Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * folio_lock
54 */
55
56#include <linux/mm.h>
57#include <linux/sched/mm.h>
58#include <linux/sched/task.h>
59#include <linux/pagemap.h>
60#include <linux/swap.h>
61#include <linux/swapops.h>
62#include <linux/slab.h>
63#include <linux/init.h>
64#include <linux/ksm.h>
65#include <linux/rmap.h>
66#include <linux/rcupdate.h>
67#include <linux/export.h>
68#include <linux/memcontrol.h>
69#include <linux/mmu_notifier.h>
70#include <linux/migrate.h>
71#include <linux/hugetlb.h>
72#include <linux/huge_mm.h>
73#include <linux/backing-dev.h>
74#include <linux/page_idle.h>
75#include <linux/memremap.h>
76#include <linux/userfaultfd_k.h>
77#include <linux/mm_inline.h>
78
79#include <asm/tlbflush.h>
80
81#define CREATE_TRACE_POINTS
82#include <trace/events/tlb.h>
83#include <trace/events/migrate.h>
84
85#include "internal.h"
86
87static struct kmem_cache *anon_vma_cachep;
88static struct kmem_cache *anon_vma_chain_cachep;
89
90static inline struct anon_vma *anon_vma_alloc(void)
91{
92 struct anon_vma *anon_vma;
93
94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 if (anon_vma) {
96 atomic_set(&anon_vma->refcount, 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
100 /*
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
103 */
104 anon_vma->root = anon_vma;
105 }
106
107 return anon_vma;
108}
109
110static inline void anon_vma_free(struct anon_vma *anon_vma)
111{
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113
114 /*
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
117 * freed.
118 *
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 *
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
125 * LOCK MB
126 * atomic_read() rwsem_is_locked()
127 *
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
130 */
131 might_sleep();
132 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
135 }
136
137 kmem_cache_free(anon_vma_cachep, anon_vma);
138}
139
140static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141{
142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143}
144
145static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146{
147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148}
149
150static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
153{
154 avc->vma = vma;
155 avc->anon_vma = anon_vma;
156 list_add(&avc->same_vma, &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158}
159
160/**
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
163 *
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
167 *
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
174 *
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
180 *
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
184 * an anon_vma.
185 */
186int __anon_vma_prepare(struct vm_area_struct *vma)
187{
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
190 struct anon_vma_chain *avc;
191
192 mmap_assert_locked(mm);
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233}
234
235/*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
243static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244{
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253}
254
255static inline void unlock_anon_vma_root(struct anon_vma *root)
256{
257 if (root)
258 up_write(&root->rwsem);
259}
260
261/*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
270 * src->anon_vma).
271 *
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
279 */
280int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281{
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
284
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
287
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
291 root = NULL;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto enomem_failure;
295 }
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
299
300 /*
301 * Reuse existing anon_vma if it has no vma and only one
302 * anon_vma child.
303 *
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
306 */
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
311 }
312 if (dst->anon_vma)
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
315 return 0;
316
317 enomem_failure:
318 /*
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
323 */
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
326 return -ENOMEM;
327}
328
329/*
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
333 */
334int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335{
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
338 int error;
339
340 /* Don't bother if the parent process has no anon_vma here. */
341 if (!pvma->anon_vma)
342 return 0;
343
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
346
347 /*
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
350 */
351 error = anon_vma_clone(vma, pvma);
352 if (error)
353 return error;
354
355 /* An existing anon_vma has been reused, all done then. */
356 if (vma->anon_vma)
357 return 0;
358
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
361 if (!anon_vma)
362 goto out_error;
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
365 if (!avc)
366 goto out_error_free_anon_vma;
367
368 /*
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
371 */
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
374 /*
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
378 */
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
386
387 return 0;
388
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
391 out_error:
392 unlink_anon_vmas(vma);
393 return -ENOMEM;
394}
395
396void unlink_anon_vmas(struct vm_area_struct *vma)
397{
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
400
401 /*
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 */
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
407
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410
411 /*
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
414 */
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
417 continue;
418 }
419
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
422 }
423 if (vma->anon_vma) {
424 vma->anon_vma->num_active_vmas--;
425
426 /*
427 * vma would still be needed after unlink, and anon_vma will be prepared
428 * when handle fault.
429 */
430 vma->anon_vma = NULL;
431 }
432 unlock_anon_vma_root(root);
433
434 /*
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
438 */
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
441
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
445
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
448 }
449}
450
451static void anon_vma_ctor(void *data)
452{
453 struct anon_vma *anon_vma = data;
454
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
458}
459
460void __init anon_vma_init(void)
461{
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 anon_vma_ctor);
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
467}
468
469/*
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471 *
472 * Since there is no serialization what so ever against folio_remove_rmap_*()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
475 *
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
478 *
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483 *
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
487 *
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
491 * those.
492 *
493 * NOTE: the caller should normally hold folio lock when calling this. If
494 * not, the caller needs to double check the anon_vma didn't change after
495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497 * which has already covered that, and comment above remap_pages().
498 */
499struct anon_vma *folio_get_anon_vma(struct folio *folio)
500{
501 struct anon_vma *anon_vma = NULL;
502 unsigned long anon_mapping;
503
504 rcu_read_lock();
505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 goto out;
508 if (!folio_mapped(folio))
509 goto out;
510
511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 anon_vma = NULL;
514 goto out;
515 }
516
517 /*
518 * If this folio is still mapped, then its anon_vma cannot have been
519 * freed. But if it has been unmapped, we have no security against the
520 * anon_vma structure being freed and reused (for another anon_vma:
521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 * above cannot corrupt).
523 */
524 if (!folio_mapped(folio)) {
525 rcu_read_unlock();
526 put_anon_vma(anon_vma);
527 return NULL;
528 }
529out:
530 rcu_read_unlock();
531
532 return anon_vma;
533}
534
535/*
536 * Similar to folio_get_anon_vma() except it locks the anon_vma.
537 *
538 * Its a little more complex as it tries to keep the fast path to a single
539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540 * reference like with folio_get_anon_vma() and then block on the mutex
541 * on !rwc->try_lock case.
542 */
543struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
544 struct rmap_walk_control *rwc)
545{
546 struct anon_vma *anon_vma = NULL;
547 struct anon_vma *root_anon_vma;
548 unsigned long anon_mapping;
549
550retry:
551 rcu_read_lock();
552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 goto out;
555 if (!folio_mapped(folio))
556 goto out;
557
558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 root_anon_vma = READ_ONCE(anon_vma->root);
560 if (down_read_trylock(&root_anon_vma->rwsem)) {
561 /*
562 * folio_move_anon_rmap() might have changed the anon_vma as we
563 * might not hold the folio lock here.
564 */
565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 anon_mapping)) {
567 up_read(&root_anon_vma->rwsem);
568 rcu_read_unlock();
569 goto retry;
570 }
571
572 /*
573 * If the folio is still mapped, then this anon_vma is still
574 * its anon_vma, and holding the mutex ensures that it will
575 * not go away, see anon_vma_free().
576 */
577 if (!folio_mapped(folio)) {
578 up_read(&root_anon_vma->rwsem);
579 anon_vma = NULL;
580 }
581 goto out;
582 }
583
584 if (rwc && rwc->try_lock) {
585 anon_vma = NULL;
586 rwc->contended = true;
587 goto out;
588 }
589
590 /* trylock failed, we got to sleep */
591 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 anon_vma = NULL;
593 goto out;
594 }
595
596 if (!folio_mapped(folio)) {
597 rcu_read_unlock();
598 put_anon_vma(anon_vma);
599 return NULL;
600 }
601
602 /* we pinned the anon_vma, its safe to sleep */
603 rcu_read_unlock();
604 anon_vma_lock_read(anon_vma);
605
606 /*
607 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 * not hold the folio lock here.
609 */
610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 anon_mapping)) {
612 anon_vma_unlock_read(anon_vma);
613 put_anon_vma(anon_vma);
614 anon_vma = NULL;
615 goto retry;
616 }
617
618 if (atomic_dec_and_test(&anon_vma->refcount)) {
619 /*
620 * Oops, we held the last refcount, release the lock
621 * and bail -- can't simply use put_anon_vma() because
622 * we'll deadlock on the anon_vma_lock_write() recursion.
623 */
624 anon_vma_unlock_read(anon_vma);
625 __put_anon_vma(anon_vma);
626 anon_vma = NULL;
627 }
628
629 return anon_vma;
630
631out:
632 rcu_read_unlock();
633 return anon_vma;
634}
635
636#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637/*
638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639 * important if a PTE was dirty when it was unmapped that it's flushed
640 * before any IO is initiated on the page to prevent lost writes. Similarly,
641 * it must be flushed before freeing to prevent data leakage.
642 */
643void try_to_unmap_flush(void)
644{
645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
646
647 if (!tlb_ubc->flush_required)
648 return;
649
650 arch_tlbbatch_flush(&tlb_ubc->arch);
651 tlb_ubc->flush_required = false;
652 tlb_ubc->writable = false;
653}
654
655/* Flush iff there are potentially writable TLB entries that can race with IO */
656void try_to_unmap_flush_dirty(void)
657{
658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
659
660 if (tlb_ubc->writable)
661 try_to_unmap_flush();
662}
663
664/*
665 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667 */
668#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
669#define TLB_FLUSH_BATCH_PENDING_MASK \
670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671#define TLB_FLUSH_BATCH_PENDING_LARGE \
672 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
673
674static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 unsigned long uaddr)
676{
677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
678 int batch;
679 bool writable = pte_dirty(pteval);
680
681 if (!pte_accessible(mm, pteval))
682 return;
683
684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 tlb_ubc->flush_required = true;
686
687 /*
688 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 * before the PTE is cleared.
