Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1
2// SPDX-License-Identifier: GPL-2.0-only
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
45#include <linux/mm_inline.h>
46#include <linux/sched/mm.h>
47#include <linux/sched/coredump.h>
48#include <linux/sched/numa_balancing.h>
49#include <linux/sched/task.h>
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
55#include <linux/memremap.h>
56#include <linux/kmsan.h>
57#include <linux/ksm.h>
58#include <linux/rmap.h>
59#include <linux/export.h>
60#include <linux/delayacct.h>
61#include <linux/init.h>
62#include <linux/pfn_t.h>
63#include <linux/writeback.h>
64#include <linux/memcontrol.h>
65#include <linux/mmu_notifier.h>
66#include <linux/swapops.h>
67#include <linux/elf.h>
68#include <linux/gfp.h>
69#include <linux/migrate.h>
70#include <linux/string.h>
71#include <linux/memory-tiers.h>
72#include <linux/debugfs.h>
73#include <linux/userfaultfd_k.h>
74#include <linux/dax.h>
75#include <linux/oom.h>
76#include <linux/numa.h>
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
79#include <linux/vmalloc.h>
80#include <linux/sched/sysctl.h>
81
82#include <trace/events/kmem.h>
83
84#include <asm/io.h>
85#include <asm/mmu_context.h>
86#include <asm/pgalloc.h>
87#include <linux/uaccess.h>
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
90
91#include "pgalloc-track.h"
92#include "internal.h"
93#include "swap.h"
94
95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97#endif
98
99#ifndef CONFIG_NUMA
100unsigned long max_mapnr;
101EXPORT_SYMBOL(max_mapnr);
102
103struct page *mem_map;
104EXPORT_SYMBOL(mem_map);
105#endif
106
107static vm_fault_t do_fault(struct vm_fault *vmf);
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!userfaultfd_wp(vmf->vma))
118 return false;
119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return false;
121
122 return pte_marker_uffd_wp(vmf->orig_pte);
123}
124
125/*
126 * A number of key systems in x86 including ioremap() rely on the assumption
127 * that high_memory defines the upper bound on direct map memory, then end
128 * of ZONE_NORMAL.
129 */
130void *high_memory;
131EXPORT_SYMBOL(high_memory);
132
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
145
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
161 return 1;
162}
163__setup("norandmaps", disable_randmaps);
164
165unsigned long zero_pfn __read_mostly;
166EXPORT_SYMBOL(zero_pfn);
167
168unsigned long highest_memmap_pfn __read_mostly;
169
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
178early_initcall(init_zero_pfn);
179
180void mm_trace_rss_stat(struct mm_struct *mm, int member)
181{
182 trace_rss_stat(mm, member);
183}
184
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191{
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196}
197
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201{
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230}
231
232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235{
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 */
302void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
305{
306 pgd_t *pgd;
307 unsigned long next;
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
334
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
362}
363
364void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
367{
368 struct unlink_vma_file_batch vb;
369
370 do {
371 unsigned long addr = vma->vm_start;
372 struct vm_area_struct *next;
373
374 /*
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
377 */
378 next = mas_find(mas, ceiling - 1);
379 if (unlikely(xa_is_zero(next)))
380 next = NULL;
381
382 /*
383 * Hide vma from rmap and truncate_pagecache before freeing
384 * pgtables
385 */
386 if (mm_wr_locked)
387 vma_start_write(vma);
388 unlink_anon_vmas(vma);
389
390 if (is_vm_hugetlb_page(vma)) {
391 unlink_file_vma(vma);
392 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next ? next->vm_start : ceiling);
394 } else {
395 unlink_file_vma_batch_init(&vb);
396 unlink_file_vma_batch_add(&vb, vma);
397
398 /*
399 * Optimization: gather nearby vmas into one call down
400 */
401 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402 && !is_vm_hugetlb_page(next)) {
403 vma = next;
404 next = mas_find(mas, ceiling - 1);
405 if (unlikely(xa_is_zero(next)))
406 next = NULL;
407 if (mm_wr_locked)
408 vma_start_write(vma);
409 unlink_anon_vmas(vma);
410 unlink_file_vma_batch_add(&vb, vma);
411 }
412 unlink_file_vma_batch_final(&vb);
413 free_pgd_range(tlb, addr, vma->vm_end,
414 floor, next ? next->vm_start : ceiling);
415 }
416 vma = next;
417 } while (vma);
418}
419
420void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421{
422 spinlock_t *ptl = pmd_lock(mm, pmd);
423
424 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
425 mm_inc_nr_ptes(mm);
426 /*
427 * Ensure all pte setup (eg. pte page lock and page clearing) are
428 * visible before the pte is made visible to other CPUs by being
429 * put into page tables.
430 *
431 * The other side of the story is the pointer chasing in the page
432 * table walking code (when walking the page table without locking;
433 * ie. most of the time). Fortunately, these data accesses consist
434 * of a chain of data-dependent loads, meaning most CPUs (alpha
435 * being the notable exception) will already guarantee loads are
436 * seen in-order. See the alpha page table accessors for the
437 * smp_rmb() barriers in page table walking code.
438 */
439 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440 pmd_populate(mm, pmd, *pte);
441 *pte = NULL;
442 }
443 spin_unlock(ptl);
444}
445
446int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447{
448 pgtable_t new = pte_alloc_one(mm);
449 if (!new)
450 return -ENOMEM;
451
452 pmd_install(mm, pmd, &new);
453 if (new)
454 pte_free(mm, new);
455 return 0;
456}
457
458int __pte_alloc_kernel(pmd_t *pmd)
459{
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
461 if (!new)
462 return -ENOMEM;
463
464 spin_lock(&init_mm.page_table_lock);
465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
466 smp_wmb(); /* See comment in pmd_install() */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474}
475
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482{
483 int i;
484
485 for (i = 0; i < NR_MM_COUNTERS; i++)
486 if (rss[i])
487 add_mm_counter(mm, i, rss[i]);
488}
489
490/*
491 * This function is called to print an error when a bad pte
492 * is found. For example, we might have a PFN-mapped pte in
493 * a region that doesn't allow it.
494 *
495 * The calling function must still handle the error.
496 */
497static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498 pte_t pte, struct page *page)
499{
500 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501 p4d_t *p4d = p4d_offset(pgd, addr);
502 pud_t *pud = pud_offset(p4d, addr);
503 pmd_t *pmd = pmd_offset(pud, addr);
504 struct address_space *mapping;
505 pgoff_t index;
506 static unsigned long resume;
507 static unsigned long nr_shown;
508 static unsigned long nr_unshown;
509
510 /*
511 * Allow a burst of 60 reports, then keep quiet for that minute;
512 * or allow a steady drip of one report per second.
513 */
514 if (nr_shown == 60) {
515 if (time_before(jiffies, resume)) {
516 nr_unshown++;
517 return;
518 }
519 if (nr_unshown) {
520 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 nr_unshown);
522 nr_unshown = 0;
523 }
524 nr_shown = 0;
525 }
526 if (nr_shown++ == 0)
527 resume = jiffies + 60 * HZ;
528
529 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530 index = linear_page_index(vma, addr);
531
532 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
533 current->comm,
534 (long long)pte_val(pte), (long long)pmd_val(*pmd));
535 if (page)
536 dump_page(page, "bad pte");
537 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540 vma->vm_file,
541 vma->vm_ops ? vma->vm_ops->fault : NULL,
542 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543 mapping ? mapping->a_ops->read_folio : NULL);
544 dump_stack();
545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546}
547
548/*
549 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 *
551 * "Special" mappings do not wish to be associated with a "struct page" (either
552 * it doesn't exist, or it exists but they don't want to touch it). In this
553 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 *
555 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556 * pte bit, in which case this function is trivial. Secondly, an architecture
557 * may not have a spare pte bit, which requires a more complicated scheme,
558 * described below.
559 *
560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561 * special mapping (even if there are underlying and valid "struct pages").
562 * COWed pages of a VM_PFNMAP are always normal.
563 *
564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567 * mapping will always honor the rule
568 *
569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 *
571 * And for normal mappings this is false.
572 *
573 * This restricts such mappings to be a linear translation from virtual address
574 * to pfn. To get around this restriction, we allow arbitrary mappings so long
575 * as the vma is not a COW mapping; in that case, we know that all ptes are
576 * special (because none can have been COWed).
577 *
578 *
579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 *
581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582 * page" backing, however the difference is that _all_ pages with a struct
583 * page (that is, those where pfn_valid is true) are refcounted and considered
584 * normal pages by the VM. The only exception are zeropages, which are
585 * *never* refcounted.
586 *
587 * The disadvantage is that pages are refcounted (which can be slower and
588 * simply not an option for some PFNMAP users). The advantage is that we
589 * don't have to follow the strict linearity rule of PFNMAP mappings in
590 * order to support COWable mappings.
591 *
592 */
593struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
595{
596 unsigned long pfn = pte_pfn(pte);
597
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
600 goto check_pfn;
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (is_zero_pfn(pfn))
606 return NULL;
607 if (pte_devmap(pte))
608 /*
609 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610 * and will have refcounts incremented on their struct pages
611 * when they are inserted into PTEs, thus they are safe to
612 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613 * do not have refcounts. Example of legacy ZONE_DEVICE is
614 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615 */
616 return NULL;
617
618 print_bad_pte(vma, addr, pte, NULL);
619 return NULL;
620 }
621
622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623
624 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625 if (vma->vm_flags & VM_MIXEDMAP) {
626 if (!pfn_valid(pfn))
627 return NULL;
628 if (is_zero_pfn(pfn))
629 return NULL;
630 goto out;
631 } else {
632 unsigned long off;
633 off = (addr - vma->vm_start) >> PAGE_SHIFT;
634 if (pfn == vma->vm_pgoff + off)
635 return NULL;
636 if (!is_cow_mapping(vma->vm_flags))
637 return NULL;
638 }
639 }
640
641 if (is_zero_pfn(pfn))
642 return NULL;
643
644check_pfn:
645 if (unlikely(pfn > highest_memmap_pfn)) {
646 print_bad_pte(vma, addr, pte, NULL);
647 return NULL;
648 }
649
650 /*
651 * NOTE! We still have PageReserved() pages in the page tables.
652 * eg. VDSO mappings can cause them to exist.
653 */
654out:
655 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656 return pfn_to_page(pfn);
657}
658
659struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte)
661{
662 struct page *page = vm_normal_page(vma, addr, pte);
663
664 if (page)
665 return page_folio(page);
666 return NULL;
667}
668
669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
670struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671 pmd_t pmd)
672{
673 unsigned long pfn = pmd_pfn(pmd);
674
675 /*
676 * There is no pmd_special() but there may be special pmds, e.g.
677 * in a direct-access (dax) mapping, so let's just replicate the
678 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
679 */
680 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
681 if (vma->vm_flags & VM_MIXEDMAP) {
682 if (!pfn_valid(pfn))
683 return NULL;
684 goto out;
685 } else {
686 unsigned long off;
687 off = (addr - vma->vm_start) >> PAGE_SHIFT;
688 if (pfn == vma->vm_pgoff + off)
689 return NULL;
690 if (!is_cow_mapping(vma->vm_flags))
691 return NULL;
692 }
693 }
694
695 if (pmd_devmap(pmd))
696 return NULL;
697 if (is_huge_zero_pmd(pmd))
698 return NULL;
699 if (unlikely(pfn > highest_memmap_pfn))
700 return NULL;
701
702 /*
703 * NOTE! We still have PageReserved() pages in the page tables.
704 * eg. VDSO mappings can cause them to exist.
705 */
706out:
707 return pfn_to_page(pfn);
708}
709
710struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
711 unsigned long addr, pmd_t pmd)
712{
713 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
714
715 if (page)
716 return page_folio(page);
717 return NULL;
718}
719#endif
720
721static void restore_exclusive_pte(struct vm_area_struct *vma,
722 struct page *page, unsigned long address,
723 pte_t *ptep)
724{
725 struct folio *folio = page_folio(page);
726 pte_t orig_pte;
727 pte_t pte;
728 swp_entry_t entry;
729
730 orig_pte = ptep_get(ptep);
731 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
732 if (pte_swp_soft_dirty(orig_pte))
733 pte = pte_mksoft_dirty(pte);
734
735 entry = pte_to_swp_entry(orig_pte);
736 if (pte_swp_uffd_wp(orig_pte))
737 pte = pte_mkuffd_wp(pte);
738 else if (is_writable_device_exclusive_entry(entry))
739 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
740
741 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
742 PageAnonExclusive(page)), folio);
743
744 /*
745 * No need to take a page reference as one was already
746 * created when the swap entry was made.
747 */
748 if (folio_test_anon(folio))
749 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
750 else
751 /*
752 * Currently device exclusive access only supports anonymous
753 * memory so the entry shouldn't point to a filebacked page.
754 */
755 WARN_ON_ONCE(1);
756
757 set_pte_at(vma->vm_mm, address, ptep, pte);
758
759 /*
760 * No need to invalidate - it was non-present before. However
761 * secondary CPUs may have mappings that need invalidating.
762 */
763 update_mmu_cache(vma, address, ptep);
764}
765
766/*
767 * Tries to restore an exclusive pte if the page lock can be acquired without
768 * sleeping.
769 */
770static int
771try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
772 unsigned long addr)
773{
774 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
775 struct page *page = pfn_swap_entry_to_page(entry);
776
777 if (trylock_page(page)) {
778 restore_exclusive_pte(vma, page, addr, src_pte);
779 unlock_page(page);
780 return 0;
781 }
782
783 return -EBUSY;
784}
785
786/*
787 * copy one vm_area from one task to the other. Assumes the page tables
788 * already present in the new task to be cleared in the whole range
789 * covered by this vma.
790 */
791
792static unsigned long
793copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
794 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
795 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
796{
797 unsigned long vm_flags = dst_vma->vm_flags;
798 pte_t orig_pte = ptep_get(src_pte);
799 pte_t pte = orig_pte;
800 struct folio *folio;
801 struct page *page;
802 swp_entry_t entry = pte_to_swp_entry(orig_pte);
803
804 if (likely(!non_swap_entry(entry))) {
805 if (swap_duplicate(entry) < 0)
806 return -EIO;
807
808 /* make sure dst_mm is on swapoff's mmlist. */
809 if (unlikely(list_empty(&dst_mm->mmlist))) {
810 spin_lock(&mmlist_lock);
811 if (list_empty(&dst_mm->mmlist))
812 list_add(&dst_mm->mmlist,
813 &src_mm->mmlist);
814 spin_unlock(&mmlist_lock);
815 }
816 /* Mark the swap entry as shared. */
817 if (pte_swp_exclusive(orig_pte)) {
818 pte = pte_swp_clear_exclusive(orig_pte);
819 set_pte_at(src_mm, addr, src_pte, pte);
820 }
821 rss[MM_SWAPENTS]++;
822 } else if (is_migration_entry(entry)) {
823 folio = pfn_swap_entry_folio(entry);
824
825 rss[mm_counter(folio)]++;
826
827 if (!is_readable_migration_entry(entry) &&
828 is_cow_mapping(vm_flags)) {
829 /*
830 * COW mappings require pages in both parent and child
831 * to be set to read. A previously exclusive entry is
832 * now shared.
833 */
834 entry = make_readable_migration_entry(
835 swp_offset(entry));
836 pte = swp_entry_to_pte(entry);
837 if (pte_swp_soft_dirty(orig_pte))
838 pte = pte_swp_mksoft_dirty(pte);
839 if (pte_swp_uffd_wp(orig_pte))
840 pte = pte_swp_mkuffd_wp(pte);
841 set_pte_at(src_mm, addr, src_pte, pte);
842 }
843 } else if (is_device_private_entry(entry)) {
844 page = pfn_swap_entry_to_page(entry);
845 folio = page_folio(page);
846
847 /*
848 * Update rss count even for unaddressable pages, as
849 * they should treated just like normal pages in this
850 * respect.
851 *
852 * We will likely want to have some new rss counters
853 * for unaddressable pages, at some point. But for now
854 * keep things as they are.
855 */
856 folio_get(folio);
857 rss[mm_counter(folio)]++;
858 /* Cannot fail as these pages cannot get pinned. */
859 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
860
861 /*
862 * We do not preserve soft-dirty information, because so
863 * far, checkpoint/restore is the only feature that
864 * requires that. And checkpoint/restore does not work
865 * when a device driver is involved (you cannot easily
866 * save and restore device driver state).
867 */
868 if (is_writable_device_private_entry(entry) &&
869 is_cow_mapping(vm_flags)) {
870 entry = make_readable_device_private_entry(
871 swp_offset(entry));
872 pte = swp_entry_to_pte(entry);
873 if (pte_swp_uffd_wp(orig_pte))
874 pte = pte_swp_mkuffd_wp(pte);
875 set_pte_at(src_mm, addr, src_pte, pte);
876 }
877 } else if (is_device_exclusive_entry(entry)) {
878 /*
879 * Make device exclusive entries present by restoring the
880 * original entry then copying as for a present pte. Device
881 * exclusive entries currently only support private writable
882 * (ie. COW) mappings.
883 */
884 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
885 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
886 return -EBUSY;
887 return -ENOENT;
888 } else if (is_pte_marker_entry(entry)) {
889 pte_marker marker = copy_pte_marker(entry, dst_vma);
890
891 if (marker)
892 set_pte_at(dst_mm, addr, dst_pte,
893 make_pte_marker(marker));
894 return 0;
895 }
896 if (!userfaultfd_wp(dst_vma))
897 pte = pte_swp_clear_uffd_wp(pte);
898 set_pte_at(dst_mm, addr, dst_pte, pte);
899 return 0;
900}
901
902/*
903 * Copy a present and normal page.
904 *
905 * NOTE! The usual case is that this isn't required;
906 * instead, the caller can just increase the page refcount
907 * and re-use the pte the traditional way.
908 *
909 * And if we need a pre-allocated page but don't yet have
910 * one, return a negative error to let the preallocation
911 * code know so that it can do so outside the page table
912 * lock.
913 */
914static inline int
915copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
916 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
917 struct folio **prealloc, struct page *page)
918{
919 struct folio *new_folio;
920 pte_t pte;
921
922 new_folio = *prealloc;
923 if (!new_folio)
924 return -EAGAIN;
925
926 /*
927 * We have a prealloc page, all good! Take it
928 * over and copy the page & arm it.
929 */
930 *prealloc = NULL;
931 copy_user_highpage(&new_folio->page, page, addr, src_vma);
932 __folio_mark_uptodate(new_folio);
933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 folio_add_lru_vma(new_folio, dst_vma);
935 rss[MM_ANONPAGES]++;
936
937 /* All done, just insert the new page copy in the child */
938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 /* Uffd-wp needs to be delivered to dest pte as well */
942 pte = pte_mkuffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 return 0;
945}
946
947static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 pte_t pte, unsigned long addr, int nr)
950{
951 struct mm_struct *src_mm = src_vma->vm_mm;
952
953 /* If it's a COW mapping, write protect it both processes. */
954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 wrprotect_ptes(src_mm, addr, src_pte, nr);
956 pte = pte_wrprotect(pte);
957 }
958
959 /* If it's a shared mapping, mark it clean in the child. */
960 if (src_vma->vm_flags & VM_SHARED)
961 pte = pte_mkclean(pte);
962 pte = pte_mkold(pte);
963
964 if (!userfaultfd_wp(dst_vma))
965 pte = pte_clear_uffd_wp(pte);
966
967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968}
969
970/*
971 * Copy one present PTE, trying to batch-process subsequent PTEs that map
972 * consecutive pages of the same folio by copying them as well.
973 *
974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975 * Otherwise, returns the number of copied PTEs (at least 1).
976 */
977static inline int
978copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 int max_nr, int *rss, struct folio **prealloc)
981{
982 struct page *page;
983 struct folio *folio;
984 bool any_writable;
985 fpb_t flags = 0;
986 int err, nr;
987
988 page = vm_normal_page(src_vma, addr, pte);
989 if (unlikely(!page))
990 goto copy_pte;
991
992 folio = page_folio(page);
993
994 /*
995 * If we likely have to copy, just don't bother with batching. Make
996 * sure that the common "small folio" case is as fast as possible
997 * by keeping the batching logic separate.
998 */
999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 if (src_vma->vm_flags & VM_SHARED)
1001 flags |= FPB_IGNORE_DIRTY;
1002 if (!vma_soft_dirty_enabled(src_vma))
1003 flags |= FPB_IGNORE_SOFT_DIRTY;
1004
1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 &any_writable, NULL, NULL);
1007 folio_ref_add(folio, nr);
1008 if (folio_test_anon(folio)) {
1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 nr, src_vma))) {
1011 folio_ref_sub(folio, nr);
1012 return -EAGAIN;
1013 }
1014 rss[MM_ANONPAGES] += nr;
1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 } else {
1017 folio_dup_file_rmap_ptes(folio, page, nr);
1018 rss[mm_counter_file(folio)] += nr;
1019 }
1020 if (any_writable)
1021 pte = pte_mkwrite(pte, src_vma);
1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 addr, nr);
1024 return nr;
1025 }
1026
1027 folio_get(folio);
1028 if (folio_test_anon(folio)) {
1029 /*
1030 * If this page may have been pinned by the parent process,
1031 * copy the page immediately for the child so that we'll always
1032 * guarantee the pinned page won't be randomly replaced in the
1033 * future.
1034 */
1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 /* Page may be pinned, we have to copy. */
1037 folio_put(folio);
1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, prealloc, page);
1040 return err ? err : 1;
1041 }
1042 rss[MM_ANONPAGES]++;
1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 } else {
1045 folio_dup_file_rmap_pte(folio, page);
1046 rss[mm_counter_file(folio)]++;
1047 }
1048
1049copy_pte:
1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 return 1;
1052}
1053
1054static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056{
1057 struct folio *new_folio;
1058
1059 if (need_zero)
1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 else
1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1063 addr, false);
1064
1065 if (!new_folio)
1066 return NULL;
1067
1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069 folio_put(new_folio);
1070 return NULL;
1071 }
1072 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073
1074 return new_folio;
1075}
1076
1077static int
1078copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080 unsigned long end)
1081{
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1084 pte_t *orig_src_pte, *orig_dst_pte;
1085 pte_t *src_pte, *dst_pte;
1086 pte_t ptent;
1087 spinlock_t *src_ptl, *dst_ptl;
1088 int progress, max_nr, ret = 0;
1089 int rss[NR_MM_COUNTERS];
1090 swp_entry_t entry = (swp_entry_t){0};
1091 struct folio *prealloc = NULL;
1092 int nr;
1093
1094again:
1095 progress = 0;
1096 init_rss_vec(rss);
1097
1098 /*
1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 * error handling here, assume that exclusive mmap_lock on dst and src
1101 * protects anon from unexpected THP transitions; with shmem and file
1102 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1104 * can remove such assumptions later, but this is good enough for now.
1105 */
1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 if (!dst_pte) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1112 if (!src_pte) {
1113 pte_unmap_unlock(dst_pte, dst_ptl);
1114 /* ret == 0 */
1115 goto out;
1116 }
1117 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118 orig_src_pte = src_pte;
1119 orig_dst_pte = dst_pte;
1120 arch_enter_lazy_mmu_mode();
1121
1122 do {
1123 nr = 1;
1124
1125 /*
1126 * We are holding two locks at this point - either of them
1127 * could generate latencies in another task on another CPU.
