del_rcu(&vb->free_list);
2694 spin_unlock(&vbq->lock);
2695 list_add_tail(&vb->purge, purge_list);
2696 return true;
2697}
2698
2699static void free_purged_blocks(struct list_head *purge_list)
2700{
2701 struct vmap_block *vb, *n_vb;
2702
2703 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2704 list_del(&vb->purge);
2705 free_vmap_block(vb);
2706 }
2707}
2708
2709static void purge_fragmented_blocks(int cpu)
2710{
2711 LIST_HEAD(purge);
2712 struct vmap_block *vb;
2713 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2714
2715 rcu_read_lock();
2716 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2717 unsigned long free = READ_ONCE(vb->free);
2718 unsigned long dirty = READ_ONCE(vb->dirty);
2719
2720 if (free + dirty != VMAP_BBMAP_BITS ||
2721 dirty == VMAP_BBMAP_BITS)
2722 continue;
2723
2724 spin_lock(&vb->lock);
2725 purge_fragmented_block(vb, &purge, true);
2726 spin_unlock(&vb->lock);
2727 }
2728 rcu_read_unlock();
2729 free_purged_blocks(&purge);
2730}
2731
2732static void purge_fragmented_blocks_allcpus(void)
2733{
2734 int cpu;
2735
2736 for_each_possible_cpu(cpu)
2737 purge_fragmented_blocks(cpu);
2738}
2739
2740static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2741{
2742 struct vmap_block_queue *vbq;
2743 struct vmap_block *vb;
2744 void *vaddr = NULL;
2745 unsigned int order;
2746
2747 BUG_ON(offset_in_page(size));
2748 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2749 if (WARN_ON(size == 0)) {
2750 /*
2751 * Allocating 0 bytes isn't what caller wants since
2752 * get_order(0) returns funny result. Just warn and terminate
2753 * early.
2754 */
2755 return ERR_PTR(-EINVAL);
2756 }
2757 order = get_order(size);
2758
2759 rcu_read_lock();
2760 vbq = raw_cpu_ptr(&vmap_block_queue);
2761 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2762 unsigned long pages_off;
2763
2764 if (READ_ONCE(vb->free) < (1UL << order))
2765 continue;
2766
2767 spin_lock(&vb->lock);
2768 if (vb->free < (1UL << order)) {
2769 spin_unlock(&vb->lock);
2770 continue;
2771 }
2772
2773 pages_off = VMAP_BBMAP_BITS - vb->free;
2774 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2775 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2776 bitmap_set(vb->used_map, pages_off, (1UL << order));
2777 if (vb->free == 0) {
2778 spin_lock(&vbq->lock);
2779 list_del_rcu(&vb->free_list);
2780 spin_unlock(&vbq->lock);
2781 }
2782
2783 spin_unlock(&vb->lock);
2784 break;
2785 }
2786
2787 rcu_read_unlock();
2788
2789 /* Allocate new block if nothing was found */
2790 if (!vaddr)
2791 vaddr = new_vmap_block(order, gfp_mask);
2792
2793 return vaddr;
2794}
2795
2796static void vb_free(unsigned long addr, unsigned long size)
2797{
2798 unsigned long offset;
2799 unsigned int order;
2800 struct vmap_block *vb;
2801 struct xarray *xa;
2802
2803 BUG_ON(offset_in_page(size));
2804 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2805
2806 flush_cache_vunmap(addr, addr + size);
2807
2808 order = get_order(size);
2809 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2810
2811 xa = addr_to_vb_xa(addr);
2812 vb = xa_load(xa, addr_to_vb_idx(addr));
2813
2814 spin_lock(&vb->lock);
2815 bitmap_clear(vb->used_map, offset, (1UL << order));
2816 spin_unlock(&vb->lock);
2817
2818 vunmap_range_noflush(addr, addr + size);
2819
2820 if (debug_pagealloc_enabled_static())
2821 flush_tlb_kernel_range(addr, addr + size);
2822
2823 spin_lock(&vb->lock);
2824
2825 /* Expand the not yet TLB flushed dirty range */
2826 vb->dirty_min = min(vb->dirty_min, offset);
2827 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2828
2829 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2830 if (vb->dirty == VMAP_BBMAP_BITS) {
2831 BUG_ON(vb->free);
2832 spin_unlock(&vb->lock);
2833 free_vmap_block(vb);
2834 } else
2835 spin_unlock(&vb->lock);
2836}
2837
2838static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2839{
2840 LIST_HEAD(purge_list);
2841 int cpu;
2842
2843 if (unlikely(!vmap_initialized))
2844 return;
2845
2846 mutex_lock(&vmap_purge_lock);
2847
2848 for_each_possible_cpu(cpu) {
2849 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2850 struct vmap_block *vb;
2851 unsigned long idx;
2852
2853 rcu_read_lock();
2854 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2855 spin_lock(&vb->lock);
2856
2857 /*
2858 * Try to purge a fragmented block first. If it's
2859 * not purgeable, check whether there is dirty
2860 * space to be flushed.
2861 */
2862 if (!purge_fragmented_block(vb, &purge_list, false) &&
2863 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2864 unsigned long va_start = vb->va->va_start;
2865 unsigned long s, e;
2866
2867 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2868 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2869
2870 start = min(s, start);
2871 end = max(e, end);
2872
2873 /* Prevent that this is flushed again */
2874 vb->dirty_min = VMAP_BBMAP_BITS;
2875 vb->dirty_max = 0;
2876
2877 flush = 1;
2878 }
2879 spin_unlock(&vb->lock);
2880 }
2881 rcu_read_unlock();
2882 }
2883 free_purged_blocks(&purge_list);
2884
2885 if (!__purge_vmap_area_lazy(start, end, false) && flush)
2886 flush_tlb_kernel_range(start, end);
2887 mutex_unlock(&vmap_purge_lock);
2888}
2889
2890/**
2891 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2892 *
2893 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2894 * to amortize TLB flushing overheads. What this means is that any page you
2895 * have now, may, in a former life, have been mapped into kernel virtual
2896 * address by the vmap layer and so there might be some CPUs with TLB entries
2897 * still referencing that page (additional to the regular 1:1 kernel mapping).
2898 *
2899 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2900 * be sure that none of the pages we have control over will have any aliases
2901 * from the vmap layer.
2902 */
2903void vm_unmap_aliases(void)
2904{
2905 unsigned long start = ULONG_MAX, end = 0;
2906 int flush = 0;
2907
2908 _vm_unmap_aliases(start, end, flush);
2909}
2910EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2911
2912/**
2913 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2914 * @mem: the pointer returned by vm_map_ram
2915 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2916 */
2917void vm_unmap_ram(const void *mem, unsigned int count)
2918{
2919 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2920 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2921 struct vmap_area *va;
2922
2923 might_sleep();
2924 BUG_ON(!addr);
2925 BUG_ON(addr < VMALLOC_START);
2926 BUG_ON(addr > VMALLOC_END);
2927 BUG_ON(!PAGE_ALIGNED(addr));
2928
2929 kasan_poison_vmalloc(mem, size);
2930
2931 if (likely(count <= VMAP_MAX_ALLOC)) {
2932 debug_check_no_locks_freed(mem, size);
2933 vb_free(addr, size);
2934 return;
2935 }
2936
2937 va = find_unlink_vmap_area(addr);
2938 if (WARN_ON_ONCE(!va))
2939 return;
2940
2941 debug_check_no_locks_freed((void *)va->va_start,
2942 (va->va_end - va->va_start));
2943 free_unmap_vmap_area(va);
2944}
2945EXPORT_SYMBOL(vm_unmap_ram);
2946
2947/**
2948 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2949 * @pages: an array of pointers to the pages to be mapped
2950 * @count: number of pages
2951 * @node: prefer to allocate data structures on this node
2952 *
2953 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2954 * faster than vmap so it's good. But if you mix long-life and short-life
2955 * objects with vm_map_ram(), it could consume lots of address space through
2956 * fragmentation (especially on a 32bit machine). You could see failures in
2957 * the end. Please use this function for short-lived objects.
2958 *
2959 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2960 */
2961void *vm_map_ram(struct page **pages, unsigned int count, int node)
2962{
2963 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2964 unsigned long addr;
2965 void *mem;
2966
2967 if (likely(count <= VMAP_MAX_ALLOC)) {
2968 mem = vb_alloc(size, GFP_KERNEL);
2969 if (IS_ERR(mem))
2970 return NULL;
2971 addr = (unsigned long)mem;
2972 } else {
2973 struct vmap_area *va;
2974 va = alloc_vmap_area(size, PAGE_SIZE,
2975 VMALLOC_START, VMALLOC_END,
2976 node, GFP_KERNEL, VMAP_RAM,
2977 NULL);
2978 if (IS_ERR(va))
2979 return NULL;
2980
2981 addr = va->va_start;
2982 mem = (void *)addr;
2983 }
2984
2985 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2986 pages, PAGE_SHIFT) < 0) {
2987 vm_unmap_ram(mem, count);
2988 return NULL;
2989 }
2990
2991 /*
2992 * Mark the pages as accessible, now that they are mapped.
