Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/interrupt.h>
22#include <linux/jiffies.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/kasan.h>
26#include <linux/kmsan.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/ratelimit.h>
30#include <linux/oom.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/pagevec.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmstat.h>
39#include <linux/fault-inject.h>
40#include <linux/compaction.h>
41#include <trace/events/kmem.h>
42#include <trace/events/oom.h>
43#include <linux/prefetch.h>
44#include <linux/mm_inline.h>
45#include <linux/mmu_notifier.h>
46#include <linux/migrate.h>
47#include <linux/sched/mm.h>
48#include <linux/page_owner.h>
49#include <linux/page_table_check.h>
50#include <linux/memcontrol.h>
51#include <linux/ftrace.h>
52#include <linux/lockdep.h>
53#include <linux/psi.h>
54#include <linux/khugepaged.h>
55#include <linux/delayacct.h>
56#include <linux/cacheinfo.h>
57#include <linux/pgalloc_tag.h>
58#include <asm/div64.h>
59#include "internal.h"
60#include "shuffle.h"
61#include "page_reporting.h"
62
63/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64typedef int __bitwise fpi_t;
65
66/* No special request */
67#define FPI_NONE ((__force fpi_t)0)
68
69/*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79/*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92static DEFINE_MUTEX(pcp_batch_high_lock);
93#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94
95#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96/*
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99 */
100#define pcp_trylock_prepare(flags) do { } while (0)
101#define pcp_trylock_finish(flag) do { } while (0)
102#else
103
104/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105#define pcp_trylock_prepare(flags) local_irq_save(flags)
106#define pcp_trylock_finish(flags) local_irq_restore(flags)
107#endif
108
109/*
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
116 */
117#ifndef CONFIG_PREEMPT_RT
118#define pcpu_task_pin() preempt_disable()
119#define pcpu_task_unpin() preempt_enable()
120#else
121#define pcpu_task_pin() migrate_disable()
122#define pcpu_task_unpin() migrate_enable()
123#endif
124
125/*
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
128 */
129#define pcpu_spin_lock(type, member, ptr) \
130({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
136})
137
138#define pcpu_spin_trylock(type, member, ptr) \
139({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
146 } \
147 _ret; \
148})
149
150#define pcpu_spin_unlock(member, ptr) \
151({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
154})
155
156/* struct per_cpu_pages specific helpers. */
157#define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159
160#define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162
163#define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
165
166#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167DEFINE_PER_CPU(int, numa_node);
168EXPORT_PER_CPU_SYMBOL(numa_node);
169#endif
170
171DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172
173#ifdef CONFIG_HAVE_MEMORYLESS_NODES
174/*
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
179 */
180DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182#endif
183
184static DEFINE_MUTEX(pcpu_drain_mutex);
185
186#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187volatile unsigned long latent_entropy __latent_entropy;
188EXPORT_SYMBOL(latent_entropy);
189#endif
190
191/*
192 * Array of node states.
193 */
194nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197#ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199#ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201#endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204#endif /* NUMA */
205};
206EXPORT_SYMBOL(node_states);
207
208gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209
210#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211unsigned int pageblock_order __read_mostly;
212#endif
213
214static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
216
217/*
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224 *
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
227 */
228static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229#ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231#endif
232#ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234#endif
235 [ZONE_NORMAL] = 32,
236#ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238#endif
239 [ZONE_MOVABLE] = 0,
240};
241
242char * const zone_names[MAX_NR_ZONES] = {
243#ifdef CONFIG_ZONE_DMA
244 "DMA",
245#endif
246#ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248#endif
249 "Normal",
250#ifdef CONFIG_HIGHMEM
251 "HighMem",
252#endif
253 "Movable",
254#ifdef CONFIG_ZONE_DEVICE
255 "Device",
256#endif
257};
258
259const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264#ifdef CONFIG_CMA
265 "CMA",
266#endif
267#ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269#endif
270};
271
272int min_free_kbytes = 1024;
273int user_min_free_kbytes = -1;
274static int watermark_boost_factor __read_mostly = 15000;
275static int watermark_scale_factor = 10;
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280
281#if MAX_NUMNODES > 1
282unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283unsigned int nr_online_nodes __read_mostly = 1;
284EXPORT_SYMBOL(nr_node_ids);
285EXPORT_SYMBOL(nr_online_nodes);
286#endif
287
288static bool page_contains_unaccepted(struct page *page, unsigned int order);
289static void accept_page(struct page *page, unsigned int order);
290static bool cond_accept_memory(struct zone *zone, unsigned int order);
291static inline bool has_unaccepted_memory(void);
292static bool __free_unaccepted(struct page *page);
293
294int page_group_by_mobility_disabled __read_mostly;
295
296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297/*
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
301 */
302DEFINE_STATIC_KEY_TRUE(deferred_pages);
303
304static inline bool deferred_pages_enabled(void)
305{
306 return static_branch_unlikely(&deferred_pages);
307}
308
309/*
310 * deferred_grow_zone() is __init, but it is called from
311 * get_page_from_freelist() during early boot until deferred_pages permanently
312 * disables this call. This is why we have refdata wrapper to avoid warning,
313 * and to ensure that the function body gets unloaded.
314 */
315static bool __ref
316_deferred_grow_zone(struct zone *zone, unsigned int order)
317{
318 return deferred_grow_zone(zone, order);
319}
320#else
321static inline bool deferred_pages_enabled(void)
322{
323 return false;
324}
325#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326
327/* Return a pointer to the bitmap storing bits affecting a block of pages */
328static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 unsigned long pfn)
330{
331#ifdef CONFIG_SPARSEMEM
332 return section_to_usemap(__pfn_to_section(pfn));
333#else
334 return page_zone(page)->pageblock_flags;
335#endif /* CONFIG_SPARSEMEM */
336}
337
338static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339{
340#ifdef CONFIG_SPARSEMEM
341 pfn &= (PAGES_PER_SECTION-1);
342#else
343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344#endif /* CONFIG_SPARSEMEM */
345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346}
347
348/**
349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350 * @page: The page within the block of interest
351 * @pfn: The target page frame number
352 * @mask: mask of bits that the caller is interested in
353 *
354 * Return: pageblock_bits flags
355 */
356unsigned long get_pfnblock_flags_mask(const struct page *page,
357 unsigned long pfn, unsigned long mask)
358{
359 unsigned long *bitmap;
360 unsigned long bitidx, word_bitidx;
361 unsigned long word;
362
363 bitmap = get_pageblock_bitmap(page, pfn);
364 bitidx = pfn_to_bitidx(page, pfn);
365 word_bitidx = bitidx / BITS_PER_LONG;
366 bitidx &= (BITS_PER_LONG-1);
367 /*
368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 * a consistent read of the memory array, so that results, even though
370 * racy, are not corrupted.
371 */
372 word = READ_ONCE(bitmap[word_bitidx]);
373 return (word >> bitidx) & mask;
374}
375
376static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 unsigned long pfn)
378{
379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380}
381
382/**
383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384 * @page: The page within the block of interest
385 * @flags: The flags to set
386 * @pfn: The target page frame number
387 * @mask: mask of bits that the caller is interested in
388 */
389void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 unsigned long pfn,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399
400 bitmap = get_pageblock_bitmap(page, pfn);
401 bitidx = pfn_to_bitidx(page, pfn);
402 word_bitidx = bitidx / BITS_PER_LONG;
403 bitidx &= (BITS_PER_LONG-1);
404
405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406
407 mask <<= bitidx;
408 flags <<= bitidx;
409
410 word = READ_ONCE(bitmap[word_bitidx]);
411 do {
412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413}
414
415void set_pageblock_migratetype(struct page *page, int migratetype)
416{
417 if (unlikely(page_group_by_mobility_disabled &&
418 migratetype < MIGRATE_PCPTYPES))
419 migratetype = MIGRATE_UNMOVABLE;
420
421 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 page_to_pfn(page), MIGRATETYPE_MASK);
423}
424
425#ifdef CONFIG_DEBUG_VM
426static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427{
428 int ret;
429 unsigned seq;
430 unsigned long pfn = page_to_pfn(page);
431 unsigned long sp, start_pfn;
432
433 do {
434 seq = zone_span_seqbegin(zone);
435 start_pfn = zone->zone_start_pfn;
436 sp = zone->spanned_pages;
437 ret = !zone_spans_pfn(zone, pfn);
438 } while (zone_span_seqretry(zone, seq));
439
440 if (ret)
441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 pfn, zone_to_nid(zone), zone->name,
443 start_pfn, start_pfn + sp);
444
445 return ret;
446}
447
448/*
449 * Temporary debugging check for pages not lying within a given zone.
450 */
451static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452{
453 if (page_outside_zone_boundaries(zone, page))
454 return true;
455 if (zone != page_zone(page))
456 return true;
457
458 return false;
459}
460#else
461static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462{
463 return false;
464}
465#endif
466
467static void bad_page(struct page *page, const char *reason)
468{
469 static unsigned long resume;
470 static unsigned long nr_shown;
471 static unsigned long nr_unshown;
472
473 /*
474 * Allow a burst of 60 reports, then keep quiet for that minute;
475 * or allow a steady drip of one report per second.
476 */
477 if (nr_shown == 60) {
478 if (time_before(jiffies, resume)) {
479 nr_unshown++;
480 goto out;
481 }
482 if (nr_unshown) {
483 pr_alert(
484 "BUG: Bad page state: %lu messages suppressed\n",
485 nr_unshown);
486 nr_unshown = 0;
487 }
488 nr_shown = 0;
489 }
490 if (nr_shown++ == 0)
491 resume = jiffies + 60 * HZ;
492
493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
494 current->comm, page_to_pfn(page));
495 dump_page(page, reason);
496
497 print_modules();
498 dump_stack();
499out:
500 /* Leave bad fields for debug, except PageBuddy could make trouble */
501 if (PageBuddy(page))
502 __ClearPageBuddy(page);
503 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
504}
505
506static inline unsigned int order_to_pindex(int migratetype, int order)
507{
508 bool __maybe_unused movable;
509
510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 if (order > PAGE_ALLOC_COSTLY_ORDER) {
512 VM_BUG_ON(order != HPAGE_PMD_ORDER);
513
514 movable = migratetype == MIGRATE_MOVABLE;
515
516 return NR_LOWORDER_PCP_LISTS + movable;
517 }
518#else
519 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
520#endif
521
522 return (MIGRATE_PCPTYPES * order) + migratetype;
523}
524
525static inline int pindex_to_order(unsigned int pindex)
526{
527 int order = pindex / MIGRATE_PCPTYPES;
528
529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 if (pindex >= NR_LOWORDER_PCP_LISTS)
531 order = HPAGE_PMD_ORDER;
532#else
533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534#endif
535
536 return order;
537}
538
539static inline bool pcp_allowed_order(unsigned int order)
540{
541 if (order <= PAGE_ALLOC_COSTLY_ORDER)
542 return true;
543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 if (order == HPAGE_PMD_ORDER)
545 return true;
546#endif
547 return false;
548}
549
550/*
551 * Higher-order pages are called "compound pages". They are structured thusly:
552 *
553 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554 *
555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557 *
558 * The first tail page's ->compound_order holds the order of allocation.
559 * This usage means that zero-order pages may not be compound.
560 */
561
562void prep_compound_page(struct page *page, unsigned int order)
563{
564 int i;
565 int nr_pages = 1 << order;
566
567 __SetPageHead(page);
568 for (i = 1; i < nr_pages; i++)
569 prep_compound_tail(page, i);
570
571 prep_compound_head(page, order);
572}
573
574static inline void set_buddy_order(struct page *page, unsigned int order)
575{
576 set_page_private(page, order);
577 __SetPageBuddy(page);
578}
579
580#ifdef CONFIG_COMPACTION
581static inline struct capture_control *task_capc(struct zone *zone)
582{
583 struct capture_control *capc = current->capture_control;
584
585 return unlikely(capc) &&
586 !(current->flags & PF_KTHREAD) &&
587 !capc->page &&
588 capc->cc->zone == zone ? capc : NULL;
589}
590
591static inline bool
592compaction_capture(struct capture_control *capc, struct page *page,
593 int order, int migratetype)
594{
595 if (!capc || order != capc->cc->order)
596 return false;
597
598 /* Do not accidentally pollute CMA or isolated regions*/
599 if (is_migrate_cma(migratetype) ||
600 is_migrate_isolate(migratetype))
601 return false;
602
603 /*
604 * Do not let lower order allocations pollute a movable pageblock
605 * unless compaction is also requesting movable pages.
606 * This might let an unmovable request use a reclaimable pageblock
607 * and vice-versa but no more than normal fallback logic which can
608 * have trouble finding a high-order free page.
609 */
610 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
611 capc->cc->migratetype != MIGRATE_MOVABLE)
612 return false;
613
614 capc->page = page;
615 return true;
616}
617
618#else
619static inline struct capture_control *task_capc(struct zone *zone)
620{
621 return NULL;
622}
623
624static inline bool
625compaction_capture(struct capture_control *capc, struct page *page,
626 int order, int migratetype)
627{
628 return false;
629}
630#endif /* CONFIG_COMPACTION */
631
632static inline void account_freepages(struct zone *zone, int nr_pages,
633 int migratetype)
634{
635 if (is_migrate_isolate(migratetype))
636 return;
637
638 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
639
640 if (is_migrate_cma(migratetype))
641 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
642}
643
644/* Used for pages not on another list */
645static inline void __add_to_free_list(struct page *page, struct zone *zone,
646 unsigned int order, int migratetype,
647 bool tail)
648{
649 struct free_area *area = &zone->free_area[order];
650
651 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
652 "page type is %lu, passed migratetype is %d (nr=%d)\n",
653 get_pageblock_migratetype(page), migratetype, 1 << order);
654
655 if (tail)
656 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
657 else
658 list_add(&page->buddy_list, &area->free_list[migratetype]);
659 area->nr_free++;
660}
661
662/*
663 * Used for pages which are on another list. Move the pages to the tail
664 * of the list - so the moved pages won't immediately be considered for
665 * allocation again (e.g., optimization for memory onlining).
666 */
667static inline void move_to_free_list(struct page *page, struct zone *zone,
668 unsigned int order, int old_mt, int new_mt)
669{
670 struct free_area *area = &zone->free_area[order];
671
672 /* Free page moving can fail, so it happens before the type update */
673 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
674 "page type is %lu, passed migratetype is %d (nr=%d)\n",
675 get_pageblock_migratetype(page), old_mt, 1 << order);
676
677 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
678
679 account_freepages(zone, -(1 << order), old_mt);
680 account_freepages(zone, 1 << order, new_mt);
681}
682
683static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
684 unsigned int order, int migratetype)
685{
686 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
687 "page type is %lu, passed migratetype is %d (nr=%d)\n",
688 get_pageblock_migratetype(page), migratetype, 1 << order);
689
690 /* clear reported state and update reported page count */
691 if (page_reported(page))
692 __ClearPageReported(page);
693
694 list_del(&page->buddy_list);
695 __ClearPageBuddy(page);
696 set_page_private(page, 0);
697 zone->free_area[order].nr_free--;
698}
699
700static inline void del_page_from_free_list(struct page *page, struct zone *zone,
701 unsigned int order, int migratetype)
702{
703 __del_page_from_free_list(page, zone, order, migratetype);
704 account_freepages(zone, -(1 << order), migratetype);
705}
706
707static inline struct page *get_page_from_free_area(struct free_area *area,
708 int migratetype)
709{
710 return list_first_entry_or_null(&area->free_list[migratetype],
711 struct page, buddy_list);
712}
713
714/*
715 * If this is less than the 2nd largest possible page, check if the buddy
716 * of the next-higher order is free. If it is, it's possible
717 * that pages are being freed that will coalesce soon. In case,
718 * that is happening, add the free page to the tail of the list
719 * so it's less likely to be used soon and more likely to be merged
720 * as a 2-level higher order page
721 */
722static inline bool
723buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 struct page *page, unsigned int order)
725{
726 unsigned long higher_page_pfn;
727 struct page *higher_page;
728
729 if (order >= MAX_PAGE_ORDER - 1)
730 return false;
731
732 higher_page_pfn = buddy_pfn & pfn;
733 higher_page = page + (higher_page_pfn - pfn);
734
735 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 NULL) != NULL;
737}
738
739/*
740 * Freeing function for a buddy system allocator.
741 *
742 * The concept of a buddy system is to maintain direct-mapped table
743 * (containing bit values) for memory blocks of various "orders".
744 * The bottom level table contains the map for the smallest allocatable
745 * units of memory (here, pages), and each level above it describes
746 * pairs of units from the levels below, hence, "buddies".
747 * At a high level, all that happens here is marking the table entry
748 * at the bottom level available, and propagating the changes upward
749 * as necessary, plus some accounting needed to play nicely with other
750 * parts of the VM system.
751 * At each level, we keep a list of pages, which are heads of continuous
752 * free pages of length of (1 << order) and marked with PageBuddy.
753 * Page's order is recorded in page_private(page) field.
754 * So when we are allocating or freeing one, we can derive the state of the
755 * other. That is, if we allocate a small block, and both were
756 * free, the remainder of the region must be split into blocks.
757 * If a block is freed, and its buddy is also free, then this
758 * triggers coalescing into a block of larger size.
759 *
760 * -- nyc
761 */
762
763static inline void __free_one_page(struct page *page,
764 unsigned long pfn,
765 struct zone *zone, unsigned int order,
766 int migratetype, fpi_t fpi_flags)
767{
768 struct capture_control *capc = task_capc(zone);
769 unsigned long buddy_pfn = 0;
770 unsigned long combined_pfn;
771 struct page *buddy;
772 bool to_tail;
773
774 VM_BUG_ON(!zone_is_initialized(zone));
775 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776
777 VM_BUG_ON(migratetype == -1);
778 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
779 VM_BUG_ON_PAGE(bad_range(zone, page), page);
780
781 account_freepages(zone, 1 << order, migratetype);
782
783 while (order < MAX_PAGE_ORDER) {
784 int buddy_mt = migratetype;
785
786 if (compaction_capture(capc, page, order, migratetype)) {
787 account_freepages(zone, -(1 << order), migratetype);
788 return;
789 }
790
791 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 if (!buddy)
793 goto done_merging;
794
795 if (unlikely(order >= pageblock_order)) {
796 /*
797 * We want to prevent merge between freepages on pageblock
798 * without fallbacks and normal pageblock. Without this,
799 * pageblock isolation could cause incorrect freepage or CMA
800 * accounting or HIGHATOMIC accounting.
801 */
802 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803
804 if (migratetype != buddy_mt &&
805 (!migratetype_is_mergeable(migratetype) ||
806 !migratetype_is_mergeable(buddy_mt)))
807 goto done_merging;
808 }
809
810 /*
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
813 */
814 if (page_is_guard(buddy))
815 clear_page_guard(zone, buddy, order);
816 else
817 __del_page_from_free_list(buddy, zone, order, buddy_mt);
818
819 if (unlikely(buddy_mt != migratetype)) {
820 /*
821 * Match buddy type. This ensures that an
822 * expand() down the line puts the sub-blocks
823 * on the right freelists.
824 */
825 set_pageblock_migratetype(buddy, migratetype);
826 }
827
828 combined_pfn = buddy_pfn & pfn;
829 page = page + (combined_pfn - pfn);
830 pfn = combined_pfn;
831 order++;
832 }
833
834done_merging:
835 set_buddy_order(page, order);
836
837 if (fpi_flags & FPI_TO_TAIL)
838 to_tail = true;
839 else if (is_shuffle_order(order))
840 to_tail = shuffle_pick_tail();
841 else
842 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
843
844 __add_to_free_list(page, zone, order, migratetype, to_tail);
845
846 /* Notify page reporting subsystem of freed page */
847 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
848 page_reporting_notify_free(order);
849}
850
851/*
852 * A bad page could be due to a number of fields. Instead of multiple branches,
853 * try and check multiple fields with one check. The caller must do a detailed
854 * check if necessary.
855 */
856static inline bool page_expected_state(struct page *page,
857 unsigned long check_flags)
858{
859 if (unlikely(atomic_read(&page->_mapcount) != -1))
860 return false;
861
862 if (unlikely((unsigned long)page->mapping |
863 page_ref_count(page) |
864#ifdef CONFIG_MEMCG
865 page->memcg_data |
866#endif
867#ifdef CONFIG_PAGE_POOL
868 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
869#endif
870 (page->flags & check_flags)))
871 return false;
872
873 return true;
874}
875
876static const char *page_bad_reason(struct page *page, unsigned long flags)
877{
878 const char *bad_reason = NULL;
879
880 if (unlikely(atomic_read(&page->_mapcount) != -1))
881 bad_reason = "nonzero mapcount";
882 if (unlikely(page->mapping != NULL))
883 bad_reason = "non-NULL mapping";
884 if (unlikely(page_ref_count(page) != 0))
885 bad_reason = "nonzero _refcount";
886 if (unlikely(page->flags & flags)) {
887 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
888 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
889 else
890 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
891 }
892#ifdef CONFIG_MEMCG
893 if (unlikely(page->memcg_data))
894 bad_reason = "page still charged to cgroup";
895#endif
896#ifdef CONFIG_PAGE_POOL
897 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
898 bad_reason = "page_pool leak";
899#endif
900 return bad_reason;
901}
902
903static void free_page_is_bad_report(struct page *page)
904{
905 bad_page(page,
906 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
907}
908
909static inline bool free_page_is_bad(struct page *page)
910{
911 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
912 return false;
913
914 /* Something has gone sideways, find it */
915 free_page_is_bad_report(page);
916 return true;
917}
918
919static inline bool is_check_pages_enabled(void)
920{
921 return static_branch_unlikely(&check_pages_enabled);
922}
923
924static int free_tail_page_prepare(struct page *head_page, struct page *page)
925{
926 struct folio *folio = (struct folio *)head_page;
927 int ret = 1;
928
929 /*
930 * We rely page->lru.next never has bit 0 set, unless the page
931 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
932 */
933 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
934
935 if (!is_check_pages_enabled()) {
936 ret = 0;
937 goto out;
938 }
939 switch (page - head_page) {
940 case 1:
941 /* the first tail page: these may be in place of ->mapping */
942 if (unlikely(folio_entire_mapcount(folio))) {
943 bad_page(page, "nonzero entire_mapcount");
944 goto out;
945 }
946 if (unlikely(folio_large_mapcount(folio))) {
947 bad_page(page, "nonzero large_mapcount");
948 goto out;
949 }
950 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
951 bad_page(page, "nonzero nr_pages_mapped");
952 goto out;
953 }
954 if (unlikely(atomic_read(&folio->_pincount))) {
955 bad_page(page, "nonzero pincount");
956 goto out;
957 }
958 break;
959 case 2:
960 /* the second tail page: deferred_list overlaps ->mapping */
961 if (unlikely(!list_empty(&folio->_deferred_list))) {
962 bad_page(page, "on deferred list");
963 goto out;
964 }
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page");
969 goto out;
970 }
971 break;
972 }
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set");
975 goto out;
976 }
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent");
979 goto out;
980 }
981 ret = 0;
982out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
986}
987
988/*
989 * Skip KASAN memory poisoning when either:
990 *
991 * 1. For generic KASAN: deferred memory initialization has not yet completed.
992 * Tag-based KASAN modes skip pages freed via deferred memory initialization
993 * using page tags instead (see below).
994 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
995 * that error detection is disabled for accesses via the page address.
996 *
997 * Pages will have match-all tags in the following circumstances:
998 *
999 * 1. Pages are being initialized for the first time, including during deferred
1000 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1001 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1002 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1003 * 3. The allocation was excluded from being checked due to sampling,
1004 * see the call to kasan_unpoison_pages.
1005 *
1006 * Poisoning pages during deferred memory init will greatly lengthen the
1007 * process and cause problem in large memory systems as the deferred pages
1008 * initialization is done with interrupt disabled.
1009 *
1010 * Assuming that there will be no reference to those newly initialized
1011 * pages before they are ever allocated, this should have no effect on
1012 * KASAN memory tracking as the poison will be properly inserted at page
1013 * allocation time. The only corner case is when pages are allocated by
1014 * on-demand allocation and then freed again before the deferred pages
1015 * initialization is done, but this is not likely to happen.
1016 */
1017static inline bool should_skip_kasan_poison(struct page *page)
1018{
1019 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1020 return deferred_pages_enabled();
1021
1022 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1023}
1024
1025static void kernel_init_pages(struct page *page, int numpages)
1026{
1027 int i;
1028
1029 /* s390's use of memset() could override KASAN redzones. */
1030 kasan_disable_current();
1031 for (i = 0; i < numpages; i++)
1032 clear_highpage_kasan_tagged(page + i);
1033 kasan_enable_current();
1034}
1035
1036__always_inline bool free_pages_prepare(struct page *page,
1037 unsigned int order)
1038{
1039 int bad = 0;
1040 bool skip_kasan_poison = should_skip_kasan_poison(page);
1041 bool init = want_init_on_free();
1042 bool compound = PageCompound(page);
1043
1044 VM_BUG_ON_PAGE(PageTail(page), page);
1045
1046 trace_mm_page_free(page, order);
1047 kmsan_free_page(page, order);
1048
1049 if (memcg_kmem_online() && PageMemcgKmem(page))
1050 __memcg_kmem_uncharge_page(page, order);
1051
1052 if (unlikely(PageHWPoison(page)) && !order) {
1053 /* Do not let hwpoison pages hit pcplists/buddy */
1054 reset_page_owner(page, order);
1055 page_table_check_free(page, order);
1056 pgalloc_tag_sub(page, 1 << order);
1057 return false;
1058 }
1059
1060 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1061
1062 /*
1063 * Check tail pages before head page information is cleared to
1064 * avoid checking PageCompound for order-0 pages.