1128 */
1129 if (progress >= 32) {
1130 progress = 0;
1131 if (need_resched() ||
1132 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1133 break;
1134 }
1135 ptent = ptep_get(src_pte);
1136 if (pte_none(ptent)) {
1137 progress++;
1138 continue;
1139 }
1140 if (unlikely(!pte_present(ptent))) {
1141 ret = copy_nonpresent_pte(dst_mm, src_mm,
1142 dst_pte, src_pte,
1143 dst_vma, src_vma,
1144 addr, rss);
1145 if (ret == -EIO) {
1146 entry = pte_to_swp_entry(ptep_get(src_pte));
1147 break;
1148 } else if (ret == -EBUSY) {
1149 break;
1150 } else if (!ret) {
1151 progress += 8;
1152 continue;
1153 }
1154 ptent = ptep_get(src_pte);
1155 VM_WARN_ON_ONCE(!pte_present(ptent));
1156
1157 /*
1158 * Device exclusive entry restored, continue by copying
1159 * the now present pte.
1160 */
1161 WARN_ON_ONCE(ret != -ENOENT);
1162 }
1163 /* copy_present_ptes() will clear `*prealloc' if consumed */
1164 max_nr = (end - addr) / PAGE_SIZE;
1165 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1166 ptent, addr, max_nr, rss, &prealloc);
1167 /*
1168 * If we need a pre-allocated page for this pte, drop the
1169 * locks, allocate, and try again.
1170 */
1171 if (unlikely(ret == -EAGAIN))
1172 break;
1173 if (unlikely(prealloc)) {
1174 /*
1175 * pre-alloc page cannot be reused by next time so as
1176 * to strictly follow mempolicy (e.g., alloc_page_vma()
1177 * will allocate page according to address). This
1178 * could only happen if one pinned pte changed.
1179 */
1180 folio_put(prealloc);
1181 prealloc = NULL;
1182 }
1183 nr = ret;
1184 progress += 8 * nr;
1185 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1186 addr != end);
1187
1188 arch_leave_lazy_mmu_mode();
1189 pte_unmap_unlock(orig_src_pte, src_ptl);
1190 add_mm_rss_vec(dst_mm, rss);
1191 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1192 cond_resched();
1193
1194 if (ret == -EIO) {
1195 VM_WARN_ON_ONCE(!entry.val);
1196 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1197 ret = -ENOMEM;
1198 goto out;
1199 }
1200 entry.val = 0;
1201 } else if (ret == -EBUSY) {
1202 goto out;
1203 } else if (ret == -EAGAIN) {
1204 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1205 if (!prealloc)
1206 return -ENOMEM;
1207 } else if (ret < 0) {
1208 VM_WARN_ON_ONCE(1);
1209 }
1210
1211 /* We've captured and resolved the error. Reset, try again. */
1212 ret = 0;
1213
1214 if (addr != end)
1215 goto again;
1216out:
1217 if (unlikely(prealloc))
1218 folio_put(prealloc);
1219 return ret;
1220}
1221
1222static inline int
1223copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1224 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1225 unsigned long end)
1226{
1227 struct mm_struct *dst_mm = dst_vma->vm_mm;
1228 struct mm_struct *src_mm = src_vma->vm_mm;
1229 pmd_t *src_pmd, *dst_pmd;
1230 unsigned long next;
1231
1232 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1233 if (!dst_pmd)
1234 return -ENOMEM;
1235 src_pmd = pmd_offset(src_pud, addr);
1236 do {
1237 next = pmd_addr_end(addr, end);
1238 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1239 || pmd_devmap(*src_pmd)) {
1240 int err;
1241 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1242 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1243 addr, dst_vma, src_vma);
1244 if (err == -ENOMEM)
1245 return -ENOMEM;
1246 if (!err)
1247 continue;
1248 /* fall through */
1249 }
1250 if (pmd_none_or_clear_bad(src_pmd))
1251 continue;
1252 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1253 addr, next))
1254 return -ENOMEM;
1255 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1256 return 0;
1257}
1258
1259static inline int
1260copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1261 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1262 unsigned long end)
1263{
1264 struct mm_struct *dst_mm = dst_vma->vm_mm;
1265 struct mm_struct *src_mm = src_vma->vm_mm;
1266 pud_t *src_pud, *dst_pud;
1267 unsigned long next;
1268
1269 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1270 if (!dst_pud)
1271 return -ENOMEM;
1272 src_pud = pud_offset(src_p4d, addr);
1273 do {
1274 next = pud_addr_end(addr, end);
1275 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1276 int err;
1277
1278 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1279 err = copy_huge_pud(dst_mm, src_mm,
1280 dst_pud, src_pud, addr, src_vma);
1281 if (err == -ENOMEM)
1282 return -ENOMEM;
1283 if (!err)
1284 continue;
1285 /* fall through */
1286 }
1287 if (pud_none_or_clear_bad(src_pud))
1288 continue;
1289 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1290 addr, next))
1291 return -ENOMEM;
1292 } while (dst_pud++, src_pud++, addr = next, addr != end);
1293 return 0;
1294}
1295
1296static inline int
1297copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1298 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1299 unsigned long end)
1300{
1301 struct mm_struct *dst_mm = dst_vma->vm_mm;
1302 p4d_t *src_p4d, *dst_p4d;
1303 unsigned long next;
1304
1305 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1306 if (!dst_p4d)
1307 return -ENOMEM;
1308 src_p4d = p4d_offset(src_pgd, addr);
1309 do {
1310 next = p4d_addr_end(addr, end);
1311 if (p4d_none_or_clear_bad(src_p4d))
1312 continue;
1313 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1314 addr, next))
1315 return -ENOMEM;
1316 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1317 return 0;
1318}
1319
1320/*
1321 * Return true if the vma needs to copy the pgtable during this fork(). Return
1322 * false when we can speed up fork() by allowing lazy page faults later until
1323 * when the child accesses the memory range.
1324 */
1325static bool
1326vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1327{
1328 /*
1329 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1330 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1331 * contains uffd-wp protection information, that's something we can't
1332 * retrieve from page cache, and skip copying will lose those info.
1333 */
1334 if (userfaultfd_wp(dst_vma))
1335 return true;
1336
1337 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1338 return true;
1339
1340 if (src_vma->anon_vma)
1341 return true;
1342
1343 /*
1344 * Don't copy ptes where a page fault will fill them correctly. Fork
1345 * becomes much lighter when there are big shared or private readonly
1346 * mappings. The tradeoff is that copy_page_range is more efficient
1347 * than faulting.
1348 */
1349 return false;
1350}
1351
1352int
1353copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1354{
1355 pgd_t *src_pgd, *dst_pgd;
1356 unsigned long next;
1357 unsigned long addr = src_vma->vm_start;
1358 unsigned long end = src_vma->vm_end;
1359 struct mm_struct *dst_mm = dst_vma->vm_mm;
1360 struct mm_struct *src_mm = src_vma->vm_mm;
1361 struct mmu_notifier_range range;
1362 bool is_cow;
1363 int ret;
1364
1365 if (!vma_needs_copy(dst_vma, src_vma))
1366 return 0;
1367
1368 if (is_vm_hugetlb_page(src_vma))
1369 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1370
1371 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1372 /*
1373 * We do not free on error cases below as remove_vma
1374 * gets called on error from higher level routine
1375 */
1376 ret = track_pfn_copy(src_vma);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /*
1382 * We need to invalidate the secondary MMU mappings only when
1383 * there could be a permission downgrade on the ptes of the
1384 * parent mm. And a permission downgrade will only happen if
1385 * is_cow_mapping() returns true.
1386 */
1387 is_cow = is_cow_mapping(src_vma->vm_flags);
1388
1389 if (is_cow) {
1390 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1391 0, src_mm, addr, end);
1392 mmu_notifier_invalidate_range_start(&range);
1393 /*
1394 * Disabling preemption is not needed for the write side, as
1395 * the read side doesn't spin, but goes to the mmap_lock.
1396 *
1397 * Use the raw variant of the seqcount_t write API to avoid
1398 * lockdep complaining about preemptibility.
1399 */
1400 vma_assert_write_locked(src_vma);
1401 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1402 }
1403
1404 ret = 0;
1405 dst_pgd = pgd_offset(dst_mm, addr);
1406 src_pgd = pgd_offset(src_mm, addr);
1407 do {
1408 next = pgd_addr_end(addr, end);
1409 if (pgd_none_or_clear_bad(src_pgd))
1410 continue;
1411 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1412 addr, next))) {
1413 untrack_pfn_clear(dst_vma);
1414 ret = -ENOMEM;
1415 break;
1416 }
1417 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1418
1419 if (is_cow) {
1420 raw_write_seqcount_end(&src_mm->write_protect_seq);
1421 mmu_notifier_invalidate_range_end(&range);
1422 }
1423 return ret;
1424}
1425
1426/* Whether we should zap all COWed (private) pages too */
1427static inline bool should_zap_cows(struct zap_details *details)
1428{
1429 /* By default, zap all pages */
1430 if (!details)
1431 return true;
1432
1433 /* Or, we zap COWed pages only if the caller wants to */
1434 return details->even_cows;
1435}
1436
1437/* Decides whether we should zap this folio with the folio pointer specified */
1438static inline bool should_zap_folio(struct zap_details *details,
1439 struct folio *folio)
1440{
1441 /* If we can make a decision without *folio.. */
1442 if (should_zap_cows(details))
1443 return true;
1444
1445 /* Otherwise we should only zap non-anon folios */
1446 return !folio_test_anon(folio);
1447}
1448
1449static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1450{
1451 if (!details)
1452 return false;
1453
1454 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1455}
1456
1457/*
1458 * This function makes sure that we'll replace the none pte with an uffd-wp
1459 * swap special pte marker when necessary. Must be with the pgtable lock held.
1460 */
1461static inline void
1462zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1463 unsigned long addr, pte_t *pte, int nr,
1464 struct zap_details *details, pte_t pteval)
1465{
1466 /* Zap on anonymous always means dropping everything */
1467 if (vma_is_anonymous(vma))
1468 return;
1469
1470 if (zap_drop_file_uffd_wp(details))
1471 return;
1472
1473 for (;;) {
1474 /* the PFN in the PTE is irrelevant. */
1475 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1476 if (--nr == 0)
1477 break;
1478 pte++;
1479 addr += PAGE_SIZE;
1480 }
1481}
1482
1483static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1484 struct vm_area_struct *vma, struct folio *folio,
1485 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1486 unsigned long addr, struct zap_details *details, int *rss,
1487 bool *force_flush, bool *force_break)
1488{
1489 struct mm_struct *mm = tlb->mm;
1490 bool delay_rmap = false;
1491
1492 if (!folio_test_anon(folio)) {
1493 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1494 if (pte_dirty(ptent)) {
1495 folio_mark_dirty(folio);
1496 if (tlb_delay_rmap(tlb)) {
1497 delay_rmap = true;
1498 *force_flush = true;
1499 }
1500 }
1501 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1502 folio_mark_accessed(folio);
1503 rss[mm_counter(folio)] -= nr;
1504 } else {
1505 /* We don't need up-to-date accessed/dirty bits. */
1506 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1507 rss[MM_ANONPAGES] -= nr;
1508 }
1509 /* Checking a single PTE in a batch is sufficient. */
1510 arch_check_zapped_pte(vma, ptent);
1511 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1512 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1513 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1514 ptent);
1515
1516 if (!delay_rmap) {
1517 folio_remove_rmap_ptes(folio, page, nr, vma);
1518
1519 if (unlikely(folio_mapcount(folio) < 0))
1520 print_bad_pte(vma, addr, ptent, page);
1521 }
1522 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1523 *force_flush = true;
1524 *force_break = true;
1525 }
1526}
1527
1528/*
1529 * Zap or skip at least one present PTE, trying to batch-process subsequent
1530 * PTEs that map consecutive pages of the same folio.
1531 *
1532 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1533 */
1534static inline int zap_present_ptes(struct mmu_gather *tlb,
1535 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1536 unsigned int max_nr, unsigned long addr,
1537 struct zap_details *details, int *rss, bool *force_flush,
1538 bool *force_break)
1539{
1540 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1541 struct mm_struct *mm = tlb->mm;
1542 struct folio *folio;
1543 struct page *page;
1544 int nr;
1545
1546 page = vm_normal_page(vma, addr, ptent);
1547 if (!page) {
1548 /* We don't need up-to-date accessed/dirty bits. */
1549 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1550 arch_check_zapped_pte(vma, ptent);
1551 tlb_remove_tlb_entry(tlb, pte, addr);
1552 if (userfaultfd_pte_wp(vma, ptent))
1553 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1554 details, ptent);
1555 ksm_might_unmap_zero_page(mm, ptent);
1556 return 1;
1557 }
1558
1559 folio = page_folio(page);
1560 if (unlikely(!should_zap_folio(details, folio)))
1561 return 1;
1562
1563 /*
1564 * Make sure that the common "small folio" case is as fast as possible
1565 * by keeping the batching logic separate.
1566 */
1567 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1568 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1569 NULL, NULL, NULL);
1570
1571 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1572 addr, details, rss, force_flush,
1573 force_break);
1574 return nr;
1575 }
1576 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1577 details, rss, force_flush, force_break);
1578 return 1;
1579}
1580
1581static unsigned long zap_pte_range(struct mmu_gather *tlb,
1582 struct vm_area_struct *vma, pmd_t *pmd,
1583 unsigned long addr, unsigned long end,
1584 struct zap_details *details)
1585{
1586 bool force_flush = false, force_break = false;
1587 struct mm_struct *mm = tlb->mm;
1588 int rss[NR_MM_COUNTERS];
1589 spinlock_t *ptl;
1590 pte_t *start_pte;
1591 pte_t *pte;
1592 swp_entry_t entry;
1593 int nr;
1594
1595 tlb_change_page_size(tlb, PAGE_SIZE);
1596 init_rss_vec(rss);
1597 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1598 if (!pte)
1599 return addr;
1600
1601 flush_tlb_batched_pending(mm);
1602 arch_enter_lazy_mmu_mode();
1603 do {
1604 pte_t ptent = ptep_get(pte);
1605 struct folio *folio;
1606 struct page *page;
1607 int max_nr;
1608
1609 nr = 1;
1610 if (pte_none(ptent))
1611 continue;
1612
1613 if (need_resched())
1614 break;
1615
1616 if (pte_present(ptent)) {
1617 max_nr = (end - addr) / PAGE_SIZE;
1618 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1619 addr, details, rss, &force_flush,
1620 &force_break);
1621 if (unlikely(force_break)) {
1622 addr += nr * PAGE_SIZE;
1623 break;
1624 }
1625 continue;
1626 }
1627
1628 entry = pte_to_swp_entry(ptent);
1629 if (is_device_private_entry(entry) ||
1630 is_device_exclusive_entry(entry)) {
1631 page = pfn_swap_entry_to_page(entry);
1632 folio = page_folio(page);
1633 if (unlikely(!should_zap_folio(details, folio)))
1634 continue;
1635 /*
1636 * Both device private/exclusive mappings should only
1637 * work with anonymous page so far, so we don't need to
1638 * consider uffd-wp bit when zap. For more information,
1639 * see zap_install_uffd_wp_if_needed().
1640 */
1641 WARN_ON_ONCE(!vma_is_anonymous(vma));
1642 rss[mm_counter(folio)]--;
1643 if (is_device_private_entry(entry))
1644 folio_remove_rmap_pte(folio, page, vma);
1645 folio_put(folio);
1646 } else if (!non_swap_entry(entry)) {
1647 max_nr = (end - addr) / PAGE_SIZE;
1648 nr = swap_pte_batch(pte, max_nr, ptent);
1649 /* Genuine swap entries, hence a private anon pages */
1650 if (!should_zap_cows(details))
1651 continue;
1652 rss[MM_SWAPENTS] -= nr;
1653 free_swap_and_cache_nr(entry, nr);
1654 } else if (is_migration_entry(entry)) {
1655 folio = pfn_swap_entry_folio(entry);
1656 if (!should_zap_folio(details, folio))
1657 continue;
1658 rss[mm_counter(folio)]--;
1659 } else if (pte_marker_entry_uffd_wp(entry)) {
1660 /*
1661 * For anon: always drop the marker; for file: only
1662 * drop the marker if explicitly requested.
1663 */
1664 if (!vma_is_anonymous(vma) &&
1665 !zap_drop_file_uffd_wp(details))
1666 continue;
1667 } else if (is_hwpoison_entry(entry) ||
1668 is_poisoned_swp_entry(entry)) {
1669 if (!should_zap_cows(details))
1670 continue;
1671 } else {
1672 /* We should have covered all the swap entry types */
1673 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1674 WARN_ON_ONCE(1);
1675 }
1676 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1677 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1678 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1679
1680 add_mm_rss_vec(mm, rss);
1681 arch_leave_lazy_mmu_mode();
1682
1683 /* Do the actual TLB flush before dropping ptl */
1684 if (force_flush) {
1685 tlb_flush_mmu_tlbonly(tlb);
1686 tlb_flush_rmaps(tlb, vma);
1687 }
1688 pte_unmap_unlock(start_pte, ptl);
1689
1690 /*
1691 * If we forced a TLB flush (either due to running out of
1692 * batch buffers or because we needed to flush dirty TLB
1693 * entries before releasing the ptl), free the batched
1694 * memory too. Come back again if we didn't do everything.
1695 */
1696 if (force_flush)
1697 tlb_flush_mmu(tlb);
1698
1699 return addr;
1700}
1701
1702static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1703 struct vm_area_struct *vma, pud_t *pud,
1704 unsigned long addr, unsigned long end,
1705 struct zap_details *details)
1706{
1707 pmd_t *pmd;
1708 unsigned long next;
1709
1710 pmd = pmd_offset(pud, addr);
1711 do {
1712 next = pmd_addr_end(addr, end);
1713 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1714 if (next - addr != HPAGE_PMD_SIZE)
1715 __split_huge_pmd(vma, pmd, addr, false, NULL);
1716 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1717 addr = next;
1718 continue;
1719 }
1720 /* fall through */
1721 } else if (details && details->single_folio &&
1722 folio_test_pmd_mappable(details->single_folio) &&
1723 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1724 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1725 /*
1726 * Take and drop THP pmd lock so that we cannot return
1727 * prematurely, while zap_huge_pmd() has cleared *pmd,
1728 * but not yet decremented compound_mapcount().
1729 */
1730 spin_unlock(ptl);
1731 }
1732 if (pmd_none(*pmd)) {
1733 addr = next;
1734 continue;
1735 }
1736 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1737 if (addr != next)
1738 pmd--;
1739 } while (pmd++, cond_resched(), addr != end);
1740
1741 return addr;
1742}
1743
1744static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1745 struct vm_area_struct *vma, p4d_t *p4d,
1746 unsigned long addr, unsigned long end,
1747 struct zap_details *details)
1748{
1749 pud_t *pud;
1750 unsigned long next;
1751
1752 pud = pud_offset(p4d, addr);
1753 do {
1754 next = pud_addr_end(addr, end);
1755 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1756 if (next - addr != HPAGE_PUD_SIZE) {
1757 mmap_assert_locked(tlb->mm);
1758 split_huge_pud(vma, pud, addr);
1759 } else if (zap_huge_pud(tlb, vma, pud, addr))
1760 goto next;
1761 /* fall through */
1762 }
1763 if (pud_none_or_clear_bad(pud))
1764 continue;
1765 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1766next:
1767 cond_resched();
1768 } while (pud++, addr = next, addr != end);
1769
1770 return addr;
1771}
1772
1773static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1774 struct vm_area_struct *vma, pgd_t *pgd,
1775 unsigned long addr, unsigned long end,
1776 struct zap_details *details)
1777{
1778 p4d_t *p4d;
1779 unsigned long next;
1780
1781 p4d = p4d_offset(pgd, addr);
1782 do {
1783 next = p4d_addr_end(addr, end);
1784 if (p4d_none_or_clear_bad(p4d))
1785 continue;
1786 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1787 } while (p4d++, addr = next, addr != end);
1788
1789 return addr;
1790}
1791
1792void unmap_page_range(struct mmu_gather *tlb,
1793 struct vm_area_struct *vma,
1794 unsigned long addr, unsigned long end,
1795 struct zap_details *details)
1796{
1797 pgd_t *pgd;
1798 unsigned long next;
1799
1800 BUG_ON(addr >= end);
1801 tlb_start_vma(tlb, vma);
1802 pgd = pgd_offset(vma->vm_mm, addr);
1803 do {
1804 next = pgd_addr_end(addr, end);
1805 if (pgd_none_or_clear_bad(pgd))
1806 continue;
1807 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1808 } while (pgd++, addr = next, addr != end);
1809 tlb_end_vma(tlb, vma);
1810}
1811
1812
1813static void unmap_single_vma(struct mmu_gather *tlb,
1814 struct vm_area_struct *vma, unsigned long start_addr,
1815 unsigned long end_addr,
1816 struct zap_details *details, bool mm_wr_locked)
1817{
1818 unsigned long start = max(vma->vm_start, start_addr);
1819 unsigned long end;
1820
1821 if (start >= vma->vm_end)
1822 return;
1823 end = min(vma->vm_end, end_addr);
1824 if (end <= vma->vm_start)
1825 return;
1826
1827 if (vma->vm_file)
1828 uprobe_munmap(vma, start, end);
1829
1830 if (unlikely(vma->vm_flags & VM_PFNMAP))
1831 untrack_pfn(vma, 0, 0, mm_wr_locked);
1832
1833 if (start != end) {
1834 if (unlikely(is_vm_hugetlb_page(vma))) {
1835 /*
1836 * It is undesirable to test vma->vm_file as it
1837 * should be non-null for valid hugetlb area.
1838 * However, vm_file will be NULL in the error
1839 * cleanup path of mmap_region. When
1840 * hugetlbfs ->mmap method fails,
1841 * mmap_region() nullifies vma->vm_file
1842 * before calling this function to clean up.
1843 * Since no pte has actually been setup, it is
1844 * safe to do nothing in this case.
1845 */
1846 if (vma->vm_file) {
1847 zap_flags_t zap_flags = details ?
1848 details->zap_flags : 0;
1849 __unmap_hugepage_range(tlb, vma, start, end,
1850 NULL, zap_flags);
1851 }
1852 } else
1853 unmap_page_range(tlb, vma, start, end, details);
1854 }
1855}
1856
1857/**
1858 * unmap_vmas - unmap a range of memory covered by a list of vma's
1859 * @tlb: address of the caller's struct mmu_gather
1860 * @mas: the maple state
1861 * @vma: the starting vma
1862 * @start_addr: virtual address at which to start unmapping
1863 * @end_addr: virtual address at which to end unmapping
1864 * @tree_end: The maximum index to check
1865 * @mm_wr_locked: lock flag
1866 *
1867 * Unmap all pages in the vma list.
1868 *
1869 * Only addresses between `start' and `end' will be unmapped.
1870 *
1871 * The VMA list must be sorted in ascending virtual address order.
1872 *
1873 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1874 * range after unmap_vmas() returns. So the only responsibility here is to
1875 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1876 * drops the lock and schedules.
1877 */
1878void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1879 struct vm_area_struct *vma, unsigned long start_addr,
1880 unsigned long end_addr, unsigned long tree_end,
1881 bool mm_wr_locked)
1882{
1883 struct mmu_notifier_range range;
1884 struct zap_details details = {
1885 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1886 /* Careful - we need to zap private pages too! */
1887 .even_cows = true,
1888 };
1889
1890 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1891 start_addr, end_addr);
1892 mmu_notifier_invalidate_range_start(&range);
1893 do {
1894 unsigned long start = start_addr;
1895 unsigned long end = end_addr;
1896 hugetlb_zap_begin(vma, &start, &end);
1897 unmap_single_vma(tlb, vma, start, end, &details,
1898 mm_wr_locked);
1899 hugetlb_zap_end(vma, &details);
1900 vma = mas_find(mas, tree_end - 1);
1901 } while (vma && likely(!xa_is_zero(vma)));
1902 mmu_notifier_invalidate_range_end(&range);
1903}
1904
1905/**
1906 * zap_page_range_single - remove user pages in a given range
1907 * @vma: vm_area_struct holding the applicable pages
1908 * @address: starting address of pages to zap
1909 * @size: number of bytes to zap
1910 * @details: details of shared cache invalidation
1911 *
1912 * The range must fit into one VMA.