2993 * With hardware tag-based KASAN, marking is skipped for
2994 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2995 */
2996 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2997
2998 return mem;
2999}
3000EXPORT_SYMBOL(vm_map_ram);
3001
3002static struct vm_struct *vmlist __initdata;
3003
3004static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3005{
3006#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3007 return vm->page_order;
3008#else
3009 return 0;
3010#endif
3011}
3012
3013static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3014{
3015#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3016 vm->page_order = order;
3017#else
3018 BUG_ON(order != 0);
3019#endif
3020}
3021
3022/**
3023 * vm_area_add_early - add vmap area early during boot
3024 * @vm: vm_struct to add
3025 *
3026 * This function is used to add fixed kernel vm area to vmlist before
3027 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3028 * should contain proper values and the other fields should be zero.
3029 *
3030 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3031 */
3032void __init vm_area_add_early(struct vm_struct *vm)
3033{
3034 struct vm_struct *tmp, **p;
3035
3036 BUG_ON(vmap_initialized);
3037 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3038 if (tmp->addr >= vm->addr) {
3039 BUG_ON(tmp->addr < vm->addr + vm->size);
3040 break;
3041 } else
3042 BUG_ON(tmp->addr + tmp->size > vm->addr);
3043 }
3044 vm->next = *p;
3045 *p = vm;
3046}
3047
3048/**
3049 * vm_area_register_early - register vmap area early during boot
3050 * @vm: vm_struct to register
3051 * @align: requested alignment
3052 *
3053 * This function is used to register kernel vm area before
3054 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3055 * proper values on entry and other fields should be zero. On return,
3056 * vm->addr contains the allocated address.
3057 *
3058 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3059 */
3060void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3061{
3062 unsigned long addr = ALIGN(VMALLOC_START, align);
3063 struct vm_struct *cur, **p;
3064
3065 BUG_ON(vmap_initialized);
3066
3067 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3068 if ((unsigned long)cur->addr - addr >= vm->size)
3069 break;
3070 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3071 }
3072
3073 BUG_ON(addr > VMALLOC_END - vm->size);
3074 vm->addr = (void *)addr;
3075 vm->next = *p;
3076 *p = vm;
3077 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3078}
3079
3080static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3081{
3082 /*
3083 * Before removing VM_UNINITIALIZED,
3084 * we should make sure that vm has proper values.
3085 * Pair with smp_rmb() in show_numa_info().
3086 */
3087 smp_wmb();
3088 vm->flags &= ~VM_UNINITIALIZED;
3089}
3090
3091static struct vm_struct *__get_vm_area_node(unsigned long size,
3092 unsigned long align, unsigned long shift, unsigned long flags,
3093 unsigned long start, unsigned long end, int node,
3094 gfp_t gfp_mask, const void *caller)
3095{
3096 struct vmap_area *va;
3097 struct vm_struct *area;
3098 unsigned long requested_size = size;
3099
3100 BUG_ON(in_interrupt());
3101 size = ALIGN(size, 1ul << shift);
3102 if (unlikely(!size))
3103 return NULL;
3104
3105 if (flags & VM_IOREMAP)
3106 align = 1ul << clamp_t(int, get_count_order_long(size),
3107 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3108
3109 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3110 if (unlikely(!area))
3111 return NULL;
3112
3113 if (!(flags & VM_NO_GUARD))
3114 size += PAGE_SIZE;
3115
3116 area->flags = flags;
3117 area->caller = caller;
3118
3119 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3120 if (IS_ERR(va)) {
3121 kfree(area);
3122 return NULL;
3123 }
3124
3125 /*
3126 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3127 * best-effort approach, as they can be mapped outside of vmalloc code.
3128 * For VM_ALLOC mappings, the pages are marked as accessible after
3129 * getting mapped in __vmalloc_node_range().
3130 * With hardware tag-based KASAN, marking is skipped for
3131 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3132 */
3133 if (!(flags & VM_ALLOC))
3134 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3135 KASAN_VMALLOC_PROT_NORMAL);
3136
3137 return area;
3138}
3139
3140struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3141 unsigned long start, unsigned long end,
3142 const void *caller)
3143{
3144 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3145 NUMA_NO_NODE, GFP_KERNEL, caller);
3146}
3147
3148/**
3149 * get_vm_area - reserve a contiguous kernel virtual area
3150 * @size: size of the area
3151 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3152 *
3153 * Search an area of @size in the kernel virtual mapping area,
3154 * and reserved it for out purposes. Returns the area descriptor
3155 * on success or %NULL on failure.
3156 *
3157 * Return: the area descriptor on success or %NULL on failure.
3158 */
3159struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3160{
3161 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3162 VMALLOC_START, VMALLOC_END,
3163 NUMA_NO_NODE, GFP_KERNEL,
3164 __builtin_return_address(0));
3165}
3166
3167struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3168 const void *caller)
3169{
3170 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3171 VMALLOC_START, VMALLOC_END,
3172 NUMA_NO_NODE, GFP_KERNEL, caller);
3173}
3174
3175/**
3176 * find_vm_area - find a continuous kernel virtual area
3177 * @addr: base address
3178 *
3179 * Search for the kernel VM area starting at @addr, and return it.
3180 * It is up to the caller to do all required locking to keep the returned
3181 * pointer valid.
3182 *
3183 * Return: the area descriptor on success or %NULL on failure.
3184 */
3185struct vm_struct *find_vm_area(const void *addr)
3186{
3187 struct vmap_area *va;
3188
3189 va = find_vmap_area((unsigned long)addr);
3190 if (!va)
3191 return NULL;
3192
3193 return va->vm;
3194}
3195
3196/**
3197 * remove_vm_area - find and remove a continuous kernel virtual area
3198 * @addr: base address
3199 *
3200 * Search for the kernel VM area starting at @addr, and remove it.
3201 * This function returns the found VM area, but using it is NOT safe
3202 * on SMP machines, except for its size or flags.
3203 *
3204 * Return: the area descriptor on success or %NULL on failure.
3205 */
3206struct vm_struct *remove_vm_area(const void *addr)
3207{
3208 struct vmap_area *va;
3209 struct vm_struct *vm;
3210
3211 might_sleep();
3212
3213 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3214 addr))
3215 return NULL;
3216
3217 va = find_unlink_vmap_area((unsigned long)addr);
3218 if (!va || !va->vm)
3219 return NULL;
3220 vm = va->vm;
3221
3222 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3223 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3224 kasan_free_module_shadow(vm);
3225 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3226
3227 free_unmap_vmap_area(va);
3228 return vm;
3229}
3230
3231static inline void set_area_direct_map(const struct vm_struct *area,
3232 int (*set_direct_map)(struct page *page))
3233{
3234 int i;
3235
3236 /* HUGE_VMALLOC passes small pages to set_direct_map */
3237 for (i = 0; i < area->nr_pages; i++)
3238 if (page_address(area->pages[i]))
3239 set_direct_map(area->pages[i]);
3240}
3241
3242/*
3243 * Flush the vm mapping and reset the direct map.
3244 */
3245static void vm_reset_perms(struct vm_struct *area)
3246{
3247 unsigned long start = ULONG_MAX, end = 0;
3248 unsigned int page_order = vm_area_page_order(area);
3249 int flush_dmap = 0;
3250 int i;
3251
3252 /*
3253 * Find the start and end range of the direct mappings to make sure that
3254 * the vm_unmap_aliases() flush includes the direct map.
3255 */
3256 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3257 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3258
3259 if (addr) {
3260 unsigned long page_size;
3261
3262 page_size = PAGE_SIZE << page_order;
3263 start = min(addr, start);
3264 end = max(addr + page_size, end);
3265 flush_dmap = 1;
3266 }
3267 }
3268
3269 /*
3270 * Set direct map to something invalid so that it won't be cached if
3271 * there are any accesses after the TLB flush, then flush the TLB and
3272 * reset the direct map permissions to the default.
3273 */
3274 set_area_direct_map(area, set_direct_map_invalid_noflush);
3275 _vm_unmap_aliases(start, end, flush_dmap);
3276 set_area_direct_map(area, set_direct_map_default_noflush);
3277}
3278
3279static void delayed_vfree_work(struct work_struct *w)
3280{
3281 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3282 struct llist_node *t, *llnode;
3283
3284 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3285 vfree(llnode);
3286}
3287
3288/**
3289 * vfree_atomic - release memory allocated by vmalloc()
3290 * @addr: memory base address
3291 *
3292 * This one is just like vfree() but can be called in any atomic context
3293 * except NMIs.
3294 */
3295void vfree_atomic(const void *addr)
3296{
3297 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3298
3299 BUG_ON(in_nmi());
3300 kmemleak_free(addr);
3301
3302 /*
3303 * Use raw_cpu_ptr() because this can be called from preemptible
3304 * context. Preemption is absolutely fine here, because the llist_add()
3305 * implementation is lockless, so it works even if we are adding to
3306 * another cpu's list. schedule_work() should be fine with this too.
3307 */
3308 if (addr && llist_add((struct llist_node *)addr, &p->list))
3309 schedule_work(&p->wq);
3310}
3311
3312/**
3313 * vfree - Release memory allocated by vmalloc()
3314 * @addr: Memory base address
3315 *
3316 * Free the virtually continuous memory area starting at @addr, as obtained
3317 * from one of the vmalloc() family of APIs. This will usually also free the
3318 * physical memory underlying the virtual allocation, but that memory is
3319 * reference counted, so it will not be freed until the last user goes away.