690 */
691 barrier();
692 batch = atomic_read(&mm->tlb_flush_batched);
693retry:
694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 /*
696 * Prevent `pending' from catching up with `flushed' because of
697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
698 * `pending' becomes large.
699 */
700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 goto retry;
702 } else {
703 atomic_inc(&mm->tlb_flush_batched);
704 }
705
706 /*
707 * If the PTE was dirty then it's best to assume it's writable. The
708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 * before the page is queued for IO.
710 */
711 if (writable)
712 tlb_ubc->writable = true;
713}
714
715/*
716 * Returns true if the TLB flush should be deferred to the end of a batch of
717 * unmap operations to reduce IPIs.
718 */
719static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720{
721 if (!(flags & TTU_BATCH_FLUSH))
722 return false;
723
724 return arch_tlbbatch_should_defer(mm);
725}
726
727/*
728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730 * operation such as mprotect or munmap to race between reclaim unmapping
731 * the page and flushing the page. If this race occurs, it potentially allows
732 * access to data via a stale TLB entry. Tracking all mm's that have TLB
733 * batching in flight would be expensive during reclaim so instead track
734 * whether TLB batching occurred in the past and if so then do a flush here
735 * if required. This will cost one additional flush per reclaim cycle paid
736 * by the first operation at risk such as mprotect and mumap.
737 *
738 * This must be called under the PTL so that an access to tlb_flush_batched
739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740 * via the PTL.
741 */
742void flush_tlb_batched_pending(struct mm_struct *mm)
743{
744 int batch = atomic_read(&mm->tlb_flush_batched);
745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747
748 if (pending != flushed) {
749 arch_flush_tlb_batched_pending(mm);
750 /*
751 * If the new TLB flushing is pending during flushing, leave
752 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 */
754 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 }
757}
758#else
759static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 unsigned long uaddr)
761{
762}
763
764static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765{
766 return false;
767}
768#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769
770/*
771 * At what user virtual address is page expected in vma?
772 * Caller should check the page is actually part of the vma.
773 */
774unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
775{
776 struct folio *folio = page_folio(page);
777 pgoff_t pgoff;
778
779 if (folio_test_anon(folio)) {
780 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
781 /*
782 * Note: swapoff's unuse_vma() is more efficient with this
783 * check, and needs it to match anon_vma when KSM is active.
784 */
785 if (!vma->anon_vma || !page__anon_vma ||
786 vma->anon_vma->root != page__anon_vma->root)
787 return -EFAULT;
788 } else if (!vma->vm_file) {
789 return -EFAULT;
790 } else if (vma->vm_file->f_mapping != folio->mapping) {
791 return -EFAULT;
792 }
793
794 /* The !page__anon_vma above handles KSM folios */
795 pgoff = folio->index + folio_page_idx(folio, page);
796 return vma_address(vma, pgoff, 1);
797}
798
799/*
800 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
801 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
802 * represents.
803 */
804pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
805{
806 pgd_t *pgd;
807 p4d_t *p4d;
808 pud_t *pud;
809 pmd_t *pmd = NULL;
810
811 pgd = pgd_offset(mm, address);
812 if (!pgd_present(*pgd))
813 goto out;
814
815 p4d = p4d_offset(pgd, address);
816 if (!p4d_present(*p4d))
817 goto out;
818
819 pud = pud_offset(p4d, address);
820 if (!pud_present(*pud))
821 goto out;
822
823 pmd = pmd_offset(pud, address);
824out:
825 return pmd;
826}
827
828struct folio_referenced_arg {
829 int mapcount;
830 int referenced;
831 unsigned long vm_flags;
832 struct mem_cgroup *memcg;
833};
834
835/*
836 * arg: folio_referenced_arg will be passed
837 */
838static bool folio_referenced_one(struct folio *folio,
839 struct vm_area_struct *vma, unsigned long address, void *arg)
840{
841 struct folio_referenced_arg *pra = arg;
842 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
843 int referenced = 0;
844 unsigned long start = address, ptes = 0;
845
846 while (page_vma_mapped_walk(&pvmw)) {
847 address = pvmw.address;
848
849 if (vma->vm_flags & VM_LOCKED) {
850 if (!folio_test_large(folio) || !pvmw.pte) {
851 /* Restore the mlock which got missed */
852 mlock_vma_folio(folio, vma);
853 page_vma_mapped_walk_done(&pvmw);
854 pra->vm_flags |= VM_LOCKED;
855 return false; /* To break the loop */
856 }
857 /*
858 * For large folio fully mapped to VMA, will
859 * be handled after the pvmw loop.
860 *
861 * For large folio cross VMA boundaries, it's
862 * expected to be picked by page reclaim. But
863 * should skip reference of pages which are in
864 * the range of VM_LOCKED vma. As page reclaim
865 * should just count the reference of pages out
866 * the range of VM_LOCKED vma.
867 */
868 ptes++;
869 pra->mapcount--;
870 continue;
871 }
872
873 if (pvmw.pte) {
874 if (lru_gen_enabled() &&
875 pte_young(ptep_get(pvmw.pte))) {
876 lru_gen_look_around(&pvmw);
877 referenced++;
878 }
879
880 if (ptep_clear_flush_young_notify(vma, address,
881 pvmw.pte))
882 referenced++;
883 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
884 if (pmdp_clear_flush_young_notify(vma, address,
885 pvmw.pmd))
886 referenced++;
887 } else {
888 /* unexpected pmd-mapped folio? */
889 WARN_ON_ONCE(1);
890 }
891
892 pra->mapcount--;
893 }
894
895 if ((vma->vm_flags & VM_LOCKED) &&
896 folio_test_large(folio) &&
897 folio_within_vma(folio, vma)) {
898 unsigned long s_align, e_align;
899
900 s_align = ALIGN_DOWN(start, PMD_SIZE);
901 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
902
903 /* folio doesn't cross page table boundary and fully mapped */
904 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
905 /* Restore the mlock which got missed */
906 mlock_vma_folio(folio, vma);
907 pra->vm_flags |= VM_LOCKED;
908 return false; /* To break the loop */
909 }
910 }
911
912 if (referenced)
913 folio_clear_idle(folio);
914 if (folio_test_clear_young(folio))
915 referenced++;
916
917 if (referenced) {
918 pra->referenced++;
919 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
920 }
921
922 if (!pra->mapcount)
923 return false; /* To break the loop */
924
925 return true;
926}
927
928static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
929{
930 struct folio_referenced_arg *pra = arg;
931 struct mem_cgroup *memcg = pra->memcg;
932
933 /*
934 * Ignore references from this mapping if it has no recency. If the
935 * folio has been used in another mapping, we will catch it; if this
936 * other mapping is already gone, the unmap path will have set the
937 * referenced flag or activated the folio in zap_pte_range().
938 */
939 if (!vma_has_recency(vma))
940 return true;
941
942 /*
943 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
944 * of references from different cgroups.
945 */
946 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
947 return true;
948
949 return false;
950}
951
952/**
953 * folio_referenced() - Test if the folio was referenced.
954 * @folio: The folio to test.
955 * @is_locked: Caller holds lock on the folio.
956 * @memcg: target memory cgroup
957 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
958 *
959 * Quick test_and_clear_referenced for all mappings of a folio,
960 *
961 * Return: The number of mappings which referenced the folio. Return -1 if
962 * the function bailed out due to rmap lock contention.
963 */
964int folio_referenced(struct folio *folio, int is_locked,
965 struct mem_cgroup *memcg, unsigned long *vm_flags)
966{
967 bool we_locked = false;
968 struct folio_referenced_arg pra = {
969 .mapcount = folio_mapcount(folio),
970 .memcg = memcg,
971 };
972 struct rmap_walk_control rwc = {
973 .rmap_one = folio_referenced_one,
974 .arg = (void *)&pra,
975 .anon_lock = folio_lock_anon_vma_read,
976 .try_lock = true,
977 .invalid_vma = invalid_folio_referenced_vma,
978 };
979
980 *vm_flags = 0;
981 if (!pra.mapcount)
982 return 0;
983
984 if (!folio_raw_mapping(folio))
985 return 0;
986
987 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
988 we_locked = folio_trylock(folio);
989 if (!we_locked)
990 return 1;
991 }
992
993 rmap_walk(folio, &rwc);
994 *vm_flags = pra.vm_flags;
995
996 if (we_locked)
997 folio_unlock(folio);
998
999 return rwc.contended ? -1 : pra.referenced;
1000}
1001
1002static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1003{
1004 int cleaned = 0;
1005 struct vm_area_struct *vma = pvmw->vma;
1006 struct mmu_notifier_range range;
1007 unsigned long address = pvmw->address;
1008
1009 /*
1010 * We have to assume the worse case ie pmd for invalidation. Note that
1011 * the folio can not be freed from this function.