1065 */
1066 if (unlikely(order)) {
1067 int i;
1068
1069 if (compound)
1070 page[1].flags &= ~PAGE_FLAGS_SECOND;
1071 for (i = 1; i < (1 << order); i++) {
1072 if (compound)
1073 bad += free_tail_page_prepare(page, page + i);
1074 if (is_check_pages_enabled()) {
1075 if (free_page_is_bad(page + i)) {
1076 bad++;
1077 continue;
1078 }
1079 }
1080 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1081 }
1082 }
1083 if (PageMappingFlags(page))
1084 page->mapping = NULL;
1085 if (is_check_pages_enabled()) {
1086 if (free_page_is_bad(page))
1087 bad++;
1088 if (bad)
1089 return false;
1090 }
1091
1092 page_cpupid_reset_last(page);
1093 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1094 reset_page_owner(page, order);
1095 page_table_check_free(page, order);
1096 pgalloc_tag_sub(page, 1 << order);
1097
1098 if (!PageHighMem(page)) {
1099 debug_check_no_locks_freed(page_address(page),
1100 PAGE_SIZE << order);
1101 debug_check_no_obj_freed(page_address(page),
1102 PAGE_SIZE << order);
1103 }
1104
1105 kernel_poison_pages(page, 1 << order);
1106
1107 /*
1108 * As memory initialization might be integrated into KASAN,
1109 * KASAN poisoning and memory initialization code must be
1110 * kept together to avoid discrepancies in behavior.
1111 *
1112 * With hardware tag-based KASAN, memory tags must be set before the
1113 * page becomes unavailable via debug_pagealloc or arch_free_page.
1114 */
1115 if (!skip_kasan_poison) {
1116 kasan_poison_pages(page, order, init);
1117
1118 /* Memory is already initialized if KASAN did it internally. */
1119 if (kasan_has_integrated_init())
1120 init = false;
1121 }
1122 if (init)
1123 kernel_init_pages(page, 1 << order);
1124
1125 /*
1126 * arch_free_page() can make the page's contents inaccessible. s390
1127 * does this. So nothing which can access the page's contents should
1128 * happen after this.
1129 */
1130 arch_free_page(page, order);
1131
1132 debug_pagealloc_unmap_pages(page, 1 << order);
1133
1134 return true;
1135}
1136
1137/*
1138 * Frees a number of pages from the PCP lists
1139 * Assumes all pages on list are in same zone.
1140 * count is the number of pages to free.
1141 */
1142static void free_pcppages_bulk(struct zone *zone, int count,
1143 struct per_cpu_pages *pcp,
1144 int pindex)
1145{
1146 unsigned long flags;
1147 unsigned int order;
1148 struct page *page;
1149
1150 /*
1151 * Ensure proper count is passed which otherwise would stuck in the
1152 * below while (list_empty(list)) loop.
1153 */
1154 count = min(pcp->count, count);
1155
1156 /* Ensure requested pindex is drained first. */
1157 pindex = pindex - 1;
1158
1159 spin_lock_irqsave(&zone->lock, flags);
1160
1161 while (count > 0) {
1162 struct list_head *list;
1163 int nr_pages;
1164
1165 /* Remove pages from lists in a round-robin fashion. */
1166 do {
1167 if (++pindex > NR_PCP_LISTS - 1)
1168 pindex = 0;
1169 list = &pcp->lists[pindex];
1170 } while (list_empty(list));
1171
1172 order = pindex_to_order(pindex);
1173 nr_pages = 1 << order;
1174 do {
1175 unsigned long pfn;
1176 int mt;
1177
1178 page = list_last_entry(list, struct page, pcp_list);
1179 pfn = page_to_pfn(page);
1180 mt = get_pfnblock_migratetype(page, pfn);
1181
1182 /* must delete to avoid corrupting pcp list */
1183 list_del(&page->pcp_list);
1184 count -= nr_pages;
1185 pcp->count -= nr_pages;
1186
1187 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1188 trace_mm_page_pcpu_drain(page, order, mt);
1189 } while (count > 0 && !list_empty(list));
1190 }
1191
1192 spin_unlock_irqrestore(&zone->lock, flags);
1193}
1194
1195static void free_one_page(struct zone *zone, struct page *page,
1196 unsigned long pfn, unsigned int order,
1197 fpi_t fpi_flags)
1198{
1199 unsigned long flags;
1200 int migratetype;
1201
1202 spin_lock_irqsave(&zone->lock, flags);
1203 migratetype = get_pfnblock_migratetype(page, pfn);
1204 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1205 spin_unlock_irqrestore(&zone->lock, flags);
1206}
1207
1208static void __free_pages_ok(struct page *page, unsigned int order,
1209 fpi_t fpi_flags)
1210{
1211 unsigned long pfn = page_to_pfn(page);
1212 struct zone *zone = page_zone(page);
1213
1214 if (!free_pages_prepare(page, order))
1215 return;
1216
1217 free_one_page(zone, page, pfn, order, fpi_flags);
1218
1219 __count_vm_events(PGFREE, 1 << order);
1220}
1221
1222void __meminit __free_pages_core(struct page *page, unsigned int order,
1223 enum meminit_context context)
1224{
1225 unsigned int nr_pages = 1 << order;
1226 struct page *p = page;
1227 unsigned int loop;
1228
1229 /*
1230 * When initializing the memmap, __init_single_page() sets the refcount
1231 * of all pages to 1 ("allocated"/"not free"). We have to set the
1232 * refcount of all involved pages to 0.
1233 *
1234 * Note that hotplugged memory pages are initialized to PageOffline().
1235 * Pages freed from memblock might be marked as reserved.
1236 */
1237 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1238 unlikely(context == MEMINIT_HOTPLUG)) {
1239 for (loop = 0; loop < nr_pages; loop++, p++) {
1240 VM_WARN_ON_ONCE(PageReserved(p));
1241 __ClearPageOffline(p);
1242 set_page_count(p, 0);
1243 }
1244
1245 /*
1246 * Freeing the page with debug_pagealloc enabled will try to
1247 * unmap it; some archs don't like double-unmappings, so
1248 * map it first.
1249 */
1250 debug_pagealloc_map_pages(page, nr_pages);
1251 adjust_managed_page_count(page, nr_pages);
1252 } else {
1253 for (loop = 0; loop < nr_pages; loop++, p++) {
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
1256 }
1257
1258 /* memblock adjusts totalram_pages() manually. */
1259 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1260 }
1261
1262 if (page_contains_unaccepted(page, order)) {
1263 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1264 return;
1265
1266 accept_page(page, order);
1267 }
1268
1269 /*
1270 * Bypass PCP and place fresh pages right to the tail, primarily
1271 * relevant for memory onlining.
1272 */
1273 __free_pages_ok(page, order, FPI_TO_TAIL);
1274}
1275
1276/*
1277 * Check that the whole (or subset of) a pageblock given by the interval of
1278 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1279 * with the migration of free compaction scanner.
1280 *
1281 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1282 *
1283 * It's possible on some configurations to have a setup like node0 node1 node0
1284 * i.e. it's possible that all pages within a zones range of pages do not
1285 * belong to a single zone. We assume that a border between node0 and node1
1286 * can occur within a single pageblock, but not a node0 node1 node0
1287 * interleaving within a single pageblock. It is therefore sufficient to check
1288 * the first and last page of a pageblock and avoid checking each individual
1289 * page in a pageblock.
1290 *
1291 * Note: the function may return non-NULL struct page even for a page block
1292 * which contains a memory hole (i.e. there is no physical memory for a subset
1293 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1294 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1295 * even though the start pfn is online and valid. This should be safe most of
1296 * the time because struct pages are still initialized via init_unavailable_range()
1297 * and pfn walkers shouldn't touch any physical memory range for which they do
1298 * not recognize any specific metadata in struct pages.
1299 */
1300struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1301 unsigned long end_pfn, struct zone *zone)
1302{
1303 struct page *start_page;
1304 struct page *end_page;
1305
1306 /* end_pfn is one past the range we are checking */
1307 end_pfn--;
1308
1309 if (!pfn_valid(end_pfn))
1310 return NULL;
1311
1312 start_page = pfn_to_online_page(start_pfn);
1313 if (!start_page)
1314 return NULL;
1315
1316 if (page_zone(start_page) != zone)
1317 return NULL;
1318
1319 end_page = pfn_to_page(end_pfn);
1320
1321 /* This gives a shorter code than deriving page_zone(end_page) */
1322 if (page_zone_id(start_page) != page_zone_id(end_page))
1323 return NULL;
1324
1325 return start_page;
1326}
1327
1328/*
1329 * The order of subdivision here is critical for the IO subsystem.
1330 * Please do not alter this order without good reasons and regression
1331 * testing. Specifically, as large blocks of memory are subdivided,
1332 * the order in which smaller blocks are delivered depends on the order
1333 * they're subdivided in this function. This is the primary factor
1334 * influencing the order in which pages are delivered to the IO
1335 * subsystem according to empirical testing, and this is also justified
1336 * by considering the behavior of a buddy system containing a single
1337 * large block of memory acted on by a series of small allocations.
1338 * This behavior is a critical factor in sglist merging's success.
1339 *
1340 * -- nyc
1341 */
1342static inline void expand(struct zone *zone, struct page *page,
1343 int low, int high, int migratetype)
1344{
1345 unsigned long size = 1 << high;
1346 unsigned long nr_added = 0;
1347
1348 while (high > low) {
1349 high--;
1350 size >>= 1;
1351 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1352
1353 /*
1354 * Mark as guard pages (or page), that will allow to
1355 * merge back to allocator when buddy will be freed.
1356 * Corresponding page table entries will not be touched,
1357 * pages will stay not present in virtual address space
1358 */
1359 if (set_page_guard(zone, &page[size], high))
1360 continue;
1361
1362 __add_to_free_list(&page[size], zone, high, migratetype, false);
1363 set_buddy_order(&page[size], high);
1364 nr_added += size;
1365 }
1366 account_freepages(zone, nr_added, migratetype);
1367}
1368
1369static void check_new_page_bad(struct page *page)
1370{
1371 if (unlikely(page->flags & __PG_HWPOISON)) {
1372 /* Don't complain about hwpoisoned pages */
1373 if (PageBuddy(page))
1374 __ClearPageBuddy(page);
1375 return;
1376 }
1377
1378 bad_page(page,
1379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1380}
1381
1382/*
1383 * This page is about to be returned from the page allocator
1384 */
1385static bool check_new_page(struct page *page)
1386{
1387 if (likely(page_expected_state(page,
1388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1389 return false;
1390
1391 check_new_page_bad(page);
1392 return true;
1393}
1394
1395static inline bool check_new_pages(struct page *page, unsigned int order)
1396{
1397 if (is_check_pages_enabled()) {
1398 for (int i = 0; i < (1 << order); i++) {
1399 struct page *p = page + i;
1400
1401 if (check_new_page(p))
1402 return true;
1403 }
1404 }
1405
1406 return false;
1407}
1408
1409static inline bool should_skip_kasan_unpoison(gfp_t flags)
1410{
1411 /* Don't skip if a software KASAN mode is enabled. */
1412 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1413 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1414 return false;
1415
1416 /* Skip, if hardware tag-based KASAN is not enabled. */
1417 if (!kasan_hw_tags_enabled())
1418 return true;
1419
1420 /*
1421 * With hardware tag-based KASAN enabled, skip if this has been
1422 * requested via __GFP_SKIP_KASAN.
1423 */
1424 return flags & __GFP_SKIP_KASAN;
1425}
1426
1427static inline bool should_skip_init(gfp_t flags)
1428{
1429 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1430 if (!kasan_hw_tags_enabled())
1431 return false;
1432
1433 /* For hardware tag-based KASAN, skip if requested. */
1434 return (flags & __GFP_SKIP_ZERO);
1435}
1436
1437inline void post_alloc_hook(struct page *page, unsigned int order,
1438 gfp_t gfp_flags)
1439{
1440 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1441 !should_skip_init(gfp_flags);
1442 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1443 int i;
1444
1445 set_page_private(page, 0);
1446 set_page_refcounted(page);
1447
1448 arch_alloc_page(page, order);
1449 debug_pagealloc_map_pages(page, 1 << order);
1450
1451 /*
1452 * Page unpoisoning must happen before memory initialization.
1453 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1454 * allocations and the page unpoisoning code will complain.
1455 */
1456 kernel_unpoison_pages(page, 1 << order);
1457
1458 /*
1459 * As memory initialization might be integrated into KASAN,
1460 * KASAN unpoisoning and memory initializion code must be
1461 * kept together to avoid discrepancies in behavior.
1462 */
1463
1464 /*
1465 * If memory tags should be zeroed
1466 * (which happens only when memory should be initialized as well).
1467 */
1468 if (zero_tags) {
1469 /* Initialize both memory and memory tags. */
1470 for (i = 0; i != 1 << order; ++i)
1471 tag_clear_highpage(page + i);
1472
1473 /* Take note that memory was initialized by the loop above. */
1474 init = false;
1475 }
1476 if (!should_skip_kasan_unpoison(gfp_flags) &&
1477 kasan_unpoison_pages(page, order, init)) {
1478 /* Take note that memory was initialized by KASAN. */
1479 if (kasan_has_integrated_init())
1480 init = false;
1481 } else {
1482 /*
1483 * If memory tags have not been set by KASAN, reset the page
1484 * tags to ensure page_address() dereferencing does not fault.
1485 */
1486 for (i = 0; i != 1 << order; ++i)
1487 page_kasan_tag_reset(page + i);
1488 }
1489 /* If memory is still not initialized, initialize it now. */
1490 if (init)
1491 kernel_init_pages(page, 1 << order);
1492
1493 set_page_owner(page, order, gfp_flags);
1494 page_table_check_alloc(page, order);
1495 pgalloc_tag_add(page, current, 1 << order);
1496}
1497
1498static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1499 unsigned int alloc_flags)
1500{
1501 post_alloc_hook(page, order, gfp_flags);
1502
1503 if (order && (gfp_flags & __GFP_COMP))
1504 prep_compound_page(page, order);
1505
1506 /*
1507 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1508 * allocate the page. The expectation is that the caller is taking
1509 * steps that will free more memory. The caller should avoid the page
1510 * being used for !PFMEMALLOC purposes.
1511 */
1512 if (alloc_flags & ALLOC_NO_WATERMARKS)
1513 set_page_pfmemalloc(page);
1514 else
1515 clear_page_pfmemalloc(page);
1516}
1517
1518/*
1519 * Go through the free lists for the given migratetype and remove
1520 * the smallest available page from the freelists
1521 */
1522static __always_inline
1523struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1524 int migratetype)
1525{
1526 unsigned int current_order;
1527 struct free_area *area;
1528 struct page *page;
1529
1530 /* Find a page of the appropriate size in the preferred list */
1531 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1532 area = &(zone->free_area[current_order]);
1533 page = get_page_from_free_area(area, migratetype);
1534 if (!page)
1535 continue;
1536 del_page_from_free_list(page, zone, current_order, migratetype);
1537 expand(zone, page, order, current_order, migratetype);
1538 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1539 pcp_allowed_order(order) &&
1540 migratetype < MIGRATE_PCPTYPES);
1541 return page;
1542 }
1543
1544 return NULL;
1545}
1546
1547
1548/*
1549 * This array describes the order lists are fallen back to when
1550 * the free lists for the desirable migrate type are depleted
1551 *
1552 * The other migratetypes do not have fallbacks.
1553 */
1554static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1555 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1556 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1557 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1558};
1559
1560#ifdef CONFIG_CMA
1561static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1562 unsigned int order)
1563{
1564 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1565}
1566#else
1567static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1568 unsigned int order) { return NULL; }
1569#endif
1570
1571/*
1572 * Change the type of a block and move all its free pages to that
1573 * type's freelist.
1574 */
1575static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1576 int old_mt, int new_mt)
1577{
1578 struct page *page;
1579 unsigned long pfn, end_pfn;
1580 unsigned int order;
1581 int pages_moved = 0;
1582
1583 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1584 end_pfn = pageblock_end_pfn(start_pfn);
1585
1586 for (pfn = start_pfn; pfn < end_pfn;) {
1587 page = pfn_to_page(pfn);
1588 if (!PageBuddy(page)) {
1589 pfn++;
1590 continue;
1591 }
1592
1593 /* Make sure we are not inadvertently changing nodes */
1594 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1595 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1596
1597 order = buddy_order(page);
1598
1599 move_to_free_list(page, zone, order, old_mt, new_mt);
1600
1601 pfn += 1 << order;
1602 pages_moved += 1 << order;
1603 }
1604
1605 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1606
1607 return pages_moved;
1608}
1609
1610static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1611 unsigned long *start_pfn,
1612 int *num_free, int *num_movable)
1613{
1614 unsigned long pfn, start, end;
1615
1616 pfn = page_to_pfn(page);
1617 start = pageblock_start_pfn(pfn);
1618 end = pageblock_end_pfn(pfn);
1619
1620 /*
1621 * The caller only has the lock for @zone, don't touch ranges
1622 * that straddle into other zones. While we could move part of
1623 * the range that's inside the zone, this call is usually
1624 * accompanied by other operations such as migratetype updates
1625 * which also should be locked.
1626 */
1627 if (!zone_spans_pfn(zone, start))
1628 return false;
1629 if (!zone_spans_pfn(zone, end - 1))
1630 return false;
1631
1632 *start_pfn = start;
1633
1634 if (num_free) {
1635 *num_free = 0;
1636 *num_movable = 0;
1637 for (pfn = start; pfn < end;) {
1638 page = pfn_to_page(pfn);
1639 if (PageBuddy(page)) {
1640 int nr = 1 << buddy_order(page);
1641
1642 *num_free += nr;
1643 pfn += nr;
1644 continue;
1645 }
1646 /*
1647 * We assume that pages that could be isolated for
1648 * migration are movable. But we don't actually try
1649 * isolating, as that would be expensive.
1650 */
1651 if (PageLRU(page) || __PageMovable(page))
1652 (*num_movable)++;
1653 pfn++;
1654 }
1655 }
1656
1657 return true;
1658}
1659
1660static int move_freepages_block(struct zone *zone, struct page *page,
1661 int old_mt, int new_mt)
1662{
1663 unsigned long start_pfn;
1664
1665 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1666 return -1;
1667
1668 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1669}
1670
1671#ifdef CONFIG_MEMORY_ISOLATION
1672/* Look for a buddy that straddles start_pfn */
1673static unsigned long find_large_buddy(unsigned long start_pfn)
1674{
1675 int order = 0;
1676 struct page *page;
1677 unsigned long pfn = start_pfn;
1678
1679 while (!PageBuddy(page = pfn_to_page(pfn))) {
1680 /* Nothing found */
1681 if (++order > MAX_PAGE_ORDER)
1682 return start_pfn;
1683 pfn &= ~0UL << order;
1684 }
1685
1686 /*
1687 * Found a preceding buddy, but does it straddle?
1688 */
1689 if (pfn + (1 << buddy_order(page)) > start_pfn)
1690 return pfn;
1691
1692 /* Nothing found */
1693 return start_pfn;
1694}
1695
1696/* Split a multi-block free page into its individual pageblocks */
1697static void split_large_buddy(struct zone *zone, struct page *page,
1698 unsigned long pfn, int order)
1699{
1700 unsigned long end_pfn = pfn + (1 << order);
1701
1702 VM_WARN_ON_ONCE(order <= pageblock_order);
1703 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1704
1705 /* Caller removed page from freelist, buddy info cleared! */
1706 VM_WARN_ON_ONCE(PageBuddy(page));
1707
1708 while (pfn != end_pfn) {
1709 int mt = get_pfnblock_migratetype(page, pfn);
1710
1711 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1712 pfn += pageblock_nr_pages;
1713 page = pfn_to_page(pfn);
1714 }
1715}
1716
1717/**
1718 * move_freepages_block_isolate - move free pages in block for page isolation
1719 * @zone: the zone
1720 * @page: the pageblock page
1721 * @migratetype: migratetype to set on the pageblock
1722 *
1723 * This is similar to move_freepages_block(), but handles the special
1724 * case encountered in page isolation, where the block of interest
1725 * might be part of a larger buddy spanning multiple pageblocks.
1726 *
1727 * Unlike the regular page allocator path, which moves pages while
1728 * stealing buddies off the freelist, page isolation is interested in
1729 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1730 *
1731 * This function handles that. Straddling buddies are split into
1732 * individual pageblocks. Only the block of interest is moved.
1733 *
1734 * Returns %true if pages could be moved, %false otherwise.
1735 */
1736bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1737 int migratetype)
1738{
1739 unsigned long start_pfn, pfn;
1740
1741 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1742 return false;
1743
1744 /* No splits needed if buddies can't span multiple blocks */
1745 if (pageblock_order == MAX_PAGE_ORDER)
1746 goto move;
1747
1748 /* We're a tail block in a larger buddy */
1749 pfn = find_large_buddy(start_pfn);
1750 if (pfn != start_pfn) {
1751 struct page *buddy = pfn_to_page(pfn);
1752 int order = buddy_order(buddy);
1753
1754 del_page_from_free_list(buddy, zone, order,
1755 get_pfnblock_migratetype(buddy, pfn));
1756 set_pageblock_migratetype(page, migratetype);
1757 split_large_buddy(zone, buddy, pfn, order);
1758 return true;
1759 }
1760
1761 /* We're the starting block of a larger buddy */
1762 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1763 int order = buddy_order(page);
1764
1765 del_page_from_free_list(page, zone, order,
1766 get_pfnblock_migratetype(page, pfn));
1767 set_pageblock_migratetype(page, migratetype);
1768 split_large_buddy(zone, page, pfn, order);
1769 return true;
1770 }
1771move:
1772 __move_freepages_block(zone, start_pfn,
1773 get_pfnblock_migratetype(page, start_pfn),
1774 migratetype);
1775 return true;
1776}
1777#endif /* CONFIG_MEMORY_ISOLATION */
1778
1779static void change_pageblock_range(struct page *pageblock_page,
1780 int start_order, int migratetype)
1781{
1782 int nr_pageblocks = 1 << (start_order - pageblock_order);
1783
1784 while (nr_pageblocks--) {
1785 set_pageblock_migratetype(pageblock_page, migratetype);
1786 pageblock_page += pageblock_nr_pages;
1787 }
1788}
1789
1790/*
1791 * When we are falling back to another migratetype during allocation, try to
1792 * steal extra free pages from the same pageblocks to satisfy further
1793 * allocations, instead of polluting multiple pageblocks.
1794 *
1795 * If we are stealing a relatively large buddy page, it is likely there will
1796 * be more free pages in the pageblock, so try to steal them all. For
1797 * reclaimable and unmovable allocations, we steal regardless of page size,
1798 * as fragmentation caused by those allocations polluting movable pageblocks
1799 * is worse than movable allocations stealing from unmovable and reclaimable
1800 * pageblocks.
1801 */
1802static bool can_steal_fallback(unsigned int order, int start_mt)
1803{
1804 /*
1805 * Leaving this order check is intended, although there is
1806 * relaxed order check in next check. The reason is that
1807 * we can actually steal whole pageblock if this condition met,
1808 * but, below check doesn't guarantee it and that is just heuristic
1809 * so could be changed anytime.
1810 */
1811 if (order >= pageblock_order)
1812 return true;
1813
1814 if (order >= pageblock_order / 2 ||
1815 start_mt == MIGRATE_RECLAIMABLE ||
1816 start_mt == MIGRATE_UNMOVABLE ||
1817 page_group_by_mobility_disabled)
1818 return true;
1819
1820 return false;
1821}
1822
1823static inline bool boost_watermark(struct zone *zone)
1824{
1825 unsigned long max_boost;
1826
1827 if (!watermark_boost_factor)
1828 return false;
1829 /*
1830 * Don't bother in zones that are unlikely to produce results.
1831 * On small machines, including kdump capture kernels running
1832 * in a small area, boosting the watermark can cause an out of
1833 * memory situation immediately.
1834 */
1835 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1836 return false;
1837
1838 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1839 watermark_boost_factor, 10000);
1840
1841 /*
1842 * high watermark may be uninitialised if fragmentation occurs
1843 * very early in boot so do not boost. We do not fall
1844 * through and boost by pageblock_nr_pages as failing
1845 * allocations that early means that reclaim is not going
1846 * to help and it may even be impossible to reclaim the
1847 * boosted watermark resulting in a hang.
1848 */
1849 if (!max_boost)
1850 return false;
1851
1852 max_boost = max(pageblock_nr_pages, max_boost);
1853
1854 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1855 max_boost);
1856
1857 return true;
1858}
1859
1860/*
1861 * This function implements actual steal behaviour. If order is large enough, we
1862 * can claim the whole pageblock for the requested migratetype. If not, we check
1863 * the pageblock for constituent pages; if at least half of the pages are free
1864 * or compatible, we can still claim the whole block, so pages freed in the
1865 * future will be put on the correct free list. Otherwise, we isolate exactly
1866 * the order we need from the fallback block and leave its migratetype alone.
1867 */
1868static struct page *
1869steal_suitable_fallback(struct zone *zone, struct page *page,
1870 int current_order, int order, int start_type,
1871 unsigned int alloc_flags, bool whole_block)
1872{
1873 int free_pages, movable_pages, alike_pages;
1874 unsigned long start_pfn;
1875 int block_type;
1876
1877 block_type = get_pageblock_migratetype(page);
1878
1879 /*
1880 * This can happen due to races and we want to prevent broken
1881 * highatomic accounting.
