Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/sched/signal.h>
43#include <linux/sched/task.h>
44#include <linux/dax.h>
45#include <linux/ksm.h>
46#include <linux/rmap.h>
47#include <linux/export.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
51#include <linux/migrate.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/memremap.h>
58#include <linux/kfifo.h>
59#include <linux/ratelimit.h>
60#include <linux/pagewalk.h>
61#include <linux/shmem_fs.h>
62#include <linux/sysctl.h>
63#include "swap.h"
64#include "internal.h"
65#include "ras/ras_event.h"
66
67static int sysctl_memory_failure_early_kill __read_mostly;
68
69static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71static int sysctl_enable_soft_offline __read_mostly = 1;
72
73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75static bool hw_memory_failure __read_mostly = false;
76
77static DEFINE_MUTEX(mf_mutex);
78
79void num_poisoned_pages_inc(unsigned long pfn)
80{
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
83}
84
85void num_poisoned_pages_sub(unsigned long pfn, long i)
86{
87 atomic_long_sub(i, &num_poisoned_pages);
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
90}
91
92/**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96#define MF_ATTR_RO(_name) \
97static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100{ \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sprintf(buf, "%lu\n", mf_stats->_name); \
104} \
105static DEVICE_ATTR_RO(_name)
106
107MF_ATTR_RO(total);
108MF_ATTR_RO(ignored);
109MF_ATTR_RO(failed);
110MF_ATTR_RO(delayed);
111MF_ATTR_RO(recovered);
112
113static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120};
121
122const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125};
126
127static struct ctl_table memory_failure_table[] = {
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
155};
156
157/*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
163static int __page_handle_poison(struct page *page)
164{
165 int ret;
166
167 /*
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
180 if (!ret) {
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
183 }
184
185 return ret;
186}
187
188static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189{
190 if (hugepage_or_freepage) {
191 /*
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 */
195 if (__page_handle_poison(page) <= 0)
196 /*
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
206 SetPageHWPoison(page);
207 if (release)
208 put_page(page);
209 page_ref_inc(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
211
212 return true;
213}
214
215#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216
217u32 hwpoison_filter_enable = 0;
218u32 hwpoison_filter_dev_major = ~0U;
219u32 hwpoison_filter_dev_minor = ~0U;
220u64 hwpoison_filter_flags_mask;
221u64 hwpoison_filter_flags_value;
222EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227
228static int hwpoison_filter_dev(struct page *p)
229{
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251}
252
253static int hwpoison_filter_flags(struct page *p)
254{
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263}
264
265/*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
275#ifdef CONFIG_MEMCG
276u64 hwpoison_filter_memcg;
277EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278static int hwpoison_filter_task(struct page *p)
279{
280 if (!hwpoison_filter_memcg)
281 return 0;
282
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 return -EINVAL;
285
286 return 0;
287}
288#else
289static int hwpoison_filter_task(struct page *p) { return 0; }
290#endif
291
292int hwpoison_filter(struct page *p)
293{
294 if (!hwpoison_filter_enable)
295 return 0;
296
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
306 return 0;
307}
308EXPORT_SYMBOL_GPL(hwpoison_filter);
309#else
310int hwpoison_filter(struct page *p)
311{
312 return 0;
313}
314#endif
315
316/*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
343};
344
345/*
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
349 */
350static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351{
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
354 int ret = 0;
355
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
358
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
363 /*
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
368 */
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 addr_lsb, t);
371 if (ret < 0)
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
374 return ret;
375}
376
377/*
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
379 * lru_add_drain_all.
380 */
381void shake_folio(struct folio *folio)
382{
383 if (folio_test_hugetlb(folio))
384 return;
385 /*
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
388 */
389 if (folio_test_slab(folio))
390 return;
391
392 lru_add_drain_all();
393}
394EXPORT_SYMBOL_GPL(shake_folio);
395
396static void shake_page(struct page *page)
397{
398 shake_folio(page_folio(page));
399}
400
401static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
403{
404 unsigned long ret = 0;
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
410 pte_t ptent;
411
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
422 if (pud_devmap(*pud))
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
427 if (pmd_devmap(*pmd))
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
430 if (!pte)
431 return 0;
432 ptent = ptep_get(pte);
433 if (pte_present(ptent) && pte_devmap(ptent))
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
437}
438
439/*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444/*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447 */
448static void __add_to_kill(struct task_struct *tsk, struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
450 unsigned long addr)
451{
452 struct to_kill *tk;
453
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
456 pr_err("Out of memory while machine check handling\n");
457 return;
458 }
459
460 tk->addr = addr;
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 else
464 tk->size_shift = page_shift(compound_head(p));
465
466 /*
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
475 */
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
482 }
483
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487}
488
489static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
492{
493 if (addr == -EFAULT)
494 return;
495 __add_to_kill(tsk, p, vma, to_kill, addr);
496}
497
498#ifdef CONFIG_KSM
499static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501{
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510}
511
512void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
514 unsigned long addr)
515{
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
518}
519#endif
520/*
521 * Kill the processes that have been collected earlier.
522 *
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
525 */
526static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
528{
529 struct to_kill *tk, *next;
530
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
532 if (forcekill) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 }
550 list_del(&tk->nd);
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554}
555
556/*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
563 */
564static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565{
566 struct task_struct *t;
567
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
577 return NULL;
578}
579
580/*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
585 *
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
591 */
592struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593{
594 if (!tsk->mm)
595 return NULL;
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
603 return find_early_kill_thread(tsk);
604}
605
606/*
607 * Collect processes when the error hit an anonymous page.
608 */
609static void collect_procs_anon(struct folio *folio, struct page *page,
610 struct list_head *to_kill, int force_early)
611{
612 struct task_struct *tsk;
613 struct anon_vma *av;
614 pgoff_t pgoff;
615
616 av = folio_lock_anon_vma_read(folio, NULL);
617 if (av == NULL) /* Not actually mapped anymore */
618 return;
619
620 pgoff = page_to_pgoff(page);
621 rcu_read_lock();
622 for_each_process(tsk) {
623 struct vm_area_struct *vma;
624 struct anon_vma_chain *vmac;
625 struct task_struct *t = task_early_kill(tsk, force_early);
626 unsigned long addr;
627
628 if (!t)
629 continue;
630 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 pgoff, pgoff) {
632 vma = vmac->vma;
633 if (vma->vm_mm != t->mm)
634 continue;
635 addr = page_mapped_in_vma(page, vma);
636 add_to_kill_anon_file(t, page, vma, to_kill, addr);
637 }
638 }
639 rcu_read_unlock();
640 anon_vma_unlock_read(av);
641}
642
643/*
644 * Collect processes when the error hit a file mapped page.
645 */
646static void collect_procs_file(struct folio *folio, struct page *page,
647 struct list_head *to_kill, int force_early)
648{
649 struct vm_area_struct *vma;
650 struct task_struct *tsk;
651 struct address_space *mapping = folio->mapping;
652 pgoff_t pgoff;
653
654 i_mmap_lock_read(mapping);
655 rcu_read_lock();
656 pgoff = page_to_pgoff(page);
657 for_each_process(tsk) {
658 struct task_struct *t = task_early_kill(tsk, force_early);
659 unsigned long addr;
660
661 if (!t)
662 continue;
663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 pgoff) {
665 /*
666 * Send early kill signal to tasks where a vma covers
667 * the page but the corrupted page is not necessarily
668 * mapped in its pte.
669 * Assume applications who requested early kill want
670 * to be informed of all such data corruptions.
671 */
672 if (vma->vm_mm != t->mm)
673 continue;
674 addr = page_address_in_vma(page, vma);
675 add_to_kill_anon_file(t, page, vma, to_kill, addr);
676 }
677 }
678 rcu_read_unlock();
679 i_mmap_unlock_read(mapping);
680}
681
682#ifdef CONFIG_FS_DAX
683static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684 struct vm_area_struct *vma,
685 struct list_head *to_kill, pgoff_t pgoff)
686{
687 unsigned long addr = vma_address(vma, pgoff, 1);
688 __add_to_kill(tsk, p, vma, to_kill, addr);
689}
690
691/*
692 * Collect processes when the error hit a fsdax page.
693 */
694static void collect_procs_fsdax(struct page *page,
695 struct address_space *mapping, pgoff_t pgoff,
696 struct list_head *to_kill, bool pre_remove)
697{
698 struct vm_area_struct *vma;
699 struct task_struct *tsk;
700
701 i_mmap_lock_read(mapping);
702 rcu_read_lock();
703 for_each_process(tsk) {
704 struct task_struct *t = tsk;
705
706 /*
707 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708 * the current may not be the one accessing the fsdax page.
709 * Otherwise, search for the current task.
