Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/syscalls.h>
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
30#include <linux/error-injection.h>
31#include <linux/hash.h>
32#include <linux/writeback.h>
33#include <linux/backing-dev.h>
34#include <linux/pagevec.h>
35#include <linux/security.h>
36#include <linux/cpuset.h>
37#include <linux/hugetlb.h>
38#include <linux/memcontrol.h>
39#include <linux/shmem_fs.h>
40#include <linux/rmap.h>
41#include <linux/delayacct.h>
42#include <linux/psi.h>
43#include <linux/ramfs.h>
44#include <linux/page_idle.h>
45#include <linux/migrate.h>
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
48#include <linux/rcupdate_wait.h>
49#include <asm/pgalloc.h>
50#include <asm/tlbflush.h>
51#include "internal.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/filemap.h>
55
56/*
57 * FIXME: remove all knowledge of the buffer layer from the core VM
58 */
59#include <linux/buffer_head.h> /* for try_to_free_buffers */
60
61#include <asm/mman.h>
62
63#include "swap.h"
64
65/*
66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
67 * though.
68 *
69 * Shared mappings now work. 15.8.1995 Bruno.
70 *
71 * finished 'unifying' the page and buffer cache and SMP-threaded the
72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73 *
74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75 */
76
77/*
78 * Lock ordering:
79 *
80 * ->i_mmap_rwsem (truncate_pagecache)
81 * ->private_lock (__free_pte->block_dirty_folio)
82 * ->swap_lock (exclusive_swap_page, others)
83 * ->i_pages lock
84 *
85 * ->i_rwsem
86 * ->invalidate_lock (acquired by fs in truncate path)
87 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
88 *
89 * ->mmap_lock
90 * ->i_mmap_rwsem
91 * ->page_table_lock or pte_lock (various, mainly in memory.c)
92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
93 *
94 * ->mmap_lock
95 * ->invalidate_lock (filemap_fault)
96 * ->lock_page (filemap_fault, access_process_vm)
97 *
98 * ->i_rwsem (generic_perform_write)
99 * ->mmap_lock (fault_in_readable->do_page_fault)
100 *
101 * bdi->wb.list_lock
102 * sb_lock (fs/fs-writeback.c)
103 * ->i_pages lock (__sync_single_inode)
104 *
105 * ->i_mmap_rwsem
106 * ->anon_vma.lock (vma_merge)
107 *
108 * ->anon_vma.lock
109 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
110 *
111 * ->page_table_lock or pte_lock
112 * ->swap_lock (try_to_unmap_one)
113 * ->private_lock (try_to_unmap_one)
114 * ->i_pages lock (try_to_unmap_one)
115 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
125 */
126
127static void mapping_set_update(struct xa_state *xas,
128 struct address_space *mapping)
129{
130 if (dax_mapping(mapping) || shmem_mapping(mapping))
131 return;
132 xas_set_update(xas, workingset_update_node);
133 xas_set_lru(xas, &shadow_nodes);
134}
135
136static void page_cache_delete(struct address_space *mapping,
137 struct folio *folio, void *shadow)
138{
139 XA_STATE(xas, &mapping->i_pages, folio->index);
140 long nr = 1;
141
142 mapping_set_update(&xas, mapping);
143
144 xas_set_order(&xas, folio->index, folio_order(folio));
145 nr = folio_nr_pages(folio);
146
147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148
149 xas_store(&xas, shadow);
150 xas_init_marks(&xas);
151
152 folio->mapping = NULL;
153 /* Leave page->index set: truncation lookup relies upon it */
154 mapping->nrpages -= nr;
155}
156
157static void filemap_unaccount_folio(struct address_space *mapping,
158 struct folio *folio)
159{
160 long nr;
161
162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
165 current->comm, folio_pfn(folio));
166 dump_page(&folio->page, "still mapped when deleted");
167 dump_stack();
168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169
170 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 int mapcount = folio_mapcount(folio);
172
173 if (folio_ref_count(folio) >= mapcount + 2) {
174 /*
175 * All vmas have already been torn down, so it's
176 * a good bet that actually the page is unmapped
177 * and we'd rather not leak it: if we're wrong,
178 * another bad page check should catch it later.
179 */
180 atomic_set(&folio->_mapcount, -1);
181 folio_ref_sub(folio, mapcount);
182 }
183 }
184 }
185
186 /* hugetlb folios do not participate in page cache accounting. */
187 if (folio_test_hugetlb(folio))
188 return;
189
190 nr = folio_nr_pages(folio);
191
192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 if (folio_test_swapbacked(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 if (folio_test_pmd_mappable(folio))
196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 } else if (folio_test_pmd_mappable(folio)) {
198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 filemap_nr_thps_dec(mapping);
200 }
201
202 /*
203 * At this point folio must be either written or cleaned by
204 * truncate. Dirty folio here signals a bug and loss of
205 * unwritten data - on ordinary filesystems.
206 *
207 * But it's harmless on in-memory filesystems like tmpfs; and can
208 * occur when a driver which did get_user_pages() sets page dirty
209 * before putting it, while the inode is being finally evicted.
210 *
211 * Below fixes dirty accounting after removing the folio entirely
212 * but leaves the dirty flag set: it has no effect for truncated
213 * folio and anyway will be cleared before returning folio to
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 mapping_can_writeback(mapping)))
218 folio_account_cleaned(folio, inode_to_wb(mapping->host));
219}
220
221/*
222 * Delete a page from the page cache and free it. Caller has to make
223 * sure the page is locked and that nobody else uses it - or that usage
224 * is safe. The caller must hold the i_pages lock.
225 */
226void __filemap_remove_folio(struct folio *folio, void *shadow)
227{
228 struct address_space *mapping = folio->mapping;
229
230 trace_mm_filemap_delete_from_page_cache(folio);
231 filemap_unaccount_folio(mapping, folio);
232 page_cache_delete(mapping, folio, shadow);
233}
234
235void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236{
237 void (*free_folio)(struct folio *);
238 int refs = 1;
239
240 free_folio = mapping->a_ops->free_folio;
241 if (free_folio)
242 free_folio(folio);
243
244 if (folio_test_large(folio))
245 refs = folio_nr_pages(folio);
246 folio_put_refs(folio, refs);
247}
248
249/**
250 * filemap_remove_folio - Remove folio from page cache.
251 * @folio: The folio.
252 *
253 * This must be called only on folios that are locked and have been
254 * verified to be in the page cache. It will never put the folio into
255 * the free list because the caller has a reference on the page.
256 */
257void filemap_remove_folio(struct folio *folio)
258{
259 struct address_space *mapping = folio->mapping;
260
261 BUG_ON(!folio_test_locked(folio));
262 spin_lock(&mapping->host->i_lock);
263 xa_lock_irq(&mapping->i_pages);
264 __filemap_remove_folio(folio, NULL);
265 xa_unlock_irq(&mapping->i_pages);
266 if (mapping_shrinkable(mapping))
267 inode_add_lru(mapping->host);
268 spin_unlock(&mapping->host->i_lock);
269
270 filemap_free_folio(mapping, folio);
271}
272
273/*
274 * page_cache_delete_batch - delete several folios from page cache
275 * @mapping: the mapping to which folios belong
276 * @fbatch: batch of folios to delete
277 *
278 * The function walks over mapping->i_pages and removes folios passed in
279 * @fbatch from the mapping. The function expects @fbatch to be sorted
280 * by page index and is optimised for it to be dense.
281 * It tolerates holes in @fbatch (mapping entries at those indices are not
282 * modified).
283 *
284 * The function expects the i_pages lock to be held.
285 */
286static void page_cache_delete_batch(struct address_space *mapping,
287 struct folio_batch *fbatch)
288{
289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 long total_pages = 0;
291 int i = 0;
292 struct folio *folio;
293
294 mapping_set_update(&xas, mapping);
295 xas_for_each(&xas, folio, ULONG_MAX) {
296 if (i >= folio_batch_count(fbatch))
297 break;
298
299 /* A swap/dax/shadow entry got inserted? Skip it. */
300 if (xa_is_value(folio))
301 continue;
302 /*
303 * A page got inserted in our range? Skip it. We have our
304 * pages locked so they are protected from being removed.
305 * If we see a page whose index is higher than ours, it
306 * means our page has been removed, which shouldn't be
307 * possible because we're holding the PageLock.
308 */
309 if (folio != fbatch->folios[i]) {
310 VM_BUG_ON_FOLIO(folio->index >
311 fbatch->folios[i]->index, folio);
312 continue;
313 }
314
315 WARN_ON_ONCE(!folio_test_locked(folio));
316
317 folio->mapping = NULL;
318 /* Leave folio->index set: truncation lookup relies on it */
319
320 i++;
321 xas_store(&xas, NULL);
322 total_pages += folio_nr_pages(folio);
323 }
324 mapping->nrpages -= total_pages;
325}
326
327void delete_from_page_cache_batch(struct address_space *mapping,
328 struct folio_batch *fbatch)
329{
330 int i;
331
332 if (!folio_batch_count(fbatch))
333 return;
334
335 spin_lock(&mapping->host->i_lock);
336 xa_lock_irq(&mapping->i_pages);
337 for (i = 0; i < folio_batch_count(fbatch); i++) {
338 struct folio *folio = fbatch->folios[i];
339
340 trace_mm_filemap_delete_from_page_cache(folio);
341 filemap_unaccount_folio(mapping, folio);
342 }
343 page_cache_delete_batch(mapping, fbatch);
344 xa_unlock_irq(&mapping->i_pages);
345 if (mapping_shrinkable(mapping))
346 inode_add_lru(mapping->host);
347 spin_unlock(&mapping->host->i_lock);
348
349 for (i = 0; i < folio_batch_count(fbatch); i++)
350 filemap_free_folio(mapping, fbatch->folios[i]);
351}
352
353int filemap_check_errors(struct address_space *mapping)
354{
355 int ret = 0;
356 /* Check for outstanding write errors */
357 if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 ret = -ENOSPC;
360 if (test_bit(AS_EIO, &mapping->flags) &&
361 test_and_clear_bit(AS_EIO, &mapping->flags))
362 ret = -EIO;
363 return ret;
364}
365EXPORT_SYMBOL(filemap_check_errors);
366
367static int filemap_check_and_keep_errors(struct address_space *mapping)
368{
369 /* Check for outstanding write errors */
370 if (test_bit(AS_EIO, &mapping->flags))
371 return -EIO;
372 if (test_bit(AS_ENOSPC, &mapping->flags))
373 return -ENOSPC;
374 return 0;
375}
376
377/**
378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379 * @mapping: address space structure to write
380 * @wbc: the writeback_control controlling the writeout
381 *
382 * Call writepages on the mapping using the provided wbc to control the
383 * writeout.
384 *
385 * Return: %0 on success, negative error code otherwise.
386 */
387int filemap_fdatawrite_wbc(struct address_space *mapping,
388 struct writeback_control *wbc)
389{
390 int ret;
391
392 if (!mapping_can_writeback(mapping) ||
393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 return 0;
395
396 wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 ret = do_writepages(mapping, wbc);
398 wbc_detach_inode(wbc);
399 return ret;
400}
401EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402
403/**
404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405 * @mapping: address space structure to write
406 * @start: offset in bytes where the range starts
407 * @end: offset in bytes where the range ends (inclusive)
408 * @sync_mode: enable synchronous operation
409 *
410 * Start writeback against all of a mapping's dirty pages that lie
411 * within the byte offsets <start, end> inclusive.
412 *
413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414 * opposed to a regular memory cleansing writeback. The difference between
415 * these two operations is that if a dirty page/buffer is encountered, it must
416 * be waited upon, and not just skipped over.
417 *
418 * Return: %0 on success, negative error code otherwise.
419 */
420int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 loff_t end, int sync_mode)
422{
423 struct writeback_control wbc = {
424 .sync_mode = sync_mode,
425 .nr_to_write = LONG_MAX,
426 .range_start = start,
427 .range_end = end,
428 };
429
430 return filemap_fdatawrite_wbc(mapping, &wbc);
431}
432
433static inline int __filemap_fdatawrite(struct address_space *mapping,
434 int sync_mode)
435{
436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437}
438
439int filemap_fdatawrite(struct address_space *mapping)
440{
441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442}
443EXPORT_SYMBOL(filemap_fdatawrite);
444
445int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 loff_t end)
447{
448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449}
450EXPORT_SYMBOL(filemap_fdatawrite_range);
451
452/**
453 * filemap_flush - mostly a non-blocking flush
454 * @mapping: target address_space
455 *
456 * This is a mostly non-blocking flush. Not suitable for data-integrity
457 * purposes - I/O may not be started against all dirty pages.
458 *
459 * Return: %0 on success, negative error code otherwise.
460 */
461int filemap_flush(struct address_space *mapping)
462{
463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464}
465EXPORT_SYMBOL(filemap_flush);
466
467/**
468 * filemap_range_has_page - check if a page exists in range.
469 * @mapping: address space within which to check
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Find at least one page in the range supplied, usually used to check if
474 * direct writing in this range will trigger a writeback.
475 *
476 * Return: %true if at least one page exists in the specified range,
477 * %false otherwise.
478 */
479bool filemap_range_has_page(struct address_space *mapping,
480 loff_t start_byte, loff_t end_byte)
481{
482 struct folio *folio;
483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 pgoff_t max = end_byte >> PAGE_SHIFT;
485
486 if (end_byte < start_byte)
487 return false;
488
489 rcu_read_lock();
490 for (;;) {
491 folio = xas_find(&xas, max);
492 if (xas_retry(&xas, folio))
493 continue;
494 /* Shadow entries don't count */
495 if (xa_is_value(folio))
496 continue;
497 /*
498 * We don't need to try to pin this page; we're about to
499 * release the RCU lock anyway. It is enough to know that
500 * there was a page here recently.
501 */
502 break;
503 }
504 rcu_read_unlock();
505
506 return folio != NULL;
507}
508EXPORT_SYMBOL(filemap_range_has_page);
509
510static void __filemap_fdatawait_range(struct address_space *mapping,
511 loff_t start_byte, loff_t end_byte)
512{
513 pgoff_t index = start_byte >> PAGE_SHIFT;
514 pgoff_t end = end_byte >> PAGE_SHIFT;
515 struct folio_batch fbatch;
516 unsigned nr_folios;
517
518 folio_batch_init(&fbatch);
519
520 while (index <= end) {
521 unsigned i;
522
523 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 PAGECACHE_TAG_WRITEBACK, &fbatch);
525
526 if (!nr_folios)
527 break;
528
529 for (i = 0; i < nr_folios; i++) {
530 struct folio *folio = fbatch.folios[i];
531
532 folio_wait_writeback(folio);
533 folio_clear_error(folio);
534 }
535 folio_batch_release(&fbatch);
536 cond_resched();
537 }
538}
539
540/**
541 * filemap_fdatawait_range - wait for writeback to complete
542 * @mapping: address space structure to wait for
543 * @start_byte: offset in bytes where the range starts
544 * @end_byte: offset in bytes where the range ends (inclusive)
545 *
546 * Walk the list of under-writeback pages of the given address space
547 * in the given range and wait for all of them. Check error status of
548 * the address space and return it.
549 *
550 * Since the error status of the address space is cleared by this function,
551 * callers are responsible for checking the return value and handling and/or
552 * reporting the error.
553 *
554 * Return: error status of the address space.
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561}
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
564/**
565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566 * @mapping: address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the given address space in the
571 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
572 * this function does not clear error status of the address space.
573 *
574 * Use this function if callers don't handle errors themselves. Expected
575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576 * fsfreeze(8)
577 */
578int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 loff_t start_byte, loff_t end_byte)
580{
581 __filemap_fdatawait_range(mapping, start_byte, end_byte);
582 return filemap_check_and_keep_errors(mapping);
583}
584EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585
586/**
587 * file_fdatawait_range - wait for writeback to complete
588 * @file: file pointing to address space structure to wait for
589 * @start_byte: offset in bytes where the range starts
590 * @end_byte: offset in bytes where the range ends (inclusive)
591 *
592 * Walk the list of under-writeback pages of the address space that file
593 * refers to, in the given range and wait for all of them. Check error
594 * status of the address space vs. the file->f_wb_err cursor and return it.
595 *
596 * Since the error status of the file is advanced by this function,
597 * callers are responsible for checking the return value and handling and/or
598 * reporting the error.
599 *
600 * Return: error status of the address space vs. the file->f_wb_err cursor.
601 */
602int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603{
604 struct address_space *mapping = file->f_mapping;
605
606 __filemap_fdatawait_range(mapping, start_byte, end_byte);
607 return file_check_and_advance_wb_err(file);
608}
609EXPORT_SYMBOL(file_fdatawait_range);
610
611/**
612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613 * @mapping: address space structure to wait for
614 *
615 * Walk the list of under-writeback pages of the given address space
616 * and wait for all of them. Unlike filemap_fdatawait(), this function
617 * does not clear error status of the address space.