1913 */
1914void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1915 unsigned long size, struct zap_details *details)
1916{
1917 const unsigned long end = address + size;
1918 struct mmu_notifier_range range;
1919 struct mmu_gather tlb;
1920
1921 lru_add_drain();
1922 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1923 address, end);
1924 hugetlb_zap_begin(vma, &range.start, &range.end);
1925 tlb_gather_mmu(&tlb, vma->vm_mm);
1926 update_hiwater_rss(vma->vm_mm);
1927 mmu_notifier_invalidate_range_start(&range);
1928 /*
1929 * unmap 'address-end' not 'range.start-range.end' as range
1930 * could have been expanded for hugetlb pmd sharing.
1931 */
1932 unmap_single_vma(&tlb, vma, address, end, details, false);
1933 mmu_notifier_invalidate_range_end(&range);
1934 tlb_finish_mmu(&tlb);
1935 hugetlb_zap_end(vma, details);
1936}
1937
1938/**
1939 * zap_vma_ptes - remove ptes mapping the vma
1940 * @vma: vm_area_struct holding ptes to be zapped
1941 * @address: starting address of pages to zap
1942 * @size: number of bytes to zap
1943 *
1944 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1945 *
1946 * The entire address range must be fully contained within the vma.
1947 *
1948 */
1949void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1950 unsigned long size)
1951{
1952 if (!range_in_vma(vma, address, address + size) ||
1953 !(vma->vm_flags & VM_PFNMAP))
1954 return;
1955
1956 zap_page_range_single(vma, address, size, NULL);
1957}
1958EXPORT_SYMBOL_GPL(zap_vma_ptes);
1959
1960static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1961{
1962 pgd_t *pgd;
1963 p4d_t *p4d;
1964 pud_t *pud;
1965 pmd_t *pmd;
1966
1967 pgd = pgd_offset(mm, addr);
1968 p4d = p4d_alloc(mm, pgd, addr);
1969 if (!p4d)
1970 return NULL;
1971 pud = pud_alloc(mm, p4d, addr);
1972 if (!pud)
1973 return NULL;
1974 pmd = pmd_alloc(mm, pud, addr);
1975 if (!pmd)
1976 return NULL;
1977
1978 VM_BUG_ON(pmd_trans_huge(*pmd));
1979 return pmd;
1980}
1981
1982pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983 spinlock_t **ptl)
1984{
1985 pmd_t *pmd = walk_to_pmd(mm, addr);
1986
1987 if (!pmd)
1988 return NULL;
1989 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1990}
1991
1992static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1993{
1994 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1995 /*
1996 * Whoever wants to forbid the zeropage after some zeropages
1997 * might already have been mapped has to scan the page tables and
1998 * bail out on any zeropages. Zeropages in COW mappings can
1999 * be unshared using FAULT_FLAG_UNSHARE faults.
2000 */
2001 if (mm_forbids_zeropage(vma->vm_mm))
2002 return false;
2003 /* zeropages in COW mappings are common and unproblematic. */
2004 if (is_cow_mapping(vma->vm_flags))
2005 return true;
2006 /* Mappings that do not allow for writable PTEs are unproblematic. */
2007 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2008 return true;
2009 /*
2010 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2011 * find the shared zeropage and longterm-pin it, which would
2012 * be problematic as soon as the zeropage gets replaced by a different
2013 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2014 * now differ to what GUP looked up. FSDAX is incompatible to
2015 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2016 * check_vma_flags).
2017 */
2018 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2019 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2020}
2021
2022static int validate_page_before_insert(struct vm_area_struct *vma,
2023 struct page *page)
2024{
2025 struct folio *folio = page_folio(page);
2026
2027 if (!folio_ref_count(folio))
2028 return -EINVAL;
2029 if (unlikely(is_zero_folio(folio))) {
2030 if (!vm_mixed_zeropage_allowed(vma))
2031 return -EINVAL;
2032 return 0;
2033 }
2034 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2035 page_has_type(page))
2036 return -EINVAL;
2037 flush_dcache_folio(folio);
2038 return 0;
2039}
2040
2041static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2042 unsigned long addr, struct page *page, pgprot_t prot)
2043{
2044 struct folio *folio = page_folio(page);
2045 pte_t pteval;
2046
2047 if (!pte_none(ptep_get(pte)))
2048 return -EBUSY;
2049 /* Ok, finally just insert the thing.. */
2050 pteval = mk_pte(page, prot);
2051 if (unlikely(is_zero_folio(folio))) {
2052 pteval = pte_mkspecial(pteval);
2053 } else {
2054 folio_get(folio);
2055 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2056 folio_add_file_rmap_pte(folio, page, vma);
2057 }
2058 set_pte_at(vma->vm_mm, addr, pte, pteval);
2059 return 0;
2060}
2061
2062static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2063 struct page *page, pgprot_t prot)
2064{
2065 int retval;
2066 pte_t *pte;
2067 spinlock_t *ptl;
2068
2069 retval = validate_page_before_insert(vma, page);
2070 if (retval)
2071 goto out;
2072 retval = -ENOMEM;
2073 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2074 if (!pte)
2075 goto out;
2076 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2077 pte_unmap_unlock(pte, ptl);
2078out:
2079 return retval;
2080}
2081
2082static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2083 unsigned long addr, struct page *page, pgprot_t prot)
2084{
2085 int err;
2086
2087 err = validate_page_before_insert(vma, page);
2088 if (err)
2089 return err;
2090 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2091}
2092
2093/* insert_pages() amortizes the cost of spinlock operations
2094 * when inserting pages in a loop.
2095 */
2096static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2097 struct page **pages, unsigned long *num, pgprot_t prot)
2098{
2099 pmd_t *pmd = NULL;
2100 pte_t *start_pte, *pte;
2101 spinlock_t *pte_lock;
2102 struct mm_struct *const mm = vma->vm_mm;
2103 unsigned long curr_page_idx = 0;
2104 unsigned long remaining_pages_total = *num;
2105 unsigned long pages_to_write_in_pmd;
2106 int ret;
2107more:
2108 ret = -EFAULT;
2109 pmd = walk_to_pmd(mm, addr);
2110 if (!pmd)
2111 goto out;
2112
2113 pages_to_write_in_pmd = min_t(unsigned long,
2114 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2115
2116 /* Allocate the PTE if necessary; takes PMD lock once only. */
2117 ret = -ENOMEM;
2118 if (pte_alloc(mm, pmd))
2119 goto out;
2120
2121 while (pages_to_write_in_pmd) {
2122 int pte_idx = 0;
2123 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2124
2125 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2126 if (!start_pte) {
2127 ret = -EFAULT;
2128 goto out;
2129 }
2130 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2131 int err = insert_page_in_batch_locked(vma, pte,
2132 addr, pages[curr_page_idx], prot);
2133 if (unlikely(err)) {
2134 pte_unmap_unlock(start_pte, pte_lock);
2135 ret = err;
2136 remaining_pages_total -= pte_idx;
2137 goto out;
2138 }
2139 addr += PAGE_SIZE;
2140 ++curr_page_idx;
2141 }
2142 pte_unmap_unlock(start_pte, pte_lock);
2143 pages_to_write_in_pmd -= batch_size;
2144 remaining_pages_total -= batch_size;
2145 }
2146 if (remaining_pages_total)
2147 goto more;
2148 ret = 0;
2149out:
2150 *num = remaining_pages_total;
2151 return ret;
2152}
2153
2154/**
2155 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2156 * @vma: user vma to map to
2157 * @addr: target start user address of these pages
2158 * @pages: source kernel pages
2159 * @num: in: number of pages to map. out: number of pages that were *not*
2160 * mapped. (0 means all pages were successfully mapped).
2161 *
2162 * Preferred over vm_insert_page() when inserting multiple pages.
2163 *
2164 * In case of error, we may have mapped a subset of the provided
2165 * pages. It is the caller's responsibility to account for this case.
2166 *
2167 * The same restrictions apply as in vm_insert_page().
2168 */
2169int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2170 struct page **pages, unsigned long *num)
2171{
2172 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2173
2174 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2175 return -EFAULT;
2176 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2177 BUG_ON(mmap_read_trylock(vma->vm_mm));
2178 BUG_ON(vma->vm_flags & VM_PFNMAP);
2179 vm_flags_set(vma, VM_MIXEDMAP);
2180 }
2181 /* Defer page refcount checking till we're about to map that page. */
2182 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2183}
2184EXPORT_SYMBOL(vm_insert_pages);
2185
2186/**
2187 * vm_insert_page - insert single page into user vma
2188 * @vma: user vma to map to
2189 * @addr: target user address of this page
2190 * @page: source kernel page
2191 *
2192 * This allows drivers to insert individual pages they've allocated
2193 * into a user vma. The zeropage is supported in some VMAs,
2194 * see vm_mixed_zeropage_allowed().
2195 *
2196 * The page has to be a nice clean _individual_ kernel allocation.
2197 * If you allocate a compound page, you need to have marked it as
2198 * such (__GFP_COMP), or manually just split the page up yourself
2199 * (see split_page()).
2200 *
2201 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2202 * took an arbitrary page protection parameter. This doesn't allow
2203 * that. Your vma protection will have to be set up correctly, which
2204 * means that if you want a shared writable mapping, you'd better
2205 * ask for a shared writable mapping!
2206 *
2207 * The page does not need to be reserved.
2208 *
2209 * Usually this function is called from f_op->mmap() handler
2210 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2211 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2212 * function from other places, for example from page-fault handler.
2213 *
2214 * Return: %0 on success, negative error code otherwise.
2215 */
2216int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2217 struct page *page)
2218{
2219 if (addr < vma->vm_start || addr >= vma->vm_end)
2220 return -EFAULT;
2221 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2222 BUG_ON(mmap_read_trylock(vma->vm_mm));
2223 BUG_ON(vma->vm_flags & VM_PFNMAP);
2224 vm_flags_set(vma, VM_MIXEDMAP);
2225 }
2226 return insert_page(vma, addr, page, vma->vm_page_prot);
2227}
2228EXPORT_SYMBOL(vm_insert_page);
2229
2230/*
2231 * __vm_map_pages - maps range of kernel pages into user vma
2232 * @vma: user vma to map to
2233 * @pages: pointer to array of source kernel pages
2234 * @num: number of pages in page array
2235 * @offset: user's requested vm_pgoff
2236 *
2237 * This allows drivers to map range of kernel pages into a user vma.
2238 * The zeropage is supported in some VMAs, see
2239 * vm_mixed_zeropage_allowed().
2240 *
2241 * Return: 0 on success and error code otherwise.
2242 */
2243static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2244 unsigned long num, unsigned long offset)
2245{
2246 unsigned long count = vma_pages(vma);
2247 unsigned long uaddr = vma->vm_start;
2248 int ret, i;
2249
2250 /* Fail if the user requested offset is beyond the end of the object */
2251 if (offset >= num)
2252 return -ENXIO;
2253
2254 /* Fail if the user requested size exceeds available object size */
2255 if (count > num - offset)
2256 return -ENXIO;
2257
2258 for (i = 0; i < count; i++) {
2259 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2260 if (ret < 0)
2261 return ret;
2262 uaddr += PAGE_SIZE;
2263 }
2264
2265 return 0;
2266}
2267
2268/**
2269 * vm_map_pages - maps range of kernel pages starts with non zero offset
2270 * @vma: user vma to map to
2271 * @pages: pointer to array of source kernel pages
2272 * @num: number of pages in page array
2273 *
2274 * Maps an object consisting of @num pages, catering for the user's
2275 * requested vm_pgoff
2276 *
2277 * If we fail to insert any page into the vma, the function will return
2278 * immediately leaving any previously inserted pages present. Callers
2279 * from the mmap handler may immediately return the error as their caller
2280 * will destroy the vma, removing any successfully inserted pages. Other
2281 * callers should make their own arrangements for calling unmap_region().
2282 *
2283 * Context: Process context. Called by mmap handlers.
2284 * Return: 0 on success and error code otherwise.
2285 */
2286int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2287 unsigned long num)
2288{
2289 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2290}
2291EXPORT_SYMBOL(vm_map_pages);
2292
2293/**
2294 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2295 * @vma: user vma to map to
2296 * @pages: pointer to array of source kernel pages
2297 * @num: number of pages in page array
2298 *
2299 * Similar to vm_map_pages(), except that it explicitly sets the offset
2300 * to 0. This function is intended for the drivers that did not consider
2301 * vm_pgoff.
2302 *
2303 * Context: Process context. Called by mmap handlers.
2304 * Return: 0 on success and error code otherwise.
2305 */
2306int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2307 unsigned long num)
2308{
2309 return __vm_map_pages(vma, pages, num, 0);
2310}
2311EXPORT_SYMBOL(vm_map_pages_zero);
2312
2313static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2314 pfn_t pfn, pgprot_t prot, bool mkwrite)
2315{
2316 struct mm_struct *mm = vma->vm_mm;
2317 pte_t *pte, entry;
2318 spinlock_t *ptl;
2319
2320 pte = get_locked_pte(mm, addr, &ptl);
2321 if (!pte)
2322 return VM_FAULT_OOM;
2323 entry = ptep_get(pte);
2324 if (!pte_none(entry)) {
2325 if (mkwrite) {
2326 /*
2327 * For read faults on private mappings the PFN passed
2328 * in may not match the PFN we have mapped if the
2329 * mapped PFN is a writeable COW page. In the mkwrite
2330 * case we are creating a writable PTE for a shared
2331 * mapping and we expect the PFNs to match. If they
2332 * don't match, we are likely racing with block
2333 * allocation and mapping invalidation so just skip the
2334 * update.
2335 */
2336 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2337 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2338 goto out_unlock;
2339 }
2340 entry = pte_mkyoung(entry);
2341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2342 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2343 update_mmu_cache(vma, addr, pte);
2344 }
2345 goto out_unlock;
2346 }
2347
2348 /* Ok, finally just insert the thing.. */
2349 if (pfn_t_devmap(pfn))
2350 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2351 else
2352 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2353
2354 if (mkwrite) {
2355 entry = pte_mkyoung(entry);
2356 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2357 }
2358
2359 set_pte_at(mm, addr, pte, entry);
2360 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2361
2362out_unlock:
2363 pte_unmap_unlock(pte, ptl);
2364 return VM_FAULT_NOPAGE;
2365}
2366
2367/**
2368 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2369 * @vma: user vma to map to
2370 * @addr: target user address of this page
2371 * @pfn: source kernel pfn
2372 * @pgprot: pgprot flags for the inserted page
2373 *
2374 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2375 * to override pgprot on a per-page basis.
2376 *
2377 * This only makes sense for IO mappings, and it makes no sense for
2378 * COW mappings. In general, using multiple vmas is preferable;
2379 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2380 * impractical.
2381 *
2382 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2383 * caching- and encryption bits different than those of @vma->vm_page_prot,
2384 * because the caching- or encryption mode may not be known at mmap() time.
2385 *
2386 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2387 * to set caching and encryption bits for those vmas (except for COW pages).
2388 * This is ensured by core vm only modifying these page table entries using
2389 * functions that don't touch caching- or encryption bits, using pte_modify()
2390 * if needed. (See for example mprotect()).
2391 *
2392 * Also when new page-table entries are created, this is only done using the
2393 * fault() callback, and never using the value of vma->vm_page_prot,
2394 * except for page-table entries that point to anonymous pages as the result
2395 * of COW.
2396 *
2397 * Context: Process context. May allocate using %GFP_KERNEL.
2398 * Return: vm_fault_t value.
2399 */
2400vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2401 unsigned long pfn, pgprot_t pgprot)
2402{
2403 /*
2404 * Technically, architectures with pte_special can avoid all these
2405 * restrictions (same for remap_pfn_range). However we would like
2406 * consistency in testing and feature parity among all, so we should
2407 * try to keep these invariants in place for everybody.
2408 */
2409 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2410 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2411 (VM_PFNMAP|VM_MIXEDMAP));
2412 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2413 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2414
2415 if (addr < vma->vm_start || addr >= vma->vm_end)
2416 return VM_FAULT_SIGBUS;
2417
2418 if (!pfn_modify_allowed(pfn, pgprot))
2419 return VM_FAULT_SIGBUS;
2420
2421 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2422
2423 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2424 false);
2425}
2426EXPORT_SYMBOL(vmf_insert_pfn_prot);
2427
2428/**
2429 * vmf_insert_pfn - insert single pfn into user vma
2430 * @vma: user vma to map to
2431 * @addr: target user address of this page
2432 * @pfn: source kernel pfn
2433 *
2434 * Similar to vm_insert_page, this allows drivers to insert individual pages
2435 * they've allocated into a user vma. Same comments apply.
2436 *
2437 * This function should only be called from a vm_ops->fault handler, and
2438 * in that case the handler should return the result of this function.
2439 *
2440 * vma cannot be a COW mapping.
2441 *
2442 * As this is called only for pages that do not currently exist, we
2443 * do not need to flush old virtual caches or the TLB.
2444 *
2445 * Context: Process context. May allocate using %GFP_KERNEL.
2446 * Return: vm_fault_t value.
2447 */
2448vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2449 unsigned long pfn)
2450{
2451 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2452}
2453EXPORT_SYMBOL(vmf_insert_pfn);
2454
2455static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2456{
2457 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2458 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2459 return false;
2460 /* these checks mirror the abort conditions in vm_normal_page */
2461 if (vma->vm_flags & VM_MIXEDMAP)
2462 return true;
2463 if (pfn_t_devmap(pfn))
2464 return true;
2465 if (pfn_t_special(pfn))
2466 return true;
2467 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2468 return true;
2469 return false;
2470}
2471
2472static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2473 unsigned long addr, pfn_t pfn, bool mkwrite)
2474{
2475 pgprot_t pgprot = vma->vm_page_prot;
2476 int err;
2477
2478 if (!vm_mixed_ok(vma, pfn, mkwrite))
2479 return VM_FAULT_SIGBUS;
2480
2481 if (addr < vma->vm_start || addr >= vma->vm_end)
2482 return VM_FAULT_SIGBUS;
2483
2484 track_pfn_insert(vma, &pgprot, pfn);
2485
2486 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2487 return VM_FAULT_SIGBUS;
2488
2489 /*
2490 * If we don't have pte special, then we have to use the pfn_valid()
2491 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2492 * refcount the page if pfn_valid is true (hence insert_page rather
2493 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2494 * without pte special, it would there be refcounted as a normal page.
2495 */
2496 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2497 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2498 struct page *page;
2499
2500 /*
2501 * At this point we are committed to insert_page()
2502 * regardless of whether the caller specified flags that
2503 * result in pfn_t_has_page() == false.
2504 */
2505 page = pfn_to_page(pfn_t_to_pfn(pfn));
2506 err = insert_page(vma, addr, page, pgprot);
2507 } else {
2508 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2509 }
2510
2511 if (err == -ENOMEM)
2512 return VM_FAULT_OOM;
2513 if (err < 0 && err != -EBUSY)
2514 return VM_FAULT_SIGBUS;
2515
2516 return VM_FAULT_NOPAGE;
2517}
2518
2519vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2520 pfn_t pfn)
2521{
2522 return __vm_insert_mixed(vma, addr, pfn, false);
2523}
2524EXPORT_SYMBOL(vmf_insert_mixed);
2525
2526/*
2527 * If the insertion of PTE failed because someone else already added a
2528 * different entry in the mean time, we treat that as success as we assume
2529 * the same entry was actually inserted.
2530 */
2531vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2532 unsigned long addr, pfn_t pfn)
2533{
2534 return __vm_insert_mixed(vma, addr, pfn, true);
2535}
2536
2537/*
2538 * maps a range of physical memory into the requested pages. the old
2539 * mappings are removed. any references to nonexistent pages results
2540 * in null mappings (currently treated as "copy-on-access")
2541 */
2542static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2543 unsigned long addr, unsigned long end,
2544 unsigned long pfn, pgprot_t prot)
2545{
2546 pte_t *pte, *mapped_pte;
2547 spinlock_t *ptl;
2548 int err = 0;
2549
2550 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2551 if (!pte)
2552 return -ENOMEM;
2553 arch_enter_lazy_mmu_mode();
2554 do {
2555 BUG_ON(!pte_none(ptep_get(pte)));
2556 if (!pfn_modify_allowed(pfn, prot)) {
2557 err = -EACCES;
2558 break;
2559 }
2560 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2561 pfn++;
2562 } while (pte++, addr += PAGE_SIZE, addr != end);
2563 arch_leave_lazy_mmu_mode();
2564 pte_unmap_unlock(mapped_pte, ptl);
2565 return err;
2566}
2567
2568static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2569 unsigned long addr, unsigned long end,
2570 unsigned long pfn, pgprot_t prot)
2571{
2572 pmd_t *pmd;
2573 unsigned long next;
2574 int err;
2575
2576 pfn -= addr >> PAGE_SHIFT;
2577 pmd = pmd_alloc(mm, pud, addr);
2578 if (!pmd)
2579 return -ENOMEM;
2580 VM_BUG_ON(pmd_trans_huge(*pmd));
2581 do {
2582 next = pmd_addr_end(addr, end);
2583 err = remap_pte_range(mm, pmd, addr, next,
2584 pfn + (addr >> PAGE_SHIFT), prot);
2585 if (err)
2586 return err;
2587 } while (pmd++, addr = next, addr != end);
2588 return 0;
2589}
2590
2591static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2592 unsigned long addr, unsigned long end,
2593 unsigned long pfn, pgprot_t prot)
2594{
2595 pud_t *pud;
2596 unsigned long next;
2597 int err;
2598
2599 pfn -= addr >> PAGE_SHIFT;
2600 pud = pud_alloc(mm, p4d, addr);
2601 if (!pud)
2602 return -ENOMEM;
2603 do {
2604 next = pud_addr_end(addr, end);
2605 err = remap_pmd_range(mm, pud, addr, next,
2606 pfn + (addr >> PAGE_SHIFT), prot);
2607 if (err)
2608 return err;
2609 } while (pud++, addr = next, addr != end);
2610 return 0;
2611}
2612
2613static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2614 unsigned long addr, unsigned long end,
2615 unsigned long pfn, pgprot_t prot)
2616{
2617 p4d_t *p4d;
2618 unsigned long next;
2619 int err;
2620
2621 pfn -= addr >> PAGE_SHIFT;
2622 p4d = p4d_alloc(mm, pgd, addr);
2623 if (!p4d)
2624 return -ENOMEM;
2625 do {
2626 next = p4d_addr_end(addr, end);
2627 err = remap_pud_range(mm, p4d, addr, next,
2628 pfn + (addr >> PAGE_SHIFT), prot);
2629 if (err)
2630 return err;
2631 } while (p4d++, addr = next, addr != end);
2632 return 0;
2633}
2634
2635/*
2636 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2637 * must have pre-validated the caching bits of the pgprot_t.
2638 */
2639int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2640 unsigned long pfn, unsigned long size, pgprot_t prot)
2641{
2642 pgd_t *pgd;
2643 unsigned long next;
2644 unsigned long end = addr + PAGE_ALIGN(size);
2645 struct mm_struct *mm = vma->vm_mm;
2646 int err;
2647
2648 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2649 return -EINVAL;
2650
2651 /*
2652 * Physically remapped pages are special. Tell the
2653 * rest of the world about it:
2654 * VM_IO tells people not to look at these pages
2655 * (accesses can have side effects).
2656 * VM_PFNMAP tells the core MM that the base pages are just
2657 * raw PFN mappings, and do not have a "struct page" associated
2658 * with them.
2659 * VM_DONTEXPAND
2660 * Disable vma merging and expanding with mremap().
2661 * VM_DONTDUMP
2662 * Omit vma from core dump, even when VM_IO turned off.
2663 *
2664 * There's a horrible special case to handle copy-on-write
2665 * behaviour that some programs depend on. We mark the "original"
2666 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2667 * See vm_normal_page() for details.
