Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12#include <linux/ethtool.h>
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/ip.h>
18#include <linux/init.h>
19#include <linux/moduleparam.h>
20#include <linux/netfilter.h>
21#include <linux/rtnetlink.h>
22#include <net/rtnetlink.h>
23#include <linux/u64_stats_sync.h>
24#include <linux/hashtable.h>
25#include <linux/spinlock_types.h>
26
27#include <linux/inetdevice.h>
28#include <net/arp.h>
29#include <net/ip.h>
30#include <net/ip_fib.h>
31#include <net/ip6_fib.h>
32#include <net/ip6_route.h>
33#include <net/route.h>
34#include <net/addrconf.h>
35#include <net/l3mdev.h>
36#include <net/fib_rules.h>
37#include <net/sch_generic.h>
38#include <net/netns/generic.h>
39#include <net/netfilter/nf_conntrack.h>
40
41#define DRV_NAME "vrf"
42#define DRV_VERSION "1.1"
43
44#define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45
46#define HT_MAP_BITS 4
47#define HASH_INITVAL ((u32)0xcafef00d)
48
49struct vrf_map {
50 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 spinlock_t vmap_lock;
52
53 /* shared_tables:
54 * count how many distinct tables do not comply with the strict mode
55 * requirement.
56 * shared_tables value must be 0 in order to enable the strict mode.
57 *
58 * example of the evolution of shared_tables:
59 * | time
60 * add vrf0 --> table 100 shared_tables = 0 | t0
61 * add vrf1 --> table 101 shared_tables = 0 | t1
62 * add vrf2 --> table 100 shared_tables = 1 | t2
63 * add vrf3 --> table 100 shared_tables = 1 | t3
64 * add vrf4 --> table 101 shared_tables = 2 v t4
65 *
66 * shared_tables is a "step function" (or "staircase function")
67 * and it is increased by one when the second vrf is associated to a
68 * table.
69 *
70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 *
72 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 * value of shared_tables is still 1.
74 * This means that no matter how many new vrfs will register on the
75 * table 100, the shared_tables will not increase (considering only
76 * table 100).
77 *
78 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 *
80 * Looking at the value of shared_tables we can immediately know if
81 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 * can be enforced iff shared_tables = 0.
83 *
84 * Conversely, shared_tables is decreased when a vrf is de-associated
85 * from a table with exactly two associated vrfs.
86 */
87 u32 shared_tables;
88
89 bool strict_mode;
90};
91
92struct vrf_map_elem {
93 struct hlist_node hnode;
94 struct list_head vrf_list; /* VRFs registered to this table */
95
96 u32 table_id;
97 int users;
98 int ifindex;
99};
100
101static unsigned int vrf_net_id;
102
103/* per netns vrf data */
104struct netns_vrf {
105 /* protected by rtnl lock */
106 bool add_fib_rules;
107
108 struct vrf_map vmap;
109 struct ctl_table_header *ctl_hdr;
110};
111
112struct net_vrf {
113 struct rtable __rcu *rth;
114 struct rt6_info __rcu *rt6;
115#if IS_ENABLED(CONFIG_IPV6)
116 struct fib6_table *fib6_table;
117#endif
118 u32 tb_id;
119
120 struct list_head me_list; /* entry in vrf_map_elem */
121 int ifindex;
122};
123
124static void vrf_rx_stats(struct net_device *dev, int len)
125{
126 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
127
128 u64_stats_update_begin(&dstats->syncp);
129 u64_stats_inc(&dstats->rx_packets);
130 u64_stats_add(&dstats->rx_bytes, len);
131 u64_stats_update_end(&dstats->syncp);
132}
133
134static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
135{
136 vrf_dev->stats.tx_errors++;
137 kfree_skb(skb);
138}
139
140static struct vrf_map *netns_vrf_map(struct net *net)
141{
142 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
143
144 return &nn_vrf->vmap;
145}
146
147static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
148{
149 return netns_vrf_map(dev_net(dev));
150}
151
152static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
153{
154 struct list_head *me_head = &me->vrf_list;
155 struct net_vrf *vrf;
156
157 if (list_empty(me_head))
158 return -ENODEV;
159
160 vrf = list_first_entry(me_head, struct net_vrf, me_list);
161
162 return vrf->ifindex;
163}
164
165static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
166{
167 struct vrf_map_elem *me;
168
169 me = kmalloc(sizeof(*me), flags);
170 if (!me)
171 return NULL;
172
173 return me;
174}
175
176static void vrf_map_elem_free(struct vrf_map_elem *me)
177{
178 kfree(me);
179}
180
181static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
182 int ifindex, int users)
183{
184 me->table_id = table_id;
185 me->ifindex = ifindex;
186 me->users = users;
187 INIT_LIST_HEAD(&me->vrf_list);
188}
189
190static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
191 u32 table_id)
192{
193 struct vrf_map_elem *me;
194 u32 key;
195
196 key = jhash_1word(table_id, HASH_INITVAL);
197 hash_for_each_possible(vmap->ht, me, hnode, key) {
198 if (me->table_id == table_id)
199 return me;
200 }
201
202 return NULL;
203}
204
205static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
206{
207 u32 table_id = me->table_id;
208 u32 key;
209
210 key = jhash_1word(table_id, HASH_INITVAL);
211 hash_add(vmap->ht, &me->hnode, key);
212}
213
214static void vrf_map_del_elem(struct vrf_map_elem *me)
215{
216 hash_del(&me->hnode);
217}
218
219static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
220{
221 spin_lock(&vmap->vmap_lock);
222}
223
224static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
225{
226 spin_unlock(&vmap->vmap_lock);
227}
228
229/* called with rtnl lock held */
230static int
231vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
232{
233 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
234 struct net_vrf *vrf = netdev_priv(dev);
235 struct vrf_map_elem *new_me, *me;
236 u32 table_id = vrf->tb_id;
237 bool free_new_me = false;
238 int users;
239 int res;
240
241 /* we pre-allocate elements used in the spin-locked section (so that we
242 * keep the spinlock as short as possible).
243 */
244 new_me = vrf_map_elem_alloc(GFP_KERNEL);
245 if (!new_me)
246 return -ENOMEM;
247
248 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
249
250 vrf_map_lock(vmap);
251
252 me = vrf_map_lookup_elem(vmap, table_id);
253 if (!me) {
254 me = new_me;
255 vrf_map_add_elem(vmap, me);
256 goto link_vrf;
257 }
258
259 /* we already have an entry in the vrf_map, so it means there is (at
260 * least) a vrf registered on the specific table.