710 */
711 if (!pre_remove)
712 t = task_early_kill(tsk, true);
713 if (!t)
714 continue;
715 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716 if (vma->vm_mm == t->mm)
717 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
718 }
719 }
720 rcu_read_unlock();
721 i_mmap_unlock_read(mapping);
722}
723#endif /* CONFIG_FS_DAX */
724
725/*
726 * Collect the processes who have the corrupted page mapped to kill.
727 */
728static void collect_procs(struct folio *folio, struct page *page,
729 struct list_head *tokill, int force_early)
730{
731 if (!folio->mapping)
732 return;
733 if (unlikely(folio_test_ksm(folio)))
734 collect_procs_ksm(folio, page, tokill, force_early);
735 else if (folio_test_anon(folio))
736 collect_procs_anon(folio, page, tokill, force_early);
737 else
738 collect_procs_file(folio, page, tokill, force_early);
739}
740
741struct hwpoison_walk {
742 struct to_kill tk;
743 unsigned long pfn;
744 int flags;
745};
746
747static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
748{
749 tk->addr = addr;
750 tk->size_shift = shift;
751}
752
753static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754 unsigned long poisoned_pfn, struct to_kill *tk)
755{
756 unsigned long pfn = 0;
757
758 if (pte_present(pte)) {
759 pfn = pte_pfn(pte);
760 } else {
761 swp_entry_t swp = pte_to_swp_entry(pte);
762
763 if (is_hwpoison_entry(swp))
764 pfn = swp_offset_pfn(swp);
765 }
766
767 if (!pfn || pfn != poisoned_pfn)
768 return 0;
769
770 set_to_kill(tk, addr, shift);
771 return 1;
772}
773
774#ifdef CONFIG_TRANSPARENT_HUGEPAGE
775static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776 struct hwpoison_walk *hwp)
777{
778 pmd_t pmd = *pmdp;
779 unsigned long pfn;
780 unsigned long hwpoison_vaddr;
781
782 if (!pmd_present(pmd))
783 return 0;
784 pfn = pmd_pfn(pmd);
785 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
788 return 1;
789 }
790 return 0;
791}
792#else
793static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794 struct hwpoison_walk *hwp)
795{
796 return 0;
797}
798#endif
799
800static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801 unsigned long end, struct mm_walk *walk)
802{
803 struct hwpoison_walk *hwp = walk->private;
804 int ret = 0;
805 pte_t *ptep, *mapped_pte;
806 spinlock_t *ptl;
807
808 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809 if (ptl) {
810 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
811 spin_unlock(ptl);
812 goto out;
813 }
814
815 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
816 addr, &ptl);
817 if (!ptep)
818 goto out;
819
820 for (; addr != end; ptep++, addr += PAGE_SIZE) {
821 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
822 hwp->pfn, &hwp->tk);
823 if (ret == 1)
824 break;
825 }
826 pte_unmap_unlock(mapped_pte, ptl);
827out:
828 cond_resched();
829 return ret;
830}
831
832#ifdef CONFIG_HUGETLB_PAGE
833static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834 unsigned long addr, unsigned long end,
835 struct mm_walk *walk)
836{
837 struct hwpoison_walk *hwp = walk->private;
838 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839 struct hstate *h = hstate_vma(walk->vma);
840
841 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
842 hwp->pfn, &hwp->tk);
843}
844#else
845#define hwpoison_hugetlb_range NULL
846#endif
847
848static const struct mm_walk_ops hwpoison_walk_ops = {
849 .pmd_entry = hwpoison_pte_range,
850 .hugetlb_entry = hwpoison_hugetlb_range,
851 .walk_lock = PGWALK_RDLOCK,
852};
853
854/*
855 * Sends SIGBUS to the current process with error info.
856 *
857 * This function is intended to handle "Action Required" MCEs on already
858 * hardware poisoned pages. They could happen, for example, when
859 * memory_failure() failed to unmap the error page at the first call, or
860 * when multiple local machine checks happened on different CPUs.
861 *
862 * MCE handler currently has no easy access to the error virtual address,
863 * so this function walks page table to find it. The returned virtual address
864 * is proper in most cases, but it could be wrong when the application
865 * process has multiple entries mapping the error page.
866 */
867static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
868 int flags)
869{
870 int ret;
871 struct hwpoison_walk priv = {
872 .pfn = pfn,
873 };
874 priv.tk.tsk = p;
875
876 if (!p->mm)
877 return -EFAULT;
878
879 mmap_read_lock(p->mm);
880 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
881 (void *)&priv);
882 if (ret == 1 && priv.tk.addr)
883 kill_proc(&priv.tk, pfn, flags);
884 else
885 ret = 0;
886 mmap_read_unlock(p->mm);
887 return ret > 0 ? -EHWPOISON : -EFAULT;
888}
889
890/*
891 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
892 * But it could not do more to isolate the page from being accessed again,
893 * nor does it kill the process. This is extremely rare and one of the
894 * potential causes is that the page state has been changed due to
895 * underlying race condition. This is the most severe outcomes.
896 *
897 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
898 * It should have killed the process, but it can't isolate the page,
899 * due to conditions such as extra pin, unmap failure, etc. Accessing
900 * the page again may trigger another MCE and the process will be killed
901 * by the m-f() handler immediately.
902 *
903 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
904 * The page is unmapped, and is removed from the LRU or file mapping.
905 * An attempt to access the page again will trigger page fault and the
906 * PF handler will kill the process.
907 *
908 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
909 * The page has been completely isolated, that is, unmapped, taken out of
910 * the buddy system, or hole-punnched out of the file mapping.
911 */
912static const char *action_name[] = {
913 [MF_IGNORED] = "Ignored",
914 [MF_FAILED] = "Failed",
915 [MF_DELAYED] = "Delayed",
916 [MF_RECOVERED] = "Recovered",
917};
918
919static const char * const action_page_types[] = {
920 [MF_MSG_KERNEL] = "reserved kernel page",
921 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
922 [MF_MSG_HUGE] = "huge page",
923 [MF_MSG_FREE_HUGE] = "free huge page",
924 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
925 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
926 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
927 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
928 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
929 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
930 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
931 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
932 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
933 [MF_MSG_CLEAN_LRU] = "clean LRU page",
934 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
935 [MF_MSG_BUDDY] = "free buddy page",
936 [MF_MSG_DAX] = "dax page",
937 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
938 [MF_MSG_ALREADY_POISONED] = "already poisoned",
939 [MF_MSG_UNKNOWN] = "unknown page",
940};
941
942/*
943 * XXX: It is possible that a page is isolated from LRU cache,
944 * and then kept in swap cache or failed to remove from page cache.
945 * The page count will stop it from being freed by unpoison.
946 * Stress tests should be aware of this memory leak problem.
947 */
948static int delete_from_lru_cache(struct folio *folio)
949{
950 if (folio_isolate_lru(folio)) {
951 /*
952 * Clear sensible page flags, so that the buddy system won't
953 * complain when the folio is unpoison-and-freed.
954 */
955 folio_clear_active(folio);
956 folio_clear_unevictable(folio);
957
958 /*
959 * Poisoned page might never drop its ref count to 0 so we have
960 * to uncharge it manually from its memcg.
961 */
962 mem_cgroup_uncharge(folio);
963
964 /*
965 * drop the refcount elevated by folio_isolate_lru()
966 */
967 folio_put(folio);
968 return 0;
969 }
970 return -EIO;
971}
972
973static int truncate_error_folio(struct folio *folio, unsigned long pfn,
974 struct address_space *mapping)
975{
976 int ret = MF_FAILED;
977
978 if (mapping->a_ops->error_remove_folio) {
979 int err = mapping->a_ops->error_remove_folio(mapping, folio);
980
981 if (err != 0)
982 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
983 else if (!filemap_release_folio(folio, GFP_NOIO))
984 pr_info("%#lx: failed to release buffers\n", pfn);
985 else
986 ret = MF_RECOVERED;
987 } else {
988 /*
989 * If the file system doesn't support it just invalidate
990 * This fails on dirty or anything with private pages
991 */
992 if (mapping_evict_folio(mapping, folio))
993 ret = MF_RECOVERED;
994 else
995 pr_info("%#lx: Failed to invalidate\n", pfn);
996 }
997
998 return ret;
999}
1000
1001struct page_state {
1002 unsigned long mask;
1003 unsigned long res;
1004 enum mf_action_page_type type;
1005
1006 /* Callback ->action() has to unlock the relevant page inside it. */
1007 int (*action)(struct page_state *ps, struct page *p);
1008};
1009
1010/*
1011 * Return true if page is still referenced by others, otherwise return
1012 * false.
1013 *
1014 * The extra_pins is true when one extra refcount is expected.
1015 */
1016static bool has_extra_refcount(struct page_state *ps, struct page *p,
1017 bool extra_pins)
1018{
1019 int count = page_count(p) - 1;
1020
1021 if (extra_pins)
1022 count -= folio_nr_pages(page_folio(p));
1023
1024 if (count > 0) {
1025 pr_err("%#lx: %s still referenced by %d users\n",
1026 page_to_pfn(p), action_page_types[ps->type], count);
1027 return true;
1028 }
1029
1030 return false;
1031}
1032
1033/*
1034 * Error hit kernel page.