618 *
619 * Use this function if callers don't handle errors themselves. Expected
620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621 * fsfreeze(8)
622 *
623 * Return: error status of the address space.
624 */
625int filemap_fdatawait_keep_errors(struct address_space *mapping)
626{
627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 return filemap_check_and_keep_errors(mapping);
629}
630EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631
632/* Returns true if writeback might be needed or already in progress. */
633static bool mapping_needs_writeback(struct address_space *mapping)
634{
635 return mapping->nrpages;
636}
637
638bool filemap_range_has_writeback(struct address_space *mapping,
639 loff_t start_byte, loff_t end_byte)
640{
641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 pgoff_t max = end_byte >> PAGE_SHIFT;
643 struct folio *folio;
644
645 if (end_byte < start_byte)
646 return false;
647
648 rcu_read_lock();
649 xas_for_each(&xas, folio, max) {
650 if (xas_retry(&xas, folio))
651 continue;
652 if (xa_is_value(folio))
653 continue;
654 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 folio_test_writeback(folio))
656 break;
657 }
658 rcu_read_unlock();
659 return folio != NULL;
660}
661EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662
663/**
664 * filemap_write_and_wait_range - write out & wait on a file range
665 * @mapping: the address_space for the pages
666 * @lstart: offset in bytes where the range starts
667 * @lend: offset in bytes where the range ends (inclusive)
668 *
669 * Write out and wait upon file offsets lstart->lend, inclusive.
670 *
671 * Note that @lend is inclusive (describes the last byte to be written) so
672 * that this function can be used to write to the very end-of-file (end = -1).
673 *
674 * Return: error status of the address space.
675 */
676int filemap_write_and_wait_range(struct address_space *mapping,
677 loff_t lstart, loff_t lend)
678{
679 int err = 0, err2;
680
681 if (lend < lstart)
682 return 0;
683
684 if (mapping_needs_writeback(mapping)) {
685 err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 WB_SYNC_ALL);
687 /*
688 * Even if the above returned error, the pages may be
689 * written partially (e.g. -ENOSPC), so we wait for it.
690 * But the -EIO is special case, it may indicate the worst
691 * thing (e.g. bug) happened, so we avoid waiting for it.
692 */
693 if (err != -EIO)
694 __filemap_fdatawait_range(mapping, lstart, lend);
695 }
696 err2 = filemap_check_errors(mapping);
697 if (!err)
698 err = err2;
699 return err;
700}
701EXPORT_SYMBOL(filemap_write_and_wait_range);
702
703void __filemap_set_wb_err(struct address_space *mapping, int err)
704{
705 errseq_t eseq = errseq_set(&mapping->wb_err, err);
706
707 trace_filemap_set_wb_err(mapping, eseq);
708}
709EXPORT_SYMBOL(__filemap_set_wb_err);
710
711/**
712 * file_check_and_advance_wb_err - report wb error (if any) that was previously
713 * and advance wb_err to current one
714 * @file: struct file on which the error is being reported
715 *
716 * When userland calls fsync (or something like nfsd does the equivalent), we
717 * want to report any writeback errors that occurred since the last fsync (or
718 * since the file was opened if there haven't been any).
719 *
720 * Grab the wb_err from the mapping. If it matches what we have in the file,
721 * then just quickly return 0. The file is all caught up.
722 *
723 * If it doesn't match, then take the mapping value, set the "seen" flag in
724 * it and try to swap it into place. If it works, or another task beat us
725 * to it with the new value, then update the f_wb_err and return the error
726 * portion. The error at this point must be reported via proper channels
727 * (a'la fsync, or NFS COMMIT operation, etc.).
728 *
729 * While we handle mapping->wb_err with atomic operations, the f_wb_err
730 * value is protected by the f_lock since we must ensure that it reflects
731 * the latest value swapped in for this file descriptor.
732 *
733 * Return: %0 on success, negative error code otherwise.
734 */
735int file_check_and_advance_wb_err(struct file *file)
736{
737 int err = 0;
738 errseq_t old = READ_ONCE(file->f_wb_err);
739 struct address_space *mapping = file->f_mapping;
740
741 /* Locklessly handle the common case where nothing has changed */
742 if (errseq_check(&mapping->wb_err, old)) {
743 /* Something changed, must use slow path */
744 spin_lock(&file->f_lock);
745 old = file->f_wb_err;
746 err = errseq_check_and_advance(&mapping->wb_err,
747 &file->f_wb_err);
748 trace_file_check_and_advance_wb_err(file, old);
749 spin_unlock(&file->f_lock);
750 }
751
752 /*
753 * We're mostly using this function as a drop in replacement for
754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 * that the legacy code would have had on these flags.
756 */
757 clear_bit(AS_EIO, &mapping->flags);
758 clear_bit(AS_ENOSPC, &mapping->flags);
759 return err;
760}
761EXPORT_SYMBOL(file_check_and_advance_wb_err);
762
763/**
764 * file_write_and_wait_range - write out & wait on a file range
765 * @file: file pointing to address_space with pages
766 * @lstart: offset in bytes where the range starts
767 * @lend: offset in bytes where the range ends (inclusive)
768 *
769 * Write out and wait upon file offsets lstart->lend, inclusive.
770 *
771 * Note that @lend is inclusive (describes the last byte to be written) so
772 * that this function can be used to write to the very end-of-file (end = -1).
773 *
774 * After writing out and waiting on the data, we check and advance the
775 * f_wb_err cursor to the latest value, and return any errors detected there.
776 *
777 * Return: %0 on success, negative error code otherwise.
778 */
779int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780{
781 int err = 0, err2;
782 struct address_space *mapping = file->f_mapping;
783
784 if (lend < lstart)
785 return 0;
786
787 if (mapping_needs_writeback(mapping)) {
788 err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 WB_SYNC_ALL);
790 /* See comment of filemap_write_and_wait() */
791 if (err != -EIO)
792 __filemap_fdatawait_range(mapping, lstart, lend);
793 }
794 err2 = file_check_and_advance_wb_err(file);
795 if (!err)
796 err = err2;
797 return err;
798}
799EXPORT_SYMBOL(file_write_and_wait_range);
800
801/**
802 * replace_page_cache_folio - replace a pagecache folio with a new one
803 * @old: folio to be replaced
804 * @new: folio to replace with
805 *
806 * This function replaces a folio in the pagecache with a new one. On
807 * success it acquires the pagecache reference for the new folio and
808 * drops it for the old folio. Both the old and new folios must be
809 * locked. This function does not add the new folio to the LRU, the
810 * caller must do that.
811 *
812 * The remove + add is atomic. This function cannot fail.
813 */
814void replace_page_cache_folio(struct folio *old, struct folio *new)
815{
816 struct address_space *mapping = old->mapping;
817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 pgoff_t offset = old->index;
819 XA_STATE(xas, &mapping->i_pages, offset);
820
821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 VM_BUG_ON_FOLIO(new->mapping, new);
824
825 folio_get(new);
826 new->mapping = mapping;
827 new->index = offset;
828
829 mem_cgroup_replace_folio(old, new);
830
831 xas_lock_irq(&xas);
832 xas_store(&xas, new);
833
834 old->mapping = NULL;
835 /* hugetlb pages do not participate in page cache accounting. */
836 if (!folio_test_hugetlb(old))
837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 if (!folio_test_hugetlb(new))
839 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 if (folio_test_swapbacked(old))
841 __lruvec_stat_sub_folio(old, NR_SHMEM);
842 if (folio_test_swapbacked(new))
843 __lruvec_stat_add_folio(new, NR_SHMEM);
844 xas_unlock_irq(&xas);
845 if (free_folio)
846 free_folio(old);
847 folio_put(old);
848}
849EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850
851noinline int __filemap_add_folio(struct address_space *mapping,
852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853{
854 XA_STATE(xas, &mapping->i_pages, index);
855 void *alloced_shadow = NULL;
856 int alloced_order = 0;
857 bool huge;
858 long nr;
859
860 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
861 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
862 mapping_set_update(&xas, mapping);
863
864 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
865 xas_set_order(&xas, index, folio_order(folio));
866 huge = folio_test_hugetlb(folio);
867 nr = folio_nr_pages(folio);
868
869 gfp &= GFP_RECLAIM_MASK;
870 folio_ref_add(folio, nr);
871 folio->mapping = mapping;
872 folio->index = xas.xa_index;
873
874 for (;;) {
875 int order = -1, split_order = 0;
876 void *entry, *old = NULL;
877
878 xas_lock_irq(&xas);
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 /*
886 * If a larger entry exists,
887 * it will be the first and only entry iterated.
888 */
889 if (order == -1)
890 order = xas_get_order(&xas);
891 }
892
893 /* entry may have changed before we re-acquire the lock */
894 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
895 xas_destroy(&xas);
896 alloced_order = 0;
897 }
898
899 if (old) {
900 if (order > 0 && order > folio_order(folio)) {
901 /* How to handle large swap entries? */
902 BUG_ON(shmem_mapping(mapping));
903 if (!alloced_order) {
904 split_order = order;
905 goto unlock;
906 }
907 xas_split(&xas, old, order);
908 xas_reset(&xas);
909 }
910 if (shadowp)
911 *shadowp = old;
912 }
913
914 xas_store(&xas, folio);
915 if (xas_error(&xas))
916 goto unlock;
917
918 mapping->nrpages += nr;
919
920 /* hugetlb pages do not participate in page cache accounting */
921 if (!huge) {
922 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
923 if (folio_test_pmd_mappable(folio))
924 __lruvec_stat_mod_folio(folio,
925 NR_FILE_THPS, nr);
926 }
927
928unlock:
929 xas_unlock_irq(&xas);
930
931 /* split needed, alloc here and retry. */
932 if (split_order) {
933 xas_split_alloc(&xas, old, split_order, gfp);
934 if (xas_error(&xas))
935 goto error;
936 alloced_shadow = old;
937 alloced_order = split_order;
938 xas_reset(&xas);
939 continue;
940 }
941
942 if (!xas_nomem(&xas, gfp))
943 break;
944 }
945
946 if (xas_error(&xas))
947 goto error;
948
949 trace_mm_filemap_add_to_page_cache(folio);
950 return 0;
951error:
952 folio->mapping = NULL;
953 /* Leave page->index set: truncation relies upon it */
954 folio_put_refs(folio, nr);
955 return xas_error(&xas);
956}
957ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
958
959int filemap_add_folio(struct address_space *mapping, struct folio *folio,
960 pgoff_t index, gfp_t gfp)
961{
962 void *shadow = NULL;
963 int ret;
964
965 ret = mem_cgroup_charge(folio, NULL, gfp);
966 if (ret)
967 return ret;
968
969 __folio_set_locked(folio);
970 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
971 if (unlikely(ret)) {
972 mem_cgroup_uncharge(folio);
973 __folio_clear_locked(folio);
974 } else {
975 /*
976 * The folio might have been evicted from cache only
977 * recently, in which case it should be activated like
978 * any other repeatedly accessed folio.
979 * The exception is folios getting rewritten; evicting other
980 * data from the working set, only to cache data that will
981 * get overwritten with something else, is a waste of memory.
982 */
983 WARN_ON_ONCE(folio_test_active(folio));
984 if (!(gfp & __GFP_WRITE) && shadow)
985 workingset_refault(folio, shadow);
986 folio_add_lru(folio);
987 }
988 return ret;
989}
990EXPORT_SYMBOL_GPL(filemap_add_folio);
991
992#ifdef CONFIG_NUMA
993struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
994{
995 int n;
996 struct folio *folio;
997
998 if (cpuset_do_page_mem_spread()) {
999 unsigned int cpuset_mems_cookie;
1000 do {
1001 cpuset_mems_cookie = read_mems_allowed_begin();
1002 n = cpuset_mem_spread_node();
1003 folio = __folio_alloc_node_noprof(gfp, order, n);
1004 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1005
1006 return folio;
1007 }
1008 return folio_alloc_noprof(gfp, order);
1009}
1010EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1011#endif
1012
1013/*
1014 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1015 *
1016 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1017 *
1018 * @mapping1: the first mapping to lock
1019 * @mapping2: the second mapping to lock
1020 */
1021void filemap_invalidate_lock_two(struct address_space *mapping1,
1022 struct address_space *mapping2)
1023{
1024 if (mapping1 > mapping2)
1025 swap(mapping1, mapping2);
1026 if (mapping1)
1027 down_write(&mapping1->invalidate_lock);
1028 if (mapping2 && mapping1 != mapping2)
1029 down_write_nested(&mapping2->invalidate_lock, 1);
1030}
1031EXPORT_SYMBOL(filemap_invalidate_lock_two);
1032
1033/*
1034 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1035 *
1036 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1037 *
1038 * @mapping1: the first mapping to unlock
1039 * @mapping2: the second mapping to unlock
1040 */
1041void filemap_invalidate_unlock_two(struct address_space *mapping1,
1042 struct address_space *mapping2)
1043{
1044 if (mapping1)
1045 up_write(&mapping1->invalidate_lock);
1046 if (mapping2 && mapping1 != mapping2)
1047 up_write(&mapping2->invalidate_lock);
1048}
1049EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1050
1051/*
1052 * In order to wait for pages to become available there must be
1053 * waitqueues associated with pages. By using a hash table of
1054 * waitqueues where the bucket discipline is to maintain all
1055 * waiters on the same queue and wake all when any of the pages
1056 * become available, and for the woken contexts to check to be
1057 * sure the appropriate page became available, this saves space
1058 * at a cost of "thundering herd" phenomena during rare hash
1059 * collisions.
1060 */
1061#define PAGE_WAIT_TABLE_BITS 8
1062#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1063static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1064
1065static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1066{
1067 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1068}
1069
1070void __init pagecache_init(void)
1071{
1072 int i;
1073
1074 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1075 init_waitqueue_head(&folio_wait_table[i]);
1076
1077 page_writeback_init();
1078}
1079
1080/*
1081 * The page wait code treats the "wait->flags" somewhat unusually, because
1082 * we have multiple different kinds of waits, not just the usual "exclusive"
1083 * one.
1084 *
1085 * We have:
1086 *
1087 * (a) no special bits set:
1088 *
1089 * We're just waiting for the bit to be released, and when a waker
1090 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1091 * and remove it from the wait queue.
1092 *
1093 * Simple and straightforward.
1094 *
1095 * (b) WQ_FLAG_EXCLUSIVE:
1096 *
1097 * The waiter is waiting to get the lock, and only one waiter should
1098 * be woken up to avoid any thundering herd behavior. We'll set the
1099 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1100 *
1101 * This is the traditional exclusive wait.
1102 *
1103 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1104 *
1105 * The waiter is waiting to get the bit, and additionally wants the
1106 * lock to be transferred to it for fair lock behavior. If the lock
1107 * cannot be taken, we stop walking the wait queue without waking
1108 * the waiter.
1109 *
1110 * This is the "fair lock handoff" case, and in addition to setting
1111 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1112 * that it now has the lock.
1113 */
1114static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1115{
1116 unsigned int flags;
1117 struct wait_page_key *key = arg;
1118 struct wait_page_queue *wait_page
1119 = container_of(wait, struct wait_page_queue, wait);
1120
1121 if (!wake_page_match(wait_page, key))
1122 return 0;
1123
1124 /*
1125 * If it's a lock handoff wait, we get the bit for it, and
1126 * stop walking (and do not wake it up) if we can't.
1127 */
1128 flags = wait->flags;
1129 if (flags & WQ_FLAG_EXCLUSIVE) {
1130 if (test_bit(key->bit_nr, &key->folio->flags))
1131 return -1;
1132 if (flags & WQ_FLAG_CUSTOM) {
1133 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1134 return -1;
1135 flags |= WQ_FLAG_DONE;
1136 }
1137 }
1138
1139 /*
1140 * We are holding the wait-queue lock, but the waiter that
1141 * is waiting for this will be checking the flags without
1142 * any locking.
1143 *
1144 * So update the flags atomically, and wake up the waiter
1145 * afterwards to avoid any races. This store-release pairs
1146 * with the load-acquire in folio_wait_bit_common().
1147 */
1148 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1149 wake_up_state(wait->private, mode);
1150
1151 /*
1152 * Ok, we have successfully done what we're waiting for,
1153 * and we can unconditionally remove the wait entry.
1154 *
1155 * Note that this pairs with the "finish_wait()" in the
1156 * waiter, and has to be the absolute last thing we do.
1157 * After this list_del_init(&wait->entry) the wait entry
1158 * might be de-allocated and the process might even have
1159 * exited.
1160 */
1161 list_del_init_careful(&wait->entry);
1162 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1163}
1164
1165static void folio_wake_bit(struct folio *folio, int bit_nr)
1166{
1167 wait_queue_head_t *q = folio_waitqueue(folio);
1168 struct wait_page_key key;
1169 unsigned long flags;
1170
1171 key.folio = folio;
1172 key.bit_nr = bit_nr;
1173 key.page_match = 0;
1174
1175 spin_lock_irqsave(&q->lock, flags);
1176 __wake_up_locked_key(q, TASK_NORMAL, &key);
1177
1178 /*
1179 * It's possible to miss clearing waiters here, when we woke our page
1180 * waiters, but the hashed waitqueue has waiters for other pages on it.