3320 *
3321 * If @addr is NULL, no operation is performed.
3322 *
3323 * Context:
3324 * May sleep if called *not* from interrupt context.
3325 * Must not be called in NMI context (strictly speaking, it could be
3326 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3327 * conventions for vfree() arch-dependent would be a really bad idea).
3328 */
3329void vfree(const void *addr)
3330{
3331 struct vm_struct *vm;
3332 int i;
3333
3334 if (unlikely(in_interrupt())) {
3335 vfree_atomic(addr);
3336 return;
3337 }
3338
3339 BUG_ON(in_nmi());
3340 kmemleak_free(addr);
3341 might_sleep();
3342
3343 if (!addr)
3344 return;
3345
3346 vm = remove_vm_area(addr);
3347 if (unlikely(!vm)) {
3348 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3349 addr);
3350 return;
3351 }
3352
3353 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3354 vm_reset_perms(vm);
3355 for (i = 0; i < vm->nr_pages; i++) {
3356 struct page *page = vm->pages[i];
3357
3358 BUG_ON(!page);
3359 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3360 /*
3361 * High-order allocs for huge vmallocs are split, so
3362 * can be freed as an array of order-0 allocations
3363 */
3364 __free_page(page);
3365 cond_resched();
3366 }
3367 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3368 kvfree(vm->pages);
3369 kfree(vm);
3370}
3371EXPORT_SYMBOL(vfree);
3372
3373/**
3374 * vunmap - release virtual mapping obtained by vmap()
3375 * @addr: memory base address
3376 *
3377 * Free the virtually contiguous memory area starting at @addr,
3378 * which was created from the page array passed to vmap().
3379 *
3380 * Must not be called in interrupt context.
3381 */
3382void vunmap(const void *addr)
3383{
3384 struct vm_struct *vm;
3385
3386 BUG_ON(in_interrupt());
3387 might_sleep();
3388
3389 if (!addr)
3390 return;
3391 vm = remove_vm_area(addr);
3392 if (unlikely(!vm)) {
3393 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3394 addr);
3395 return;
3396 }
3397 kfree(vm);
3398}
3399EXPORT_SYMBOL(vunmap);
3400
3401/**
3402 * vmap - map an array of pages into virtually contiguous space
3403 * @pages: array of page pointers
3404 * @count: number of pages to map
3405 * @flags: vm_area->flags
3406 * @prot: page protection for the mapping
3407 *
3408 * Maps @count pages from @pages into contiguous kernel virtual space.
3409 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3410 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3411 * are transferred from the caller to vmap(), and will be freed / dropped when
3412 * vfree() is called on the return value.
3413 *
3414 * Return: the address of the area or %NULL on failure
3415 */
3416void *vmap(struct page **pages, unsigned int count,
3417 unsigned long flags, pgprot_t prot)
3418{
3419 struct vm_struct *area;
3420 unsigned long addr;
3421 unsigned long size; /* In bytes */
3422
3423 might_sleep();
3424
3425 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3426 return NULL;
3427
3428 /*
3429 * Your top guard is someone else's bottom guard. Not having a top
3430 * guard compromises someone else's mappings too.
3431 */
3432 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3433 flags &= ~VM_NO_GUARD;
3434
3435 if (count > totalram_pages())
3436 return NULL;
3437
3438 size = (unsigned long)count << PAGE_SHIFT;
3439 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3440 if (!area)
3441 return NULL;
3442
3443 addr = (unsigned long)area->addr;
3444 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3445 pages, PAGE_SHIFT) < 0) {
3446 vunmap(area->addr);
3447 return NULL;
3448 }
3449
3450 if (flags & VM_MAP_PUT_PAGES) {
3451 area->pages = pages;
3452 area->nr_pages = count;
3453 }
3454 return area->addr;
3455}
3456EXPORT_SYMBOL(vmap);
3457
3458#ifdef CONFIG_VMAP_PFN
3459struct vmap_pfn_data {
3460 unsigned long *pfns;
3461 pgprot_t prot;
3462 unsigned int idx;
3463};
3464
3465static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3466{
3467 struct vmap_pfn_data *data = private;
3468 unsigned long pfn = data->pfns[data->idx];
3469 pte_t ptent;
3470
3471 if (WARN_ON_ONCE(pfn_valid(pfn)))
3472 return -EINVAL;
3473
3474 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3475 set_pte_at(&init_mm, addr, pte, ptent);
3476
3477 data->idx++;
3478 return 0;
3479}
3480
3481/**
3482 * vmap_pfn - map an array of PFNs into virtually contiguous space
3483 * @pfns: array of PFNs
3484 * @count: number of pages to map
3485 * @prot: page protection for the mapping
3486 *
3487 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3488 * the start address of the mapping.
3489 */
3490void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3491{
3492 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3493 struct vm_struct *area;
3494
3495 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3496 __builtin_return_address(0));
3497 if (!area)
3498 return NULL;
3499 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3500 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3501 free_vm_area(area);
3502 return NULL;
3503 }
3504
3505 flush_cache_vmap((unsigned long)area->addr,
3506 (unsigned long)area->addr + count * PAGE_SIZE);
3507
3508 return area->addr;
3509}
3510EXPORT_SYMBOL_GPL(vmap_pfn);
3511#endif /* CONFIG_VMAP_PFN */
3512
3513static inline unsigned int
3514vm_area_alloc_pages(gfp_t gfp, int nid,
3515 unsigned int order, unsigned int nr_pages, struct page **pages)
3516{
3517 unsigned int nr_allocated = 0;
3518 gfp_t alloc_gfp = gfp;
3519 bool nofail = gfp & __GFP_NOFAIL;
3520 struct page *page;
3521 int i;
3522
3523 /*
3524 * For order-0 pages we make use of bulk allocator, if
3525 * the page array is partly or not at all populated due
3526 * to fails, fallback to a single page allocator that is
3527 * more permissive.
3528 */
3529 if (!order) {
3530 /* bulk allocator doesn't support nofail req. officially */
3531 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3532
3533 while (nr_allocated < nr_pages) {
3534 unsigned int nr, nr_pages_request;
3535
3536 /*
3537 * A maximum allowed request is hard-coded and is 100
3538 * pages per call. That is done in order to prevent a
3539 * long preemption off scenario in the bulk-allocator
3540 * so the range is [1:100].
3541 */
3542 nr_pages_request = min(100U, nr_pages - nr_allocated);
3543
3544 /* memory allocation should consider mempolicy, we can't
3545 * wrongly use nearest node when nid == NUMA_NO_NODE,
3546 * otherwise memory may be allocated in only one node,
3547 * but mempolicy wants to alloc memory by interleaving.
3548 */
3549 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3550 nr = alloc_pages_bulk_array_mempolicy_noprof(bulk_gfp,
3551 nr_pages_request,
3552 pages + nr_allocated);
3553
3554 else
3555 nr = alloc_pages_bulk_array_node_noprof(bulk_gfp, nid,
3556 nr_pages_request,
3557 pages + nr_allocated);
3558
3559 nr_allocated += nr;
3560 cond_resched();
3561
3562 /*
3563 * If zero or pages were obtained partly,
3564 * fallback to a single page allocator.
3565 */
3566 if (nr != nr_pages_request)
3567 break;
3568 }
3569 } else if (gfp & __GFP_NOFAIL) {
3570 /*
3571 * Higher order nofail allocations are really expensive and
3572 * potentially dangerous (pre-mature OOM, disruptive reclaim
3573 * and compaction etc.
3574 */
3575 alloc_gfp &= ~__GFP_NOFAIL;
3576 }
3577
3578 /* High-order pages or fallback path if "bulk" fails. */
3579 while (nr_allocated < nr_pages) {
3580 if (!nofail && fatal_signal_pending(current))
3581 break;
3582
3583 if (nid == NUMA_NO_NODE)
3584 page = alloc_pages_noprof(alloc_gfp, order);
3585 else
3586 page = alloc_pages_node_noprof(nid, alloc_gfp, order);
3587 if (unlikely(!page))
3588 break;
3589
3590 /*
3591 * Higher order allocations must be able to be treated as
3592 * indepdenent small pages by callers (as they can with
3593 * small-page vmallocs). Some drivers do their own refcounting
3594 * on vmalloc_to_page() pages, some use page->mapping,
3595 * page->lru, etc.
3596 */
3597 if (order)
3598 split_page(page, order);
3599
3600 /*
3601 * Careful, we allocate and map page-order pages, but
3602 * tracking is done per PAGE_SIZE page so as to keep the
3603 * vm_struct APIs independent of the physical/mapped size.