1035 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1036 * could be more sophisticated.
1037 */
1038static int me_kernel(struct page_state *ps, struct page *p)
1039{
1040 unlock_page(p);
1041 return MF_IGNORED;
1042}
1043
1044/*
1045 * Page in unknown state. Do nothing.
1046 * This is a catch-all in case we fail to make sense of the page state.
1047 */
1048static int me_unknown(struct page_state *ps, struct page *p)
1049{
1050 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1051 unlock_page(p);
1052 return MF_IGNORED;
1053}
1054
1055/*
1056 * Clean (or cleaned) page cache page.
1057 */
1058static int me_pagecache_clean(struct page_state *ps, struct page *p)
1059{
1060 struct folio *folio = page_folio(p);
1061 int ret;
1062 struct address_space *mapping;
1063 bool extra_pins;
1064
1065 delete_from_lru_cache(folio);
1066
1067 /*
1068 * For anonymous folios the only reference left
1069 * should be the one m_f() holds.
1070 */
1071 if (folio_test_anon(folio)) {
1072 ret = MF_RECOVERED;
1073 goto out;
1074 }
1075
1076 /*
1077 * Now truncate the page in the page cache. This is really
1078 * more like a "temporary hole punch"
1079 * Don't do this for block devices when someone else
1080 * has a reference, because it could be file system metadata
1081 * and that's not safe to truncate.
1082 */
1083 mapping = folio_mapping(folio);
1084 if (!mapping) {
1085 /* Folio has been torn down in the meantime */
1086 ret = MF_FAILED;
1087 goto out;
1088 }
1089
1090 /*
1091 * The shmem page is kept in page cache instead of truncating
1092 * so is expected to have an extra refcount after error-handling.
1093 */
1094 extra_pins = shmem_mapping(mapping);
1095
1096 /*
1097 * Truncation is a bit tricky. Enable it per file system for now.
1098 *
1099 * Open: to take i_rwsem or not for this? Right now we don't.
1100 */
1101 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1102 if (has_extra_refcount(ps, p, extra_pins))
1103 ret = MF_FAILED;
1104
1105out:
1106 folio_unlock(folio);
1107
1108 return ret;
1109}
1110
1111/*
1112 * Dirty pagecache page
1113 * Issues: when the error hit a hole page the error is not properly
1114 * propagated.
1115 */
1116static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1117{
1118 struct folio *folio = page_folio(p);
1119 struct address_space *mapping = folio_mapping(folio);
1120
1121 /* TBD: print more information about the file. */
1122 if (mapping) {
1123 /*
1124 * IO error will be reported by write(), fsync(), etc.
1125 * who check the mapping.
1126 * This way the application knows that something went
1127 * wrong with its dirty file data.
1128 */
1129 mapping_set_error(mapping, -EIO);
1130 }
1131
1132 return me_pagecache_clean(ps, p);
1133}
1134
1135/*
1136 * Clean and dirty swap cache.
1137 *
1138 * Dirty swap cache page is tricky to handle. The page could live both in page
1139 * table and swap cache(ie. page is freshly swapped in). So it could be
1140 * referenced concurrently by 2 types of PTEs:
1141 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1142 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1143 * and then
1144 * - clear dirty bit to prevent IO
1145 * - remove from LRU
1146 * - but keep in the swap cache, so that when we return to it on
1147 * a later page fault, we know the application is accessing
1148 * corrupted data and shall be killed (we installed simple
1149 * interception code in do_swap_page to catch it).
1150 *
1151 * Clean swap cache pages can be directly isolated. A later page fault will
1152 * bring in the known good data from disk.
1153 */
1154static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1155{
1156 struct folio *folio = page_folio(p);
1157 int ret;
1158 bool extra_pins = false;
1159
1160 folio_clear_dirty(folio);
1161 /* Trigger EIO in shmem: */
1162 folio_clear_uptodate(folio);
1163
1164 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1165 folio_unlock(folio);
1166
1167 if (ret == MF_DELAYED)
1168 extra_pins = true;
1169
1170 if (has_extra_refcount(ps, p, extra_pins))
1171 ret = MF_FAILED;
1172
1173 return ret;
1174}
1175
1176static int me_swapcache_clean(struct page_state *ps, struct page *p)
1177{
1178 struct folio *folio = page_folio(p);
1179 int ret;
1180
1181 delete_from_swap_cache(folio);
1182
1183 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1184 folio_unlock(folio);
1185
1186 if (has_extra_refcount(ps, p, false))
1187 ret = MF_FAILED;
1188
1189 return ret;
1190}
1191
1192/*
1193 * Huge pages. Needs work.
1194 * Issues:
1195 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1196 * To narrow down kill region to one page, we need to break up pmd.
1197 */
1198static int me_huge_page(struct page_state *ps, struct page *p)
1199{
1200 struct folio *folio = page_folio(p);
1201 int res;
1202 struct address_space *mapping;
1203 bool extra_pins = false;
1204
1205 mapping = folio_mapping(folio);
1206 if (mapping) {
1207 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1208 /* The page is kept in page cache. */
1209 extra_pins = true;
1210 folio_unlock(folio);
1211 } else {
1212 folio_unlock(folio);
1213 /*
1214 * migration entry prevents later access on error hugepage,
1215 * so we can free and dissolve it into buddy to save healthy
1216 * subpages.
1217 */
1218 folio_put(folio);
1219 if (__page_handle_poison(p) > 0) {
1220 page_ref_inc(p);
1221 res = MF_RECOVERED;
1222 } else {
1223 res = MF_FAILED;
1224 }
1225 }
1226
1227 if (has_extra_refcount(ps, p, extra_pins))
1228 res = MF_FAILED;
1229
1230 return res;
1231}
1232
1233/*
1234 * Various page states we can handle.
1235 *
1236 * A page state is defined by its current page->flags bits.
1237 * The table matches them in order and calls the right handler.
1238 *
1239 * This is quite tricky because we can access page at any time
1240 * in its live cycle, so all accesses have to be extremely careful.
1241 *
1242 * This is not complete. More states could be added.
1243 * For any missing state don't attempt recovery.
1244 */
1245
1246#define dirty (1UL << PG_dirty)
1247#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1248#define unevict (1UL << PG_unevictable)
1249#define mlock (1UL << PG_mlocked)
1250#define lru (1UL << PG_lru)
1251#define head (1UL << PG_head)
1252#define reserved (1UL << PG_reserved)
1253
1254static struct page_state error_states[] = {
1255 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1256 /*
1257 * free pages are specially detected outside this table:
1258 * PG_buddy pages only make a small fraction of all free pages.
1259 */
1260
1261 { head, head, MF_MSG_HUGE, me_huge_page },
1262
1263 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1264 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1265
1266 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1267 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1268
1269 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1270 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1271
1272 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1273 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1274
1275 /*
1276 * Catchall entry: must be at end.
1277 */
1278 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1279};
1280
1281#undef dirty
1282#undef sc
1283#undef unevict
1284#undef mlock
1285#undef lru
1286#undef head
1287#undef reserved
1288
1289static void update_per_node_mf_stats(unsigned long pfn,
1290 enum mf_result result)
1291{
1292 int nid = MAX_NUMNODES;
1293 struct memory_failure_stats *mf_stats = NULL;
1294
1295 nid = pfn_to_nid(pfn);
1296 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1297 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1298 return;
1299 }
1300
1301 mf_stats = &NODE_DATA(nid)->mf_stats;
1302 switch (result) {
1303 case MF_IGNORED:
1304 ++mf_stats->ignored;
1305 break;
1306 case MF_FAILED:
1307 ++mf_stats->failed;
1308 break;
1309 case MF_DELAYED:
1310 ++mf_stats->delayed;
1311 break;
1312 case MF_RECOVERED:
1313 ++mf_stats->recovered;
1314 break;
1315 default:
1316 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1317 break;
1318 }
1319 ++mf_stats->total;
1320}
1321
1322/*
1323 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1324 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1325 */
1326static int action_result(unsigned long pfn, enum mf_action_page_type type,
1327 enum mf_result result)
1328{
1329 trace_memory_failure_event(pfn, type, result);
1330
1331 num_poisoned_pages_inc(pfn);
1332
1333 update_per_node_mf_stats(pfn, result);
1334
1335 pr_err("%#lx: recovery action for %s: %s\n",
1336 pfn, action_page_types[type], action_name[result]);
1337
1338 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1339}
1340
1341static int page_action(struct page_state *ps, struct page *p,
1342 unsigned long pfn)
1343{
1344 int result;
1345
1346 /* page p should be unlocked after returning from ps->action(). */
1347 result = ps->action(ps, p);
1348
1349 /* Could do more checks here if page looks ok */
1350 /*
1351 * Could adjust zone counters here to correct for the missing page.