1181 * That's okay, it's a rare case. The next waker will clear it.
1182 *
1183 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1184 * other), the flag may be cleared in the course of freeing the page;
1185 * but that is not required for correctness.
1186 */
1187 if (!waitqueue_active(q) || !key.page_match)
1188 folio_clear_waiters(folio);
1189
1190 spin_unlock_irqrestore(&q->lock, flags);
1191}
1192
1193/*
1194 * A choice of three behaviors for folio_wait_bit_common():
1195 */
1196enum behavior {
1197 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1198 * __folio_lock() waiting on then setting PG_locked.
1199 */
1200 SHARED, /* Hold ref to page and check the bit when woken, like
1201 * folio_wait_writeback() waiting on PG_writeback.
1202 */
1203 DROP, /* Drop ref to page before wait, no check when woken,
1204 * like folio_put_wait_locked() on PG_locked.
1205 */
1206};
1207
1208/*
1209 * Attempt to check (or get) the folio flag, and mark us done
1210 * if successful.
1211 */
1212static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1213 struct wait_queue_entry *wait)
1214{
1215 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1216 if (test_and_set_bit(bit_nr, &folio->flags))
1217 return false;
1218 } else if (test_bit(bit_nr, &folio->flags))
1219 return false;
1220
1221 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1222 return true;
1223}
1224
1225/* How many times do we accept lock stealing from under a waiter? */
1226int sysctl_page_lock_unfairness = 5;
1227
1228static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1229 int state, enum behavior behavior)
1230{
1231 wait_queue_head_t *q = folio_waitqueue(folio);
1232 int unfairness = sysctl_page_lock_unfairness;
1233 struct wait_page_queue wait_page;
1234 wait_queue_entry_t *wait = &wait_page.wait;
1235 bool thrashing = false;
1236 unsigned long pflags;
1237 bool in_thrashing;
1238
1239 if (bit_nr == PG_locked &&
1240 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1241 delayacct_thrashing_start(&in_thrashing);
1242 psi_memstall_enter(&pflags);
1243 thrashing = true;
1244 }
1245
1246 init_wait(wait);
1247 wait->func = wake_page_function;
1248 wait_page.folio = folio;
1249 wait_page.bit_nr = bit_nr;
1250
1251repeat:
1252 wait->flags = 0;
1253 if (behavior == EXCLUSIVE) {
1254 wait->flags = WQ_FLAG_EXCLUSIVE;
1255 if (--unfairness < 0)
1256 wait->flags |= WQ_FLAG_CUSTOM;
1257 }
1258
1259 /*
1260 * Do one last check whether we can get the
1261 * page bit synchronously.
1262 *
1263 * Do the folio_set_waiters() marking before that
1264 * to let any waker we _just_ missed know they
1265 * need to wake us up (otherwise they'll never
1266 * even go to the slow case that looks at the
1267 * page queue), and add ourselves to the wait
1268 * queue if we need to sleep.
1269 *
1270 * This part needs to be done under the queue
1271 * lock to avoid races.
1272 */
1273 spin_lock_irq(&q->lock);
1274 folio_set_waiters(folio);
1275 if (!folio_trylock_flag(folio, bit_nr, wait))
1276 __add_wait_queue_entry_tail(q, wait);
1277 spin_unlock_irq(&q->lock);
1278
1279 /*
1280 * From now on, all the logic will be based on
1281 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1282 * see whether the page bit testing has already
1283 * been done by the wake function.
1284 *
1285 * We can drop our reference to the folio.
1286 */
1287 if (behavior == DROP)
1288 folio_put(folio);
1289
1290 /*
1291 * Note that until the "finish_wait()", or until
1292 * we see the WQ_FLAG_WOKEN flag, we need to
1293 * be very careful with the 'wait->flags', because
1294 * we may race with a waker that sets them.
1295 */
1296 for (;;) {
1297 unsigned int flags;
1298
1299 set_current_state(state);
1300
1301 /* Loop until we've been woken or interrupted */
1302 flags = smp_load_acquire(&wait->flags);
1303 if (!(flags & WQ_FLAG_WOKEN)) {
1304 if (signal_pending_state(state, current))
1305 break;
1306
1307 io_schedule();
1308 continue;
1309 }
1310
1311 /* If we were non-exclusive, we're done */
1312 if (behavior != EXCLUSIVE)
1313 break;
1314
1315 /* If the waker got the lock for us, we're done */
1316 if (flags & WQ_FLAG_DONE)
1317 break;
1318
1319 /*
1320 * Otherwise, if we're getting the lock, we need to
1321 * try to get it ourselves.
1322 *
1323 * And if that fails, we'll have to retry this all.
1324 */
1325 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1326 goto repeat;
1327
1328 wait->flags |= WQ_FLAG_DONE;
1329 break;
1330 }
1331
1332 /*
1333 * If a signal happened, this 'finish_wait()' may remove the last
1334 * waiter from the wait-queues, but the folio waiters bit will remain
1335 * set. That's ok. The next wakeup will take care of it, and trying
1336 * to do it here would be difficult and prone to races.
1337 */
1338 finish_wait(q, wait);
1339
1340 if (thrashing) {
1341 delayacct_thrashing_end(&in_thrashing);
1342 psi_memstall_leave(&pflags);
1343 }
1344
1345 /*
1346 * NOTE! The wait->flags weren't stable until we've done the
1347 * 'finish_wait()', and we could have exited the loop above due
1348 * to a signal, and had a wakeup event happen after the signal
1349 * test but before the 'finish_wait()'.
1350 *
1351 * So only after the finish_wait() can we reliably determine
1352 * if we got woken up or not, so we can now figure out the final
1353 * return value based on that state without races.
1354 *
1355 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1356 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1357 */
1358 if (behavior == EXCLUSIVE)
1359 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1360
1361 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1362}
1363
1364#ifdef CONFIG_MIGRATION
1365/**
1366 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1367 * @entry: migration swap entry.
1368 * @ptl: already locked ptl. This function will drop the lock.
1369 *
1370 * Wait for a migration entry referencing the given page to be removed. This is
1371 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1372 * this can be called without taking a reference on the page. Instead this
1373 * should be called while holding the ptl for the migration entry referencing
1374 * the page.
1375 *
1376 * Returns after unlocking the ptl.
1377 *
1378 * This follows the same logic as folio_wait_bit_common() so see the comments
1379 * there.
1380 */
1381void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1382 __releases(ptl)
1383{
1384 struct wait_page_queue wait_page;
1385 wait_queue_entry_t *wait = &wait_page.wait;
1386 bool thrashing = false;
1387 unsigned long pflags;
1388 bool in_thrashing;
1389 wait_queue_head_t *q;
1390 struct folio *folio = pfn_swap_entry_folio(entry);
1391
1392 q = folio_waitqueue(folio);
1393 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1394 delayacct_thrashing_start(&in_thrashing);
1395 psi_memstall_enter(&pflags);
1396 thrashing = true;
1397 }
1398
1399 init_wait(wait);
1400 wait->func = wake_page_function;
1401 wait_page.folio = folio;
1402 wait_page.bit_nr = PG_locked;
1403 wait->flags = 0;
1404
1405 spin_lock_irq(&q->lock);
1406 folio_set_waiters(folio);
1407 if (!folio_trylock_flag(folio, PG_locked, wait))
1408 __add_wait_queue_entry_tail(q, wait);
1409 spin_unlock_irq(&q->lock);
1410
1411 /*
1412 * If a migration entry exists for the page the migration path must hold
1413 * a valid reference to the page, and it must take the ptl to remove the
1414 * migration entry. So the page is valid until the ptl is dropped.
1415 */
1416 spin_unlock(ptl);
1417
1418 for (;;) {
1419 unsigned int flags;
1420
1421 set_current_state(TASK_UNINTERRUPTIBLE);
1422
1423 /* Loop until we've been woken or interrupted */
1424 flags = smp_load_acquire(&wait->flags);
1425 if (!(flags & WQ_FLAG_WOKEN)) {
1426 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1427 break;
1428
1429 io_schedule();
1430 continue;
1431 }
1432 break;
1433 }
1434
1435 finish_wait(q, wait);
1436
1437 if (thrashing) {
1438 delayacct_thrashing_end(&in_thrashing);
1439 psi_memstall_leave(&pflags);
1440 }
1441}
1442#endif
1443
1444void folio_wait_bit(struct folio *folio, int bit_nr)
1445{
1446 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1447}
1448EXPORT_SYMBOL(folio_wait_bit);
1449
1450int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1451{
1452 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1453}
1454EXPORT_SYMBOL(folio_wait_bit_killable);
1455
1456/**
1457 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1458 * @folio: The folio to wait for.
1459 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1460 *
1461 * The caller should hold a reference on @folio. They expect the page to
1462 * become unlocked relatively soon, but do not wish to hold up migration
1463 * (for example) by holding the reference while waiting for the folio to
1464 * come unlocked. After this function returns, the caller should not
1465 * dereference @folio.
1466 *
1467 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1468 */
1469static int folio_put_wait_locked(struct folio *folio, int state)
1470{
1471 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1472}
1473
1474/**
1475 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1476 * @folio: Folio defining the wait queue of interest
1477 * @waiter: Waiter to add to the queue
1478 *
1479 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1480 */
1481void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1482{
1483 wait_queue_head_t *q = folio_waitqueue(folio);
1484 unsigned long flags;
1485
1486 spin_lock_irqsave(&q->lock, flags);
1487 __add_wait_queue_entry_tail(q, waiter);
1488 folio_set_waiters(folio);
1489 spin_unlock_irqrestore(&q->lock, flags);
1490}
1491EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1492
1493/**
1494 * folio_unlock - Unlock a locked folio.
1495 * @folio: The folio.
1496 *
1497 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1498 *
1499 * Context: May be called from interrupt or process context. May not be
1500 * called from NMI context.
1501 */
1502void folio_unlock(struct folio *folio)
1503{
1504 /* Bit 7 allows x86 to check the byte's sign bit */
1505 BUILD_BUG_ON(PG_waiters != 7);
1506 BUILD_BUG_ON(PG_locked > 7);
1507 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1508 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1509 folio_wake_bit(folio, PG_locked);
1510}
1511EXPORT_SYMBOL(folio_unlock);
1512
1513/**
1514 * folio_end_read - End read on a folio.
1515 * @folio: The folio.
1516 * @success: True if all reads completed successfully.
1517 *
1518 * When all reads against a folio have completed, filesystems should
1519 * call this function to let the pagecache know that no more reads
1520 * are outstanding. This will unlock the folio and wake up any thread
1521 * sleeping on the lock. The folio will also be marked uptodate if all
1522 * reads succeeded.
1523 *
1524 * Context: May be called from interrupt or process context. May not be
1525 * called from NMI context.
1526 */
1527void folio_end_read(struct folio *folio, bool success)
1528{
1529 unsigned long mask = 1 << PG_locked;
1530
1531 /* Must be in bottom byte for x86 to work */
1532 BUILD_BUG_ON(PG_uptodate > 7);
1533 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1534 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1535
1536 if (likely(success))
1537 mask |= 1 << PG_uptodate;
1538 if (folio_xor_flags_has_waiters(folio, mask))
1539 folio_wake_bit(folio, PG_locked);
1540}
1541EXPORT_SYMBOL(folio_end_read);
1542
1543/**
1544 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1545 * @folio: The folio.
1546 *
1547 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1548 * it. The folio reference held for PG_private_2 being set is released.
1549 *
1550 * This is, for example, used when a netfs folio is being written to a local
1551 * disk cache, thereby allowing writes to the cache for the same folio to be
1552 * serialised.
1553 */
1554void folio_end_private_2(struct folio *folio)
1555{
1556 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1557 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1558 folio_wake_bit(folio, PG_private_2);
1559 folio_put(folio);
1560}
1561EXPORT_SYMBOL(folio_end_private_2);
1562
1563/**
1564 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1565 * @folio: The folio to wait on.
1566 *
1567 * Wait for PG_private_2 to be cleared on a folio.
1568 */
1569void folio_wait_private_2(struct folio *folio)
1570{
1571 while (folio_test_private_2(folio))
1572 folio_wait_bit(folio, PG_private_2);
1573}
1574EXPORT_SYMBOL(folio_wait_private_2);
1575
1576/**
1577 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1578 * @folio: The folio to wait on.
1579 *
1580 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1581 * received by the calling task.
1582 *
1583 * Return:
1584 * - 0 if successful.
1585 * - -EINTR if a fatal signal was encountered.
1586 */
1587int folio_wait_private_2_killable(struct folio *folio)
1588{
1589 int ret = 0;
1590
1591 while (folio_test_private_2(folio)) {
1592 ret = folio_wait_bit_killable(folio, PG_private_2);
1593 if (ret < 0)
1594 break;
1595 }
1596
1597 return ret;
1598}
1599EXPORT_SYMBOL(folio_wait_private_2_killable);
1600
1601/**
1602 * folio_end_writeback - End writeback against a folio.
1603 * @folio: The folio.
1604 *
1605 * The folio must actually be under writeback.
1606 *
1607 * Context: May be called from process or interrupt context.
1608 */
1609void folio_end_writeback(struct folio *folio)
1610{
1611 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1612
1613 /*
1614 * folio_test_clear_reclaim() could be used here but it is an
1615 * atomic operation and overkill in this particular case. Failing
1616 * to shuffle a folio marked for immediate reclaim is too mild
1617 * a gain to justify taking an atomic operation penalty at the
1618 * end of every folio writeback.
1619 */
1620 if (folio_test_reclaim(folio)) {
1621 folio_clear_reclaim(folio);
1622 folio_rotate_reclaimable(folio);
1623 }
1624
1625 /*
1626 * Writeback does not hold a folio reference of its own, relying
1627 * on truncation to wait for the clearing of PG_writeback.
1628 * But here we must make sure that the folio is not freed and
1629 * reused before the folio_wake_bit().
1630 */
1631 folio_get(folio);
1632 if (__folio_end_writeback(folio))
1633 folio_wake_bit(folio, PG_writeback);
1634 acct_reclaim_writeback(folio);
1635 folio_put(folio);
1636}
1637EXPORT_SYMBOL(folio_end_writeback);
1638
1639/**
1640 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1641 * @folio: The folio to lock
1642 */
1643void __folio_lock(struct folio *folio)
1644{
1645 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1646 EXCLUSIVE);
1647}
1648EXPORT_SYMBOL(__folio_lock);
1649
1650int __folio_lock_killable(struct folio *folio)
1651{
1652 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1653 EXCLUSIVE);
1654}
1655EXPORT_SYMBOL_GPL(__folio_lock_killable);
1656
1657static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1658{
1659 struct wait_queue_head *q = folio_waitqueue(folio);
1660 int ret;
1661
1662 wait->folio = folio;
1663 wait->bit_nr = PG_locked;
1664
1665 spin_lock_irq(&q->lock);
1666 __add_wait_queue_entry_tail(q, &wait->wait);
1667 folio_set_waiters(folio);
1668 ret = !folio_trylock(folio);
1669 /*
1670 * If we were successful now, we know we're still on the
1671 * waitqueue as we're still under the lock. This means it's
1672 * safe to remove and return success, we know the callback
1673 * isn't going to trigger.
1674 */
1675 if (!ret)
1676 __remove_wait_queue(q, &wait->wait);
1677 else
1678 ret = -EIOCBQUEUED;
1679 spin_unlock_irq(&q->lock);
1680 return ret;
1681}
1682
1683/*
1684 * Return values:
1685 * 0 - folio is locked.
1686 * non-zero - folio is not locked.
1687 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1688 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1689 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1690 *
1691 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1692 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1693 */
1694vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1695{
1696 unsigned int flags = vmf->flags;
1697
1698 if (fault_flag_allow_retry_first(flags)) {
1699 /*
1700 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1701 * released even though returning VM_FAULT_RETRY.
1702 */
1703 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1704 return VM_FAULT_RETRY;
1705
1706 release_fault_lock(vmf);
1707 if (flags & FAULT_FLAG_KILLABLE)
1708 folio_wait_locked_killable(folio);
1709 else
1710 folio_wait_locked(folio);
1711 return VM_FAULT_RETRY;
1712 }
1713 if (flags & FAULT_FLAG_KILLABLE) {
1714 bool ret;
1715
1716 ret = __folio_lock_killable(folio);
1717 if (ret) {
1718 release_fault_lock(vmf);
1719 return VM_FAULT_RETRY;
1720 }
1721 } else {
1722 __folio_lock(folio);
1723 }
1724
1725 return 0;
1726}
1727
1728/**
1729 * page_cache_next_miss() - Find the next gap in the page cache.
1730 * @mapping: Mapping.
1731 * @index: Index.
1732 * @max_scan: Maximum range to search.