3604 */
3605 for (i = 0; i < (1U << order); i++)
3606 pages[nr_allocated + i] = page + i;
3607
3608 cond_resched();
3609 nr_allocated += 1U << order;
3610 }
3611
3612 return nr_allocated;
3613}
3614
3615static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3616 pgprot_t prot, unsigned int page_shift,
3617 int node)
3618{
3619 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3620 bool nofail = gfp_mask & __GFP_NOFAIL;
3621 unsigned long addr = (unsigned long)area->addr;
3622 unsigned long size = get_vm_area_size(area);
3623 unsigned long array_size;
3624 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3625 unsigned int page_order;
3626 unsigned int flags;
3627 int ret;
3628
3629 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3630
3631 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3632 gfp_mask |= __GFP_HIGHMEM;
3633
3634 /* Please note that the recursion is strictly bounded. */
3635 if (array_size > PAGE_SIZE) {
3636 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3637 area->caller);
3638 } else {
3639 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3640 }
3641
3642 if (!area->pages) {
3643 warn_alloc(gfp_mask, NULL,
3644 "vmalloc error: size %lu, failed to allocated page array size %lu",
3645 nr_small_pages * PAGE_SIZE, array_size);
3646 free_vm_area(area);
3647 return NULL;
3648 }
3649
3650 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3651 page_order = vm_area_page_order(area);
3652
3653 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3654 node, page_order, nr_small_pages, area->pages);
3655
3656 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3657 if (gfp_mask & __GFP_ACCOUNT) {
3658 int i;
3659
3660 for (i = 0; i < area->nr_pages; i++)
3661 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3662 }
3663
3664 /*
3665 * If not enough pages were obtained to accomplish an
3666 * allocation request, free them via vfree() if any.
3667 */
3668 if (area->nr_pages != nr_small_pages) {
3669 /*
3670 * vm_area_alloc_pages() can fail due to insufficient memory but
3671 * also:-
3672 *
3673 * - a pending fatal signal
3674 * - insufficient huge page-order pages
3675 *
3676 * Since we always retry allocations at order-0 in the huge page
3677 * case a warning for either is spurious.
3678 */
3679 if (!fatal_signal_pending(current) && page_order == 0)
3680 warn_alloc(gfp_mask, NULL,
3681 "vmalloc error: size %lu, failed to allocate pages",
3682 area->nr_pages * PAGE_SIZE);
3683 goto fail;
3684 }
3685
3686 /*
3687 * page tables allocations ignore external gfp mask, enforce it
3688 * by the scope API
3689 */
3690 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3691 flags = memalloc_nofs_save();
3692 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3693 flags = memalloc_noio_save();
3694
3695 do {
3696 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3697 page_shift);
3698 if (nofail && (ret < 0))
3699 schedule_timeout_uninterruptible(1);
3700 } while (nofail && (ret < 0));
3701
3702 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3703 memalloc_nofs_restore(flags);
3704 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3705 memalloc_noio_restore(flags);
3706
3707 if (ret < 0) {
3708 warn_alloc(gfp_mask, NULL,
3709 "vmalloc error: size %lu, failed to map pages",
3710 area->nr_pages * PAGE_SIZE);
3711 goto fail;
3712 }
3713
3714 return area->addr;
3715
3716fail:
3717 vfree(area->addr);
3718 return NULL;
3719}
3720
3721/**
3722 * __vmalloc_node_range - allocate virtually contiguous memory
3723 * @size: allocation size
3724 * @align: desired alignment
3725 * @start: vm area range start
3726 * @end: vm area range end
3727 * @gfp_mask: flags for the page level allocator
3728 * @prot: protection mask for the allocated pages
3729 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3730 * @node: node to use for allocation or NUMA_NO_NODE
3731 * @caller: caller's return address
3732 *
3733 * Allocate enough pages to cover @size from the page level
3734 * allocator with @gfp_mask flags. Please note that the full set of gfp
3735 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3736 * supported.
3737 * Zone modifiers are not supported. From the reclaim modifiers
3738 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3739 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3740 * __GFP_RETRY_MAYFAIL are not supported).
3741 *
3742 * __GFP_NOWARN can be used to suppress failures messages.
3743 *
3744 * Map them into contiguous kernel virtual space, using a pagetable
3745 * protection of @prot.
3746 *
3747 * Return: the address of the area or %NULL on failure
3748 */
3749void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3750 unsigned long start, unsigned long end, gfp_t gfp_mask,
3751 pgprot_t prot, unsigned long vm_flags, int node,
3752 const void *caller)
3753{
3754 struct vm_struct *area;
3755 void *ret;
3756 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3757 unsigned long real_size = size;
3758 unsigned long real_align = align;
3759 unsigned int shift = PAGE_SHIFT;
3760
3761 if (WARN_ON_ONCE(!size))
3762 return NULL;
3763
3764 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3765 warn_alloc(gfp_mask, NULL,
3766 "vmalloc error: size %lu, exceeds total pages",
3767 real_size);
3768 return NULL;
3769 }
3770
3771 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3772 unsigned long size_per_node;
3773
3774 /*
3775 * Try huge pages. Only try for PAGE_KERNEL allocations,
3776 * others like modules don't yet expect huge pages in
3777 * their allocations due to apply_to_page_range not
3778 * supporting them.
3779 */
3780
3781 size_per_node = size;
3782 if (node == NUMA_NO_NODE)
3783 size_per_node /= num_online_nodes();
3784 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3785 shift = PMD_SHIFT;
3786 else
3787 shift = arch_vmap_pte_supported_shift(size_per_node);
3788
3789 align = max(real_align, 1UL << shift);
3790 size = ALIGN(real_size, 1UL << shift);
3791 }
3792
3793again:
3794 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3795 VM_UNINITIALIZED | vm_flags, start, end, node,
3796 gfp_mask, caller);
3797 if (!area) {
3798 bool nofail = gfp_mask & __GFP_NOFAIL;
3799 warn_alloc(gfp_mask, NULL,
3800 "vmalloc error: size %lu, vm_struct allocation failed%s",
3801 real_size, (nofail) ? ". Retrying." : "");
3802 if (nofail) {
3803 schedule_timeout_uninterruptible(1);
3804 goto again;
3805 }
3806 goto fail;
3807 }
3808
3809 /*
3810 * Prepare arguments for __vmalloc_area_node() and
3811 * kasan_unpoison_vmalloc().
3812 */
3813 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3814 if (kasan_hw_tags_enabled()) {
3815 /*
3816 * Modify protection bits to allow tagging.
3817 * This must be done before mapping.
3818 */
3819 prot = arch_vmap_pgprot_tagged(prot);
3820
3821 /*
3822 * Skip page_alloc poisoning and zeroing for physical
3823 * pages backing VM_ALLOC mapping. Memory is instead
3824 * poisoned and zeroed by kasan_unpoison_vmalloc().
3825 */
3826 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3827 }
3828
3829 /* Take note that the mapping is PAGE_KERNEL. */
3830 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3831 }
3832
3833 /* Allocate physical pages and map them into vmalloc space. */
3834 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3835 if (!ret)
3836 goto fail;
3837
3838 /*
3839 * Mark the pages as accessible, now that they are mapped.
3840 * The condition for setting KASAN_VMALLOC_INIT should complement the
3841 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3842 * to make sure that memory is initialized under the same conditions.
3843 * Tag-based KASAN modes only assign tags to normal non-executable
3844 * allocations, see __kasan_unpoison_vmalloc().
3845 */
3846 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3847 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3848 (gfp_mask & __GFP_SKIP_ZERO))
3849 kasan_flags |= KASAN_VMALLOC_INIT;
3850 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3851 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3852
3853 /*
3854 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3855 * flag. It means that vm_struct is not fully initialized.
3856 * Now, it is fully initialized, so remove this flag here.
3857 */
3858 clear_vm_uninitialized_flag(area);
3859
3860 size = PAGE_ALIGN(size);
3861 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3862 kmemleak_vmalloc(area, size, gfp_mask);
3863
3864 return area->addr;
3865
3866fail:
3867 if (shift > PAGE_SHIFT) {
3868 shift = PAGE_SHIFT;
3869 align = real_align;
3870 size = real_size;
3871 goto again;
3872 }
3873
3874 return NULL;
3875}
3876
3877/**
3878 * __vmalloc_node - allocate virtually contiguous memory
3879 * @size: allocation size
3880 * @align: desired alignment
3881 * @gfp_mask: flags for the page level allocator
3882 * @node: node to use for allocation or NUMA_NO_NODE
3883 * @caller: caller's return address
3884 *
3885 * Allocate enough pages to cover @size from the page level allocator with
3886 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3887 *
3888 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3889 * and __GFP_NOFAIL are not supported
3890 *
3891 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3892 * with mm people.
3893 *
3894 * Return: pointer to the allocated memory or %NULL on error
3895 */
3896void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3897 gfp_t gfp_mask, int node, const void *caller)
3898{
3899 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3900 gfp_mask, PAGE_KERNEL, 0, node, caller);
3901}
3902/*
3903 * This is only for performance analysis of vmalloc and stress purpose.
3904 * It is required by vmalloc test module, therefore do not use it other
3905 * than that.
3906 */
3907#ifdef CONFIG_TEST_VMALLOC_MODULE
3908EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3909#endif
3910
3911void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3912{
3913 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3914 __builtin_return_address(0));
3915}
3916EXPORT_SYMBOL(__vmalloc_noprof);
3917
3918/**
3919 * vmalloc - allocate virtually contiguous memory
3920 * @size: allocation size
3921 *
3922 * Allocate enough pages to cover @size from the page level
3923 * allocator and map them into contiguous kernel virtual space.