1882 */
1883 if (is_migrate_highatomic(block_type))
1884 goto single_page;
1885
1886 /* Take ownership for orders >= pageblock_order */
1887 if (current_order >= pageblock_order) {
1888 del_page_from_free_list(page, zone, current_order, block_type);
1889 change_pageblock_range(page, current_order, start_type);
1890 expand(zone, page, order, current_order, start_type);
1891 return page;
1892 }
1893
1894 /*
1895 * Boost watermarks to increase reclaim pressure to reduce the
1896 * likelihood of future fallbacks. Wake kswapd now as the node
1897 * may be balanced overall and kswapd will not wake naturally.
1898 */
1899 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1900 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1901
1902 /* We are not allowed to try stealing from the whole block */
1903 if (!whole_block)
1904 goto single_page;
1905
1906 /* moving whole block can fail due to zone boundary conditions */
1907 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1908 &movable_pages))
1909 goto single_page;
1910
1911 /*
1912 * Determine how many pages are compatible with our allocation.
1913 * For movable allocation, it's the number of movable pages which
1914 * we just obtained. For other types it's a bit more tricky.
1915 */
1916 if (start_type == MIGRATE_MOVABLE) {
1917 alike_pages = movable_pages;
1918 } else {
1919 /*
1920 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1921 * to MOVABLE pageblock, consider all non-movable pages as
1922 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1923 * vice versa, be conservative since we can't distinguish the
1924 * exact migratetype of non-movable pages.
1925 */
1926 if (block_type == MIGRATE_MOVABLE)
1927 alike_pages = pageblock_nr_pages
1928 - (free_pages + movable_pages);
1929 else
1930 alike_pages = 0;
1931 }
1932 /*
1933 * If a sufficient number of pages in the block are either free or of
1934 * compatible migratability as our allocation, claim the whole block.
1935 */
1936 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1937 page_group_by_mobility_disabled) {
1938 __move_freepages_block(zone, start_pfn, block_type, start_type);
1939 return __rmqueue_smallest(zone, order, start_type);
1940 }
1941
1942single_page:
1943 del_page_from_free_list(page, zone, current_order, block_type);
1944 expand(zone, page, order, current_order, block_type);
1945 return page;
1946}
1947
1948/*
1949 * Check whether there is a suitable fallback freepage with requested order.
1950 * If only_stealable is true, this function returns fallback_mt only if
1951 * we can steal other freepages all together. This would help to reduce
1952 * fragmentation due to mixed migratetype pages in one pageblock.
1953 */
1954int find_suitable_fallback(struct free_area *area, unsigned int order,
1955 int migratetype, bool only_stealable, bool *can_steal)
1956{
1957 int i;
1958 int fallback_mt;
1959
1960 if (area->nr_free == 0)
1961 return -1;
1962
1963 *can_steal = false;
1964 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1965 fallback_mt = fallbacks[migratetype][i];
1966 if (free_area_empty(area, fallback_mt))
1967 continue;
1968
1969 if (can_steal_fallback(order, migratetype))
1970 *can_steal = true;
1971
1972 if (!only_stealable)
1973 return fallback_mt;
1974
1975 if (*can_steal)
1976 return fallback_mt;
1977 }
1978
1979 return -1;
1980}
1981
1982/*
1983 * Reserve the pageblock(s) surrounding an allocation request for
1984 * exclusive use of high-order atomic allocations if there are no
1985 * empty page blocks that contain a page with a suitable order
1986 */
1987static void reserve_highatomic_pageblock(struct page *page, int order,
1988 struct zone *zone)
1989{
1990 int mt;
1991 unsigned long max_managed, flags;
1992
1993 /*
1994 * The number reserved as: minimum is 1 pageblock, maximum is
1995 * roughly 1% of a zone. But if 1% of a zone falls below a
1996 * pageblock size, then don't reserve any pageblocks.
1997 * Check is race-prone but harmless.
1998 */
1999 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2000 return;
2001 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2002 if (zone->nr_reserved_highatomic >= max_managed)
2003 return;
2004
2005 spin_lock_irqsave(&zone->lock, flags);
2006
2007 /* Recheck the nr_reserved_highatomic limit under the lock */
2008 if (zone->nr_reserved_highatomic >= max_managed)
2009 goto out_unlock;
2010
2011 /* Yoink! */
2012 mt = get_pageblock_migratetype(page);
2013 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2014 if (!migratetype_is_mergeable(mt))
2015 goto out_unlock;
2016
2017 if (order < pageblock_order) {
2018 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2019 goto out_unlock;
2020 zone->nr_reserved_highatomic += pageblock_nr_pages;
2021 } else {
2022 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2023 zone->nr_reserved_highatomic += 1 << order;
2024 }
2025
2026out_unlock:
2027 spin_unlock_irqrestore(&zone->lock, flags);
2028}
2029
2030/*
2031 * Used when an allocation is about to fail under memory pressure. This
2032 * potentially hurts the reliability of high-order allocations when under
2033 * intense memory pressure but failed atomic allocations should be easier
2034 * to recover from than an OOM.
2035 *
2036 * If @force is true, try to unreserve pageblocks even though highatomic
2037 * pageblock is exhausted.
2038 */
2039static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2040 bool force)
2041{
2042 struct zonelist *zonelist = ac->zonelist;
2043 unsigned long flags;
2044 struct zoneref *z;
2045 struct zone *zone;
2046 struct page *page;
2047 int order;
2048 int ret;
2049
2050 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2051 ac->nodemask) {
2052 /*
2053 * Preserve at least one pageblock unless memory pressure
2054 * is really high.
2055 */
2056 if (!force && zone->nr_reserved_highatomic <=
2057 pageblock_nr_pages)
2058 continue;
2059
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063 int mt;
2064
2065 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2066 if (!page)
2067 continue;
2068
2069 mt = get_pageblock_migratetype(page);
2070 /*
2071 * In page freeing path, migratetype change is racy so
2072 * we can counter several free pages in a pageblock
2073 * in this loop although we changed the pageblock type
2074 * from highatomic to ac->migratetype. So we should
2075 * adjust the count once.
2076 */
2077 if (is_migrate_highatomic(mt)) {
2078 unsigned long size;
2079 /*
2080 * It should never happen but changes to
2081 * locking could inadvertently allow a per-cpu
2082 * drain to add pages to MIGRATE_HIGHATOMIC
2083 * while unreserving so be safe and watch for
2084 * underflows.
2085 */
2086 size = max(pageblock_nr_pages, 1UL << order);
2087 size = min(size, zone->nr_reserved_highatomic);
2088 zone->nr_reserved_highatomic -= size;
2089 }
2090
2091 /*
2092 * Convert to ac->migratetype and avoid the normal
2093 * pageblock stealing heuristics. Minimally, the caller
2094 * is doing the work and needs the pages. More
2095 * importantly, if the block was always converted to
2096 * MIGRATE_UNMOVABLE or another type then the number
2097 * of pageblocks that cannot be completely freed
2098 * may increase.
2099 */
2100 if (order < pageblock_order)
2101 ret = move_freepages_block(zone, page, mt,
2102 ac->migratetype);
2103 else {
2104 move_to_free_list(page, zone, order, mt,
2105 ac->migratetype);
2106 change_pageblock_range(page, order,
2107 ac->migratetype);
2108 ret = 1;
2109 }
2110 /*
2111 * Reserving the block(s) already succeeded,
2112 * so this should not fail on zone boundaries.
2113 */
2114 WARN_ON_ONCE(ret == -1);
2115 if (ret > 0) {
2116 spin_unlock_irqrestore(&zone->lock, flags);
2117 return ret;
2118 }
2119 }
2120 spin_unlock_irqrestore(&zone->lock, flags);
2121 }
2122
2123 return false;
2124}
2125
2126/*
2127 * Try finding a free buddy page on the fallback list and put it on the free
2128 * list of requested migratetype, possibly along with other pages from the same
2129 * block, depending on fragmentation avoidance heuristics. Returns true if
2130 * fallback was found so that __rmqueue_smallest() can grab it.
2131 *
2132 * The use of signed ints for order and current_order is a deliberate
2133 * deviation from the rest of this file, to make the for loop
2134 * condition simpler.
2135 */
2136static __always_inline struct page *
2137__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2138 unsigned int alloc_flags)
2139{
2140 struct free_area *area;
2141 int current_order;
2142 int min_order = order;
2143 struct page *page;
2144 int fallback_mt;
2145 bool can_steal;
2146
2147 /*
2148 * Do not steal pages from freelists belonging to other pageblocks
2149 * i.e. orders < pageblock_order. If there are no local zones free,
2150 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2151 */
2152 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2153 min_order = pageblock_order;
2154
2155 /*
2156 * Find the largest available free page in the other list. This roughly
2157 * approximates finding the pageblock with the most free pages, which
2158 * would be too costly to do exactly.
2159 */
2160 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2161 --current_order) {
2162 area = &(zone->free_area[current_order]);
2163 fallback_mt = find_suitable_fallback(area, current_order,
2164 start_migratetype, false, &can_steal);
2165 if (fallback_mt == -1)
2166 continue;
2167
2168 /*
2169 * We cannot steal all free pages from the pageblock and the
2170 * requested migratetype is movable. In that case it's better to
2171 * steal and split the smallest available page instead of the
2172 * largest available page, because even if the next movable
2173 * allocation falls back into a different pageblock than this
2174 * one, it won't cause permanent fragmentation.
2175 */
2176 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2177 && current_order > order)
2178 goto find_smallest;
2179
2180 goto do_steal;
2181 }
2182
2183 return NULL;
2184
2185find_smallest:
2186 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2187 area = &(zone->free_area[current_order]);
2188 fallback_mt = find_suitable_fallback(area, current_order,
2189 start_migratetype, false, &can_steal);
2190 if (fallback_mt != -1)
2191 break;
2192 }
2193
2194 /*
2195 * This should not happen - we already found a suitable fallback
2196 * when looking for the largest page.
2197 */
2198 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2199
2200do_steal:
2201 page = get_page_from_free_area(area, fallback_mt);
2202
2203 /* take off list, maybe claim block, expand remainder */
2204 page = steal_suitable_fallback(zone, page, current_order, order,
2205 start_migratetype, alloc_flags, can_steal);
2206
2207 trace_mm_page_alloc_extfrag(page, order, current_order,
2208 start_migratetype, fallback_mt);
2209
2210 return page;
2211}
2212
2213/*
2214 * Do the hard work of removing an element from the buddy allocator.
2215 * Call me with the zone->lock already held.
2216 */
2217static __always_inline struct page *
2218__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2219 unsigned int alloc_flags)
2220{
2221 struct page *page;
2222
2223 if (IS_ENABLED(CONFIG_CMA)) {
2224 /*
2225 * Balance movable allocations between regular and CMA areas by
2226 * allocating from CMA when over half of the zone's free memory
2227 * is in the CMA area.
2228 */
2229 if (alloc_flags & ALLOC_CMA &&
2230 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2231 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2232 page = __rmqueue_cma_fallback(zone, order);
2233 if (page)
2234 return page;
2235 }
2236 }
2237
2238 page = __rmqueue_smallest(zone, order, migratetype);
2239 if (unlikely(!page)) {
2240 if (alloc_flags & ALLOC_CMA)
2241 page = __rmqueue_cma_fallback(zone, order);
2242
2243 if (!page)
2244 page = __rmqueue_fallback(zone, order, migratetype,
2245 alloc_flags);
2246 }
2247 return page;
2248}
2249
2250/*
2251 * Obtain a specified number of elements from the buddy allocator, all under
2252 * a single hold of the lock, for efficiency. Add them to the supplied list.
2253 * Returns the number of new pages which were placed at *list.
2254 */
2255static int rmqueue_bulk(struct zone *zone, unsigned int order,
2256 unsigned long count, struct list_head *list,
2257 int migratetype, unsigned int alloc_flags)
2258{
2259 unsigned long flags;
2260 int i;
2261
2262 spin_lock_irqsave(&zone->lock, flags);
2263 for (i = 0; i < count; ++i) {
2264 struct page *page = __rmqueue(zone, order, migratetype,
2265 alloc_flags);
2266 if (unlikely(page == NULL))
2267 break;
2268
2269 /*
2270 * Split buddy pages returned by expand() are received here in
2271 * physical page order. The page is added to the tail of
2272 * caller's list. From the callers perspective, the linked list
2273 * is ordered by page number under some conditions. This is
2274 * useful for IO devices that can forward direction from the
2275 * head, thus also in the physical page order. This is useful
2276 * for IO devices that can merge IO requests if the physical
2277 * pages are ordered properly.
2278 */
2279 list_add_tail(&page->pcp_list, list);
2280 }
2281 spin_unlock_irqrestore(&zone->lock, flags);
2282
2283 return i;
2284}
2285
2286/*
2287 * Called from the vmstat counter updater to decay the PCP high.
2288 * Return whether there are addition works to do.
2289 */
2290int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2291{
2292 int high_min, to_drain, batch;
2293 int todo = 0;
2294
2295 high_min = READ_ONCE(pcp->high_min);
2296 batch = READ_ONCE(pcp->batch);
2297 /*
2298 * Decrease pcp->high periodically to try to free possible
2299 * idle PCP pages. And, avoid to free too many pages to
2300 * control latency. This caps pcp->high decrement too.
2301 */
2302 if (pcp->high > high_min) {
2303 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2304 pcp->high - (pcp->high >> 3), high_min);
2305 if (pcp->high > high_min)
2306 todo++;
2307 }
2308
2309 to_drain = pcp->count - pcp->high;
2310 if (to_drain > 0) {
2311 spin_lock(&pcp->lock);
2312 free_pcppages_bulk(zone, to_drain, pcp, 0);
2313 spin_unlock(&pcp->lock);
2314 todo++;
2315 }
2316
2317 return todo;
2318}
2319
2320#ifdef CONFIG_NUMA
2321/*
2322 * Called from the vmstat counter updater to drain pagesets of this
2323 * currently executing processor on remote nodes after they have
2324 * expired.
2325 */
2326void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2327{
2328 int to_drain, batch;
2329
2330 batch = READ_ONCE(pcp->batch);
2331 to_drain = min(pcp->count, batch);
2332 if (to_drain > 0) {
2333 spin_lock(&pcp->lock);
2334 free_pcppages_bulk(zone, to_drain, pcp, 0);
2335 spin_unlock(&pcp->lock);
2336 }
2337}
2338#endif
2339
2340/*
2341 * Drain pcplists of the indicated processor and zone.
2342 */
2343static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2344{
2345 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2346 int count;
2347
2348 do {
2349 spin_lock(&pcp->lock);
2350 count = pcp->count;
2351 if (count) {
2352 int to_drain = min(count,
2353 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2354
2355 free_pcppages_bulk(zone, to_drain, pcp, 0);
2356 count -= to_drain;
2357 }
2358 spin_unlock(&pcp->lock);
2359 } while (count);
2360}
2361
2362/*
2363 * Drain pcplists of all zones on the indicated processor.
2364 */
2365static void drain_pages(unsigned int cpu)
2366{
2367 struct zone *zone;
2368
2369 for_each_populated_zone(zone) {
2370 drain_pages_zone(cpu, zone);
2371 }
2372}
2373
2374/*
2375 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2376 */
2377void drain_local_pages(struct zone *zone)
2378{
2379 int cpu = smp_processor_id();
2380
2381 if (zone)
2382 drain_pages_zone(cpu, zone);
2383 else
2384 drain_pages(cpu);
2385}
2386
2387/*
2388 * The implementation of drain_all_pages(), exposing an extra parameter to
2389 * drain on all cpus.
2390 *
2391 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2392 * not empty. The check for non-emptiness can however race with a free to
2393 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2394 * that need the guarantee that every CPU has drained can disable the
2395 * optimizing racy check.
2396 */
2397static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2398{
2399 int cpu;
2400
2401 /*
2402 * Allocate in the BSS so we won't require allocation in
2403 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2404 */
2405 static cpumask_t cpus_with_pcps;
2406
2407 /*
2408 * Do not drain if one is already in progress unless it's specific to
2409 * a zone. Such callers are primarily CMA and memory hotplug and need
2410 * the drain to be complete when the call returns.
2411 */
2412 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2413 if (!zone)
2414 return;
2415 mutex_lock(&pcpu_drain_mutex);
2416 }
2417
2418 /*
2419 * We don't care about racing with CPU hotplug event
2420 * as offline notification will cause the notified
2421 * cpu to drain that CPU pcps and on_each_cpu_mask
2422 * disables preemption as part of its processing
2423 */
2424 for_each_online_cpu(cpu) {
2425 struct per_cpu_pages *pcp;
2426 struct zone *z;
2427 bool has_pcps = false;
2428
2429 if (force_all_cpus) {
2430 /*
2431 * The pcp.count check is racy, some callers need a
2432 * guarantee that no cpu is missed.
2433 */
2434 has_pcps = true;
2435 } else if (zone) {
2436 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2437 if (pcp->count)
2438 has_pcps = true;
2439 } else {
2440 for_each_populated_zone(z) {
2441 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2442 if (pcp->count) {
2443 has_pcps = true;
2444 break;
2445 }
2446 }
2447 }
2448
2449 if (has_pcps)
2450 cpumask_set_cpu(cpu, &cpus_with_pcps);
2451 else
2452 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2453 }
2454
2455 for_each_cpu(cpu, &cpus_with_pcps) {
2456 if (zone)
2457 drain_pages_zone(cpu, zone);
2458 else
2459 drain_pages(cpu);
2460 }
2461
2462 mutex_unlock(&pcpu_drain_mutex);
2463}
2464
2465/*
2466 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2467 *
2468 * When zone parameter is non-NULL, spill just the single zone's pages.
2469 */
2470void drain_all_pages(struct zone *zone)
2471{
2472 __drain_all_pages(zone, false);
2473}
2474
2475static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2476{
2477 int min_nr_free, max_nr_free;
2478
2479 /* Free as much as possible if batch freeing high-order pages. */
2480 if (unlikely(free_high))
2481 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2482
2483 /* Check for PCP disabled or boot pageset */
2484 if (unlikely(high < batch))
2485 return 1;
2486
2487 /* Leave at least pcp->batch pages on the list */
2488 min_nr_free = batch;
2489 max_nr_free = high - batch;
2490
2491 /*
2492 * Increase the batch number to the number of the consecutive
2493 * freed pages to reduce zone lock contention.
2494 */
2495 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2496
2497 return batch;
2498}
2499
2500static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2501 int batch, bool free_high)
2502{
2503 int high, high_min, high_max;
2504
2505 high_min = READ_ONCE(pcp->high_min);
2506 high_max = READ_ONCE(pcp->high_max);
2507 high = pcp->high = clamp(pcp->high, high_min, high_max);
2508
2509 if (unlikely(!high))
2510 return 0;
2511
2512 if (unlikely(free_high)) {
2513 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2514 high_min);
2515 return 0;
2516 }
2517
2518 /*
2519 * If reclaim is active, limit the number of pages that can be
2520 * stored on pcp lists
2521 */
2522 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2523 int free_count = max_t(int, pcp->free_count, batch);
2524
2525 pcp->high = max(high - free_count, high_min);
2526 return min(batch << 2, pcp->high);
2527 }
2528
2529 if (high_min == high_max)
2530 return high;
2531
2532 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2533 int free_count = max_t(int, pcp->free_count, batch);
2534
2535 pcp->high = max(high - free_count, high_min);
2536 high = max(pcp->count, high_min);
2537 } else if (pcp->count >= high) {
2538 int need_high = pcp->free_count + batch;
2539
2540 /* pcp->high should be large enough to hold batch freed pages */
2541 if (pcp->high < need_high)
2542 pcp->high = clamp(need_high, high_min, high_max);
2543 }
2544
2545 return high;
2546}
2547
2548static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2549 struct page *page, int migratetype,
2550 unsigned int order)
2551{
2552 int high, batch;
2553 int pindex;
2554 bool free_high = false;
2555
2556 /*
2557 * On freeing, reduce the number of pages that are batch allocated.
2558 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2559 * allocations.
2560 */
2561 pcp->alloc_factor >>= 1;
2562 __count_vm_events(PGFREE, 1 << order);
2563 pindex = order_to_pindex(migratetype, order);
2564 list_add(&page->pcp_list, &pcp->lists[pindex]);
2565 pcp->count += 1 << order;
2566
2567 batch = READ_ONCE(pcp->batch);
2568 /*
2569 * As high-order pages other than THP's stored on PCP can contribute
2570 * to fragmentation, limit the number stored when PCP is heavily
2571 * freeing without allocation. The remainder after bulk freeing
2572 * stops will be drained from vmstat refresh context.
2573 */
2574 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2575 free_high = (pcp->free_count >= batch &&
2576 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2577 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2578 pcp->count >= READ_ONCE(batch)));
2579 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2580 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2581 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2582 }
2583 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2584 pcp->free_count += (1 << order);
2585 high = nr_pcp_high(pcp, zone, batch, free_high);
2586 if (pcp->count >= high) {
2587 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2588 pcp, pindex);
2589 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2590 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2591 ZONE_MOVABLE, 0))
2592 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2593 }
2594}
2595
2596/*
2597 * Free a pcp page
2598 */
2599void free_unref_page(struct page *page, unsigned int order)
2600{
2601 unsigned long __maybe_unused UP_flags;
2602 struct per_cpu_pages *pcp;
2603 struct zone *zone;
2604 unsigned long pfn = page_to_pfn(page);
2605 int migratetype;
2606
2607 if (!pcp_allowed_order(order)) {
2608 __free_pages_ok(page, order, FPI_NONE);
2609 return;
2610 }
2611
2612 if (!free_pages_prepare(page, order))
2613 return;
2614
2615 /*
2616 * We only track unmovable, reclaimable and movable on pcp lists.
2617 * Place ISOLATE pages on the isolated list because they are being
2618 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2619 * get those areas back if necessary. Otherwise, we may have to free
2620 * excessively into the page allocator
2621 */
2622 migratetype = get_pfnblock_migratetype(page, pfn);
2623 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2624 if (unlikely(is_migrate_isolate(migratetype))) {
2625 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2626 return;
2627 }
2628 migratetype = MIGRATE_MOVABLE;
2629 }
2630
2631 zone = page_zone(page);
2632 pcp_trylock_prepare(UP_flags);
2633 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2634 if (pcp) {
2635 free_unref_page_commit(zone, pcp, page, migratetype, order);
2636 pcp_spin_unlock(pcp);
2637 } else {
2638 free_one_page(zone, page, pfn, order, FPI_NONE);
2639 }
2640 pcp_trylock_finish(UP_flags);
2641}
2642
2643/*
2644 * Free a batch of folios
2645 */
2646void free_unref_folios(struct folio_batch *folios)
2647{
2648 unsigned long __maybe_unused UP_flags;
2649 struct per_cpu_pages *pcp = NULL;
2650 struct zone *locked_zone = NULL;
2651 int i, j;
2652
2653 /* Prepare folios for freeing */
2654 for (i = 0, j = 0; i < folios->nr; i++) {
2655 struct folio *folio = folios->folios[i];
2656 unsigned long pfn = folio_pfn(folio);
2657 unsigned int order = folio_order(folio);
2658
2659 folio_undo_large_rmappable(folio);
2660 if (!free_pages_prepare(&folio->page, order))
2661 continue;
2662 /*
2663 * Free orders not handled on the PCP directly to the
2664 * allocator.
2665 */
2666 if (!pcp_allowed_order(order)) {
2667 free_one_page(folio_zone(folio), &folio->page,
2668 pfn, order, FPI_NONE);
2669 continue;
2670 }
2671 folio->private = (void *)(unsigned long)order;
2672 if (j != i)
2673 folios->folios[j] = folio;
2674 j++;
2675 }
2676 folios->nr = j;
2677
2678 for (i = 0; i < folios->nr; i++) {
2679 struct folio *folio = folios->folios[i];
2680 struct zone *zone = folio_zone(folio);
2681 unsigned long pfn = folio_pfn(folio);
2682 unsigned int order = (unsigned long)folio->private;
2683 int migratetype;
2684
2685 folio->private = NULL;
2686 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2687
2688 /* Different zone requires a different pcp lock */
2689 if (zone != locked_zone ||
2690 is_migrate_isolate(migratetype)) {
2691 if (pcp) {
2692 pcp_spin_unlock(pcp);
2693 pcp_trylock_finish(UP_flags);
2694 locked_zone = NULL;
2695 pcp = NULL;
2696 }
2697
2698 /*
2699 * Free isolated pages directly to the
2700 * allocator, see comment in free_unref_page.
2701 */
2702 if (is_migrate_isolate(migratetype)) {
2703 free_one_page(zone, &folio->page, pfn,
2704 order, FPI_NONE);
2705 continue;
2706 }
2707
2708 /*
2709 * trylock is necessary as folios may be getting freed
2710 * from IRQ or SoftIRQ context after an IO completion.
2711 */
2712 pcp_trylock_prepare(UP_flags);
2713 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2714 if (unlikely(!pcp)) {
2715 pcp_trylock_finish(UP_flags);
2716 free_one_page(zone, &folio->page, pfn,
2717 order, FPI_NONE);
2718 continue;
2719 }
2720 locked_zone = zone;
2721 }
2722
2723 /*
2724 * Non-isolated types over MIGRATE_PCPTYPES get added
2725 * to the MIGRATE_MOVABLE pcp list.
2726 */
2727 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2728 migratetype = MIGRATE_MOVABLE;
2729
2730 trace_mm_page_free_batched(&folio->page);
2731 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2732 order);
2733 }
2734
2735 if (pcp) {
2736 pcp_spin_unlock(pcp);
2737 pcp_trylock_finish(UP_flags);
2738 }
2739 folio_batch_reinit(folios);
2740}
2741
2742/*
2743 * split_page takes a non-compound higher-order page, and splits it into
2744 * n (1<<order) sub-pages: page[0..n]
2745 * Each sub-page must be freed individually.