2668 */
2669 if (is_cow_mapping(vma->vm_flags)) {
2670 if (addr != vma->vm_start || end != vma->vm_end)
2671 return -EINVAL;
2672 vma->vm_pgoff = pfn;
2673 }
2674
2675 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2676
2677 BUG_ON(addr >= end);
2678 pfn -= addr >> PAGE_SHIFT;
2679 pgd = pgd_offset(mm, addr);
2680 flush_cache_range(vma, addr, end);
2681 do {
2682 next = pgd_addr_end(addr, end);
2683 err = remap_p4d_range(mm, pgd, addr, next,
2684 pfn + (addr >> PAGE_SHIFT), prot);
2685 if (err)
2686 return err;
2687 } while (pgd++, addr = next, addr != end);
2688
2689 return 0;
2690}
2691
2692/**
2693 * remap_pfn_range - remap kernel memory to userspace
2694 * @vma: user vma to map to
2695 * @addr: target page aligned user address to start at
2696 * @pfn: page frame number of kernel physical memory address
2697 * @size: size of mapping area
2698 * @prot: page protection flags for this mapping
2699 *
2700 * Note: this is only safe if the mm semaphore is held when called.
2701 *
2702 * Return: %0 on success, negative error code otherwise.
2703 */
2704int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2705 unsigned long pfn, unsigned long size, pgprot_t prot)
2706{
2707 int err;
2708
2709 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2710 if (err)
2711 return -EINVAL;
2712
2713 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2714 if (err)
2715 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2716 return err;
2717}
2718EXPORT_SYMBOL(remap_pfn_range);
2719
2720/**
2721 * vm_iomap_memory - remap memory to userspace
2722 * @vma: user vma to map to
2723 * @start: start of the physical memory to be mapped
2724 * @len: size of area
2725 *
2726 * This is a simplified io_remap_pfn_range() for common driver use. The
2727 * driver just needs to give us the physical memory range to be mapped,
2728 * we'll figure out the rest from the vma information.
2729 *
2730 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2731 * whatever write-combining details or similar.
2732 *
2733 * Return: %0 on success, negative error code otherwise.
2734 */
2735int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2736{
2737 unsigned long vm_len, pfn, pages;
2738
2739 /* Check that the physical memory area passed in looks valid */
2740 if (start + len < start)
2741 return -EINVAL;
2742 /*
2743 * You *really* shouldn't map things that aren't page-aligned,
2744 * but we've historically allowed it because IO memory might
2745 * just have smaller alignment.
2746 */
2747 len += start & ~PAGE_MASK;
2748 pfn = start >> PAGE_SHIFT;
2749 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2750 if (pfn + pages < pfn)
2751 return -EINVAL;
2752
2753 /* We start the mapping 'vm_pgoff' pages into the area */
2754 if (vma->vm_pgoff > pages)
2755 return -EINVAL;
2756 pfn += vma->vm_pgoff;
2757 pages -= vma->vm_pgoff;
2758
2759 /* Can we fit all of the mapping? */
2760 vm_len = vma->vm_end - vma->vm_start;
2761 if (vm_len >> PAGE_SHIFT > pages)
2762 return -EINVAL;
2763
2764 /* Ok, let it rip */
2765 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2766}
2767EXPORT_SYMBOL(vm_iomap_memory);
2768
2769static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2770 unsigned long addr, unsigned long end,
2771 pte_fn_t fn, void *data, bool create,
2772 pgtbl_mod_mask *mask)
2773{
2774 pte_t *pte, *mapped_pte;
2775 int err = 0;
2776 spinlock_t *ptl;
2777
2778 if (create) {
2779 mapped_pte = pte = (mm == &init_mm) ?
2780 pte_alloc_kernel_track(pmd, addr, mask) :
2781 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2782 if (!pte)
2783 return -ENOMEM;
2784 } else {
2785 mapped_pte = pte = (mm == &init_mm) ?
2786 pte_offset_kernel(pmd, addr) :
2787 pte_offset_map_lock(mm, pmd, addr, &ptl);
2788 if (!pte)
2789 return -EINVAL;
2790 }
2791
2792 arch_enter_lazy_mmu_mode();
2793
2794 if (fn) {
2795 do {
2796 if (create || !pte_none(ptep_get(pte))) {
2797 err = fn(pte++, addr, data);
2798 if (err)
2799 break;
2800 }
2801 } while (addr += PAGE_SIZE, addr != end);
2802 }
2803 *mask |= PGTBL_PTE_MODIFIED;
2804
2805 arch_leave_lazy_mmu_mode();
2806
2807 if (mm != &init_mm)
2808 pte_unmap_unlock(mapped_pte, ptl);
2809 return err;
2810}
2811
2812static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2813 unsigned long addr, unsigned long end,
2814 pte_fn_t fn, void *data, bool create,
2815 pgtbl_mod_mask *mask)
2816{
2817 pmd_t *pmd;
2818 unsigned long next;
2819 int err = 0;
2820
2821 BUG_ON(pud_leaf(*pud));
2822
2823 if (create) {
2824 pmd = pmd_alloc_track(mm, pud, addr, mask);
2825 if (!pmd)
2826 return -ENOMEM;
2827 } else {
2828 pmd = pmd_offset(pud, addr);
2829 }
2830 do {
2831 next = pmd_addr_end(addr, end);
2832 if (pmd_none(*pmd) && !create)
2833 continue;
2834 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2835 return -EINVAL;
2836 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2837 if (!create)
2838 continue;
2839 pmd_clear_bad(pmd);
2840 }
2841 err = apply_to_pte_range(mm, pmd, addr, next,
2842 fn, data, create, mask);
2843 if (err)
2844 break;
2845 } while (pmd++, addr = next, addr != end);
2846
2847 return err;
2848}
2849
2850static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2851 unsigned long addr, unsigned long end,
2852 pte_fn_t fn, void *data, bool create,
2853 pgtbl_mod_mask *mask)
2854{
2855 pud_t *pud;
2856 unsigned long next;
2857 int err = 0;
2858
2859 if (create) {
2860 pud = pud_alloc_track(mm, p4d, addr, mask);
2861 if (!pud)
2862 return -ENOMEM;
2863 } else {
2864 pud = pud_offset(p4d, addr);
2865 }
2866 do {
2867 next = pud_addr_end(addr, end);
2868 if (pud_none(*pud) && !create)
2869 continue;
2870 if (WARN_ON_ONCE(pud_leaf(*pud)))
2871 return -EINVAL;
2872 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2873 if (!create)
2874 continue;
2875 pud_clear_bad(pud);
2876 }
2877 err = apply_to_pmd_range(mm, pud, addr, next,
2878 fn, data, create, mask);
2879 if (err)
2880 break;
2881 } while (pud++, addr = next, addr != end);
2882
2883 return err;
2884}
2885
2886static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2887 unsigned long addr, unsigned long end,
2888 pte_fn_t fn, void *data, bool create,
2889 pgtbl_mod_mask *mask)
2890{
2891 p4d_t *p4d;
2892 unsigned long next;
2893 int err = 0;
2894
2895 if (create) {
2896 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2897 if (!p4d)
2898 return -ENOMEM;
2899 } else {
2900 p4d = p4d_offset(pgd, addr);
2901 }
2902 do {
2903 next = p4d_addr_end(addr, end);
2904 if (p4d_none(*p4d) && !create)
2905 continue;
2906 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2907 return -EINVAL;
2908 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2909 if (!create)
2910 continue;
2911 p4d_clear_bad(p4d);
2912 }
2913 err = apply_to_pud_range(mm, p4d, addr, next,
2914 fn, data, create, mask);
2915 if (err)
2916 break;
2917 } while (p4d++, addr = next, addr != end);
2918
2919 return err;
2920}
2921
2922static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2923 unsigned long size, pte_fn_t fn,
2924 void *data, bool create)
2925{
2926 pgd_t *pgd;
2927 unsigned long start = addr, next;
2928 unsigned long end = addr + size;
2929 pgtbl_mod_mask mask = 0;
2930 int err = 0;
2931
2932 if (WARN_ON(addr >= end))
2933 return -EINVAL;
2934
2935 pgd = pgd_offset(mm, addr);
2936 do {
2937 next = pgd_addr_end(addr, end);
2938 if (pgd_none(*pgd) && !create)
2939 continue;
2940 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2941 return -EINVAL;
2942 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2943 if (!create)
2944 continue;
2945 pgd_clear_bad(pgd);
2946 }
2947 err = apply_to_p4d_range(mm, pgd, addr, next,
2948 fn, data, create, &mask);
2949 if (err)
2950 break;
2951 } while (pgd++, addr = next, addr != end);
2952
2953 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2954 arch_sync_kernel_mappings(start, start + size);
2955
2956 return err;
2957}
2958
2959/*
2960 * Scan a region of virtual memory, filling in page tables as necessary
2961 * and calling a provided function on each leaf page table.
2962 */
2963int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2964 unsigned long size, pte_fn_t fn, void *data)
2965{
2966 return __apply_to_page_range(mm, addr, size, fn, data, true);
2967}
2968EXPORT_SYMBOL_GPL(apply_to_page_range);
2969
2970/*
2971 * Scan a region of virtual memory, calling a provided function on
2972 * each leaf page table where it exists.
2973 *
2974 * Unlike apply_to_page_range, this does _not_ fill in page tables
2975 * where they are absent.
2976 */
2977int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2978 unsigned long size, pte_fn_t fn, void *data)
2979{
2980 return __apply_to_page_range(mm, addr, size, fn, data, false);
2981}
2982EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2983
2984/*
2985 * handle_pte_fault chooses page fault handler according to an entry which was
2986 * read non-atomically. Before making any commitment, on those architectures
2987 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2988 * parts, do_swap_page must check under lock before unmapping the pte and
2989 * proceeding (but do_wp_page is only called after already making such a check;
2990 * and do_anonymous_page can safely check later on).
2991 */
2992static inline int pte_unmap_same(struct vm_fault *vmf)
2993{
2994 int same = 1;
2995#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2996 if (sizeof(pte_t) > sizeof(unsigned long)) {
2997 spin_lock(vmf->ptl);
2998 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2999 spin_unlock(vmf->ptl);
3000 }
3001#endif
3002 pte_unmap(vmf->pte);
3003 vmf->pte = NULL;
3004 return same;
3005}
3006
3007/*
3008 * Return:
3009 * 0: copied succeeded
3010 * -EHWPOISON: copy failed due to hwpoison in source page
3011 * -EAGAIN: copied failed (some other reason)
3012 */
3013static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3014 struct vm_fault *vmf)
3015{
3016 int ret;
3017 void *kaddr;
3018 void __user *uaddr;
3019 struct vm_area_struct *vma = vmf->vma;
3020 struct mm_struct *mm = vma->vm_mm;
3021 unsigned long addr = vmf->address;
3022
3023 if (likely(src)) {
3024 if (copy_mc_user_highpage(dst, src, addr, vma))
3025 return -EHWPOISON;
3026 return 0;
3027 }
3028
3029 /*
3030 * If the source page was a PFN mapping, we don't have
3031 * a "struct page" for it. We do a best-effort copy by
3032 * just copying from the original user address. If that
3033 * fails, we just zero-fill it. Live with it.
3034 */
3035 kaddr = kmap_local_page(dst);
3036 pagefault_disable();
3037 uaddr = (void __user *)(addr & PAGE_MASK);
3038
3039 /*
3040 * On architectures with software "accessed" bits, we would
3041 * take a double page fault, so mark it accessed here.
3042 */
3043 vmf->pte = NULL;
3044 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3045 pte_t entry;
3046
3047 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3048 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3049 /*
3050 * Other thread has already handled the fault
3051 * and update local tlb only
3052 */
3053 if (vmf->pte)
3054 update_mmu_tlb(vma, addr, vmf->pte);
3055 ret = -EAGAIN;
3056 goto pte_unlock;
3057 }
3058
3059 entry = pte_mkyoung(vmf->orig_pte);
3060 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3061 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3062 }
3063
3064 /*
3065 * This really shouldn't fail, because the page is there
3066 * in the page tables. But it might just be unreadable,
3067 * in which case we just give up and fill the result with
3068 * zeroes.
3069 */
3070 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3071 if (vmf->pte)
3072 goto warn;
3073
3074 /* Re-validate under PTL if the page is still mapped */
3075 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3076 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3077 /* The PTE changed under us, update local tlb */
3078 if (vmf->pte)
3079 update_mmu_tlb(vma, addr, vmf->pte);
3080 ret = -EAGAIN;
3081 goto pte_unlock;
3082 }
3083
3084 /*
3085 * The same page can be mapped back since last copy attempt.
3086 * Try to copy again under PTL.
3087 */
3088 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3089 /*
3090 * Give a warn in case there can be some obscure
3091 * use-case
3092 */
3093warn:
3094 WARN_ON_ONCE(1);
3095 clear_page(kaddr);
3096 }
3097 }
3098
3099 ret = 0;
3100
3101pte_unlock:
3102 if (vmf->pte)
3103 pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 pagefault_enable();
3105 kunmap_local(kaddr);
3106 flush_dcache_page(dst);
3107
3108 return ret;
3109}
3110
3111static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3112{
3113 struct file *vm_file = vma->vm_file;
3114
3115 if (vm_file)
3116 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3117
3118 /*
3119 * Special mappings (e.g. VDSO) do not have any file so fake
3120 * a default GFP_KERNEL for them.
3121 */
3122 return GFP_KERNEL;
3123}
3124
3125/*
3126 * Notify the address space that the page is about to become writable so that
3127 * it can prohibit this or wait for the page to get into an appropriate state.
3128 *
3129 * We do this without the lock held, so that it can sleep if it needs to.
3130 */
3131static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3132{
3133 vm_fault_t ret;
3134 unsigned int old_flags = vmf->flags;
3135
3136 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3137
3138 if (vmf->vma->vm_file &&
3139 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3140 return VM_FAULT_SIGBUS;
3141
3142 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3143 /* Restore original flags so that caller is not surprised */
3144 vmf->flags = old_flags;
3145 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3146 return ret;
3147 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3148 folio_lock(folio);
3149 if (!folio->mapping) {
3150 folio_unlock(folio);
3151 return 0; /* retry */
3152 }
3153 ret |= VM_FAULT_LOCKED;
3154 } else
3155 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3156 return ret;
3157}
3158
3159/*
3160 * Handle dirtying of a page in shared file mapping on a write fault.
3161 *
3162 * The function expects the page to be locked and unlocks it.
3163 */
3164static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3165{
3166 struct vm_area_struct *vma = vmf->vma;
3167 struct address_space *mapping;
3168 struct folio *folio = page_folio(vmf->page);
3169 bool dirtied;
3170 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3171
3172 dirtied = folio_mark_dirty(folio);
3173 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3174 /*
3175 * Take a local copy of the address_space - folio.mapping may be zeroed
3176 * by truncate after folio_unlock(). The address_space itself remains
3177 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3178 * release semantics to prevent the compiler from undoing this copying.
3179 */
3180 mapping = folio_raw_mapping(folio);
3181 folio_unlock(folio);
3182
3183 if (!page_mkwrite)
3184 file_update_time(vma->vm_file);
3185
3186 /*
3187 * Throttle page dirtying rate down to writeback speed.
3188 *
3189 * mapping may be NULL here because some device drivers do not
3190 * set page.mapping but still dirty their pages
3191 *
3192 * Drop the mmap_lock before waiting on IO, if we can. The file
3193 * is pinning the mapping, as per above.
3194 */
3195 if ((dirtied || page_mkwrite) && mapping) {
3196 struct file *fpin;
3197
3198 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3199 balance_dirty_pages_ratelimited(mapping);
3200 if (fpin) {
3201 fput(fpin);
3202 return VM_FAULT_COMPLETED;
3203 }
3204 }
3205
3206 return 0;
3207}
3208
3209/*
3210 * Handle write page faults for pages that can be reused in the current vma
3211 *
3212 * This can happen either due to the mapping being with the VM_SHARED flag,
3213 * or due to us being the last reference standing to the page. In either
3214 * case, all we need to do here is to mark the page as writable and update
3215 * any related book-keeping.
3216 */
3217static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3218 __releases(vmf->ptl)
3219{
3220 struct vm_area_struct *vma = vmf->vma;
3221 pte_t entry;
3222
3223 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3224 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3225
3226 if (folio) {
3227 VM_BUG_ON(folio_test_anon(folio) &&
3228 !PageAnonExclusive(vmf->page));
3229 /*
3230 * Clear the folio's cpupid information as the existing
3231 * information potentially belongs to a now completely
3232 * unrelated process.
3233 */
3234 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3235 }
3236
3237 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3238 entry = pte_mkyoung(vmf->orig_pte);
3239 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3240 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3241 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3242 pte_unmap_unlock(vmf->pte, vmf->ptl);
3243 count_vm_event(PGREUSE);
3244}
3245
3246/*
3247 * We could add a bitflag somewhere, but for now, we know that all
3248 * vm_ops that have a ->map_pages have been audited and don't need
3249 * the mmap_lock to be held.
3250 */
3251static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3252{
3253 struct vm_area_struct *vma = vmf->vma;
3254
3255 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3256 return 0;
3257 vma_end_read(vma);
3258 return VM_FAULT_RETRY;
3259}
3260
3261/**
3262 * vmf_anon_prepare - Prepare to handle an anonymous fault.
3263 * @vmf: The vm_fault descriptor passed from the fault handler.
3264 *
3265 * When preparing to insert an anonymous page into a VMA from a
3266 * fault handler, call this function rather than anon_vma_prepare().
3267 * If this vma does not already have an associated anon_vma and we are
3268 * only protected by the per-VMA lock, the caller must retry with the
3269 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3270 * determine if this VMA can share its anon_vma, and that's not safe to
3271 * do with only the per-VMA lock held for this VMA.
3272 *
3273 * Return: 0 if fault handling can proceed. Any other value should be
3274 * returned to the caller.
3275 */
3276vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3277{
3278 struct vm_area_struct *vma = vmf->vma;
3279 vm_fault_t ret = 0;
3280
3281 if (likely(vma->anon_vma))
3282 return 0;
3283 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3284 if (!mmap_read_trylock(vma->vm_mm)) {
3285 vma_end_read(vma);
3286 return VM_FAULT_RETRY;
3287 }
3288 }
3289 if (__anon_vma_prepare(vma))
3290 ret = VM_FAULT_OOM;
3291 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3292 mmap_read_unlock(vma->vm_mm);
3293 return ret;
3294}
3295
3296/*
3297 * Handle the case of a page which we actually need to copy to a new page,
3298 * either due to COW or unsharing.
3299 *
3300 * Called with mmap_lock locked and the old page referenced, but
3301 * without the ptl held.
3302 *
3303 * High level logic flow:
3304 *
3305 * - Allocate a page, copy the content of the old page to the new one.
3306 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3307 * - Take the PTL. If the pte changed, bail out and release the allocated page
3308 * - If the pte is still the way we remember it, update the page table and all
3309 * relevant references. This includes dropping the reference the page-table
3310 * held to the old page, as well as updating the rmap.
3311 * - In any case, unlock the PTL and drop the reference we took to the old page.
3312 */
3313static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3314{
3315 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3316 struct vm_area_struct *vma = vmf->vma;
3317 struct mm_struct *mm = vma->vm_mm;
3318 struct folio *old_folio = NULL;
3319 struct folio *new_folio = NULL;
3320 pte_t entry;
3321 int page_copied = 0;
3322 struct mmu_notifier_range range;
3323 vm_fault_t ret;
3324 bool pfn_is_zero;
3325
3326 delayacct_wpcopy_start();
3327
3328 if (vmf->page)
3329 old_folio = page_folio(vmf->page);
3330 ret = vmf_anon_prepare(vmf);
3331 if (unlikely(ret))
3332 goto out;
3333
3334 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3335 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3336 if (!new_folio)
3337 goto oom;
3338
3339 if (!pfn_is_zero) {
3340 int err;
3341
3342 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3343 if (err) {
3344 /*
3345 * COW failed, if the fault was solved by other,
3346 * it's fine. If not, userspace would re-fault on
3347 * the same address and we will handle the fault
3348 * from the second attempt.
3349 * The -EHWPOISON case will not be retried.
3350 */
3351 folio_put(new_folio);
3352 if (old_folio)
3353 folio_put(old_folio);
3354
3355 delayacct_wpcopy_end();
3356 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3357 }
3358 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3359 }
3360
3361 __folio_mark_uptodate(new_folio);
3362
3363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3364 vmf->address & PAGE_MASK,
3365 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3366 mmu_notifier_invalidate_range_start(&range);
3367
3368 /*
3369 * Re-check the pte - we dropped the lock
3370 */
3371 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3372 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3373 if (old_folio) {
3374 if (!folio_test_anon(old_folio)) {
3375 dec_mm_counter(mm, mm_counter_file(old_folio));
3376 inc_mm_counter(mm, MM_ANONPAGES);
3377 }
3378 } else {
3379 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3380 inc_mm_counter(mm, MM_ANONPAGES);
3381 }
3382 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3383 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3384 entry = pte_sw_mkyoung(entry);
3385 if (unlikely(unshare)) {
3386 if (pte_soft_dirty(vmf->orig_pte))
3387 entry = pte_mksoft_dirty(entry);
3388 if (pte_uffd_wp(vmf->orig_pte))
3389 entry = pte_mkuffd_wp(entry);
3390 } else {
3391 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3392 }
3393
3394 /*
3395 * Clear the pte entry and flush it first, before updating the
3396 * pte with the new entry, to keep TLBs on different CPUs in
3397 * sync. This code used to set the new PTE then flush TLBs, but
3398 * that left a window where the new PTE could be loaded into
3399 * some TLBs while the old PTE remains in others.
3400 */
3401 ptep_clear_flush(vma, vmf->address, vmf->pte);
3402 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3403 folio_add_lru_vma(new_folio, vma);
3404 BUG_ON(unshare && pte_write(entry));
3405 set_pte_at(mm, vmf->address, vmf->pte, entry);
3406 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3407 if (old_folio) {
3408 /*
3409 * Only after switching the pte to the new page may
3410 * we remove the mapcount here. Otherwise another
3411 * process may come and find the rmap count decremented
3412 * before the pte is switched to the new page, and
3413 * "reuse" the old page writing into it while our pte
3414 * here still points into it and can be read by other
3415 * threads.
3416 *
3417 * The critical issue is to order this
3418 * folio_remove_rmap_pte() with the ptp_clear_flush
3419 * above. Those stores are ordered by (if nothing else,)
3420 * the barrier present in the atomic_add_negative
3421 * in folio_remove_rmap_pte();
3422 *
3423 * Then the TLB flush in ptep_clear_flush ensures that
3424 * no process can access the old page before the
3425 * decremented mapcount is visible. And the old page
3426 * cannot be reused until after the decremented
3427 * mapcount is visible. So transitively, TLBs to
3428 * old page will be flushed before it can be reused.
3429 */
3430 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3431 }
3432
3433 /* Free the old page.. */
3434 new_folio = old_folio;
3435 page_copied = 1;
3436 pte_unmap_unlock(vmf->pte, vmf->ptl);
3437 } else if (vmf->pte) {
3438 update_mmu_tlb(vma, vmf->address, vmf->pte);
3439 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440 }
3441
3442 mmu_notifier_invalidate_range_end(&range);
3443
3444 if (new_folio)
3445 folio_put(new_folio);
3446 if (old_folio) {
3447 if (page_copied)
3448 free_swap_cache(old_folio);
3449 folio_put(old_folio);
3450 }
3451
3452 delayacct_wpcopy_end();
3453 return 0;
3454oom:
3455 ret = VM_FAULT_OOM;
3456out:
3457 if (old_folio)
3458 folio_put(old_folio);
3459
3460 delayacct_wpcopy_end();
3461 return ret;
3462}
3463
3464/**
3465 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3466 * writeable once the page is prepared
3467 *
3468 * @vmf: structure describing the fault
3469 * @folio: the folio of vmf->page
3470 *
3471 * This function handles all that is needed to finish a write page fault in a
3472 * shared mapping due to PTE being read-only once the mapped page is prepared.