3924 *
3925 * For tight control over page level allocator and protection flags
3926 * use __vmalloc() instead.
3927 *
3928 * Return: pointer to the allocated memory or %NULL on error
3929 */
3930void *vmalloc_noprof(unsigned long size)
3931{
3932 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3933 __builtin_return_address(0));
3934}
3935EXPORT_SYMBOL(vmalloc_noprof);
3936
3937/**
3938 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3939 * @size: allocation size
3940 * @gfp_mask: flags for the page level allocator
3941 *
3942 * Allocate enough pages to cover @size from the page level
3943 * allocator and map them into contiguous kernel virtual space.
3944 * If @size is greater than or equal to PMD_SIZE, allow using
3945 * huge pages for the memory
3946 *
3947 * Return: pointer to the allocated memory or %NULL on error
3948 */
3949void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3950{
3951 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3952 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3953 NUMA_NO_NODE, __builtin_return_address(0));
3954}
3955EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3956
3957/**
3958 * vzalloc - allocate virtually contiguous memory with zero fill
3959 * @size: allocation size
3960 *
3961 * Allocate enough pages to cover @size from the page level
3962 * allocator and map them into contiguous kernel virtual space.
3963 * The memory allocated is set to zero.
3964 *
3965 * For tight control over page level allocator and protection flags
3966 * use __vmalloc() instead.
3967 *
3968 * Return: pointer to the allocated memory or %NULL on error
3969 */
3970void *vzalloc_noprof(unsigned long size)
3971{
3972 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3973 __builtin_return_address(0));
3974}
3975EXPORT_SYMBOL(vzalloc_noprof);
3976
3977/**
3978 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3979 * @size: allocation size
3980 *
3981 * The resulting memory area is zeroed so it can be mapped to userspace
3982 * without leaking data.
3983 *
3984 * Return: pointer to the allocated memory or %NULL on error
3985 */
3986void *vmalloc_user_noprof(unsigned long size)
3987{
3988 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3989 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3990 VM_USERMAP, NUMA_NO_NODE,
3991 __builtin_return_address(0));
3992}
3993EXPORT_SYMBOL(vmalloc_user_noprof);
3994
3995/**
3996 * vmalloc_node - allocate memory on a specific node
3997 * @size: allocation size
3998 * @node: numa node
3999 *
4000 * Allocate enough pages to cover @size from the page level
4001 * allocator and map them into contiguous kernel virtual space.
4002 *
4003 * For tight control over page level allocator and protection flags
4004 * use __vmalloc() instead.
4005 *
4006 * Return: pointer to the allocated memory or %NULL on error
4007 */
4008void *vmalloc_node_noprof(unsigned long size, int node)
4009{
4010 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4011 __builtin_return_address(0));
4012}
4013EXPORT_SYMBOL(vmalloc_node_noprof);
4014
4015/**
4016 * vzalloc_node - allocate memory on a specific node with zero fill
4017 * @size: allocation size
4018 * @node: numa node
4019 *
4020 * Allocate enough pages to cover @size from the page level
4021 * allocator and map them into contiguous kernel virtual space.
4022 * The memory allocated is set to zero.
4023 *
4024 * Return: pointer to the allocated memory or %NULL on error
4025 */
4026void *vzalloc_node_noprof(unsigned long size, int node)
4027{
4028 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4029 __builtin_return_address(0));
4030}
4031EXPORT_SYMBOL(vzalloc_node_noprof);
4032
4033#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4034#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4035#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4036#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4037#else
4038/*
4039 * 64b systems should always have either DMA or DMA32 zones. For others
4040 * GFP_DMA32 should do the right thing and use the normal zone.
4041 */
4042#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4043#endif
4044
4045/**
4046 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4047 * @size: allocation size
4048 *
4049 * Allocate enough 32bit PA addressable pages to cover @size from the
4050 * page level allocator and map them into contiguous kernel virtual space.
4051 *
4052 * Return: pointer to the allocated memory or %NULL on error
4053 */
4054void *vmalloc_32_noprof(unsigned long size)
4055{
4056 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4057 __builtin_return_address(0));
4058}
4059EXPORT_SYMBOL(vmalloc_32_noprof);
4060
4061/**
4062 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4063 * @size: allocation size
4064 *
4065 * The resulting memory area is 32bit addressable and zeroed so it can be
4066 * mapped to userspace without leaking data.
4067 *
4068 * Return: pointer to the allocated memory or %NULL on error
4069 */
4070void *vmalloc_32_user_noprof(unsigned long size)
4071{
4072 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4073 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4074 VM_USERMAP, NUMA_NO_NODE,
4075 __builtin_return_address(0));
4076}
4077EXPORT_SYMBOL(vmalloc_32_user_noprof);
4078
4079/*
4080 * Atomically zero bytes in the iterator.
4081 *
4082 * Returns the number of zeroed bytes.
4083 */
4084static size_t zero_iter(struct iov_iter *iter, size_t count)
4085{
4086 size_t remains = count;
4087
4088 while (remains > 0) {
4089 size_t num, copied;
4090
4091 num = min_t(size_t, remains, PAGE_SIZE);
4092 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4093 remains -= copied;
4094
4095 if (copied < num)
4096 break;
4097 }
4098
4099 return count - remains;
4100}
4101
4102/*
4103 * small helper routine, copy contents to iter from addr.
4104 * If the page is not present, fill zero.
4105 *
4106 * Returns the number of copied bytes.
4107 */
4108static size_t aligned_vread_iter(struct iov_iter *iter,
4109 const char *addr, size_t count)
4110{
4111 size_t remains = count;
4112 struct page *page;
4113
4114 while (remains > 0) {
4115 unsigned long offset, length;
4116 size_t copied = 0;
4117
4118 offset = offset_in_page(addr);
4119 length = PAGE_SIZE - offset;
4120 if (length > remains)
4121 length = remains;
4122 page = vmalloc_to_page(addr);
4123 /*
4124 * To do safe access to this _mapped_ area, we need lock. But
4125 * adding lock here means that we need to add overhead of
4126 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4127 * used. Instead of that, we'll use an local mapping via
4128 * copy_page_to_iter_nofault() and accept a small overhead in
4129 * this access function.
4130 */
4131 if (page)
4132 copied = copy_page_to_iter_nofault(page, offset,
4133 length, iter);
4134 else
4135 copied = zero_iter(iter, length);
4136
4137 addr += copied;
4138 remains -= copied;
4139
4140 if (copied != length)
4141 break;
4142 }
4143
4144 return count - remains;
4145}
4146
4147/*
4148 * Read from a vm_map_ram region of memory.
4149 *
4150 * Returns the number of copied bytes.
4151 */
4152static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4153 size_t count, unsigned long flags)
4154{
4155 char *start;
4156 struct vmap_block *vb;
4157 struct xarray *xa;
4158 unsigned long offset;
4159 unsigned int rs, re;
4160 size_t remains, n;
4161
4162 /*
4163 * If it's area created by vm_map_ram() interface directly, but
4164 * not further subdividing and delegating management to vmap_block,
4165 * handle it here.
4166 */
4167 if (!(flags & VMAP_BLOCK))
4168 return aligned_vread_iter(iter, addr, count);
4169
4170 remains = count;
4171
4172 /*
4173 * Area is split into regions and tracked with vmap_block, read out
4174 * each region and zero fill the hole between regions.
4175 */
4176 xa = addr_to_vb_xa((unsigned long) addr);
4177 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4178 if (!vb)
4179 goto finished_zero;
4180
4181 spin_lock(&vb->lock);
4182 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4183 spin_unlock(&vb->lock);
4184 goto finished_zero;
4185 }
4186
4187 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4188 size_t copied;
4189
4190 if (remains == 0)
4191 goto finished;
4192
4193 start = vmap_block_vaddr(vb->va->va_start, rs);
4194
4195 if (addr < start) {
4196 size_t to_zero = min_t(size_t, start - addr, remains);
4197 size_t zeroed = zero_iter(iter, to_zero);
4198
4199 addr += zeroed;
4200 remains -= zeroed;
4201
4202 if (remains == 0 || zeroed != to_zero)
4203 goto finished;
4204 }
4205
4206 /*it could start reading from the middle of used region*/
4207 offset = offset_in_page(addr);
4208 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4209 if (n > remains)
4210 n = remains;
4211
4212 copied = aligned_vread_iter(iter, start + offset, n);
4213
4214 addr += copied;
4215 remains -= copied;
4216
4217 if (copied != n)
4218 goto finished;
4219 }
4220
4221 spin_unlock(&vb->lock);
4222
4223finished_zero:
4224 /* zero-fill the left dirty or free regions */
4225 return count - remains + zero_iter(iter, remains);
4226finished:
4227 /* We couldn't copy/zero everything */
4228 spin_unlock(&vb->lock);
4229 return count - remains;
4230}
4231
4232/**
4233 * vread_iter() - read vmalloc area in a safe way to an iterator.
4234 * @iter: the iterator to which data should be written.
4235 * @addr: vm address.
4236 * @count: number of bytes to be read.
4237 *
4238 * This function checks that addr is a valid vmalloc'ed area, and
4239 * copy data from that area to a given buffer. If the given memory range
4240 * of [addr...addr+count) includes some valid address, data is copied to
4241 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4242 * IOREMAP area is treated as memory hole and no copy is done.