1352 */
1353
1354 return action_result(pfn, ps->type, result);
1355}
1356
1357static inline bool PageHWPoisonTakenOff(struct page *page)
1358{
1359 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1360}
1361
1362void SetPageHWPoisonTakenOff(struct page *page)
1363{
1364 set_page_private(page, MAGIC_HWPOISON);
1365}
1366
1367void ClearPageHWPoisonTakenOff(struct page *page)
1368{
1369 if (PageHWPoison(page))
1370 set_page_private(page, 0);
1371}
1372
1373/*
1374 * Return true if a page type of a given page is supported by hwpoison
1375 * mechanism (while handling could fail), otherwise false. This function
1376 * does not return true for hugetlb or device memory pages, so it's assumed
1377 * to be called only in the context where we never have such pages.
1378 */
1379static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1380{
1381 if (PageSlab(page))
1382 return false;
1383
1384 /* Soft offline could migrate non-LRU movable pages */
1385 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1386 return true;
1387
1388 return PageLRU(page) || is_free_buddy_page(page);
1389}
1390
1391static int __get_hwpoison_page(struct page *page, unsigned long flags)
1392{
1393 struct folio *folio = page_folio(page);
1394 int ret = 0;
1395 bool hugetlb = false;
1396
1397 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1398 if (hugetlb) {
1399 /* Make sure hugetlb demotion did not happen from under us. */
1400 if (folio == page_folio(page))
1401 return ret;
1402 if (ret > 0) {
1403 folio_put(folio);
1404 folio = page_folio(page);
1405 }
1406 }
1407
1408 /*
1409 * This check prevents from calling folio_try_get() for any
1410 * unsupported type of folio in order to reduce the risk of unexpected
1411 * races caused by taking a folio refcount.
1412 */
1413 if (!HWPoisonHandlable(&folio->page, flags))
1414 return -EBUSY;
1415
1416 if (folio_try_get(folio)) {
1417 if (folio == page_folio(page))
1418 return 1;
1419
1420 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1421 folio_put(folio);
1422 }
1423
1424 return 0;
1425}
1426
1427#define GET_PAGE_MAX_RETRY_NUM 3
1428
1429static int get_any_page(struct page *p, unsigned long flags)
1430{
1431 int ret = 0, pass = 0;
1432 bool count_increased = false;
1433
1434 if (flags & MF_COUNT_INCREASED)
1435 count_increased = true;
1436
1437try_again:
1438 if (!count_increased) {
1439 ret = __get_hwpoison_page(p, flags);
1440 if (!ret) {
1441 if (page_count(p)) {
1442 /* We raced with an allocation, retry. */
1443 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1444 goto try_again;
1445 ret = -EBUSY;
1446 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447 /* We raced with put_page, retry. */
1448 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1449 goto try_again;
1450 ret = -EIO;
1451 }
1452 goto out;
1453 } else if (ret == -EBUSY) {
1454 /*
1455 * We raced with (possibly temporary) unhandlable
1456 * page, retry.
1457 */
1458 if (pass++ < 3) {
1459 shake_page(p);
1460 goto try_again;
1461 }
1462 ret = -EIO;
1463 goto out;
1464 }
1465 }
1466
1467 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1468 ret = 1;
1469 } else {
1470 /*
1471 * A page we cannot handle. Check whether we can turn
1472 * it into something we can handle.
1473 */
1474 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1475 put_page(p);
1476 shake_page(p);
1477 count_increased = false;
1478 goto try_again;
1479 }
1480 put_page(p);
1481 ret = -EIO;
1482 }
1483out:
1484 if (ret == -EIO)
1485 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1486
1487 return ret;
1488}
1489
1490static int __get_unpoison_page(struct page *page)
1491{
1492 struct folio *folio = page_folio(page);
1493 int ret = 0;
1494 bool hugetlb = false;
1495
1496 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1497 if (hugetlb) {
1498 /* Make sure hugetlb demotion did not happen from under us. */
1499 if (folio == page_folio(page))
1500 return ret;
1501 if (ret > 0)
1502 folio_put(folio);
1503 }
1504
1505 /*
1506 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507 * but also isolated from buddy freelist, so need to identify the
1508 * state and have to cancel both operations to unpoison.
1509 */
1510 if (PageHWPoisonTakenOff(page))
1511 return -EHWPOISON;
1512
1513 return get_page_unless_zero(page) ? 1 : 0;
1514}
1515
1516/**
1517 * get_hwpoison_page() - Get refcount for memory error handling
1518 * @p: Raw error page (hit by memory error)
1519 * @flags: Flags controlling behavior of error handling
1520 *
1521 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522 * error on it, after checking that the error page is in a well-defined state
1523 * (defined as a page-type we can successfully handle the memory error on it,
1524 * such as LRU page and hugetlb page).
1525 *
1526 * Memory error handling could be triggered at any time on any type of page,
1527 * so it's prone to race with typical memory management lifecycle (like
1528 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1529 * extra care for the error page's state (as done in __get_hwpoison_page()),
1530 * and has some retry logic in get_any_page().
1531 *
1532 * When called from unpoison_memory(), the caller should already ensure that
1533 * the given page has PG_hwpoison. So it's never reused for other page
1534 * allocations, and __get_unpoison_page() never races with them.
1535 *
1536 * Return: 0 on failure or free buddy (hugetlb) page,
1537 * 1 on success for in-use pages in a well-defined state,
1538 * -EIO for pages on which we can not handle memory errors,
1539 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540 * operations like allocation and free,
1541 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1542 */
1543static int get_hwpoison_page(struct page *p, unsigned long flags)
1544{
1545 int ret;
1546
1547 zone_pcp_disable(page_zone(p));
1548 if (flags & MF_UNPOISON)
1549 ret = __get_unpoison_page(p);
1550 else
1551 ret = get_any_page(p, flags);
1552 zone_pcp_enable(page_zone(p));
1553
1554 return ret;
1555}
1556
1557/*
1558 * Do all that is necessary to remove user space mappings. Unmap
1559 * the pages and send SIGBUS to the processes if the data was dirty.
1560 */
1561static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1562 unsigned long pfn, int flags)
1563{
1564 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1565 struct address_space *mapping;
1566 LIST_HEAD(tokill);
1567 bool unmap_success;
1568 int forcekill;
1569 bool mlocked = folio_test_mlocked(folio);
1570
1571 /*
1572 * Here we are interested only in user-mapped pages, so skip any
1573 * other types of pages.
1574 */
1575 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1576 folio_test_pgtable(folio) || folio_test_offline(folio))
1577 return true;
1578 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1579 return true;
1580
1581 /*
1582 * This check implies we don't kill processes if their pages
1583 * are in the swap cache early. Those are always late kills.
1584 */
1585 if (!folio_mapped(folio))
1586 return true;
1587
1588 if (folio_test_swapcache(folio)) {
1589 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1590 ttu &= ~TTU_HWPOISON;
1591 }
1592
1593 /*
1594 * Propagate the dirty bit from PTEs to struct page first, because we
1595 * need this to decide if we should kill or just drop the page.
1596 * XXX: the dirty test could be racy: set_page_dirty() may not always
1597 * be called inside page lock (it's recommended but not enforced).
1598 */
1599 mapping = folio_mapping(folio);
1600 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1601 mapping_can_writeback(mapping)) {
1602 if (folio_mkclean(folio)) {
1603 folio_set_dirty(folio);
1604 } else {
1605 ttu &= ~TTU_HWPOISON;
1606 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1607 pfn);
1608 }
1609 }
1610
1611 /*
1612 * First collect all the processes that have the page
1613 * mapped in dirty form. This has to be done before try_to_unmap,
1614 * because ttu takes the rmap data structures down.
1615 */
1616 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1617
1618 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1619 /*
1620 * For hugetlb pages in shared mappings, try_to_unmap
1621 * could potentially call huge_pmd_unshare. Because of
1622 * this, take semaphore in write mode here and set
1623 * TTU_RMAP_LOCKED to indicate we have taken the lock
1624 * at this higher level.
1625 */
1626 mapping = hugetlb_folio_mapping_lock_write(folio);
1627 if (mapping) {
1628 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1629 i_mmap_unlock_write(mapping);
1630 } else
1631 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1632 } else {
1633 try_to_unmap(folio, ttu);
1634 }
1635
1636 unmap_success = !folio_mapped(folio);
1637 if (!unmap_success)
1638 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1639 pfn, folio_mapcount(folio));
1640
1641 /*
1642 * try_to_unmap() might put mlocked page in lru cache, so call
1643 * shake_page() again to ensure that it's flushed.
1644 */
1645 if (mlocked)
1646 shake_folio(folio);
1647
1648 /*
1649 * Now that the dirty bit has been propagated to the
1650 * struct page and all unmaps done we can decide if
1651 * killing is needed or not. Only kill when the page
1652 * was dirty or the process is not restartable,
1653 * otherwise the tokill list is merely
1654 * freed. When there was a problem unmapping earlier
1655 * use a more force-full uncatchable kill to prevent
1656 * any accesses to the poisoned memory.