2746 *
2747 * Note: this is probably too low level an operation for use in drivers.
2748 * Please consult with lkml before using this in your driver.
2749 */
2750void split_page(struct page *page, unsigned int order)
2751{
2752 int i;
2753
2754 VM_BUG_ON_PAGE(PageCompound(page), page);
2755 VM_BUG_ON_PAGE(!page_count(page), page);
2756
2757 for (i = 1; i < (1 << order); i++)
2758 set_page_refcounted(page + i);
2759 split_page_owner(page, order, 0);
2760 pgalloc_tag_split(page, 1 << order);
2761 split_page_memcg(page, order, 0);
2762}
2763EXPORT_SYMBOL_GPL(split_page);
2764
2765int __isolate_free_page(struct page *page, unsigned int order)
2766{
2767 struct zone *zone = page_zone(page);
2768 int mt = get_pageblock_migratetype(page);
2769
2770 if (!is_migrate_isolate(mt)) {
2771 unsigned long watermark;
2772 /*
2773 * Obey watermarks as if the page was being allocated. We can
2774 * emulate a high-order watermark check with a raised order-0
2775 * watermark, because we already know our high-order page
2776 * exists.
2777 */
2778 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2779 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2780 return 0;
2781 }
2782
2783 del_page_from_free_list(page, zone, order, mt);
2784
2785 /*
2786 * Set the pageblock if the isolated page is at least half of a
2787 * pageblock
2788 */
2789 if (order >= pageblock_order - 1) {
2790 struct page *endpage = page + (1 << order) - 1;
2791 for (; page < endpage; page += pageblock_nr_pages) {
2792 int mt = get_pageblock_migratetype(page);
2793 /*
2794 * Only change normal pageblocks (i.e., they can merge
2795 * with others)
2796 */
2797 if (migratetype_is_mergeable(mt))
2798 move_freepages_block(zone, page, mt,
2799 MIGRATE_MOVABLE);
2800 }
2801 }
2802
2803 return 1UL << order;
2804}
2805
2806/**
2807 * __putback_isolated_page - Return a now-isolated page back where we got it
2808 * @page: Page that was isolated
2809 * @order: Order of the isolated page
2810 * @mt: The page's pageblock's migratetype
2811 *
2812 * This function is meant to return a page pulled from the free lists via
2813 * __isolate_free_page back to the free lists they were pulled from.
2814 */
2815void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2816{
2817 struct zone *zone = page_zone(page);
2818
2819 /* zone lock should be held when this function is called */
2820 lockdep_assert_held(&zone->lock);
2821
2822 /* Return isolated page to tail of freelist. */
2823 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2824 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2825}
2826
2827/*
2828 * Update NUMA hit/miss statistics
2829 */
2830static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2831 long nr_account)
2832{
2833#ifdef CONFIG_NUMA
2834 enum numa_stat_item local_stat = NUMA_LOCAL;
2835
2836 /* skip numa counters update if numa stats is disabled */
2837 if (!static_branch_likely(&vm_numa_stat_key))
2838 return;
2839
2840 if (zone_to_nid(z) != numa_node_id())
2841 local_stat = NUMA_OTHER;
2842
2843 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2844 __count_numa_events(z, NUMA_HIT, nr_account);
2845 else {
2846 __count_numa_events(z, NUMA_MISS, nr_account);
2847 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2848 }
2849 __count_numa_events(z, local_stat, nr_account);
2850#endif
2851}
2852
2853static __always_inline
2854struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2855 unsigned int order, unsigned int alloc_flags,
2856 int migratetype)
2857{
2858 struct page *page;
2859 unsigned long flags;
2860
2861 do {
2862 page = NULL;
2863 spin_lock_irqsave(&zone->lock, flags);
2864 if (alloc_flags & ALLOC_HIGHATOMIC)
2865 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2866 if (!page) {
2867 page = __rmqueue(zone, order, migratetype, alloc_flags);
2868
2869 /*
2870 * If the allocation fails, allow OOM handling access
2871 * to HIGHATOMIC reserves as failing now is worse than
2872 * failing a high-order atomic allocation in the
2873 * future.
2874 */
2875 if (!page && (alloc_flags & ALLOC_OOM))
2876 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2877
2878 if (!page) {
2879 spin_unlock_irqrestore(&zone->lock, flags);
2880 return NULL;
2881 }
2882 }
2883 spin_unlock_irqrestore(&zone->lock, flags);
2884 } while (check_new_pages(page, order));
2885
2886 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2887 zone_statistics(preferred_zone, zone, 1);
2888
2889 return page;
2890}
2891
2892static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2893{
2894 int high, base_batch, batch, max_nr_alloc;
2895 int high_max, high_min;
2896
2897 base_batch = READ_ONCE(pcp->batch);
2898 high_min = READ_ONCE(pcp->high_min);
2899 high_max = READ_ONCE(pcp->high_max);
2900 high = pcp->high = clamp(pcp->high, high_min, high_max);
2901
2902 /* Check for PCP disabled or boot pageset */
2903 if (unlikely(high < base_batch))
2904 return 1;
2905
2906 if (order)
2907 batch = base_batch;
2908 else
2909 batch = (base_batch << pcp->alloc_factor);
2910
2911 /*
2912 * If we had larger pcp->high, we could avoid to allocate from
2913 * zone.
2914 */
2915 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2916 high = pcp->high = min(high + batch, high_max);
2917
2918 if (!order) {
2919 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2920 /*
2921 * Double the number of pages allocated each time there is
2922 * subsequent allocation of order-0 pages without any freeing.
2923 */
2924 if (batch <= max_nr_alloc &&
2925 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2926 pcp->alloc_factor++;
2927 batch = min(batch, max_nr_alloc);
2928 }
2929
2930 /*
2931 * Scale batch relative to order if batch implies free pages
2932 * can be stored on the PCP. Batch can be 1 for small zones or
2933 * for boot pagesets which should never store free pages as
2934 * the pages may belong to arbitrary zones.
2935 */
2936 if (batch > 1)
2937 batch = max(batch >> order, 2);
2938
2939 return batch;
2940}
2941
2942/* Remove page from the per-cpu list, caller must protect the list */
2943static inline
2944struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2945 int migratetype,
2946 unsigned int alloc_flags,
2947 struct per_cpu_pages *pcp,
2948 struct list_head *list)
2949{
2950 struct page *page;
2951
2952 do {
2953 if (list_empty(list)) {
2954 int batch = nr_pcp_alloc(pcp, zone, order);
2955 int alloced;
2956
2957 alloced = rmqueue_bulk(zone, order,
2958 batch, list,
2959 migratetype, alloc_flags);
2960
2961 pcp->count += alloced << order;
2962 if (unlikely(list_empty(list)))
2963 return NULL;
2964 }
2965
2966 page = list_first_entry(list, struct page, pcp_list);
2967 list_del(&page->pcp_list);
2968 pcp->count -= 1 << order;
2969 } while (check_new_pages(page, order));
2970
2971 return page;
2972}
2973
2974/* Lock and remove page from the per-cpu list */
2975static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2976 struct zone *zone, unsigned int order,
2977 int migratetype, unsigned int alloc_flags)
2978{
2979 struct per_cpu_pages *pcp;
2980 struct list_head *list;
2981 struct page *page;
2982 unsigned long __maybe_unused UP_flags;
2983
2984 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2985 pcp_trylock_prepare(UP_flags);
2986 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2987 if (!pcp) {
2988 pcp_trylock_finish(UP_flags);
2989 return NULL;
2990 }
2991
2992 /*
2993 * On allocation, reduce the number of pages that are batch freed.
2994 * See nr_pcp_free() where free_factor is increased for subsequent
2995 * frees.
2996 */
2997 pcp->free_count >>= 1;
2998 list = &pcp->lists[order_to_pindex(migratetype, order)];
2999 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3000 pcp_spin_unlock(pcp);
3001 pcp_trylock_finish(UP_flags);
3002 if (page) {
3003 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3004 zone_statistics(preferred_zone, zone, 1);
3005 }
3006 return page;
3007}
3008
3009/*
3010 * Allocate a page from the given zone.
3011 * Use pcplists for THP or "cheap" high-order allocations.
3012 */
3013
3014/*
3015 * Do not instrument rmqueue() with KMSAN. This function may call
3016 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3017 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3018 * may call rmqueue() again, which will result in a deadlock.
3019 */
3020__no_sanitize_memory
3021static inline
3022struct page *rmqueue(struct zone *preferred_zone,
3023 struct zone *zone, unsigned int order,
3024 gfp_t gfp_flags, unsigned int alloc_flags,
3025 int migratetype)
3026{
3027 struct page *page;
3028
3029 /*
3030 * We most definitely don't want callers attempting to
3031 * allocate greater than order-1 page units with __GFP_NOFAIL.
3032 */
3033 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3034
3035 if (likely(pcp_allowed_order(order))) {
3036 page = rmqueue_pcplist(preferred_zone, zone, order,
3037 migratetype, alloc_flags);
3038 if (likely(page))
3039 goto out;
3040 }
3041
3042 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3043 migratetype);
3044
3045out:
3046 /* Separate test+clear to avoid unnecessary atomics */
3047 if ((alloc_flags & ALLOC_KSWAPD) &&
3048 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3049 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3050 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3051 }
3052
3053 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3054 return page;
3055}
3056
3057static inline long __zone_watermark_unusable_free(struct zone *z,
3058 unsigned int order, unsigned int alloc_flags)
3059{
3060 long unusable_free = (1 << order) - 1;
3061
3062 /*
3063 * If the caller does not have rights to reserves below the min
3064 * watermark then subtract the high-atomic reserves. This will
3065 * over-estimate the size of the atomic reserve but it avoids a search.
3066 */
3067 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3068 unusable_free += z->nr_reserved_highatomic;
3069
3070#ifdef CONFIG_CMA
3071 /* If allocation can't use CMA areas don't use free CMA pages */
3072 if (!(alloc_flags & ALLOC_CMA))
3073 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3074#endif
3075
3076 return unusable_free;
3077}
3078
3079/*
3080 * Return true if free base pages are above 'mark'. For high-order checks it
3081 * will return true of the order-0 watermark is reached and there is at least
3082 * one free page of a suitable size. Checking now avoids taking the zone lock
3083 * to check in the allocation paths if no pages are free.
3084 */
3085bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3086 int highest_zoneidx, unsigned int alloc_flags,
3087 long free_pages)
3088{
3089 long min = mark;
3090 int o;
3091
3092 /* free_pages may go negative - that's OK */
3093 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3094
3095 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3096 /*
3097 * __GFP_HIGH allows access to 50% of the min reserve as well
3098 * as OOM.
3099 */
3100 if (alloc_flags & ALLOC_MIN_RESERVE) {
3101 min -= min / 2;
3102
3103 /*
3104 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3105 * access more reserves than just __GFP_HIGH. Other
3106 * non-blocking allocations requests such as GFP_NOWAIT
3107 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3108 * access to the min reserve.
3109 */
3110 if (alloc_flags & ALLOC_NON_BLOCK)
3111 min -= min / 4;
3112 }
3113
3114 /*
3115 * OOM victims can try even harder than the normal reserve
3116 * users on the grounds that it's definitely going to be in
3117 * the exit path shortly and free memory. Any allocation it
3118 * makes during the free path will be small and short-lived.
3119 */
3120 if (alloc_flags & ALLOC_OOM)
3121 min -= min / 2;
3122 }
3123
3124 /*
3125 * Check watermarks for an order-0 allocation request. If these
3126 * are not met, then a high-order request also cannot go ahead
3127 * even if a suitable page happened to be free.
3128 */
3129 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3130 return false;
3131
3132 /* If this is an order-0 request then the watermark is fine */
3133 if (!order)
3134 return true;
3135
3136 /* For a high-order request, check at least one suitable page is free */
3137 for (o = order; o < NR_PAGE_ORDERS; o++) {
3138 struct free_area *area = &z->free_area[o];
3139 int mt;
3140
3141 if (!area->nr_free)
3142 continue;
3143
3144 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3145 if (!free_area_empty(area, mt))
3146 return true;
3147 }
3148
3149#ifdef CONFIG_CMA
3150 if ((alloc_flags & ALLOC_CMA) &&
3151 !free_area_empty(area, MIGRATE_CMA)) {
3152 return true;
3153 }
3154#endif
3155 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3156 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3157 return true;
3158 }
3159 }
3160 return false;
3161}
3162
3163bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3164 int highest_zoneidx, unsigned int alloc_flags)
3165{
3166 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3167 zone_page_state(z, NR_FREE_PAGES));
3168}
3169
3170static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3171 unsigned long mark, int highest_zoneidx,
3172 unsigned int alloc_flags, gfp_t gfp_mask)
3173{
3174 long free_pages;
3175
3176 free_pages = zone_page_state(z, NR_FREE_PAGES);
3177
3178 /*
3179 * Fast check for order-0 only. If this fails then the reserves
3180 * need to be calculated.
3181 */
3182 if (!order) {
3183 long usable_free;
3184 long reserved;
3185
3186 usable_free = free_pages;
3187 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3188
3189 /* reserved may over estimate high-atomic reserves. */
3190 usable_free -= min(usable_free, reserved);
3191 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3192 return true;
3193 }
3194
3195 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3196 free_pages))
3197 return true;
3198
3199 /*
3200 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3201 * when checking the min watermark. The min watermark is the
3202 * point where boosting is ignored so that kswapd is woken up
3203 * when below the low watermark.
3204 */
3205 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3206 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3207 mark = z->_watermark[WMARK_MIN];
3208 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3209 alloc_flags, free_pages);
3210 }
3211
3212 return false;
3213}
3214
3215bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3216 unsigned long mark, int highest_zoneidx)
3217{
3218 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3219
3220 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3221 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3222
3223 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3224 free_pages);
3225}
3226
3227#ifdef CONFIG_NUMA
3228int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3229
3230static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3231{
3232 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3233 node_reclaim_distance;
3234}
3235#else /* CONFIG_NUMA */
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238 return true;
3239}
3240#endif /* CONFIG_NUMA */
3241
3242/*
3243 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3244 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3245 * premature use of a lower zone may cause lowmem pressure problems that
3246 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3247 * probably too small. It only makes sense to spread allocations to avoid
3248 * fragmentation between the Normal and DMA32 zones.
3249 */
3250static inline unsigned int
3251alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3252{
3253 unsigned int alloc_flags;
3254
3255 /*
3256 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3257 * to save a branch.
3258 */
3259 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3260
3261#ifdef CONFIG_ZONE_DMA32
3262 if (!zone)
3263 return alloc_flags;
3264
3265 if (zone_idx(zone) != ZONE_NORMAL)
3266 return alloc_flags;
3267
3268 /*
3269 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3270 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3271 * on UMA that if Normal is populated then so is DMA32.
3272 */
3273 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3274 if (nr_online_nodes > 1 && !populated_zone(--zone))
3275 return alloc_flags;
3276
3277 alloc_flags |= ALLOC_NOFRAGMENT;
3278#endif /* CONFIG_ZONE_DMA32 */
3279 return alloc_flags;
3280}
3281
3282/* Must be called after current_gfp_context() which can change gfp_mask */
3283static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3284 unsigned int alloc_flags)
3285{
3286#ifdef CONFIG_CMA
3287 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3288 alloc_flags |= ALLOC_CMA;
3289#endif
3290 return alloc_flags;
3291}
3292
3293/*
3294 * get_page_from_freelist goes through the zonelist trying to allocate
3295 * a page.
3296 */
3297static struct page *
3298get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3299 const struct alloc_context *ac)
3300{
3301 struct zoneref *z;
3302 struct zone *zone;
3303 struct pglist_data *last_pgdat = NULL;
3304 bool last_pgdat_dirty_ok = false;
3305 bool no_fallback;
3306
3307retry:
3308 /*
3309 * Scan zonelist, looking for a zone with enough free.
3310 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3311 */
3312 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3313 z = ac->preferred_zoneref;
3314 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3315 ac->nodemask) {
3316 struct page *page;
3317 unsigned long mark;
3318
3319 if (cpusets_enabled() &&
3320 (alloc_flags & ALLOC_CPUSET) &&
3321 !__cpuset_zone_allowed(zone, gfp_mask))
3322 continue;
3323 /*
3324 * When allocating a page cache page for writing, we
3325 * want to get it from a node that is within its dirty
3326 * limit, such that no single node holds more than its
3327 * proportional share of globally allowed dirty pages.
3328 * The dirty limits take into account the node's
3329 * lowmem reserves and high watermark so that kswapd
3330 * should be able to balance it without having to
3331 * write pages from its LRU list.
3332 *
3333 * XXX: For now, allow allocations to potentially
3334 * exceed the per-node dirty limit in the slowpath
3335 * (spread_dirty_pages unset) before going into reclaim,
3336 * which is important when on a NUMA setup the allowed
3337 * nodes are together not big enough to reach the
3338 * global limit. The proper fix for these situations
3339 * will require awareness of nodes in the
3340 * dirty-throttling and the flusher threads.
3341 */
3342 if (ac->spread_dirty_pages) {
3343 if (last_pgdat != zone->zone_pgdat) {
3344 last_pgdat = zone->zone_pgdat;
3345 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3346 }
3347
3348 if (!last_pgdat_dirty_ok)
3349 continue;
3350 }
3351
3352 if (no_fallback && nr_online_nodes > 1 &&
3353 zone != ac->preferred_zoneref->zone) {
3354 int local_nid;
3355
3356 /*
3357 * If moving to a remote node, retry but allow
3358 * fragmenting fallbacks. Locality is more important
3359 * than fragmentation avoidance.
3360 */
3361 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3362 if (zone_to_nid(zone) != local_nid) {
3363 alloc_flags &= ~ALLOC_NOFRAGMENT;
3364 goto retry;
3365 }
3366 }
3367
3368 cond_accept_memory(zone, order);
3369
3370 /*
3371 * Detect whether the number of free pages is below high
3372 * watermark. If so, we will decrease pcp->high and free
3373 * PCP pages in free path to reduce the possibility of
3374 * premature page reclaiming. Detection is done here to
3375 * avoid to do that in hotter free path.
3376 */
3377 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3378 goto check_alloc_wmark;
3379
3380 mark = high_wmark_pages(zone);
3381 if (zone_watermark_fast(zone, order, mark,
3382 ac->highest_zoneidx, alloc_flags,
3383 gfp_mask))
3384 goto try_this_zone;
3385 else
3386 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3387
3388check_alloc_wmark:
3389 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3390 if (!zone_watermark_fast(zone, order, mark,
3391 ac->highest_zoneidx, alloc_flags,
3392 gfp_mask)) {
3393 int ret;
3394
3395 if (cond_accept_memory(zone, order))
3396 goto try_this_zone;
3397
3398#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3399 /*
3400 * Watermark failed for this zone, but see if we can
3401 * grow this zone if it contains deferred pages.
3402 */
3403 if (deferred_pages_enabled()) {
3404 if (_deferred_grow_zone(zone, order))
3405 goto try_this_zone;
3406 }
3407#endif
3408 /* Checked here to keep the fast path fast */
3409 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3410 if (alloc_flags & ALLOC_NO_WATERMARKS)
3411 goto try_this_zone;
3412
3413 if (!node_reclaim_enabled() ||
3414 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3415 continue;
3416
3417 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3418 switch (ret) {
3419 case NODE_RECLAIM_NOSCAN:
3420 /* did not scan */
3421 continue;
3422 case NODE_RECLAIM_FULL:
3423 /* scanned but unreclaimable */
3424 continue;
3425 default:
3426 /* did we reclaim enough */
3427 if (zone_watermark_ok(zone, order, mark,
3428 ac->highest_zoneidx, alloc_flags))
3429 goto try_this_zone;
3430
3431 continue;
3432 }
3433 }
3434
3435try_this_zone:
3436 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3437 gfp_mask, alloc_flags, ac->migratetype);
3438 if (page) {
3439 prep_new_page(page, order, gfp_mask, alloc_flags);
3440
3441 /*
3442 * If this is a high-order atomic allocation then check
3443 * if the pageblock should be reserved for the future
3444 */
3445 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3446 reserve_highatomic_pageblock(page, order, zone);
3447
3448 return page;
3449 } else {
3450 if (cond_accept_memory(zone, order))
3451 goto try_this_zone;
3452
3453#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3454 /* Try again if zone has deferred pages */
3455 if (deferred_pages_enabled()) {
3456 if (_deferred_grow_zone(zone, order))
3457 goto try_this_zone;
3458 }
3459#endif
3460 }
3461 }
3462
3463 /*
3464 * It's possible on a UMA machine to get through all zones that are
3465 * fragmented. If avoiding fragmentation, reset and try again.
3466 */
3467 if (no_fallback) {
3468 alloc_flags &= ~ALLOC_NOFRAGMENT;
3469 goto retry;
3470 }
3471
3472 return NULL;
3473}
3474
3475static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3476{
3477 unsigned int filter = SHOW_MEM_FILTER_NODES;
3478
3479 /*
3480 * This documents exceptions given to allocations in certain
3481 * contexts that are allowed to allocate outside current's set
3482 * of allowed nodes.
3483 */
3484 if (!(gfp_mask & __GFP_NOMEMALLOC))
3485 if (tsk_is_oom_victim(current) ||
3486 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3487 filter &= ~SHOW_MEM_FILTER_NODES;
3488 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3489 filter &= ~SHOW_MEM_FILTER_NODES;
3490
3491 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3492}
3493
3494void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3495{
3496 struct va_format vaf;
3497 va_list args;
3498 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3499
3500 if ((gfp_mask & __GFP_NOWARN) ||
3501 !__ratelimit(&nopage_rs) ||
3502 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3503 return;
3504
3505 va_start(args, fmt);
3506 vaf.fmt = fmt;
3507 vaf.va = &args;
3508 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3509 current->comm, &vaf, gfp_mask, &gfp_mask,
3510 nodemask_pr_args(nodemask));
3511 va_end(args);
3512
3513 cpuset_print_current_mems_allowed();
3514 pr_cont("\n");
3515 dump_stack();
3516 warn_alloc_show_mem(gfp_mask, nodemask);
3517}
3518
3519static inline struct page *
3520__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3521 unsigned int alloc_flags,
3522 const struct alloc_context *ac)
3523{
3524 struct page *page;
3525
3526 page = get_page_from_freelist(gfp_mask, order,
3527 alloc_flags|ALLOC_CPUSET, ac);
3528 /*
3529 * fallback to ignore cpuset restriction if our nodes
3530 * are depleted
3531 */
3532 if (!page)
3533 page = get_page_from_freelist(gfp_mask, order,
3534 alloc_flags, ac);
3535
3536 return page;
3537}
3538
3539static inline struct page *
3540__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3541 const struct alloc_context *ac, unsigned long *did_some_progress)
3542{
3543 struct oom_control oc = {
3544 .zonelist = ac->zonelist,
3545 .nodemask = ac->nodemask,
3546 .memcg = NULL,
3547 .gfp_mask = gfp_mask,
3548 .order = order,
3549 };
3550 struct page *page;
3551
3552 *did_some_progress = 0;
3553
3554 /*
3555 * Acquire the oom lock. If that fails, somebody else is
3556 * making progress for us.
3557 */
3558 if (!mutex_trylock(&oom_lock)) {
3559 *did_some_progress = 1;
3560 schedule_timeout_uninterruptible(1);
3561 return NULL;
3562 }
3563
3564 /*
3565 * Go through the zonelist yet one more time, keep very high watermark
3566 * here, this is only to catch a parallel oom killing, we must fail if
3567 * we're still under heavy pressure. But make sure that this reclaim
3568 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3569 * allocation which will never fail due to oom_lock already held.
3570 */
3571 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3572 ~__GFP_DIRECT_RECLAIM, order,
3573 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3574 if (page)
3575 goto out;
3576
3577 /* Coredumps can quickly deplete all memory reserves */
3578 if (current->flags & PF_DUMPCORE)
3579 goto out;
3580 /* The OOM killer will not help higher order allocs */
3581 if (order > PAGE_ALLOC_COSTLY_ORDER)
3582 goto out;
3583 /*
3584 * We have already exhausted all our reclaim opportunities without any
3585 * success so it is time to admit defeat. We will skip the OOM killer
3586 * because it is very likely that the caller has a more reasonable
3587 * fallback than shooting a random task.
3588 *
3589 * The OOM killer may not free memory on a specific node.
3590 */
3591 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3592 goto out;
3593 /* The OOM killer does not needlessly kill tasks for lowmem */
3594 if (ac->highest_zoneidx < ZONE_NORMAL)
3595 goto out;
3596 if (pm_suspended_storage())
3597 goto out;
3598 /*
3599 * XXX: GFP_NOFS allocations should rather fail than rely on
3600 * other request to make a forward progress.
3601 * We are in an unfortunate situation where out_of_memory cannot
3602 * do much for this context but let's try it to at least get
3603 * access to memory reserved if the current task is killed (see
3604 * out_of_memory). Once filesystems are ready to handle allocation
3605 * failures more gracefully we should just bail out here.
3606 */
3607
3608 /* Exhausted what can be done so it's blame time */
3609 if (out_of_memory(&oc) ||
3610 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3611 *did_some_progress = 1;
3612
3613 /*
3614 * Help non-failing allocations by giving them access to memory
3615 * reserves
3616 */
3617 if (gfp_mask & __GFP_NOFAIL)
3618 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3619 ALLOC_NO_WATERMARKS, ac);
3620 }
3621out:
3622 mutex_unlock(&oom_lock);
3623 return page;
3624}
3625
3626/*
3627 * Maximum number of compaction retries with a progress before OOM
3628 * killer is consider as the only way to move forward.