3473 * It handles locking of PTE and modifying it.
3474 *
3475 * The function expects the page to be locked or other protection against
3476 * concurrent faults / writeback (such as DAX radix tree locks).
3477 *
3478 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3479 * we acquired PTE lock.
3480 */
3481static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3482{
3483 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3484 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3485 &vmf->ptl);
3486 if (!vmf->pte)
3487 return VM_FAULT_NOPAGE;
3488 /*
3489 * We might have raced with another page fault while we released the
3490 * pte_offset_map_lock.
3491 */
3492 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3493 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3494 pte_unmap_unlock(vmf->pte, vmf->ptl);
3495 return VM_FAULT_NOPAGE;
3496 }
3497 wp_page_reuse(vmf, folio);
3498 return 0;
3499}
3500
3501/*
3502 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3503 * mapping
3504 */
3505static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3506{
3507 struct vm_area_struct *vma = vmf->vma;
3508
3509 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3510 vm_fault_t ret;
3511
3512 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 ret = vmf_can_call_fault(vmf);
3514 if (ret)
3515 return ret;
3516
3517 vmf->flags |= FAULT_FLAG_MKWRITE;
3518 ret = vma->vm_ops->pfn_mkwrite(vmf);
3519 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3520 return ret;
3521 return finish_mkwrite_fault(vmf, NULL);
3522 }
3523 wp_page_reuse(vmf, NULL);
3524 return 0;
3525}
3526
3527static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3528 __releases(vmf->ptl)
3529{
3530 struct vm_area_struct *vma = vmf->vma;
3531 vm_fault_t ret = 0;
3532
3533 folio_get(folio);
3534
3535 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3536 vm_fault_t tmp;
3537
3538 pte_unmap_unlock(vmf->pte, vmf->ptl);
3539 tmp = vmf_can_call_fault(vmf);
3540 if (tmp) {
3541 folio_put(folio);
3542 return tmp;
3543 }
3544
3545 tmp = do_page_mkwrite(vmf, folio);
3546 if (unlikely(!tmp || (tmp &
3547 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3548 folio_put(folio);
3549 return tmp;
3550 }
3551 tmp = finish_mkwrite_fault(vmf, folio);
3552 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3553 folio_unlock(folio);
3554 folio_put(folio);
3555 return tmp;
3556 }
3557 } else {
3558 wp_page_reuse(vmf, folio);
3559 folio_lock(folio);
3560 }
3561 ret |= fault_dirty_shared_page(vmf);
3562 folio_put(folio);
3563
3564 return ret;
3565}
3566
3567static bool wp_can_reuse_anon_folio(struct folio *folio,
3568 struct vm_area_struct *vma)
3569{
3570 /*
3571 * We could currently only reuse a subpage of a large folio if no
3572 * other subpages of the large folios are still mapped. However,
3573 * let's just consistently not reuse subpages even if we could
3574 * reuse in that scenario, and give back a large folio a bit
3575 * sooner.
3576 */
3577 if (folio_test_large(folio))
3578 return false;
3579
3580 /*
3581 * We have to verify under folio lock: these early checks are
3582 * just an optimization to avoid locking the folio and freeing
3583 * the swapcache if there is little hope that we can reuse.
3584 *
3585 * KSM doesn't necessarily raise the folio refcount.
3586 */
3587 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3588 return false;
3589 if (!folio_test_lru(folio))
3590 /*
3591 * We cannot easily detect+handle references from
3592 * remote LRU caches or references to LRU folios.
3593 */
3594 lru_add_drain();
3595 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3596 return false;
3597 if (!folio_trylock(folio))
3598 return false;
3599 if (folio_test_swapcache(folio))
3600 folio_free_swap(folio);
3601 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3602 folio_unlock(folio);
3603 return false;
3604 }
3605 /*
3606 * Ok, we've got the only folio reference from our mapping
3607 * and the folio is locked, it's dark out, and we're wearing
3608 * sunglasses. Hit it.
3609 */
3610 folio_move_anon_rmap(folio, vma);
3611 folio_unlock(folio);
3612 return true;
3613}
3614
3615/*
3616 * This routine handles present pages, when
3617 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3618 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3619 * (FAULT_FLAG_UNSHARE)
3620 *
3621 * It is done by copying the page to a new address and decrementing the
3622 * shared-page counter for the old page.
3623 *
3624 * Note that this routine assumes that the protection checks have been
3625 * done by the caller (the low-level page fault routine in most cases).
3626 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3627 * done any necessary COW.
3628 *
3629 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3630 * though the page will change only once the write actually happens. This
3631 * avoids a few races, and potentially makes it more efficient.
3632 *
3633 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3634 * but allow concurrent faults), with pte both mapped and locked.
3635 * We return with mmap_lock still held, but pte unmapped and unlocked.
3636 */
3637static vm_fault_t do_wp_page(struct vm_fault *vmf)
3638 __releases(vmf->ptl)
3639{
3640 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3641 struct vm_area_struct *vma = vmf->vma;
3642 struct folio *folio = NULL;
3643 pte_t pte;
3644
3645 if (likely(!unshare)) {
3646 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3647 if (!userfaultfd_wp_async(vma)) {
3648 pte_unmap_unlock(vmf->pte, vmf->ptl);
3649 return handle_userfault(vmf, VM_UFFD_WP);
3650 }
3651
3652 /*
3653 * Nothing needed (cache flush, TLB invalidations,
3654 * etc.) because we're only removing the uffd-wp bit,
3655 * which is completely invisible to the user.
3656 */
3657 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3658
3659 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3660 /*
3661 * Update this to be prepared for following up CoW
3662 * handling
3663 */
3664 vmf->orig_pte = pte;
3665 }
3666
3667 /*
3668 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3669 * is flushed in this case before copying.
3670 */
3671 if (unlikely(userfaultfd_wp(vmf->vma) &&
3672 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3673 flush_tlb_page(vmf->vma, vmf->address);
3674 }
3675
3676 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3677
3678 if (vmf->page)
3679 folio = page_folio(vmf->page);
3680
3681 /*
3682 * Shared mapping: we are guaranteed to have VM_WRITE and
3683 * FAULT_FLAG_WRITE set at this point.
3684 */
3685 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3686 /*
3687 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3688 * VM_PFNMAP VMA.
3689 *
3690 * We should not cow pages in a shared writeable mapping.
3691 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3692 */
3693 if (!vmf->page)
3694 return wp_pfn_shared(vmf);
3695 return wp_page_shared(vmf, folio);
3696 }
3697
3698 /*
3699 * Private mapping: create an exclusive anonymous page copy if reuse
3700 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3701 *
3702 * If we encounter a page that is marked exclusive, we must reuse
3703 * the page without further checks.
3704 */
3705 if (folio && folio_test_anon(folio) &&
3706 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3707 if (!PageAnonExclusive(vmf->page))
3708 SetPageAnonExclusive(vmf->page);
3709 if (unlikely(unshare)) {
3710 pte_unmap_unlock(vmf->pte, vmf->ptl);
3711 return 0;
3712 }
3713 wp_page_reuse(vmf, folio);
3714 return 0;
3715 }
3716 /*
3717 * Ok, we need to copy. Oh, well..
3718 */
3719 if (folio)
3720 folio_get(folio);
3721
3722 pte_unmap_unlock(vmf->pte, vmf->ptl);
3723#ifdef CONFIG_KSM
3724 if (folio && folio_test_ksm(folio))
3725 count_vm_event(COW_KSM);
3726#endif
3727 return wp_page_copy(vmf);
3728}
3729
3730static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3731 unsigned long start_addr, unsigned long end_addr,
3732 struct zap_details *details)
3733{
3734 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3735}
3736
3737static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3738 pgoff_t first_index,
3739 pgoff_t last_index,
3740 struct zap_details *details)
3741{
3742 struct vm_area_struct *vma;
3743 pgoff_t vba, vea, zba, zea;
3744
3745 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3746 vba = vma->vm_pgoff;
3747 vea = vba + vma_pages(vma) - 1;
3748 zba = max(first_index, vba);
3749 zea = min(last_index, vea);
3750
3751 unmap_mapping_range_vma(vma,
3752 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3753 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3754 details);
3755 }
3756}
3757
3758/**
3759 * unmap_mapping_folio() - Unmap single folio from processes.
3760 * @folio: The locked folio to be unmapped.
3761 *
3762 * Unmap this folio from any userspace process which still has it mmaped.
3763 * Typically, for efficiency, the range of nearby pages has already been
3764 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3765 * truncation or invalidation holds the lock on a folio, it may find that
3766 * the page has been remapped again: and then uses unmap_mapping_folio()
3767 * to unmap it finally.
3768 */
3769void unmap_mapping_folio(struct folio *folio)
3770{
3771 struct address_space *mapping = folio->mapping;
3772 struct zap_details details = { };
3773 pgoff_t first_index;
3774 pgoff_t last_index;
3775
3776 VM_BUG_ON(!folio_test_locked(folio));
3777
3778 first_index = folio->index;
3779 last_index = folio_next_index(folio) - 1;
3780
3781 details.even_cows = false;
3782 details.single_folio = folio;
3783 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3784
3785 i_mmap_lock_read(mapping);
3786 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3787 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3788 last_index, &details);
3789 i_mmap_unlock_read(mapping);
3790}
3791
3792/**
3793 * unmap_mapping_pages() - Unmap pages from processes.
3794 * @mapping: The address space containing pages to be unmapped.
3795 * @start: Index of first page to be unmapped.
3796 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3797 * @even_cows: Whether to unmap even private COWed pages.
3798 *
3799 * Unmap the pages in this address space from any userspace process which
3800 * has them mmaped. Generally, you want to remove COWed pages as well when
3801 * a file is being truncated, but not when invalidating pages from the page
3802 * cache.
3803 */
3804void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3805 pgoff_t nr, bool even_cows)
3806{
3807 struct zap_details details = { };
3808 pgoff_t first_index = start;
3809 pgoff_t last_index = start + nr - 1;
3810
3811 details.even_cows = even_cows;
3812 if (last_index < first_index)
3813 last_index = ULONG_MAX;
3814
3815 i_mmap_lock_read(mapping);
3816 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3817 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3818 last_index, &details);
3819 i_mmap_unlock_read(mapping);
3820}
3821EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3822
3823/**
3824 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3825 * address_space corresponding to the specified byte range in the underlying
3826 * file.
3827 *
3828 * @mapping: the address space containing mmaps to be unmapped.
3829 * @holebegin: byte in first page to unmap, relative to the start of
3830 * the underlying file. This will be rounded down to a PAGE_SIZE
3831 * boundary. Note that this is different from truncate_pagecache(), which
3832 * must keep the partial page. In contrast, we must get rid of
3833 * partial pages.
3834 * @holelen: size of prospective hole in bytes. This will be rounded
3835 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3836 * end of the file.
3837 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3838 * but 0 when invalidating pagecache, don't throw away private data.
3839 */
3840void unmap_mapping_range(struct address_space *mapping,
3841 loff_t const holebegin, loff_t const holelen, int even_cows)
3842{
3843 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3844 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3845
3846 /* Check for overflow. */
3847 if (sizeof(holelen) > sizeof(hlen)) {
3848 long long holeend =
3849 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3850 if (holeend & ~(long long)ULONG_MAX)
3851 hlen = ULONG_MAX - hba + 1;
3852 }
3853
3854 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3855}
3856EXPORT_SYMBOL(unmap_mapping_range);
3857
3858/*
3859 * Restore a potential device exclusive pte to a working pte entry
3860 */
3861static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3862{
3863 struct folio *folio = page_folio(vmf->page);
3864 struct vm_area_struct *vma = vmf->vma;
3865 struct mmu_notifier_range range;
3866 vm_fault_t ret;
3867
3868 /*
3869 * We need a reference to lock the folio because we don't hold
3870 * the PTL so a racing thread can remove the device-exclusive
3871 * entry and unmap it. If the folio is free the entry must
3872 * have been removed already. If it happens to have already
3873 * been re-allocated after being freed all we do is lock and
3874 * unlock it.
3875 */
3876 if (!folio_try_get(folio))
3877 return 0;
3878
3879 ret = folio_lock_or_retry(folio, vmf);
3880 if (ret) {
3881 folio_put(folio);
3882 return ret;
3883 }
3884 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3885 vma->vm_mm, vmf->address & PAGE_MASK,
3886 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3887 mmu_notifier_invalidate_range_start(&range);
3888
3889 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3890 &vmf->ptl);
3891 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3892 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3893
3894 if (vmf->pte)
3895 pte_unmap_unlock(vmf->pte, vmf->ptl);
3896 folio_unlock(folio);
3897 folio_put(folio);
3898
3899 mmu_notifier_invalidate_range_end(&range);
3900 return 0;
3901}
3902
3903static inline bool should_try_to_free_swap(struct folio *folio,
3904 struct vm_area_struct *vma,
3905 unsigned int fault_flags)
3906{
3907 if (!folio_test_swapcache(folio))
3908 return false;
3909 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3910 folio_test_mlocked(folio))
3911 return true;
3912 /*
3913 * If we want to map a page that's in the swapcache writable, we
3914 * have to detect via the refcount if we're really the exclusive
3915 * user. Try freeing the swapcache to get rid of the swapcache
3916 * reference only in case it's likely that we'll be the exlusive user.
3917 */
3918 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3919 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3920}
3921
3922static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3923{
3924 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3925 vmf->address, &vmf->ptl);
3926 if (!vmf->pte)
3927 return 0;
3928 /*
3929 * Be careful so that we will only recover a special uffd-wp pte into a
3930 * none pte. Otherwise it means the pte could have changed, so retry.
3931 *
3932 * This should also cover the case where e.g. the pte changed
3933 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3934 * So is_pte_marker() check is not enough to safely drop the pte.
3935 */
3936 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3937 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3938 pte_unmap_unlock(vmf->pte, vmf->ptl);
3939 return 0;
3940}
3941
3942static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3943{
3944 if (vma_is_anonymous(vmf->vma))
3945 return do_anonymous_page(vmf);
3946 else
3947 return do_fault(vmf);
3948}
3949
3950/*
3951 * This is actually a page-missing access, but with uffd-wp special pte
3952 * installed. It means this pte was wr-protected before being unmapped.
3953 */
3954static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3955{
3956 /*
3957 * Just in case there're leftover special ptes even after the region
3958 * got unregistered - we can simply clear them.
3959 */
3960 if (unlikely(!userfaultfd_wp(vmf->vma)))
3961 return pte_marker_clear(vmf);
3962
3963 return do_pte_missing(vmf);
3964}
3965
3966static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3967{
3968 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3969 unsigned long marker = pte_marker_get(entry);
3970
3971 /*
3972 * PTE markers should never be empty. If anything weird happened,
3973 * the best thing to do is to kill the process along with its mm.
3974 */
3975 if (WARN_ON_ONCE(!marker))
3976 return VM_FAULT_SIGBUS;
3977
3978 /* Higher priority than uffd-wp when data corrupted */
3979 if (marker & PTE_MARKER_POISONED)
3980 return VM_FAULT_HWPOISON;
3981
3982 if (pte_marker_entry_uffd_wp(entry))
3983 return pte_marker_handle_uffd_wp(vmf);
3984
3985 /* This is an unknown pte marker */
3986 return VM_FAULT_SIGBUS;
3987}
3988
3989/*
3990 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3991 * but allow concurrent faults), and pte mapped but not yet locked.
3992 * We return with pte unmapped and unlocked.
3993 *
3994 * We return with the mmap_lock locked or unlocked in the same cases
3995 * as does filemap_fault().
3996 */
3997vm_fault_t do_swap_page(struct vm_fault *vmf)
3998{
3999 struct vm_area_struct *vma = vmf->vma;
4000 struct folio *swapcache, *folio = NULL;
4001 struct page *page;
4002 struct swap_info_struct *si = NULL;
4003 rmap_t rmap_flags = RMAP_NONE;
4004 bool need_clear_cache = false;
4005 bool exclusive = false;
4006 swp_entry_t entry;
4007 pte_t pte;
4008 vm_fault_t ret = 0;
4009 void *shadow = NULL;
4010 int nr_pages;
4011 unsigned long page_idx;
4012 unsigned long address;
4013 pte_t *ptep;
4014
4015 if (!pte_unmap_same(vmf))
4016 goto out;
4017
4018 entry = pte_to_swp_entry(vmf->orig_pte);
4019 if (unlikely(non_swap_entry(entry))) {
4020 if (is_migration_entry(entry)) {
4021 migration_entry_wait(vma->vm_mm, vmf->pmd,
4022 vmf->address);
4023 } else if (is_device_exclusive_entry(entry)) {
4024 vmf->page = pfn_swap_entry_to_page(entry);
4025 ret = remove_device_exclusive_entry(vmf);
4026 } else if (is_device_private_entry(entry)) {
4027 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4028 /*
4029 * migrate_to_ram is not yet ready to operate
4030 * under VMA lock.
4031 */
4032 vma_end_read(vma);
4033 ret = VM_FAULT_RETRY;
4034 goto out;
4035 }
4036
4037 vmf->page = pfn_swap_entry_to_page(entry);
4038 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4039 vmf->address, &vmf->ptl);
4040 if (unlikely(!vmf->pte ||
4041 !pte_same(ptep_get(vmf->pte),
4042 vmf->orig_pte)))
4043 goto unlock;
4044
4045 /*
4046 * Get a page reference while we know the page can't be
4047 * freed.
4048 */
4049 get_page(vmf->page);
4050 pte_unmap_unlock(vmf->pte, vmf->ptl);
4051 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4052 put_page(vmf->page);
4053 } else if (is_hwpoison_entry(entry)) {
4054 ret = VM_FAULT_HWPOISON;
4055 } else if (is_pte_marker_entry(entry)) {
4056 ret = handle_pte_marker(vmf);
4057 } else {
4058 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4059 ret = VM_FAULT_SIGBUS;
4060 }
4061 goto out;
4062 }
4063
4064 /* Prevent swapoff from happening to us. */
4065 si = get_swap_device(entry);
4066 if (unlikely(!si))
4067 goto out;
4068
4069 folio = swap_cache_get_folio(entry, vma, vmf->address);
4070 if (folio)
4071 page = folio_file_page(folio, swp_offset(entry));
4072 swapcache = folio;
4073
4074 if (!folio) {
4075 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4076 __swap_count(entry) == 1) {
4077 /*
4078 * Prevent parallel swapin from proceeding with
4079 * the cache flag. Otherwise, another thread may
4080 * finish swapin first, free the entry, and swapout
4081 * reusing the same entry. It's undetectable as
4082 * pte_same() returns true due to entry reuse.
4083 */
4084 if (swapcache_prepare(entry)) {
4085 /* Relax a bit to prevent rapid repeated page faults */
4086 schedule_timeout_uninterruptible(1);
4087 goto out;
4088 }
4089 need_clear_cache = true;
4090
4091 /* skip swapcache */
4092 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4093 vma, vmf->address, false);
4094 page = &folio->page;
4095 if (folio) {
4096 __folio_set_locked(folio);
4097 __folio_set_swapbacked(folio);
4098
4099 if (mem_cgroup_swapin_charge_folio(folio,
4100 vma->vm_mm, GFP_KERNEL,
4101 entry)) {
4102 ret = VM_FAULT_OOM;
4103 goto out_page;
4104 }
4105 mem_cgroup_swapin_uncharge_swap(entry);
4106
4107 shadow = get_shadow_from_swap_cache(entry);
4108 if (shadow)
4109 workingset_refault(folio, shadow);
4110
4111 folio_add_lru(folio);
4112
4113 /* To provide entry to swap_read_folio() */
4114 folio->swap = entry;
4115 swap_read_folio(folio, NULL);
4116 folio->private = NULL;
4117 }
4118 } else {
4119 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4120 vmf);
4121 if (page)
4122 folio = page_folio(page);
4123 swapcache = folio;
4124 }
4125
4126 if (!folio) {
4127 /*
4128 * Back out if somebody else faulted in this pte
4129 * while we released the pte lock.
4130 */
4131 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4132 vmf->address, &vmf->ptl);
4133 if (likely(vmf->pte &&
4134 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4135 ret = VM_FAULT_OOM;
4136 goto unlock;
4137 }
4138
4139 /* Had to read the page from swap area: Major fault */
4140 ret = VM_FAULT_MAJOR;
4141 count_vm_event(PGMAJFAULT);
4142 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4143 } else if (PageHWPoison(page)) {
4144 /*
4145 * hwpoisoned dirty swapcache pages are kept for killing
4146 * owner processes (which may be unknown at hwpoison time)
4147 */
4148 ret = VM_FAULT_HWPOISON;
4149 goto out_release;
4150 }
4151
4152 ret |= folio_lock_or_retry(folio, vmf);
4153 if (ret & VM_FAULT_RETRY)
4154 goto out_release;
4155
4156 if (swapcache) {
4157 /*
4158 * Make sure folio_free_swap() or swapoff did not release the
4159 * swapcache from under us. The page pin, and pte_same test
4160 * below, are not enough to exclude that. Even if it is still
4161 * swapcache, we need to check that the page's swap has not
4162 * changed.
4163 */
4164 if (unlikely(!folio_test_swapcache(folio) ||
4165 page_swap_entry(page).val != entry.val))
4166 goto out_page;
4167
4168 /*
4169 * KSM sometimes has to copy on read faults, for example, if
4170 * page->index of !PageKSM() pages would be nonlinear inside the
4171 * anon VMA -- PageKSM() is lost on actual swapout.
4172 */
4173 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4174 if (unlikely(!folio)) {
4175 ret = VM_FAULT_OOM;
4176 folio = swapcache;
4177 goto out_page;
4178 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4179 ret = VM_FAULT_HWPOISON;
4180 folio = swapcache;
4181 goto out_page;
4182 }
4183 if (folio != swapcache)
4184 page = folio_page(folio, 0);
4185
4186 /*
4187 * If we want to map a page that's in the swapcache writable, we
4188 * have to detect via the refcount if we're really the exclusive
4189 * owner. Try removing the extra reference from the local LRU
4190 * caches if required.
4191 */
4192 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4193 !folio_test_ksm(folio) && !folio_test_lru(folio))
4194 lru_add_drain();
4195 }
4196
4197 folio_throttle_swaprate(folio, GFP_KERNEL);
4198
4199 /*
4200 * Back out if somebody else already faulted in this pte.
4201 */
4202 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4203 &vmf->ptl);
4204 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4205 goto out_nomap;
4206
4207 if (unlikely(!folio_test_uptodate(folio))) {
4208 ret = VM_FAULT_SIGBUS;
4209 goto out_nomap;
4210 }
4211
4212 nr_pages = 1;
4213 page_idx = 0;
4214 address = vmf->address;
4215 ptep = vmf->pte;
4216 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4217 int nr = folio_nr_pages(folio);
4218 unsigned long idx = folio_page_idx(folio, page);
4219 unsigned long folio_start = address - idx * PAGE_SIZE;
4220 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4221 pte_t *folio_ptep;
4222 pte_t folio_pte;
4223
4224 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4225 goto check_folio;
4226 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4227 goto check_folio;
4228
4229 folio_ptep = vmf->pte - idx;
4230 folio_pte = ptep_get(folio_ptep);
4231 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4232 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4233 goto check_folio;
4234
4235 page_idx = idx;
4236 address = folio_start;
4237 ptep = folio_ptep;
4238 nr_pages = nr;
4239 entry = folio->swap;
4240 page = &folio->page;
4241 }
4242
4243check_folio:
4244 /*
4245 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4246 * must never point at an anonymous page in the swapcache that is
4247 * PG_anon_exclusive. Sanity check that this holds and especially, that
4248 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4249 * check after taking the PT lock and making sure that nobody
4250 * concurrently faulted in this page and set PG_anon_exclusive.