1733 *
1734 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1735 * gap with the lowest index.
1736 *
1737 * This function may be called under the rcu_read_lock. However, this will
1738 * not atomically search a snapshot of the cache at a single point in time.
1739 * For example, if a gap is created at index 5, then subsequently a gap is
1740 * created at index 10, page_cache_next_miss covering both indices may
1741 * return 10 if called under the rcu_read_lock.
1742 *
1743 * Return: The index of the gap if found, otherwise an index outside the
1744 * range specified (in which case 'return - index >= max_scan' will be true).
1745 * In the rare case of index wrap-around, 0 will be returned.
1746 */
1747pgoff_t page_cache_next_miss(struct address_space *mapping,
1748 pgoff_t index, unsigned long max_scan)
1749{
1750 XA_STATE(xas, &mapping->i_pages, index);
1751
1752 while (max_scan--) {
1753 void *entry = xas_next(&xas);
1754 if (!entry || xa_is_value(entry))
1755 return xas.xa_index;
1756 if (xas.xa_index == 0)
1757 return 0;
1758 }
1759
1760 return index + max_scan;
1761}
1762EXPORT_SYMBOL(page_cache_next_miss);
1763
1764/**
1765 * page_cache_prev_miss() - Find the previous gap in the page cache.
1766 * @mapping: Mapping.
1767 * @index: Index.
1768 * @max_scan: Maximum range to search.
1769 *
1770 * Search the range [max(index - max_scan + 1, 0), index] for the
1771 * gap with the highest index.
1772 *
1773 * This function may be called under the rcu_read_lock. However, this will
1774 * not atomically search a snapshot of the cache at a single point in time.
1775 * For example, if a gap is created at index 10, then subsequently a gap is
1776 * created at index 5, page_cache_prev_miss() covering both indices may
1777 * return 5 if called under the rcu_read_lock.
1778 *
1779 * Return: The index of the gap if found, otherwise an index outside the
1780 * range specified (in which case 'index - return >= max_scan' will be true).
1781 * In the rare case of wrap-around, ULONG_MAX will be returned.
1782 */
1783pgoff_t page_cache_prev_miss(struct address_space *mapping,
1784 pgoff_t index, unsigned long max_scan)
1785{
1786 XA_STATE(xas, &mapping->i_pages, index);
1787
1788 while (max_scan--) {
1789 void *entry = xas_prev(&xas);
1790 if (!entry || xa_is_value(entry))
1791 break;
1792 if (xas.xa_index == ULONG_MAX)
1793 break;
1794 }
1795
1796 return xas.xa_index;
1797}
1798EXPORT_SYMBOL(page_cache_prev_miss);
1799
1800/*
1801 * Lockless page cache protocol:
1802 * On the lookup side:
1803 * 1. Load the folio from i_pages
1804 * 2. Increment the refcount if it's not zero
1805 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1806 *
1807 * On the removal side:
1808 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1809 * B. Remove the page from i_pages
1810 * C. Return the page to the page allocator
1811 *
1812 * This means that any page may have its reference count temporarily
1813 * increased by a speculative page cache (or GUP-fast) lookup as it can
1814 * be allocated by another user before the RCU grace period expires.
1815 * Because the refcount temporarily acquired here may end up being the
1816 * last refcount on the page, any page allocation must be freeable by
1817 * folio_put().
1818 */
1819
1820/*
1821 * filemap_get_entry - Get a page cache entry.
1822 * @mapping: the address_space to search
1823 * @index: The page cache index.
1824 *
1825 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1826 * it is returned with an increased refcount. If it is a shadow entry
1827 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1828 * it is returned without further action.
1829 *
1830 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1831 */
1832void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1833{
1834 XA_STATE(xas, &mapping->i_pages, index);
1835 struct folio *folio;
1836
1837 rcu_read_lock();
1838repeat:
1839 xas_reset(&xas);
1840 folio = xas_load(&xas);
1841 if (xas_retry(&xas, folio))
1842 goto repeat;
1843 /*
1844 * A shadow entry of a recently evicted page, or a swap entry from
1845 * shmem/tmpfs. Return it without attempting to raise page count.
1846 */
1847 if (!folio || xa_is_value(folio))
1848 goto out;
1849
1850 if (!folio_try_get(folio))
1851 goto repeat;
1852
1853 if (unlikely(folio != xas_reload(&xas))) {
1854 folio_put(folio);
1855 goto repeat;
1856 }
1857out:
1858 rcu_read_unlock();
1859
1860 return folio;
1861}
1862
1863/**
1864 * __filemap_get_folio - Find and get a reference to a folio.
1865 * @mapping: The address_space to search.
1866 * @index: The page index.
1867 * @fgp_flags: %FGP flags modify how the folio is returned.
1868 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1869 *
1870 * Looks up the page cache entry at @mapping & @index.
1871 *
1872 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1873 * if the %GFP flags specified for %FGP_CREAT are atomic.
1874 *
1875 * If this function returns a folio, it is returned with an increased refcount.
1876 *
1877 * Return: The found folio or an ERR_PTR() otherwise.
1878 */
1879struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1880 fgf_t fgp_flags, gfp_t gfp)
1881{
1882 struct folio *folio;
1883
1884repeat:
1885 folio = filemap_get_entry(mapping, index);
1886 if (xa_is_value(folio))
1887 folio = NULL;
1888 if (!folio)
1889 goto no_page;
1890
1891 if (fgp_flags & FGP_LOCK) {
1892 if (fgp_flags & FGP_NOWAIT) {
1893 if (!folio_trylock(folio)) {
1894 folio_put(folio);
1895 return ERR_PTR(-EAGAIN);
1896 }
1897 } else {
1898 folio_lock(folio);
1899 }
1900
1901 /* Has the page been truncated? */
1902 if (unlikely(folio->mapping != mapping)) {
1903 folio_unlock(folio);
1904 folio_put(folio);
1905 goto repeat;
1906 }
1907 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1908 }
1909
1910 if (fgp_flags & FGP_ACCESSED)
1911 folio_mark_accessed(folio);
1912 else if (fgp_flags & FGP_WRITE) {
1913 /* Clear idle flag for buffer write */
1914 if (folio_test_idle(folio))
1915 folio_clear_idle(folio);
1916 }
1917
1918 if (fgp_flags & FGP_STABLE)
1919 folio_wait_stable(folio);
1920no_page:
1921 if (!folio && (fgp_flags & FGP_CREAT)) {
1922 unsigned order = FGF_GET_ORDER(fgp_flags);
1923 int err;
1924
1925 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1926 gfp |= __GFP_WRITE;
1927 if (fgp_flags & FGP_NOFS)
1928 gfp &= ~__GFP_FS;
1929 if (fgp_flags & FGP_NOWAIT) {
1930 gfp &= ~GFP_KERNEL;
1931 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1932 }
1933 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1934 fgp_flags |= FGP_LOCK;
1935
1936 if (!mapping_large_folio_support(mapping))
1937 order = 0;
1938 if (order > MAX_PAGECACHE_ORDER)
1939 order = MAX_PAGECACHE_ORDER;
1940 /* If we're not aligned, allocate a smaller folio */
1941 if (index & ((1UL << order) - 1))
1942 order = __ffs(index);
1943
1944 do {
1945 gfp_t alloc_gfp = gfp;
1946
1947 err = -ENOMEM;
1948 if (order > 0)
1949 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1950 folio = filemap_alloc_folio(alloc_gfp, order);
1951 if (!folio)
1952 continue;
1953
1954 /* Init accessed so avoid atomic mark_page_accessed later */
1955 if (fgp_flags & FGP_ACCESSED)
1956 __folio_set_referenced(folio);
1957
1958 err = filemap_add_folio(mapping, folio, index, gfp);
1959 if (!err)
1960 break;
1961 folio_put(folio);
1962 folio = NULL;
1963 } while (order-- > 0);
1964
1965 if (err == -EEXIST)
1966 goto repeat;
1967 if (err)
1968 return ERR_PTR(err);
1969 /*
1970 * filemap_add_folio locks the page, and for mmap
1971 * we expect an unlocked page.
1972 */
1973 if (folio && (fgp_flags & FGP_FOR_MMAP))
1974 folio_unlock(folio);
1975 }
1976
1977 if (!folio)
1978 return ERR_PTR(-ENOENT);
1979 return folio;
1980}
1981EXPORT_SYMBOL(__filemap_get_folio);
1982
1983static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1984 xa_mark_t mark)
1985{
1986 struct folio *folio;
1987
1988retry:
1989 if (mark == XA_PRESENT)
1990 folio = xas_find(xas, max);
1991 else
1992 folio = xas_find_marked(xas, max, mark);
1993
1994 if (xas_retry(xas, folio))
1995 goto retry;
1996 /*
1997 * A shadow entry of a recently evicted page, a swap
1998 * entry from shmem/tmpfs or a DAX entry. Return it
1999 * without attempting to raise page count.
2000 */
2001 if (!folio || xa_is_value(folio))
2002 return folio;
2003
2004 if (!folio_try_get(folio))
2005 goto reset;
2006
2007 if (unlikely(folio != xas_reload(xas))) {
2008 folio_put(folio);
2009 goto reset;
2010 }
2011
2012 return folio;
2013reset:
2014 xas_reset(xas);
2015 goto retry;
2016}
2017
2018/**
2019 * find_get_entries - gang pagecache lookup
2020 * @mapping: The address_space to search
2021 * @start: The starting page cache index
2022 * @end: The final page index (inclusive).
2023 * @fbatch: Where the resulting entries are placed.
2024 * @indices: The cache indices corresponding to the entries in @entries
2025 *
2026 * find_get_entries() will search for and return a batch of entries in
2027 * the mapping. The entries are placed in @fbatch. find_get_entries()
2028 * takes a reference on any actual folios it returns.
2029 *
2030 * The entries have ascending indexes. The indices may not be consecutive
2031 * due to not-present entries or large folios.
2032 *
2033 * Any shadow entries of evicted folios, or swap entries from
2034 * shmem/tmpfs, are included in the returned array.
2035 *
2036 * Return: The number of entries which were found.
2037 */
2038unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2039 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2040{
2041 XA_STATE(xas, &mapping->i_pages, *start);
2042 struct folio *folio;
2043
2044 rcu_read_lock();
2045 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2046 indices[fbatch->nr] = xas.xa_index;
2047 if (!folio_batch_add(fbatch, folio))
2048 break;
2049 }
2050 rcu_read_unlock();
2051
2052 if (folio_batch_count(fbatch)) {
2053 unsigned long nr = 1;
2054 int idx = folio_batch_count(fbatch) - 1;
2055
2056 folio = fbatch->folios[idx];
2057 if (!xa_is_value(folio))
2058 nr = folio_nr_pages(folio);
2059 *start = indices[idx] + nr;
2060 }
2061 return folio_batch_count(fbatch);
2062}
2063
2064/**
2065 * find_lock_entries - Find a batch of pagecache entries.
2066 * @mapping: The address_space to search.
2067 * @start: The starting page cache index.
2068 * @end: The final page index (inclusive).
2069 * @fbatch: Where the resulting entries are placed.
2070 * @indices: The cache indices of the entries in @fbatch.
2071 *
2072 * find_lock_entries() will return a batch of entries from @mapping.
2073 * Swap, shadow and DAX entries are included. Folios are returned
2074 * locked and with an incremented refcount. Folios which are locked
2075 * by somebody else or under writeback are skipped. Folios which are
2076 * partially outside the range are not returned.
2077 *
2078 * The entries have ascending indexes. The indices may not be consecutive
2079 * due to not-present entries, large folios, folios which could not be
2080 * locked or folios under writeback.
2081 *
2082 * Return: The number of entries which were found.
2083 */
2084unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2086{
2087 XA_STATE(xas, &mapping->i_pages, *start);
2088 struct folio *folio;
2089
2090 rcu_read_lock();
2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2092 if (!xa_is_value(folio)) {
2093 if (folio->index < *start)
2094 goto put;
2095 if (folio_next_index(folio) - 1 > end)
2096 goto put;
2097 if (!folio_trylock(folio))
2098 goto put;
2099 if (folio->mapping != mapping ||
2100 folio_test_writeback(folio))
2101 goto unlock;
2102 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2103 folio);
2104 }
2105 indices[fbatch->nr] = xas.xa_index;
2106 if (!folio_batch_add(fbatch, folio))
2107 break;
2108 continue;
2109unlock:
2110 folio_unlock(folio);
2111put:
2112 folio_put(folio);
2113 }
2114 rcu_read_unlock();
2115
2116 if (folio_batch_count(fbatch)) {
2117 unsigned long nr = 1;
2118 int idx = folio_batch_count(fbatch) - 1;
2119
2120 folio = fbatch->folios[idx];
2121 if (!xa_is_value(folio))
2122 nr = folio_nr_pages(folio);
2123 *start = indices[idx] + nr;
2124 }
2125 return folio_batch_count(fbatch);
2126}
2127
2128/**
2129 * filemap_get_folios - Get a batch of folios
2130 * @mapping: The address_space to search
2131 * @start: The starting page index
2132 * @end: The final page index (inclusive)
2133 * @fbatch: The batch to fill.
2134 *
2135 * Search for and return a batch of folios in the mapping starting at
2136 * index @start and up to index @end (inclusive). The folios are returned
2137 * in @fbatch with an elevated reference count.
2138 *
2139 * Return: The number of folios which were found.
2140 * We also update @start to index the next folio for the traversal.
2141 */
2142unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2143 pgoff_t end, struct folio_batch *fbatch)
2144{
2145 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2146}
2147EXPORT_SYMBOL(filemap_get_folios);
2148
2149/**
2150 * filemap_get_folios_contig - Get a batch of contiguous folios
2151 * @mapping: The address_space to search
2152 * @start: The starting page index
2153 * @end: The final page index (inclusive)
2154 * @fbatch: The batch to fill
2155 *
2156 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2157 * except the returned folios are guaranteed to be contiguous. This may
2158 * not return all contiguous folios if the batch gets filled up.
2159 *
2160 * Return: The number of folios found.
2161 * Also update @start to be positioned for traversal of the next folio.
2162 */
2163
2164unsigned filemap_get_folios_contig(struct address_space *mapping,
2165 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2166{
2167 XA_STATE(xas, &mapping->i_pages, *start);
2168 unsigned long nr;
2169 struct folio *folio;
2170
2171 rcu_read_lock();
2172
2173 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2174 folio = xas_next(&xas)) {
2175 if (xas_retry(&xas, folio))
2176 continue;
2177 /*
2178 * If the entry has been swapped out, we can stop looking.
2179 * No current caller is looking for DAX entries.
2180 */
2181 if (xa_is_value(folio))
2182 goto update_start;
2183
2184 if (!folio_try_get(folio))
2185 goto retry;
2186
2187 if (unlikely(folio != xas_reload(&xas)))
2188 goto put_folio;
2189
2190 if (!folio_batch_add(fbatch, folio)) {
2191 nr = folio_nr_pages(folio);
2192 *start = folio->index + nr;
2193 goto out;
2194 }
2195 continue;
2196put_folio:
2197 folio_put(folio);
2198
2199retry:
2200 xas_reset(&xas);
2201 }
2202
2203update_start:
2204 nr = folio_batch_count(fbatch);
2205
2206 if (nr) {
2207 folio = fbatch->folios[nr - 1];
2208 *start = folio_next_index(folio);
2209 }
2210out:
2211 rcu_read_unlock();
2212 return folio_batch_count(fbatch);
2213}
2214EXPORT_SYMBOL(filemap_get_folios_contig);
2215
2216/**
2217 * filemap_get_folios_tag - Get a batch of folios matching @tag
2218 * @mapping: The address_space to search
2219 * @start: The starting page index
2220 * @end: The final page index (inclusive)
2221 * @tag: The tag index
2222 * @fbatch: The batch to fill
2223 *
2224 * The first folio may start before @start; if it does, it will contain
2225 * @start. The final folio may extend beyond @end; if it does, it will
2226 * contain @end. The folios have ascending indices. There may be gaps
2227 * between the folios if there are indices which have no folio in the
2228 * page cache. If folios are added to or removed from the page cache
2229 * while this is running, they may or may not be found by this call.
2230 * Only returns folios that are tagged with @tag.
2231 *
2232 * Return: The number of folios found.
2233 * Also update @start to index the next folio for traversal.
2234 */
2235unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2236 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2237{
2238 XA_STATE(xas, &mapping->i_pages, *start);
2239 struct folio *folio;
2240
2241 rcu_read_lock();
2242 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2243 /*
2244 * Shadow entries should never be tagged, but this iteration
2245 * is lockless so there is a window for page reclaim to evict
2246 * a page we saw tagged. Skip over it.
2247 */
2248 if (xa_is_value(folio))
2249 continue;
2250 if (!folio_batch_add(fbatch, folio)) {
2251 unsigned long nr = folio_nr_pages(folio);
2252 *start = folio->index + nr;
2253 goto out;
2254 }
2255 }
2256 /*
2257 * We come here when there is no page beyond @end. We take care to not
2258 * overflow the index @start as it confuses some of the callers. This
2259 * breaks the iteration when there is a page at index -1 but that is
2260 * already broke anyway.