1657 */
1658 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1659 !unmap_success;
1660 kill_procs(&tokill, forcekill, pfn, flags);
1661
1662 return unmap_success;
1663}
1664
1665static int identify_page_state(unsigned long pfn, struct page *p,
1666 unsigned long page_flags)
1667{
1668 struct page_state *ps;
1669
1670 /*
1671 * The first check uses the current page flags which may not have any
1672 * relevant information. The second check with the saved page flags is
1673 * carried out only if the first check can't determine the page status.
1674 */
1675 for (ps = error_states;; ps++)
1676 if ((p->flags & ps->mask) == ps->res)
1677 break;
1678
1679 page_flags |= (p->flags & (1UL << PG_dirty));
1680
1681 if (!ps->mask)
1682 for (ps = error_states;; ps++)
1683 if ((page_flags & ps->mask) == ps->res)
1684 break;
1685 return page_action(ps, p, pfn);
1686}
1687
1688/*
1689 * When 'release' is 'false', it means that if thp split has failed,
1690 * there is still more to do, hence the page refcount we took earlier
1691 * is still needed.
1692 */
1693static int try_to_split_thp_page(struct page *page, bool release)
1694{
1695 int ret;
1696
1697 lock_page(page);
1698 ret = split_huge_page(page);
1699 unlock_page(page);
1700
1701 if (ret && release)
1702 put_page(page);
1703
1704 return ret;
1705}
1706
1707static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1708 struct address_space *mapping, pgoff_t index, int flags)
1709{
1710 struct to_kill *tk;
1711 unsigned long size = 0;
1712
1713 list_for_each_entry(tk, to_kill, nd)
1714 if (tk->size_shift)
1715 size = max(size, 1UL << tk->size_shift);
1716
1717 if (size) {
1718 /*
1719 * Unmap the largest mapping to avoid breaking up device-dax
1720 * mappings which are constant size. The actual size of the
1721 * mapping being torn down is communicated in siginfo, see
1722 * kill_proc()
1723 */
1724 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1725
1726 unmap_mapping_range(mapping, start, size, 0);
1727 }
1728
1729 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1730}
1731
1732/*
1733 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1734 * either do not claim or fails to claim a hwpoison event, or devdax.
1735 * The fsdax pages are initialized per base page, and the devdax pages
1736 * could be initialized either as base pages, or as compound pages with
1737 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1738 * hwpoison, such that, if a subpage of a compound page is poisoned,
1739 * simply mark the compound head page is by far sufficient.
1740 */
1741static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1742 struct dev_pagemap *pgmap)
1743{
1744 struct folio *folio = pfn_folio(pfn);
1745 LIST_HEAD(to_kill);
1746 dax_entry_t cookie;
1747 int rc = 0;
1748
1749 /*
1750 * Prevent the inode from being freed while we are interrogating
1751 * the address_space, typically this would be handled by
1752 * lock_page(), but dax pages do not use the page lock. This
1753 * also prevents changes to the mapping of this pfn until
1754 * poison signaling is complete.
1755 */
1756 cookie = dax_lock_folio(folio);
1757 if (!cookie)
1758 return -EBUSY;
1759
1760 if (hwpoison_filter(&folio->page)) {
1761 rc = -EOPNOTSUPP;
1762 goto unlock;
1763 }
1764
1765 switch (pgmap->type) {
1766 case MEMORY_DEVICE_PRIVATE:
1767 case MEMORY_DEVICE_COHERENT:
1768 /*
1769 * TODO: Handle device pages which may need coordination
1770 * with device-side memory.
1771 */
1772 rc = -ENXIO;
1773 goto unlock;
1774 default:
1775 break;
1776 }
1777
1778 /*
1779 * Use this flag as an indication that the dax page has been
1780 * remapped UC to prevent speculative consumption of poison.
1781 */
1782 SetPageHWPoison(&folio->page);
1783
1784 /*
1785 * Unlike System-RAM there is no possibility to swap in a
1786 * different physical page at a given virtual address, so all
1787 * userspace consumption of ZONE_DEVICE memory necessitates
1788 * SIGBUS (i.e. MF_MUST_KILL)
1789 */
1790 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1791 collect_procs(folio, &folio->page, &to_kill, true);
1792
1793 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1794unlock:
1795 dax_unlock_folio(folio, cookie);
1796 return rc;
1797}
1798
1799#ifdef CONFIG_FS_DAX
1800/**
1801 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1802 * @mapping: address_space of the file in use
1803 * @index: start pgoff of the range within the file
1804 * @count: length of the range, in unit of PAGE_SIZE
1805 * @mf_flags: memory failure flags
1806 */
1807int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1808 unsigned long count, int mf_flags)
1809{
1810 LIST_HEAD(to_kill);
1811 dax_entry_t cookie;
1812 struct page *page;
1813 size_t end = index + count;
1814 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1815
1816 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1817
1818 for (; index < end; index++) {
1819 page = NULL;
1820 cookie = dax_lock_mapping_entry(mapping, index, &page);
1821 if (!cookie)
1822 return -EBUSY;
1823 if (!page)
1824 goto unlock;
1825
1826 if (!pre_remove)
1827 SetPageHWPoison(page);
1828
1829 /*
1830 * The pre_remove case is revoking access, the memory is still
1831 * good and could theoretically be put back into service.
1832 */
1833 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1834 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1835 index, mf_flags);
1836unlock:
1837 dax_unlock_mapping_entry(mapping, index, cookie);
1838 }
1839 return 0;
1840}
1841EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1842#endif /* CONFIG_FS_DAX */
1843
1844#ifdef CONFIG_HUGETLB_PAGE
1845
1846/*
1847 * Struct raw_hwp_page represents information about "raw error page",
1848 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1849 */
1850struct raw_hwp_page {
1851 struct llist_node node;
1852 struct page *page;
1853};
1854
1855static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1856{
1857 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1858}
1859
1860bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1861{
1862 struct llist_head *raw_hwp_head;
1863 struct raw_hwp_page *p;
1864 struct folio *folio = page_folio(page);
1865 bool ret = false;
1866
1867 if (!folio_test_hwpoison(folio))
1868 return false;
1869
1870 if (!folio_test_hugetlb(folio))
1871 return PageHWPoison(page);
1872
1873 /*
1874 * When RawHwpUnreliable is set, kernel lost track of which subpages
1875 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1876 */
1877 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1878 return true;
1879
1880 mutex_lock(&mf_mutex);
1881
1882 raw_hwp_head = raw_hwp_list_head(folio);
1883 llist_for_each_entry(p, raw_hwp_head->first, node) {
1884 if (page == p->page) {
1885 ret = true;
1886 break;
1887 }
1888 }
1889
1890 mutex_unlock(&mf_mutex);
1891
1892 return ret;
1893}
1894
1895static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1896{
1897 struct llist_node *head;
1898 struct raw_hwp_page *p, *next;
1899 unsigned long count = 0;
1900
1901 head = llist_del_all(raw_hwp_list_head(folio));
1902 llist_for_each_entry_safe(p, next, head, node) {
1903 if (move_flag)
1904 SetPageHWPoison(p->page);
1905 else
1906 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1907 kfree(p);
1908 count++;
1909 }
1910 return count;
1911}
1912
1913static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1914{
1915 struct llist_head *head;
1916 struct raw_hwp_page *raw_hwp;
1917 struct raw_hwp_page *p;
1918 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1919
1920 /*
1921 * Once the hwpoison hugepage has lost reliable raw error info,
1922 * there is little meaning to keep additional error info precisely,
1923 * so skip to add additional raw error info.
1924 */
1925 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1926 return -EHWPOISON;
1927 head = raw_hwp_list_head(folio);
1928 llist_for_each_entry(p, head->first, node) {
1929 if (p->page == page)
1930 return -EHWPOISON;
1931 }
1932
1933 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1934 if (raw_hwp) {
1935 raw_hwp->page = page;
1936 llist_add(&raw_hwp->node, head);
1937 /* the first error event will be counted in action_result(). */
1938 if (ret)
1939 num_poisoned_pages_inc(page_to_pfn(page));
1940 } else {
1941 /*
1942 * Failed to save raw error info. We no longer trace all
1943 * hwpoisoned subpages, and we need refuse to free/dissolve
1944 * this hwpoisoned hugepage.
1945 */
1946 folio_set_hugetlb_raw_hwp_unreliable(folio);
1947 /*
1948 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1949 * used any more, so free it.
1950 */
1951 __folio_free_raw_hwp(folio, false);
1952 }
1953 return ret;
1954}
1955
1956static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1957{
1958 /*
1959 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1960 * pages for tail pages are required but they don't exist.
1961 */
1962 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1963 return 0;
1964
1965 /*
1966 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1967 * definition.