4251 */
4252 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4253 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4254
4255 /*
4256 * Check under PT lock (to protect against concurrent fork() sharing
4257 * the swap entry concurrently) for certainly exclusive pages.
4258 */
4259 if (!folio_test_ksm(folio)) {
4260 exclusive = pte_swp_exclusive(vmf->orig_pte);
4261 if (folio != swapcache) {
4262 /*
4263 * We have a fresh page that is not exposed to the
4264 * swapcache -> certainly exclusive.
4265 */
4266 exclusive = true;
4267 } else if (exclusive && folio_test_writeback(folio) &&
4268 data_race(si->flags & SWP_STABLE_WRITES)) {
4269 /*
4270 * This is tricky: not all swap backends support
4271 * concurrent page modifications while under writeback.
4272 *
4273 * So if we stumble over such a page in the swapcache
4274 * we must not set the page exclusive, otherwise we can
4275 * map it writable without further checks and modify it
4276 * while still under writeback.
4277 *
4278 * For these problematic swap backends, simply drop the
4279 * exclusive marker: this is perfectly fine as we start
4280 * writeback only if we fully unmapped the page and
4281 * there are no unexpected references on the page after
4282 * unmapping succeeded. After fully unmapped, no
4283 * further GUP references (FOLL_GET and FOLL_PIN) can
4284 * appear, so dropping the exclusive marker and mapping
4285 * it only R/O is fine.
4286 */
4287 exclusive = false;
4288 }
4289 }
4290
4291 /*
4292 * Some architectures may have to restore extra metadata to the page
4293 * when reading from swap. This metadata may be indexed by swap entry
4294 * so this must be called before swap_free().
4295 */
4296 arch_swap_restore(folio_swap(entry, folio), folio);
4297
4298 /*
4299 * Remove the swap entry and conditionally try to free up the swapcache.
4300 * We're already holding a reference on the page but haven't mapped it
4301 * yet.
4302 */
4303 swap_free_nr(entry, nr_pages);
4304 if (should_try_to_free_swap(folio, vma, vmf->flags))
4305 folio_free_swap(folio);
4306
4307 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4308 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4309 pte = mk_pte(page, vma->vm_page_prot);
4310 if (pte_swp_soft_dirty(vmf->orig_pte))
4311 pte = pte_mksoft_dirty(pte);
4312 if (pte_swp_uffd_wp(vmf->orig_pte))
4313 pte = pte_mkuffd_wp(pte);
4314
4315 /*
4316 * Same logic as in do_wp_page(); however, optimize for pages that are
4317 * certainly not shared either because we just allocated them without
4318 * exposing them to the swapcache or because the swap entry indicates
4319 * exclusivity.
4320 */
4321 if (!folio_test_ksm(folio) &&
4322 (exclusive || folio_ref_count(folio) == 1)) {
4323 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4324 !pte_needs_soft_dirty_wp(vma, pte)) {
4325 pte = pte_mkwrite(pte, vma);
4326 if (vmf->flags & FAULT_FLAG_WRITE) {
4327 pte = pte_mkdirty(pte);
4328 vmf->flags &= ~FAULT_FLAG_WRITE;
4329 }
4330 }
4331 rmap_flags |= RMAP_EXCLUSIVE;
4332 }
4333 folio_ref_add(folio, nr_pages - 1);
4334 flush_icache_pages(vma, page, nr_pages);
4335 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4336
4337 /* ksm created a completely new copy */
4338 if (unlikely(folio != swapcache && swapcache)) {
4339 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4340 folio_add_lru_vma(folio, vma);
4341 } else if (!folio_test_anon(folio)) {
4342 /*
4343 * We currently only expect small !anon folios, which are either
4344 * fully exclusive or fully shared. If we ever get large folios
4345 * here, we have to be careful.
4346 */
4347 VM_WARN_ON_ONCE(folio_test_large(folio));
4348 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4349 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4350 } else {
4351 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4352 rmap_flags);
4353 }
4354
4355 VM_BUG_ON(!folio_test_anon(folio) ||
4356 (pte_write(pte) && !PageAnonExclusive(page)));
4357 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4358 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4359 pte, pte, nr_pages);
4360
4361 folio_unlock(folio);
4362 if (folio != swapcache && swapcache) {
4363 /*
4364 * Hold the lock to avoid the swap entry to be reused
4365 * until we take the PT lock for the pte_same() check
4366 * (to avoid false positives from pte_same). For
4367 * further safety release the lock after the swap_free
4368 * so that the swap count won't change under a
4369 * parallel locked swapcache.
4370 */
4371 folio_unlock(swapcache);
4372 folio_put(swapcache);
4373 }
4374
4375 if (vmf->flags & FAULT_FLAG_WRITE) {
4376 ret |= do_wp_page(vmf);
4377 if (ret & VM_FAULT_ERROR)
4378 ret &= VM_FAULT_ERROR;
4379 goto out;
4380 }
4381
4382 /* No need to invalidate - it was non-present before */
4383 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4384unlock:
4385 if (vmf->pte)
4386 pte_unmap_unlock(vmf->pte, vmf->ptl);
4387out:
4388 /* Clear the swap cache pin for direct swapin after PTL unlock */
4389 if (need_clear_cache)
4390 swapcache_clear(si, entry);
4391 if (si)
4392 put_swap_device(si);
4393 return ret;
4394out_nomap:
4395 if (vmf->pte)
4396 pte_unmap_unlock(vmf->pte, vmf->ptl);
4397out_page:
4398 folio_unlock(folio);
4399out_release:
4400 folio_put(folio);
4401 if (folio != swapcache && swapcache) {
4402 folio_unlock(swapcache);
4403 folio_put(swapcache);
4404 }
4405 if (need_clear_cache)
4406 swapcache_clear(si, entry);
4407 if (si)
4408 put_swap_device(si);
4409 return ret;
4410}
4411
4412static bool pte_range_none(pte_t *pte, int nr_pages)
4413{
4414 int i;
4415
4416 for (i = 0; i < nr_pages; i++) {
4417 if (!pte_none(ptep_get_lockless(pte + i)))
4418 return false;
4419 }
4420
4421 return true;
4422}
4423
4424static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4425{
4426 struct vm_area_struct *vma = vmf->vma;
4427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4428 unsigned long orders;
4429 struct folio *folio;
4430 unsigned long addr;
4431 pte_t *pte;
4432 gfp_t gfp;
4433 int order;
4434
4435 /*
4436 * If uffd is active for the vma we need per-page fault fidelity to
4437 * maintain the uffd semantics.
4438 */
4439 if (unlikely(userfaultfd_armed(vma)))
4440 goto fallback;
4441
4442 /*
4443 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4444 * for this vma. Then filter out the orders that can't be allocated over
4445 * the faulting address and still be fully contained in the vma.
4446 */
4447 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4448 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4449 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4450
4451 if (!orders)
4452 goto fallback;
4453
4454 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4455 if (!pte)
4456 return ERR_PTR(-EAGAIN);
4457
4458 /*
4459 * Find the highest order where the aligned range is completely
4460 * pte_none(). Note that all remaining orders will be completely
4461 * pte_none().
4462 */
4463 order = highest_order(orders);
4464 while (orders) {
4465 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4466 if (pte_range_none(pte + pte_index(addr), 1 << order))
4467 break;
4468 order = next_order(&orders, order);
4469 }
4470
4471 pte_unmap(pte);
4472
4473 if (!orders)
4474 goto fallback;
4475
4476 /* Try allocating the highest of the remaining orders. */
4477 gfp = vma_thp_gfp_mask(vma);
4478 while (orders) {
4479 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4480 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4481 if (folio) {
4482 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4483 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4484 folio_put(folio);
4485 goto next;
4486 }
4487 folio_throttle_swaprate(folio, gfp);
4488 folio_zero_user(folio, vmf->address);
4489 return folio;
4490 }
4491next:
4492 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4493 order = next_order(&orders, order);
4494 }
4495
4496fallback:
4497#endif
4498 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4499}
4500
4501/*
4502 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4503 * but allow concurrent faults), and pte mapped but not yet locked.
4504 * We return with mmap_lock still held, but pte unmapped and unlocked.
4505 */
4506static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4507{
4508 struct vm_area_struct *vma = vmf->vma;
4509 unsigned long addr = vmf->address;
4510 struct folio *folio;
4511 vm_fault_t ret = 0;
4512 int nr_pages = 1;
4513 pte_t entry;
4514
4515 /* File mapping without ->vm_ops ? */
4516 if (vma->vm_flags & VM_SHARED)
4517 return VM_FAULT_SIGBUS;
4518
4519 /*
4520 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4521 * be distinguished from a transient failure of pte_offset_map().
4522 */
4523 if (pte_alloc(vma->vm_mm, vmf->pmd))
4524 return VM_FAULT_OOM;
4525
4526 /* Use the zero-page for reads */
4527 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4528 !mm_forbids_zeropage(vma->vm_mm)) {
4529 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4530 vma->vm_page_prot));
4531 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4532 vmf->address, &vmf->ptl);
4533 if (!vmf->pte)
4534 goto unlock;
4535 if (vmf_pte_changed(vmf)) {
4536 update_mmu_tlb(vma, vmf->address, vmf->pte);
4537 goto unlock;
4538 }
4539 ret = check_stable_address_space(vma->vm_mm);
4540 if (ret)
4541 goto unlock;
4542 /* Deliver the page fault to userland, check inside PT lock */
4543 if (userfaultfd_missing(vma)) {
4544 pte_unmap_unlock(vmf->pte, vmf->ptl);
4545 return handle_userfault(vmf, VM_UFFD_MISSING);
4546 }
4547 goto setpte;
4548 }
4549
4550 /* Allocate our own private page. */
4551 ret = vmf_anon_prepare(vmf);
4552 if (ret)
4553 return ret;
4554 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4555 folio = alloc_anon_folio(vmf);
4556 if (IS_ERR(folio))
4557 return 0;
4558 if (!folio)
4559 goto oom;
4560
4561 nr_pages = folio_nr_pages(folio);
4562 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4563
4564 /*
4565 * The memory barrier inside __folio_mark_uptodate makes sure that
4566 * preceding stores to the page contents become visible before
4567 * the set_pte_at() write.
4568 */
4569 __folio_mark_uptodate(folio);
4570
4571 entry = mk_pte(&folio->page, vma->vm_page_prot);
4572 entry = pte_sw_mkyoung(entry);
4573 if (vma->vm_flags & VM_WRITE)
4574 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4575
4576 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4577 if (!vmf->pte)
4578 goto release;
4579 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4580 update_mmu_tlb(vma, addr, vmf->pte);
4581 goto release;
4582 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4583 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4584 goto release;
4585 }
4586
4587 ret = check_stable_address_space(vma->vm_mm);
4588 if (ret)
4589 goto release;
4590
4591 /* Deliver the page fault to userland, check inside PT lock */
4592 if (userfaultfd_missing(vma)) {
4593 pte_unmap_unlock(vmf->pte, vmf->ptl);
4594 folio_put(folio);
4595 return handle_userfault(vmf, VM_UFFD_MISSING);
4596 }
4597
4598 folio_ref_add(folio, nr_pages - 1);
4599 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4601 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4602#endif
4603 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4604 folio_add_lru_vma(folio, vma);
4605setpte:
4606 if (vmf_orig_pte_uffd_wp(vmf))
4607 entry = pte_mkuffd_wp(entry);
4608 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4609
4610 /* No need to invalidate - it was non-present before */
4611 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4612unlock:
4613 if (vmf->pte)
4614 pte_unmap_unlock(vmf->pte, vmf->ptl);
4615 return ret;
4616release:
4617 folio_put(folio);
4618 goto unlock;
4619oom:
4620 return VM_FAULT_OOM;
4621}
4622
4623/*
4624 * The mmap_lock must have been held on entry, and may have been
4625 * released depending on flags and vma->vm_ops->fault() return value.
4626 * See filemap_fault() and __lock_page_retry().
4627 */
4628static vm_fault_t __do_fault(struct vm_fault *vmf)
4629{
4630 struct vm_area_struct *vma = vmf->vma;
4631 struct folio *folio;
4632 vm_fault_t ret;
4633
4634 /*
4635 * Preallocate pte before we take page_lock because this might lead to
4636 * deadlocks for memcg reclaim which waits for pages under writeback:
4637 * lock_page(A)
4638 * SetPageWriteback(A)
4639 * unlock_page(A)
4640 * lock_page(B)
4641 * lock_page(B)
4642 * pte_alloc_one
4643 * shrink_folio_list
4644 * wait_on_page_writeback(A)
4645 * SetPageWriteback(B)
4646 * unlock_page(B)
4647 * # flush A, B to clear the writeback
4648 */
4649 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4650 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4651 if (!vmf->prealloc_pte)
4652 return VM_FAULT_OOM;
4653 }
4654
4655 ret = vma->vm_ops->fault(vmf);
4656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4657 VM_FAULT_DONE_COW)))
4658 return ret;
4659
4660 folio = page_folio(vmf->page);
4661 if (unlikely(PageHWPoison(vmf->page))) {
4662 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4663 if (ret & VM_FAULT_LOCKED) {
4664 if (page_mapped(vmf->page))
4665 unmap_mapping_folio(folio);
4666 /* Retry if a clean folio was removed from the cache. */
4667 if (mapping_evict_folio(folio->mapping, folio))
4668 poisonret = VM_FAULT_NOPAGE;
4669 folio_unlock(folio);
4670 }
4671 folio_put(folio);
4672 vmf->page = NULL;
4673 return poisonret;
4674 }
4675
4676 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4677 folio_lock(folio);
4678 else
4679 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4680
4681 return ret;
4682}
4683
4684#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4685static void deposit_prealloc_pte(struct vm_fault *vmf)
4686{
4687 struct vm_area_struct *vma = vmf->vma;
4688
4689 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4690 /*
4691 * We are going to consume the prealloc table,
4692 * count that as nr_ptes.
4693 */
4694 mm_inc_nr_ptes(vma->vm_mm);
4695 vmf->prealloc_pte = NULL;
4696}
4697
4698vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4699{
4700 struct folio *folio = page_folio(page);
4701 struct vm_area_struct *vma = vmf->vma;
4702 bool write = vmf->flags & FAULT_FLAG_WRITE;
4703 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4704 pmd_t entry;
4705 vm_fault_t ret = VM_FAULT_FALLBACK;
4706
4707 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4708 return ret;
4709
4710 if (folio_order(folio) != HPAGE_PMD_ORDER)
4711 return ret;
4712 page = &folio->page;
4713
4714 /*
4715 * Just backoff if any subpage of a THP is corrupted otherwise
4716 * the corrupted page may mapped by PMD silently to escape the
4717 * check. This kind of THP just can be PTE mapped. Access to
4718 * the corrupted subpage should trigger SIGBUS as expected.
4719 */
4720 if (unlikely(folio_test_has_hwpoisoned(folio)))
4721 return ret;
4722
4723 /*
4724 * Archs like ppc64 need additional space to store information
4725 * related to pte entry. Use the preallocated table for that.
4726 */
4727 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4728 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4729 if (!vmf->prealloc_pte)
4730 return VM_FAULT_OOM;
4731 }
4732
4733 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4734 if (unlikely(!pmd_none(*vmf->pmd)))
4735 goto out;
4736
4737 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4738
4739 entry = mk_huge_pmd(page, vma->vm_page_prot);
4740 if (write)
4741 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4742
4743 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4744 folio_add_file_rmap_pmd(folio, page, vma);
4745
4746 /*
4747 * deposit and withdraw with pmd lock held
4748 */
4749 if (arch_needs_pgtable_deposit())
4750 deposit_prealloc_pte(vmf);
4751
4752 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4753
4754 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4755
4756 /* fault is handled */
4757 ret = 0;
4758 count_vm_event(THP_FILE_MAPPED);
4759out:
4760 spin_unlock(vmf->ptl);
4761 return ret;
4762}
4763#else
4764vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4765{
4766 return VM_FAULT_FALLBACK;
4767}
4768#endif
4769
4770/**
4771 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4772 * @vmf: Fault decription.
4773 * @folio: The folio that contains @page.
4774 * @page: The first page to create a PTE for.
4775 * @nr: The number of PTEs to create.
4776 * @addr: The first address to create a PTE for.
4777 */
4778void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4779 struct page *page, unsigned int nr, unsigned long addr)
4780{
4781 struct vm_area_struct *vma = vmf->vma;
4782 bool write = vmf->flags & FAULT_FLAG_WRITE;
4783 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4784 pte_t entry;
4785
4786 flush_icache_pages(vma, page, nr);
4787 entry = mk_pte(page, vma->vm_page_prot);
4788
4789 if (prefault && arch_wants_old_prefaulted_pte())
4790 entry = pte_mkold(entry);
4791 else
4792 entry = pte_sw_mkyoung(entry);
4793
4794 if (write)
4795 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4796 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4797 entry = pte_mkuffd_wp(entry);
4798 /* copy-on-write page */
4799 if (write && !(vma->vm_flags & VM_SHARED)) {
4800 VM_BUG_ON_FOLIO(nr != 1, folio);
4801 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4802 folio_add_lru_vma(folio, vma);
4803 } else {
4804 folio_add_file_rmap_ptes(folio, page, nr, vma);
4805 }
4806 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4807
4808 /* no need to invalidate: a not-present page won't be cached */
4809 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4810}
4811
4812static bool vmf_pte_changed(struct vm_fault *vmf)
4813{
4814 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4815 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4816
4817 return !pte_none(ptep_get(vmf->pte));
4818}
4819
4820/**
4821 * finish_fault - finish page fault once we have prepared the page to fault
4822 *
4823 * @vmf: structure describing the fault
4824 *
4825 * This function handles all that is needed to finish a page fault once the
4826 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4827 * given page, adds reverse page mapping, handles memcg charges and LRU
4828 * addition.
4829 *
4830 * The function expects the page to be locked and on success it consumes a
4831 * reference of a page being mapped (for the PTE which maps it).
4832 *
4833 * Return: %0 on success, %VM_FAULT_ code in case of error.
4834 */
4835vm_fault_t finish_fault(struct vm_fault *vmf)
4836{
4837 struct vm_area_struct *vma = vmf->vma;
4838 struct page *page;
4839 struct folio *folio;
4840 vm_fault_t ret;
4841 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4842 !(vma->vm_flags & VM_SHARED);
4843 int type, nr_pages;
4844 unsigned long addr = vmf->address;
4845
4846 /* Did we COW the page? */
4847 if (is_cow)
4848 page = vmf->cow_page;
4849 else
4850 page = vmf->page;
4851
4852 /*
4853 * check even for read faults because we might have lost our CoWed
4854 * page
4855 */
4856 if (!(vma->vm_flags & VM_SHARED)) {
4857 ret = check_stable_address_space(vma->vm_mm);
4858 if (ret)
4859 return ret;
4860 }
4861
4862 if (pmd_none(*vmf->pmd)) {
4863 if (PageTransCompound(page)) {
4864 ret = do_set_pmd(vmf, page);
4865 if (ret != VM_FAULT_FALLBACK)
4866 return ret;
4867 }
4868
4869 if (vmf->prealloc_pte)
4870 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4871 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4872 return VM_FAULT_OOM;
4873 }
4874
4875 folio = page_folio(page);
4876 nr_pages = folio_nr_pages(folio);
4877
4878 /*
4879 * Using per-page fault to maintain the uffd semantics, and same
4880 * approach also applies to non-anonymous-shmem faults to avoid
4881 * inflating the RSS of the process.
4882 */
4883 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
4884 nr_pages = 1;
4885 } else if (nr_pages > 1) {
4886 pgoff_t idx = folio_page_idx(folio, page);
4887 /* The page offset of vmf->address within the VMA. */
4888 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4889 /* The index of the entry in the pagetable for fault page. */
4890 pgoff_t pte_off = pte_index(vmf->address);
4891
4892 /*
4893 * Fallback to per-page fault in case the folio size in page
4894 * cache beyond the VMA limits and PMD pagetable limits.
4895 */
4896 if (unlikely(vma_off < idx ||
4897 vma_off + (nr_pages - idx) > vma_pages(vma) ||
4898 pte_off < idx ||
4899 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
4900 nr_pages = 1;
4901 } else {
4902 /* Now we can set mappings for the whole large folio. */
4903 addr = vmf->address - idx * PAGE_SIZE;
4904 page = &folio->page;
4905 }
4906 }
4907
4908 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4909 addr, &vmf->ptl);
4910 if (!vmf->pte)
4911 return VM_FAULT_NOPAGE;
4912
4913 /* Re-check under ptl */
4914 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
4915 update_mmu_tlb(vma, addr, vmf->pte);
4916 ret = VM_FAULT_NOPAGE;
4917 goto unlock;
4918 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4919 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4920 ret = VM_FAULT_NOPAGE;
4921 goto unlock;
4922 }
4923
4924 folio_ref_add(folio, nr_pages - 1);
4925 set_pte_range(vmf, folio, page, nr_pages, addr);
4926 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4927 add_mm_counter(vma->vm_mm, type, nr_pages);
4928 ret = 0;
4929
4930unlock:
4931 pte_unmap_unlock(vmf->pte, vmf->ptl);
4932 return ret;
4933}
4934
4935static unsigned long fault_around_pages __read_mostly =
4936 65536 >> PAGE_SHIFT;
4937
4938#ifdef CONFIG_DEBUG_FS
4939static int fault_around_bytes_get(void *data, u64 *val)
4940{
4941 *val = fault_around_pages << PAGE_SHIFT;
4942 return 0;
4943}
4944
4945/*
4946 * fault_around_bytes must be rounded down to the nearest page order as it's
4947 * what do_fault_around() expects to see.
4948 */
4949static int fault_around_bytes_set(void *data, u64 val)
4950{
4951 if (val / PAGE_SIZE > PTRS_PER_PTE)
4952 return -EINVAL;
4953
4954 /*
4955 * The minimum value is 1 page, however this results in no fault-around
4956 * at all. See should_fault_around().
4957 */
4958 val = max(val, PAGE_SIZE);
4959 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4960
4961 return 0;
4962}
4963DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4964 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4965
4966static int __init fault_around_debugfs(void)
4967{
4968 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4969 &fault_around_bytes_fops);
4970 return 0;
4971}
4972late_initcall(fault_around_debugfs);
4973#endif
4974
4975/*
4976 * do_fault_around() tries to map few pages around the fault address. The hope
4977 * is that the pages will be needed soon and this will lower the number of
4978 * faults to handle.
4979 *
4980 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4981 * not ready to be mapped: not up-to-date, locked, etc.
4982 *
4983 * This function doesn't cross VMA or page table boundaries, in order to call
4984 * map_pages() and acquire a PTE lock only once.
4985 *
4986 * fault_around_pages defines how many pages we'll try to map.
4987 * do_fault_around() expects it to be set to a power of two less than or equal
4988 * to PTRS_PER_PTE.
4989 *
4990 * The virtual address of the area that we map is naturally aligned to
4991 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4992 * (and therefore to page order). This way it's easier to guarantee
4993 * that we don't cross page table boundaries.