1012 */
1013 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1014 vma->vm_mm, address, vma_address_end(pvmw));
1015 mmu_notifier_invalidate_range_start(&range);
1016
1017 while (page_vma_mapped_walk(pvmw)) {
1018 int ret = 0;
1019
1020 address = pvmw->address;
1021 if (pvmw->pte) {
1022 pte_t *pte = pvmw->pte;
1023 pte_t entry = ptep_get(pte);
1024
1025 if (!pte_dirty(entry) && !pte_write(entry))
1026 continue;
1027
1028 flush_cache_page(vma, address, pte_pfn(entry));
1029 entry = ptep_clear_flush(vma, address, pte);
1030 entry = pte_wrprotect(entry);
1031 entry = pte_mkclean(entry);
1032 set_pte_at(vma->vm_mm, address, pte, entry);
1033 ret = 1;
1034 } else {
1035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1036 pmd_t *pmd = pvmw->pmd;
1037 pmd_t entry;
1038
1039 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1040 continue;
1041
1042 flush_cache_range(vma, address,
1043 address + HPAGE_PMD_SIZE);
1044 entry = pmdp_invalidate(vma, address, pmd);
1045 entry = pmd_wrprotect(entry);
1046 entry = pmd_mkclean(entry);
1047 set_pmd_at(vma->vm_mm, address, pmd, entry);
1048 ret = 1;
1049#else
1050 /* unexpected pmd-mapped folio? */
1051 WARN_ON_ONCE(1);
1052#endif
1053 }
1054
1055 if (ret)
1056 cleaned++;
1057 }
1058
1059 mmu_notifier_invalidate_range_end(&range);
1060
1061 return cleaned;
1062}
1063
1064static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1065 unsigned long address, void *arg)
1066{
1067 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1068 int *cleaned = arg;
1069
1070 *cleaned += page_vma_mkclean_one(&pvmw);
1071
1072 return true;
1073}
1074
1075static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1076{
1077 if (vma->vm_flags & VM_SHARED)
1078 return false;
1079
1080 return true;
1081}
1082
1083int folio_mkclean(struct folio *folio)
1084{
1085 int cleaned = 0;
1086 struct address_space *mapping;
1087 struct rmap_walk_control rwc = {
1088 .arg = (void *)&cleaned,
1089 .rmap_one = page_mkclean_one,
1090 .invalid_vma = invalid_mkclean_vma,
1091 };
1092
1093 BUG_ON(!folio_test_locked(folio));
1094
1095 if (!folio_mapped(folio))
1096 return 0;
1097
1098 mapping = folio_mapping(folio);
1099 if (!mapping)
1100 return 0;
1101
1102 rmap_walk(folio, &rwc);
1103
1104 return cleaned;
1105}
1106EXPORT_SYMBOL_GPL(folio_mkclean);
1107
1108/**
1109 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1110 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1111 * within the @vma of shared mappings. And since clean PTEs
1112 * should also be readonly, write protects them too.
1113 * @pfn: start pfn.
1114 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1115 * @pgoff: page offset that the @pfn mapped with.
1116 * @vma: vma that @pfn mapped within.
1117 *
1118 * Returns the number of cleaned PTEs (including PMDs).
1119 */
1120int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1121 struct vm_area_struct *vma)
1122{
1123 struct page_vma_mapped_walk pvmw = {
1124 .pfn = pfn,
1125 .nr_pages = nr_pages,
1126 .pgoff = pgoff,
1127 .vma = vma,
1128 .flags = PVMW_SYNC,
1129 };
1130
1131 if (invalid_mkclean_vma(vma, NULL))
1132 return 0;
1133
1134 pvmw.address = vma_address(vma, pgoff, nr_pages);
1135 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1136
1137 return page_vma_mkclean_one(&pvmw);
1138}
1139
1140static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1141 struct page *page, int nr_pages, enum rmap_level level,
1142 int *nr_pmdmapped)
1143{
1144 atomic_t *mapped = &folio->_nr_pages_mapped;
1145 const int orig_nr_pages = nr_pages;
1146 int first, nr = 0;
1147
1148 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1149
1150 switch (level) {
1151 case RMAP_LEVEL_PTE:
1152 if (!folio_test_large(folio)) {
1153 nr = atomic_inc_and_test(&page->_mapcount);
1154 break;
1155 }
1156
1157 do {
1158 first = atomic_inc_and_test(&page->_mapcount);
1159 if (first) {
1160 first = atomic_inc_return_relaxed(mapped);
1161 if (first < ENTIRELY_MAPPED)
1162 nr++;
1163 }
1164 } while (page++, --nr_pages > 0);
1165 atomic_add(orig_nr_pages, &folio->_large_mapcount);
1166 break;
1167 case RMAP_LEVEL_PMD:
1168 first = atomic_inc_and_test(&folio->_entire_mapcount);
1169 if (first) {
1170 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1171 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1172 *nr_pmdmapped = folio_nr_pages(folio);
1173 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1174 /* Raced ahead of a remove and another add? */
1175 if (unlikely(nr < 0))
1176 nr = 0;
1177 } else {
1178 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1179 nr = 0;
1180 }
1181 }
1182 atomic_inc(&folio->_large_mapcount);
1183 break;
1184 }
1185 return nr;
1186}
1187
1188/**
1189 * folio_move_anon_rmap - move a folio to our anon_vma
1190 * @folio: The folio to move to our anon_vma
1191 * @vma: The vma the folio belongs to
1192 *
1193 * When a folio belongs exclusively to one process after a COW event,
1194 * that folio can be moved into the anon_vma that belongs to just that
1195 * process, so the rmap code will not search the parent or sibling processes.
1196 */
1197void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1198{
1199 void *anon_vma = vma->anon_vma;
1200
1201 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1202 VM_BUG_ON_VMA(!anon_vma, vma);
1203
1204 anon_vma += PAGE_MAPPING_ANON;
1205 /*
1206 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1207 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1208 * folio_test_anon()) will not see one without the other.
1209 */
1210 WRITE_ONCE(folio->mapping, anon_vma);
1211}
1212
1213/**
1214 * __folio_set_anon - set up a new anonymous rmap for a folio
1215 * @folio: The folio to set up the new anonymous rmap for.
1216 * @vma: VM area to add the folio to.
1217 * @address: User virtual address of the mapping
1218 * @exclusive: Whether the folio is exclusive to the process.
1219 */
1220static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1221 unsigned long address, bool exclusive)
1222{
1223 struct anon_vma *anon_vma = vma->anon_vma;
1224
1225 BUG_ON(!anon_vma);
1226
1227 /*
1228 * If the folio isn't exclusive to this vma, we must use the _oldest_
1229 * possible anon_vma for the folio mapping!
1230 */
1231 if (!exclusive)
1232 anon_vma = anon_vma->root;
1233
1234 /*
1235 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1236 * Make sure the compiler doesn't split the stores of anon_vma and
1237 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1238 * could mistake the mapping for a struct address_space and crash.
1239 */
1240 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1241 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1242 folio->index = linear_page_index(vma, address);
1243}
1244
1245/**
1246 * __page_check_anon_rmap - sanity check anonymous rmap addition
1247 * @folio: The folio containing @page.
1248 * @page: the page to check the mapping of
1249 * @vma: the vm area in which the mapping is added
1250 * @address: the user virtual address mapped
1251 */
1252static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1253 struct vm_area_struct *vma, unsigned long address)
1254{
1255 /*
1256 * The page's anon-rmap details (mapping and index) are guaranteed to
1257 * be set up correctly at this point.
1258 *
1259 * We have exclusion against folio_add_anon_rmap_*() because the caller
1260 * always holds the page locked.
1261 *
1262 * We have exclusion against folio_add_new_anon_rmap because those pages
1263 * are initially only visible via the pagetables, and the pte is locked
1264 * over the call to folio_add_new_anon_rmap.
1265 */
1266 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1267 folio);
1268 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1269 page);
1270}
1271
1272static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1273{
1274 int idx;
1275
1276 if (nr) {
1277 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1278 __lruvec_stat_mod_folio(folio, idx, nr);
1279 }
1280 if (nr_pmdmapped) {
1281 if (folio_test_anon(folio)) {
1282 idx = NR_ANON_THPS;
1283 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1284 } else {
1285 /* NR_*_PMDMAPPED are not maintained per-memcg */
1286 idx = folio_test_swapbacked(folio) ?
1287 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1288 __mod_node_page_state(folio_pgdat(folio), idx,
1289 nr_pmdmapped);
1290 }
1291 }
1292}
1293
1294static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1295 struct page *page, int nr_pages, struct vm_area_struct *vma,
1296 unsigned long address, rmap_t flags, enum rmap_level level)
1297{
1298 int i, nr, nr_pmdmapped = 0;
1299
1300 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1301
1302 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1303
1304 if (likely(!folio_test_ksm(folio)))
1305 __page_check_anon_rmap(folio, page, vma, address);
1306
1307 __folio_mod_stat(folio, nr, nr_pmdmapped);
1308
1309 if (flags & RMAP_EXCLUSIVE) {
1310 switch (level) {
1311 case RMAP_LEVEL_PTE:
1312 for (i = 0; i < nr_pages; i++)
1313 SetPageAnonExclusive(page + i);
1314 break;
1315 case RMAP_LEVEL_PMD:
1316 SetPageAnonExclusive(page);
1317 break;
1318 }
1319 }
1320 for (i = 0; i < nr_pages; i++) {
1321 struct page *cur_page = page + i;
1322
1323 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1324 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1325 (folio_test_large(folio) &&
1326 folio_entire_mapcount(folio) > 1)) &&
1327 PageAnonExclusive(cur_page), folio);
1328 }
1329
1330 /*
1331 * For large folio, only mlock it if it's fully mapped to VMA. It's
1332 * not easy to check whether the large folio is fully mapped to VMA
1333 * here. Only mlock normal 4K folio and leave page reclaim to handle
1334 * large folio.