261 */
262 free_new_me = true;
263 if (vmap->strict_mode) {
264 /* vrfs cannot share the same table */
265 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
266 res = -EBUSY;
267 goto unlock;
268 }
269
270link_vrf:
271 users = ++me->users;
272 if (users == 2)
273 ++vmap->shared_tables;
274
275 list_add(&vrf->me_list, &me->vrf_list);
276
277 res = 0;
278
279unlock:
280 vrf_map_unlock(vmap);
281
282 /* clean-up, if needed */
283 if (free_new_me)
284 vrf_map_elem_free(new_me);
285
286 return res;
287}
288
289/* called with rtnl lock held */
290static void vrf_map_unregister_dev(struct net_device *dev)
291{
292 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
293 struct net_vrf *vrf = netdev_priv(dev);
294 u32 table_id = vrf->tb_id;
295 struct vrf_map_elem *me;
296 int users;
297
298 vrf_map_lock(vmap);
299
300 me = vrf_map_lookup_elem(vmap, table_id);
301 if (!me)
302 goto unlock;
303
304 list_del(&vrf->me_list);
305
306 users = --me->users;
307 if (users == 1) {
308 --vmap->shared_tables;
309 } else if (users == 0) {
310 vrf_map_del_elem(me);
311
312 /* no one will refer to this element anymore */
313 vrf_map_elem_free(me);
314 }
315
316unlock:
317 vrf_map_unlock(vmap);
318}
319
320/* return the vrf device index associated with the table_id */
321static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
322{
323 struct vrf_map *vmap = netns_vrf_map(net);
324 struct vrf_map_elem *me;
325 int ifindex;
326
327 vrf_map_lock(vmap);
328
329 if (!vmap->strict_mode) {
330 ifindex = -EPERM;
331 goto unlock;
332 }
333
334 me = vrf_map_lookup_elem(vmap, table_id);
335 if (!me) {
336 ifindex = -ENODEV;
337 goto unlock;
338 }
339
340 ifindex = vrf_map_elem_get_vrf_ifindex(me);
341
342unlock:
343 vrf_map_unlock(vmap);
344
345 return ifindex;
346}
347
348/* by default VRF devices do not have a qdisc and are expected
349 * to be created with only a single queue.
350 */
351static bool qdisc_tx_is_default(const struct net_device *dev)
352{
353 struct netdev_queue *txq;
354 struct Qdisc *qdisc;
355
356 if (dev->num_tx_queues > 1)
357 return false;
358
359 txq = netdev_get_tx_queue(dev, 0);
360 qdisc = rcu_access_pointer(txq->qdisc);
361
362 return !qdisc->enqueue;
363}
364
365/* Local traffic destined to local address. Reinsert the packet to rx
366 * path, similar to loopback handling.
367 */
368static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
369 struct dst_entry *dst)
370{
371 int len = skb->len;
372
373 skb_orphan(skb);
374
375 skb_dst_set(skb, dst);
376
377 /* set pkt_type to avoid skb hitting packet taps twice -
378 * once on Tx and again in Rx processing
379 */
380 skb->pkt_type = PACKET_LOOPBACK;
381
382 skb->protocol = eth_type_trans(skb, dev);
383
384 if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) {
385 vrf_rx_stats(dev, len);
386 } else {
387 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
388
389 u64_stats_update_begin(&dstats->syncp);
390 u64_stats_inc(&dstats->rx_drops);
391 u64_stats_update_end(&dstats->syncp);
392 }
393
394 return NETDEV_TX_OK;
395}
396
397static void vrf_nf_set_untracked(struct sk_buff *skb)
398{
399 if (skb_get_nfct(skb) == 0)
400 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
401}
402
403static void vrf_nf_reset_ct(struct sk_buff *skb)
404{
405 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
406 nf_reset_ct(skb);
407}
408
409#if IS_ENABLED(CONFIG_IPV6)
410static int vrf_ip6_local_out(struct net *net, struct sock *sk,
411 struct sk_buff *skb)
412{
413 int err;
414
415 vrf_nf_reset_ct(skb);
416
417 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
418 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
419
420 if (likely(err == 1))
421 err = dst_output(net, sk, skb);
422
423 return err;
424}
425
426static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
427 struct net_device *dev)
428{
429 const struct ipv6hdr *iph;
430 struct net *net = dev_net(skb->dev);
431 struct flowi6 fl6;
432 int ret = NET_XMIT_DROP;
433 struct dst_entry *dst;
434 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
435
436 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
437 goto err;
438
439 iph = ipv6_hdr(skb);
440
441 memset(&fl6, 0, sizeof(fl6));
442 /* needed to match OIF rule */
443 fl6.flowi6_l3mdev = dev->ifindex;
444 fl6.flowi6_iif = LOOPBACK_IFINDEX;
445 fl6.daddr = iph->daddr;
446 fl6.saddr = iph->saddr;
447 fl6.flowlabel = ip6_flowinfo(iph);
448 fl6.flowi6_mark = skb->mark;
449 fl6.flowi6_proto = iph->nexthdr;
450
451 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
452 if (IS_ERR(dst) || dst == dst_null)
453 goto err;
454
455 skb_dst_drop(skb);
456
457 /* if dst.dev is the VRF device again this is locally originated traffic
458 * destined to a local address. Short circuit to Rx path.
459 */
460 if (dst->dev == dev)
461 return vrf_local_xmit(skb, dev, dst);
462
463 skb_dst_set(skb, dst);
464
465 /* strip the ethernet header added for pass through VRF device */
466 __skb_pull(skb, skb_network_offset(skb));
467
468 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
469 ret = vrf_ip6_local_out(net, skb->sk, skb);
470 if (unlikely(net_xmit_eval(ret)))
471 dev->stats.tx_errors++;
472 else
473 ret = NET_XMIT_SUCCESS;
474
475 return ret;
476err:
477 vrf_tx_error(dev, skb);
478 return NET_XMIT_DROP;
479}
480#else
481static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
482 struct net_device *dev)
483{
484 vrf_tx_error(dev, skb);
485 return NET_XMIT_DROP;
486}
487#endif
488
489/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
490static int vrf_ip_local_out(struct net *net, struct sock *sk,
491 struct sk_buff *skb)
492{
493 int err;
494
495 vrf_nf_reset_ct(skb);
496
497 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
498 skb, NULL, skb_dst(skb)->dev, dst_output);
499 if (likely(err == 1))
500 err = dst_output(net, sk, skb);
501
502 return err;
503}
504
505static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
506 struct net_device *vrf_dev)
507{
508 struct iphdr *ip4h;
509 int ret = NET_XMIT_DROP;
510 struct flowi4 fl4;
511 struct net *net = dev_net(vrf_dev);
512 struct rtable *rt;
513
514 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
515 goto err;
516
517 ip4h = ip_hdr(skb);
518
519 memset(&fl4, 0, sizeof(fl4));
520 /* needed to match OIF rule */
521 fl4.flowi4_l3mdev = vrf_dev->ifindex;
522 fl4.flowi4_iif = LOOPBACK_IFINDEX;
523 fl4.flowi4_tos = RT_TOS(ip4h->tos);
524 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
525 fl4.flowi4_proto = ip4h->protocol;
526 fl4.daddr = ip4h->daddr;
527 fl4.saddr = ip4h->saddr;
528
529 rt = ip_route_output_flow(net, &fl4, NULL);
530 if (IS_ERR(rt))
531 goto err;
532
533 skb_dst_drop(skb);
534
535 /* if dst.dev is the VRF device again this is locally originated traffic
536 * destined to a local address. Short circuit to Rx path.