4994 */
4995static vm_fault_t do_fault_around(struct vm_fault *vmf)
4996{
4997 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4998 pgoff_t pte_off = pte_index(vmf->address);
4999 /* The page offset of vmf->address within the VMA. */
5000 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5001 pgoff_t from_pte, to_pte;
5002 vm_fault_t ret;
5003
5004 /* The PTE offset of the start address, clamped to the VMA. */
5005 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5006 pte_off - min(pte_off, vma_off));
5007
5008 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5009 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5010 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5011
5012 if (pmd_none(*vmf->pmd)) {
5013 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5014 if (!vmf->prealloc_pte)
5015 return VM_FAULT_OOM;
5016 }
5017
5018 rcu_read_lock();
5019 ret = vmf->vma->vm_ops->map_pages(vmf,
5020 vmf->pgoff + from_pte - pte_off,
5021 vmf->pgoff + to_pte - pte_off);
5022 rcu_read_unlock();
5023
5024 return ret;
5025}
5026
5027/* Return true if we should do read fault-around, false otherwise */
5028static inline bool should_fault_around(struct vm_fault *vmf)
5029{
5030 /* No ->map_pages? No way to fault around... */
5031 if (!vmf->vma->vm_ops->map_pages)
5032 return false;
5033
5034 if (uffd_disable_fault_around(vmf->vma))
5035 return false;
5036
5037 /* A single page implies no faulting 'around' at all. */
5038 return fault_around_pages > 1;
5039}
5040
5041static vm_fault_t do_read_fault(struct vm_fault *vmf)
5042{
5043 vm_fault_t ret = 0;
5044 struct folio *folio;
5045
5046 /*
5047 * Let's call ->map_pages() first and use ->fault() as fallback
5048 * if page by the offset is not ready to be mapped (cold cache or
5049 * something).
5050 */
5051 if (should_fault_around(vmf)) {
5052 ret = do_fault_around(vmf);
5053 if (ret)
5054 return ret;
5055 }
5056
5057 ret = vmf_can_call_fault(vmf);
5058 if (ret)
5059 return ret;
5060
5061 ret = __do_fault(vmf);
5062 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5063 return ret;
5064
5065 ret |= finish_fault(vmf);
5066 folio = page_folio(vmf->page);
5067 folio_unlock(folio);
5068 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5069 folio_put(folio);
5070 return ret;
5071}
5072
5073static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5074{
5075 struct vm_area_struct *vma = vmf->vma;
5076 struct folio *folio;
5077 vm_fault_t ret;
5078
5079 ret = vmf_can_call_fault(vmf);
5080 if (!ret)
5081 ret = vmf_anon_prepare(vmf);
5082 if (ret)
5083 return ret;
5084
5085 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5086 if (!folio)
5087 return VM_FAULT_OOM;
5088
5089 vmf->cow_page = &folio->page;
5090
5091 ret = __do_fault(vmf);
5092 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5093 goto uncharge_out;
5094 if (ret & VM_FAULT_DONE_COW)
5095 return ret;
5096
5097 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
5098 __folio_mark_uptodate(folio);
5099
5100 ret |= finish_fault(vmf);
5101 unlock_page(vmf->page);
5102 put_page(vmf->page);
5103 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5104 goto uncharge_out;
5105 return ret;
5106uncharge_out:
5107 folio_put(folio);
5108 return ret;
5109}
5110
5111static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5112{
5113 struct vm_area_struct *vma = vmf->vma;
5114 vm_fault_t ret, tmp;
5115 struct folio *folio;
5116
5117 ret = vmf_can_call_fault(vmf);
5118 if (ret)
5119 return ret;
5120
5121 ret = __do_fault(vmf);
5122 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5123 return ret;
5124
5125 folio = page_folio(vmf->page);
5126
5127 /*
5128 * Check if the backing address space wants to know that the page is
5129 * about to become writable
5130 */
5131 if (vma->vm_ops->page_mkwrite) {
5132 folio_unlock(folio);
5133 tmp = do_page_mkwrite(vmf, folio);
5134 if (unlikely(!tmp ||
5135 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5136 folio_put(folio);
5137 return tmp;
5138 }
5139 }
5140
5141 ret |= finish_fault(vmf);
5142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5143 VM_FAULT_RETRY))) {
5144 folio_unlock(folio);
5145 folio_put(folio);
5146 return ret;
5147 }
5148
5149 ret |= fault_dirty_shared_page(vmf);
5150 return ret;
5151}
5152
5153/*
5154 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5155 * but allow concurrent faults).
5156 * The mmap_lock may have been released depending on flags and our
5157 * return value. See filemap_fault() and __folio_lock_or_retry().
5158 * If mmap_lock is released, vma may become invalid (for example
5159 * by other thread calling munmap()).
5160 */
5161static vm_fault_t do_fault(struct vm_fault *vmf)
5162{
5163 struct vm_area_struct *vma = vmf->vma;
5164 struct mm_struct *vm_mm = vma->vm_mm;
5165 vm_fault_t ret;
5166
5167 /*
5168 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5169 */
5170 if (!vma->vm_ops->fault) {
5171 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5172 vmf->address, &vmf->ptl);
5173 if (unlikely(!vmf->pte))
5174 ret = VM_FAULT_SIGBUS;
5175 else {
5176 /*
5177 * Make sure this is not a temporary clearing of pte
5178 * by holding ptl and checking again. A R/M/W update
5179 * of pte involves: take ptl, clearing the pte so that
5180 * we don't have concurrent modification by hardware
5181 * followed by an update.
5182 */
5183 if (unlikely(pte_none(ptep_get(vmf->pte))))
5184 ret = VM_FAULT_SIGBUS;
5185 else
5186 ret = VM_FAULT_NOPAGE;
5187
5188 pte_unmap_unlock(vmf->pte, vmf->ptl);
5189 }
5190 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5191 ret = do_read_fault(vmf);
5192 else if (!(vma->vm_flags & VM_SHARED))
5193 ret = do_cow_fault(vmf);
5194 else
5195 ret = do_shared_fault(vmf);
5196
5197 /* preallocated pagetable is unused: free it */
5198 if (vmf->prealloc_pte) {
5199 pte_free(vm_mm, vmf->prealloc_pte);
5200 vmf->prealloc_pte = NULL;
5201 }
5202 return ret;
5203}
5204
5205int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5206 unsigned long addr, int page_nid, int *flags)
5207{
5208 struct vm_area_struct *vma = vmf->vma;
5209
5210 /* Record the current PID acceesing VMA */
5211 vma_set_access_pid_bit(vma);
5212
5213 count_vm_numa_event(NUMA_HINT_FAULTS);
5214 if (page_nid == numa_node_id()) {
5215 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5216 *flags |= TNF_FAULT_LOCAL;
5217 }
5218
5219 return mpol_misplaced(folio, vmf, addr);
5220}
5221
5222static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5223 unsigned long fault_addr, pte_t *fault_pte,
5224 bool writable)
5225{
5226 pte_t pte, old_pte;
5227
5228 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5229 pte = pte_modify(old_pte, vma->vm_page_prot);
5230 pte = pte_mkyoung(pte);
5231 if (writable)
5232 pte = pte_mkwrite(pte, vma);
5233 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5234 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5235}
5236
5237static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5238 struct folio *folio, pte_t fault_pte,
5239 bool ignore_writable, bool pte_write_upgrade)
5240{
5241 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5242 unsigned long start, end, addr = vmf->address;
5243 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5244 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5245 pte_t *start_ptep;
5246
5247 /* Stay within the VMA and within the page table. */
5248 start = max3(addr_start, pt_start, vma->vm_start);
5249 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5250 vma->vm_end);
5251 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5252
5253 /* Restore all PTEs' mapping of the large folio */
5254 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5255 pte_t ptent = ptep_get(start_ptep);
5256 bool writable = false;
5257
5258 if (!pte_present(ptent) || !pte_protnone(ptent))
5259 continue;
5260
5261 if (pfn_folio(pte_pfn(ptent)) != folio)
5262 continue;
5263
5264 if (!ignore_writable) {
5265 ptent = pte_modify(ptent, vma->vm_page_prot);
5266 writable = pte_write(ptent);
5267 if (!writable && pte_write_upgrade &&
5268 can_change_pte_writable(vma, addr, ptent))
5269 writable = true;
5270 }
5271
5272 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5273 }
5274}
5275
5276static vm_fault_t do_numa_page(struct vm_fault *vmf)
5277{
5278 struct vm_area_struct *vma = vmf->vma;
5279 struct folio *folio = NULL;
5280 int nid = NUMA_NO_NODE;
5281 bool writable = false, ignore_writable = false;
5282 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5283 int last_cpupid;
5284 int target_nid;
5285 pte_t pte, old_pte;
5286 int flags = 0, nr_pages;
5287
5288 /*
5289 * The pte cannot be used safely until we verify, while holding the page
5290 * table lock, that its contents have not changed during fault handling.
5291 */
5292 spin_lock(vmf->ptl);
5293 /* Read the live PTE from the page tables: */
5294 old_pte = ptep_get(vmf->pte);
5295
5296 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5297 pte_unmap_unlock(vmf->pte, vmf->ptl);
5298 return 0;
5299 }
5300
5301 pte = pte_modify(old_pte, vma->vm_page_prot);
5302
5303 /*
5304 * Detect now whether the PTE could be writable; this information
5305 * is only valid while holding the PT lock.
5306 */
5307 writable = pte_write(pte);
5308 if (!writable && pte_write_upgrade &&
5309 can_change_pte_writable(vma, vmf->address, pte))
5310 writable = true;
5311
5312 folio = vm_normal_folio(vma, vmf->address, pte);
5313 if (!folio || folio_is_zone_device(folio))
5314 goto out_map;
5315
5316 /*
5317 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5318 * much anyway since they can be in shared cache state. This misses
5319 * the case where a mapping is writable but the process never writes
5320 * to it but pte_write gets cleared during protection updates and
5321 * pte_dirty has unpredictable behaviour between PTE scan updates,
5322 * background writeback, dirty balancing and application behaviour.
5323 */
5324 if (!writable)
5325 flags |= TNF_NO_GROUP;
5326
5327 /*
5328 * Flag if the folio is shared between multiple address spaces. This
5329 * is later used when determining whether to group tasks together
5330 */
5331 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5332 flags |= TNF_SHARED;
5333
5334 nid = folio_nid(folio);
5335 nr_pages = folio_nr_pages(folio);
5336 /*
5337 * For memory tiering mode, cpupid of slow memory page is used
5338 * to record page access time. So use default value.
5339 */
5340 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5341 !node_is_toptier(nid))
5342 last_cpupid = (-1 & LAST_CPUPID_MASK);
5343 else
5344 last_cpupid = folio_last_cpupid(folio);
5345 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5346 if (target_nid == NUMA_NO_NODE)
5347 goto out_map;
5348 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5349 flags |= TNF_MIGRATE_FAIL;
5350 goto out_map;
5351 }
5352 /* The folio is isolated and isolation code holds a folio reference. */
5353 pte_unmap_unlock(vmf->pte, vmf->ptl);
5354 writable = false;
5355 ignore_writable = true;
5356
5357 /* Migrate to the requested node */
5358 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5359 nid = target_nid;
5360 flags |= TNF_MIGRATED;
5361 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5362 return 0;
5363 }
5364
5365 flags |= TNF_MIGRATE_FAIL;
5366 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5367 vmf->address, &vmf->ptl);
5368 if (unlikely(!vmf->pte))
5369 return 0;
5370 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5371 pte_unmap_unlock(vmf->pte, vmf->ptl);
5372 return 0;
5373 }
5374out_map:
5375 /*
5376 * Make it present again, depending on how arch implements
5377 * non-accessible ptes, some can allow access by kernel mode.
5378 */
5379 if (folio && folio_test_large(folio))
5380 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5381 pte_write_upgrade);
5382 else
5383 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5384 writable);
5385 pte_unmap_unlock(vmf->pte, vmf->ptl);
5386
5387 if (nid != NUMA_NO_NODE)
5388 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5389 return 0;
5390}
5391
5392static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5393{
5394 struct vm_area_struct *vma = vmf->vma;
5395 if (vma_is_anonymous(vma))
5396 return do_huge_pmd_anonymous_page(vmf);
5397 if (vma->vm_ops->huge_fault)
5398 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5399 return VM_FAULT_FALLBACK;
5400}
5401
5402/* `inline' is required to avoid gcc 4.1.2 build error */
5403static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5404{
5405 struct vm_area_struct *vma = vmf->vma;
5406 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5407 vm_fault_t ret;
5408
5409 if (vma_is_anonymous(vma)) {
5410 if (likely(!unshare) &&
5411 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5412 if (userfaultfd_wp_async(vmf->vma))
5413 goto split;
5414 return handle_userfault(vmf, VM_UFFD_WP);
5415 }
5416 return do_huge_pmd_wp_page(vmf);
5417 }
5418
5419 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5420 if (vma->vm_ops->huge_fault) {
5421 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5422 if (!(ret & VM_FAULT_FALLBACK))
5423 return ret;
5424 }
5425 }
5426
5427split:
5428 /* COW or write-notify handled on pte level: split pmd. */
5429 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5430
5431 return VM_FAULT_FALLBACK;
5432}
5433
5434static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5435{
5436#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5437 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5438 struct vm_area_struct *vma = vmf->vma;
5439 /* No support for anonymous transparent PUD pages yet */
5440 if (vma_is_anonymous(vma))
5441 return VM_FAULT_FALLBACK;
5442 if (vma->vm_ops->huge_fault)
5443 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5444#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5445 return VM_FAULT_FALLBACK;
5446}
5447
5448static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5449{
5450#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5451 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5452 struct vm_area_struct *vma = vmf->vma;
5453 vm_fault_t ret;
5454
5455 /* No support for anonymous transparent PUD pages yet */
5456 if (vma_is_anonymous(vma))
5457 goto split;
5458 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5459 if (vma->vm_ops->huge_fault) {
5460 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5461 if (!(ret & VM_FAULT_FALLBACK))
5462 return ret;
5463 }
5464 }
5465split:
5466 /* COW or write-notify not handled on PUD level: split pud.*/
5467 __split_huge_pud(vma, vmf->pud, vmf->address);
5468#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5469 return VM_FAULT_FALLBACK;
5470}
5471
5472/*
5473 * These routines also need to handle stuff like marking pages dirty
5474 * and/or accessed for architectures that don't do it in hardware (most
5475 * RISC architectures). The early dirtying is also good on the i386.
5476 *
5477 * There is also a hook called "update_mmu_cache()" that architectures
5478 * with external mmu caches can use to update those (ie the Sparc or
5479 * PowerPC hashed page tables that act as extended TLBs).
5480 *
5481 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5482 * concurrent faults).
5483 *
5484 * The mmap_lock may have been released depending on flags and our return value.
5485 * See filemap_fault() and __folio_lock_or_retry().
5486 */
5487static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5488{
5489 pte_t entry;
5490
5491 if (unlikely(pmd_none(*vmf->pmd))) {
5492 /*
5493 * Leave __pte_alloc() until later: because vm_ops->fault may
5494 * want to allocate huge page, and if we expose page table
5495 * for an instant, it will be difficult to retract from
5496 * concurrent faults and from rmap lookups.
5497 */
5498 vmf->pte = NULL;
5499 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5500 } else {
5501 /*
5502 * A regular pmd is established and it can't morph into a huge
5503 * pmd by anon khugepaged, since that takes mmap_lock in write
5504 * mode; but shmem or file collapse to THP could still morph
5505 * it into a huge pmd: just retry later if so.
5506 */
5507 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5508 vmf->address, &vmf->ptl);
5509 if (unlikely(!vmf->pte))
5510 return 0;
5511 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5512 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5513
5514 if (pte_none(vmf->orig_pte)) {
5515 pte_unmap(vmf->pte);
5516 vmf->pte = NULL;
5517 }
5518 }
5519
5520 if (!vmf->pte)
5521 return do_pte_missing(vmf);
5522
5523 if (!pte_present(vmf->orig_pte))
5524 return do_swap_page(vmf);
5525
5526 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5527 return do_numa_page(vmf);
5528
5529 spin_lock(vmf->ptl);
5530 entry = vmf->orig_pte;
5531 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5532 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5533 goto unlock;
5534 }
5535 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5536 if (!pte_write(entry))
5537 return do_wp_page(vmf);
5538 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5539 entry = pte_mkdirty(entry);
5540 }
5541 entry = pte_mkyoung(entry);
5542 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5543 vmf->flags & FAULT_FLAG_WRITE)) {
5544 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5545 vmf->pte, 1);
5546 } else {
5547 /* Skip spurious TLB flush for retried page fault */
5548 if (vmf->flags & FAULT_FLAG_TRIED)
5549 goto unlock;
5550 /*
5551 * This is needed only for protection faults but the arch code
5552 * is not yet telling us if this is a protection fault or not.
5553 * This still avoids useless tlb flushes for .text page faults
5554 * with threads.
5555 */
5556 if (vmf->flags & FAULT_FLAG_WRITE)
5557 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5558 vmf->pte);
5559 }
5560unlock:
5561 pte_unmap_unlock(vmf->pte, vmf->ptl);
5562 return 0;
5563}
5564
5565/*
5566 * On entry, we hold either the VMA lock or the mmap_lock
5567 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5568 * the result, the mmap_lock is not held on exit. See filemap_fault()
5569 * and __folio_lock_or_retry().
5570 */
5571static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5572 unsigned long address, unsigned int flags)
5573{
5574 struct vm_fault vmf = {
5575 .vma = vma,
5576 .address = address & PAGE_MASK,
5577 .real_address = address,
5578 .flags = flags,
5579 .pgoff = linear_page_index(vma, address),
5580 .gfp_mask = __get_fault_gfp_mask(vma),
5581 };
5582 struct mm_struct *mm = vma->vm_mm;
5583 unsigned long vm_flags = vma->vm_flags;
5584 pgd_t *pgd;
5585 p4d_t *p4d;
5586 vm_fault_t ret;
5587
5588 pgd = pgd_offset(mm, address);
5589 p4d = p4d_alloc(mm, pgd, address);
5590 if (!p4d)
5591 return VM_FAULT_OOM;
5592
5593 vmf.pud = pud_alloc(mm, p4d, address);
5594 if (!vmf.pud)
5595 return VM_FAULT_OOM;
5596retry_pud:
5597 if (pud_none(*vmf.pud) &&
5598 thp_vma_allowable_order(vma, vm_flags,
5599 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5600 ret = create_huge_pud(&vmf);
5601 if (!(ret & VM_FAULT_FALLBACK))
5602 return ret;
5603 } else {
5604 pud_t orig_pud = *vmf.pud;
5605
5606 barrier();
5607 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5608
5609 /*
5610 * TODO once we support anonymous PUDs: NUMA case and
5611 * FAULT_FLAG_UNSHARE handling.
5612 */
5613 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5614 ret = wp_huge_pud(&vmf, orig_pud);
5615 if (!(ret & VM_FAULT_FALLBACK))
5616 return ret;
5617 } else {
5618 huge_pud_set_accessed(&vmf, orig_pud);
5619 return 0;
5620 }
5621 }
5622 }
5623
5624 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5625 if (!vmf.pmd)
5626 return VM_FAULT_OOM;
5627
5628 /* Huge pud page fault raced with pmd_alloc? */
5629 if (pud_trans_unstable(vmf.pud))
5630 goto retry_pud;
5631
5632 if (pmd_none(*vmf.pmd) &&
5633 thp_vma_allowable_order(vma, vm_flags,
5634 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5635 ret = create_huge_pmd(&vmf);
5636 if (!(ret & VM_FAULT_FALLBACK))
5637 return ret;
5638 } else {
5639 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5640
5641 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5642 VM_BUG_ON(thp_migration_supported() &&
5643 !is_pmd_migration_entry(vmf.orig_pmd));
5644 if (is_pmd_migration_entry(vmf.orig_pmd))
5645 pmd_migration_entry_wait(mm, vmf.pmd);
5646 return 0;
5647 }
5648 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5649 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5650 return do_huge_pmd_numa_page(&vmf);
5651
5652 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5653 !pmd_write(vmf.orig_pmd)) {
5654 ret = wp_huge_pmd(&vmf);
5655 if (!(ret & VM_FAULT_FALLBACK))
5656 return ret;
5657 } else {
5658 huge_pmd_set_accessed(&vmf);
5659 return 0;
5660 }
5661 }
5662 }
5663
5664 return handle_pte_fault(&vmf);
5665}
5666
5667/**
5668 * mm_account_fault - Do page fault accounting
5669 * @mm: mm from which memcg should be extracted. It can be NULL.
5670 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5671 * of perf event counters, but we'll still do the per-task accounting to
5672 * the task who triggered this page fault.
5673 * @address: the faulted address.
5674 * @flags: the fault flags.
5675 * @ret: the fault retcode.
5676 *
5677 * This will take care of most of the page fault accounting. Meanwhile, it
5678 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5679 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5680 * still be in per-arch page fault handlers at the entry of page fault.
5681 */
5682static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5683 unsigned long address, unsigned int flags,
5684 vm_fault_t ret)
5685{
5686 bool major;
5687
5688 /* Incomplete faults will be accounted upon completion. */
5689 if (ret & VM_FAULT_RETRY)
5690 return;
5691
5692 /*
5693 * To preserve the behavior of older kernels, PGFAULT counters record
5694 * both successful and failed faults, as opposed to perf counters,
5695 * which ignore failed cases.
5696 */
5697 count_vm_event(PGFAULT);
5698 count_memcg_event_mm(mm, PGFAULT);
5699
5700 /*
5701 * Do not account for unsuccessful faults (e.g. when the address wasn't
5702 * valid). That includes arch_vma_access_permitted() failing before
5703 * reaching here. So this is not a "this many hardware page faults"
5704 * counter. We should use the hw profiling for that.
5705 */
5706 if (ret & VM_FAULT_ERROR)
5707 return;
5708
5709 /*
5710 * We define the fault as a major fault when the final successful fault
5711 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5712 * handle it immediately previously).
5713 */
5714 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5715
5716 if (major)
5717 current->maj_flt++;
5718 else
5719 current->min_flt++;
5720
5721 /*
5722 * If the fault is done for GUP, regs will be NULL. We only do the
5723 * accounting for the per thread fault counters who triggered the
5724 * fault, and we skip the perf event updates.
5725 */
5726 if (!regs)
5727 return;
5728
5729 if (major)
5730 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5731 else
5732 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5733}
5734
5735#ifdef CONFIG_LRU_GEN
5736static void lru_gen_enter_fault(struct vm_area_struct *vma)
5737{
5738 /* the LRU algorithm only applies to accesses with recency */
5739 current->in_lru_fault = vma_has_recency(vma);
5740}
5741
5742static void lru_gen_exit_fault(void)
5743{
5744 current->in_lru_fault = false;
5745}
5746#else
5747static void lru_gen_enter_fault(struct vm_area_struct *vma)
5748{
5749}
5750
5751static void lru_gen_exit_fault(void)
5752{
5753}
5754#endif /* CONFIG_LRU_GEN */
5755
5756static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5757 unsigned int *flags)
5758{
5759 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5760 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5761 return VM_FAULT_SIGSEGV;
5762 /*
5763 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5764 * just treat it like an ordinary read-fault otherwise.
5765 */
5766 if (!is_cow_mapping(vma->vm_flags))
5767 *flags &= ~FAULT_FLAG_UNSHARE;
5768 } else if (*flags & FAULT_FLAG_WRITE) {
5769 /* Write faults on read-only mappings are impossible ... */
5770 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5771 return VM_FAULT_SIGSEGV;
5772 /* ... and FOLL_FORCE only applies to COW mappings. */
5773 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5774 !is_cow_mapping(vma->vm_flags)))
5775 return VM_FAULT_SIGSEGV;
5776 }
5777#ifdef CONFIG_PER_VMA_LOCK
5778 /*
5779 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5780 * the assumption that lock is dropped on VM_FAULT_RETRY.
5781 */
5782 if (WARN_ON_ONCE((*flags &
5783 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5784 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5785 return VM_FAULT_SIGSEGV;
5786#endif
5787
5788 return 0;
5789}
5790
5791/*
5792 * By the time we get here, we already hold the mm semaphore
5793 *
5794 * The mmap_lock may have been released depending on flags and our
5795 * return value. See filemap_fault() and __folio_lock_or_retry().