1968 */
1969 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1970 return 0;
1971
1972 return __folio_free_raw_hwp(folio, move_flag);
1973}
1974
1975void folio_clear_hugetlb_hwpoison(struct folio *folio)
1976{
1977 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1978 return;
1979 if (folio_test_hugetlb_vmemmap_optimized(folio))
1980 return;
1981 folio_clear_hwpoison(folio);
1982 folio_free_raw_hwp(folio, true);
1983}
1984
1985/*
1986 * Called from hugetlb code with hugetlb_lock held.
1987 *
1988 * Return values:
1989 * 0 - free hugepage
1990 * 1 - in-use hugepage
1991 * 2 - not a hugepage
1992 * -EBUSY - the hugepage is busy (try to retry)
1993 * -EHWPOISON - the hugepage is already hwpoisoned
1994 */
1995int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1996 bool *migratable_cleared)
1997{
1998 struct page *page = pfn_to_page(pfn);
1999 struct folio *folio = page_folio(page);
2000 int ret = 2; /* fallback to normal page handling */
2001 bool count_increased = false;
2002
2003 if (!folio_test_hugetlb(folio))
2004 goto out;
2005
2006 if (flags & MF_COUNT_INCREASED) {
2007 ret = 1;
2008 count_increased = true;
2009 } else if (folio_test_hugetlb_freed(folio)) {
2010 ret = 0;
2011 } else if (folio_test_hugetlb_migratable(folio)) {
2012 ret = folio_try_get(folio);
2013 if (ret)
2014 count_increased = true;
2015 } else {
2016 ret = -EBUSY;
2017 if (!(flags & MF_NO_RETRY))
2018 goto out;
2019 }
2020
2021 if (folio_set_hugetlb_hwpoison(folio, page)) {
2022 ret = -EHWPOISON;
2023 goto out;
2024 }
2025
2026 /*
2027 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2028 * from being migrated by memory hotremove.
2029 */
2030 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2031 folio_clear_hugetlb_migratable(folio);
2032 *migratable_cleared = true;
2033 }
2034
2035 return ret;
2036out:
2037 if (count_increased)
2038 folio_put(folio);
2039 return ret;
2040}
2041
2042/*
2043 * Taking refcount of hugetlb pages needs extra care about race conditions
2044 * with basic operations like hugepage allocation/free/demotion.
2045 * So some of prechecks for hwpoison (pinning, and testing/setting
2046 * PageHWPoison) should be done in single hugetlb_lock range.
2047 */
2048static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2049{
2050 int res;
2051 struct page *p = pfn_to_page(pfn);
2052 struct folio *folio;
2053 unsigned long page_flags;
2054 bool migratable_cleared = false;
2055
2056 *hugetlb = 1;
2057retry:
2058 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2059 if (res == 2) { /* fallback to normal page handling */
2060 *hugetlb = 0;
2061 return 0;
2062 } else if (res == -EHWPOISON) {
2063 pr_err("%#lx: already hardware poisoned\n", pfn);
2064 if (flags & MF_ACTION_REQUIRED) {
2065 folio = page_folio(p);
2066 res = kill_accessing_process(current, folio_pfn(folio), flags);
2067 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2068 }
2069 return res;
2070 } else if (res == -EBUSY) {
2071 if (!(flags & MF_NO_RETRY)) {
2072 flags |= MF_NO_RETRY;
2073 goto retry;
2074 }
2075 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2076 }
2077
2078 folio = page_folio(p);
2079 folio_lock(folio);
2080
2081 if (hwpoison_filter(p)) {
2082 folio_clear_hugetlb_hwpoison(folio);
2083 if (migratable_cleared)
2084 folio_set_hugetlb_migratable(folio);
2085 folio_unlock(folio);
2086 if (res == 1)
2087 folio_put(folio);
2088 return -EOPNOTSUPP;
2089 }
2090
2091 /*
2092 * Handling free hugepage. The possible race with hugepage allocation
2093 * or demotion can be prevented by PageHWPoison flag.
2094 */
2095 if (res == 0) {
2096 folio_unlock(folio);
2097 if (__page_handle_poison(p) > 0) {
2098 page_ref_inc(p);
2099 res = MF_RECOVERED;
2100 } else {
2101 res = MF_FAILED;
2102 }
2103 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2104 }
2105
2106 page_flags = folio->flags;
2107
2108 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2109 folio_unlock(folio);
2110 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2111 }
2112
2113 return identify_page_state(pfn, p, page_flags);
2114}
2115
2116#else
2117static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2118{
2119 return 0;
2120}
2121
2122static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2123{
2124 return 0;
2125}
2126#endif /* CONFIG_HUGETLB_PAGE */
2127
2128/* Drop the extra refcount in case we come from madvise() */
2129static void put_ref_page(unsigned long pfn, int flags)
2130{
2131 if (!(flags & MF_COUNT_INCREASED))
2132 return;
2133
2134 put_page(pfn_to_page(pfn));
2135}
2136
2137static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2138 struct dev_pagemap *pgmap)
2139{
2140 int rc = -ENXIO;
2141
2142 /* device metadata space is not recoverable */
2143 if (!pgmap_pfn_valid(pgmap, pfn))
2144 goto out;
2145
2146 /*
2147 * Call driver's implementation to handle the memory failure, otherwise
2148 * fall back to generic handler.
2149 */
2150 if (pgmap_has_memory_failure(pgmap)) {
2151 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2152 /*
2153 * Fall back to generic handler too if operation is not
2154 * supported inside the driver/device/filesystem.
2155 */
2156 if (rc != -EOPNOTSUPP)
2157 goto out;
2158 }
2159
2160 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2161out:
2162 /* drop pgmap ref acquired in caller */
2163 put_dev_pagemap(pgmap);
2164 if (rc != -EOPNOTSUPP)
2165 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2166 return rc;
2167}
2168
2169/*
2170 * The calling condition is as such: thp split failed, page might have
2171 * been RDMA pinned, not much can be done for recovery.
2172 * But a SIGBUS should be delivered with vaddr provided so that the user
2173 * application has a chance to recover. Also, application processes'
2174 * election for MCE early killed will be honored.
2175 */
2176static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2177 struct folio *folio)
2178{
2179 LIST_HEAD(tokill);
2180
2181 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2182 kill_procs(&tokill, true, pfn, flags);
2183}
2184
2185/**
2186 * memory_failure - Handle memory failure of a page.
2187 * @pfn: Page Number of the corrupted page
2188 * @flags: fine tune action taken
2189 *
2190 * This function is called by the low level machine check code
2191 * of an architecture when it detects hardware memory corruption
2192 * of a page. It tries its best to recover, which includes
2193 * dropping pages, killing processes etc.
2194 *
2195 * The function is primarily of use for corruptions that
2196 * happen outside the current execution context (e.g. when
2197 * detected by a background scrubber)
2198 *
2199 * Must run in process context (e.g. a work queue) with interrupts
2200 * enabled and no spinlocks held.
2201 *
2202 * Return: 0 for successfully handled the memory error,
2203 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2204 * < 0(except -EOPNOTSUPP) on failure.
2205 */
2206int memory_failure(unsigned long pfn, int flags)
2207{
2208 struct page *p;
2209 struct folio *folio;
2210 struct dev_pagemap *pgmap;
2211 int res = 0;
2212 unsigned long page_flags;
2213 bool retry = true;
2214 int hugetlb = 0;
2215
2216 if (!sysctl_memory_failure_recovery)
2217 panic("Memory failure on page %lx", pfn);
2218
2219 mutex_lock(&mf_mutex);
2220
2221 if (!(flags & MF_SW_SIMULATED))
2222 hw_memory_failure = true;
2223
2224 p = pfn_to_online_page(pfn);
2225 if (!p) {
2226 res = arch_memory_failure(pfn, flags);
2227 if (res == 0)
2228 goto unlock_mutex;
2229
2230 if (pfn_valid(pfn)) {
2231 pgmap = get_dev_pagemap(pfn, NULL);
2232 put_ref_page(pfn, flags);
2233 if (pgmap) {
2234 res = memory_failure_dev_pagemap(pfn, flags,
2235 pgmap);
2236 goto unlock_mutex;
2237 }
2238 }
2239 pr_err("%#lx: memory outside kernel control\n", pfn);
2240 res = -ENXIO;
2241 goto unlock_mutex;
2242 }
2243
2244try_again:
2245 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2246 if (hugetlb)
2247 goto unlock_mutex;
2248
2249 if (TestSetPageHWPoison(p)) {
2250 pr_err("%#lx: already hardware poisoned\n", pfn);
2251 res = -EHWPOISON;
2252 if (flags & MF_ACTION_REQUIRED)
2253 res = kill_accessing_process(current, pfn, flags);
2254 if (flags & MF_COUNT_INCREASED)
2255 put_page(p);
2256 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2257 goto unlock_mutex;
2258 }
2259
2260 /*
2261 * We need/can do nothing about count=0 pages.