3629 */
3630#define MAX_COMPACT_RETRIES 16
3631
3632#ifdef CONFIG_COMPACTION
3633/* Try memory compaction for high-order allocations before reclaim */
3634static struct page *
3635__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3636 unsigned int alloc_flags, const struct alloc_context *ac,
3637 enum compact_priority prio, enum compact_result *compact_result)
3638{
3639 struct page *page = NULL;
3640 unsigned long pflags;
3641 unsigned int noreclaim_flag;
3642
3643 if (!order)
3644 return NULL;
3645
3646 psi_memstall_enter(&pflags);
3647 delayacct_compact_start();
3648 noreclaim_flag = memalloc_noreclaim_save();
3649
3650 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3651 prio, &page);
3652
3653 memalloc_noreclaim_restore(noreclaim_flag);
3654 psi_memstall_leave(&pflags);
3655 delayacct_compact_end();
3656
3657 if (*compact_result == COMPACT_SKIPPED)
3658 return NULL;
3659 /*
3660 * At least in one zone compaction wasn't deferred or skipped, so let's
3661 * count a compaction stall
3662 */
3663 count_vm_event(COMPACTSTALL);
3664
3665 /* Prep a captured page if available */
3666 if (page)
3667 prep_new_page(page, order, gfp_mask, alloc_flags);
3668
3669 /* Try get a page from the freelist if available */
3670 if (!page)
3671 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3672
3673 if (page) {
3674 struct zone *zone = page_zone(page);
3675
3676 zone->compact_blockskip_flush = false;
3677 compaction_defer_reset(zone, order, true);
3678 count_vm_event(COMPACTSUCCESS);
3679 return page;
3680 }
3681
3682 /*
3683 * It's bad if compaction run occurs and fails. The most likely reason
3684 * is that pages exist, but not enough to satisfy watermarks.
3685 */
3686 count_vm_event(COMPACTFAIL);
3687
3688 cond_resched();
3689
3690 return NULL;
3691}
3692
3693static inline bool
3694should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3695 enum compact_result compact_result,
3696 enum compact_priority *compact_priority,
3697 int *compaction_retries)
3698{
3699 int max_retries = MAX_COMPACT_RETRIES;
3700 int min_priority;
3701 bool ret = false;
3702 int retries = *compaction_retries;
3703 enum compact_priority priority = *compact_priority;
3704
3705 if (!order)
3706 return false;
3707
3708 if (fatal_signal_pending(current))
3709 return false;
3710
3711 /*
3712 * Compaction was skipped due to a lack of free order-0
3713 * migration targets. Continue if reclaim can help.
3714 */
3715 if (compact_result == COMPACT_SKIPPED) {
3716 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3717 goto out;
3718 }
3719
3720 /*
3721 * Compaction managed to coalesce some page blocks, but the
3722 * allocation failed presumably due to a race. Retry some.
3723 */
3724 if (compact_result == COMPACT_SUCCESS) {
3725 /*
3726 * !costly requests are much more important than
3727 * __GFP_RETRY_MAYFAIL costly ones because they are de
3728 * facto nofail and invoke OOM killer to move on while
3729 * costly can fail and users are ready to cope with
3730 * that. 1/4 retries is rather arbitrary but we would
3731 * need much more detailed feedback from compaction to
3732 * make a better decision.
3733 */
3734 if (order > PAGE_ALLOC_COSTLY_ORDER)
3735 max_retries /= 4;
3736
3737 if (++(*compaction_retries) <= max_retries) {
3738 ret = true;
3739 goto out;
3740 }
3741 }
3742
3743 /*
3744 * Compaction failed. Retry with increasing priority.
3745 */
3746 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3747 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3748
3749 if (*compact_priority > min_priority) {
3750 (*compact_priority)--;
3751 *compaction_retries = 0;
3752 ret = true;
3753 }
3754out:
3755 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3756 return ret;
3757}
3758#else
3759static inline struct page *
3760__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3761 unsigned int alloc_flags, const struct alloc_context *ac,
3762 enum compact_priority prio, enum compact_result *compact_result)
3763{
3764 *compact_result = COMPACT_SKIPPED;
3765 return NULL;
3766}
3767
3768static inline bool
3769should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3770 enum compact_result compact_result,
3771 enum compact_priority *compact_priority,
3772 int *compaction_retries)
3773{
3774 struct zone *zone;
3775 struct zoneref *z;
3776
3777 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3778 return false;
3779
3780 /*
3781 * There are setups with compaction disabled which would prefer to loop
3782 * inside the allocator rather than hit the oom killer prematurely.
3783 * Let's give them a good hope and keep retrying while the order-0
3784 * watermarks are OK.
3785 */
3786 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3787 ac->highest_zoneidx, ac->nodemask) {
3788 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3789 ac->highest_zoneidx, alloc_flags))
3790 return true;
3791 }
3792 return false;
3793}
3794#endif /* CONFIG_COMPACTION */
3795
3796#ifdef CONFIG_LOCKDEP
3797static struct lockdep_map __fs_reclaim_map =
3798 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3799
3800static bool __need_reclaim(gfp_t gfp_mask)
3801{
3802 /* no reclaim without waiting on it */
3803 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3804 return false;
3805
3806 /* this guy won't enter reclaim */
3807 if (current->flags & PF_MEMALLOC)
3808 return false;
3809
3810 if (gfp_mask & __GFP_NOLOCKDEP)
3811 return false;
3812
3813 return true;
3814}
3815
3816void __fs_reclaim_acquire(unsigned long ip)
3817{
3818 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3819}
3820
3821void __fs_reclaim_release(unsigned long ip)
3822{
3823 lock_release(&__fs_reclaim_map, ip);
3824}
3825
3826void fs_reclaim_acquire(gfp_t gfp_mask)
3827{
3828 gfp_mask = current_gfp_context(gfp_mask);
3829
3830 if (__need_reclaim(gfp_mask)) {
3831 if (gfp_mask & __GFP_FS)
3832 __fs_reclaim_acquire(_RET_IP_);
3833
3834#ifdef CONFIG_MMU_NOTIFIER
3835 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3836 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3837#endif
3838
3839 }
3840}
3841EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3842
3843void fs_reclaim_release(gfp_t gfp_mask)
3844{
3845 gfp_mask = current_gfp_context(gfp_mask);
3846
3847 if (__need_reclaim(gfp_mask)) {
3848 if (gfp_mask & __GFP_FS)
3849 __fs_reclaim_release(_RET_IP_);
3850 }
3851}
3852EXPORT_SYMBOL_GPL(fs_reclaim_release);
3853#endif
3854
3855/*
3856 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3857 * have been rebuilt so allocation retries. Reader side does not lock and
3858 * retries the allocation if zonelist changes. Writer side is protected by the
3859 * embedded spin_lock.
3860 */
3861static DEFINE_SEQLOCK(zonelist_update_seq);
3862
3863static unsigned int zonelist_iter_begin(void)
3864{
3865 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3866 return read_seqbegin(&zonelist_update_seq);
3867
3868 return 0;
3869}
3870
3871static unsigned int check_retry_zonelist(unsigned int seq)
3872{
3873 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3874 return read_seqretry(&zonelist_update_seq, seq);
3875
3876 return seq;
3877}
3878
3879/* Perform direct synchronous page reclaim */
3880static unsigned long
3881__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3882 const struct alloc_context *ac)
3883{
3884 unsigned int noreclaim_flag;
3885 unsigned long progress;
3886
3887 cond_resched();
3888
3889 /* We now go into synchronous reclaim */
3890 cpuset_memory_pressure_bump();
3891 fs_reclaim_acquire(gfp_mask);
3892 noreclaim_flag = memalloc_noreclaim_save();
3893
3894 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3895 ac->nodemask);
3896
3897 memalloc_noreclaim_restore(noreclaim_flag);
3898 fs_reclaim_release(gfp_mask);
3899
3900 cond_resched();
3901
3902 return progress;
3903}
3904
3905/* The really slow allocator path where we enter direct reclaim */
3906static inline struct page *
3907__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3908 unsigned int alloc_flags, const struct alloc_context *ac,
3909 unsigned long *did_some_progress)
3910{
3911 struct page *page = NULL;
3912 unsigned long pflags;
3913 bool drained = false;
3914
3915 psi_memstall_enter(&pflags);
3916 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3917 if (unlikely(!(*did_some_progress)))
3918 goto out;
3919
3920retry:
3921 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3922
3923 /*
3924 * If an allocation failed after direct reclaim, it could be because
3925 * pages are pinned on the per-cpu lists or in high alloc reserves.
3926 * Shrink them and try again
3927 */
3928 if (!page && !drained) {
3929 unreserve_highatomic_pageblock(ac, false);
3930 drain_all_pages(NULL);
3931 drained = true;
3932 goto retry;
3933 }
3934out:
3935 psi_memstall_leave(&pflags);
3936
3937 return page;
3938}
3939
3940static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3941 const struct alloc_context *ac)
3942{
3943 struct zoneref *z;
3944 struct zone *zone;
3945 pg_data_t *last_pgdat = NULL;
3946 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3947
3948 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3949 ac->nodemask) {
3950 if (!managed_zone(zone))
3951 continue;
3952 if (last_pgdat != zone->zone_pgdat) {
3953 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3954 last_pgdat = zone->zone_pgdat;
3955 }
3956 }
3957}
3958
3959static inline unsigned int
3960gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3961{
3962 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3963
3964 /*
3965 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3966 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3967 * to save two branches.
3968 */
3969 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3970 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3971
3972 /*
3973 * The caller may dip into page reserves a bit more if the caller
3974 * cannot run direct reclaim, or if the caller has realtime scheduling
3975 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3976 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3977 */
3978 alloc_flags |= (__force int)
3979 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3980
3981 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3982 /*
3983 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3984 * if it can't schedule.
3985 */
3986 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3987 alloc_flags |= ALLOC_NON_BLOCK;
3988
3989 if (order > 0)
3990 alloc_flags |= ALLOC_HIGHATOMIC;
3991 }
3992
3993 /*
3994 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3995 * GFP_ATOMIC) rather than fail, see the comment for
3996 * cpuset_node_allowed().
3997 */
3998 if (alloc_flags & ALLOC_MIN_RESERVE)
3999 alloc_flags &= ~ALLOC_CPUSET;
4000 } else if (unlikely(rt_task(current)) && in_task())
4001 alloc_flags |= ALLOC_MIN_RESERVE;
4002
4003 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4004
4005 return alloc_flags;
4006}
4007
4008static bool oom_reserves_allowed(struct task_struct *tsk)
4009{
4010 if (!tsk_is_oom_victim(tsk))
4011 return false;
4012
4013 /*
4014 * !MMU doesn't have oom reaper so give access to memory reserves
4015 * only to the thread with TIF_MEMDIE set
4016 */
4017 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4018 return false;
4019
4020 return true;
4021}
4022
4023/*
4024 * Distinguish requests which really need access to full memory
4025 * reserves from oom victims which can live with a portion of it
4026 */
4027static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4028{
4029 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4030 return 0;
4031 if (gfp_mask & __GFP_MEMALLOC)
4032 return ALLOC_NO_WATERMARKS;
4033 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4034 return ALLOC_NO_WATERMARKS;
4035 if (!in_interrupt()) {
4036 if (current->flags & PF_MEMALLOC)
4037 return ALLOC_NO_WATERMARKS;
4038 else if (oom_reserves_allowed(current))
4039 return ALLOC_OOM;
4040 }
4041
4042 return 0;
4043}
4044
4045bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4046{
4047 return !!__gfp_pfmemalloc_flags(gfp_mask);
4048}
4049
4050/*
4051 * Checks whether it makes sense to retry the reclaim to make a forward progress
4052 * for the given allocation request.
4053 *
4054 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4055 * without success, or when we couldn't even meet the watermark if we
4056 * reclaimed all remaining pages on the LRU lists.
4057 *
4058 * Returns true if a retry is viable or false to enter the oom path.
4059 */
4060static inline bool
4061should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4062 struct alloc_context *ac, int alloc_flags,
4063 bool did_some_progress, int *no_progress_loops)
4064{
4065 struct zone *zone;
4066 struct zoneref *z;
4067 bool ret = false;
4068
4069 /*
4070 * Costly allocations might have made a progress but this doesn't mean
4071 * their order will become available due to high fragmentation so
4072 * always increment the no progress counter for them
4073 */
4074 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4075 *no_progress_loops = 0;
4076 else
4077 (*no_progress_loops)++;
4078
4079 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4080 goto out;
4081
4082
4083 /*
4084 * Keep reclaiming pages while there is a chance this will lead
4085 * somewhere. If none of the target zones can satisfy our allocation
4086 * request even if all reclaimable pages are considered then we are
4087 * screwed and have to go OOM.
4088 */
4089 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4090 ac->highest_zoneidx, ac->nodemask) {
4091 unsigned long available;
4092 unsigned long reclaimable;
4093 unsigned long min_wmark = min_wmark_pages(zone);
4094 bool wmark;
4095
4096 available = reclaimable = zone_reclaimable_pages(zone);
4097 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4098
4099 /*
4100 * Would the allocation succeed if we reclaimed all
4101 * reclaimable pages?
4102 */
4103 wmark = __zone_watermark_ok(zone, order, min_wmark,
4104 ac->highest_zoneidx, alloc_flags, available);
4105 trace_reclaim_retry_zone(z, order, reclaimable,
4106 available, min_wmark, *no_progress_loops, wmark);
4107 if (wmark) {
4108 ret = true;
4109 break;
4110 }
4111 }
4112
4113 /*
4114 * Memory allocation/reclaim might be called from a WQ context and the
4115 * current implementation of the WQ concurrency control doesn't
4116 * recognize that a particular WQ is congested if the worker thread is
4117 * looping without ever sleeping. Therefore we have to do a short sleep
4118 * here rather than calling cond_resched().
4119 */
4120 if (current->flags & PF_WQ_WORKER)
4121 schedule_timeout_uninterruptible(1);
4122 else
4123 cond_resched();
4124out:
4125 /* Before OOM, exhaust highatomic_reserve */
4126 if (!ret)
4127 return unreserve_highatomic_pageblock(ac, true);
4128
4129 return ret;
4130}
4131
4132static inline bool
4133check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4134{
4135 /*
4136 * It's possible that cpuset's mems_allowed and the nodemask from
4137 * mempolicy don't intersect. This should be normally dealt with by
4138 * policy_nodemask(), but it's possible to race with cpuset update in
4139 * such a way the check therein was true, and then it became false
4140 * before we got our cpuset_mems_cookie here.
4141 * This assumes that for all allocations, ac->nodemask can come only
4142 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4143 * when it does not intersect with the cpuset restrictions) or the
4144 * caller can deal with a violated nodemask.
4145 */
4146 if (cpusets_enabled() && ac->nodemask &&
4147 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4148 ac->nodemask = NULL;
4149 return true;
4150 }
4151
4152 /*
4153 * When updating a task's mems_allowed or mempolicy nodemask, it is
4154 * possible to race with parallel threads in such a way that our
4155 * allocation can fail while the mask is being updated. If we are about
4156 * to fail, check if the cpuset changed during allocation and if so,
4157 * retry.
4158 */
4159 if (read_mems_allowed_retry(cpuset_mems_cookie))
4160 return true;
4161
4162 return false;
4163}
4164
4165static inline struct page *
4166__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4167 struct alloc_context *ac)
4168{
4169 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4170 bool can_compact = gfp_compaction_allowed(gfp_mask);
4171 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4172 struct page *page = NULL;
4173 unsigned int alloc_flags;
4174 unsigned long did_some_progress;
4175 enum compact_priority compact_priority;
4176 enum compact_result compact_result;
4177 int compaction_retries;
4178 int no_progress_loops;
4179 unsigned int cpuset_mems_cookie;
4180 unsigned int zonelist_iter_cookie;
4181 int reserve_flags;
4182
4183restart:
4184 compaction_retries = 0;
4185 no_progress_loops = 0;
4186 compact_priority = DEF_COMPACT_PRIORITY;
4187 cpuset_mems_cookie = read_mems_allowed_begin();
4188 zonelist_iter_cookie = zonelist_iter_begin();
4189
4190 /*
4191 * The fast path uses conservative alloc_flags to succeed only until
4192 * kswapd needs to be woken up, and to avoid the cost of setting up
4193 * alloc_flags precisely. So we do that now.
4194 */
4195 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4196
4197 /*
4198 * We need to recalculate the starting point for the zonelist iterator
4199 * because we might have used different nodemask in the fast path, or
4200 * there was a cpuset modification and we are retrying - otherwise we
4201 * could end up iterating over non-eligible zones endlessly.
4202 */
4203 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4204 ac->highest_zoneidx, ac->nodemask);
4205 if (!ac->preferred_zoneref->zone)
4206 goto nopage;
4207
4208 /*
4209 * Check for insane configurations where the cpuset doesn't contain
4210 * any suitable zone to satisfy the request - e.g. non-movable
4211 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4212 */
4213 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4214 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4215 ac->highest_zoneidx,
4216 &cpuset_current_mems_allowed);
4217 if (!z->zone)
4218 goto nopage;
4219 }
4220
4221 if (alloc_flags & ALLOC_KSWAPD)
4222 wake_all_kswapds(order, gfp_mask, ac);
4223
4224 /*
4225 * The adjusted alloc_flags might result in immediate success, so try
4226 * that first
4227 */
4228 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4229 if (page)
4230 goto got_pg;
4231
4232 /*
4233 * For costly allocations, try direct compaction first, as it's likely
4234 * that we have enough base pages and don't need to reclaim. For non-
4235 * movable high-order allocations, do that as well, as compaction will
4236 * try prevent permanent fragmentation by migrating from blocks of the
4237 * same migratetype.
4238 * Don't try this for allocations that are allowed to ignore
4239 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4240 */
4241 if (can_direct_reclaim && can_compact &&
4242 (costly_order ||
4243 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4244 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4245 page = __alloc_pages_direct_compact(gfp_mask, order,
4246 alloc_flags, ac,
4247 INIT_COMPACT_PRIORITY,
4248 &compact_result);
4249 if (page)
4250 goto got_pg;
4251
4252 /*
4253 * Checks for costly allocations with __GFP_NORETRY, which
4254 * includes some THP page fault allocations
4255 */
4256 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4257 /*
4258 * If allocating entire pageblock(s) and compaction
4259 * failed because all zones are below low watermarks
4260 * or is prohibited because it recently failed at this
4261 * order, fail immediately unless the allocator has
4262 * requested compaction and reclaim retry.
4263 *
4264 * Reclaim is
4265 * - potentially very expensive because zones are far
4266 * below their low watermarks or this is part of very
4267 * bursty high order allocations,
4268 * - not guaranteed to help because isolate_freepages()
4269 * may not iterate over freed pages as part of its
4270 * linear scan, and
4271 * - unlikely to make entire pageblocks free on its
4272 * own.
4273 */
4274 if (compact_result == COMPACT_SKIPPED ||
4275 compact_result == COMPACT_DEFERRED)
4276 goto nopage;
4277
4278 /*
4279 * Looks like reclaim/compaction is worth trying, but
4280 * sync compaction could be very expensive, so keep
4281 * using async compaction.
4282 */
4283 compact_priority = INIT_COMPACT_PRIORITY;
4284 }
4285 }
4286
4287retry:
4288 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4289 if (alloc_flags & ALLOC_KSWAPD)
4290 wake_all_kswapds(order, gfp_mask, ac);
4291
4292 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4293 if (reserve_flags)
4294 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4295 (alloc_flags & ALLOC_KSWAPD);
4296
4297 /*
4298 * Reset the nodemask and zonelist iterators if memory policies can be
4299 * ignored. These allocations are high priority and system rather than
4300 * user oriented.
4301 */
4302 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4303 ac->nodemask = NULL;
4304 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4305 ac->highest_zoneidx, ac->nodemask);
4306 }
4307
4308 /* Attempt with potentially adjusted zonelist and alloc_flags */
4309 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4310 if (page)
4311 goto got_pg;
4312
4313 /* Caller is not willing to reclaim, we can't balance anything */
4314 if (!can_direct_reclaim)
4315 goto nopage;
4316
4317 /* Avoid recursion of direct reclaim */
4318 if (current->flags & PF_MEMALLOC)
4319 goto nopage;
4320
4321 /* Try direct reclaim and then allocating */
4322 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4323 &did_some_progress);
4324 if (page)
4325 goto got_pg;
4326
4327 /* Try direct compaction and then allocating */
4328 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4329 compact_priority, &compact_result);
4330 if (page)
4331 goto got_pg;
4332
4333 /* Do not loop if specifically requested */
4334 if (gfp_mask & __GFP_NORETRY)
4335 goto nopage;
4336
4337 /*
4338 * Do not retry costly high order allocations unless they are
4339 * __GFP_RETRY_MAYFAIL and we can compact
4340 */
4341 if (costly_order && (!can_compact ||
4342 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4343 goto nopage;
4344
4345 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4346 did_some_progress > 0, &no_progress_loops))
4347 goto retry;
4348
4349 /*
4350 * It doesn't make any sense to retry for the compaction if the order-0
4351 * reclaim is not able to make any progress because the current
4352 * implementation of the compaction depends on the sufficient amount
4353 * of free memory (see __compaction_suitable)
4354 */
4355 if (did_some_progress > 0 && can_compact &&
4356 should_compact_retry(ac, order, alloc_flags,
4357 compact_result, &compact_priority,
4358 &compaction_retries))
4359 goto retry;
4360
4361
4362 /*
4363 * Deal with possible cpuset update races or zonelist updates to avoid
4364 * a unnecessary OOM kill.
4365 */
4366 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4367 check_retry_zonelist(zonelist_iter_cookie))
4368 goto restart;
4369
4370 /* Reclaim has failed us, start killing things */
4371 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4372 if (page)
4373 goto got_pg;
4374
4375 /* Avoid allocations with no watermarks from looping endlessly */
4376 if (tsk_is_oom_victim(current) &&
4377 (alloc_flags & ALLOC_OOM ||
4378 (gfp_mask & __GFP_NOMEMALLOC)))
4379 goto nopage;
4380
4381 /* Retry as long as the OOM killer is making progress */
4382 if (did_some_progress) {
4383 no_progress_loops = 0;
4384 goto retry;
4385 }
4386
4387nopage:
4388 /*
4389 * Deal with possible cpuset update races or zonelist updates to avoid
4390 * a unnecessary OOM kill.
4391 */
4392 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4393 check_retry_zonelist(zonelist_iter_cookie))
4394 goto restart;
4395
4396 /*
4397 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4398 * we always retry
4399 */
4400 if (gfp_mask & __GFP_NOFAIL) {
4401 /*
4402 * All existing users of the __GFP_NOFAIL are blockable, so warn
4403 * of any new users that actually require GFP_NOWAIT
4404 */
4405 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4406 goto fail;
4407
4408 /*
4409 * PF_MEMALLOC request from this context is rather bizarre
4410 * because we cannot reclaim anything and only can loop waiting
4411 * for somebody to do a work for us
4412 */
4413 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4414
4415 /*
4416 * non failing costly orders are a hard requirement which we
4417 * are not prepared for much so let's warn about these users
4418 * so that we can identify them and convert them to something
4419 * else.
4420 */
4421 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4422
4423 /*
4424 * Help non-failing allocations by giving some access to memory
4425 * reserves normally used for high priority non-blocking
4426 * allocations but do not use ALLOC_NO_WATERMARKS because this
4427 * could deplete whole memory reserves which would just make
4428 * the situation worse.
4429 */
4430 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4431 if (page)
4432 goto got_pg;
4433
4434 cond_resched();
4435 goto retry;
4436 }
4437fail:
4438 warn_alloc(gfp_mask, ac->nodemask,
4439 "page allocation failure: order:%u", order);
4440got_pg:
4441 return page;
4442}
4443
4444static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4445 int preferred_nid, nodemask_t *nodemask,
4446 struct alloc_context *ac, gfp_t *alloc_gfp,
4447 unsigned int *alloc_flags)
4448{
4449 ac->highest_zoneidx = gfp_zone(gfp_mask);
4450 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4451 ac->nodemask = nodemask;
4452 ac->migratetype = gfp_migratetype(gfp_mask);
4453
4454 if (cpusets_enabled()) {
4455 *alloc_gfp |= __GFP_HARDWALL;
4456 /*
4457 * When we are in the interrupt context, it is irrelevant
4458 * to the current task context. It means that any node ok.
4459 */
4460 if (in_task() && !ac->nodemask)
4461 ac->nodemask = &cpuset_current_mems_allowed;
4462 else
4463 *alloc_flags |= ALLOC_CPUSET;
4464 }
4465
4466 might_alloc(gfp_mask);
4467
4468 if (should_fail_alloc_page(gfp_mask, order))
4469 return false;
4470
4471 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4472
4473 /* Dirty zone balancing only done in the fast path */
4474 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4475
4476 /*
4477 * The preferred zone is used for statistics but crucially it is
4478 * also used as the starting point for the zonelist iterator. It
4479 * may get reset for allocations that ignore memory policies.