537 */
538 if (rt->dst.dev == vrf_dev)
539 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
540
541 skb_dst_set(skb, &rt->dst);
542
543 /* strip the ethernet header added for pass through VRF device */
544 __skb_pull(skb, skb_network_offset(skb));
545
546 if (!ip4h->saddr) {
547 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
548 RT_SCOPE_LINK);
549 }
550
551 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
552 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
553 if (unlikely(net_xmit_eval(ret)))
554 vrf_dev->stats.tx_errors++;
555 else
556 ret = NET_XMIT_SUCCESS;
557
558out:
559 return ret;
560err:
561 vrf_tx_error(vrf_dev, skb);
562 goto out;
563}
564
565static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
566{
567 switch (skb->protocol) {
568 case htons(ETH_P_IP):
569 return vrf_process_v4_outbound(skb, dev);
570 case htons(ETH_P_IPV6):
571 return vrf_process_v6_outbound(skb, dev);
572 default:
573 vrf_tx_error(dev, skb);
574 return NET_XMIT_DROP;
575 }
576}
577
578static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
579{
580 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
581
582 int len = skb->len;
583 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
584
585 u64_stats_update_begin(&dstats->syncp);
586 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
587
588 u64_stats_inc(&dstats->tx_packets);
589 u64_stats_add(&dstats->tx_bytes, len);
590 } else {
591 u64_stats_inc(&dstats->tx_drops);
592 }
593 u64_stats_update_end(&dstats->syncp);
594
595 return ret;
596}
597
598static void vrf_finish_direct(struct sk_buff *skb)
599{
600 struct net_device *vrf_dev = skb->dev;
601
602 if (!list_empty(&vrf_dev->ptype_all) &&
603 likely(skb_headroom(skb) >= ETH_HLEN)) {
604 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
605
606 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
607 eth_zero_addr(eth->h_dest);
608 eth->h_proto = skb->protocol;
609
610 dev_queue_xmit_nit(skb, vrf_dev);
611
612 skb_pull(skb, ETH_HLEN);
613 }
614
615 vrf_nf_reset_ct(skb);
616}
617
618#if IS_ENABLED(CONFIG_IPV6)
619/* modelled after ip6_finish_output2 */
620static int vrf_finish_output6(struct net *net, struct sock *sk,
621 struct sk_buff *skb)
622{
623 struct dst_entry *dst = skb_dst(skb);
624 struct net_device *dev = dst->dev;
625 const struct in6_addr *nexthop;
626 struct neighbour *neigh;
627 int ret;
628
629 vrf_nf_reset_ct(skb);
630
631 skb->protocol = htons(ETH_P_IPV6);
632 skb->dev = dev;
633
634 rcu_read_lock();
635 nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
636 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
637 if (unlikely(!neigh))
638 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
639 if (!IS_ERR(neigh)) {
640 sock_confirm_neigh(skb, neigh);
641 ret = neigh_output(neigh, skb, false);
642 rcu_read_unlock();
643 return ret;
644 }
645 rcu_read_unlock();
646
647 IP6_INC_STATS(dev_net(dst->dev),
648 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
649 kfree_skb(skb);
650 return -EINVAL;
651}
652
653/* modelled after ip6_output */
654static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
655{
656 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
657 net, sk, skb, NULL, skb_dst(skb)->dev,
658 vrf_finish_output6,
659 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
660}
661
662/* set dst on skb to send packet to us via dev_xmit path. Allows
663 * packet to go through device based features such as qdisc, netfilter
664 * hooks and packet sockets with skb->dev set to vrf device.
665 */
666static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
667 struct sk_buff *skb)
668{
669 struct net_vrf *vrf = netdev_priv(vrf_dev);
670 struct dst_entry *dst = NULL;
671 struct rt6_info *rt6;
672
673 rcu_read_lock();
674
675 rt6 = rcu_dereference(vrf->rt6);
676 if (likely(rt6)) {
677 dst = &rt6->dst;
678 dst_hold(dst);
679 }
680
681 rcu_read_unlock();
682
683 if (unlikely(!dst)) {
684 vrf_tx_error(vrf_dev, skb);
685 return NULL;
686 }
687
688 skb_dst_drop(skb);
689 skb_dst_set(skb, dst);
690
691 return skb;
692}
693
694static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
695 struct sk_buff *skb)
696{
697 vrf_finish_direct(skb);
698
699 return vrf_ip6_local_out(net, sk, skb);
700}
701
702static int vrf_output6_direct(struct net *net, struct sock *sk,
703 struct sk_buff *skb)
704{
705 int err = 1;
706
707 skb->protocol = htons(ETH_P_IPV6);
708
709 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
710 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
711 NULL, skb->dev, vrf_output6_direct_finish);
712
713 if (likely(err == 1))
714 vrf_finish_direct(skb);
715
716 return err;
717}
718
719static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
720 struct sk_buff *skb)
721{
722 int err;
723
724 err = vrf_output6_direct(net, sk, skb);
725 if (likely(err == 1))
726 err = vrf_ip6_local_out(net, sk, skb);
727
728 return err;
729}
730
731static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
732 struct sock *sk,
733 struct sk_buff *skb)
734{
735 struct net *net = dev_net(vrf_dev);
736 int err;
737
738 skb->dev = vrf_dev;
739
740 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
741 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
742
743 if (likely(err == 1))
744 err = vrf_output6_direct(net, sk, skb);
745
746 if (likely(err == 1))
747 return skb;
748
749 return NULL;
750}
751
752static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
753 struct sock *sk,
754 struct sk_buff *skb)
755{
756 /* don't divert link scope packets */
757 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
758 return skb;
759
760 vrf_nf_set_untracked(skb);
761
762 if (qdisc_tx_is_default(vrf_dev) ||
763 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
764 return vrf_ip6_out_direct(vrf_dev, sk, skb);
765
766 return vrf_ip6_out_redirect(vrf_dev, skb);
767}
768
769/* holding rtnl */
770static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
771{
772 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
773 struct net *net = dev_net(dev);
774 struct dst_entry *dst;
775
776 RCU_INIT_POINTER(vrf->rt6, NULL);
777 synchronize_rcu();
778
779 /* move dev in dst's to loopback so this VRF device can be deleted
780 * - based on dst_ifdown
781 */
782 if (rt6) {
783 dst = &rt6->dst;
784 netdev_ref_replace(dst->dev, net->loopback_dev,
785 &dst->dev_tracker, GFP_KERNEL);
786 dst->dev = net->loopback_dev;
787 dst_release(dst);
788 }
789}
790
791static int vrf_rt6_create(struct net_device *dev)
792{
793 int flags = DST_NOPOLICY | DST_NOXFRM;
794 struct net_vrf *vrf = netdev_priv(dev);
795 struct net *net = dev_net(dev);
796 struct rt6_info *rt6;
797 int rc = -ENOMEM;
798
799 /* IPv6 can be CONFIG enabled and then disabled runtime */
800 if (!ipv6_mod_enabled())
801 return 0;
802
803 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
804 if (!vrf->fib6_table)