2262 * 1) it's a free page, and therefore in safe hand:
2263 * check_new_page() will be the gate keeper.
2264 * 2) it's part of a non-compound high order page.
2265 * Implies some kernel user: cannot stop them from
2266 * R/W the page; let's pray that the page has been
2267 * used and will be freed some time later.
2268 * In fact it's dangerous to directly bump up page count from 0,
2269 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2270 */
2271 if (!(flags & MF_COUNT_INCREASED)) {
2272 res = get_hwpoison_page(p, flags);
2273 if (!res) {
2274 if (is_free_buddy_page(p)) {
2275 if (take_page_off_buddy(p)) {
2276 page_ref_inc(p);
2277 res = MF_RECOVERED;
2278 } else {
2279 /* We lost the race, try again */
2280 if (retry) {
2281 ClearPageHWPoison(p);
2282 retry = false;
2283 goto try_again;
2284 }
2285 res = MF_FAILED;
2286 }
2287 res = action_result(pfn, MF_MSG_BUDDY, res);
2288 } else {
2289 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2290 }
2291 goto unlock_mutex;
2292 } else if (res < 0) {
2293 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2294 goto unlock_mutex;
2295 }
2296 }
2297
2298 folio = page_folio(p);
2299
2300 /* filter pages that are protected from hwpoison test by users */
2301 folio_lock(folio);
2302 if (hwpoison_filter(p)) {
2303 ClearPageHWPoison(p);
2304 folio_unlock(folio);
2305 folio_put(folio);
2306 res = -EOPNOTSUPP;
2307 goto unlock_mutex;
2308 }
2309 folio_unlock(folio);
2310
2311 if (folio_test_large(folio)) {
2312 /*
2313 * The flag must be set after the refcount is bumped
2314 * otherwise it may race with THP split.
2315 * And the flag can't be set in get_hwpoison_page() since
2316 * it is called by soft offline too and it is just called
2317 * for !MF_COUNT_INCREASED. So here seems to be the best
2318 * place.
2319 *
2320 * Don't need care about the above error handling paths for
2321 * get_hwpoison_page() since they handle either free page
2322 * or unhandlable page. The refcount is bumped iff the
2323 * page is a valid handlable page.
2324 */
2325 folio_set_has_hwpoisoned(folio);
2326 if (try_to_split_thp_page(p, false) < 0) {
2327 res = -EHWPOISON;
2328 kill_procs_now(p, pfn, flags, folio);
2329 put_page(p);
2330 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2331 goto unlock_mutex;
2332 }
2333 VM_BUG_ON_PAGE(!page_count(p), p);
2334 folio = page_folio(p);
2335 }
2336
2337 /*
2338 * We ignore non-LRU pages for good reasons.
2339 * - PG_locked is only well defined for LRU pages and a few others
2340 * - to avoid races with __SetPageLocked()
2341 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2342 * The check (unnecessarily) ignores LRU pages being isolated and
2343 * walked by the page reclaim code, however that's not a big loss.
2344 */
2345 shake_folio(folio);
2346
2347 folio_lock(folio);
2348
2349 /*
2350 * We're only intended to deal with the non-Compound page here.
2351 * The page cannot become compound pages again as folio has been
2352 * splited and extra refcnt is held.
2353 */
2354 WARN_ON(folio_test_large(folio));
2355
2356 /*
2357 * We use page flags to determine what action should be taken, but
2358 * the flags can be modified by the error containment action. One
2359 * example is an mlocked page, where PG_mlocked is cleared by
2360 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2361 * status correctly, we save a copy of the page flags at this time.
2362 */
2363 page_flags = folio->flags;
2364
2365 /*
2366 * __munlock_folio() may clear a writeback folio's LRU flag without
2367 * the folio lock. We need to wait for writeback completion for this
2368 * folio or it may trigger a vfs BUG while evicting inode.
2369 */
2370 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2371 goto identify_page_state;
2372
2373 /*
2374 * It's very difficult to mess with pages currently under IO
2375 * and in many cases impossible, so we just avoid it here.
2376 */
2377 folio_wait_writeback(folio);
2378
2379 /*
2380 * Now take care of user space mappings.
2381 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2382 */
2383 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2384 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2385 goto unlock_page;
2386 }
2387
2388 /*
2389 * Torn down by someone else?
2390 */
2391 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2392 folio->mapping == NULL) {
2393 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2394 goto unlock_page;
2395 }
2396
2397identify_page_state:
2398 res = identify_page_state(pfn, p, page_flags);
2399 mutex_unlock(&mf_mutex);
2400 return res;
2401unlock_page:
2402 folio_unlock(folio);
2403unlock_mutex:
2404 mutex_unlock(&mf_mutex);
2405 return res;
2406}
2407EXPORT_SYMBOL_GPL(memory_failure);
2408
2409#define MEMORY_FAILURE_FIFO_ORDER 4
2410#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2411
2412struct memory_failure_entry {
2413 unsigned long pfn;
2414 int flags;
2415};
2416
2417struct memory_failure_cpu {
2418 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2419 MEMORY_FAILURE_FIFO_SIZE);
2420 raw_spinlock_t lock;
2421 struct work_struct work;
2422};
2423
2424static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2425
2426/**
2427 * memory_failure_queue - Schedule handling memory failure of a page.
2428 * @pfn: Page Number of the corrupted page
2429 * @flags: Flags for memory failure handling
2430 *
2431 * This function is called by the low level hardware error handler
2432 * when it detects hardware memory corruption of a page. It schedules
2433 * the recovering of error page, including dropping pages, killing
2434 * processes etc.
2435 *
2436 * The function is primarily of use for corruptions that
2437 * happen outside the current execution context (e.g. when
2438 * detected by a background scrubber)
2439 *
2440 * Can run in IRQ context.
2441 */
2442void memory_failure_queue(unsigned long pfn, int flags)
2443{
2444 struct memory_failure_cpu *mf_cpu;
2445 unsigned long proc_flags;
2446 bool buffer_overflow;
2447 struct memory_failure_entry entry = {
2448 .pfn = pfn,
2449 .flags = flags,
2450 };
2451
2452 mf_cpu = &get_cpu_var(memory_failure_cpu);
2453 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2454 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2455 if (!buffer_overflow)
2456 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2457 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2458 put_cpu_var(memory_failure_cpu);
2459 if (buffer_overflow)
2460 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2461 pfn);
2462}
2463EXPORT_SYMBOL_GPL(memory_failure_queue);
2464
2465static void memory_failure_work_func(struct work_struct *work)
2466{
2467 struct memory_failure_cpu *mf_cpu;
2468 struct memory_failure_entry entry = { 0, };
2469 unsigned long proc_flags;
2470 int gotten;
2471
2472 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2473 for (;;) {
2474 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2475 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2476 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2477 if (!gotten)
2478 break;
2479 if (entry.flags & MF_SOFT_OFFLINE)
2480 soft_offline_page(entry.pfn, entry.flags);
2481 else
2482 memory_failure(entry.pfn, entry.flags);
2483 }
2484}
2485
2486/*
2487 * Process memory_failure work queued on the specified CPU.
2488 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2489 */
2490void memory_failure_queue_kick(int cpu)
2491{
2492 struct memory_failure_cpu *mf_cpu;
2493
2494 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2495 cancel_work_sync(&mf_cpu->work);
2496 memory_failure_work_func(&mf_cpu->work);
2497}
2498
2499static int __init memory_failure_init(void)
2500{
2501 struct memory_failure_cpu *mf_cpu;
2502 int cpu;
2503
2504 for_each_possible_cpu(cpu) {
2505 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2506 raw_spin_lock_init(&mf_cpu->lock);
2507 INIT_KFIFO(mf_cpu->fifo);
2508 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2509 }
2510
2511 register_sysctl_init("vm", memory_failure_table);
2512
2513 return 0;
2514}
2515core_initcall(memory_failure_init);
2516
2517#undef pr_fmt
2518#define pr_fmt(fmt) "Unpoison: " fmt
2519#define unpoison_pr_info(fmt, pfn, rs) \
2520({ \
2521 if (__ratelimit(rs)) \
2522 pr_info(fmt, pfn); \
2523})
2524
2525/**
2526 * unpoison_memory - Unpoison a previously poisoned page
2527 * @pfn: Page number of the to be unpoisoned page
2528 *
2529 * Software-unpoison a page that has been poisoned by
2530 * memory_failure() earlier.
2531 *
2532 * This is only done on the software-level, so it only works
2533 * for linux injected failures, not real hardware failures
2534 *
2535 * Returns 0 for success, otherwise -errno.