4243 *
4244 * If [addr...addr+count) doesn't includes any intersects with alive
4245 * vm_struct area, returns 0. @buf should be kernel's buffer.
4246 *
4247 * Note: In usual ops, vread() is never necessary because the caller
4248 * should know vmalloc() area is valid and can use memcpy().
4249 * This is for routines which have to access vmalloc area without
4250 * any information, as /proc/kcore.
4251 *
4252 * Return: number of bytes for which addr and buf should be increased
4253 * (same number as @count) or %0 if [addr...addr+count) doesn't
4254 * include any intersection with valid vmalloc area
4255 */
4256long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4257{
4258 struct vmap_node *vn;
4259 struct vmap_area *va;
4260 struct vm_struct *vm;
4261 char *vaddr;
4262 size_t n, size, flags, remains;
4263 unsigned long next;
4264
4265 addr = kasan_reset_tag(addr);
4266
4267 /* Don't allow overflow */
4268 if ((unsigned long) addr + count < count)
4269 count = -(unsigned long) addr;
4270
4271 remains = count;
4272
4273 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4274 if (!vn)
4275 goto finished_zero;
4276
4277 /* no intersects with alive vmap_area */
4278 if ((unsigned long)addr + remains <= va->va_start)
4279 goto finished_zero;
4280
4281 do {
4282 size_t copied;
4283
4284 if (remains == 0)
4285 goto finished;
4286
4287 vm = va->vm;
4288 flags = va->flags & VMAP_FLAGS_MASK;
4289 /*
4290 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4291 * be set together with VMAP_RAM.
4292 */
4293 WARN_ON(flags == VMAP_BLOCK);
4294
4295 if (!vm && !flags)
4296 goto next_va;
4297
4298 if (vm && (vm->flags & VM_UNINITIALIZED))
4299 goto next_va;
4300
4301 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4302 smp_rmb();
4303
4304 vaddr = (char *) va->va_start;
4305 size = vm ? get_vm_area_size(vm) : va_size(va);
4306
4307 if (addr >= vaddr + size)
4308 goto next_va;
4309
4310 if (addr < vaddr) {
4311 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4312 size_t zeroed = zero_iter(iter, to_zero);
4313
4314 addr += zeroed;
4315 remains -= zeroed;
4316
4317 if (remains == 0 || zeroed != to_zero)
4318 goto finished;
4319 }
4320
4321 n = vaddr + size - addr;
4322 if (n > remains)
4323 n = remains;
4324
4325 if (flags & VMAP_RAM)
4326 copied = vmap_ram_vread_iter(iter, addr, n, flags);
4327 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4328 copied = aligned_vread_iter(iter, addr, n);
4329 else /* IOREMAP | SPARSE area is treated as memory hole */
4330 copied = zero_iter(iter, n);
4331
4332 addr += copied;
4333 remains -= copied;
4334
4335 if (copied != n)
4336 goto finished;
4337
4338 next_va:
4339 next = va->va_end;
4340 spin_unlock(&vn->busy.lock);
4341 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4342
4343finished_zero:
4344 if (vn)
4345 spin_unlock(&vn->busy.lock);
4346
4347 /* zero-fill memory holes */
4348 return count - remains + zero_iter(iter, remains);
4349finished:
4350 /* Nothing remains, or We couldn't copy/zero everything. */
4351 if (vn)
4352 spin_unlock(&vn->busy.lock);
4353
4354 return count - remains;
4355}
4356
4357/**
4358 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4359 * @vma: vma to cover
4360 * @uaddr: target user address to start at
4361 * @kaddr: virtual address of vmalloc kernel memory
4362 * @pgoff: offset from @kaddr to start at
4363 * @size: size of map area
4364 *
4365 * Returns: 0 for success, -Exxx on failure
4366 *
4367 * This function checks that @kaddr is a valid vmalloc'ed area,
4368 * and that it is big enough to cover the range starting at
4369 * @uaddr in @vma. Will return failure if that criteria isn't
4370 * met.
4371 *
4372 * Similar to remap_pfn_range() (see mm/memory.c)
4373 */
4374int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4375 void *kaddr, unsigned long pgoff,
4376 unsigned long size)
4377{
4378 struct vm_struct *area;
4379 unsigned long off;
4380 unsigned long end_index;
4381
4382 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4383 return -EINVAL;
4384
4385 size = PAGE_ALIGN(size);
4386
4387 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4388 return -EINVAL;
4389
4390 area = find_vm_area(kaddr);
4391 if (!area)
4392 return -EINVAL;
4393
4394 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4395 return -EINVAL;
4396
4397 if (check_add_overflow(size, off, &end_index) ||
4398 end_index > get_vm_area_size(area))
4399 return -EINVAL;
4400 kaddr += off;
4401
4402 do {
4403 struct page *page = vmalloc_to_page(kaddr);
4404 int ret;
4405
4406 ret = vm_insert_page(vma, uaddr, page);
4407 if (ret)
4408 return ret;
4409
4410 uaddr += PAGE_SIZE;
4411 kaddr += PAGE_SIZE;
4412 size -= PAGE_SIZE;
4413 } while (size > 0);
4414
4415 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4416
4417 return 0;
4418}
4419
4420/**
4421 * remap_vmalloc_range - map vmalloc pages to userspace
4422 * @vma: vma to cover (map full range of vma)
4423 * @addr: vmalloc memory
4424 * @pgoff: number of pages into addr before first page to map
4425 *
4426 * Returns: 0 for success, -Exxx on failure
4427 *
4428 * This function checks that addr is a valid vmalloc'ed area, and
4429 * that it is big enough to cover the vma. Will return failure if
4430 * that criteria isn't met.
4431 *
4432 * Similar to remap_pfn_range() (see mm/memory.c)
4433 */
4434int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4435 unsigned long pgoff)
4436{
4437 return remap_vmalloc_range_partial(vma, vma->vm_start,
4438 addr, pgoff,
4439 vma->vm_end - vma->vm_start);
4440}
4441EXPORT_SYMBOL(remap_vmalloc_range);
4442
4443void free_vm_area(struct vm_struct *area)
4444{
4445 struct vm_struct *ret;
4446 ret = remove_vm_area(area->addr);
4447 BUG_ON(ret != area);
4448 kfree(area);
4449}
4450EXPORT_SYMBOL_GPL(free_vm_area);
4451
4452#ifdef CONFIG_SMP
4453static struct vmap_area *node_to_va(struct rb_node *n)
4454{
4455 return rb_entry_safe(n, struct vmap_area, rb_node);
4456}
4457
4458/**
4459 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4460 * @addr: target address
4461 *
4462 * Returns: vmap_area if it is found. If there is no such area
4463 * the first highest(reverse order) vmap_area is returned
4464 * i.e. va->va_start < addr && va->va_end < addr or NULL
4465 * if there are no any areas before @addr.
4466 */
4467static struct vmap_area *
4468pvm_find_va_enclose_addr(unsigned long addr)
4469{
4470 struct vmap_area *va, *tmp;
4471 struct rb_node *n;
4472
4473 n = free_vmap_area_root.rb_node;
4474 va = NULL;
4475
4476 while (n) {
4477 tmp = rb_entry(n, struct vmap_area, rb_node);
4478 if (tmp->va_start <= addr) {
4479 va = tmp;
4480 if (tmp->va_end >= addr)
4481 break;
4482
4483 n = n->rb_right;
4484 } else {
4485 n = n->rb_left;
4486 }
4487 }
4488
4489 return va;
4490}
4491
4492/**
4493 * pvm_determine_end_from_reverse - find the highest aligned address
4494 * of free block below VMALLOC_END
4495 * @va:
4496 * in - the VA we start the search(reverse order);
4497 * out - the VA with the highest aligned end address.
4498 * @align: alignment for required highest address
4499 *
4500 * Returns: determined end address within vmap_area
4501 */
4502static unsigned long
4503pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4504{
4505 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4506 unsigned long addr;
4507
4508 if (likely(*va)) {
4509 list_for_each_entry_from_reverse((*va),
4510 &free_vmap_area_list, list) {
4511 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4512 if ((*va)->va_start < addr)
4513 return addr;
4514 }
4515 }
4516
4517 return 0;
4518}
4519
4520/**
4521 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4522 * @offsets: array containing offset of each area
4523 * @sizes: array containing size of each area
4524 * @nr_vms: the number of areas to allocate
4525 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4526 *
4527 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4528 * vm_structs on success, %NULL on failure
4529 *
4530 * Percpu allocator wants to use congruent vm areas so that it can
4531 * maintain the offsets among percpu areas. This function allocates
4532 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4533 * be scattered pretty far, distance between two areas easily going up
4534 * to gigabytes. To avoid interacting with regular vmallocs, these
4535 * areas are allocated from top.
4536 *
4537 * Despite its complicated look, this allocator is rather simple. It
4538 * does everything top-down and scans free blocks from the end looking
4539 * for matching base. While scanning, if any of the areas do not fit the
4540 * base address is pulled down to fit the area. Scanning is repeated till
4541 * all the areas fit and then all necessary data structures are inserted
4542 * and the result is returned.