805 goto out;
806
807 /* create a dst for routing packets out a VRF device */
808 rt6 = ip6_dst_alloc(net, dev, flags);
809 if (!rt6)
810 goto out;
811
812 rt6->dst.output = vrf_output6;
813
814 rcu_assign_pointer(vrf->rt6, rt6);
815
816 rc = 0;
817out:
818 return rc;
819}
820#else
821static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
822 struct sock *sk,
823 struct sk_buff *skb)
824{
825 return skb;
826}
827
828static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
829{
830}
831
832static int vrf_rt6_create(struct net_device *dev)
833{
834 return 0;
835}
836#endif
837
838/* modelled after ip_finish_output2 */
839static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
840{
841 struct dst_entry *dst = skb_dst(skb);
842 struct rtable *rt = dst_rtable(dst);
843 struct net_device *dev = dst->dev;
844 unsigned int hh_len = LL_RESERVED_SPACE(dev);
845 struct neighbour *neigh;
846 bool is_v6gw = false;
847
848 vrf_nf_reset_ct(skb);
849
850 /* Be paranoid, rather than too clever. */
851 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
852 skb = skb_expand_head(skb, hh_len);
853 if (!skb) {
854 dev->stats.tx_errors++;
855 return -ENOMEM;
856 }
857 }
858
859 rcu_read_lock();
860
861 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
862 if (!IS_ERR(neigh)) {
863 int ret;
864
865 sock_confirm_neigh(skb, neigh);
866 /* if crossing protocols, can not use the cached header */
867 ret = neigh_output(neigh, skb, is_v6gw);
868 rcu_read_unlock();
869 return ret;
870 }
871
872 rcu_read_unlock();
873 vrf_tx_error(skb->dev, skb);
874 return -EINVAL;
875}
876
877static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
878{
879 struct net_device *dev = skb_dst(skb)->dev;
880
881 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
882
883 skb->dev = dev;
884 skb->protocol = htons(ETH_P_IP);
885
886 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
887 net, sk, skb, NULL, dev,
888 vrf_finish_output,
889 !(IPCB(skb)->flags & IPSKB_REROUTED));
890}
891
892/* set dst on skb to send packet to us via dev_xmit path. Allows
893 * packet to go through device based features such as qdisc, netfilter
894 * hooks and packet sockets with skb->dev set to vrf device.
895 */
896static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
897 struct sk_buff *skb)
898{
899 struct net_vrf *vrf = netdev_priv(vrf_dev);
900 struct dst_entry *dst = NULL;
901 struct rtable *rth;
902
903 rcu_read_lock();
904
905 rth = rcu_dereference(vrf->rth);
906 if (likely(rth)) {
907 dst = &rth->dst;
908 dst_hold(dst);
909 }
910
911 rcu_read_unlock();
912
913 if (unlikely(!dst)) {
914 vrf_tx_error(vrf_dev, skb);
915 return NULL;
916 }
917
918 skb_dst_drop(skb);
919 skb_dst_set(skb, dst);
920
921 return skb;
922}
923
924static int vrf_output_direct_finish(struct net *net, struct sock *sk,
925 struct sk_buff *skb)
926{
927 vrf_finish_direct(skb);
928
929 return vrf_ip_local_out(net, sk, skb);
930}
931
932static int vrf_output_direct(struct net *net, struct sock *sk,
933 struct sk_buff *skb)
934{
935 int err = 1;
936
937 skb->protocol = htons(ETH_P_IP);
938
939 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
940 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
941 NULL, skb->dev, vrf_output_direct_finish);
942
943 if (likely(err == 1))
944 vrf_finish_direct(skb);
945
946 return err;
947}
948
949static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
950 struct sk_buff *skb)
951{
952 int err;
953
954 err = vrf_output_direct(net, sk, skb);
955 if (likely(err == 1))
956 err = vrf_ip_local_out(net, sk, skb);
957
958 return err;
959}
960
961static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
962 struct sock *sk,
963 struct sk_buff *skb)
964{
965 struct net *net = dev_net(vrf_dev);
966 int err;
967
968 skb->dev = vrf_dev;
969
970 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
971 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
972
973 if (likely(err == 1))
974 err = vrf_output_direct(net, sk, skb);
975
976 if (likely(err == 1))
977 return skb;
978
979 return NULL;
980}
981
982static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
983 struct sock *sk,
984 struct sk_buff *skb)
985{
986 /* don't divert multicast or local broadcast */
987 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
988 ipv4_is_lbcast(ip_hdr(skb)->daddr))
989 return skb;
990
991 vrf_nf_set_untracked(skb);
992
993 if (qdisc_tx_is_default(vrf_dev) ||
994 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
995 return vrf_ip_out_direct(vrf_dev, sk, skb);
996
997 return vrf_ip_out_redirect(vrf_dev, skb);
998}
999
1000/* called with rcu lock held */
1001static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1002 struct sock *sk,
1003 struct sk_buff *skb,
1004 u16 proto)
1005{
1006 switch (proto) {
1007 case AF_INET:
1008 return vrf_ip_out(vrf_dev, sk, skb);
1009 case AF_INET6:
1010 return vrf_ip6_out(vrf_dev, sk, skb);
1011 }
1012
1013 return skb;
1014}
1015
1016/* holding rtnl */
1017static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1018{
1019 struct rtable *rth = rtnl_dereference(vrf->rth);
1020 struct net *net = dev_net(dev);
1021 struct dst_entry *dst;
1022
1023 RCU_INIT_POINTER(vrf->rth, NULL);
1024 synchronize_rcu();
1025
1026 /* move dev in dst's to loopback so this VRF device can be deleted
1027 * - based on dst_ifdown
1028 */
1029 if (rth) {
1030 dst = &rth->dst;
1031 netdev_ref_replace(dst->dev, net->loopback_dev,
1032 &dst->dev_tracker, GFP_KERNEL);
1033 dst->dev = net->loopback_dev;
1034 dst_release(dst);
1035 }
1036}
1037
1038static int vrf_rtable_create(struct net_device *dev)
1039{
1040 struct net_vrf *vrf = netdev_priv(dev);
1041 struct rtable *rth;
1042
1043 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1044 return -ENOMEM;
1045
1046 /* create a dst for routing packets out through a VRF device */
1047 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1048 if (!rth)
1049 return -ENOMEM;
1050
1051 rth->dst.output = vrf_output;
1052
1053 rcu_assign_pointer(vrf->rth, rth);
1054
1055 return 0;
1056}
1057
1058/**************************** device handling ********************/
1059
1060/* cycle interface to flush neighbor cache and move routes across tables */
1061static void cycle_netdev(struct net_device *dev,
1062 struct netlink_ext_ack *extack)
1063{
1064 unsigned int flags = dev->flags;
1065 int ret;
1066
1067 if (!netif_running(dev))
1068 return;
1069
1070 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1071 if (ret >= 0)
1072 ret = dev_change_flags(dev, flags, extack);
1073
1074 if (ret < 0) {
1075 netdev_err(dev,
1076 "Failed to cycle device %s; route tables might be wrong!\n",
1077 dev->name);
1078 }
1079}
1080
1081static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1082 struct netlink_ext_ack *extack)
1083{
1084 int ret;
1085
1086 /* do not allow loopback device to be enslaved to a VRF.