2536 */
2537int unpoison_memory(unsigned long pfn)
2538{
2539 struct folio *folio;
2540 struct page *p;
2541 int ret = -EBUSY, ghp;
2542 unsigned long count;
2543 bool huge = false;
2544 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2545 DEFAULT_RATELIMIT_BURST);
2546
2547 if (!pfn_valid(pfn))
2548 return -ENXIO;
2549
2550 p = pfn_to_page(pfn);
2551 folio = page_folio(p);
2552
2553 mutex_lock(&mf_mutex);
2554
2555 if (hw_memory_failure) {
2556 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2557 pfn, &unpoison_rs);
2558 ret = -EOPNOTSUPP;
2559 goto unlock_mutex;
2560 }
2561
2562 if (is_huge_zero_folio(folio)) {
2563 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2564 pfn, &unpoison_rs);
2565 ret = -EOPNOTSUPP;
2566 goto unlock_mutex;
2567 }
2568
2569 if (!PageHWPoison(p)) {
2570 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2571 pfn, &unpoison_rs);
2572 goto unlock_mutex;
2573 }
2574
2575 if (folio_ref_count(folio) > 1) {
2576 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2577 pfn, &unpoison_rs);
2578 goto unlock_mutex;
2579 }
2580
2581 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2582 folio_test_reserved(folio) || folio_test_offline(folio))
2583 goto unlock_mutex;
2584
2585 if (folio_mapped(folio)) {
2586 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2587 pfn, &unpoison_rs);
2588 goto unlock_mutex;
2589 }
2590
2591 if (folio_mapping(folio)) {
2592 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2593 pfn, &unpoison_rs);
2594 goto unlock_mutex;
2595 }
2596
2597 ghp = get_hwpoison_page(p, MF_UNPOISON);
2598 if (!ghp) {
2599 if (folio_test_hugetlb(folio)) {
2600 huge = true;
2601 count = folio_free_raw_hwp(folio, false);
2602 if (count == 0)
2603 goto unlock_mutex;
2604 }
2605 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2606 } else if (ghp < 0) {
2607 if (ghp == -EHWPOISON) {
2608 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2609 } else {
2610 ret = ghp;
2611 unpoison_pr_info("%#lx: failed to grab page\n",
2612 pfn, &unpoison_rs);
2613 }
2614 } else {
2615 if (folio_test_hugetlb(folio)) {
2616 huge = true;
2617 count = folio_free_raw_hwp(folio, false);
2618 if (count == 0) {
2619 folio_put(folio);
2620 goto unlock_mutex;
2621 }
2622 }
2623
2624 folio_put(folio);
2625 if (TestClearPageHWPoison(p)) {
2626 folio_put(folio);
2627 ret = 0;
2628 }
2629 }
2630
2631unlock_mutex:
2632 mutex_unlock(&mf_mutex);
2633 if (!ret) {
2634 if (!huge)
2635 num_poisoned_pages_sub(pfn, 1);
2636 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2637 page_to_pfn(p), &unpoison_rs);
2638 }
2639 return ret;
2640}
2641EXPORT_SYMBOL(unpoison_memory);
2642
2643#undef pr_fmt
2644#define pr_fmt(fmt) "Soft offline: " fmt
2645
2646static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2647{
2648 bool isolated = false;
2649
2650 if (folio_test_hugetlb(folio)) {
2651 isolated = isolate_hugetlb(folio, pagelist);
2652 } else {
2653 bool lru = !__folio_test_movable(folio);
2654
2655 if (lru)
2656 isolated = folio_isolate_lru(folio);
2657 else
2658 isolated = isolate_movable_page(&folio->page,
2659 ISOLATE_UNEVICTABLE);
2660
2661 if (isolated) {
2662 list_add(&folio->lru, pagelist);
2663 if (lru)
2664 node_stat_add_folio(folio, NR_ISOLATED_ANON +
2665 folio_is_file_lru(folio));
2666 }
2667 }
2668
2669 /*
2670 * If we succeed to isolate the folio, we grabbed another refcount on
2671 * the folio, so we can safely drop the one we got from get_any_page().
2672 * If we failed to isolate the folio, it means that we cannot go further
2673 * and we will return an error, so drop the reference we got from
2674 * get_any_page() as well.
2675 */
2676 folio_put(folio);
2677 return isolated;
2678}
2679
2680/*
2681 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2682 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2683 * If the page is mapped, it migrates the contents over.
2684 */
2685static int soft_offline_in_use_page(struct page *page)
2686{
2687 long ret = 0;
2688 unsigned long pfn = page_to_pfn(page);
2689 struct folio *folio = page_folio(page);
2690 char const *msg_page[] = {"page", "hugepage"};
2691 bool huge = folio_test_hugetlb(folio);
2692 LIST_HEAD(pagelist);
2693 struct migration_target_control mtc = {
2694 .nid = NUMA_NO_NODE,
2695 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2696 .reason = MR_MEMORY_FAILURE,
2697 };
2698
2699 if (!huge && folio_test_large(folio)) {
2700 if (try_to_split_thp_page(page, true)) {
2701 pr_info("%#lx: thp split failed\n", pfn);
2702 return -EBUSY;
2703 }
2704 folio = page_folio(page);
2705 }
2706
2707 folio_lock(folio);
2708 if (!huge)
2709 folio_wait_writeback(folio);
2710 if (PageHWPoison(page)) {
2711 folio_unlock(folio);
2712 folio_put(folio);
2713 pr_info("%#lx: page already poisoned\n", pfn);
2714 return 0;
2715 }
2716
2717 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2718 /*
2719 * Try to invalidate first. This should work for
2720 * non dirty unmapped page cache pages.
2721 */
2722 ret = mapping_evict_folio(folio_mapping(folio), folio);
2723 folio_unlock(folio);
2724
2725 if (ret) {
2726 pr_info("%#lx: invalidated\n", pfn);
2727 page_handle_poison(page, false, true);
2728 return 0;
2729 }
2730
2731 if (mf_isolate_folio(folio, &pagelist)) {
2732 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2733 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2734 if (!ret) {
2735 bool release = !huge;
2736
2737 if (!page_handle_poison(page, huge, release))
2738 ret = -EBUSY;
2739 } else {
2740 if (!list_empty(&pagelist))
2741 putback_movable_pages(&pagelist);
2742
2743 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2744 pfn, msg_page[huge], ret, &page->flags);
2745 if (ret > 0)
2746 ret = -EBUSY;
2747 }
2748 } else {
2749 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2750 pfn, msg_page[huge], page_count(page), &page->flags);
2751 ret = -EBUSY;
2752 }
2753 return ret;
2754}
2755
2756/**
2757 * soft_offline_page - Soft offline a page.
2758 * @pfn: pfn to soft-offline
2759 * @flags: flags. Same as memory_failure().
2760 *
2761 * Returns 0 on success,
2762 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2763 * disabled by /proc/sys/vm/enable_soft_offline,
2764 * < 0 otherwise negated errno.
2765 *
2766 * Soft offline a page, by migration or invalidation,
2767 * without killing anything. This is for the case when
2768 * a page is not corrupted yet (so it's still valid to access),
2769 * but has had a number of corrected errors and is better taken
2770 * out.
2771 *
2772 * The actual policy on when to do that is maintained by
2773 * user space.
2774 *
2775 * This should never impact any application or cause data loss,
2776 * however it might take some time.
2777 *
2778 * This is not a 100% solution for all memory, but tries to be
2779 * ``good enough'' for the majority of memory.
2780 */
2781int soft_offline_page(unsigned long pfn, int flags)
2782{
2783 int ret;
2784 bool try_again = true;
2785 struct page *page;
2786
2787 if (!pfn_valid(pfn)) {
2788 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2789 return -ENXIO;
2790 }
2791
2792 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2793 page = pfn_to_online_page(pfn);
2794 if (!page) {
2795 put_ref_page(pfn, flags);
2796 return -EIO;
2797 }
2798
2799 if (!sysctl_enable_soft_offline) {
2800 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2801 put_ref_page(pfn, flags);
2802 return -EOPNOTSUPP;
2803 }
2804
2805 mutex_lock(&mf_mutex);
2806
2807 if (PageHWPoison(page)) {
2808 pr_info("%#lx: page already poisoned\n", pfn);
2809 put_ref_page(pfn, flags);
2810 mutex_unlock(&mf_mutex);
2811 return 0;
2812 }
2813
2814retry:
2815 get_online_mems();
2816 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2817 put_online_mems();
2818
2819 if (hwpoison_filter(page)) {
2820 if (ret > 0)
2821 put_page(page);
2822
2823 mutex_unlock(&mf_mutex);
2824 return -EOPNOTSUPP;
2825 }
2826
2827 if (ret > 0) {
2828 ret = soft_offline_in_use_page(page);
2829 } else if (ret == 0) {
2830 if (!page_handle_poison(page, true, false)) {
2831 if (try_again) {
2832 try_again = false;
2833 flags &= ~MF_COUNT_INCREASED;
2834 goto retry;
2835 }
2836 ret = -EBUSY;
2837 }
2838 }
2839
2840 mutex_unlock(&mf_mutex);
2841
2842 return ret;
2843}