1335 */
1336 if (!folio_test_large(folio))
1337 mlock_vma_folio(folio, vma);
1338}
1339
1340/**
1341 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1342 * @folio: The folio to add the mappings to
1343 * @page: The first page to add
1344 * @nr_pages: The number of pages which will be mapped
1345 * @vma: The vm area in which the mappings are added
1346 * @address: The user virtual address of the first page to map
1347 * @flags: The rmap flags
1348 *
1349 * The page range of folio is defined by [first_page, first_page + nr_pages)
1350 *
1351 * The caller needs to hold the page table lock, and the page must be locked in
1352 * the anon_vma case: to serialize mapping,index checking after setting,
1353 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1354 * (but KSM folios are never downgraded).
1355 */
1356void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1357 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1358 rmap_t flags)
1359{
1360 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1361 RMAP_LEVEL_PTE);
1362}
1363
1364/**
1365 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1366 * @folio: The folio to add the mapping to
1367 * @page: The first page to add
1368 * @vma: The vm area in which the mapping is added
1369 * @address: The user virtual address of the first page to map
1370 * @flags: The rmap flags
1371 *
1372 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1373 *
1374 * The caller needs to hold the page table lock, and the page must be locked in
1375 * the anon_vma case: to serialize mapping,index checking after setting.
1376 */
1377void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1378 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1379{
1380#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1381 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1382 RMAP_LEVEL_PMD);
1383#else
1384 WARN_ON_ONCE(true);
1385#endif
1386}
1387
1388/**
1389 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1390 * @folio: The folio to add the mapping to.
1391 * @vma: the vm area in which the mapping is added
1392 * @address: the user virtual address mapped
1393 * @flags: The rmap flags
1394 *
1395 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1396 * This means the inc-and-test can be bypassed.
1397 * The folio doesn't necessarily need to be locked while it's exclusive
1398 * unless two threads map it concurrently. However, the folio must be
1399 * locked if it's shared.
1400 *
1401 * If the folio is pmd-mappable, it is accounted as a THP.
1402 */
1403void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1404 unsigned long address, rmap_t flags)
1405{
1406 const int nr = folio_nr_pages(folio);
1407 const bool exclusive = flags & RMAP_EXCLUSIVE;
1408 int nr_pmdmapped = 0;
1409
1410 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1411 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1412 VM_BUG_ON_VMA(address < vma->vm_start ||
1413 address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1414
1415 /*
1416 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1417 * under memory pressure.
1418 */
1419 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1420 __folio_set_swapbacked(folio);
1421 __folio_set_anon(folio, vma, address, exclusive);
1422
1423 if (likely(!folio_test_large(folio))) {
1424 /* increment count (starts at -1) */
1425 atomic_set(&folio->_mapcount, 0);
1426 if (exclusive)
1427 SetPageAnonExclusive(&folio->page);
1428 } else if (!folio_test_pmd_mappable(folio)) {
1429 int i;
1430
1431 for (i = 0; i < nr; i++) {
1432 struct page *page = folio_page(folio, i);
1433
1434 /* increment count (starts at -1) */
1435 atomic_set(&page->_mapcount, 0);
1436 if (exclusive)
1437 SetPageAnonExclusive(page);
1438 }
1439
1440 /* increment count (starts at -1) */
1441 atomic_set(&folio->_large_mapcount, nr - 1);
1442 atomic_set(&folio->_nr_pages_mapped, nr);
1443 } else {
1444 /* increment count (starts at -1) */
1445 atomic_set(&folio->_entire_mapcount, 0);
1446 /* increment count (starts at -1) */
1447 atomic_set(&folio->_large_mapcount, 0);
1448 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1449 if (exclusive)
1450 SetPageAnonExclusive(&folio->page);
1451 nr_pmdmapped = nr;
1452 }
1453
1454 __folio_mod_stat(folio, nr, nr_pmdmapped);
1455}
1456
1457static __always_inline void __folio_add_file_rmap(struct folio *folio,
1458 struct page *page, int nr_pages, struct vm_area_struct *vma,
1459 enum rmap_level level)
1460{
1461 int nr, nr_pmdmapped = 0;
1462
1463 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1464
1465 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1466 __folio_mod_stat(folio, nr, nr_pmdmapped);
1467
1468 /* See comments in folio_add_anon_rmap_*() */
1469 if (!folio_test_large(folio))
1470 mlock_vma_folio(folio, vma);
1471}
1472
1473/**
1474 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1475 * @folio: The folio to add the mappings to
1476 * @page: The first page to add
1477 * @nr_pages: The number of pages that will be mapped using PTEs
1478 * @vma: The vm area in which the mappings are added
1479 *
1480 * The page range of the folio is defined by [page, page + nr_pages)
1481 *
1482 * The caller needs to hold the page table lock.
1483 */
1484void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1485 int nr_pages, struct vm_area_struct *vma)
1486{
1487 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1488}
1489
1490/**
1491 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1492 * @folio: The folio to add the mapping to
1493 * @page: The first page to add
1494 * @vma: The vm area in which the mapping is added
1495 *
1496 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1497 *
1498 * The caller needs to hold the page table lock.
1499 */
1500void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1501 struct vm_area_struct *vma)
1502{
1503#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1504 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1505#else
1506 WARN_ON_ONCE(true);
1507#endif
1508}
1509
1510static __always_inline void __folio_remove_rmap(struct folio *folio,
1511 struct page *page, int nr_pages, struct vm_area_struct *vma,
1512 enum rmap_level level)
1513{
1514 atomic_t *mapped = &folio->_nr_pages_mapped;
1515 int last, nr = 0, nr_pmdmapped = 0;
1516 bool partially_mapped = false;
1517
1518 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1519
1520 switch (level) {
1521 case RMAP_LEVEL_PTE:
1522 if (!folio_test_large(folio)) {
1523 nr = atomic_add_negative(-1, &page->_mapcount);
1524 break;
1525 }
1526
1527 atomic_sub(nr_pages, &folio->_large_mapcount);
1528 do {
1529 last = atomic_add_negative(-1, &page->_mapcount);
1530 if (last) {
1531 last = atomic_dec_return_relaxed(mapped);
1532 if (last < ENTIRELY_MAPPED)
1533 nr++;
1534 }
1535 } while (page++, --nr_pages > 0);
1536
1537 partially_mapped = nr && atomic_read(mapped);
1538 break;
1539 case RMAP_LEVEL_PMD:
1540 atomic_dec(&folio->_large_mapcount);
1541 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1542 if (last) {
1543 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1544 if (likely(nr < ENTIRELY_MAPPED)) {
1545 nr_pmdmapped = folio_nr_pages(folio);
1546 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1547 /* Raced ahead of another remove and an add? */
1548 if (unlikely(nr < 0))
1549 nr = 0;
1550 } else {
1551 /* An add of ENTIRELY_MAPPED raced ahead */
1552 nr = 0;
1553 }
1554 }
1555
1556 partially_mapped = nr < nr_pmdmapped;
1557 break;
1558 }
1559
1560 if (nr) {
1561 /*
1562 * Queue anon large folio for deferred split if at least one
1563 * page of the folio is unmapped and at least one page
1564 * is still mapped.
1565 *
1566 * Check partially_mapped first to ensure it is a large folio.
1567 */
1568 if (folio_test_anon(folio) && partially_mapped &&
1569 list_empty(&folio->_deferred_list))
1570 deferred_split_folio(folio);
1571 }
1572 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1573
1574 /*
1575 * It would be tidy to reset folio_test_anon mapping when fully
1576 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1577 * which increments mapcount after us but sets mapping before us:
1578 * so leave the reset to free_pages_prepare, and remember that
1579 * it's only reliable while mapped.
1580 */
1581
1582 munlock_vma_folio(folio, vma);
1583}
1584
1585/**
1586 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1587 * @folio: The folio to remove the mappings from
1588 * @page: The first page to remove
1589 * @nr_pages: The number of pages that will be removed from the mapping
1590 * @vma: The vm area from which the mappings are removed
1591 *
1592 * The page range of the folio is defined by [page, page + nr_pages)
1593 *
1594 * The caller needs to hold the page table lock.
1595 */
1596void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1597 int nr_pages, struct vm_area_struct *vma)
1598{
1599 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1600}
1601
1602/**
1603 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1604 * @folio: The folio to remove the mapping from
1605 * @page: The first page to remove
1606 * @vma: The vm area from which the mapping is removed
1607 *
1608 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1609 *
1610 * The caller needs to hold the page table lock.