1087 * The vrf device acts as the loopback for the vrf.
1088 */
1089 if (port_dev == dev_net(dev)->loopback_dev) {
1090 NL_SET_ERR_MSG(extack,
1091 "Can not enslave loopback device to a VRF");
1092 return -EOPNOTSUPP;
1093 }
1094
1095 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1096 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1097 if (ret < 0)
1098 goto err;
1099
1100 cycle_netdev(port_dev, extack);
1101
1102 return 0;
1103
1104err:
1105 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1106 return ret;
1107}
1108
1109static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1110 struct netlink_ext_ack *extack)
1111{
1112 if (netif_is_l3_master(port_dev)) {
1113 NL_SET_ERR_MSG(extack,
1114 "Can not enslave an L3 master device to a VRF");
1115 return -EINVAL;
1116 }
1117
1118 if (netif_is_l3_slave(port_dev))
1119 return -EINVAL;
1120
1121 return do_vrf_add_slave(dev, port_dev, extack);
1122}
1123
1124/* inverse of do_vrf_add_slave */
1125static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1126{
1127 netdev_upper_dev_unlink(port_dev, dev);
1128 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1129
1130 cycle_netdev(port_dev, NULL);
1131
1132 return 0;
1133}
1134
1135static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1136{
1137 return do_vrf_del_slave(dev, port_dev);
1138}
1139
1140static void vrf_dev_uninit(struct net_device *dev)
1141{
1142 struct net_vrf *vrf = netdev_priv(dev);
1143
1144 vrf_rtable_release(dev, vrf);
1145 vrf_rt6_release(dev, vrf);
1146}
1147
1148static int vrf_dev_init(struct net_device *dev)
1149{
1150 struct net_vrf *vrf = netdev_priv(dev);
1151
1152 /* create the default dst which points back to us */
1153 if (vrf_rtable_create(dev) != 0)
1154 goto out_nomem;
1155
1156 if (vrf_rt6_create(dev) != 0)
1157 goto out_rth;
1158
1159 dev->flags = IFF_MASTER | IFF_NOARP;
1160
1161 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1162 dev->operstate = IF_OPER_UP;
1163 netdev_lockdep_set_classes(dev);
1164 return 0;
1165
1166out_rth:
1167 vrf_rtable_release(dev, vrf);
1168out_nomem:
1169 return -ENOMEM;
1170}
1171
1172static const struct net_device_ops vrf_netdev_ops = {
1173 .ndo_init = vrf_dev_init,
1174 .ndo_uninit = vrf_dev_uninit,
1175 .ndo_start_xmit = vrf_xmit,
1176 .ndo_set_mac_address = eth_mac_addr,
1177 .ndo_add_slave = vrf_add_slave,
1178 .ndo_del_slave = vrf_del_slave,
1179};
1180
1181static u32 vrf_fib_table(const struct net_device *dev)
1182{
1183 struct net_vrf *vrf = netdev_priv(dev);
1184
1185 return vrf->tb_id;
1186}
1187
1188static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1189{
1190 kfree_skb(skb);
1191 return 0;
1192}
1193
1194static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1195 struct sk_buff *skb,
1196 struct net_device *dev)
1197{
1198 struct net *net = dev_net(dev);
1199
1200 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1201 skb = NULL; /* kfree_skb(skb) handled by nf code */
1202
1203 return skb;
1204}
1205
1206static int vrf_prepare_mac_header(struct sk_buff *skb,
1207 struct net_device *vrf_dev, u16 proto)
1208{
1209 struct ethhdr *eth;
1210 int err;
1211
1212 /* in general, we do not know if there is enough space in the head of
1213 * the packet for hosting the mac header.
1214 */
1215 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1216 if (unlikely(err))
1217 /* no space in the skb head */
1218 return -ENOBUFS;
1219
1220 __skb_push(skb, ETH_HLEN);
1221 eth = (struct ethhdr *)skb->data;
1222
1223 skb_reset_mac_header(skb);
1224 skb_reset_mac_len(skb);
1225
1226 /* we set the ethernet destination and the source addresses to the
1227 * address of the VRF device.
1228 */
1229 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1230 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1231 eth->h_proto = htons(proto);
1232
1233 /* the destination address of the Ethernet frame corresponds to the
1234 * address set on the VRF interface; therefore, the packet is intended
1235 * to be processed locally.
1236 */
1237 skb->protocol = eth->h_proto;
1238 skb->pkt_type = PACKET_HOST;
1239
1240 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1241
1242 skb_pull_inline(skb, ETH_HLEN);
1243
1244 return 0;
1245}
1246
1247/* prepare and add the mac header to the packet if it was not set previously.
1248 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1249 * If the mac header was already set, the original mac header is left
1250 * untouched and the function returns immediately.
1251 */
1252static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1253 struct net_device *vrf_dev,
1254 u16 proto, struct net_device *orig_dev)
1255{
1256 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1257 return 0;
1258
1259 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1260}
1261
1262#if IS_ENABLED(CONFIG_IPV6)
1263/* neighbor handling is done with actual device; do not want
1264 * to flip skb->dev for those ndisc packets. This really fails
1265 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1266 * a start.