4543 */
4544struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4545 const size_t *sizes, int nr_vms,
4546 size_t align)
4547{
4548 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4549 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4550 struct vmap_area **vas, *va;
4551 struct vm_struct **vms;
4552 int area, area2, last_area, term_area;
4553 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4554 bool purged = false;
4555
4556 /* verify parameters and allocate data structures */
4557 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4558 for (last_area = 0, area = 0; area < nr_vms; area++) {
4559 start = offsets[area];
4560 end = start + sizes[area];
4561
4562 /* is everything aligned properly? */
4563 BUG_ON(!IS_ALIGNED(offsets[area], align));
4564 BUG_ON(!IS_ALIGNED(sizes[area], align));
4565
4566 /* detect the area with the highest address */
4567 if (start > offsets[last_area])
4568 last_area = area;
4569
4570 for (area2 = area + 1; area2 < nr_vms; area2++) {
4571 unsigned long start2 = offsets[area2];
4572 unsigned long end2 = start2 + sizes[area2];
4573
4574 BUG_ON(start2 < end && start < end2);
4575 }
4576 }
4577 last_end = offsets[last_area] + sizes[last_area];
4578
4579 if (vmalloc_end - vmalloc_start < last_end) {
4580 WARN_ON(true);
4581 return NULL;
4582 }
4583
4584 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4585 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4586 if (!vas || !vms)
4587 goto err_free2;
4588
4589 for (area = 0; area < nr_vms; area++) {
4590 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4591 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4592 if (!vas[area] || !vms[area])
4593 goto err_free;
4594 }
4595retry:
4596 spin_lock(&free_vmap_area_lock);
4597
4598 /* start scanning - we scan from the top, begin with the last area */
4599 area = term_area = last_area;
4600 start = offsets[area];
4601 end = start + sizes[area];
4602
4603 va = pvm_find_va_enclose_addr(vmalloc_end);
4604 base = pvm_determine_end_from_reverse(&va, align) - end;
4605
4606 while (true) {
4607 /*
4608 * base might have underflowed, add last_end before
4609 * comparing.
4610 */
4611 if (base + last_end < vmalloc_start + last_end)
4612 goto overflow;
4613
4614 /*
4615 * Fitting base has not been found.
4616 */
4617 if (va == NULL)
4618 goto overflow;
4619
4620 /*
4621 * If required width exceeds current VA block, move
4622 * base downwards and then recheck.
4623 */
4624 if (base + end > va->va_end) {
4625 base = pvm_determine_end_from_reverse(&va, align) - end;
4626 term_area = area;
4627 continue;
4628 }
4629
4630 /*
4631 * If this VA does not fit, move base downwards and recheck.
4632 */
4633 if (base + start < va->va_start) {
4634 va = node_to_va(rb_prev(&va->rb_node));
4635 base = pvm_determine_end_from_reverse(&va, align) - end;
4636 term_area = area;
4637 continue;
4638 }
4639
4640 /*
4641 * This area fits, move on to the previous one. If
4642 * the previous one is the terminal one, we're done.
4643 */
4644 area = (area + nr_vms - 1) % nr_vms;
4645 if (area == term_area)
4646 break;
4647
4648 start = offsets[area];
4649 end = start + sizes[area];
4650 va = pvm_find_va_enclose_addr(base + end);
4651 }
4652
4653 /* we've found a fitting base, insert all va's */
4654 for (area = 0; area < nr_vms; area++) {
4655 int ret;
4656
4657 start = base + offsets[area];
4658 size = sizes[area];
4659
4660 va = pvm_find_va_enclose_addr(start);
4661 if (WARN_ON_ONCE(va == NULL))
4662 /* It is a BUG(), but trigger recovery instead. */
4663 goto recovery;
4664
4665 ret = va_clip(&free_vmap_area_root,
4666 &free_vmap_area_list, va, start, size);
4667 if (WARN_ON_ONCE(unlikely(ret)))
4668 /* It is a BUG(), but trigger recovery instead. */
4669 goto recovery;
4670
4671 /* Allocated area. */
4672 va = vas[area];
4673 va->va_start = start;
4674 va->va_end = start + size;
4675 }
4676
4677 spin_unlock(&free_vmap_area_lock);
4678
4679 /* populate the kasan shadow space */
4680 for (area = 0; area < nr_vms; area++) {
4681 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4682 goto err_free_shadow;
4683 }
4684
4685 /* insert all vm's */
4686 for (area = 0; area < nr_vms; area++) {
4687 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4688
4689 spin_lock(&vn->busy.lock);
4690 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4691 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4692 pcpu_get_vm_areas);
4693 spin_unlock(&vn->busy.lock);
4694 }
4695
4696 /*
4697 * Mark allocated areas as accessible. Do it now as a best-effort
4698 * approach, as they can be mapped outside of vmalloc code.
4699 * With hardware tag-based KASAN, marking is skipped for
4700 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4701 */
4702 for (area = 0; area < nr_vms; area++)
4703 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4704 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4705
4706 kfree(vas);
4707 return vms;
4708
4709recovery:
4710 /*
4711 * Remove previously allocated areas. There is no
4712 * need in removing these areas from the busy tree,
4713 * because they are inserted only on the final step
4714 * and when pcpu_get_vm_areas() is success.
4715 */
4716 while (area--) {
4717 orig_start = vas[area]->va_start;
4718 orig_end = vas[area]->va_end;
4719 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4720 &free_vmap_area_list);
4721 if (va)
4722 kasan_release_vmalloc(orig_start, orig_end,
4723 va->va_start, va->va_end);
4724 vas[area] = NULL;
4725 }
4726
4727overflow:
4728 spin_unlock(&free_vmap_area_lock);
4729 if (!purged) {
4730 reclaim_and_purge_vmap_areas();
4731 purged = true;
4732
4733 /* Before "retry", check if we recover. */
4734 for (area = 0; area < nr_vms; area++) {
4735 if (vas[area])
4736 continue;
4737
4738 vas[area] = kmem_cache_zalloc(
4739 vmap_area_cachep, GFP_KERNEL);
4740 if (!vas[area])
4741 goto err_free;
4742 }
4743
4744 goto retry;
4745 }
4746
4747err_free:
4748 for (area = 0; area < nr_vms; area++) {
4749 if (vas[area])
4750 kmem_cache_free(vmap_area_cachep, vas[area]);
4751
4752 kfree(vms[area]);
4753 }
4754err_free2:
4755 kfree(vas);
4756 kfree(vms);
4757 return NULL;
4758
4759err_free_shadow:
4760 spin_lock(&free_vmap_area_lock);
4761 /*
4762 * We release all the vmalloc shadows, even the ones for regions that
4763 * hadn't been successfully added. This relies on kasan_release_vmalloc
4764 * being able to tolerate this case.