1611 */
1612void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1613 struct vm_area_struct *vma)
1614{
1615#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1616 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1617#else
1618 WARN_ON_ONCE(true);
1619#endif
1620}
1621
1622/*
1623 * @arg: enum ttu_flags will be passed to this argument
1624 */
1625static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1626 unsigned long address, void *arg)
1627{
1628 struct mm_struct *mm = vma->vm_mm;
1629 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1630 pte_t pteval;
1631 struct page *subpage;
1632 bool anon_exclusive, ret = true;
1633 struct mmu_notifier_range range;
1634 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1635 unsigned long pfn;
1636 unsigned long hsz = 0;
1637
1638 /*
1639 * When racing against e.g. zap_pte_range() on another cpu,
1640 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1641 * try_to_unmap() may return before page_mapped() has become false,
1642 * if page table locking is skipped: use TTU_SYNC to wait for that.
1643 */
1644 if (flags & TTU_SYNC)
1645 pvmw.flags = PVMW_SYNC;
1646
1647 /*
1648 * For THP, we have to assume the worse case ie pmd for invalidation.
1649 * For hugetlb, it could be much worse if we need to do pud
1650 * invalidation in the case of pmd sharing.
1651 *
1652 * Note that the folio can not be freed in this function as call of
1653 * try_to_unmap() must hold a reference on the folio.
1654 */
1655 range.end = vma_address_end(&pvmw);
1656 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1657 address, range.end);
1658 if (folio_test_hugetlb(folio)) {
1659 /*
1660 * If sharing is possible, start and end will be adjusted
1661 * accordingly.
1662 */
1663 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1664 &range.end);
1665
1666 /* We need the huge page size for set_huge_pte_at() */
1667 hsz = huge_page_size(hstate_vma(vma));
1668 }
1669 mmu_notifier_invalidate_range_start(&range);
1670
1671 while (page_vma_mapped_walk(&pvmw)) {
1672 /*
1673 * If the folio is in an mlock()d vma, we must not swap it out.
1674 */
1675 if (!(flags & TTU_IGNORE_MLOCK) &&
1676 (vma->vm_flags & VM_LOCKED)) {
1677 /* Restore the mlock which got missed */
1678 if (!folio_test_large(folio))
1679 mlock_vma_folio(folio, vma);
1680 goto walk_abort;
1681 }
1682
1683 if (!pvmw.pte) {
1684 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1685 folio))
1686 goto walk_done;
1687
1688 if (flags & TTU_SPLIT_HUGE_PMD) {
1689 /*
1690 * We temporarily have to drop the PTL and
1691 * restart so we can process the PTE-mapped THP.
1692 */
1693 split_huge_pmd_locked(vma, pvmw.address,
1694 pvmw.pmd, false, folio);
1695 flags &= ~TTU_SPLIT_HUGE_PMD;
1696 page_vma_mapped_walk_restart(&pvmw);
1697 continue;
1698 }
1699 }
1700
1701 /* Unexpected PMD-mapped THP? */
1702 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1703
1704 pfn = pte_pfn(ptep_get(pvmw.pte));
1705 subpage = folio_page(folio, pfn - folio_pfn(folio));
1706 address = pvmw.address;
1707 anon_exclusive = folio_test_anon(folio) &&
1708 PageAnonExclusive(subpage);
1709
1710 if (folio_test_hugetlb(folio)) {
1711 bool anon = folio_test_anon(folio);
1712
1713 /*
1714 * The try_to_unmap() is only passed a hugetlb page
1715 * in the case where the hugetlb page is poisoned.
1716 */
1717 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1718 /*
1719 * huge_pmd_unshare may unmap an entire PMD page.
1720 * There is no way of knowing exactly which PMDs may
1721 * be cached for this mm, so we must flush them all.
1722 * start/end were already adjusted above to cover this
1723 * range.
1724 */
1725 flush_cache_range(vma, range.start, range.end);
1726
1727 /*
1728 * To call huge_pmd_unshare, i_mmap_rwsem must be
1729 * held in write mode. Caller needs to explicitly
1730 * do this outside rmap routines.
1731 *
1732 * We also must hold hugetlb vma_lock in write mode.
1733 * Lock order dictates acquiring vma_lock BEFORE
1734 * i_mmap_rwsem. We can only try lock here and fail
1735 * if unsuccessful.
1736 */
1737 if (!anon) {
1738 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1739 if (!hugetlb_vma_trylock_write(vma))
1740 goto walk_abort;
1741 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1742 hugetlb_vma_unlock_write(vma);
1743 flush_tlb_range(vma,
1744 range.start, range.end);
1745 /*
1746 * The ref count of the PMD page was
1747 * dropped which is part of the way map
1748 * counting is done for shared PMDs.
1749 * Return 'true' here. When there is
1750 * no other sharing, huge_pmd_unshare
1751 * returns false and we will unmap the
1752 * actual page and drop map count
1753 * to zero.
1754 */
1755 goto walk_done;
1756 }
1757 hugetlb_vma_unlock_write(vma);
1758 }
1759 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1760 } else {
1761 flush_cache_page(vma, address, pfn);
1762 /* Nuke the page table entry. */
1763 if (should_defer_flush(mm, flags)) {
1764 /*
1765 * We clear the PTE but do not flush so potentially
1766 * a remote CPU could still be writing to the folio.
1767 * If the entry was previously clean then the
1768 * architecture must guarantee that a clear->dirty
1769 * transition on a cached TLB entry is written through
1770 * and traps if the PTE is unmapped.
1771 */
1772 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1773
1774 set_tlb_ubc_flush_pending(mm, pteval, address);
1775 } else {
1776 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1777 }
1778 }
1779
1780 /*
1781 * Now the pte is cleared. If this pte was uffd-wp armed,
1782 * we may want to replace a none pte with a marker pte if
1783 * it's file-backed, so we don't lose the tracking info.
1784 */
1785 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1786
1787 /* Set the dirty flag on the folio now the pte is gone. */
1788 if (pte_dirty(pteval))
1789 folio_mark_dirty(folio);
1790
1791 /* Update high watermark before we lower rss */
1792 update_hiwater_rss(mm);
1793
1794 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1795 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1796 if (folio_test_hugetlb(folio)) {
1797 hugetlb_count_sub(folio_nr_pages(folio), mm);
1798 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1799 hsz);
1800 } else {
1801 dec_mm_counter(mm, mm_counter(folio));
1802 set_pte_at(mm, address, pvmw.pte, pteval);
1803 }
1804
1805 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1806 /*
1807 * The guest indicated that the page content is of no
1808 * interest anymore. Simply discard the pte, vmscan
1809 * will take care of the rest.
1810 * A future reference will then fault in a new zero
1811 * page. When userfaultfd is active, we must not drop
1812 * this page though, as its main user (postcopy
1813 * migration) will not expect userfaults on already
1814 * copied pages.
1815 */
1816 dec_mm_counter(mm, mm_counter(folio));
1817 } else if (folio_test_anon(folio)) {
1818 swp_entry_t entry = page_swap_entry(subpage);
1819 pte_t swp_pte;
1820 /*
1821 * Store the swap location in the pte.
1822 * See handle_pte_fault() ...
1823 */
1824 if (unlikely(folio_test_swapbacked(folio) !=
1825 folio_test_swapcache(folio))) {
1826 WARN_ON_ONCE(1);
1827 goto walk_abort;
1828 }
1829
1830 /* MADV_FREE page check */
1831 if (!folio_test_swapbacked(folio)) {
1832 int ref_count, map_count;
1833
1834 /*
1835 * Synchronize with gup_pte_range():
1836 * - clear PTE; barrier; read refcount
1837 * - inc refcount; barrier; read PTE
1838 */
1839 smp_mb();
1840
1841 ref_count = folio_ref_count(folio);
1842 map_count = folio_mapcount(folio);
1843
1844 /*
1845 * Order reads for page refcount and dirty flag
1846 * (see comments in __remove_mapping()).
1847 */
1848 smp_rmb();
1849
1850 /*
1851 * The only page refs must be one from isolation
1852 * plus the rmap(s) (dropped by discard:).
1853 */
1854 if (ref_count == 1 + map_count &&
1855 (!folio_test_dirty(folio) ||
1856 /*
1857 * Unlike MADV_FREE mappings, VM_DROPPABLE
1858 * ones can be dropped even if they've
1859 * been dirtied.
1860 */
1861 (vma->vm_flags & VM_DROPPABLE))) {
1862 dec_mm_counter(mm, MM_ANONPAGES);
1863 goto discard;
1864 }
1865
1866 /*
1867 * If the folio was redirtied, it cannot be
1868 * discarded. Remap the page to page table.
1869 */
1870 set_pte_at(mm, address, pvmw.pte, pteval);
1871 /*
1872 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1873 * never get swap backed on failure to drop.