1267 */
1268static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1269{
1270 const struct ipv6hdr *iph = ipv6_hdr(skb);
1271 bool rc = false;
1272
1273 if (iph->nexthdr == NEXTHDR_ICMP) {
1274 const struct icmp6hdr *icmph;
1275 struct icmp6hdr _icmph;
1276
1277 icmph = skb_header_pointer(skb, sizeof(*iph),
1278 sizeof(_icmph), &_icmph);
1279 if (!icmph)
1280 goto out;
1281
1282 switch (icmph->icmp6_type) {
1283 case NDISC_ROUTER_SOLICITATION:
1284 case NDISC_ROUTER_ADVERTISEMENT:
1285 case NDISC_NEIGHBOUR_SOLICITATION:
1286 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1287 case NDISC_REDIRECT:
1288 rc = true;
1289 break;
1290 }
1291 }
1292
1293out:
1294 return rc;
1295}
1296
1297static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1298 const struct net_device *dev,
1299 struct flowi6 *fl6,
1300 int ifindex,
1301 const struct sk_buff *skb,
1302 int flags)
1303{
1304 struct net_vrf *vrf = netdev_priv(dev);
1305
1306 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1307}
1308
1309static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1310 int ifindex)
1311{
1312 const struct ipv6hdr *iph = ipv6_hdr(skb);
1313 struct flowi6 fl6 = {
1314 .flowi6_iif = ifindex,
1315 .flowi6_mark = skb->mark,
1316 .flowi6_proto = iph->nexthdr,
1317 .daddr = iph->daddr,
1318 .saddr = iph->saddr,
1319 .flowlabel = ip6_flowinfo(iph),
1320 };
1321 struct net *net = dev_net(vrf_dev);
1322 struct rt6_info *rt6;
1323
1324 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1325 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1326 if (unlikely(!rt6))
1327 return;
1328
1329 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1330 return;
1331
1332 skb_dst_set(skb, &rt6->dst);
1333}
1334
1335static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1336 struct sk_buff *skb)
1337{
1338 int orig_iif = skb->skb_iif;
1339 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1340 bool is_ndisc = ipv6_ndisc_frame(skb);
1341
1342 /* loopback, multicast & non-ND link-local traffic; do not push through
1343 * packet taps again. Reset pkt_type for upper layers to process skb.
1344 * For non-loopback strict packets, determine the dst using the original
1345 * ifindex.
1346 */
1347 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1348 skb->dev = vrf_dev;
1349 skb->skb_iif = vrf_dev->ifindex;
1350 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1351
1352 if (skb->pkt_type == PACKET_LOOPBACK)
1353 skb->pkt_type = PACKET_HOST;
1354 else
1355 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1356
1357 goto out;
1358 }
1359
1360 /* if packet is NDISC then keep the ingress interface */
1361 if (!is_ndisc) {
1362 struct net_device *orig_dev = skb->dev;
1363
1364 vrf_rx_stats(vrf_dev, skb->len);
1365 skb->dev = vrf_dev;
1366 skb->skb_iif = vrf_dev->ifindex;
1367
1368 if (!list_empty(&vrf_dev->ptype_all)) {
1369 int err;
1370
1371 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1372 ETH_P_IPV6,
1373 orig_dev);
1374 if (likely(!err)) {
1375 skb_push(skb, skb->mac_len);
1376 dev_queue_xmit_nit(skb, vrf_dev);
1377 skb_pull(skb, skb->mac_len);
1378 }
1379 }
1380
1381 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1382 }
1383
1384 if (need_strict)
1385 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1386
1387 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1388out:
1389 return skb;
1390}
1391
1392#else
1393static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1394 struct sk_buff *skb)
1395{
1396 return skb;
1397}
1398#endif
1399
1400static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1401 struct sk_buff *skb)
1402{
1403 struct net_device *orig_dev = skb->dev;
1404
1405 skb->dev = vrf_dev;
1406 skb->skb_iif = vrf_dev->ifindex;
1407 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1408
1409 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1410 goto out;
1411
1412 /* loopback traffic; do not push through packet taps again.
1413 * Reset pkt_type for upper layers to process skb
1414 */
1415 if (skb->pkt_type == PACKET_LOOPBACK) {
1416 skb->pkt_type = PACKET_HOST;
1417 goto out;
1418 }
1419
1420 vrf_rx_stats(vrf_dev, skb->len);
1421
1422 if (!list_empty(&vrf_dev->ptype_all)) {
1423 int err;
1424
1425 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1426 orig_dev);
1427 if (likely(!err)) {
1428 skb_push(skb, skb->mac_len);
1429 dev_queue_xmit_nit(skb, vrf_dev);
1430 skb_pull(skb, skb->mac_len);
1431 }
1432 }
1433
1434 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1435out:
1436 return skb;
1437}
1438
1439/* called with rcu lock held */
1440static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1441 struct sk_buff *skb,
1442 u16 proto)
1443{
1444 switch (proto) {
1445 case AF_INET:
1446 return vrf_ip_rcv(vrf_dev, skb);
1447 case AF_INET6:
1448 return vrf_ip6_rcv(vrf_dev, skb);
1449 }
1450
1451 return skb;
1452}
1453
1454#if IS_ENABLED(CONFIG_IPV6)
1455/* send to link-local or multicast address via interface enslaved to
1456 * VRF device. Force lookup to VRF table without changing flow struct
1457 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1458 * is taken on the dst by this function.
1459 */
1460static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1461 struct flowi6 *fl6)
1462{
1463 struct net *net = dev_net(dev);
1464 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1465 struct dst_entry *dst = NULL;
1466 struct rt6_info *rt;
1467
1468 /* VRF device does not have a link-local address and
1469 * sending packets to link-local or mcast addresses over
1470 * a VRF device does not make sense
1471 */
1472 if (fl6->flowi6_oif == dev->ifindex) {
1473 dst = &net->ipv6.ip6_null_entry->dst;
1474 return dst;
1475 }
1476
1477 if (!ipv6_addr_any(&fl6->saddr))
1478 flags |= RT6_LOOKUP_F_HAS_SADDR;
1479
1480 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1481 if (rt)
1482 dst = &rt->dst;
1483
1484 return dst;
1485}
1486#endif
1487
1488static const struct l3mdev_ops vrf_l3mdev_ops = {
1489 .l3mdev_fib_table = vrf_fib_table,
1490 .l3mdev_l3_rcv = vrf_l3_rcv,
1491 .l3mdev_l3_out = vrf_l3_out,
1492#if IS_ENABLED(CONFIG_IPV6)
1493 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1494#endif
1495};
1496
1497static void vrf_get_drvinfo(struct net_device *dev,
1498 struct ethtool_drvinfo *info)
1499{