5796 */
5797vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5798 unsigned int flags, struct pt_regs *regs)
5799{
5800 /* If the fault handler drops the mmap_lock, vma may be freed */
5801 struct mm_struct *mm = vma->vm_mm;
5802 vm_fault_t ret;
5803 bool is_droppable;
5804
5805 __set_current_state(TASK_RUNNING);
5806
5807 ret = sanitize_fault_flags(vma, &flags);
5808 if (ret)
5809 goto out;
5810
5811 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5812 flags & FAULT_FLAG_INSTRUCTION,
5813 flags & FAULT_FLAG_REMOTE)) {
5814 ret = VM_FAULT_SIGSEGV;
5815 goto out;
5816 }
5817
5818 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
5819
5820 /*
5821 * Enable the memcg OOM handling for faults triggered in user
5822 * space. Kernel faults are handled more gracefully.
5823 */
5824 if (flags & FAULT_FLAG_USER)
5825 mem_cgroup_enter_user_fault();
5826
5827 lru_gen_enter_fault(vma);
5828
5829 if (unlikely(is_vm_hugetlb_page(vma)))
5830 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5831 else
5832 ret = __handle_mm_fault(vma, address, flags);
5833
5834 /*
5835 * Warning: It is no longer safe to dereference vma-> after this point,
5836 * because mmap_lock might have been dropped by __handle_mm_fault(), so
5837 * vma might be destroyed from underneath us.
5838 */
5839
5840 lru_gen_exit_fault();
5841
5842 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
5843 if (is_droppable)
5844 ret &= ~VM_FAULT_OOM;
5845
5846 if (flags & FAULT_FLAG_USER) {
5847 mem_cgroup_exit_user_fault();
5848 /*
5849 * The task may have entered a memcg OOM situation but
5850 * if the allocation error was handled gracefully (no
5851 * VM_FAULT_OOM), there is no need to kill anything.
5852 * Just clean up the OOM state peacefully.
5853 */
5854 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5855 mem_cgroup_oom_synchronize(false);
5856 }
5857out:
5858 mm_account_fault(mm, regs, address, flags, ret);
5859
5860 return ret;
5861}
5862EXPORT_SYMBOL_GPL(handle_mm_fault);
5863
5864#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5865#include <linux/extable.h>
5866
5867static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5868{
5869 if (likely(mmap_read_trylock(mm)))
5870 return true;
5871
5872 if (regs && !user_mode(regs)) {
5873 unsigned long ip = exception_ip(regs);
5874 if (!search_exception_tables(ip))
5875 return false;
5876 }
5877
5878 return !mmap_read_lock_killable(mm);
5879}
5880
5881static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5882{
5883 /*
5884 * We don't have this operation yet.
5885 *
5886 * It should be easy enough to do: it's basically a
5887 * atomic_long_try_cmpxchg_acquire()
5888 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5889 * it also needs the proper lockdep magic etc.
5890 */
5891 return false;
5892}
5893
5894static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5895{
5896 mmap_read_unlock(mm);
5897 if (regs && !user_mode(regs)) {
5898 unsigned long ip = exception_ip(regs);
5899 if (!search_exception_tables(ip))
5900 return false;
5901 }
5902 return !mmap_write_lock_killable(mm);
5903}
5904
5905/*
5906 * Helper for page fault handling.
5907 *
5908 * This is kind of equivalend to "mmap_read_lock()" followed
5909 * by "find_extend_vma()", except it's a lot more careful about
5910 * the locking (and will drop the lock on failure).
5911 *
5912 * For example, if we have a kernel bug that causes a page
5913 * fault, we don't want to just use mmap_read_lock() to get
5914 * the mm lock, because that would deadlock if the bug were
5915 * to happen while we're holding the mm lock for writing.
5916 *
5917 * So this checks the exception tables on kernel faults in
5918 * order to only do this all for instructions that are actually
5919 * expected to fault.
5920 *
5921 * We can also actually take the mm lock for writing if we
5922 * need to extend the vma, which helps the VM layer a lot.
5923 */
5924struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5925 unsigned long addr, struct pt_regs *regs)
5926{
5927 struct vm_area_struct *vma;
5928
5929 if (!get_mmap_lock_carefully(mm, regs))
5930 return NULL;
5931
5932 vma = find_vma(mm, addr);
5933 if (likely(vma && (vma->vm_start <= addr)))
5934 return vma;
5935
5936 /*
5937 * Well, dang. We might still be successful, but only
5938 * if we can extend a vma to do so.
5939 */
5940 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5941 mmap_read_unlock(mm);
5942 return NULL;
5943 }
5944
5945 /*
5946 * We can try to upgrade the mmap lock atomically,
5947 * in which case we can continue to use the vma
5948 * we already looked up.
5949 *
5950 * Otherwise we'll have to drop the mmap lock and
5951 * re-take it, and also look up the vma again,
5952 * re-checking it.
5953 */
5954 if (!mmap_upgrade_trylock(mm)) {
5955 if (!upgrade_mmap_lock_carefully(mm, regs))
5956 return NULL;
5957
5958 vma = find_vma(mm, addr);
5959 if (!vma)
5960 goto fail;
5961 if (vma->vm_start <= addr)
5962 goto success;
5963 if (!(vma->vm_flags & VM_GROWSDOWN))
5964 goto fail;
5965 }
5966
5967 if (expand_stack_locked(vma, addr))
5968 goto fail;
5969
5970success:
5971 mmap_write_downgrade(mm);
5972 return vma;
5973
5974fail:
5975 mmap_write_unlock(mm);
5976 return NULL;
5977}
5978#endif
5979
5980#ifdef CONFIG_PER_VMA_LOCK
5981/*
5982 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5983 * stable and not isolated. If the VMA is not found or is being modified the
5984 * function returns NULL.
5985 */
5986struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5987 unsigned long address)
5988{
5989 MA_STATE(mas, &mm->mm_mt, address, address);
5990 struct vm_area_struct *vma;
5991
5992 rcu_read_lock();
5993retry:
5994 vma = mas_walk(&mas);
5995 if (!vma)
5996 goto inval;
5997
5998 if (!vma_start_read(vma))
5999 goto inval;
6000
6001 /* Check since vm_start/vm_end might change before we lock the VMA */
6002 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6003 goto inval_end_read;
6004
6005 /* Check if the VMA got isolated after we found it */
6006 if (vma->detached) {
6007 vma_end_read(vma);
6008 count_vm_vma_lock_event(VMA_LOCK_MISS);
6009 /* The area was replaced with another one */
6010 goto retry;
6011 }
6012
6013 rcu_read_unlock();
6014 return vma;
6015
6016inval_end_read:
6017 vma_end_read(vma);
6018inval:
6019 rcu_read_unlock();
6020 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6021 return NULL;
6022}
6023#endif /* CONFIG_PER_VMA_LOCK */
6024
6025#ifndef __PAGETABLE_P4D_FOLDED
6026/*
6027 * Allocate p4d page table.
6028 * We've already handled the fast-path in-line.
6029 */
6030int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6031{
6032 p4d_t *new = p4d_alloc_one(mm, address);
6033 if (!new)
6034 return -ENOMEM;
6035
6036 spin_lock(&mm->page_table_lock);
6037 if (pgd_present(*pgd)) { /* Another has populated it */
6038 p4d_free(mm, new);
6039 } else {
6040 smp_wmb(); /* See comment in pmd_install() */
6041 pgd_populate(mm, pgd, new);
6042 }
6043 spin_unlock(&mm->page_table_lock);
6044 return 0;
6045}
6046#endif /* __PAGETABLE_P4D_FOLDED */
6047
6048#ifndef __PAGETABLE_PUD_FOLDED
6049/*
6050 * Allocate page upper directory.
6051 * We've already handled the fast-path in-line.
6052 */
6053int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6054{
6055 pud_t *new = pud_alloc_one(mm, address);
6056 if (!new)
6057 return -ENOMEM;
6058
6059 spin_lock(&mm->page_table_lock);
6060 if (!p4d_present(*p4d)) {
6061 mm_inc_nr_puds(mm);
6062 smp_wmb(); /* See comment in pmd_install() */
6063 p4d_populate(mm, p4d, new);
6064 } else /* Another has populated it */
6065 pud_free(mm, new);
6066 spin_unlock(&mm->page_table_lock);
6067 return 0;
6068}
6069#endif /* __PAGETABLE_PUD_FOLDED */
6070
6071#ifndef __PAGETABLE_PMD_FOLDED
6072/*
6073 * Allocate page middle directory.
6074 * We've already handled the fast-path in-line.
6075 */
6076int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6077{
6078 spinlock_t *ptl;
6079 pmd_t *new = pmd_alloc_one(mm, address);
6080 if (!new)
6081 return -ENOMEM;
6082
6083 ptl = pud_lock(mm, pud);
6084 if (!pud_present(*pud)) {
6085 mm_inc_nr_pmds(mm);
6086 smp_wmb(); /* See comment in pmd_install() */
6087 pud_populate(mm, pud, new);
6088 } else { /* Another has populated it */
6089 pmd_free(mm, new);
6090 }
6091 spin_unlock(ptl);
6092 return 0;
6093}
6094#endif /* __PAGETABLE_PMD_FOLDED */
6095
6096/**
6097 * follow_pte - look up PTE at a user virtual address
6098 * @vma: the memory mapping
6099 * @address: user virtual address
6100 * @ptepp: location to store found PTE
6101 * @ptlp: location to store the lock for the PTE
6102 *
6103 * On a successful return, the pointer to the PTE is stored in @ptepp;
6104 * the corresponding lock is taken and its location is stored in @ptlp.
6105 *
6106 * The contents of the PTE are only stable until @ptlp is released using
6107 * pte_unmap_unlock(). This function will fail if the PTE is non-present.
6108 * Present PTEs may include PTEs that map refcounted pages, such as
6109 * anonymous folios in COW mappings.
6110 *
6111 * Callers must be careful when relying on PTE content after
6112 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
6113 * callers must protect against invalidation with MMU notifiers; otherwise
6114 * access to the PFN at a later point in time can trigger use-after-free.
6115 *
6116 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6117 * should be taken for read.
6118 *
6119 * This function must not be used to modify PTE content.
6120 *
6121 * Return: zero on success, -ve otherwise.
6122 */
6123int follow_pte(struct vm_area_struct *vma, unsigned long address,
6124 pte_t **ptepp, spinlock_t **ptlp)
6125{
6126 struct mm_struct *mm = vma->vm_mm;
6127 pgd_t *pgd;
6128 p4d_t *p4d;
6129 pud_t *pud;
6130 pmd_t *pmd;
6131 pte_t *ptep;
6132
6133 mmap_assert_locked(mm);
6134 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6135 goto out;
6136
6137 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6138 goto out;
6139
6140 pgd = pgd_offset(mm, address);
6141 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
6142 goto out;
6143
6144 p4d = p4d_offset(pgd, address);
6145 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
6146 goto out;
6147
6148 pud = pud_offset(p4d, address);
6149 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
6150 goto out;
6151
6152 pmd = pmd_offset(pud, address);
6153 VM_BUG_ON(pmd_trans_huge(*pmd));
6154
6155 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6156 if (!ptep)
6157 goto out;
6158 if (!pte_present(ptep_get(ptep)))
6159 goto unlock;
6160 *ptepp = ptep;
6161 return 0;
6162unlock:
6163 pte_unmap_unlock(ptep, *ptlp);
6164out:
6165 return -EINVAL;
6166}
6167EXPORT_SYMBOL_GPL(follow_pte);
6168
6169#ifdef CONFIG_HAVE_IOREMAP_PROT
6170/**
6171 * generic_access_phys - generic implementation for iomem mmap access
6172 * @vma: the vma to access
6173 * @addr: userspace address, not relative offset within @vma
6174 * @buf: buffer to read/write
6175 * @len: length of transfer
6176 * @write: set to FOLL_WRITE when writing, otherwise reading
6177 *
6178 * This is a generic implementation for &vm_operations_struct.access for an
6179 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6180 * not page based.
6181 */
6182int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6183 void *buf, int len, int write)
6184{
6185 resource_size_t phys_addr;
6186 unsigned long prot = 0;
6187 void __iomem *maddr;
6188 pte_t *ptep, pte;
6189 spinlock_t *ptl;
6190 int offset = offset_in_page(addr);
6191 int ret = -EINVAL;
6192
6193retry:
6194 if (follow_pte(vma, addr, &ptep, &ptl))
6195 return -EINVAL;
6196 pte = ptep_get(ptep);
6197 pte_unmap_unlock(ptep, ptl);
6198
6199 prot = pgprot_val(pte_pgprot(pte));
6200 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6201
6202 if ((write & FOLL_WRITE) && !pte_write(pte))
6203 return -EINVAL;
6204
6205 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6206 if (!maddr)
6207 return -ENOMEM;
6208
6209 if (follow_pte(vma, addr, &ptep, &ptl))
6210 goto out_unmap;
6211
6212 if (!pte_same(pte, ptep_get(ptep))) {
6213 pte_unmap_unlock(ptep, ptl);
6214 iounmap(maddr);
6215
6216 goto retry;
6217 }
6218
6219 if (write)
6220 memcpy_toio(maddr + offset, buf, len);
6221 else
6222 memcpy_fromio(buf, maddr + offset, len);
6223 ret = len;
6224 pte_unmap_unlock(ptep, ptl);
6225out_unmap:
6226 iounmap(maddr);
6227
6228 return ret;
6229}
6230EXPORT_SYMBOL_GPL(generic_access_phys);
6231#endif
6232
6233/*
6234 * Access another process' address space as given in mm.
6235 */
6236static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6237 void *buf, int len, unsigned int gup_flags)
6238{
6239 void *old_buf = buf;
6240 int write = gup_flags & FOLL_WRITE;
6241
6242 if (mmap_read_lock_killable(mm))
6243 return 0;
6244
6245 /* Untag the address before looking up the VMA */
6246 addr = untagged_addr_remote(mm, addr);
6247
6248 /* Avoid triggering the temporary warning in __get_user_pages */
6249 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6250 return 0;
6251
6252 /* ignore errors, just check how much was successfully transferred */
6253 while (len) {
6254 int bytes, offset;
6255 void *maddr;
6256 struct vm_area_struct *vma = NULL;
6257 struct page *page = get_user_page_vma_remote(mm, addr,
6258 gup_flags, &vma);
6259
6260 if (IS_ERR(page)) {
6261 /* We might need to expand the stack to access it */
6262 vma = vma_lookup(mm, addr);
6263 if (!vma) {
6264 vma = expand_stack(mm, addr);
6265
6266 /* mmap_lock was dropped on failure */
6267 if (!vma)
6268 return buf - old_buf;
6269
6270 /* Try again if stack expansion worked */
6271 continue;
6272 }
6273
6274 /*
6275 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6276 * we can access using slightly different code.
6277 */
6278 bytes = 0;
6279#ifdef CONFIG_HAVE_IOREMAP_PROT
6280 if (vma->vm_ops && vma->vm_ops->access)
6281 bytes = vma->vm_ops->access(vma, addr, buf,
6282 len, write);
6283#endif
6284 if (bytes <= 0)
6285 break;
6286 } else {
6287 bytes = len;
6288 offset = addr & (PAGE_SIZE-1);
6289 if (bytes > PAGE_SIZE-offset)
6290 bytes = PAGE_SIZE-offset;
6291
6292 maddr = kmap_local_page(page);
6293 if (write) {
6294 copy_to_user_page(vma, page, addr,
6295 maddr + offset, buf, bytes);
6296 set_page_dirty_lock(page);
6297 } else {
6298 copy_from_user_page(vma, page, addr,
6299 buf, maddr + offset, bytes);
6300 }
6301 unmap_and_put_page(page, maddr);
6302 }
6303 len -= bytes;
6304 buf += bytes;
6305 addr += bytes;
6306 }
6307 mmap_read_unlock(mm);
6308
6309 return buf - old_buf;
6310}
6311
6312/**
6313 * access_remote_vm - access another process' address space
6314 * @mm: the mm_struct of the target address space
6315 * @addr: start address to access
6316 * @buf: source or destination buffer
6317 * @len: number of bytes to transfer
6318 * @gup_flags: flags modifying lookup behaviour
6319 *
6320 * The caller must hold a reference on @mm.
6321 *
6322 * Return: number of bytes copied from source to destination.
6323 */
6324int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6325 void *buf, int len, unsigned int gup_flags)
6326{
6327 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6328}
6329
6330/*
6331 * Access another process' address space.
6332 * Source/target buffer must be kernel space,
6333 * Do not walk the page table directly, use get_user_pages
6334 */
6335int access_process_vm(struct task_struct *tsk, unsigned long addr,
6336 void *buf, int len, unsigned int gup_flags)
6337{
6338 struct mm_struct *mm;
6339 int ret;
6340
6341 mm = get_task_mm(tsk);
6342 if (!mm)
6343 return 0;
6344
6345 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6346
6347 mmput(mm);
6348
6349 return ret;
6350}
6351EXPORT_SYMBOL_GPL(access_process_vm);
6352
6353/*
6354 * Print the name of a VMA.
6355 */
6356void print_vma_addr(char *prefix, unsigned long ip)
6357{
6358 struct mm_struct *mm = current->mm;
6359 struct vm_area_struct *vma;
6360
6361 /*
6362 * we might be running from an atomic context so we cannot sleep
6363 */
6364 if (!mmap_read_trylock(mm))
6365 return;
6366
6367 vma = vma_lookup(mm, ip);
6368 if (vma && vma->vm_file) {
6369 struct file *f = vma->vm_file;
6370 ip -= vma->vm_start;
6371 ip += vma->vm_pgoff << PAGE_SHIFT;
6372 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6373 vma->vm_start,
6374 vma->vm_end - vma->vm_start);
6375 }
6376 mmap_read_unlock(mm);
6377}
6378
6379#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6380void __might_fault(const char *file, int line)
6381{
6382 if (pagefault_disabled())
6383 return;
6384 __might_sleep(file, line);
6385#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6386 if (current->mm)
6387 might_lock_read(¤t->mm->mmap_lock);
6388#endif
6389}
6390EXPORT_SYMBOL(__might_fault);
6391#endif
6392
6393#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6394/*
6395 * Process all subpages of the specified huge page with the specified
6396 * operation. The target subpage will be processed last to keep its
6397 * cache lines hot.
6398 */
6399static inline int process_huge_page(
6400 unsigned long addr_hint, unsigned int nr_pages,
6401 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6402 void *arg)
6403{
6404 int i, n, base, l, ret;
6405 unsigned long addr = addr_hint &
6406 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6407
6408 /* Process target subpage last to keep its cache lines hot */
6409 might_sleep();
6410 n = (addr_hint - addr) / PAGE_SIZE;
6411 if (2 * n <= nr_pages) {
6412 /* If target subpage in first half of huge page */
6413 base = 0;
6414 l = n;
6415 /* Process subpages at the end of huge page */
6416 for (i = nr_pages - 1; i >= 2 * n; i--) {
6417 cond_resched();
6418 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6419 if (ret)
6420 return ret;
6421 }
6422 } else {
6423 /* If target subpage in second half of huge page */
6424 base = nr_pages - 2 * (nr_pages - n);
6425 l = nr_pages - n;
6426 /* Process subpages at the begin of huge page */
6427 for (i = 0; i < base; i++) {
6428 cond_resched();
6429 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6430 if (ret)
6431 return ret;
6432 }
6433 }
6434 /*
6435 * Process remaining subpages in left-right-left-right pattern
6436 * towards the target subpage
6437 */
6438 for (i = 0; i < l; i++) {
6439 int left_idx = base + i;
6440 int right_idx = base + 2 * l - 1 - i;
6441
6442 cond_resched();
6443 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6444 if (ret)
6445 return ret;
6446 cond_resched();
6447 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6448 if (ret)
6449 return ret;
6450 }
6451 return 0;
6452}
6453
6454static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6455 unsigned int nr_pages)
6456{
6457 int i;
6458
6459 might_sleep();
6460 for (i = 0; i < nr_pages; i++) {
6461 cond_resched();
6462 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6463 }
6464}
6465
6466static int clear_subpage(unsigned long addr, int idx, void *arg)
6467{
6468 struct folio *folio = arg;
6469
6470 clear_user_highpage(folio_page(folio, idx), addr);
6471 return 0;
6472}
6473
6474/**
6475 * folio_zero_user - Zero a folio which will be mapped to userspace.
6476 * @folio: The folio to zero.
6477 * @addr_hint: The address will be accessed or the base address if uncelar.
6478 */
6479void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6480{
6481 unsigned int nr_pages = folio_nr_pages(folio);
6482
6483 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6484 clear_gigantic_page(folio, addr_hint, nr_pages);
6485 else
6486 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6487}
6488
6489static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6490 unsigned long addr,
6491 struct vm_area_struct *vma,
6492 unsigned int nr_pages)
6493{
6494 int i;
6495 struct page *dst_page;
6496 struct page *src_page;
6497
6498 for (i = 0; i < nr_pages; i++) {
6499 dst_page = folio_page(dst, i);
6500 src_page = folio_page(src, i);
6501
6502 cond_resched();
6503 if (copy_mc_user_highpage(dst_page, src_page,
6504 addr + i*PAGE_SIZE, vma))
6505 return -EHWPOISON;
6506 }
6507 return 0;
6508}
6509
6510struct copy_subpage_arg {
6511 struct folio *dst;
6512 struct folio *src;
6513 struct vm_area_struct *vma;
6514};
6515
6516static int copy_subpage(unsigned long addr, int idx, void *arg)
6517{
6518 struct copy_subpage_arg *copy_arg = arg;
6519 struct page *dst = folio_page(copy_arg->dst, idx);
6520 struct page *src = folio_page(copy_arg->src, idx);
6521
6522 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6523 return -EHWPOISON;
6524 return 0;
6525}
6526
6527int copy_user_large_folio(struct folio *dst, struct folio *src,
6528 unsigned long addr_hint, struct vm_area_struct *vma)
6529{
6530 unsigned int nr_pages = folio_nr_pages(dst);
6531 struct copy_subpage_arg arg = {
6532 .dst = dst,
6533 .src = src,
6534 .vma = vma,
6535 };
6536
6537 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6538 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6539
6540 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6541}
6542
6543long copy_folio_from_user(struct folio *dst_folio,
6544 const void __user *usr_src,
6545 bool allow_pagefault)
6546{
6547 void *kaddr;
6548 unsigned long i, rc = 0;
6549 unsigned int nr_pages = folio_nr_pages(dst_folio);
6550 unsigned long ret_val = nr_pages * PAGE_SIZE;
6551 struct page *subpage;
6552
6553 for (i = 0; i < nr_pages; i++) {
6554 subpage = folio_page(dst_folio, i);
6555 kaddr = kmap_local_page(subpage);
6556 if (!allow_pagefault)
6557 pagefault_disable();
6558 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6559 if (!allow_pagefault)
6560 pagefault_enable();
6561 kunmap_local(kaddr);
6562
6563 ret_val -= (PAGE_SIZE - rc);
6564 if (rc)
6565 break;
6566
6567 flush_dcache_page(subpage);
6568
6569 cond_resched();
6570 }
6571 return ret_val;
6572}
6573#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6574
6575#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6576
6577static struct kmem_cache *page_ptl_cachep;
6578
6579void __init ptlock_cache_init(void)
6580{
6581 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6582 SLAB_PANIC, NULL);
6583}
6584
6585bool ptlock_alloc(struct ptdesc *ptdesc)
6586{
6587 spinlock_t *ptl;
6588
6589 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6590 if (!ptl)
6591 return false;
6592 ptdesc->ptl = ptl;
6593 return true;
6594}
6595
6596void ptlock_free(struct ptdesc *ptdesc)
6597{
6598 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6599}
6600#endif
6601
6602void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6603{
6604 if (is_vm_hugetlb_page(vma))
6605 hugetlb_vma_lock_read(vma);
6606}
6607
6608void vma_pgtable_walk_end(struct vm_area_struct *vma)
6609{
6610 if (is_vm_hugetlb_page(vma))
6611 hugetlb_vma_unlock_read(vma);
6612}