4765 */
4766 for (area = 0; area < nr_vms; area++) {
4767 orig_start = vas[area]->va_start;
4768 orig_end = vas[area]->va_end;
4769 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4770 &free_vmap_area_list);
4771 if (va)
4772 kasan_release_vmalloc(orig_start, orig_end,
4773 va->va_start, va->va_end);
4774 vas[area] = NULL;
4775 kfree(vms[area]);
4776 }
4777 spin_unlock(&free_vmap_area_lock);
4778 kfree(vas);
4779 kfree(vms);
4780 return NULL;
4781}
4782
4783/**
4784 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4785 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4786 * @nr_vms: the number of allocated areas
4787 *
4788 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4789 */
4790void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4791{
4792 int i;
4793
4794 for (i = 0; i < nr_vms; i++)
4795 free_vm_area(vms[i]);
4796 kfree(vms);
4797}
4798#endif /* CONFIG_SMP */
4799
4800#ifdef CONFIG_PRINTK
4801bool vmalloc_dump_obj(void *object)
4802{
4803 const void *caller;
4804 struct vm_struct *vm;
4805 struct vmap_area *va;
4806 struct vmap_node *vn;
4807 unsigned long addr;
4808 unsigned int nr_pages;
4809
4810 addr = PAGE_ALIGN((unsigned long) object);
4811 vn = addr_to_node(addr);
4812
4813 if (!spin_trylock(&vn->busy.lock))
4814 return false;
4815
4816 va = __find_vmap_area(addr, &vn->busy.root);
4817 if (!va || !va->vm) {
4818 spin_unlock(&vn->busy.lock);
4819 return false;
4820 }
4821
4822 vm = va->vm;
4823 addr = (unsigned long) vm->addr;
4824 caller = vm->caller;
4825 nr_pages = vm->nr_pages;
4826 spin_unlock(&vn->busy.lock);
4827
4828 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4829 nr_pages, addr, caller);
4830
4831 return true;
4832}
4833#endif
4834
4835#ifdef CONFIG_PROC_FS
4836static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4837{
4838 if (IS_ENABLED(CONFIG_NUMA)) {
4839 unsigned int nr, *counters = m->private;
4840 unsigned int step = 1U << vm_area_page_order(v);
4841
4842 if (!counters)
4843 return;
4844
4845 if (v->flags & VM_UNINITIALIZED)
4846 return;
4847 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4848 smp_rmb();
4849
4850 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4851
4852 for (nr = 0; nr < v->nr_pages; nr += step)
4853 counters[page_to_nid(v->pages[nr])] += step;
4854 for_each_node_state(nr, N_HIGH_MEMORY)
4855 if (counters[nr])
4856 seq_printf(m, " N%u=%u", nr, counters[nr]);
4857 }
4858}
4859
4860static void show_purge_info(struct seq_file *m)
4861{
4862 struct vmap_node *vn;
4863 struct vmap_area *va;
4864 int i;
4865
4866 for (i = 0; i < nr_vmap_nodes; i++) {
4867 vn = &vmap_nodes[i];
4868
4869 spin_lock(&vn->lazy.lock);
4870 list_for_each_entry(va, &vn->lazy.head, list) {
4871 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4872 (void *)va->va_start, (void *)va->va_end,
4873 va->va_end - va->va_start);
4874 }
4875 spin_unlock(&vn->lazy.lock);
4876 }
4877}
4878
4879static int vmalloc_info_show(struct seq_file *m, void *p)
4880{
4881 struct vmap_node *vn;
4882 struct vmap_area *va;
4883 struct vm_struct *v;
4884 int i;
4885
4886 for (i = 0; i < nr_vmap_nodes; i++) {
4887 vn = &vmap_nodes[i];
4888
4889 spin_lock(&vn->busy.lock);
4890 list_for_each_entry(va, &vn->busy.head, list) {
4891 if (!va->vm) {
4892 if (va->flags & VMAP_RAM)
4893 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4894 (void *)va->va_start, (void *)va->va_end,
4895 va->va_end - va->va_start);
4896
4897 continue;
4898 }
4899
4900 v = va->vm;
4901
4902 seq_printf(m, "0x%pK-0x%pK %7ld",
4903 v->addr, v->addr + v->size, v->size);
4904
4905 if (v->caller)
4906 seq_printf(m, " %pS", v->caller);
4907
4908 if (v->nr_pages)
4909 seq_printf(m, " pages=%d", v->nr_pages);
4910
4911 if (v->phys_addr)
4912 seq_printf(m, " phys=%pa", &v->phys_addr);
4913
4914 if (v->flags & VM_IOREMAP)
4915 seq_puts(m, " ioremap");
4916
4917 if (v->flags & VM_SPARSE)
4918 seq_puts(m, " sparse");
4919
4920 if (v->flags & VM_ALLOC)
4921 seq_puts(m, " vmalloc");
4922
4923 if (v->flags & VM_MAP)
4924 seq_puts(m, " vmap");
4925
4926 if (v->flags & VM_USERMAP)
4927 seq_puts(m, " user");
4928
4929 if (v->flags & VM_DMA_COHERENT)
4930 seq_puts(m, " dma-coherent");
4931
4932 if (is_vmalloc_addr(v->pages))
4933 seq_puts(m, " vpages");
4934
4935 show_numa_info(m, v);
4936 seq_putc(m, '\n');
4937 }
4938 spin_unlock(&vn->busy.lock);
4939 }
4940
4941 /*
4942 * As a final step, dump "unpurged" areas.
4943 */
4944 show_purge_info(m);
4945 return 0;
4946}
4947
4948static int __init proc_vmalloc_init(void)
4949{
4950 void *priv_data = NULL;
4951
4952 if (IS_ENABLED(CONFIG_NUMA))
4953 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4954
4955 proc_create_single_data("vmallocinfo",
4956 0400, NULL, vmalloc_info_show, priv_data);
4957
4958 return 0;
4959}
4960module_init(proc_vmalloc_init);
4961
4962#endif
4963
4964static void __init vmap_init_free_space(void)
4965{
4966 unsigned long vmap_start = 1;
4967 const unsigned long vmap_end = ULONG_MAX;
4968 struct vmap_area *free;
4969 struct vm_struct *busy;
4970
4971 /*
4972 * B F B B B F
4973 * -|-----|.....|-----|-----|-----|.....|-
4974 * | The KVA space |
4975 * |<--------------------------------->|
4976 */
4977 for (busy = vmlist; busy; busy = busy->next) {
4978 if ((unsigned long) busy->addr - vmap_start > 0) {
4979 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4980 if (!WARN_ON_ONCE(!free)) {
4981 free->va_start = vmap_start;
4982 free->va_end = (unsigned long) busy->addr;
4983
4984 insert_vmap_area_augment(free, NULL,
4985 &free_vmap_area_root,
4986 &free_vmap_area_list);
4987 }
4988 }
4989
4990 vmap_start = (unsigned long) busy->addr + busy->size;
4991 }
4992
4993 if (vmap_end - vmap_start > 0) {
4994 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4995 if (!WARN_ON_ONCE(!free)) {
4996 free->va_start = vmap_start;
4997 free->va_end = vmap_end;
4998
4999 insert_vmap_area_augment(free, NULL,
5000 &free_vmap_area_root,
5001 &free_vmap_area_list);
5002 }
5003 }
5004}
5005
5006static void vmap_init_nodes(void)
5007{
5008 struct vmap_node *vn;
5009 int i, n;
5010
5011#if BITS_PER_LONG == 64
5012 /*
5013 * A high threshold of max nodes is fixed and bound to 128,
5014 * thus a scale factor is 1 for systems where number of cores
5015 * are less or equal to specified threshold.
5016 *
5017 * As for NUMA-aware notes. For bigger systems, for example
5018 * NUMA with multi-sockets, where we can end-up with thousands
5019 * of cores in total, a "sub-numa-clustering" should be added.
5020 *
5021 * In this case a NUMA domain is considered as a single entity
5022 * with dedicated sub-nodes in it which describe one group or
5023 * set of cores. Therefore a per-domain purging is supposed to
5024 * be added as well as a per-domain balancing.
5025 */
5026 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5027
5028 if (n > 1) {
5029 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5030 if (vn) {
5031 /* Node partition is 16 pages. */
5032 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5033 nr_vmap_nodes = n;
5034 vmap_nodes = vn;
5035 } else {
5036 pr_err("Failed to allocate an array. Disable a node layer\n");
5037 }
5038 }
5039#endif
5040
5041 for (n = 0; n < nr_vmap_nodes; n++) {
5042 vn = &vmap_nodes[n];
5043 vn->busy.root = RB_ROOT;
5044 INIT_LIST_HEAD(&vn->busy.head);
5045 spin_lock_init(&vn->busy.lock);
5046
5047 vn->lazy.root = RB_ROOT;
5048 INIT_LIST_HEAD(&vn->lazy.head);
5049 spin_lock_init(&vn->lazy.lock);
5050
5051 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5052 INIT_LIST_HEAD(&vn->pool[i].head);
5053 WRITE_ONCE(vn->pool[i].len, 0);
5054 }
5055
5056 spin_lock_init(&vn->pool_lock);
5057 }
5058}
5059
5060static unsigned long
5061vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5062{
5063 unsigned long count;
5064 struct vmap_node *vn;
5065 int i, j;
5066
5067 for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5068 vn = &vmap_nodes[i];
5069
5070 for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5071 count += READ_ONCE(vn->pool[j].len);
5072 }
5073
5074 return count ? count : SHRINK_EMPTY;
5075}
5076
5077static unsigned long
5078vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5079{
5080 int i;
5081
5082 for (i = 0; i < nr_vmap_nodes; i++)
5083 decay_va_pool_node(&vmap_nodes[i], true);
5084
5085 return SHRINK_STOP;
5086}
5087
5088void __init vmalloc_init(void)
5089{
5090 struct shrinker *vmap_node_shrinker;
5091 struct vmap_area *va;
5092 struct vmap_node *vn;
5093 struct vm_struct *tmp;
5094 int i;
5095
5096 /*
5097 * Create the cache for vmap_area objects.
5098 */
5099 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5100
5101 for_each_possible_cpu(i) {
5102 struct vmap_block_queue *vbq;
5103 struct vfree_deferred *p;
5104
5105 vbq = &per_cpu(vmap_block_queue, i);
5106 spin_lock_init(&vbq->lock);
5107 INIT_LIST_HEAD(&vbq->free);
5108 p = &per_cpu(vfree_deferred, i);
5109 init_llist_head(&p->list);
5110 INIT_WORK(&p->wq, delayed_vfree_work);
5111 xa_init(&vbq->vmap_blocks);
5112 }
5113
5114 /*
5115 * Setup nodes before importing vmlist.
5116 */
5117 vmap_init_nodes();
5118
5119 /* Import existing vmlist entries. */
5120 for (tmp = vmlist; tmp; tmp = tmp->next) {
5121 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5122 if (WARN_ON_ONCE(!va))
5123 continue;
5124
5125 va->va_start = (unsigned long)tmp->addr;
5126 va->va_end = va->va_start + tmp->size;
5127 va->vm = tmp;
5128
5129 vn = addr_to_node(va->va_start);
5130 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5131 }
5132
5133 /*
5134 * Now we can initialize a free vmap space.
5135 */
5136 vmap_init_free_space();
5137 vmap_initialized = true;
5138
5139 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5140 if (!vmap_node_shrinker) {
5141 pr_err("Failed to allocate vmap-node shrinker!\n");
5142 return;
5143 }
5144
5145 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5146 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5147 shrinker_register(vmap_node_shrinker);
5148}