1500 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1501 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1502}
1503
1504static const struct ethtool_ops vrf_ethtool_ops = {
1505 .get_drvinfo = vrf_get_drvinfo,
1506};
1507
1508static inline size_t vrf_fib_rule_nl_size(void)
1509{
1510 size_t sz;
1511
1512 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1513 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1514 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1515 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1516
1517 return sz;
1518}
1519
1520static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1521{
1522 struct fib_rule_hdr *frh;
1523 struct nlmsghdr *nlh;
1524 struct sk_buff *skb;
1525 int err;
1526
1527 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1528 !ipv6_mod_enabled())
1529 return 0;
1530
1531 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1532 if (!skb)
1533 return -ENOMEM;
1534
1535 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1536 if (!nlh)
1537 goto nla_put_failure;
1538
1539 /* rule only needs to appear once */
1540 nlh->nlmsg_flags |= NLM_F_EXCL;
1541
1542 frh = nlmsg_data(nlh);
1543 memset(frh, 0, sizeof(*frh));
1544 frh->family = family;
1545 frh->action = FR_ACT_TO_TBL;
1546
1547 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1548 goto nla_put_failure;
1549
1550 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1551 goto nla_put_failure;
1552
1553 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1554 goto nla_put_failure;
1555
1556 nlmsg_end(skb, nlh);
1557
1558 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1559 skb->sk = dev_net(dev)->rtnl;
1560 if (add_it) {
1561 err = fib_nl_newrule(skb, nlh, NULL);
1562 if (err == -EEXIST)
1563 err = 0;
1564 } else {
1565 err = fib_nl_delrule(skb, nlh, NULL);
1566 if (err == -ENOENT)
1567 err = 0;
1568 }
1569 nlmsg_free(skb);
1570
1571 return err;
1572
1573nla_put_failure:
1574 nlmsg_free(skb);
1575
1576 return -EMSGSIZE;
1577}
1578
1579static int vrf_add_fib_rules(const struct net_device *dev)
1580{
1581 int err;
1582
1583 err = vrf_fib_rule(dev, AF_INET, true);
1584 if (err < 0)
1585 goto out_err;
1586
1587 err = vrf_fib_rule(dev, AF_INET6, true);
1588 if (err < 0)
1589 goto ipv6_err;
1590
1591#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1592 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1593 if (err < 0)
1594 goto ipmr_err;
1595#endif
1596
1597#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1598 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1599 if (err < 0)
1600 goto ip6mr_err;
1601#endif
1602
1603 return 0;
1604
1605#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1606ip6mr_err:
1607 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1608#endif
1609
1610#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1611ipmr_err:
1612 vrf_fib_rule(dev, AF_INET6, false);
1613#endif
1614
1615ipv6_err:
1616 vrf_fib_rule(dev, AF_INET, false);
1617
1618out_err:
1619 netdev_err(dev, "Failed to add FIB rules.\n");
1620 return err;
1621}
1622
1623static void vrf_setup(struct net_device *dev)
1624{
1625 ether_setup(dev);
1626
1627 /* Initialize the device structure. */
1628 dev->netdev_ops = &vrf_netdev_ops;
1629 dev->l3mdev_ops = &vrf_l3mdev_ops;
1630 dev->ethtool_ops = &vrf_ethtool_ops;
1631 dev->needs_free_netdev = true;
1632
1633 /* Fill in device structure with ethernet-generic values. */
1634 eth_hw_addr_random(dev);
1635
1636 /* don't acquire vrf device's netif_tx_lock when transmitting */
1637 dev->features |= NETIF_F_LLTX;
1638
1639 /* don't allow vrf devices to change network namespaces. */
1640 dev->features |= NETIF_F_NETNS_LOCAL;
1641
1642 /* does not make sense for a VLAN to be added to a vrf device */
1643 dev->features |= NETIF_F_VLAN_CHALLENGED;
1644
1645 /* enable offload features */
1646 dev->features |= NETIF_F_GSO_SOFTWARE;
1647 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1648 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1649
1650 dev->hw_features = dev->features;
1651 dev->hw_enc_features = dev->features;
1652
1653 /* default to no qdisc; user can add if desired */
1654 dev->priv_flags |= IFF_NO_QUEUE;
1655 dev->priv_flags |= IFF_NO_RX_HANDLER;
1656 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1657
1658 /* VRF devices do not care about MTU, but if the MTU is set
1659 * too low then the ipv4 and ipv6 protocols are disabled
1660 * which breaks networking.
1661 */
1662 dev->min_mtu = IPV6_MIN_MTU;
1663 dev->max_mtu = IP6_MAX_MTU;
1664 dev->mtu = dev->max_mtu;
1665
1666 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1667}
1668
1669static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1670 struct netlink_ext_ack *extack)
1671{
1672 if (tb[IFLA_ADDRESS]) {
1673 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1674 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1675 return -EINVAL;
1676 }
1677 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1678 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1679 return -EADDRNOTAVAIL;
1680 }
1681 }
1682 return 0;
1683}
1684
1685static void vrf_dellink(struct net_device *dev, struct list_head *head)
1686{
1687 struct net_device *port_dev;
1688 struct list_head *iter;
1689
1690 netdev_for_each_lower_dev(dev, port_dev, iter)
1691 vrf_del_slave(dev, port_dev);
1692
1693 vrf_map_unregister_dev(dev);
1694
1695 unregister_netdevice_queue(dev, head);
1696}
1697
1698static int vrf_newlink(struct net *src_net, struct net_device *dev,
1699 struct nlattr *tb[], struct nlattr *data[],
1700 struct netlink_ext_ack *extack)
1701{
1702 struct net_vrf *vrf = netdev_priv(dev);
1703 struct netns_vrf *nn_vrf;
1704 bool *add_fib_rules;
1705 struct net *net;
1706 int err;
1707
1708 if (!data || !data[IFLA_VRF_TABLE]) {
1709 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1710 return -EINVAL;
1711 }
1712
1713 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1714 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1715 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1716 "Invalid VRF table id");
1717 return -EINVAL;
1718 }
1719
1720 dev->priv_flags |= IFF_L3MDEV_MASTER;
1721
1722 err = register_netdevice(dev);
1723 if (err)
1724 goto out;
1725
1726 /* mapping between table_id and vrf;
1727 * note: such binding could not be done in the dev init function
1728 * because dev->ifindex id is not available yet.