2261 */
2262 if (end == (pgoff_t)-1)
2263 *start = (pgoff_t)-1;
2264 else
2265 *start = end + 1;
2266out:
2267 rcu_read_unlock();
2268
2269 return folio_batch_count(fbatch);
2270}
2271EXPORT_SYMBOL(filemap_get_folios_tag);
2272
2273/*
2274 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2275 * a _large_ part of the i/o request. Imagine the worst scenario:
2276 *
2277 * ---R__________________________________________B__________
2278 * ^ reading here ^ bad block(assume 4k)
2279 *
2280 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2281 * => failing the whole request => read(R) => read(R+1) =>
2282 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2283 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2284 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2285 *
2286 * It is going insane. Fix it by quickly scaling down the readahead size.
2287 */
2288static void shrink_readahead_size_eio(struct file_ra_state *ra)
2289{
2290 ra->ra_pages /= 4;
2291}
2292
2293/*
2294 * filemap_get_read_batch - Get a batch of folios for read
2295 *
2296 * Get a batch of folios which represent a contiguous range of bytes in
2297 * the file. No exceptional entries will be returned. If @index is in
2298 * the middle of a folio, the entire folio will be returned. The last
2299 * folio in the batch may have the readahead flag set or the uptodate flag
2300 * clear so that the caller can take the appropriate action.
2301 */
2302static void filemap_get_read_batch(struct address_space *mapping,
2303 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2304{
2305 XA_STATE(xas, &mapping->i_pages, index);
2306 struct folio *folio;
2307
2308 rcu_read_lock();
2309 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2310 if (xas_retry(&xas, folio))
2311 continue;
2312 if (xas.xa_index > max || xa_is_value(folio))
2313 break;
2314 if (xa_is_sibling(folio))
2315 break;
2316 if (!folio_try_get(folio))
2317 goto retry;
2318
2319 if (unlikely(folio != xas_reload(&xas)))
2320 goto put_folio;
2321
2322 if (!folio_batch_add(fbatch, folio))
2323 break;
2324 if (!folio_test_uptodate(folio))
2325 break;
2326 if (folio_test_readahead(folio))
2327 break;
2328 xas_advance(&xas, folio_next_index(folio) - 1);
2329 continue;
2330put_folio:
2331 folio_put(folio);
2332retry:
2333 xas_reset(&xas);
2334 }
2335 rcu_read_unlock();
2336}
2337
2338static int filemap_read_folio(struct file *file, filler_t filler,
2339 struct folio *folio)
2340{
2341 bool workingset = folio_test_workingset(folio);
2342 unsigned long pflags;
2343 int error;
2344
2345 /*
2346 * A previous I/O error may have been due to temporary failures,
2347 * eg. multipath errors. PG_error will be set again if read_folio
2348 * fails.
2349 */
2350 folio_clear_error(folio);
2351
2352 /* Start the actual read. The read will unlock the page. */
2353 if (unlikely(workingset))
2354 psi_memstall_enter(&pflags);
2355 error = filler(file, folio);
2356 if (unlikely(workingset))
2357 psi_memstall_leave(&pflags);
2358 if (error)
2359 return error;
2360
2361 error = folio_wait_locked_killable(folio);
2362 if (error)
2363 return error;
2364 if (folio_test_uptodate(folio))
2365 return 0;
2366 if (file)
2367 shrink_readahead_size_eio(&file->f_ra);
2368 return -EIO;
2369}
2370
2371static bool filemap_range_uptodate(struct address_space *mapping,
2372 loff_t pos, size_t count, struct folio *folio,
2373 bool need_uptodate)
2374{
2375 if (folio_test_uptodate(folio))
2376 return true;
2377 /* pipes can't handle partially uptodate pages */
2378 if (need_uptodate)
2379 return false;
2380 if (!mapping->a_ops->is_partially_uptodate)
2381 return false;
2382 if (mapping->host->i_blkbits >= folio_shift(folio))
2383 return false;
2384
2385 if (folio_pos(folio) > pos) {
2386 count -= folio_pos(folio) - pos;
2387 pos = 0;
2388 } else {
2389 pos -= folio_pos(folio);
2390 }
2391
2392 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2393}
2394
2395static int filemap_update_page(struct kiocb *iocb,
2396 struct address_space *mapping, size_t count,
2397 struct folio *folio, bool need_uptodate)
2398{
2399 int error;
2400
2401 if (iocb->ki_flags & IOCB_NOWAIT) {
2402 if (!filemap_invalidate_trylock_shared(mapping))
2403 return -EAGAIN;
2404 } else {
2405 filemap_invalidate_lock_shared(mapping);
2406 }
2407
2408 if (!folio_trylock(folio)) {
2409 error = -EAGAIN;
2410 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2411 goto unlock_mapping;
2412 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2413 filemap_invalidate_unlock_shared(mapping);
2414 /*
2415 * This is where we usually end up waiting for a
2416 * previously submitted readahead to finish.
2417 */
2418 folio_put_wait_locked(folio, TASK_KILLABLE);
2419 return AOP_TRUNCATED_PAGE;
2420 }
2421 error = __folio_lock_async(folio, iocb->ki_waitq);
2422 if (error)
2423 goto unlock_mapping;
2424 }
2425
2426 error = AOP_TRUNCATED_PAGE;
2427 if (!folio->mapping)
2428 goto unlock;
2429
2430 error = 0;
2431 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2432 need_uptodate))
2433 goto unlock;
2434
2435 error = -EAGAIN;
2436 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2437 goto unlock;
2438
2439 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2440 folio);
2441 goto unlock_mapping;
2442unlock:
2443 folio_unlock(folio);
2444unlock_mapping:
2445 filemap_invalidate_unlock_shared(mapping);
2446 if (error == AOP_TRUNCATED_PAGE)
2447 folio_put(folio);
2448 return error;
2449}
2450
2451static int filemap_create_folio(struct file *file,
2452 struct address_space *mapping, pgoff_t index,
2453 struct folio_batch *fbatch)
2454{
2455 struct folio *folio;
2456 int error;
2457
2458 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2459 if (!folio)
2460 return -ENOMEM;
2461
2462 /*
2463 * Protect against truncate / hole punch. Grabbing invalidate_lock
2464 * here assures we cannot instantiate and bring uptodate new
2465 * pagecache folios after evicting page cache during truncate
2466 * and before actually freeing blocks. Note that we could
2467 * release invalidate_lock after inserting the folio into
2468 * the page cache as the locked folio would then be enough to
2469 * synchronize with hole punching. But there are code paths
2470 * such as filemap_update_page() filling in partially uptodate
2471 * pages or ->readahead() that need to hold invalidate_lock
2472 * while mapping blocks for IO so let's hold the lock here as
2473 * well to keep locking rules simple.
2474 */
2475 filemap_invalidate_lock_shared(mapping);
2476 error = filemap_add_folio(mapping, folio, index,
2477 mapping_gfp_constraint(mapping, GFP_KERNEL));
2478 if (error == -EEXIST)
2479 error = AOP_TRUNCATED_PAGE;
2480 if (error)
2481 goto error;
2482
2483 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2484 if (error)
2485 goto error;
2486
2487 filemap_invalidate_unlock_shared(mapping);
2488 folio_batch_add(fbatch, folio);
2489 return 0;
2490error:
2491 filemap_invalidate_unlock_shared(mapping);
2492 folio_put(folio);
2493 return error;
2494}
2495
2496static int filemap_readahead(struct kiocb *iocb, struct file *file,
2497 struct address_space *mapping, struct folio *folio,
2498 pgoff_t last_index)
2499{
2500 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2501
2502 if (iocb->ki_flags & IOCB_NOIO)
2503 return -EAGAIN;
2504 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2505 return 0;
2506}
2507
2508static int filemap_get_pages(struct kiocb *iocb, size_t count,
2509 struct folio_batch *fbatch, bool need_uptodate)
2510{
2511 struct file *filp = iocb->ki_filp;
2512 struct address_space *mapping = filp->f_mapping;
2513 struct file_ra_state *ra = &filp->f_ra;
2514 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2515 pgoff_t last_index;
2516 struct folio *folio;
2517 int err = 0;
2518
2519 /* "last_index" is the index of the page beyond the end of the read */
2520 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2521retry:
2522 if (fatal_signal_pending(current))
2523 return -EINTR;
2524
2525 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2526 if (!folio_batch_count(fbatch)) {
2527 if (iocb->ki_flags & IOCB_NOIO)
2528 return -EAGAIN;
2529 page_cache_sync_readahead(mapping, ra, filp, index,
2530 last_index - index);
2531 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2532 }
2533 if (!folio_batch_count(fbatch)) {
2534 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2535 return -EAGAIN;
2536 err = filemap_create_folio(filp, mapping,
2537 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2538 if (err == AOP_TRUNCATED_PAGE)
2539 goto retry;
2540 return err;
2541 }
2542
2543 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2544 if (folio_test_readahead(folio)) {
2545 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2546 if (err)
2547 goto err;
2548 }
2549 if (!folio_test_uptodate(folio)) {
2550 if ((iocb->ki_flags & IOCB_WAITQ) &&
2551 folio_batch_count(fbatch) > 1)
2552 iocb->ki_flags |= IOCB_NOWAIT;
2553 err = filemap_update_page(iocb, mapping, count, folio,
2554 need_uptodate);
2555 if (err)
2556 goto err;
2557 }
2558
2559 return 0;
2560err:
2561 if (err < 0)
2562 folio_put(folio);
2563 if (likely(--fbatch->nr))
2564 return 0;
2565 if (err == AOP_TRUNCATED_PAGE)
2566 goto retry;
2567 return err;
2568}
2569
2570static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2571{
2572 unsigned int shift = folio_shift(folio);
2573
2574 return (pos1 >> shift == pos2 >> shift);
2575}
2576
2577/**
2578 * filemap_read - Read data from the page cache.
2579 * @iocb: The iocb to read.
2580 * @iter: Destination for the data.
2581 * @already_read: Number of bytes already read by the caller.
2582 *
2583 * Copies data from the page cache. If the data is not currently present,
2584 * uses the readahead and read_folio address_space operations to fetch it.
2585 *
2586 * Return: Total number of bytes copied, including those already read by
2587 * the caller. If an error happens before any bytes are copied, returns
2588 * a negative error number.
2589 */
2590ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2591 ssize_t already_read)
2592{
2593 struct file *filp = iocb->ki_filp;
2594 struct file_ra_state *ra = &filp->f_ra;
2595 struct address_space *mapping = filp->f_mapping;
2596 struct inode *inode = mapping->host;
2597 struct folio_batch fbatch;
2598 int i, error = 0;
2599 bool writably_mapped;
2600 loff_t isize, end_offset;
2601 loff_t last_pos = ra->prev_pos;
2602
2603 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2604 return 0;
2605 if (unlikely(!iov_iter_count(iter)))
2606 return 0;
2607
2608 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2609 folio_batch_init(&fbatch);
2610
2611 do {
2612 cond_resched();
2613
2614 /*
2615 * If we've already successfully copied some data, then we
2616 * can no longer safely return -EIOCBQUEUED. Hence mark
2617 * an async read NOWAIT at that point.
2618 */
2619 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2620 iocb->ki_flags |= IOCB_NOWAIT;
2621
2622 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2623 break;
2624
2625 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2626 if (error < 0)
2627 break;
2628
2629 /*
2630 * i_size must be checked after we know the pages are Uptodate.
2631 *
2632 * Checking i_size after the check allows us to calculate
2633 * the correct value for "nr", which means the zero-filled
2634 * part of the page is not copied back to userspace (unless
2635 * another truncate extends the file - this is desired though).
2636 */
2637 isize = i_size_read(inode);
2638 if (unlikely(iocb->ki_pos >= isize))
2639 goto put_folios;
2640 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2641
2642 /*
2643 * Once we start copying data, we don't want to be touching any
2644 * cachelines that might be contended:
2645 */
2646 writably_mapped = mapping_writably_mapped(mapping);
2647
2648 /*
2649 * When a read accesses the same folio several times, only
2650 * mark it as accessed the first time.
2651 */
2652 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2653 fbatch.folios[0]))
2654 folio_mark_accessed(fbatch.folios[0]);
2655
2656 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2657 struct folio *folio = fbatch.folios[i];
2658 size_t fsize = folio_size(folio);
2659 size_t offset = iocb->ki_pos & (fsize - 1);
2660 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2661 fsize - offset);
2662 size_t copied;
2663
2664 if (end_offset < folio_pos(folio))
2665 break;
2666 if (i > 0)
2667 folio_mark_accessed(folio);
2668 /*
2669 * If users can be writing to this folio using arbitrary
2670 * virtual addresses, take care of potential aliasing
2671 * before reading the folio on the kernel side.
2672 */
2673 if (writably_mapped)
2674 flush_dcache_folio(folio);
2675
2676 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2677
2678 already_read += copied;
2679 iocb->ki_pos += copied;
2680 last_pos = iocb->ki_pos;
2681
2682 if (copied < bytes) {
2683 error = -EFAULT;
2684 break;
2685 }
2686 }
2687put_folios:
2688 for (i = 0; i < folio_batch_count(&fbatch); i++)
2689 folio_put(fbatch.folios[i]);
2690 folio_batch_init(&fbatch);
2691 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2692
2693 file_accessed(filp);
2694 ra->prev_pos = last_pos;
2695 return already_read ? already_read : error;
2696}
2697EXPORT_SYMBOL_GPL(filemap_read);
2698
2699int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2700{
2701 struct address_space *mapping = iocb->ki_filp->f_mapping;
2702 loff_t pos = iocb->ki_pos;
2703 loff_t end = pos + count - 1;
2704
2705 if (iocb->ki_flags & IOCB_NOWAIT) {
2706 if (filemap_range_needs_writeback(mapping, pos, end))
2707 return -EAGAIN;
2708 return 0;
2709 }
2710
2711 return filemap_write_and_wait_range(mapping, pos, end);
2712}
2713EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2714
2715int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2716{
2717 struct address_space *mapping = iocb->ki_filp->f_mapping;
2718 loff_t pos = iocb->ki_pos;
2719 loff_t end = pos + count - 1;
2720 int ret;
2721
2722 if (iocb->ki_flags & IOCB_NOWAIT) {
2723 /* we could block if there are any pages in the range */
2724 if (filemap_range_has_page(mapping, pos, end))
2725 return -EAGAIN;
2726 } else {
2727 ret = filemap_write_and_wait_range(mapping, pos, end);
2728 if (ret)
2729 return ret;
2730 }
2731
2732 /*
2733 * After a write we want buffered reads to be sure to go to disk to get
2734 * the new data. We invalidate clean cached page from the region we're
2735 * about to write. We do this *before* the write so that we can return
2736 * without clobbering -EIOCBQUEUED from ->direct_IO().
2737 */
2738 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2739 end >> PAGE_SHIFT);
2740}
2741EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2742
2743/**
2744 * generic_file_read_iter - generic filesystem read routine
2745 * @iocb: kernel I/O control block
2746 * @iter: destination for the data read
2747 *
2748 * This is the "read_iter()" routine for all filesystems
2749 * that can use the page cache directly.
2750 *
2751 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2752 * be returned when no data can be read without waiting for I/O requests
2753 * to complete; it doesn't prevent readahead.
2754 *
2755 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2756 * requests shall be made for the read or for readahead. When no data
2757 * can be read, -EAGAIN shall be returned. When readahead would be
2758 * triggered, a partial, possibly empty read shall be returned.
2759 *
2760 * Return:
2761 * * number of bytes copied, even for partial reads
2762 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2763 */
2764ssize_t
2765generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2766{
2767 size_t count = iov_iter_count(iter);
2768 ssize_t retval = 0;
2769
2770 if (!count)
2771 return 0; /* skip atime */
2772
2773 if (iocb->ki_flags & IOCB_DIRECT) {
2774 struct file *file = iocb->ki_filp;
2775 struct address_space *mapping = file->f_mapping;
2776 struct inode *inode = mapping->host;
2777
2778 retval = kiocb_write_and_wait(iocb, count);
2779 if (retval < 0)
2780 return retval;
2781 file_accessed(file);
2782
2783 retval = mapping->a_ops->direct_IO(iocb, iter);
2784 if (retval >= 0) {
2785 iocb->ki_pos += retval;
2786 count -= retval;
2787 }
2788 if (retval != -EIOCBQUEUED)
2789 iov_iter_revert(iter, count - iov_iter_count(iter));
2790
2791 /*
2792 * Btrfs can have a short DIO read if we encounter
2793 * compressed extents, so if there was an error, or if
2794 * we've already read everything we wanted to, or if
2795 * there was a short read because we hit EOF, go ahead
2796 * and return. Otherwise fallthrough to buffered io for
2797 * the rest of the read. Buffered reads will not work for
2798 * DAX files, so don't bother trying.