4480 */
4481 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4482 ac->highest_zoneidx, ac->nodemask);
4483
4484 return true;
4485}
4486
4487/*
4488 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4489 * @gfp: GFP flags for the allocation
4490 * @preferred_nid: The preferred NUMA node ID to allocate from
4491 * @nodemask: Set of nodes to allocate from, may be NULL
4492 * @nr_pages: The number of pages desired on the list or array
4493 * @page_list: Optional list to store the allocated pages
4494 * @page_array: Optional array to store the pages
4495 *
4496 * This is a batched version of the page allocator that attempts to
4497 * allocate nr_pages quickly. Pages are added to page_list if page_list
4498 * is not NULL, otherwise it is assumed that the page_array is valid.
4499 *
4500 * For lists, nr_pages is the number of pages that should be allocated.
4501 *
4502 * For arrays, only NULL elements are populated with pages and nr_pages
4503 * is the maximum number of pages that will be stored in the array.
4504 *
4505 * Returns the number of pages on the list or array.
4506 */
4507unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4508 nodemask_t *nodemask, int nr_pages,
4509 struct list_head *page_list,
4510 struct page **page_array)
4511{
4512 struct page *page;
4513 unsigned long __maybe_unused UP_flags;
4514 struct zone *zone;
4515 struct zoneref *z;
4516 struct per_cpu_pages *pcp;
4517 struct list_head *pcp_list;
4518 struct alloc_context ac;
4519 gfp_t alloc_gfp;
4520 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4521 int nr_populated = 0, nr_account = 0;
4522
4523 /*
4524 * Skip populated array elements to determine if any pages need
4525 * to be allocated before disabling IRQs.
4526 */
4527 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4528 nr_populated++;
4529
4530 /* No pages requested? */
4531 if (unlikely(nr_pages <= 0))
4532 goto out;
4533
4534 /* Already populated array? */
4535 if (unlikely(page_array && nr_pages - nr_populated == 0))
4536 goto out;
4537
4538 /* Bulk allocator does not support memcg accounting. */
4539 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4540 goto failed;
4541
4542 /* Use the single page allocator for one page. */
4543 if (nr_pages - nr_populated == 1)
4544 goto failed;
4545
4546#ifdef CONFIG_PAGE_OWNER
4547 /*
4548 * PAGE_OWNER may recurse into the allocator to allocate space to
4549 * save the stack with pagesets.lock held. Releasing/reacquiring
4550 * removes much of the performance benefit of bulk allocation so
4551 * force the caller to allocate one page at a time as it'll have
4552 * similar performance to added complexity to the bulk allocator.
4553 */
4554 if (static_branch_unlikely(&page_owner_inited))
4555 goto failed;
4556#endif
4557
4558 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4559 gfp &= gfp_allowed_mask;
4560 alloc_gfp = gfp;
4561 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4562 goto out;
4563 gfp = alloc_gfp;
4564
4565 /* Find an allowed local zone that meets the low watermark. */
4566 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4567 unsigned long mark;
4568
4569 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4570 !__cpuset_zone_allowed(zone, gfp)) {
4571 continue;
4572 }
4573
4574 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4575 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4576 goto failed;
4577 }
4578
4579 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4580 if (zone_watermark_fast(zone, 0, mark,
4581 zonelist_zone_idx(ac.preferred_zoneref),
4582 alloc_flags, gfp)) {
4583 break;
4584 }
4585 }
4586
4587 /*
4588 * If there are no allowed local zones that meets the watermarks then
4589 * try to allocate a single page and reclaim if necessary.
4590 */
4591 if (unlikely(!zone))
4592 goto failed;
4593
4594 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4595 pcp_trylock_prepare(UP_flags);
4596 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4597 if (!pcp)
4598 goto failed_irq;
4599
4600 /* Attempt the batch allocation */
4601 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4602 while (nr_populated < nr_pages) {
4603
4604 /* Skip existing pages */
4605 if (page_array && page_array[nr_populated]) {
4606 nr_populated++;
4607 continue;
4608 }
4609
4610 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4611 pcp, pcp_list);
4612 if (unlikely(!page)) {
4613 /* Try and allocate at least one page */
4614 if (!nr_account) {
4615 pcp_spin_unlock(pcp);
4616 goto failed_irq;
4617 }
4618 break;
4619 }
4620 nr_account++;
4621
4622 prep_new_page(page, 0, gfp, 0);
4623 if (page_list)
4624 list_add(&page->lru, page_list);
4625 else
4626 page_array[nr_populated] = page;
4627 nr_populated++;
4628 }
4629
4630 pcp_spin_unlock(pcp);
4631 pcp_trylock_finish(UP_flags);
4632
4633 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4634 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4635
4636out:
4637 return nr_populated;
4638
4639failed_irq:
4640 pcp_trylock_finish(UP_flags);
4641
4642failed:
4643 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4644 if (page) {
4645 if (page_list)
4646 list_add(&page->lru, page_list);
4647 else
4648 page_array[nr_populated] = page;
4649 nr_populated++;
4650 }
4651
4652 goto out;
4653}
4654EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4655
4656/*
4657 * This is the 'heart' of the zoned buddy allocator.
4658 */
4659struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4660 int preferred_nid, nodemask_t *nodemask)
4661{
4662 struct page *page;
4663 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4664 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4665 struct alloc_context ac = { };
4666
4667 /*
4668 * There are several places where we assume that the order value is sane
4669 * so bail out early if the request is out of bound.
4670 */
4671 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4672 return NULL;
4673
4674 gfp &= gfp_allowed_mask;
4675 /*
4676 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4677 * resp. GFP_NOIO which has to be inherited for all allocation requests
4678 * from a particular context which has been marked by
4679 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4680 * movable zones are not used during allocation.
4681 */
4682 gfp = current_gfp_context(gfp);
4683 alloc_gfp = gfp;
4684 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4685 &alloc_gfp, &alloc_flags))
4686 return NULL;
4687
4688 /*
4689 * Forbid the first pass from falling back to types that fragment
4690 * memory until all local zones are considered.
4691 */
4692 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4693
4694 /* First allocation attempt */
4695 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4696 if (likely(page))
4697 goto out;
4698
4699 alloc_gfp = gfp;
4700 ac.spread_dirty_pages = false;
4701
4702 /*
4703 * Restore the original nodemask if it was potentially replaced with
4704 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4705 */
4706 ac.nodemask = nodemask;
4707
4708 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4709
4710out:
4711 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4712 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4713 __free_pages(page, order);
4714 page = NULL;
4715 }
4716
4717 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4718 kmsan_alloc_page(page, order, alloc_gfp);
4719
4720 return page;
4721}
4722EXPORT_SYMBOL(__alloc_pages_noprof);
4723
4724struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4725 nodemask_t *nodemask)
4726{
4727 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4728 preferred_nid, nodemask);
4729 return page_rmappable_folio(page);
4730}
4731EXPORT_SYMBOL(__folio_alloc_noprof);
4732
4733/*
4734 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4735 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4736 * you need to access high mem.
4737 */
4738unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4739{
4740 struct page *page;
4741
4742 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4743 if (!page)
4744 return 0;
4745 return (unsigned long) page_address(page);
4746}
4747EXPORT_SYMBOL(get_free_pages_noprof);
4748
4749unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4750{
4751 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4752}
4753EXPORT_SYMBOL(get_zeroed_page_noprof);
4754
4755/**
4756 * __free_pages - Free pages allocated with alloc_pages().
4757 * @page: The page pointer returned from alloc_pages().
4758 * @order: The order of the allocation.
4759 *
4760 * This function can free multi-page allocations that are not compound
4761 * pages. It does not check that the @order passed in matches that of
4762 * the allocation, so it is easy to leak memory. Freeing more memory
4763 * than was allocated will probably emit a warning.
4764 *
4765 * If the last reference to this page is speculative, it will be released
4766 * by put_page() which only frees the first page of a non-compound
4767 * allocation. To prevent the remaining pages from being leaked, we free
4768 * the subsequent pages here. If you want to use the page's reference
4769 * count to decide when to free the allocation, you should allocate a
4770 * compound page, and use put_page() instead of __free_pages().
4771 *
4772 * Context: May be called in interrupt context or while holding a normal
4773 * spinlock, but not in NMI context or while holding a raw spinlock.
4774 */
4775void __free_pages(struct page *page, unsigned int order)
4776{
4777 /* get PageHead before we drop reference */
4778 int head = PageHead(page);
4779 struct alloc_tag *tag = pgalloc_tag_get(page);
4780
4781 if (put_page_testzero(page))
4782 free_unref_page(page, order);
4783 else if (!head) {
4784 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4785 while (order-- > 0)
4786 free_unref_page(page + (1 << order), order);
4787 }
4788}
4789EXPORT_SYMBOL(__free_pages);
4790
4791void free_pages(unsigned long addr, unsigned int order)
4792{
4793 if (addr != 0) {
4794 VM_BUG_ON(!virt_addr_valid((void *)addr));
4795 __free_pages(virt_to_page((void *)addr), order);
4796 }
4797}
4798
4799EXPORT_SYMBOL(free_pages);
4800
4801/*
4802 * Page Fragment:
4803 * An arbitrary-length arbitrary-offset area of memory which resides
4804 * within a 0 or higher order page. Multiple fragments within that page
4805 * are individually refcounted, in the page's reference counter.
4806 *
4807 * The page_frag functions below provide a simple allocation framework for
4808 * page fragments. This is used by the network stack and network device
4809 * drivers to provide a backing region of memory for use as either an
4810 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4811 */
4812static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4813 gfp_t gfp_mask)
4814{
4815 struct page *page = NULL;
4816 gfp_t gfp = gfp_mask;
4817
4818#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4819 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4820 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4821 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4822 PAGE_FRAG_CACHE_MAX_ORDER);
4823 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4824#endif
4825 if (unlikely(!page))
4826 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4827
4828 nc->va = page ? page_address(page) : NULL;
4829
4830 return page;
4831}
4832
4833void page_frag_cache_drain(struct page_frag_cache *nc)
4834{
4835 if (!nc->va)
4836 return;
4837
4838 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4839 nc->va = NULL;
4840}
4841EXPORT_SYMBOL(page_frag_cache_drain);
4842
4843void __page_frag_cache_drain(struct page *page, unsigned int count)
4844{
4845 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4846
4847 if (page_ref_sub_and_test(page, count))
4848 free_unref_page(page, compound_order(page));
4849}
4850EXPORT_SYMBOL(__page_frag_cache_drain);
4851
4852void *__page_frag_alloc_align(struct page_frag_cache *nc,
4853 unsigned int fragsz, gfp_t gfp_mask,
4854 unsigned int align_mask)
4855{
4856 unsigned int size = PAGE_SIZE;
4857 struct page *page;
4858 int offset;
4859
4860 if (unlikely(!nc->va)) {
4861refill:
4862 page = __page_frag_cache_refill(nc, gfp_mask);
4863 if (!page)
4864 return NULL;
4865
4866#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4867 /* if size can vary use size else just use PAGE_SIZE */
4868 size = nc->size;
4869#endif
4870 /* Even if we own the page, we do not use atomic_set().
4871 * This would break get_page_unless_zero() users.
4872 */
4873 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4874
4875 /* reset page count bias and offset to start of new frag */
4876 nc->pfmemalloc = page_is_pfmemalloc(page);
4877 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4878 nc->offset = size;
4879 }
4880
4881 offset = nc->offset - fragsz;
4882 if (unlikely(offset < 0)) {
4883 page = virt_to_page(nc->va);
4884
4885 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4886 goto refill;
4887
4888 if (unlikely(nc->pfmemalloc)) {
4889 free_unref_page(page, compound_order(page));
4890 goto refill;
4891 }
4892
4893#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4894 /* if size can vary use size else just use PAGE_SIZE */
4895 size = nc->size;
4896#endif
4897 /* OK, page count is 0, we can safely set it */
4898 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4899
4900 /* reset page count bias and offset to start of new frag */
4901 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4902 offset = size - fragsz;
4903 if (unlikely(offset < 0)) {
4904 /*
4905 * The caller is trying to allocate a fragment
4906 * with fragsz > PAGE_SIZE but the cache isn't big
4907 * enough to satisfy the request, this may
4908 * happen in low memory conditions.
4909 * We don't release the cache page because
4910 * it could make memory pressure worse
4911 * so we simply return NULL here.
4912 */
4913 return NULL;
4914 }
4915 }
4916
4917 nc->pagecnt_bias--;
4918 offset &= align_mask;
4919 nc->offset = offset;
4920
4921 return nc->va + offset;
4922}
4923EXPORT_SYMBOL(__page_frag_alloc_align);
4924
4925/*
4926 * Frees a page fragment allocated out of either a compound or order 0 page.
4927 */
4928void page_frag_free(void *addr)
4929{
4930 struct page *page = virt_to_head_page(addr);
4931
4932 if (unlikely(put_page_testzero(page)))
4933 free_unref_page(page, compound_order(page));
4934}
4935EXPORT_SYMBOL(page_frag_free);
4936
4937static void *make_alloc_exact(unsigned long addr, unsigned int order,
4938 size_t size)
4939{
4940 if (addr) {
4941 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4942 struct page *page = virt_to_page((void *)addr);
4943 struct page *last = page + nr;
4944
4945 split_page_owner(page, order, 0);
4946 pgalloc_tag_split(page, 1 << order);
4947 split_page_memcg(page, order, 0);
4948 while (page < --last)
4949 set_page_refcounted(last);
4950
4951 last = page + (1UL << order);
4952 for (page += nr; page < last; page++)
4953 __free_pages_ok(page, 0, FPI_TO_TAIL);
4954 }
4955 return (void *)addr;
4956}
4957
4958/**
4959 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4960 * @size: the number of bytes to allocate
4961 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4962 *
4963 * This function is similar to alloc_pages(), except that it allocates the
4964 * minimum number of pages to satisfy the request. alloc_pages() can only
4965 * allocate memory in power-of-two pages.
4966 *
4967 * This function is also limited by MAX_PAGE_ORDER.
4968 *
4969 * Memory allocated by this function must be released by free_pages_exact().
4970 *
4971 * Return: pointer to the allocated area or %NULL in case of error.
4972 */
4973void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4974{
4975 unsigned int order = get_order(size);
4976 unsigned long addr;
4977
4978 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4979 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4980
4981 addr = get_free_pages_noprof(gfp_mask, order);
4982 return make_alloc_exact(addr, order, size);
4983}
4984EXPORT_SYMBOL(alloc_pages_exact_noprof);
4985
4986/**
4987 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4988 * pages on a node.
4989 * @nid: the preferred node ID where memory should be allocated
4990 * @size: the number of bytes to allocate
4991 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4992 *
4993 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4994 * back.
4995 *
4996 * Return: pointer to the allocated area or %NULL in case of error.
4997 */
4998void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4999{
5000 unsigned int order = get_order(size);
5001 struct page *p;
5002
5003 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5004 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5005
5006 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5007 if (!p)
5008 return NULL;
5009 return make_alloc_exact((unsigned long)page_address(p), order, size);
5010}
5011
5012/**
5013 * free_pages_exact - release memory allocated via alloc_pages_exact()
5014 * @virt: the value returned by alloc_pages_exact.
5015 * @size: size of allocation, same value as passed to alloc_pages_exact().
5016 *
5017 * Release the memory allocated by a previous call to alloc_pages_exact.
5018 */
5019void free_pages_exact(void *virt, size_t size)
5020{
5021 unsigned long addr = (unsigned long)virt;
5022 unsigned long end = addr + PAGE_ALIGN(size);
5023
5024 while (addr < end) {
5025 free_page(addr);
5026 addr += PAGE_SIZE;
5027 }
5028}
5029EXPORT_SYMBOL(free_pages_exact);
5030
5031/**
5032 * nr_free_zone_pages - count number of pages beyond high watermark
5033 * @offset: The zone index of the highest zone
5034 *
5035 * nr_free_zone_pages() counts the number of pages which are beyond the
5036 * high watermark within all zones at or below a given zone index. For each
5037 * zone, the number of pages is calculated as:
5038 *
5039 * nr_free_zone_pages = managed_pages - high_pages
5040 *
5041 * Return: number of pages beyond high watermark.
5042 */
5043static unsigned long nr_free_zone_pages(int offset)
5044{
5045 struct zoneref *z;
5046 struct zone *zone;
5047
5048 /* Just pick one node, since fallback list is circular */
5049 unsigned long sum = 0;
5050
5051 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5052
5053 for_each_zone_zonelist(zone, z, zonelist, offset) {
5054 unsigned long size = zone_managed_pages(zone);
5055 unsigned long high = high_wmark_pages(zone);
5056 if (size > high)
5057 sum += size - high;
5058 }
5059
5060 return sum;
5061}
5062
5063/**
5064 * nr_free_buffer_pages - count number of pages beyond high watermark
5065 *
5066 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5067 * watermark within ZONE_DMA and ZONE_NORMAL.
5068 *
5069 * Return: number of pages beyond high watermark within ZONE_DMA and
5070 * ZONE_NORMAL.
5071 */
5072unsigned long nr_free_buffer_pages(void)
5073{
5074 return nr_free_zone_pages(gfp_zone(GFP_USER));
5075}
5076EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5077
5078static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5079{
5080 zoneref->zone = zone;
5081 zoneref->zone_idx = zone_idx(zone);
5082}
5083
5084/*
5085 * Builds allocation fallback zone lists.
5086 *
5087 * Add all populated zones of a node to the zonelist.
5088 */
5089static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5090{
5091 struct zone *zone;
5092 enum zone_type zone_type = MAX_NR_ZONES;
5093 int nr_zones = 0;
5094
5095 do {
5096 zone_type--;
5097 zone = pgdat->node_zones + zone_type;
5098 if (populated_zone(zone)) {
5099 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5100 check_highest_zone(zone_type);
5101 }
5102 } while (zone_type);
5103
5104 return nr_zones;
5105}
5106
5107#ifdef CONFIG_NUMA
5108
5109static int __parse_numa_zonelist_order(char *s)
5110{
5111 /*
5112 * We used to support different zonelists modes but they turned
5113 * out to be just not useful. Let's keep the warning in place
5114 * if somebody still use the cmd line parameter so that we do
5115 * not fail it silently
5116 */
5117 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5118 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5119 return -EINVAL;
5120 }
5121 return 0;
5122}
5123
5124static char numa_zonelist_order[] = "Node";
5125#define NUMA_ZONELIST_ORDER_LEN 16
5126/*
5127 * sysctl handler for numa_zonelist_order
5128 */
5129static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5130 void *buffer, size_t *length, loff_t *ppos)
5131{
5132 if (write)
5133 return __parse_numa_zonelist_order(buffer);
5134 return proc_dostring(table, write, buffer, length, ppos);
5135}
5136
5137static int node_load[MAX_NUMNODES];
5138
5139/**
5140 * find_next_best_node - find the next node that should appear in a given node's fallback list
5141 * @node: node whose fallback list we're appending
5142 * @used_node_mask: nodemask_t of already used nodes
5143 *
5144 * We use a number of factors to determine which is the next node that should
5145 * appear on a given node's fallback list. The node should not have appeared
5146 * already in @node's fallback list, and it should be the next closest node
5147 * according to the distance array (which contains arbitrary distance values
5148 * from each node to each node in the system), and should also prefer nodes
5149 * with no CPUs, since presumably they'll have very little allocation pressure
5150 * on them otherwise.
5151 *
5152 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5153 */
5154int find_next_best_node(int node, nodemask_t *used_node_mask)
5155{
5156 int n, val;
5157 int min_val = INT_MAX;
5158 int best_node = NUMA_NO_NODE;
5159
5160 /*
5161 * Use the local node if we haven't already, but for memoryless local
5162 * node, we should skip it and fall back to other nodes.
5163 */
5164 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5165 node_set(node, *used_node_mask);
5166 return node;
5167 }
5168
5169 for_each_node_state(n, N_MEMORY) {
5170
5171 /* Don't want a node to appear more than once */
5172 if (node_isset(n, *used_node_mask))
5173 continue;
5174
5175 /* Use the distance array to find the distance */
5176 val = node_distance(node, n);
5177
5178 /* Penalize nodes under us ("prefer the next node") */
5179 val += (n < node);
5180
5181 /* Give preference to headless and unused nodes */
5182 if (!cpumask_empty(cpumask_of_node(n)))
5183 val += PENALTY_FOR_NODE_WITH_CPUS;
5184
5185 /* Slight preference for less loaded node */
5186 val *= MAX_NUMNODES;
5187 val += node_load[n];
5188
5189 if (val < min_val) {
5190 min_val = val;
5191 best_node = n;
5192 }
5193 }
5194
5195 if (best_node >= 0)
5196 node_set(best_node, *used_node_mask);
5197
5198 return best_node;
5199}
5200
5201
5202/*
5203 * Build zonelists ordered by node and zones within node.
5204 * This results in maximum locality--normal zone overflows into local
5205 * DMA zone, if any--but risks exhausting DMA zone.
5206 */
5207static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5208 unsigned nr_nodes)
5209{
5210 struct zoneref *zonerefs;
5211 int i;
5212
5213 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5214
5215 for (i = 0; i < nr_nodes; i++) {
5216 int nr_zones;
5217
5218 pg_data_t *node = NODE_DATA(node_order[i]);
5219
5220 nr_zones = build_zonerefs_node(node, zonerefs);
5221 zonerefs += nr_zones;
5222 }
5223 zonerefs->zone = NULL;
5224 zonerefs->zone_idx = 0;
5225}
5226
5227/*
5228 * Build __GFP_THISNODE zonelists
5229 */
5230static void build_thisnode_zonelists(pg_data_t *pgdat)
5231{
5232 struct zoneref *zonerefs;
5233 int nr_zones;
5234
5235 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5236 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5237 zonerefs += nr_zones;
5238 zonerefs->zone = NULL;
5239 zonerefs->zone_idx = 0;
5240}
5241
5242/*
5243 * Build zonelists ordered by zone and nodes within zones.
5244 * This results in conserving DMA zone[s] until all Normal memory is
5245 * exhausted, but results in overflowing to remote node while memory
5246 * may still exist in local DMA zone.
5247 */
5248
5249static void build_zonelists(pg_data_t *pgdat)
5250{
5251 static int node_order[MAX_NUMNODES];
5252 int node, nr_nodes = 0;
5253 nodemask_t used_mask = NODE_MASK_NONE;
5254 int local_node, prev_node;
5255
5256 /* NUMA-aware ordering of nodes */
5257 local_node = pgdat->node_id;
5258 prev_node = local_node;
5259
5260 memset(node_order, 0, sizeof(node_order));
5261 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5262 /*
5263 * We don't want to pressure a particular node.
5264 * So adding penalty to the first node in same
5265 * distance group to make it round-robin.
5266 */
5267 if (node_distance(local_node, node) !=
5268 node_distance(local_node, prev_node))
5269 node_load[node] += 1;
5270
5271 node_order[nr_nodes++] = node;
5272 prev_node = node;
5273 }
5274
5275 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5276 build_thisnode_zonelists(pgdat);
5277 pr_info("Fallback order for Node %d: ", local_node);
5278 for (node = 0; node < nr_nodes; node++)
5279 pr_cont("%d ", node_order[node]);
5280 pr_cont("\n");
5281}
5282
5283#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5284/*
5285 * Return node id of node used for "local" allocations.
5286 * I.e., first node id of first zone in arg node's generic zonelist.
5287 * Used for initializing percpu 'numa_mem', which is used primarily
5288 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5289 */
5290int local_memory_node(int node)
5291{
5292 struct zoneref *z;
5293
5294 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5295 gfp_zone(GFP_KERNEL),
5296 NULL);
5297 return zone_to_nid(z->zone);
5298}
5299#endif
5300
5301static void setup_min_unmapped_ratio(void);
5302static void setup_min_slab_ratio(void);
5303#else /* CONFIG_NUMA */
5304
5305static void build_zonelists(pg_data_t *pgdat)
5306{
5307 struct zoneref *zonerefs;
5308 int nr_zones;
5309
5310 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5311 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5312 zonerefs += nr_zones;
5313
5314 zonerefs->zone = NULL;
5315 zonerefs->zone_idx = 0;
5316}
5317
5318#endif /* CONFIG_NUMA */
5319
5320/*
5321 * Boot pageset table. One per cpu which is going to be used for all
5322 * zones and all nodes. The parameters will be set in such a way
5323 * that an item put on a list will immediately be handed over to
5324 * the buddy list. This is safe since pageset manipulation is done
5325 * with interrupts disabled.
5326 *
5327 * The boot_pagesets must be kept even after bootup is complete for
5328 * unused processors and/or zones. They do play a role for bootstrapping
5329 * hotplugged processors.
5330 *
5331 * zoneinfo_show() and maybe other functions do
5332 * not check if the processor is online before following the pageset pointer.
5333 * Other parts of the kernel may not check if the zone is available.
5334 */
5335static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5336/* These effectively disable the pcplists in the boot pageset completely */
5337#define BOOT_PAGESET_HIGH 0
5338#define BOOT_PAGESET_BATCH 1
5339static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5340static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5341
5342static void __build_all_zonelists(void *data)
5343{
5344 int nid;
5345 int __maybe_unused cpu;
5346 pg_data_t *self = data;
5347 unsigned long flags;
5348
5349 /*
5350 * The zonelist_update_seq must be acquired with irqsave because the
5351 * reader can be invoked from IRQ with GFP_ATOMIC.
5352 */
5353 write_seqlock_irqsave(&zonelist_update_seq, flags);
5354 /*
5355 * Also disable synchronous printk() to prevent any printk() from
5356 * trying to hold port->lock, for
5357 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5358 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5359 */
5360 printk_deferred_enter();
5361
5362#ifdef CONFIG_NUMA
5363 memset(node_load, 0, sizeof(node_load));
5364#endif
5365
5366 /*
5367 * This node is hotadded and no memory is yet present. So just
5368 * building zonelists is fine - no need to touch other nodes.