1729 */
1730 vrf->ifindex = dev->ifindex;
1731
1732 err = vrf_map_register_dev(dev, extack);
1733 if (err) {
1734 unregister_netdevice(dev);
1735 goto out;
1736 }
1737
1738 net = dev_net(dev);
1739 nn_vrf = net_generic(net, vrf_net_id);
1740
1741 add_fib_rules = &nn_vrf->add_fib_rules;
1742 if (*add_fib_rules) {
1743 err = vrf_add_fib_rules(dev);
1744 if (err) {
1745 vrf_map_unregister_dev(dev);
1746 unregister_netdevice(dev);
1747 goto out;
1748 }
1749 *add_fib_rules = false;
1750 }
1751
1752out:
1753 return err;
1754}
1755
1756static size_t vrf_nl_getsize(const struct net_device *dev)
1757{
1758 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1759}
1760
1761static int vrf_fillinfo(struct sk_buff *skb,
1762 const struct net_device *dev)
1763{
1764 struct net_vrf *vrf = netdev_priv(dev);
1765
1766 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1767}
1768
1769static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1770 const struct net_device *slave_dev)
1771{
1772 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1773}
1774
1775static int vrf_fill_slave_info(struct sk_buff *skb,
1776 const struct net_device *vrf_dev,
1777 const struct net_device *slave_dev)
1778{
1779 struct net_vrf *vrf = netdev_priv(vrf_dev);
1780
1781 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1782 return -EMSGSIZE;
1783
1784 return 0;
1785}
1786
1787static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1788 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1789};
1790
1791static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1792 .kind = DRV_NAME,
1793 .priv_size = sizeof(struct net_vrf),
1794
1795 .get_size = vrf_nl_getsize,
1796 .policy = vrf_nl_policy,
1797 .validate = vrf_validate,
1798 .fill_info = vrf_fillinfo,
1799
1800 .get_slave_size = vrf_get_slave_size,
1801 .fill_slave_info = vrf_fill_slave_info,
1802
1803 .newlink = vrf_newlink,
1804 .dellink = vrf_dellink,
1805 .setup = vrf_setup,
1806 .maxtype = IFLA_VRF_MAX,
1807};
1808
1809static int vrf_device_event(struct notifier_block *unused,
1810 unsigned long event, void *ptr)
1811{
1812 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1813
1814 /* only care about unregister events to drop slave references */
1815 if (event == NETDEV_UNREGISTER) {
1816 struct net_device *vrf_dev;
1817
1818 if (!netif_is_l3_slave(dev))
1819 goto out;
1820
1821 vrf_dev = netdev_master_upper_dev_get(dev);
1822 vrf_del_slave(vrf_dev, dev);
1823 }
1824out:
1825 return NOTIFY_DONE;
1826}
1827
1828static struct notifier_block vrf_notifier_block __read_mostly = {
1829 .notifier_call = vrf_device_event,
1830};
1831
1832static int vrf_map_init(struct vrf_map *vmap)
1833{
1834 spin_lock_init(&vmap->vmap_lock);
1835 hash_init(vmap->ht);
1836
1837 vmap->strict_mode = false;
1838
1839 return 0;
1840}
1841
1842#ifdef CONFIG_SYSCTL
1843static bool vrf_strict_mode(struct vrf_map *vmap)
1844{
1845 bool strict_mode;
1846
1847 vrf_map_lock(vmap);
1848 strict_mode = vmap->strict_mode;
1849 vrf_map_unlock(vmap);
1850
1851 return strict_mode;
1852}
1853
1854static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1855{
1856 bool *cur_mode;
1857 int res = 0;
1858
1859 vrf_map_lock(vmap);
1860
1861 cur_mode = &vmap->strict_mode;
1862 if (*cur_mode == new_mode)
1863 goto unlock;
1864
1865 if (*cur_mode) {
1866 /* disable strict mode */
1867 *cur_mode = false;
1868 } else {
1869 if (vmap->shared_tables) {
1870 /* we cannot allow strict_mode because there are some
1871 * vrfs that share one or more tables.
1872 */
1873 res = -EBUSY;
1874 goto unlock;
1875 }
1876
1877 /* no tables are shared among vrfs, so we can go back
1878 * to 1:1 association between a vrf with its table.
1879 */
1880 *cur_mode = true;
1881 }
1882
1883unlock:
1884 vrf_map_unlock(vmap);
1885
1886 return res;
1887}
1888
1889static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1890 void *buffer, size_t *lenp, loff_t *ppos)
1891{
1892 struct net *net = (struct net *)table->extra1;
1893 struct vrf_map *vmap = netns_vrf_map(net);
1894 int proc_strict_mode = 0;
1895 struct ctl_table tmp = {
1896 .procname = table->procname,
1897 .data = &proc_strict_mode,
1898 .maxlen = sizeof(int),
1899 .mode = table->mode,
1900 .extra1 = SYSCTL_ZERO,
1901 .extra2 = SYSCTL_ONE,
1902 };
1903 int ret;
1904
1905 if (!write)
1906 proc_strict_mode = vrf_strict_mode(vmap);
1907
1908 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1909
1910 if (write && ret == 0)
1911 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1912
1913 return ret;
1914}
1915
1916static const struct ctl_table vrf_table[] = {
1917 {
1918 .procname = "strict_mode",
1919 .data = NULL,
1920 .maxlen = sizeof(int),
1921 .mode = 0644,
1922 .proc_handler = vrf_shared_table_handler,
1923 /* set by the vrf_netns_init */
1924 .extra1 = NULL,
1925 },
1926};
1927
1928static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1929{
1930 struct ctl_table *table;
1931
1932 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1933 if (!table)
1934 return -ENOMEM;
1935
1936 /* init the extra1 parameter with the reference to current netns */
1937 table[0].extra1 = net;
1938
1939 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1940 ARRAY_SIZE(vrf_table));
1941 if (!nn_vrf->ctl_hdr) {
1942 kfree(table);
1943 return -ENOMEM;
1944 }
1945
1946 return 0;
1947}
1948
1949static void vrf_netns_exit_sysctl(struct net *net)
1950{
1951 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1952 const struct ctl_table *table;
1953
1954 table = nn_vrf->ctl_hdr->ctl_table_arg;
1955 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1956 kfree(table);
1957}
1958#else
1959static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1960{
1961 return 0;
1962}
1963
1964static void vrf_netns_exit_sysctl(struct net *net)
1965{
1966}
1967#endif
1968
1969/* Initialize per network namespace state */
1970static int __net_init vrf_netns_init(struct net *net)
1971{
1972 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1973
1974 nn_vrf->add_fib_rules = true;
1975 vrf_map_init(&nn_vrf->vmap);
1976
1977 return vrf_netns_init_sysctl(net, nn_vrf);
1978}
1979
1980static void __net_exit vrf_netns_exit(struct net *net)
1981{
1982 vrf_netns_exit_sysctl(net);
1983}
1984
1985static struct pernet_operations vrf_net_ops __net_initdata = {
1986 .init = vrf_netns_init,
1987 .exit = vrf_netns_exit,
1988 .id = &vrf_net_id,
1989 .size = sizeof(struct netns_vrf),
1990};
1991
1992static int __init vrf_init_module(void)
1993{
1994 int rc;
1995
1996 register_netdevice_notifier(&vrf_notifier_block);
1997
1998 rc = register_pernet_subsys(&vrf_net_ops);
1999 if (rc < 0)
2000 goto error;
2001
2002 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2003 vrf_ifindex_lookup_by_table_id);
2004 if (rc < 0)
2005 goto unreg_pernet;
2006
2007 rc = rtnl_link_register(&vrf_link_ops);
2008 if (rc < 0)
2009 goto table_lookup_unreg;
2010
2011 return 0;
2012
2013table_lookup_unreg:
2014 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2015 vrf_ifindex_lookup_by_table_id);
2016
2017unreg_pernet:
2018 unregister_pernet_subsys(&vrf_net_ops);
2019
2020error:
2021 unregister_netdevice_notifier(&vrf_notifier_block);
2022 return rc;
2023}
2024
2025module_init(vrf_init_module);
2026MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2027MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2028MODULE_LICENSE("GPL");
2029MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2030MODULE_VERSION(DRV_VERSION);