1874 */
1875 if (!(vma->vm_flags & VM_DROPPABLE))
1876 folio_set_swapbacked(folio);
1877 goto walk_abort;
1878 }
1879
1880 if (swap_duplicate(entry) < 0) {
1881 set_pte_at(mm, address, pvmw.pte, pteval);
1882 goto walk_abort;
1883 }
1884 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1885 swap_free(entry);
1886 set_pte_at(mm, address, pvmw.pte, pteval);
1887 goto walk_abort;
1888 }
1889
1890 /* See folio_try_share_anon_rmap(): clear PTE first. */
1891 if (anon_exclusive &&
1892 folio_try_share_anon_rmap_pte(folio, subpage)) {
1893 swap_free(entry);
1894 set_pte_at(mm, address, pvmw.pte, pteval);
1895 goto walk_abort;
1896 }
1897 if (list_empty(&mm->mmlist)) {
1898 spin_lock(&mmlist_lock);
1899 if (list_empty(&mm->mmlist))
1900 list_add(&mm->mmlist, &init_mm.mmlist);
1901 spin_unlock(&mmlist_lock);
1902 }
1903 dec_mm_counter(mm, MM_ANONPAGES);
1904 inc_mm_counter(mm, MM_SWAPENTS);
1905 swp_pte = swp_entry_to_pte(entry);
1906 if (anon_exclusive)
1907 swp_pte = pte_swp_mkexclusive(swp_pte);
1908 if (pte_soft_dirty(pteval))
1909 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1910 if (pte_uffd_wp(pteval))
1911 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1912 set_pte_at(mm, address, pvmw.pte, swp_pte);
1913 } else {
1914 /*
1915 * This is a locked file-backed folio,
1916 * so it cannot be removed from the page
1917 * cache and replaced by a new folio before
1918 * mmu_notifier_invalidate_range_end, so no
1919 * concurrent thread might update its page table
1920 * to point at a new folio while a device is
1921 * still using this folio.
1922 *
1923 * See Documentation/mm/mmu_notifier.rst
1924 */
1925 dec_mm_counter(mm, mm_counter_file(folio));
1926 }
1927discard:
1928 if (unlikely(folio_test_hugetlb(folio)))
1929 hugetlb_remove_rmap(folio);
1930 else
1931 folio_remove_rmap_pte(folio, subpage, vma);
1932 if (vma->vm_flags & VM_LOCKED)
1933 mlock_drain_local();
1934 folio_put(folio);
1935 continue;
1936walk_abort:
1937 ret = false;
1938walk_done:
1939 page_vma_mapped_walk_done(&pvmw);
1940 break;
1941 }
1942
1943 mmu_notifier_invalidate_range_end(&range);
1944
1945 return ret;
1946}
1947
1948static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1949{
1950 return vma_is_temporary_stack(vma);
1951}
1952
1953static int folio_not_mapped(struct folio *folio)
1954{
1955 return !folio_mapped(folio);
1956}
1957
1958/**
1959 * try_to_unmap - Try to remove all page table mappings to a folio.
1960 * @folio: The folio to unmap.
1961 * @flags: action and flags
1962 *
1963 * Tries to remove all the page table entries which are mapping this
1964 * folio. It is the caller's responsibility to check if the folio is
1965 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1966 *
1967 * Context: Caller must hold the folio lock.
1968 */
1969void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1970{
1971 struct rmap_walk_control rwc = {
1972 .rmap_one = try_to_unmap_one,
1973 .arg = (void *)flags,
1974 .done = folio_not_mapped,
1975 .anon_lock = folio_lock_anon_vma_read,
1976 };
1977
1978 if (flags & TTU_RMAP_LOCKED)
1979 rmap_walk_locked(folio, &rwc);
1980 else
1981 rmap_walk(folio, &rwc);
1982}
1983
1984/*
1985 * @arg: enum ttu_flags will be passed to this argument.
1986 *
1987 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1988 * containing migration entries.
1989 */
1990static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1991 unsigned long address, void *arg)
1992{
1993 struct mm_struct *mm = vma->vm_mm;
1994 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1995 pte_t pteval;
1996 struct page *subpage;
1997 bool anon_exclusive, ret = true;
1998 struct mmu_notifier_range range;
1999 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2000 unsigned long pfn;
2001 unsigned long hsz = 0;
2002
2003 /*
2004 * When racing against e.g. zap_pte_range() on another cpu,
2005 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2006 * try_to_migrate() may return before page_mapped() has become false,
2007 * if page table locking is skipped: use TTU_SYNC to wait for that.
2008 */
2009 if (flags & TTU_SYNC)
2010 pvmw.flags = PVMW_SYNC;
2011
2012 /*
2013 * unmap_page() in mm/huge_memory.c is the only user of migration with
2014 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2015 */
2016 if (flags & TTU_SPLIT_HUGE_PMD)
2017 split_huge_pmd_address(vma, address, true, folio);
2018
2019 /*
2020 * For THP, we have to assume the worse case ie pmd for invalidation.
2021 * For hugetlb, it could be much worse if we need to do pud
2022 * invalidation in the case of pmd sharing.
2023 *
2024 * Note that the page can not be free in this function as call of
2025 * try_to_unmap() must hold a reference on the page.
2026 */
2027 range.end = vma_address_end(&pvmw);
2028 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2029 address, range.end);
2030 if (folio_test_hugetlb(folio)) {
2031 /*
2032 * If sharing is possible, start and end will be adjusted
2033 * accordingly.
2034 */
2035 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2036 &range.end);
2037
2038 /* We need the huge page size for set_huge_pte_at() */
2039 hsz = huge_page_size(hstate_vma(vma));
2040 }
2041 mmu_notifier_invalidate_range_start(&range);
2042
2043 while (page_vma_mapped_walk(&pvmw)) {
2044#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2045 /* PMD-mapped THP migration entry */
2046 if (!pvmw.pte) {
2047 subpage = folio_page(folio,
2048 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2049 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2050 !folio_test_pmd_mappable(folio), folio);
2051
2052 if (set_pmd_migration_entry(&pvmw, subpage)) {
2053 ret = false;
2054 page_vma_mapped_walk_done(&pvmw);
2055 break;
2056 }
2057 continue;
2058 }
2059#endif
2060
2061 /* Unexpected PMD-mapped THP? */
2062 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2063
2064 pfn = pte_pfn(ptep_get(pvmw.pte));
2065
2066 if (folio_is_zone_device(folio)) {
2067 /*
2068 * Our PTE is a non-present device exclusive entry and
2069 * calculating the subpage as for the common case would
2070 * result in an invalid pointer.
2071 *
2072 * Since only PAGE_SIZE pages can currently be
2073 * migrated, just set it to page. This will need to be
2074 * changed when hugepage migrations to device private
2075 * memory are supported.
2076 */
2077 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2078 subpage = &folio->page;
2079 } else {
2080 subpage = folio_page(folio, pfn - folio_pfn(folio));
2081 }
2082 address = pvmw.address;
2083 anon_exclusive = folio_test_anon(folio) &&
2084 PageAnonExclusive(subpage);
2085
2086 if (folio_test_hugetlb(folio)) {
2087 bool anon = folio_test_anon(folio);
2088
2089 /*
2090 * huge_pmd_unshare may unmap an entire PMD page.
2091 * There is no way of knowing exactly which PMDs may
2092 * be cached for this mm, so we must flush them all.
2093 * start/end were already adjusted above to cover this
2094 * range.
2095 */
2096 flush_cache_range(vma, range.start, range.end);
2097
2098 /*
2099 * To call huge_pmd_unshare, i_mmap_rwsem must be
2100 * held in write mode. Caller needs to explicitly
2101 * do this outside rmap routines.
2102 *
2103 * We also must hold hugetlb vma_lock in write mode.
2104 * Lock order dictates acquiring vma_lock BEFORE
2105 * i_mmap_rwsem. We can only try lock here and
2106 * fail if unsuccessful.
2107 */
2108 if (!anon) {
2109 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2110 if (!hugetlb_vma_trylock_write(vma)) {
2111 page_vma_mapped_walk_done(&pvmw);
2112 ret = false;
2113 break;
2114 }
2115 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2116 hugetlb_vma_unlock_write(vma);
2117 flush_tlb_range(vma,
2118 range.start, range.end);
2119
2120 /*
2121 * The ref count of the PMD page was
2122 * dropped which is part of the way map
2123 * counting is done for shared PMDs.
2124 * Return 'true' here. When there is
2125 * no other sharing, huge_pmd_unshare
2126 * returns false and we will unmap the
2127 * actual page and drop map count
2128 * to zero.
2129 */
2130 page_vma_mapped_walk_done(&pvmw);
2131 break;
2132 }
2133 hugetlb_vma_unlock_write(vma);
2134 }
2135 /* Nuke the hugetlb page table entry */
2136 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2137 } else {
2138 flush_cache_page(vma, address, pfn);
2139 /* Nuke the page table entry. */
2140 if (should_defer_flush(mm, flags)) {
2141 /*
2142 * We clear the PTE but do not flush so potentially
2143 * a remote CPU could still be writing to the folio.
2144 * If the entry was previously clean then the
2145 * architecture must guarantee that a clear->dirty
2146 * transition on a cached TLB entry is written through
2147 * and traps if the PTE is unmapped.
2148 */
2149 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2150
2151 set_tlb_ubc_flush_pending(mm, pteval, address);
2152 } else {
2153 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2154 }
2155 }
2156
2157 /* Set the dirty flag on the folio now the pte is gone. */
2158 if (pte_dirty(pteval))
2159 folio_mark_dirty(folio);
2160
2161 /* Update high watermark before we lower rss */
2162 update_hiwater_rss(mm);
2163
2164 if (folio_is_device_private(folio)) {
2165 unsigned long pfn = folio_pfn(folio);
2166 swp_entry_t entry;
2167 pte_t swp_pte;
2168
2169 if (anon_exclusive)
2170 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2171 subpage));
2172
2173 /*
2174 * Store the pfn of the page in a special migration
2175 * pte. do_swap_page() will wait until the migration
2176 * pte is removed and then restart fault handling.