2799 */
2800 if (retval < 0 || !count || IS_DAX(inode))
2801 return retval;
2802 if (iocb->ki_pos >= i_size_read(inode))
2803 return retval;
2804 }
2805
2806 return filemap_read(iocb, iter, retval);
2807}
2808EXPORT_SYMBOL(generic_file_read_iter);
2809
2810/*
2811 * Splice subpages from a folio into a pipe.
2812 */
2813size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2814 struct folio *folio, loff_t fpos, size_t size)
2815{
2816 struct page *page;
2817 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2818
2819 page = folio_page(folio, offset / PAGE_SIZE);
2820 size = min(size, folio_size(folio) - offset);
2821 offset %= PAGE_SIZE;
2822
2823 while (spliced < size &&
2824 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2825 struct pipe_buffer *buf = pipe_head_buf(pipe);
2826 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2827
2828 *buf = (struct pipe_buffer) {
2829 .ops = &page_cache_pipe_buf_ops,
2830 .page = page,
2831 .offset = offset,
2832 .len = part,
2833 };
2834 folio_get(folio);
2835 pipe->head++;
2836 page++;
2837 spliced += part;
2838 offset = 0;
2839 }
2840
2841 return spliced;
2842}
2843
2844/**
2845 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2846 * @in: The file to read from
2847 * @ppos: Pointer to the file position to read from
2848 * @pipe: The pipe to splice into
2849 * @len: The amount to splice
2850 * @flags: The SPLICE_F_* flags
2851 *
2852 * This function gets folios from a file's pagecache and splices them into the
2853 * pipe. Readahead will be called as necessary to fill more folios. This may
2854 * be used for blockdevs also.
2855 *
2856 * Return: On success, the number of bytes read will be returned and *@ppos
2857 * will be updated if appropriate; 0 will be returned if there is no more data
2858 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2859 * other negative error code will be returned on error. A short read may occur
2860 * if the pipe has insufficient space, we reach the end of the data or we hit a
2861 * hole.
2862 */
2863ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2864 struct pipe_inode_info *pipe,
2865 size_t len, unsigned int flags)
2866{
2867 struct folio_batch fbatch;
2868 struct kiocb iocb;
2869 size_t total_spliced = 0, used, npages;
2870 loff_t isize, end_offset;
2871 bool writably_mapped;
2872 int i, error = 0;
2873
2874 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2875 return 0;
2876
2877 init_sync_kiocb(&iocb, in);
2878 iocb.ki_pos = *ppos;
2879
2880 /* Work out how much data we can actually add into the pipe */
2881 used = pipe_occupancy(pipe->head, pipe->tail);
2882 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2883 len = min_t(size_t, len, npages * PAGE_SIZE);
2884
2885 folio_batch_init(&fbatch);
2886
2887 do {
2888 cond_resched();
2889
2890 if (*ppos >= i_size_read(in->f_mapping->host))
2891 break;
2892
2893 iocb.ki_pos = *ppos;
2894 error = filemap_get_pages(&iocb, len, &fbatch, true);
2895 if (error < 0)
2896 break;
2897
2898 /*
2899 * i_size must be checked after we know the pages are Uptodate.
2900 *
2901 * Checking i_size after the check allows us to calculate
2902 * the correct value for "nr", which means the zero-filled
2903 * part of the page is not copied back to userspace (unless
2904 * another truncate extends the file - this is desired though).
2905 */
2906 isize = i_size_read(in->f_mapping->host);
2907 if (unlikely(*ppos >= isize))
2908 break;
2909 end_offset = min_t(loff_t, isize, *ppos + len);
2910
2911 /*
2912 * Once we start copying data, we don't want to be touching any
2913 * cachelines that might be contended:
2914 */
2915 writably_mapped = mapping_writably_mapped(in->f_mapping);
2916
2917 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2918 struct folio *folio = fbatch.folios[i];
2919 size_t n;
2920
2921 if (folio_pos(folio) >= end_offset)
2922 goto out;
2923 folio_mark_accessed(folio);
2924
2925 /*
2926 * If users can be writing to this folio using arbitrary
2927 * virtual addresses, take care of potential aliasing
2928 * before reading the folio on the kernel side.
2929 */
2930 if (writably_mapped)
2931 flush_dcache_folio(folio);
2932
2933 n = min_t(loff_t, len, isize - *ppos);
2934 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2935 if (!n)
2936 goto out;
2937 len -= n;
2938 total_spliced += n;
2939 *ppos += n;
2940 in->f_ra.prev_pos = *ppos;
2941 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2942 goto out;
2943 }
2944
2945 folio_batch_release(&fbatch);
2946 } while (len);
2947
2948out:
2949 folio_batch_release(&fbatch);
2950 file_accessed(in);
2951
2952 return total_spliced ? total_spliced : error;
2953}
2954EXPORT_SYMBOL(filemap_splice_read);
2955
2956static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2957 struct address_space *mapping, struct folio *folio,
2958 loff_t start, loff_t end, bool seek_data)
2959{
2960 const struct address_space_operations *ops = mapping->a_ops;
2961 size_t offset, bsz = i_blocksize(mapping->host);
2962
2963 if (xa_is_value(folio) || folio_test_uptodate(folio))
2964 return seek_data ? start : end;
2965 if (!ops->is_partially_uptodate)
2966 return seek_data ? end : start;
2967
2968 xas_pause(xas);
2969 rcu_read_unlock();
2970 folio_lock(folio);
2971 if (unlikely(folio->mapping != mapping))
2972 goto unlock;
2973
2974 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2975
2976 do {
2977 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2978 seek_data)
2979 break;
2980 start = (start + bsz) & ~(bsz - 1);
2981 offset += bsz;
2982 } while (offset < folio_size(folio));
2983unlock:
2984 folio_unlock(folio);
2985 rcu_read_lock();
2986 return start;
2987}
2988
2989static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2990{
2991 if (xa_is_value(folio))
2992 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2993 return folio_size(folio);
2994}
2995
2996/**
2997 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2998 * @mapping: Address space to search.
2999 * @start: First byte to consider.
3000 * @end: Limit of search (exclusive).
3001 * @whence: Either SEEK_HOLE or SEEK_DATA.
3002 *
3003 * If the page cache knows which blocks contain holes and which blocks
3004 * contain data, your filesystem can use this function to implement
3005 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3006 * entirely memory-based such as tmpfs, and filesystems which support
3007 * unwritten extents.
3008 *
3009 * Return: The requested offset on success, or -ENXIO if @whence specifies
3010 * SEEK_DATA and there is no data after @start. There is an implicit hole
3011 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3012 * and @end contain data.
3013 */
3014loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3015 loff_t end, int whence)
3016{
3017 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3018 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3019 bool seek_data = (whence == SEEK_DATA);
3020 struct folio *folio;
3021
3022 if (end <= start)
3023 return -ENXIO;
3024
3025 rcu_read_lock();
3026 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3027 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3028 size_t seek_size;
3029
3030 if (start < pos) {
3031 if (!seek_data)
3032 goto unlock;
3033 start = pos;
3034 }
3035
3036 seek_size = seek_folio_size(&xas, folio);
3037 pos = round_up((u64)pos + 1, seek_size);
3038 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3039 seek_data);
3040 if (start < pos)
3041 goto unlock;
3042 if (start >= end)
3043 break;
3044 if (seek_size > PAGE_SIZE)
3045 xas_set(&xas, pos >> PAGE_SHIFT);
3046 if (!xa_is_value(folio))
3047 folio_put(folio);
3048 }
3049 if (seek_data)
3050 start = -ENXIO;
3051unlock:
3052 rcu_read_unlock();
3053 if (folio && !xa_is_value(folio))
3054 folio_put(folio);
3055 if (start > end)
3056 return end;
3057 return start;
3058}
3059
3060#ifdef CONFIG_MMU
3061#define MMAP_LOTSAMISS (100)
3062/*
3063 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3064 * @vmf - the vm_fault for this fault.
3065 * @folio - the folio to lock.
3066 * @fpin - the pointer to the file we may pin (or is already pinned).
3067 *
3068 * This works similar to lock_folio_or_retry in that it can drop the
3069 * mmap_lock. It differs in that it actually returns the folio locked
3070 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3071 * to drop the mmap_lock then fpin will point to the pinned file and
3072 * needs to be fput()'ed at a later point.
3073 */
3074static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3075 struct file **fpin)
3076{
3077 if (folio_trylock(folio))
3078 return 1;
3079
3080 /*
3081 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3082 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3083 * is supposed to work. We have way too many special cases..
3084 */
3085 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3086 return 0;
3087
3088 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3089 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3090 if (__folio_lock_killable(folio)) {
3091 /*
3092 * We didn't have the right flags to drop the
3093 * fault lock, but all fault_handlers only check
3094 * for fatal signals if we return VM_FAULT_RETRY,
3095 * so we need to drop the fault lock here and
3096 * return 0 if we don't have a fpin.
3097 */
3098 if (*fpin == NULL)
3099 release_fault_lock(vmf);
3100 return 0;
3101 }
3102 } else
3103 __folio_lock(folio);
3104
3105 return 1;
3106}
3107
3108/*
3109 * Synchronous readahead happens when we don't even find a page in the page
3110 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3111 * to drop the mmap sem we return the file that was pinned in order for us to do
3112 * that. If we didn't pin a file then we return NULL. The file that is
3113 * returned needs to be fput()'ed when we're done with it.
3114 */
3115static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3116{
3117 struct file *file = vmf->vma->vm_file;
3118 struct file_ra_state *ra = &file->f_ra;
3119 struct address_space *mapping = file->f_mapping;
3120 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3121 struct file *fpin = NULL;
3122 unsigned long vm_flags = vmf->vma->vm_flags;
3123 unsigned int mmap_miss;
3124
3125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3126 /* Use the readahead code, even if readahead is disabled */
3127 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3128 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3129 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3130 ra->size = HPAGE_PMD_NR;
3131 /*
3132 * Fetch two PMD folios, so we get the chance to actually
3133 * readahead, unless we've been told not to.
3134 */
3135 if (!(vm_flags & VM_RAND_READ))
3136 ra->size *= 2;
3137 ra->async_size = HPAGE_PMD_NR;
3138 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3139 return fpin;
3140 }
3141#endif
3142
3143 /* If we don't want any read-ahead, don't bother */
3144 if (vm_flags & VM_RAND_READ)
3145 return fpin;
3146 if (!ra->ra_pages)
3147 return fpin;
3148
3149 if (vm_flags & VM_SEQ_READ) {
3150 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3151 page_cache_sync_ra(&ractl, ra->ra_pages);
3152 return fpin;
3153 }
3154
3155 /* Avoid banging the cache line if not needed */
3156 mmap_miss = READ_ONCE(ra->mmap_miss);
3157 if (mmap_miss < MMAP_LOTSAMISS * 10)
3158 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3159
3160 /*
3161 * Do we miss much more than hit in this file? If so,
3162 * stop bothering with read-ahead. It will only hurt.
3163 */
3164 if (mmap_miss > MMAP_LOTSAMISS)
3165 return fpin;
3166
3167 /*
3168 * mmap read-around
3169 */
3170 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3171 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3172 ra->size = ra->ra_pages;
3173 ra->async_size = ra->ra_pages / 4;
3174 ractl._index = ra->start;
3175 page_cache_ra_order(&ractl, ra, 0);
3176 return fpin;
3177}
3178
3179/*
3180 * Asynchronous readahead happens when we find the page and PG_readahead,
3181 * so we want to possibly extend the readahead further. We return the file that
3182 * was pinned if we have to drop the mmap_lock in order to do IO.
3183 */
3184static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3185 struct folio *folio)
3186{
3187 struct file *file = vmf->vma->vm_file;
3188 struct file_ra_state *ra = &file->f_ra;
3189 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3190 struct file *fpin = NULL;
3191 unsigned int mmap_miss;
3192
3193 /* If we don't want any read-ahead, don't bother */
3194 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3195 return fpin;
3196
3197 mmap_miss = READ_ONCE(ra->mmap_miss);
3198 if (mmap_miss)
3199 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3200
3201 if (folio_test_readahead(folio)) {
3202 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3203 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3204 }
3205 return fpin;
3206}
3207
3208static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3209{
3210 struct vm_area_struct *vma = vmf->vma;
3211 vm_fault_t ret = 0;
3212 pte_t *ptep;
3213
3214 /*
3215 * We might have COW'ed a pagecache folio and might now have an mlocked
3216 * anon folio mapped. The original pagecache folio is not mlocked and
3217 * might have been evicted. During a read+clear/modify/write update of
3218 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3219 * temporarily clear the PTE under PT lock and might detect it here as
3220 * "none" when not holding the PT lock.
3221 *
3222 * Not rechecking the PTE under PT lock could result in an unexpected
3223 * major fault in an mlock'ed region. Recheck only for this special
3224 * scenario while holding the PT lock, to not degrade non-mlocked
3225 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3226 * the number of times we hold PT lock.
3227 */
3228 if (!(vma->vm_flags & VM_LOCKED))
3229 return 0;
3230
3231 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3232 return 0;
3233
3234 ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3235 &vmf->ptl);
3236 if (unlikely(!ptep))
3237 return VM_FAULT_NOPAGE;
3238
3239 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3240 ret = VM_FAULT_NOPAGE;
3241 } else {
3242 spin_lock(vmf->ptl);
3243 if (unlikely(!pte_none(ptep_get(ptep))))
3244 ret = VM_FAULT_NOPAGE;
3245 spin_unlock(vmf->ptl);
3246 }
3247 pte_unmap(ptep);
3248 return ret;
3249}
3250
3251/**
3252 * filemap_fault - read in file data for page fault handling
3253 * @vmf: struct vm_fault containing details of the fault
3254 *
3255 * filemap_fault() is invoked via the vma operations vector for a
3256 * mapped memory region to read in file data during a page fault.
3257 *
3258 * The goto's are kind of ugly, but this streamlines the normal case of having
3259 * it in the page cache, and handles the special cases reasonably without
3260 * having a lot of duplicated code.
3261 *
3262 * vma->vm_mm->mmap_lock must be held on entry.
3263 *
3264 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3265 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3266 *
3267 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3268 * has not been released.
3269 *
3270 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3271 *
3272 * Return: bitwise-OR of %VM_FAULT_ codes.
3273 */
3274vm_fault_t filemap_fault(struct vm_fault *vmf)
3275{
3276 int error;
3277 struct file *file = vmf->vma->vm_file;
3278 struct file *fpin = NULL;
3279 struct address_space *mapping = file->f_mapping;
3280 struct inode *inode = mapping->host;
3281 pgoff_t max_idx, index = vmf->pgoff;
3282 struct folio *folio;
3283 vm_fault_t ret = 0;
3284 bool mapping_locked = false;
3285
3286 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3287 if (unlikely(index >= max_idx))
3288 return VM_FAULT_SIGBUS;
3289
3290 /*
3291 * Do we have something in the page cache already?
3292 */
3293 folio = filemap_get_folio(mapping, index);
3294 if (likely(!IS_ERR(folio))) {
3295 /*
3296 * We found the page, so try async readahead before waiting for
3297 * the lock.
3298 */
3299 if (!(vmf->flags & FAULT_FLAG_TRIED))
3300 fpin = do_async_mmap_readahead(vmf, folio);
3301 if (unlikely(!folio_test_uptodate(folio))) {
3302 filemap_invalidate_lock_shared(mapping);
3303 mapping_locked = true;
3304 }
3305 } else {
3306 ret = filemap_fault_recheck_pte_none(vmf);
3307 if (unlikely(ret))
3308 return ret;
3309
3310 /* No page in the page cache at all */
3311 count_vm_event(PGMAJFAULT);
3312 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3313 ret = VM_FAULT_MAJOR;
3314 fpin = do_sync_mmap_readahead(vmf);
3315retry_find:
3316 /*
3317 * See comment in filemap_create_folio() why we need
3318 * invalidate_lock
3319 */
3320 if (!mapping_locked) {
3321 filemap_invalidate_lock_shared(mapping);
3322 mapping_locked = true;
3323 }
3324 folio = __filemap_get_folio(mapping, index,
3325 FGP_CREAT|FGP_FOR_MMAP,
3326 vmf->gfp_mask);
3327 if (IS_ERR(folio)) {
3328 if (fpin)
3329 goto out_retry;
3330 filemap_invalidate_unlock_shared(mapping);
3331 return VM_FAULT_OOM;
3332 }
3333 }
3334
3335 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3336 goto out_retry;
3337
3338 /* Did it get truncated? */
3339 if (unlikely(folio->mapping != mapping)) {
3340 folio_unlock(folio);
3341 folio_put(folio);
3342 goto retry_find;
3343 }
3344 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3345
3346 /*
3347 * We have a locked folio in the page cache, now we need to check
3348 * that it's up-to-date. If not, it is going to be due to an error,
3349 * or because readahead was otherwise unable to retrieve it.