5369 */
5370 if (self && !node_online(self->node_id)) {
5371 build_zonelists(self);
5372 } else {
5373 /*
5374 * All possible nodes have pgdat preallocated
5375 * in free_area_init
5376 */
5377 for_each_node(nid) {
5378 pg_data_t *pgdat = NODE_DATA(nid);
5379
5380 build_zonelists(pgdat);
5381 }
5382
5383#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5384 /*
5385 * We now know the "local memory node" for each node--
5386 * i.e., the node of the first zone in the generic zonelist.
5387 * Set up numa_mem percpu variable for on-line cpus. During
5388 * boot, only the boot cpu should be on-line; we'll init the
5389 * secondary cpus' numa_mem as they come on-line. During
5390 * node/memory hotplug, we'll fixup all on-line cpus.
5391 */
5392 for_each_online_cpu(cpu)
5393 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5394#endif
5395 }
5396
5397 printk_deferred_exit();
5398 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5399}
5400
5401static noinline void __init
5402build_all_zonelists_init(void)
5403{
5404 int cpu;
5405
5406 __build_all_zonelists(NULL);
5407
5408 /*
5409 * Initialize the boot_pagesets that are going to be used
5410 * for bootstrapping processors. The real pagesets for
5411 * each zone will be allocated later when the per cpu
5412 * allocator is available.
5413 *
5414 * boot_pagesets are used also for bootstrapping offline
5415 * cpus if the system is already booted because the pagesets
5416 * are needed to initialize allocators on a specific cpu too.
5417 * F.e. the percpu allocator needs the page allocator which
5418 * needs the percpu allocator in order to allocate its pagesets
5419 * (a chicken-egg dilemma).
5420 */
5421 for_each_possible_cpu(cpu)
5422 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5423
5424 mminit_verify_zonelist();
5425 cpuset_init_current_mems_allowed();
5426}
5427
5428/*
5429 * unless system_state == SYSTEM_BOOTING.
5430 *
5431 * __ref due to call of __init annotated helper build_all_zonelists_init
5432 * [protected by SYSTEM_BOOTING].
5433 */
5434void __ref build_all_zonelists(pg_data_t *pgdat)
5435{
5436 unsigned long vm_total_pages;
5437
5438 if (system_state == SYSTEM_BOOTING) {
5439 build_all_zonelists_init();
5440 } else {
5441 __build_all_zonelists(pgdat);
5442 /* cpuset refresh routine should be here */
5443 }
5444 /* Get the number of free pages beyond high watermark in all zones. */
5445 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5446 /*
5447 * Disable grouping by mobility if the number of pages in the
5448 * system is too low to allow the mechanism to work. It would be
5449 * more accurate, but expensive to check per-zone. This check is
5450 * made on memory-hotadd so a system can start with mobility
5451 * disabled and enable it later
5452 */
5453 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5454 page_group_by_mobility_disabled = 1;
5455 else
5456 page_group_by_mobility_disabled = 0;
5457
5458 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5459 nr_online_nodes,
5460 page_group_by_mobility_disabled ? "off" : "on",
5461 vm_total_pages);
5462#ifdef CONFIG_NUMA
5463 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5464#endif
5465}
5466
5467static int zone_batchsize(struct zone *zone)
5468{
5469#ifdef CONFIG_MMU
5470 int batch;
5471
5472 /*
5473 * The number of pages to batch allocate is either ~0.1%
5474 * of the zone or 1MB, whichever is smaller. The batch
5475 * size is striking a balance between allocation latency
5476 * and zone lock contention.
5477 */
5478 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5479 batch /= 4; /* We effectively *= 4 below */
5480 if (batch < 1)
5481 batch = 1;
5482
5483 /*
5484 * Clamp the batch to a 2^n - 1 value. Having a power
5485 * of 2 value was found to be more likely to have
5486 * suboptimal cache aliasing properties in some cases.
5487 *
5488 * For example if 2 tasks are alternately allocating
5489 * batches of pages, one task can end up with a lot
5490 * of pages of one half of the possible page colors
5491 * and the other with pages of the other colors.
5492 */
5493 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5494
5495 return batch;
5496
5497#else
5498 /* The deferral and batching of frees should be suppressed under NOMMU
5499 * conditions.
5500 *
5501 * The problem is that NOMMU needs to be able to allocate large chunks
5502 * of contiguous memory as there's no hardware page translation to
5503 * assemble apparent contiguous memory from discontiguous pages.
5504 *
5505 * Queueing large contiguous runs of pages for batching, however,
5506 * causes the pages to actually be freed in smaller chunks. As there
5507 * can be a significant delay between the individual batches being
5508 * recycled, this leads to the once large chunks of space being
5509 * fragmented and becoming unavailable for high-order allocations.
5510 */
5511 return 0;
5512#endif
5513}
5514
5515static int percpu_pagelist_high_fraction;
5516static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5517 int high_fraction)
5518{
5519#ifdef CONFIG_MMU
5520 int high;
5521 int nr_split_cpus;
5522 unsigned long total_pages;
5523
5524 if (!high_fraction) {
5525 /*
5526 * By default, the high value of the pcp is based on the zone
5527 * low watermark so that if they are full then background
5528 * reclaim will not be started prematurely.
5529 */
5530 total_pages = low_wmark_pages(zone);
5531 } else {
5532 /*
5533 * If percpu_pagelist_high_fraction is configured, the high
5534 * value is based on a fraction of the managed pages in the
5535 * zone.
5536 */
5537 total_pages = zone_managed_pages(zone) / high_fraction;
5538 }
5539
5540 /*
5541 * Split the high value across all online CPUs local to the zone. Note
5542 * that early in boot that CPUs may not be online yet and that during
5543 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5544 * onlined. For memory nodes that have no CPUs, split the high value
5545 * across all online CPUs to mitigate the risk that reclaim is triggered
5546 * prematurely due to pages stored on pcp lists.
5547 */
5548 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5549 if (!nr_split_cpus)
5550 nr_split_cpus = num_online_cpus();
5551 high = total_pages / nr_split_cpus;
5552
5553 /*
5554 * Ensure high is at least batch*4. The multiple is based on the
5555 * historical relationship between high and batch.
5556 */
5557 high = max(high, batch << 2);
5558
5559 return high;
5560#else
5561 return 0;
5562#endif
5563}
5564
5565/*
5566 * pcp->high and pcp->batch values are related and generally batch is lower
5567 * than high. They are also related to pcp->count such that count is lower
5568 * than high, and as soon as it reaches high, the pcplist is flushed.
5569 *
5570 * However, guaranteeing these relations at all times would require e.g. write
5571 * barriers here but also careful usage of read barriers at the read side, and
5572 * thus be prone to error and bad for performance. Thus the update only prevents
5573 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5574 * should ensure they can cope with those fields changing asynchronously, and
5575 * fully trust only the pcp->count field on the local CPU with interrupts
5576 * disabled.
5577 *
5578 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5579 * outside of boot time (or some other assurance that no concurrent updaters
5580 * exist).
5581 */
5582static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5583 unsigned long high_max, unsigned long batch)
5584{
5585 WRITE_ONCE(pcp->batch, batch);
5586 WRITE_ONCE(pcp->high_min, high_min);
5587 WRITE_ONCE(pcp->high_max, high_max);
5588}
5589
5590static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5591{
5592 int pindex;
5593
5594 memset(pcp, 0, sizeof(*pcp));
5595 memset(pzstats, 0, sizeof(*pzstats));
5596
5597 spin_lock_init(&pcp->lock);
5598 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5599 INIT_LIST_HEAD(&pcp->lists[pindex]);
5600
5601 /*
5602 * Set batch and high values safe for a boot pageset. A true percpu
5603 * pageset's initialization will update them subsequently. Here we don't
5604 * need to be as careful as pageset_update() as nobody can access the
5605 * pageset yet.
5606 */
5607 pcp->high_min = BOOT_PAGESET_HIGH;
5608 pcp->high_max = BOOT_PAGESET_HIGH;
5609 pcp->batch = BOOT_PAGESET_BATCH;
5610 pcp->free_count = 0;
5611}
5612
5613static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5614 unsigned long high_max, unsigned long batch)
5615{
5616 struct per_cpu_pages *pcp;
5617 int cpu;
5618
5619 for_each_possible_cpu(cpu) {
5620 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5621 pageset_update(pcp, high_min, high_max, batch);
5622 }
5623}
5624
5625/*
5626 * Calculate and set new high and batch values for all per-cpu pagesets of a
5627 * zone based on the zone's size.
5628 */
5629static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5630{
5631 int new_high_min, new_high_max, new_batch;
5632
5633 new_batch = max(1, zone_batchsize(zone));
5634 if (percpu_pagelist_high_fraction) {
5635 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5636 percpu_pagelist_high_fraction);
5637 /*
5638 * PCP high is tuned manually, disable auto-tuning via
5639 * setting high_min and high_max to the manual value.
5640 */
5641 new_high_max = new_high_min;
5642 } else {
5643 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5644 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5645 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5646 }
5647
5648 if (zone->pageset_high_min == new_high_min &&
5649 zone->pageset_high_max == new_high_max &&
5650 zone->pageset_batch == new_batch)
5651 return;
5652
5653 zone->pageset_high_min = new_high_min;
5654 zone->pageset_high_max = new_high_max;
5655 zone->pageset_batch = new_batch;
5656
5657 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5658 new_batch);
5659}
5660
5661void __meminit setup_zone_pageset(struct zone *zone)
5662{
5663 int cpu;
5664
5665 /* Size may be 0 on !SMP && !NUMA */
5666 if (sizeof(struct per_cpu_zonestat) > 0)
5667 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5668
5669 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5670 for_each_possible_cpu(cpu) {
5671 struct per_cpu_pages *pcp;
5672 struct per_cpu_zonestat *pzstats;
5673
5674 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5675 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5676 per_cpu_pages_init(pcp, pzstats);
5677 }
5678
5679 zone_set_pageset_high_and_batch(zone, 0);
5680}
5681
5682/*
5683 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5684 * page high values need to be recalculated.
5685 */
5686static void zone_pcp_update(struct zone *zone, int cpu_online)
5687{
5688 mutex_lock(&pcp_batch_high_lock);
5689 zone_set_pageset_high_and_batch(zone, cpu_online);
5690 mutex_unlock(&pcp_batch_high_lock);
5691}
5692
5693static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5694{
5695 struct per_cpu_pages *pcp;
5696 struct cpu_cacheinfo *cci;
5697
5698 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5699 cci = get_cpu_cacheinfo(cpu);
5700 /*
5701 * If data cache slice of CPU is large enough, "pcp->batch"
5702 * pages can be preserved in PCP before draining PCP for
5703 * consecutive high-order pages freeing without allocation.
5704 * This can reduce zone lock contention without hurting
5705 * cache-hot pages sharing.
5706 */
5707 spin_lock(&pcp->lock);
5708 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5709 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5710 else
5711 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5712 spin_unlock(&pcp->lock);
5713}
5714
5715void setup_pcp_cacheinfo(unsigned int cpu)
5716{
5717 struct zone *zone;
5718
5719 for_each_populated_zone(zone)
5720 zone_pcp_update_cacheinfo(zone, cpu);
5721}
5722
5723/*
5724 * Allocate per cpu pagesets and initialize them.
5725 * Before this call only boot pagesets were available.
5726 */
5727void __init setup_per_cpu_pageset(void)
5728{
5729 struct pglist_data *pgdat;
5730 struct zone *zone;
5731 int __maybe_unused cpu;
5732
5733 for_each_populated_zone(zone)
5734 setup_zone_pageset(zone);
5735
5736#ifdef CONFIG_NUMA
5737 /*
5738 * Unpopulated zones continue using the boot pagesets.
5739 * The numa stats for these pagesets need to be reset.
5740 * Otherwise, they will end up skewing the stats of
5741 * the nodes these zones are associated with.
5742 */
5743 for_each_possible_cpu(cpu) {
5744 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5745 memset(pzstats->vm_numa_event, 0,
5746 sizeof(pzstats->vm_numa_event));
5747 }
5748#endif
5749
5750 for_each_online_pgdat(pgdat)
5751 pgdat->per_cpu_nodestats =
5752 alloc_percpu(struct per_cpu_nodestat);
5753}
5754
5755__meminit void zone_pcp_init(struct zone *zone)
5756{
5757 /*
5758 * per cpu subsystem is not up at this point. The following code
5759 * relies on the ability of the linker to provide the
5760 * offset of a (static) per cpu variable into the per cpu area.
5761 */
5762 zone->per_cpu_pageset = &boot_pageset;
5763 zone->per_cpu_zonestats = &boot_zonestats;
5764 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5765 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5766 zone->pageset_batch = BOOT_PAGESET_BATCH;
5767
5768 if (populated_zone(zone))
5769 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5770 zone->present_pages, zone_batchsize(zone));
5771}
5772
5773void adjust_managed_page_count(struct page *page, long count)
5774{
5775 atomic_long_add(count, &page_zone(page)->managed_pages);
5776 totalram_pages_add(count);
5777}
5778EXPORT_SYMBOL(adjust_managed_page_count);
5779
5780unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5781{
5782 void *pos;
5783 unsigned long pages = 0;
5784
5785 start = (void *)PAGE_ALIGN((unsigned long)start);
5786 end = (void *)((unsigned long)end & PAGE_MASK);
5787 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5788 struct page *page = virt_to_page(pos);
5789 void *direct_map_addr;
5790
5791 /*
5792 * 'direct_map_addr' might be different from 'pos'
5793 * because some architectures' virt_to_page()
5794 * work with aliases. Getting the direct map
5795 * address ensures that we get a _writeable_
5796 * alias for the memset().
5797 */
5798 direct_map_addr = page_address(page);
5799 /*
5800 * Perform a kasan-unchecked memset() since this memory
5801 * has not been initialized.
5802 */
5803 direct_map_addr = kasan_reset_tag(direct_map_addr);
5804 if ((unsigned int)poison <= 0xFF)
5805 memset(direct_map_addr, poison, PAGE_SIZE);
5806
5807 free_reserved_page(page);
5808 }
5809
5810 if (pages && s)
5811 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5812
5813 return pages;
5814}
5815
5816void free_reserved_page(struct page *page)
5817{
5818 clear_page_tag_ref(page);
5819 ClearPageReserved(page);
5820 init_page_count(page);
5821 __free_page(page);
5822 adjust_managed_page_count(page, 1);
5823}
5824EXPORT_SYMBOL(free_reserved_page);
5825
5826static int page_alloc_cpu_dead(unsigned int cpu)
5827{
5828 struct zone *zone;
5829
5830 lru_add_drain_cpu(cpu);
5831 mlock_drain_remote(cpu);
5832 drain_pages(cpu);
5833
5834 /*
5835 * Spill the event counters of the dead processor
5836 * into the current processors event counters.
5837 * This artificially elevates the count of the current
5838 * processor.
5839 */
5840 vm_events_fold_cpu(cpu);
5841
5842 /*
5843 * Zero the differential counters of the dead processor
5844 * so that the vm statistics are consistent.
5845 *
5846 * This is only okay since the processor is dead and cannot
5847 * race with what we are doing.
5848 */
5849 cpu_vm_stats_fold(cpu);
5850
5851 for_each_populated_zone(zone)
5852 zone_pcp_update(zone, 0);
5853
5854 return 0;
5855}
5856
5857static int page_alloc_cpu_online(unsigned int cpu)
5858{
5859 struct zone *zone;
5860
5861 for_each_populated_zone(zone)
5862 zone_pcp_update(zone, 1);
5863 return 0;
5864}
5865
5866void __init page_alloc_init_cpuhp(void)
5867{
5868 int ret;
5869
5870 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5871 "mm/page_alloc:pcp",
5872 page_alloc_cpu_online,
5873 page_alloc_cpu_dead);
5874 WARN_ON(ret < 0);
5875}
5876
5877/*
5878 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5879 * or min_free_kbytes changes.
5880 */
5881static void calculate_totalreserve_pages(void)
5882{
5883 struct pglist_data *pgdat;
5884 unsigned long reserve_pages = 0;
5885 enum zone_type i, j;
5886
5887 for_each_online_pgdat(pgdat) {
5888
5889 pgdat->totalreserve_pages = 0;
5890
5891 for (i = 0; i < MAX_NR_ZONES; i++) {
5892 struct zone *zone = pgdat->node_zones + i;
5893 long max = 0;
5894 unsigned long managed_pages = zone_managed_pages(zone);
5895
5896 /* Find valid and maximum lowmem_reserve in the zone */
5897 for (j = i; j < MAX_NR_ZONES; j++) {
5898 if (zone->lowmem_reserve[j] > max)
5899 max = zone->lowmem_reserve[j];
5900 }
5901
5902 /* we treat the high watermark as reserved pages. */
5903 max += high_wmark_pages(zone);
5904
5905 if (max > managed_pages)
5906 max = managed_pages;
5907
5908 pgdat->totalreserve_pages += max;
5909
5910 reserve_pages += max;
5911 }
5912 }
5913 totalreserve_pages = reserve_pages;
5914}
5915
5916/*
5917 * setup_per_zone_lowmem_reserve - called whenever
5918 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5919 * has a correct pages reserved value, so an adequate number of
5920 * pages are left in the zone after a successful __alloc_pages().
5921 */
5922static void setup_per_zone_lowmem_reserve(void)
5923{
5924 struct pglist_data *pgdat;
5925 enum zone_type i, j;
5926
5927 for_each_online_pgdat(pgdat) {
5928 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5929 struct zone *zone = &pgdat->node_zones[i];
5930 int ratio = sysctl_lowmem_reserve_ratio[i];
5931 bool clear = !ratio || !zone_managed_pages(zone);
5932 unsigned long managed_pages = 0;
5933
5934 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5935 struct zone *upper_zone = &pgdat->node_zones[j];
5936 bool empty = !zone_managed_pages(upper_zone);
5937
5938 managed_pages += zone_managed_pages(upper_zone);
5939
5940 if (clear || empty)
5941 zone->lowmem_reserve[j] = 0;
5942 else
5943 zone->lowmem_reserve[j] = managed_pages / ratio;
5944 }
5945 }
5946 }
5947
5948 /* update totalreserve_pages */
5949 calculate_totalreserve_pages();
5950}
5951
5952static void __setup_per_zone_wmarks(void)
5953{
5954 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5955 unsigned long lowmem_pages = 0;
5956 struct zone *zone;
5957 unsigned long flags;
5958
5959 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5960 for_each_zone(zone) {
5961 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5962 lowmem_pages += zone_managed_pages(zone);
5963 }
5964
5965 for_each_zone(zone) {
5966 u64 tmp;
5967
5968 spin_lock_irqsave(&zone->lock, flags);
5969 tmp = (u64)pages_min * zone_managed_pages(zone);
5970 tmp = div64_ul(tmp, lowmem_pages);
5971 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5972 /*
5973 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5974 * need highmem and movable zones pages, so cap pages_min
5975 * to a small value here.
5976 *
5977 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5978 * deltas control async page reclaim, and so should
5979 * not be capped for highmem and movable zones.
5980 */
5981 unsigned long min_pages;
5982
5983 min_pages = zone_managed_pages(zone) / 1024;
5984 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5985 zone->_watermark[WMARK_MIN] = min_pages;
5986 } else {
5987 /*
5988 * If it's a lowmem zone, reserve a number of pages
5989 * proportionate to the zone's size.
5990 */
5991 zone->_watermark[WMARK_MIN] = tmp;
5992 }
5993
5994 /*
5995 * Set the kswapd watermarks distance according to the
5996 * scale factor in proportion to available memory, but
5997 * ensure a minimum size on small systems.
5998 */
5999 tmp = max_t(u64, tmp >> 2,
6000 mult_frac(zone_managed_pages(zone),
6001 watermark_scale_factor, 10000));
6002
6003 zone->watermark_boost = 0;
6004 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6005 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6006 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6007
6008 spin_unlock_irqrestore(&zone->lock, flags);
6009 }
6010
6011 /* update totalreserve_pages */
6012 calculate_totalreserve_pages();
6013}
6014
6015/**
6016 * setup_per_zone_wmarks - called when min_free_kbytes changes
6017 * or when memory is hot-{added|removed}
6018 *
6019 * Ensures that the watermark[min,low,high] values for each zone are set
6020 * correctly with respect to min_free_kbytes.
6021 */
6022void setup_per_zone_wmarks(void)
6023{
6024 struct zone *zone;
6025 static DEFINE_SPINLOCK(lock);
6026
6027 spin_lock(&lock);
6028 __setup_per_zone_wmarks();
6029 spin_unlock(&lock);
6030
6031 /*
6032 * The watermark size have changed so update the pcpu batch
6033 * and high limits or the limits may be inappropriate.
6034 */
6035 for_each_zone(zone)
6036 zone_pcp_update(zone, 0);
6037}
6038
6039/*
6040 * Initialise min_free_kbytes.
6041 *
6042 * For small machines we want it small (128k min). For large machines
6043 * we want it large (256MB max). But it is not linear, because network
6044 * bandwidth does not increase linearly with machine size. We use
6045 *
6046 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6047 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6048 *
6049 * which yields
6050 *
6051 * 16MB: 512k
6052 * 32MB: 724k
6053 * 64MB: 1024k
6054 * 128MB: 1448k
6055 * 256MB: 2048k
6056 * 512MB: 2896k
6057 * 1024MB: 4096k
6058 * 2048MB: 5792k
6059 * 4096MB: 8192k
6060 * 8192MB: 11584k
6061 * 16384MB: 16384k
6062 */
6063void calculate_min_free_kbytes(void)
6064{
6065 unsigned long lowmem_kbytes;
6066 int new_min_free_kbytes;
6067
6068 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6069 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6070
6071 if (new_min_free_kbytes > user_min_free_kbytes)
6072 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6073 else
6074 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6075 new_min_free_kbytes, user_min_free_kbytes);
6076
6077}
6078
6079int __meminit init_per_zone_wmark_min(void)
6080{
6081 calculate_min_free_kbytes();
6082 setup_per_zone_wmarks();
6083 refresh_zone_stat_thresholds();
6084 setup_per_zone_lowmem_reserve();
6085
6086#ifdef CONFIG_NUMA
6087 setup_min_unmapped_ratio();
6088 setup_min_slab_ratio();
6089#endif
6090
6091 khugepaged_min_free_kbytes_update();
6092
6093 return 0;
6094}
6095postcore_initcall(init_per_zone_wmark_min)
6096
6097/*
6098 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6099 * that we can call two helper functions whenever min_free_kbytes
6100 * changes.
6101 */
6102static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6103 void *buffer, size_t *length, loff_t *ppos)
6104{
6105 int rc;
6106
6107 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6108 if (rc)
6109 return rc;
6110
6111 if (write) {
6112 user_min_free_kbytes = min_free_kbytes;
6113 setup_per_zone_wmarks();
6114 }
6115 return 0;
6116}
6117
6118static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6119 void *buffer, size_t *length, loff_t *ppos)
6120{
6121 int rc;
6122
6123 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6124 if (rc)
6125 return rc;
6126
6127 if (write)
6128 setup_per_zone_wmarks();
6129
6130 return 0;
6131}
6132
6133#ifdef CONFIG_NUMA
6134static void setup_min_unmapped_ratio(void)
6135{
6136 pg_data_t *pgdat;
6137 struct zone *zone;
6138
6139 for_each_online_pgdat(pgdat)
6140 pgdat->min_unmapped_pages = 0;
6141
6142 for_each_zone(zone)
6143 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6144 sysctl_min_unmapped_ratio) / 100;
6145}
6146
6147
6148static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6149 void *buffer, size_t *length, loff_t *ppos)
6150{
6151 int rc;
6152
6153 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6154 if (rc)
6155 return rc;
6156
6157 setup_min_unmapped_ratio();
6158
6159 return 0;
6160}
6161
6162static void setup_min_slab_ratio(void)
6163{
6164 pg_data_t *pgdat;
6165 struct zone *zone;
6166
6167 for_each_online_pgdat(pgdat)
6168 pgdat->min_slab_pages = 0;
6169
6170 for_each_zone(zone)
6171 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6172 sysctl_min_slab_ratio) / 100;
6173}
6174
6175static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6176 void *buffer, size_t *length, loff_t *ppos)
6177{
6178 int rc;
6179
6180 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6181 if (rc)
6182 return rc;
6183
6184 setup_min_slab_ratio();
6185
6186 return 0;
6187}
6188#endif
6189
6190/*
6191 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6192 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6193 * whenever sysctl_lowmem_reserve_ratio changes.
6194 *
6195 * The reserve ratio obviously has absolutely no relation with the
6196 * minimum watermarks. The lowmem reserve ratio can only make sense
6197 * if in function of the boot time zone sizes.
6198 */
6199static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6200 int write, void *buffer, size_t *length, loff_t *ppos)
6201{
6202 int i;
6203
6204 proc_dointvec_minmax(table, write, buffer, length, ppos);
6205
6206 for (i = 0; i < MAX_NR_ZONES; i++) {
6207 if (sysctl_lowmem_reserve_ratio[i] < 1)
6208 sysctl_lowmem_reserve_ratio[i] = 0;
6209 }
6210
6211 setup_per_zone_lowmem_reserve();
6212 return 0;
6213}
6214
6215/*
6216 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6217 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6218 * pagelist can have before it gets flushed back to buddy allocator.