2177 */
2178 entry = pte_to_swp_entry(pteval);
2179 if (is_writable_device_private_entry(entry))
2180 entry = make_writable_migration_entry(pfn);
2181 else if (anon_exclusive)
2182 entry = make_readable_exclusive_migration_entry(pfn);
2183 else
2184 entry = make_readable_migration_entry(pfn);
2185 swp_pte = swp_entry_to_pte(entry);
2186
2187 /*
2188 * pteval maps a zone device page and is therefore
2189 * a swap pte.
2190 */
2191 if (pte_swp_soft_dirty(pteval))
2192 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2193 if (pte_swp_uffd_wp(pteval))
2194 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2195 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2196 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2197 folio_order(folio));
2198 /*
2199 * No need to invalidate here it will synchronize on
2200 * against the special swap migration pte.
2201 */
2202 } else if (PageHWPoison(subpage)) {
2203 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2204 if (folio_test_hugetlb(folio)) {
2205 hugetlb_count_sub(folio_nr_pages(folio), mm);
2206 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2207 hsz);
2208 } else {
2209 dec_mm_counter(mm, mm_counter(folio));
2210 set_pte_at(mm, address, pvmw.pte, pteval);
2211 }
2212
2213 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2214 /*
2215 * The guest indicated that the page content is of no
2216 * interest anymore. Simply discard the pte, vmscan
2217 * will take care of the rest.
2218 * A future reference will then fault in a new zero
2219 * page. When userfaultfd is active, we must not drop
2220 * this page though, as its main user (postcopy
2221 * migration) will not expect userfaults on already
2222 * copied pages.
2223 */
2224 dec_mm_counter(mm, mm_counter(folio));
2225 } else {
2226 swp_entry_t entry;
2227 pte_t swp_pte;
2228
2229 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2230 if (folio_test_hugetlb(folio))
2231 set_huge_pte_at(mm, address, pvmw.pte,
2232 pteval, hsz);
2233 else
2234 set_pte_at(mm, address, pvmw.pte, pteval);
2235 ret = false;
2236 page_vma_mapped_walk_done(&pvmw);
2237 break;
2238 }
2239 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2240 !anon_exclusive, subpage);
2241
2242 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2243 if (folio_test_hugetlb(folio)) {
2244 if (anon_exclusive &&
2245 hugetlb_try_share_anon_rmap(folio)) {
2246 set_huge_pte_at(mm, address, pvmw.pte,
2247 pteval, hsz);
2248 ret = false;
2249 page_vma_mapped_walk_done(&pvmw);
2250 break;
2251 }
2252 } else if (anon_exclusive &&
2253 folio_try_share_anon_rmap_pte(folio, subpage)) {
2254 set_pte_at(mm, address, pvmw.pte, pteval);
2255 ret = false;
2256 page_vma_mapped_walk_done(&pvmw);
2257 break;
2258 }
2259
2260 /*
2261 * Store the pfn of the page in a special migration
2262 * pte. do_swap_page() will wait until the migration
2263 * pte is removed and then restart fault handling.
2264 */
2265 if (pte_write(pteval))
2266 entry = make_writable_migration_entry(
2267 page_to_pfn(subpage));
2268 else if (anon_exclusive)
2269 entry = make_readable_exclusive_migration_entry(
2270 page_to_pfn(subpage));
2271 else
2272 entry = make_readable_migration_entry(
2273 page_to_pfn(subpage));
2274 if (pte_young(pteval))
2275 entry = make_migration_entry_young(entry);
2276 if (pte_dirty(pteval))
2277 entry = make_migration_entry_dirty(entry);
2278 swp_pte = swp_entry_to_pte(entry);
2279 if (pte_soft_dirty(pteval))
2280 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2281 if (pte_uffd_wp(pteval))
2282 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2283 if (folio_test_hugetlb(folio))
2284 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2285 hsz);
2286 else
2287 set_pte_at(mm, address, pvmw.pte, swp_pte);
2288 trace_set_migration_pte(address, pte_val(swp_pte),
2289 folio_order(folio));
2290 /*
2291 * No need to invalidate here it will synchronize on
2292 * against the special swap migration pte.
2293 */
2294 }
2295
2296 if (unlikely(folio_test_hugetlb(folio)))
2297 hugetlb_remove_rmap(folio);
2298 else
2299 folio_remove_rmap_pte(folio, subpage, vma);
2300 if (vma->vm_flags & VM_LOCKED)
2301 mlock_drain_local();
2302 folio_put(folio);
2303 }
2304
2305 mmu_notifier_invalidate_range_end(&range);
2306
2307 return ret;
2308}
2309
2310/**
2311 * try_to_migrate - try to replace all page table mappings with swap entries
2312 * @folio: the folio to replace page table entries for
2313 * @flags: action and flags
2314 *
2315 * Tries to remove all the page table entries which are mapping this folio and
2316 * replace them with special swap entries. Caller must hold the folio lock.
2317 */
2318void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2319{
2320 struct rmap_walk_control rwc = {
2321 .rmap_one = try_to_migrate_one,
2322 .arg = (void *)flags,
2323 .done = folio_not_mapped,
2324 .anon_lock = folio_lock_anon_vma_read,
2325 };
2326
2327 /*
2328 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2329 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2330 */
2331 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2332 TTU_SYNC | TTU_BATCH_FLUSH)))
2333 return;
2334
2335 if (folio_is_zone_device(folio) &&
2336 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2337 return;
2338
2339 /*
2340 * During exec, a temporary VMA is setup and later moved.
2341 * The VMA is moved under the anon_vma lock but not the
2342 * page tables leading to a race where migration cannot
2343 * find the migration ptes. Rather than increasing the
2344 * locking requirements of exec(), migration skips
2345 * temporary VMAs until after exec() completes.
2346 */
2347 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2348 rwc.invalid_vma = invalid_migration_vma;
2349
2350 if (flags & TTU_RMAP_LOCKED)
2351 rmap_walk_locked(folio, &rwc);
2352 else
2353 rmap_walk(folio, &rwc);
2354}
2355
2356#ifdef CONFIG_DEVICE_PRIVATE
2357struct make_exclusive_args {
2358 struct mm_struct *mm;
2359 unsigned long address;
2360 void *owner;
2361 bool valid;
2362};
2363
2364static bool page_make_device_exclusive_one(struct folio *folio,
2365 struct vm_area_struct *vma, unsigned long address, void *priv)
2366{
2367 struct mm_struct *mm = vma->vm_mm;
2368 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2369 struct make_exclusive_args *args = priv;
2370 pte_t pteval;
2371 struct page *subpage;
2372 bool ret = true;
2373 struct mmu_notifier_range range;
2374 swp_entry_t entry;
2375 pte_t swp_pte;
2376 pte_t ptent;
2377
2378 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2379 vma->vm_mm, address, min(vma->vm_end,
2380 address + folio_size(folio)),
2381 args->owner);
2382 mmu_notifier_invalidate_range_start(&range);
2383
2384 while (page_vma_mapped_walk(&pvmw)) {
2385 /* Unexpected PMD-mapped THP? */
2386 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2387
2388 ptent = ptep_get(pvmw.pte);
2389 if (!pte_present(ptent)) {
2390 ret = false;
2391 page_vma_mapped_walk_done(&pvmw);
2392 break;
2393 }
2394
2395 subpage = folio_page(folio,
2396 pte_pfn(ptent) - folio_pfn(folio));
2397 address = pvmw.address;
2398
2399 /* Nuke the page table entry. */
2400 flush_cache_page(vma, address, pte_pfn(ptent));
2401 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2402
2403 /* Set the dirty flag on the folio now the pte is gone. */
2404 if (pte_dirty(pteval))
2405 folio_mark_dirty(folio);
2406
2407 /*
2408 * Check that our target page is still mapped at the expected
2409 * address.
2410 */
2411 if (args->mm == mm && args->address == address &&
2412 pte_write(pteval))
2413 args->valid = true;
2414
2415 /*
2416 * Store the pfn of the page in a special migration
2417 * pte. do_swap_page() will wait until the migration
2418 * pte is removed and then restart fault handling.
2419 */
2420 if (pte_write(pteval))
2421 entry = make_writable_device_exclusive_entry(
2422 page_to_pfn(subpage));
2423 else
2424 entry = make_readable_device_exclusive_entry(
2425 page_to_pfn(subpage));
2426 swp_pte = swp_entry_to_pte(entry);
2427 if (pte_soft_dirty(pteval))
2428 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2429 if (pte_uffd_wp(pteval))
2430 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2431
2432 set_pte_at(mm, address, pvmw.pte, swp_pte);
2433
2434 /*
2435 * There is a reference on the page for the swap entry which has
2436 * been removed, so shouldn't take another.
2437 */
2438 folio_remove_rmap_pte(folio, subpage, vma);
2439 }
2440
2441 mmu_notifier_invalidate_range_end(&range);
2442
2443 return ret;
2444}
2445
2446/**
2447 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2448 * @folio: The folio to replace page table entries for.
2449 * @mm: The mm_struct where the folio is expected to be mapped.
2450 * @address: Address where the folio is expected to be mapped.
2451 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2452 *
2453 * Tries to remove all the page table entries which are mapping this
2454 * folio and replace them with special device exclusive swap entries to
2455 * grant a device exclusive access to the folio.