3350 */
3351 if (unlikely(!folio_test_uptodate(folio))) {
3352 /*
3353 * If the invalidate lock is not held, the folio was in cache
3354 * and uptodate and now it is not. Strange but possible since we
3355 * didn't hold the page lock all the time. Let's drop
3356 * everything, get the invalidate lock and try again.
3357 */
3358 if (!mapping_locked) {
3359 folio_unlock(folio);
3360 folio_put(folio);
3361 goto retry_find;
3362 }
3363
3364 /*
3365 * OK, the folio is really not uptodate. This can be because the
3366 * VMA has the VM_RAND_READ flag set, or because an error
3367 * arose. Let's read it in directly.
3368 */
3369 goto page_not_uptodate;
3370 }
3371
3372 /*
3373 * We've made it this far and we had to drop our mmap_lock, now is the
3374 * time to return to the upper layer and have it re-find the vma and
3375 * redo the fault.
3376 */
3377 if (fpin) {
3378 folio_unlock(folio);
3379 goto out_retry;
3380 }
3381 if (mapping_locked)
3382 filemap_invalidate_unlock_shared(mapping);
3383
3384 /*
3385 * Found the page and have a reference on it.
3386 * We must recheck i_size under page lock.
3387 */
3388 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3389 if (unlikely(index >= max_idx)) {
3390 folio_unlock(folio);
3391 folio_put(folio);
3392 return VM_FAULT_SIGBUS;
3393 }
3394
3395 vmf->page = folio_file_page(folio, index);
3396 return ret | VM_FAULT_LOCKED;
3397
3398page_not_uptodate:
3399 /*
3400 * Umm, take care of errors if the page isn't up-to-date.
3401 * Try to re-read it _once_. We do this synchronously,
3402 * because there really aren't any performance issues here
3403 * and we need to check for errors.
3404 */
3405 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3406 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3407 if (fpin)
3408 goto out_retry;
3409 folio_put(folio);
3410
3411 if (!error || error == AOP_TRUNCATED_PAGE)
3412 goto retry_find;
3413 filemap_invalidate_unlock_shared(mapping);
3414
3415 return VM_FAULT_SIGBUS;
3416
3417out_retry:
3418 /*
3419 * We dropped the mmap_lock, we need to return to the fault handler to
3420 * re-find the vma and come back and find our hopefully still populated
3421 * page.
3422 */
3423 if (!IS_ERR(folio))
3424 folio_put(folio);
3425 if (mapping_locked)
3426 filemap_invalidate_unlock_shared(mapping);
3427 if (fpin)
3428 fput(fpin);
3429 return ret | VM_FAULT_RETRY;
3430}
3431EXPORT_SYMBOL(filemap_fault);
3432
3433static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3434 pgoff_t start)
3435{
3436 struct mm_struct *mm = vmf->vma->vm_mm;
3437
3438 /* Huge page is mapped? No need to proceed. */
3439 if (pmd_trans_huge(*vmf->pmd)) {
3440 folio_unlock(folio);
3441 folio_put(folio);
3442 return true;
3443 }
3444
3445 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3446 struct page *page = folio_file_page(folio, start);
3447 vm_fault_t ret = do_set_pmd(vmf, page);
3448 if (!ret) {
3449 /* The page is mapped successfully, reference consumed. */
3450 folio_unlock(folio);
3451 return true;
3452 }
3453 }
3454
3455 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3456 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3457
3458 return false;
3459}
3460
3461static struct folio *next_uptodate_folio(struct xa_state *xas,
3462 struct address_space *mapping, pgoff_t end_pgoff)
3463{
3464 struct folio *folio = xas_next_entry(xas, end_pgoff);
3465 unsigned long max_idx;
3466
3467 do {
3468 if (!folio)
3469 return NULL;
3470 if (xas_retry(xas, folio))
3471 continue;
3472 if (xa_is_value(folio))
3473 continue;
3474 if (folio_test_locked(folio))
3475 continue;
3476 if (!folio_try_get(folio))
3477 continue;
3478 /* Has the page moved or been split? */
3479 if (unlikely(folio != xas_reload(xas)))
3480 goto skip;
3481 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3482 goto skip;
3483 if (!folio_trylock(folio))
3484 goto skip;
3485 if (folio->mapping != mapping)
3486 goto unlock;
3487 if (!folio_test_uptodate(folio))
3488 goto unlock;
3489 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3490 if (xas->xa_index >= max_idx)
3491 goto unlock;
3492 return folio;
3493unlock:
3494 folio_unlock(folio);
3495skip:
3496 folio_put(folio);
3497 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3498
3499 return NULL;
3500}
3501
3502/*
3503 * Map page range [start_page, start_page + nr_pages) of folio.
3504 * start_page is gotten from start by folio_page(folio, start)
3505 */
3506static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3507 struct folio *folio, unsigned long start,
3508 unsigned long addr, unsigned int nr_pages,
3509 unsigned long *rss, unsigned int *mmap_miss)
3510{
3511 vm_fault_t ret = 0;
3512 struct page *page = folio_page(folio, start);
3513 unsigned int count = 0;
3514 pte_t *old_ptep = vmf->pte;
3515
3516 do {
3517 if (PageHWPoison(page + count))
3518 goto skip;
3519
3520 /*
3521 * If there are too many folios that are recently evicted
3522 * in a file, they will probably continue to be evicted.
3523 * In such situation, read-ahead is only a waste of IO.
3524 * Don't decrease mmap_miss in this scenario to make sure
3525 * we can stop read-ahead.
3526 */
3527 if (!folio_test_workingset(folio))
3528 (*mmap_miss)++;
3529
3530 /*
3531 * NOTE: If there're PTE markers, we'll leave them to be
3532 * handled in the specific fault path, and it'll prohibit the
3533 * fault-around logic.
3534 */
3535 if (!pte_none(ptep_get(&vmf->pte[count])))
3536 goto skip;
3537
3538 count++;
3539 continue;
3540skip:
3541 if (count) {
3542 set_pte_range(vmf, folio, page, count, addr);
3543 *rss += count;
3544 folio_ref_add(folio, count);
3545 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3546 ret = VM_FAULT_NOPAGE;
3547 }
3548
3549 count++;
3550 page += count;
3551 vmf->pte += count;
3552 addr += count * PAGE_SIZE;
3553 count = 0;
3554 } while (--nr_pages > 0);
3555
3556 if (count) {
3557 set_pte_range(vmf, folio, page, count, addr);
3558 *rss += count;
3559 folio_ref_add(folio, count);
3560 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3561 ret = VM_FAULT_NOPAGE;
3562 }
3563
3564 vmf->pte = old_ptep;
3565
3566 return ret;
3567}
3568
3569static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3570 struct folio *folio, unsigned long addr,
3571 unsigned long *rss, unsigned int *mmap_miss)
3572{
3573 vm_fault_t ret = 0;
3574 struct page *page = &folio->page;
3575
3576 if (PageHWPoison(page))
3577 return ret;
3578
3579 /* See comment of filemap_map_folio_range() */
3580 if (!folio_test_workingset(folio))
3581 (*mmap_miss)++;
3582
3583 /*
3584 * NOTE: If there're PTE markers, we'll leave them to be
3585 * handled in the specific fault path, and it'll prohibit
3586 * the fault-around logic.
3587 */
3588 if (!pte_none(ptep_get(vmf->pte)))
3589 return ret;
3590
3591 if (vmf->address == addr)
3592 ret = VM_FAULT_NOPAGE;
3593
3594 set_pte_range(vmf, folio, page, 1, addr);
3595 (*rss)++;
3596 folio_ref_inc(folio);
3597
3598 return ret;
3599}
3600
3601vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3602 pgoff_t start_pgoff, pgoff_t end_pgoff)
3603{
3604 struct vm_area_struct *vma = vmf->vma;
3605 struct file *file = vma->vm_file;
3606 struct address_space *mapping = file->f_mapping;
3607 pgoff_t last_pgoff = start_pgoff;
3608 unsigned long addr;
3609 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3610 struct folio *folio;
3611 vm_fault_t ret = 0;
3612 unsigned long rss = 0;
3613 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3614
3615 rcu_read_lock();
3616 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3617 if (!folio)
3618 goto out;
3619
3620 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3621 ret = VM_FAULT_NOPAGE;
3622 goto out;
3623 }
3624
3625 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3626 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3627 if (!vmf->pte) {
3628 folio_unlock(folio);
3629 folio_put(folio);
3630 goto out;
3631 }
3632
3633 folio_type = mm_counter_file(folio);
3634 do {
3635 unsigned long end;
3636
3637 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3638 vmf->pte += xas.xa_index - last_pgoff;
3639 last_pgoff = xas.xa_index;
3640 end = folio_next_index(folio) - 1;
3641 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3642
3643 if (!folio_test_large(folio))
3644 ret |= filemap_map_order0_folio(vmf,
3645 folio, addr, &rss, &mmap_miss);
3646 else
3647 ret |= filemap_map_folio_range(vmf, folio,
3648 xas.xa_index - folio->index, addr,
3649 nr_pages, &rss, &mmap_miss);
3650
3651 folio_unlock(folio);
3652 folio_put(folio);
3653 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3654 add_mm_counter(vma->vm_mm, folio_type, rss);
3655 pte_unmap_unlock(vmf->pte, vmf->ptl);
3656out:
3657 rcu_read_unlock();
3658
3659 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3660 if (mmap_miss >= mmap_miss_saved)
3661 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3662 else
3663 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3664
3665 return ret;
3666}
3667EXPORT_SYMBOL(filemap_map_pages);
3668
3669vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3670{
3671 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3672 struct folio *folio = page_folio(vmf->page);
3673 vm_fault_t ret = VM_FAULT_LOCKED;
3674
3675 sb_start_pagefault(mapping->host->i_sb);
3676 file_update_time(vmf->vma->vm_file);
3677 folio_lock(folio);
3678 if (folio->mapping != mapping) {
3679 folio_unlock(folio);
3680 ret = VM_FAULT_NOPAGE;
3681 goto out;
3682 }
3683 /*
3684 * We mark the folio dirty already here so that when freeze is in
3685 * progress, we are guaranteed that writeback during freezing will
3686 * see the dirty folio and writeprotect it again.
3687 */
3688 folio_mark_dirty(folio);
3689 folio_wait_stable(folio);
3690out:
3691 sb_end_pagefault(mapping->host->i_sb);
3692 return ret;
3693}
3694
3695const struct vm_operations_struct generic_file_vm_ops = {
3696 .fault = filemap_fault,
3697 .map_pages = filemap_map_pages,
3698 .page_mkwrite = filemap_page_mkwrite,
3699};
3700
3701/* This is used for a general mmap of a disk file */
3702
3703int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3704{
3705 struct address_space *mapping = file->f_mapping;
3706
3707 if (!mapping->a_ops->read_folio)
3708 return -ENOEXEC;
3709 file_accessed(file);
3710 vma->vm_ops = &generic_file_vm_ops;
3711 return 0;
3712}
3713
3714/*
3715 * This is for filesystems which do not implement ->writepage.
3716 */
3717int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3718{
3719 if (vma_is_shared_maywrite(vma))
3720 return -EINVAL;
3721 return generic_file_mmap(file, vma);
3722}
3723#else
3724vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3725{
3726 return VM_FAULT_SIGBUS;
3727}
3728int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3729{
3730 return -ENOSYS;
3731}
3732int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3733{
3734 return -ENOSYS;
3735}
3736#endif /* CONFIG_MMU */
3737
3738EXPORT_SYMBOL(filemap_page_mkwrite);
3739EXPORT_SYMBOL(generic_file_mmap);
3740EXPORT_SYMBOL(generic_file_readonly_mmap);
3741
3742static struct folio *do_read_cache_folio(struct address_space *mapping,
3743 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3744{
3745 struct folio *folio;
3746 int err;
3747
3748 if (!filler)
3749 filler = mapping->a_ops->read_folio;
3750repeat:
3751 folio = filemap_get_folio(mapping, index);
3752 if (IS_ERR(folio)) {
3753 folio = filemap_alloc_folio(gfp, 0);
3754 if (!folio)
3755 return ERR_PTR(-ENOMEM);
3756 err = filemap_add_folio(mapping, folio, index, gfp);
3757 if (unlikely(err)) {
3758 folio_put(folio);
3759 if (err == -EEXIST)
3760 goto repeat;
3761 /* Presumably ENOMEM for xarray node */
3762 return ERR_PTR(err);
3763 }
3764
3765 goto filler;
3766 }
3767 if (folio_test_uptodate(folio))
3768 goto out;
3769
3770 if (!folio_trylock(folio)) {
3771 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3772 goto repeat;
3773 }
3774
3775 /* Folio was truncated from mapping */
3776 if (!folio->mapping) {
3777 folio_unlock(folio);
3778 folio_put(folio);
3779 goto repeat;
3780 }
3781
3782 /* Someone else locked and filled the page in a very small window */
3783 if (folio_test_uptodate(folio)) {
3784 folio_unlock(folio);
3785 goto out;
3786 }
3787
3788filler:
3789 err = filemap_read_folio(file, filler, folio);
3790 if (err) {
3791 folio_put(folio);
3792 if (err == AOP_TRUNCATED_PAGE)
3793 goto repeat;
3794 return ERR_PTR(err);
3795 }
3796
3797out:
3798 folio_mark_accessed(folio);
3799 return folio;
3800}
3801
3802/**
3803 * read_cache_folio - Read into page cache, fill it if needed.
3804 * @mapping: The address_space to read from.
3805 * @index: The index to read.
3806 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3807 * @file: Passed to filler function, may be NULL if not required.
3808 *
3809 * Read one page into the page cache. If it succeeds, the folio returned
3810 * will contain @index, but it may not be the first page of the folio.
3811 *
3812 * If the filler function returns an error, it will be returned to the
3813 * caller.
3814 *
3815 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3816 * Return: An uptodate folio on success, ERR_PTR() on failure.
3817 */
3818struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3819 filler_t filler, struct file *file)
3820{
3821 return do_read_cache_folio(mapping, index, filler, file,
3822 mapping_gfp_mask(mapping));
3823}
3824EXPORT_SYMBOL(read_cache_folio);
3825
3826/**
3827 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3828 * @mapping: The address_space for the folio.
3829 * @index: The index that the allocated folio will contain.
3830 * @gfp: The page allocator flags to use if allocating.
3831 *
3832 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3833 * any new memory allocations done using the specified allocation flags.
3834 *
3835 * The most likely error from this function is EIO, but ENOMEM is
3836 * possible and so is EINTR. If ->read_folio returns another error,
3837 * that will be returned to the caller.
3838 *
3839 * The function expects mapping->invalidate_lock to be already held.
3840 *
3841 * Return: Uptodate folio on success, ERR_PTR() on failure.
3842 */
3843struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3844 pgoff_t index, gfp_t gfp)
3845{
3846 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3847}
3848EXPORT_SYMBOL(mapping_read_folio_gfp);
3849
3850static struct page *do_read_cache_page(struct address_space *mapping,
3851 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3852{
3853 struct folio *folio;
3854
3855 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3856 if (IS_ERR(folio))
3857 return &folio->page;
3858 return folio_file_page(folio, index);
3859}
3860
3861struct page *read_cache_page(struct address_space *mapping,
3862 pgoff_t index, filler_t *filler, struct file *file)
3863{
3864 return do_read_cache_page(mapping, index, filler, file,
3865 mapping_gfp_mask(mapping));
3866}
3867EXPORT_SYMBOL(read_cache_page);
3868
3869/**
3870 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3871 * @mapping: the page's address_space
3872 * @index: the page index
3873 * @gfp: the page allocator flags to use if allocating
3874 *
3875 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3876 * any new page allocations done using the specified allocation flags.
3877 *
3878 * If the page does not get brought uptodate, return -EIO.
3879 *
3880 * The function expects mapping->invalidate_lock to be already held.
3881 *
3882 * Return: up to date page on success, ERR_PTR() on failure.
3883 */
3884struct page *read_cache_page_gfp(struct address_space *mapping,
3885 pgoff_t index,
3886 gfp_t gfp)
3887{
3888 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3889}
3890EXPORT_SYMBOL(read_cache_page_gfp);
3891
3892/*
3893 * Warn about a page cache invalidation failure during a direct I/O write.
3894 */
3895static void dio_warn_stale_pagecache(struct file *filp)
3896{
3897 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3898 char pathname[128];
3899 char *path;
3900
3901 errseq_set(&filp->f_mapping->wb_err, -EIO);
3902 if (__ratelimit(&_rs)) {
3903 path = file_path(filp, pathname, sizeof(pathname));
3904 if (IS_ERR(path))
3905 path = "(unknown)";
3906 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3907 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3908 current->comm);
3909 }
3910}
3911
3912void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3913{
3914 struct address_space *mapping = iocb->ki_filp->f_mapping;
3915
3916 if (mapping->nrpages &&
3917 invalidate_inode_pages2_range(mapping,
3918 iocb->ki_pos >> PAGE_SHIFT,
3919 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3920 dio_warn_stale_pagecache(iocb->ki_filp);
3921}
3922
3923ssize_t
3924generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3925{
3926 struct address_space *mapping = iocb->ki_filp->f_mapping;
3927 size_t write_len = iov_iter_count(from);
3928 ssize_t written;
3929
3930 /*
3931 * If a page can not be invalidated, return 0 to fall back
3932 * to buffered write.