6219 */
6220static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6221 int write, void *buffer, size_t *length, loff_t *ppos)
6222{
6223 struct zone *zone;
6224 int old_percpu_pagelist_high_fraction;
6225 int ret;
6226
6227 mutex_lock(&pcp_batch_high_lock);
6228 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6229
6230 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6231 if (!write || ret < 0)
6232 goto out;
6233
6234 /* Sanity checking to avoid pcp imbalance */
6235 if (percpu_pagelist_high_fraction &&
6236 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6237 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6238 ret = -EINVAL;
6239 goto out;
6240 }
6241
6242 /* No change? */
6243 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6244 goto out;
6245
6246 for_each_populated_zone(zone)
6247 zone_set_pageset_high_and_batch(zone, 0);
6248out:
6249 mutex_unlock(&pcp_batch_high_lock);
6250 return ret;
6251}
6252
6253static struct ctl_table page_alloc_sysctl_table[] = {
6254 {
6255 .procname = "min_free_kbytes",
6256 .data = &min_free_kbytes,
6257 .maxlen = sizeof(min_free_kbytes),
6258 .mode = 0644,
6259 .proc_handler = min_free_kbytes_sysctl_handler,
6260 .extra1 = SYSCTL_ZERO,
6261 },
6262 {
6263 .procname = "watermark_boost_factor",
6264 .data = &watermark_boost_factor,
6265 .maxlen = sizeof(watermark_boost_factor),
6266 .mode = 0644,
6267 .proc_handler = proc_dointvec_minmax,
6268 .extra1 = SYSCTL_ZERO,
6269 },
6270 {
6271 .procname = "watermark_scale_factor",
6272 .data = &watermark_scale_factor,
6273 .maxlen = sizeof(watermark_scale_factor),
6274 .mode = 0644,
6275 .proc_handler = watermark_scale_factor_sysctl_handler,
6276 .extra1 = SYSCTL_ONE,
6277 .extra2 = SYSCTL_THREE_THOUSAND,
6278 },
6279 {
6280 .procname = "percpu_pagelist_high_fraction",
6281 .data = &percpu_pagelist_high_fraction,
6282 .maxlen = sizeof(percpu_pagelist_high_fraction),
6283 .mode = 0644,
6284 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6285 .extra1 = SYSCTL_ZERO,
6286 },
6287 {
6288 .procname = "lowmem_reserve_ratio",
6289 .data = &sysctl_lowmem_reserve_ratio,
6290 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6291 .mode = 0644,
6292 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6293 },
6294#ifdef CONFIG_NUMA
6295 {
6296 .procname = "numa_zonelist_order",
6297 .data = &numa_zonelist_order,
6298 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6299 .mode = 0644,
6300 .proc_handler = numa_zonelist_order_handler,
6301 },
6302 {
6303 .procname = "min_unmapped_ratio",
6304 .data = &sysctl_min_unmapped_ratio,
6305 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6306 .mode = 0644,
6307 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6308 .extra1 = SYSCTL_ZERO,
6309 .extra2 = SYSCTL_ONE_HUNDRED,
6310 },
6311 {
6312 .procname = "min_slab_ratio",
6313 .data = &sysctl_min_slab_ratio,
6314 .maxlen = sizeof(sysctl_min_slab_ratio),
6315 .mode = 0644,
6316 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6317 .extra1 = SYSCTL_ZERO,
6318 .extra2 = SYSCTL_ONE_HUNDRED,
6319 },
6320#endif
6321};
6322
6323void __init page_alloc_sysctl_init(void)
6324{
6325 register_sysctl_init("vm", page_alloc_sysctl_table);
6326}
6327
6328#ifdef CONFIG_CONTIG_ALLOC
6329/* Usage: See admin-guide/dynamic-debug-howto.rst */
6330static void alloc_contig_dump_pages(struct list_head *page_list)
6331{
6332 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6333
6334 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6335 struct page *page;
6336
6337 dump_stack();
6338 list_for_each_entry(page, page_list, lru)
6339 dump_page(page, "migration failure");
6340 }
6341}
6342
6343/*
6344 * [start, end) must belong to a single zone.
6345 * @migratetype: using migratetype to filter the type of migration in
6346 * trace_mm_alloc_contig_migrate_range_info.
6347 */
6348int __alloc_contig_migrate_range(struct compact_control *cc,
6349 unsigned long start, unsigned long end,
6350 int migratetype)
6351{
6352 /* This function is based on compact_zone() from compaction.c. */
6353 unsigned int nr_reclaimed;
6354 unsigned long pfn = start;
6355 unsigned int tries = 0;
6356 int ret = 0;
6357 struct migration_target_control mtc = {
6358 .nid = zone_to_nid(cc->zone),
6359 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6360 .reason = MR_CONTIG_RANGE,
6361 };
6362 struct page *page;
6363 unsigned long total_mapped = 0;
6364 unsigned long total_migrated = 0;
6365 unsigned long total_reclaimed = 0;
6366
6367 lru_cache_disable();
6368
6369 while (pfn < end || !list_empty(&cc->migratepages)) {
6370 if (fatal_signal_pending(current)) {
6371 ret = -EINTR;
6372 break;
6373 }
6374
6375 if (list_empty(&cc->migratepages)) {
6376 cc->nr_migratepages = 0;
6377 ret = isolate_migratepages_range(cc, pfn, end);
6378 if (ret && ret != -EAGAIN)
6379 break;
6380 pfn = cc->migrate_pfn;
6381 tries = 0;
6382 } else if (++tries == 5) {
6383 ret = -EBUSY;
6384 break;
6385 }
6386
6387 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6388 &cc->migratepages);
6389 cc->nr_migratepages -= nr_reclaimed;
6390
6391 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6392 total_reclaimed += nr_reclaimed;
6393 list_for_each_entry(page, &cc->migratepages, lru) {
6394 struct folio *folio = page_folio(page);
6395
6396 total_mapped += folio_mapped(folio) *
6397 folio_nr_pages(folio);
6398 }
6399 }
6400
6401 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6402 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6403
6404 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6405 total_migrated += cc->nr_migratepages;
6406
6407 /*
6408 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6409 * to retry again over this error, so do the same here.
6410 */
6411 if (ret == -ENOMEM)
6412 break;
6413 }
6414
6415 lru_cache_enable();
6416 if (ret < 0) {
6417 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6418 alloc_contig_dump_pages(&cc->migratepages);
6419 putback_movable_pages(&cc->migratepages);
6420 }
6421
6422 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6423 total_migrated,
6424 total_reclaimed,
6425 total_mapped);
6426 return (ret < 0) ? ret : 0;
6427}
6428
6429/**
6430 * alloc_contig_range() -- tries to allocate given range of pages
6431 * @start: start PFN to allocate
6432 * @end: one-past-the-last PFN to allocate
6433 * @migratetype: migratetype of the underlying pageblocks (either
6434 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6435 * in range must have the same migratetype and it must
6436 * be either of the two.
6437 * @gfp_mask: GFP mask to use during compaction
6438 *
6439 * The PFN range does not have to be pageblock aligned. The PFN range must
6440 * belong to a single zone.
6441 *
6442 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6443 * pageblocks in the range. Once isolated, the pageblocks should not
6444 * be modified by others.
6445 *
6446 * Return: zero on success or negative error code. On success all
6447 * pages which PFN is in [start, end) are allocated for the caller and
6448 * need to be freed with free_contig_range().
6449 */
6450int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6451 unsigned migratetype, gfp_t gfp_mask)
6452{
6453 unsigned long outer_start, outer_end;
6454 int ret = 0;
6455
6456 struct compact_control cc = {
6457 .nr_migratepages = 0,
6458 .order = -1,
6459 .zone = page_zone(pfn_to_page(start)),
6460 .mode = MIGRATE_SYNC,
6461 .ignore_skip_hint = true,
6462 .no_set_skip_hint = true,
6463 .gfp_mask = current_gfp_context(gfp_mask),
6464 .alloc_contig = true,
6465 };
6466 INIT_LIST_HEAD(&cc.migratepages);
6467
6468 /*
6469 * What we do here is we mark all pageblocks in range as
6470 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6471 * have different sizes, and due to the way page allocator
6472 * work, start_isolate_page_range() has special handlings for this.
6473 *
6474 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6475 * migrate the pages from an unaligned range (ie. pages that
6476 * we are interested in). This will put all the pages in
6477 * range back to page allocator as MIGRATE_ISOLATE.
6478 *
6479 * When this is done, we take the pages in range from page
6480 * allocator removing them from the buddy system. This way
6481 * page allocator will never consider using them.
6482 *
6483 * This lets us mark the pageblocks back as
6484 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6485 * aligned range but not in the unaligned, original range are
6486 * put back to page allocator so that buddy can use them.
6487 */
6488
6489 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6490 if (ret)
6491 goto done;
6492
6493 drain_all_pages(cc.zone);
6494
6495 /*
6496 * In case of -EBUSY, we'd like to know which page causes problem.
6497 * So, just fall through. test_pages_isolated() has a tracepoint
6498 * which will report the busy page.
6499 *
6500 * It is possible that busy pages could become available before
6501 * the call to test_pages_isolated, and the range will actually be
6502 * allocated. So, if we fall through be sure to clear ret so that
6503 * -EBUSY is not accidentally used or returned to caller.
6504 */
6505 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6506 if (ret && ret != -EBUSY)
6507 goto done;
6508 ret = 0;
6509
6510 /*
6511 * Pages from [start, end) are within a pageblock_nr_pages
6512 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6513 * more, all pages in [start, end) are free in page allocator.
6514 * What we are going to do is to allocate all pages from
6515 * [start, end) (that is remove them from page allocator).
6516 *
6517 * The only problem is that pages at the beginning and at the
6518 * end of interesting range may be not aligned with pages that
6519 * page allocator holds, ie. they can be part of higher order
6520 * pages. Because of this, we reserve the bigger range and
6521 * once this is done free the pages we are not interested in.
6522 *
6523 * We don't have to hold zone->lock here because the pages are
6524 * isolated thus they won't get removed from buddy.
6525 */
6526 outer_start = find_large_buddy(start);
6527
6528 /* Make sure the range is really isolated. */
6529 if (test_pages_isolated(outer_start, end, 0)) {
6530 ret = -EBUSY;
6531 goto done;
6532 }
6533
6534 /* Grab isolated pages from freelists. */
6535 outer_end = isolate_freepages_range(&cc, outer_start, end);
6536 if (!outer_end) {
6537 ret = -EBUSY;
6538 goto done;
6539 }
6540
6541 /* Free head and tail (if any) */
6542 if (start != outer_start)
6543 free_contig_range(outer_start, start - outer_start);
6544 if (end != outer_end)
6545 free_contig_range(end, outer_end - end);
6546
6547done:
6548 undo_isolate_page_range(start, end, migratetype);
6549 return ret;
6550}
6551EXPORT_SYMBOL(alloc_contig_range_noprof);
6552
6553static int __alloc_contig_pages(unsigned long start_pfn,
6554 unsigned long nr_pages, gfp_t gfp_mask)
6555{
6556 unsigned long end_pfn = start_pfn + nr_pages;
6557
6558 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6559 gfp_mask);
6560}
6561
6562static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6563 unsigned long nr_pages)
6564{
6565 unsigned long i, end_pfn = start_pfn + nr_pages;
6566 struct page *page;
6567
6568 for (i = start_pfn; i < end_pfn; i++) {
6569 page = pfn_to_online_page(i);
6570 if (!page)
6571 return false;
6572
6573 if (page_zone(page) != z)
6574 return false;
6575
6576 if (PageReserved(page))
6577 return false;
6578
6579 if (PageHuge(page))
6580 return false;
6581 }
6582 return true;
6583}
6584
6585static bool zone_spans_last_pfn(const struct zone *zone,
6586 unsigned long start_pfn, unsigned long nr_pages)
6587{
6588 unsigned long last_pfn = start_pfn + nr_pages - 1;
6589
6590 return zone_spans_pfn(zone, last_pfn);
6591}
6592
6593/**
6594 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6595 * @nr_pages: Number of contiguous pages to allocate
6596 * @gfp_mask: GFP mask to limit search and used during compaction
6597 * @nid: Target node
6598 * @nodemask: Mask for other possible nodes
6599 *
6600 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6601 * on an applicable zonelist to find a contiguous pfn range which can then be
6602 * tried for allocation with alloc_contig_range(). This routine is intended
6603 * for allocation requests which can not be fulfilled with the buddy allocator.
6604 *
6605 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6606 * power of two, then allocated range is also guaranteed to be aligned to same
6607 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6608 *
6609 * Allocated pages can be freed with free_contig_range() or by manually calling
6610 * __free_page() on each allocated page.
6611 *
6612 * Return: pointer to contiguous pages on success, or NULL if not successful.
6613 */
6614struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6615 int nid, nodemask_t *nodemask)
6616{
6617 unsigned long ret, pfn, flags;
6618 struct zonelist *zonelist;
6619 struct zone *zone;
6620 struct zoneref *z;
6621
6622 zonelist = node_zonelist(nid, gfp_mask);
6623 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6624 gfp_zone(gfp_mask), nodemask) {
6625 spin_lock_irqsave(&zone->lock, flags);
6626
6627 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6628 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6629 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6630 /*
6631 * We release the zone lock here because
6632 * alloc_contig_range() will also lock the zone
6633 * at some point. If there's an allocation
6634 * spinning on this lock, it may win the race
6635 * and cause alloc_contig_range() to fail...
6636 */
6637 spin_unlock_irqrestore(&zone->lock, flags);
6638 ret = __alloc_contig_pages(pfn, nr_pages,
6639 gfp_mask);
6640 if (!ret)
6641 return pfn_to_page(pfn);
6642 spin_lock_irqsave(&zone->lock, flags);
6643 }
6644 pfn += nr_pages;
6645 }
6646 spin_unlock_irqrestore(&zone->lock, flags);
6647 }
6648 return NULL;
6649}
6650#endif /* CONFIG_CONTIG_ALLOC */
6651
6652void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6653{
6654 unsigned long count = 0;
6655
6656 for (; nr_pages--; pfn++) {
6657 struct page *page = pfn_to_page(pfn);
6658
6659 count += page_count(page) != 1;
6660 __free_page(page);
6661 }
6662 WARN(count != 0, "%lu pages are still in use!\n", count);
6663}
6664EXPORT_SYMBOL(free_contig_range);
6665
6666/*
6667 * Effectively disable pcplists for the zone by setting the high limit to 0
6668 * and draining all cpus. A concurrent page freeing on another CPU that's about
6669 * to put the page on pcplist will either finish before the drain and the page
6670 * will be drained, or observe the new high limit and skip the pcplist.
6671 *
6672 * Must be paired with a call to zone_pcp_enable().
6673 */
6674void zone_pcp_disable(struct zone *zone)
6675{
6676 mutex_lock(&pcp_batch_high_lock);
6677 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6678 __drain_all_pages(zone, true);
6679}
6680
6681void zone_pcp_enable(struct zone *zone)
6682{
6683 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6684 zone->pageset_high_max, zone->pageset_batch);
6685 mutex_unlock(&pcp_batch_high_lock);
6686}
6687
6688void zone_pcp_reset(struct zone *zone)
6689{
6690 int cpu;
6691 struct per_cpu_zonestat *pzstats;
6692
6693 if (zone->per_cpu_pageset != &boot_pageset) {
6694 for_each_online_cpu(cpu) {
6695 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6696 drain_zonestat(zone, pzstats);
6697 }
6698 free_percpu(zone->per_cpu_pageset);
6699 zone->per_cpu_pageset = &boot_pageset;
6700 if (zone->per_cpu_zonestats != &boot_zonestats) {
6701 free_percpu(zone->per_cpu_zonestats);
6702 zone->per_cpu_zonestats = &boot_zonestats;
6703 }
6704 }
6705}
6706
6707#ifdef CONFIG_MEMORY_HOTREMOVE
6708/*
6709 * All pages in the range must be in a single zone, must not contain holes,
6710 * must span full sections, and must be isolated before calling this function.
6711 *
6712 * Returns the number of managed (non-PageOffline()) pages in the range: the
6713 * number of pages for which memory offlining code must adjust managed page
6714 * counters using adjust_managed_page_count().
6715 */
6716unsigned long __offline_isolated_pages(unsigned long start_pfn,
6717 unsigned long end_pfn)
6718{
6719 unsigned long already_offline = 0, flags;
6720 unsigned long pfn = start_pfn;
6721 struct page *page;
6722 struct zone *zone;
6723 unsigned int order;
6724
6725 offline_mem_sections(pfn, end_pfn);
6726 zone = page_zone(pfn_to_page(pfn));
6727 spin_lock_irqsave(&zone->lock, flags);
6728 while (pfn < end_pfn) {
6729 page = pfn_to_page(pfn);
6730 /*
6731 * The HWPoisoned page may be not in buddy system, and
6732 * page_count() is not 0.
6733 */
6734 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6735 pfn++;
6736 continue;
6737 }
6738 /*
6739 * At this point all remaining PageOffline() pages have a
6740 * reference count of 0 and can simply be skipped.
6741 */
6742 if (PageOffline(page)) {
6743 BUG_ON(page_count(page));
6744 BUG_ON(PageBuddy(page));
6745 already_offline++;
6746 pfn++;
6747 continue;
6748 }
6749
6750 BUG_ON(page_count(page));
6751 BUG_ON(!PageBuddy(page));
6752 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6753 order = buddy_order(page);
6754 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6755 pfn += (1 << order);
6756 }
6757 spin_unlock_irqrestore(&zone->lock, flags);
6758
6759 return end_pfn - start_pfn - already_offline;
6760}
6761#endif
6762
6763/*
6764 * This function returns a stable result only if called under zone lock.
6765 */
6766bool is_free_buddy_page(const struct page *page)
6767{
6768 unsigned long pfn = page_to_pfn(page);
6769 unsigned int order;
6770
6771 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6772 const struct page *head = page - (pfn & ((1 << order) - 1));
6773
6774 if (PageBuddy(head) &&
6775 buddy_order_unsafe(head) >= order)
6776 break;
6777 }
6778
6779 return order <= MAX_PAGE_ORDER;
6780}
6781EXPORT_SYMBOL(is_free_buddy_page);
6782
6783#ifdef CONFIG_MEMORY_FAILURE
6784static inline void add_to_free_list(struct page *page, struct zone *zone,
6785 unsigned int order, int migratetype,
6786 bool tail)
6787{
6788 __add_to_free_list(page, zone, order, migratetype, tail);
6789 account_freepages(zone, 1 << order, migratetype);
6790}
6791
6792/*
6793 * Break down a higher-order page in sub-pages, and keep our target out of
6794 * buddy allocator.
6795 */
6796static void break_down_buddy_pages(struct zone *zone, struct page *page,
6797 struct page *target, int low, int high,
6798 int migratetype)
6799{
6800 unsigned long size = 1 << high;
6801 struct page *current_buddy;
6802
6803 while (high > low) {
6804 high--;
6805 size >>= 1;
6806
6807 if (target >= &page[size]) {
6808 current_buddy = page;
6809 page = page + size;
6810 } else {
6811 current_buddy = page + size;
6812 }
6813
6814 if (set_page_guard(zone, current_buddy, high))
6815 continue;
6816
6817 add_to_free_list(current_buddy, zone, high, migratetype, false);
6818 set_buddy_order(current_buddy, high);
6819 }
6820}
6821
6822/*
6823 * Take a page that will be marked as poisoned off the buddy allocator.
6824 */
6825bool take_page_off_buddy(struct page *page)
6826{
6827 struct zone *zone = page_zone(page);
6828 unsigned long pfn = page_to_pfn(page);
6829 unsigned long flags;
6830 unsigned int order;
6831 bool ret = false;
6832
6833 spin_lock_irqsave(&zone->lock, flags);
6834 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6835 struct page *page_head = page - (pfn & ((1 << order) - 1));
6836 int page_order = buddy_order(page_head);
6837
6838 if (PageBuddy(page_head) && page_order >= order) {
6839 unsigned long pfn_head = page_to_pfn(page_head);
6840 int migratetype = get_pfnblock_migratetype(page_head,
6841 pfn_head);
6842
6843 del_page_from_free_list(page_head, zone, page_order,
6844 migratetype);
6845 break_down_buddy_pages(zone, page_head, page, 0,
6846 page_order, migratetype);
6847 SetPageHWPoisonTakenOff(page);
6848 ret = true;
6849 break;
6850 }
6851 if (page_count(page_head) > 0)
6852 break;
6853 }
6854 spin_unlock_irqrestore(&zone->lock, flags);
6855 return ret;
6856}
6857
6858/*
6859 * Cancel takeoff done by take_page_off_buddy().
6860 */
6861bool put_page_back_buddy(struct page *page)
6862{
6863 struct zone *zone = page_zone(page);
6864 unsigned long flags;
6865 bool ret = false;
6866
6867 spin_lock_irqsave(&zone->lock, flags);
6868 if (put_page_testzero(page)) {
6869 unsigned long pfn = page_to_pfn(page);
6870 int migratetype = get_pfnblock_migratetype(page, pfn);
6871
6872 ClearPageHWPoisonTakenOff(page);
6873 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6874 if (TestClearPageHWPoison(page)) {
6875 ret = true;
6876 }
6877 }
6878 spin_unlock_irqrestore(&zone->lock, flags);
6879
6880 return ret;
6881}
6882#endif
6883
6884#ifdef CONFIG_ZONE_DMA
6885bool has_managed_dma(void)
6886{
6887 struct pglist_data *pgdat;
6888
6889 for_each_online_pgdat(pgdat) {
6890 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6891
6892 if (managed_zone(zone))
6893 return true;
6894 }
6895 return false;
6896}
6897#endif /* CONFIG_ZONE_DMA */
6898
6899#ifdef CONFIG_UNACCEPTED_MEMORY
6900
6901/* Counts number of zones with unaccepted pages. */
6902static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6903
6904static bool lazy_accept = true;
6905
6906static int __init accept_memory_parse(char *p)
6907{
6908 if (!strcmp(p, "lazy")) {
6909 lazy_accept = true;
6910 return 0;
6911 } else if (!strcmp(p, "eager")) {
6912 lazy_accept = false;
6913 return 0;
6914 } else {
6915 return -EINVAL;
6916 }
6917}
6918early_param("accept_memory", accept_memory_parse);
6919
6920static bool page_contains_unaccepted(struct page *page, unsigned int order)
6921{
6922 phys_addr_t start = page_to_phys(page);
6923 phys_addr_t end = start + (PAGE_SIZE << order);
6924
6925 return range_contains_unaccepted_memory(start, end);
6926}
6927
6928static void accept_page(struct page *page, unsigned int order)
6929{
6930 phys_addr_t start = page_to_phys(page);
6931
6932 accept_memory(start, start + (PAGE_SIZE << order));
6933}
6934
6935static bool try_to_accept_memory_one(struct zone *zone)
6936{
6937 unsigned long flags;
6938 struct page *page;
6939 bool last;
6940
6941 spin_lock_irqsave(&zone->lock, flags);
6942 page = list_first_entry_or_null(&zone->unaccepted_pages,
6943 struct page, lru);
6944 if (!page) {
6945 spin_unlock_irqrestore(&zone->lock, flags);
6946 return false;
6947 }
6948
6949 list_del(&page->lru);
6950 last = list_empty(&zone->unaccepted_pages);
6951
6952 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6953 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6954 spin_unlock_irqrestore(&zone->lock, flags);
6955
6956 accept_page(page, MAX_PAGE_ORDER);
6957
6958 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6959
6960 if (last)
6961 static_branch_dec(&zones_with_unaccepted_pages);
6962
6963 return true;
6964}
6965
6966static bool cond_accept_memory(struct zone *zone, unsigned int order)
6967{
6968 long to_accept;
6969 bool ret = false;
6970
6971 if (!has_unaccepted_memory())
6972 return false;
6973
6974 if (list_empty(&zone->unaccepted_pages))
6975 return false;
6976
6977 /* How much to accept to get to high watermark? */
6978 to_accept = high_wmark_pages(zone) -
6979 (zone_page_state(zone, NR_FREE_PAGES) -
6980 __zone_watermark_unusable_free(zone, order, 0) -
6981 zone_page_state(zone, NR_UNACCEPTED));
6982
6983 while (to_accept > 0) {
6984 if (!try_to_accept_memory_one(zone))
6985 break;
6986 ret = true;
6987 to_accept -= MAX_ORDER_NR_PAGES;
6988 }
6989
6990 return ret;
6991}
6992
6993static inline bool has_unaccepted_memory(void)
6994{
6995 return static_branch_unlikely(&zones_with_unaccepted_pages);
6996}
6997
6998static bool __free_unaccepted(struct page *page)
6999{
7000 struct zone *zone = page_zone(page);
7001 unsigned long flags;
7002 bool first = false;
7003
7004 if (!lazy_accept)
7005 return false;
7006
7007 spin_lock_irqsave(&zone->lock, flags);
7008 first = list_empty(&zone->unaccepted_pages);
7009 list_add_tail(&page->lru, &zone->unaccepted_pages);
7010 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7011 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7012 spin_unlock_irqrestore(&zone->lock, flags);
7013
7014 if (first)
7015 static_branch_inc(&zones_with_unaccepted_pages);
7016
7017 return true;
7018}
7019
7020#else
7021
7022static bool page_contains_unaccepted(struct page *page, unsigned int order)
7023{
7024 return false;
7025}
7026
7027static void accept_page(struct page *page, unsigned int order)
7028{
7029}
7030
7031static bool cond_accept_memory(struct zone *zone, unsigned int order)
7032{
7033 return false;
7034}
7035
7036static inline bool has_unaccepted_memory(void)
7037{
7038 return false;
7039}
7040
7041static bool __free_unaccepted(struct page *page)
7042{
7043 BUILD_BUG();
7044 return false;
7045}
7046
7047#endif /* CONFIG_UNACCEPTED_MEMORY */