2456 *
2457 * Context: Caller must hold the folio lock.
2458 * Return: false if the page is still mapped, or if it could not be unmapped
2459 * from the expected address. Otherwise returns true (success).
2460 */
2461static bool folio_make_device_exclusive(struct folio *folio,
2462 struct mm_struct *mm, unsigned long address, void *owner)
2463{
2464 struct make_exclusive_args args = {
2465 .mm = mm,
2466 .address = address,
2467 .owner = owner,
2468 .valid = false,
2469 };
2470 struct rmap_walk_control rwc = {
2471 .rmap_one = page_make_device_exclusive_one,
2472 .done = folio_not_mapped,
2473 .anon_lock = folio_lock_anon_vma_read,
2474 .arg = &args,
2475 };
2476
2477 /*
2478 * Restrict to anonymous folios for now to avoid potential writeback
2479 * issues.
2480 */
2481 if (!folio_test_anon(folio))
2482 return false;
2483
2484 rmap_walk(folio, &rwc);
2485
2486 return args.valid && !folio_mapcount(folio);
2487}
2488
2489/**
2490 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2491 * @mm: mm_struct of associated target process
2492 * @start: start of the region to mark for exclusive device access
2493 * @end: end address of region
2494 * @pages: returns the pages which were successfully marked for exclusive access
2495 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2496 *
2497 * Returns: number of pages found in the range by GUP. A page is marked for
2498 * exclusive access only if the page pointer is non-NULL.
2499 *
2500 * This function finds ptes mapping page(s) to the given address range, locks
2501 * them and replaces mappings with special swap entries preventing userspace CPU
2502 * access. On fault these entries are replaced with the original mapping after
2503 * calling MMU notifiers.
2504 *
2505 * A driver using this to program access from a device must use a mmu notifier
2506 * critical section to hold a device specific lock during programming. Once
2507 * programming is complete it should drop the page lock and reference after
2508 * which point CPU access to the page will revoke the exclusive access.
2509 */
2510int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2511 unsigned long end, struct page **pages,
2512 void *owner)
2513{
2514 long npages = (end - start) >> PAGE_SHIFT;
2515 long i;
2516
2517 npages = get_user_pages_remote(mm, start, npages,
2518 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2519 pages, NULL);
2520 if (npages < 0)
2521 return npages;
2522
2523 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2524 struct folio *folio = page_folio(pages[i]);
2525 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2526 folio_put(folio);
2527 pages[i] = NULL;
2528 continue;
2529 }
2530
2531 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2532 folio_unlock(folio);
2533 folio_put(folio);
2534 pages[i] = NULL;
2535 }
2536 }
2537
2538 return npages;
2539}
2540EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2541#endif
2542
2543void __put_anon_vma(struct anon_vma *anon_vma)
2544{
2545 struct anon_vma *root = anon_vma->root;
2546
2547 anon_vma_free(anon_vma);
2548 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2549 anon_vma_free(root);
2550}
2551
2552static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2553 struct rmap_walk_control *rwc)
2554{
2555 struct anon_vma *anon_vma;
2556
2557 if (rwc->anon_lock)
2558 return rwc->anon_lock(folio, rwc);
2559
2560 /*
2561 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2562 * because that depends on page_mapped(); but not all its usages
2563 * are holding mmap_lock. Users without mmap_lock are required to
2564 * take a reference count to prevent the anon_vma disappearing
2565 */
2566 anon_vma = folio_anon_vma(folio);
2567 if (!anon_vma)
2568 return NULL;
2569
2570 if (anon_vma_trylock_read(anon_vma))
2571 goto out;
2572
2573 if (rwc->try_lock) {
2574 anon_vma = NULL;
2575 rwc->contended = true;
2576 goto out;
2577 }
2578
2579 anon_vma_lock_read(anon_vma);
2580out:
2581 return anon_vma;
2582}
2583
2584/*
2585 * rmap_walk_anon - do something to anonymous page using the object-based
2586 * rmap method
2587 * @folio: the folio to be handled
2588 * @rwc: control variable according to each walk type
2589 * @locked: caller holds relevant rmap lock
2590 *
2591 * Find all the mappings of a folio using the mapping pointer and the vma
2592 * chains contained in the anon_vma struct it points to.
2593 */
2594static void rmap_walk_anon(struct folio *folio,
2595 struct rmap_walk_control *rwc, bool locked)
2596{
2597 struct anon_vma *anon_vma;
2598 pgoff_t pgoff_start, pgoff_end;
2599 struct anon_vma_chain *avc;
2600
2601 if (locked) {
2602 anon_vma = folio_anon_vma(folio);
2603 /* anon_vma disappear under us? */
2604 VM_BUG_ON_FOLIO(!anon_vma, folio);
2605 } else {
2606 anon_vma = rmap_walk_anon_lock(folio, rwc);
2607 }
2608 if (!anon_vma)
2609 return;
2610
2611 pgoff_start = folio_pgoff(folio);
2612 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2614 pgoff_start, pgoff_end) {
2615 struct vm_area_struct *vma = avc->vma;
2616 unsigned long address = vma_address(vma, pgoff_start,
2617 folio_nr_pages(folio));
2618
2619 VM_BUG_ON_VMA(address == -EFAULT, vma);
2620 cond_resched();
2621
2622 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2623 continue;
2624
2625 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2626 break;
2627 if (rwc->done && rwc->done(folio))
2628 break;
2629 }
2630
2631 if (!locked)
2632 anon_vma_unlock_read(anon_vma);
2633}
2634
2635/*
2636 * rmap_walk_file - do something to file page using the object-based rmap method
2637 * @folio: the folio to be handled
2638 * @rwc: control variable according to each walk type
2639 * @locked: caller holds relevant rmap lock
2640 *
2641 * Find all the mappings of a folio using the mapping pointer and the vma chains
2642 * contained in the address_space struct it points to.
2643 */
2644static void rmap_walk_file(struct folio *folio,
2645 struct rmap_walk_control *rwc, bool locked)
2646{
2647 struct address_space *mapping = folio_mapping(folio);
2648 pgoff_t pgoff_start, pgoff_end;
2649 struct vm_area_struct *vma;
2650
2651 /*
2652 * The page lock not only makes sure that page->mapping cannot
2653 * suddenly be NULLified by truncation, it makes sure that the
2654 * structure at mapping cannot be freed and reused yet,
2655 * so we can safely take mapping->i_mmap_rwsem.
2656 */
2657 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2658
2659 if (!mapping)
2660 return;
2661
2662 pgoff_start = folio_pgoff(folio);
2663 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2664 if (!locked) {
2665 if (i_mmap_trylock_read(mapping))
2666 goto lookup;
2667
2668 if (rwc->try_lock) {
2669 rwc->contended = true;
2670 return;
2671 }
2672
2673 i_mmap_lock_read(mapping);
2674 }
2675lookup:
2676 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2677 pgoff_start, pgoff_end) {
2678 unsigned long address = vma_address(vma, pgoff_start,
2679 folio_nr_pages(folio));
2680
2681 VM_BUG_ON_VMA(address == -EFAULT, vma);
2682 cond_resched();
2683
2684 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2685 continue;
2686
2687 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2688 goto done;
2689 if (rwc->done && rwc->done(folio))
2690 goto done;
2691 }
2692
2693done:
2694 if (!locked)
2695 i_mmap_unlock_read(mapping);
2696}
2697
2698void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2699{
2700 if (unlikely(folio_test_ksm(folio)))
2701 rmap_walk_ksm(folio, rwc);
2702 else if (folio_test_anon(folio))
2703 rmap_walk_anon(folio, rwc, false);
2704 else
2705 rmap_walk_file(folio, rwc, false);
2706}
2707
2708/* Like rmap_walk, but caller holds relevant rmap lock */
2709void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2710{
2711 /* no ksm support for now */
2712 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2713 if (folio_test_anon(folio))
2714 rmap_walk_anon(folio, rwc, true);
2715 else
2716 rmap_walk_file(folio, rwc, true);
2717}
2718
2719#ifdef CONFIG_HUGETLB_PAGE
2720/*
2721 * The following two functions are for anonymous (private mapped) hugepages.
2722 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2723 * and no lru code, because we handle hugepages differently from common pages.
2724 */
2725void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2726 unsigned long address, rmap_t flags)
2727{
2728 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2729 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2730
2731 atomic_inc(&folio->_entire_mapcount);
2732 atomic_inc(&folio->_large_mapcount);
2733 if (flags & RMAP_EXCLUSIVE)
2734 SetPageAnonExclusive(&folio->page);
2735 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2736 PageAnonExclusive(&folio->page), folio);
2737}
2738
2739void hugetlb_add_new_anon_rmap(struct folio *folio,
2740 struct vm_area_struct *vma, unsigned long address)
2741{
2742 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2743
2744 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2745 /* increment count (starts at -1) */
2746 atomic_set(&folio->_entire_mapcount, 0);
2747 atomic_set(&folio->_large_mapcount, 0);
2748 folio_clear_hugetlb_restore_reserve(folio);
2749 __folio_set_anon(folio, vma, address, true);
2750 SetPageAnonExclusive(&folio->page);
2751}
2752#endif /* CONFIG_HUGETLB_PAGE */