3933 */
3934 written = kiocb_invalidate_pages(iocb, write_len);
3935 if (written) {
3936 if (written == -EBUSY)
3937 return 0;
3938 return written;
3939 }
3940
3941 written = mapping->a_ops->direct_IO(iocb, from);
3942
3943 /*
3944 * Finally, try again to invalidate clean pages which might have been
3945 * cached by non-direct readahead, or faulted in by get_user_pages()
3946 * if the source of the write was an mmap'ed region of the file
3947 * we're writing. Either one is a pretty crazy thing to do,
3948 * so we don't support it 100%. If this invalidation
3949 * fails, tough, the write still worked...
3950 *
3951 * Most of the time we do not need this since dio_complete() will do
3952 * the invalidation for us. However there are some file systems that
3953 * do not end up with dio_complete() being called, so let's not break
3954 * them by removing it completely.
3955 *
3956 * Noticeable example is a blkdev_direct_IO().
3957 *
3958 * Skip invalidation for async writes or if mapping has no pages.
3959 */
3960 if (written > 0) {
3961 struct inode *inode = mapping->host;
3962 loff_t pos = iocb->ki_pos;
3963
3964 kiocb_invalidate_post_direct_write(iocb, written);
3965 pos += written;
3966 write_len -= written;
3967 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3968 i_size_write(inode, pos);
3969 mark_inode_dirty(inode);
3970 }
3971 iocb->ki_pos = pos;
3972 }
3973 if (written != -EIOCBQUEUED)
3974 iov_iter_revert(from, write_len - iov_iter_count(from));
3975 return written;
3976}
3977EXPORT_SYMBOL(generic_file_direct_write);
3978
3979ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3980{
3981 struct file *file = iocb->ki_filp;
3982 loff_t pos = iocb->ki_pos;
3983 struct address_space *mapping = file->f_mapping;
3984 const struct address_space_operations *a_ops = mapping->a_ops;
3985 size_t chunk = mapping_max_folio_size(mapping);
3986 long status = 0;
3987 ssize_t written = 0;
3988
3989 do {
3990 struct page *page;
3991 struct folio *folio;
3992 size_t offset; /* Offset into folio */
3993 size_t bytes; /* Bytes to write to folio */
3994 size_t copied; /* Bytes copied from user */
3995 void *fsdata = NULL;
3996
3997 bytes = iov_iter_count(i);
3998retry:
3999 offset = pos & (chunk - 1);
4000 bytes = min(chunk - offset, bytes);
4001 balance_dirty_pages_ratelimited(mapping);
4002
4003 /*
4004 * Bring in the user page that we will copy from _first_.
4005 * Otherwise there's a nasty deadlock on copying from the
4006 * same page as we're writing to, without it being marked
4007 * up-to-date.
4008 */
4009 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4010 status = -EFAULT;
4011 break;
4012 }
4013
4014 if (fatal_signal_pending(current)) {
4015 status = -EINTR;
4016 break;
4017 }
4018
4019 status = a_ops->write_begin(file, mapping, pos, bytes,
4020 &page, &fsdata);
4021 if (unlikely(status < 0))
4022 break;
4023
4024 folio = page_folio(page);
4025 offset = offset_in_folio(folio, pos);
4026 if (bytes > folio_size(folio) - offset)
4027 bytes = folio_size(folio) - offset;
4028
4029 if (mapping_writably_mapped(mapping))
4030 flush_dcache_folio(folio);
4031
4032 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4033 flush_dcache_folio(folio);
4034
4035 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4036 page, fsdata);
4037 if (unlikely(status != copied)) {
4038 iov_iter_revert(i, copied - max(status, 0L));
4039 if (unlikely(status < 0))
4040 break;
4041 }
4042 cond_resched();
4043
4044 if (unlikely(status == 0)) {
4045 /*
4046 * A short copy made ->write_end() reject the
4047 * thing entirely. Might be memory poisoning
4048 * halfway through, might be a race with munmap,
4049 * might be severe memory pressure.
4050 */
4051 if (chunk > PAGE_SIZE)
4052 chunk /= 2;
4053 if (copied) {
4054 bytes = copied;
4055 goto retry;
4056 }
4057 } else {
4058 pos += status;
4059 written += status;
4060 }
4061 } while (iov_iter_count(i));
4062
4063 if (!written)
4064 return status;
4065 iocb->ki_pos += written;
4066 return written;
4067}
4068EXPORT_SYMBOL(generic_perform_write);
4069
4070/**
4071 * __generic_file_write_iter - write data to a file
4072 * @iocb: IO state structure (file, offset, etc.)
4073 * @from: iov_iter with data to write
4074 *
4075 * This function does all the work needed for actually writing data to a
4076 * file. It does all basic checks, removes SUID from the file, updates
4077 * modification times and calls proper subroutines depending on whether we
4078 * do direct IO or a standard buffered write.
4079 *
4080 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4081 * object which does not need locking at all.
4082 *
4083 * This function does *not* take care of syncing data in case of O_SYNC write.
4084 * A caller has to handle it. This is mainly due to the fact that we want to
4085 * avoid syncing under i_rwsem.
4086 *
4087 * Return:
4088 * * number of bytes written, even for truncated writes
4089 * * negative error code if no data has been written at all
4090 */
4091ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4092{
4093 struct file *file = iocb->ki_filp;
4094 struct address_space *mapping = file->f_mapping;
4095 struct inode *inode = mapping->host;
4096 ssize_t ret;
4097
4098 ret = file_remove_privs(file);
4099 if (ret)
4100 return ret;
4101
4102 ret = file_update_time(file);
4103 if (ret)
4104 return ret;
4105
4106 if (iocb->ki_flags & IOCB_DIRECT) {
4107 ret = generic_file_direct_write(iocb, from);
4108 /*
4109 * If the write stopped short of completing, fall back to
4110 * buffered writes. Some filesystems do this for writes to
4111 * holes, for example. For DAX files, a buffered write will
4112 * not succeed (even if it did, DAX does not handle dirty
4113 * page-cache pages correctly).
4114 */
4115 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4116 return ret;
4117 return direct_write_fallback(iocb, from, ret,
4118 generic_perform_write(iocb, from));
4119 }
4120
4121 return generic_perform_write(iocb, from);
4122}
4123EXPORT_SYMBOL(__generic_file_write_iter);
4124
4125/**
4126 * generic_file_write_iter - write data to a file
4127 * @iocb: IO state structure
4128 * @from: iov_iter with data to write
4129 *
4130 * This is a wrapper around __generic_file_write_iter() to be used by most
4131 * filesystems. It takes care of syncing the file in case of O_SYNC file
4132 * and acquires i_rwsem as needed.
4133 * Return:
4134 * * negative error code if no data has been written at all of
4135 * vfs_fsync_range() failed for a synchronous write
4136 * * number of bytes written, even for truncated writes
4137 */
4138ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4139{
4140 struct file *file = iocb->ki_filp;
4141 struct inode *inode = file->f_mapping->host;
4142 ssize_t ret;
4143
4144 inode_lock(inode);
4145 ret = generic_write_checks(iocb, from);
4146 if (ret > 0)
4147 ret = __generic_file_write_iter(iocb, from);
4148 inode_unlock(inode);
4149
4150 if (ret > 0)
4151 ret = generic_write_sync(iocb, ret);
4152 return ret;
4153}
4154EXPORT_SYMBOL(generic_file_write_iter);
4155
4156/**
4157 * filemap_release_folio() - Release fs-specific metadata on a folio.
4158 * @folio: The folio which the kernel is trying to free.
4159 * @gfp: Memory allocation flags (and I/O mode).
4160 *
4161 * The address_space is trying to release any data attached to a folio
4162 * (presumably at folio->private).
4163 *
4164 * This will also be called if the private_2 flag is set on a page,
4165 * indicating that the folio has other metadata associated with it.
4166 *
4167 * The @gfp argument specifies whether I/O may be performed to release
4168 * this page (__GFP_IO), and whether the call may block
4169 * (__GFP_RECLAIM & __GFP_FS).
4170 *
4171 * Return: %true if the release was successful, otherwise %false.
4172 */
4173bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4174{
4175 struct address_space * const mapping = folio->mapping;
4176
4177 BUG_ON(!folio_test_locked(folio));
4178 if (!folio_needs_release(folio))
4179 return true;
4180 if (folio_test_writeback(folio))
4181 return false;
4182
4183 if (mapping && mapping->a_ops->release_folio)
4184 return mapping->a_ops->release_folio(folio, gfp);
4185 return try_to_free_buffers(folio);
4186}
4187EXPORT_SYMBOL(filemap_release_folio);
4188
4189/**
4190 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4191 * @inode: The inode to flush
4192 * @flush: Set to write back rather than simply invalidate.
4193 * @start: First byte to in range.
4194 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4195 * onwards.
4196 *
4197 * Invalidate all the folios on an inode that contribute to the specified
4198 * range, possibly writing them back first. Whilst the operation is
4199 * undertaken, the invalidate lock is held to prevent new folios from being
4200 * installed.
4201 */
4202int filemap_invalidate_inode(struct inode *inode, bool flush,
4203 loff_t start, loff_t end)
4204{
4205 struct address_space *mapping = inode->i_mapping;
4206 pgoff_t first = start >> PAGE_SHIFT;
4207 pgoff_t last = end >> PAGE_SHIFT;
4208 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4209
4210 if (!mapping || !mapping->nrpages || end < start)
4211 goto out;
4212
4213 /* Prevent new folios from being added to the inode. */
4214 filemap_invalidate_lock(mapping);
4215
4216 if (!mapping->nrpages)
4217 goto unlock;
4218
4219 unmap_mapping_pages(mapping, first, nr, false);
4220
4221 /* Write back the data if we're asked to. */
4222 if (flush) {
4223 struct writeback_control wbc = {
4224 .sync_mode = WB_SYNC_ALL,
4225 .nr_to_write = LONG_MAX,
4226 .range_start = start,
4227 .range_end = end,
4228 };
4229
4230 filemap_fdatawrite_wbc(mapping, &wbc);
4231 }
4232
4233 /* Wait for writeback to complete on all folios and discard. */
4234 truncate_inode_pages_range(mapping, start, end);
4235
4236unlock:
4237 filemap_invalidate_unlock(mapping);
4238out:
4239 return filemap_check_errors(mapping);
4240}
4241EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4242
4243#ifdef CONFIG_CACHESTAT_SYSCALL
4244/**
4245 * filemap_cachestat() - compute the page cache statistics of a mapping
4246 * @mapping: The mapping to compute the statistics for.
4247 * @first_index: The starting page cache index.
4248 * @last_index: The final page index (inclusive).
4249 * @cs: the cachestat struct to write the result to.
4250 *
4251 * This will query the page cache statistics of a mapping in the
4252 * page range of [first_index, last_index] (inclusive). The statistics
4253 * queried include: number of dirty pages, number of pages marked for
4254 * writeback, and the number of (recently) evicted pages.
4255 */
4256static void filemap_cachestat(struct address_space *mapping,
4257 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4258{
4259 XA_STATE(xas, &mapping->i_pages, first_index);
4260 struct folio *folio;
4261
4262 /* Flush stats (and potentially sleep) outside the RCU read section. */
4263 mem_cgroup_flush_stats_ratelimited(NULL);
4264
4265 rcu_read_lock();
4266 xas_for_each(&xas, folio, last_index) {
4267 int order;
4268 unsigned long nr_pages;
4269 pgoff_t folio_first_index, folio_last_index;
4270
4271 /*
4272 * Don't deref the folio. It is not pinned, and might
4273 * get freed (and reused) underneath us.
4274 *
4275 * We *could* pin it, but that would be expensive for
4276 * what should be a fast and lightweight syscall.
4277 *
4278 * Instead, derive all information of interest from
4279 * the rcu-protected xarray.
4280 */
4281
4282 if (xas_retry(&xas, folio))
4283 continue;
4284
4285 order = xa_get_order(xas.xa, xas.xa_index);
4286 nr_pages = 1 << order;
4287 folio_first_index = round_down(xas.xa_index, 1 << order);
4288 folio_last_index = folio_first_index + nr_pages - 1;
4289
4290 /* Folios might straddle the range boundaries, only count covered pages */
4291 if (folio_first_index < first_index)
4292 nr_pages -= first_index - folio_first_index;
4293
4294 if (folio_last_index > last_index)
4295 nr_pages -= folio_last_index - last_index;
4296
4297 if (xa_is_value(folio)) {
4298 /* page is evicted */
4299 void *shadow = (void *)folio;
4300 bool workingset; /* not used */
4301
4302 cs->nr_evicted += nr_pages;
4303
4304#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4305 if (shmem_mapping(mapping)) {
4306 /* shmem file - in swap cache */
4307 swp_entry_t swp = radix_to_swp_entry(folio);
4308
4309 /* swapin error results in poisoned entry */
4310 if (non_swap_entry(swp))
4311 goto resched;
4312
4313 /*
4314 * Getting a swap entry from the shmem
4315 * inode means we beat
4316 * shmem_unuse(). rcu_read_lock()
4317 * ensures swapoff waits for us before
4318 * freeing the swapper space. However,
4319 * we can race with swapping and
4320 * invalidation, so there might not be
4321 * a shadow in the swapcache (yet).
4322 */
4323 shadow = get_shadow_from_swap_cache(swp);
4324 if (!shadow)
4325 goto resched;
4326 }
4327#endif
4328 if (workingset_test_recent(shadow, true, &workingset, false))
4329 cs->nr_recently_evicted += nr_pages;
4330
4331 goto resched;
4332 }
4333
4334 /* page is in cache */
4335 cs->nr_cache += nr_pages;
4336
4337 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4338 cs->nr_dirty += nr_pages;
4339
4340 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4341 cs->nr_writeback += nr_pages;
4342
4343resched:
4344 if (need_resched()) {
4345 xas_pause(&xas);
4346 cond_resched_rcu();
4347 }
4348 }
4349 rcu_read_unlock();
4350}
4351
4352/*
4353 * The cachestat(2) system call.
4354 *
4355 * cachestat() returns the page cache statistics of a file in the
4356 * bytes range specified by `off` and `len`: number of cached pages,
4357 * number of dirty pages, number of pages marked for writeback,
4358 * number of evicted pages, and number of recently evicted pages.
4359 *
4360 * An evicted page is a page that is previously in the page cache
4361 * but has been evicted since. A page is recently evicted if its last
4362 * eviction was recent enough that its reentry to the cache would
4363 * indicate that it is actively being used by the system, and that
4364 * there is memory pressure on the system.
4365 *
4366 * `off` and `len` must be non-negative integers. If `len` > 0,
4367 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4368 * we will query in the range from `off` to the end of the file.
4369 *
4370 * The `flags` argument is unused for now, but is included for future
4371 * extensibility. User should pass 0 (i.e no flag specified).
4372 *
4373 * Currently, hugetlbfs is not supported.
4374 *
4375 * Because the status of a page can change after cachestat() checks it
4376 * but before it returns to the application, the returned values may
4377 * contain stale information.
4378 *
4379 * return values:
4380 * zero - success
4381 * -EFAULT - cstat or cstat_range points to an illegal address
4382 * -EINVAL - invalid flags
4383 * -EBADF - invalid file descriptor
4384 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4385 */
4386SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4387 struct cachestat_range __user *, cstat_range,
4388 struct cachestat __user *, cstat, unsigned int, flags)
4389{
4390 struct fd f = fdget(fd);
4391 struct address_space *mapping;
4392 struct cachestat_range csr;
4393 struct cachestat cs;
4394 pgoff_t first_index, last_index;
4395
4396 if (!f.file)
4397 return -EBADF;
4398
4399 if (copy_from_user(&csr, cstat_range,
4400 sizeof(struct cachestat_range))) {
4401 fdput(f);
4402 return -EFAULT;
4403 }
4404
4405 /* hugetlbfs is not supported */
4406 if (is_file_hugepages(f.file)) {
4407 fdput(f);
4408 return -EOPNOTSUPP;
4409 }
4410
4411 if (flags != 0) {
4412 fdput(f);
4413 return -EINVAL;
4414 }
4415
4416 first_index = csr.off >> PAGE_SHIFT;
4417 last_index =
4418 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4419 memset(&cs, 0, sizeof(struct cachestat));
4420 mapping = f.file->f_mapping;
4421 filemap_cachestat(mapping, first_index, last_index, &cs);
4422 fdput(f);
4423
4424 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4425 return -EFAULT;
4426
4427 return 0;
4428}
4429#endif /* CONFIG_CACHESTAT_SYSCALL */