Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->channels[n_channels] = chan;
767 if (add_to_6ghz)
768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 n_channels;
770
771 request->n_channels++;
772}
773
774static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 struct cfg80211_scan_request *request)
776{
777 int i;
778 u32 s_ssid;
779
780 for (i = 0; i < request->n_ssids; i++) {
781 /* wildcard ssid in the scan request */
782 if (!request->ssids[i].ssid_len) {
783 if (ap->multi_bss && !ap->transmitted_bssid)
784 continue;
785
786 return true;
787 }
788
789 if (ap->ssid_len &&
790 ap->ssid_len == request->ssids[i].ssid_len) {
791 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 ap->ssid_len))
793 return true;
794 } else if (ap->short_ssid_valid) {
795 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 request->ssids[i].ssid_len);
797
798 if (ap->short_ssid == s_ssid)
799 return true;
800 }
801 }
802
803 return false;
804}
805
806static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807{
808 u8 i;
809 struct cfg80211_colocated_ap *ap;
810 int n_channels, count = 0, err;
811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 LIST_HEAD(coloc_ap_list);
813 bool need_scan_psc = true;
814 const struct ieee80211_sband_iftype_data *iftd;
815 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 size = struct_size(request, channels, n_channels);
882 offs_ssids = size;
883 size += sizeof(*request->ssids) * rdev_req->n_ssids;
884 offs_6ghz_params = size;
885 size += sizeof(*request->scan_6ghz_params) * count;
886 offs_ies = size;
887 size += rdev_req->ie_len;
888
889 request = kzalloc(size, GFP_KERNEL);
890 if (!request) {
891 cfg80211_free_coloc_ap_list(&coloc_ap_list);
892 return -ENOMEM;
893 }
894
895 *request = *rdev_req;
896 request->n_channels = 0;
897 request->n_6ghz_params = 0;
898 if (rdev_req->n_ssids) {
899 /*
900 * Add the ssids from the parent scan request to the new
901 * scan request, so the driver would be able to use them
902 * in its probe requests to discover hidden APs on PSC
903 * channels.
904 */
905 request->ssids = (void *)request + offs_ssids;
906 memcpy(request->ssids, rdev_req->ssids,
907 sizeof(*request->ssids) * request->n_ssids);
908 }
909 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
910
911 if (rdev_req->ie_len) {
912 void *ie = (void *)request + offs_ies;
913
914 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
915 request->ie = ie;
916 }
917
918 /*
919 * PSC channels should not be scanned in case of direct scan with 1 SSID
920 * and at least one of the reported co-located APs with same SSID
921 * indicating that all APs in the same ESS are co-located
922 */
923 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
924 list_for_each_entry(ap, &coloc_ap_list, list) {
925 if (ap->colocated_ess &&
926 cfg80211_find_ssid_match(ap, request)) {
927 need_scan_psc = false;
928 break;
929 }
930 }
931 }
932
933 /*
934 * add to the scan request the channels that need to be scanned
935 * regardless of the collocated APs (PSC channels or all channels
936 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
937 */
938 for (i = 0; i < rdev_req->n_channels; i++) {
939 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
940 ((need_scan_psc &&
941 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
942 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
943 cfg80211_scan_req_add_chan(request,
944 rdev_req->channels[i],
945 false);
946 }
947 }
948
949 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
950 goto skip;
951
952 list_for_each_entry(ap, &coloc_ap_list, list) {
953 bool found = false;
954 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
955 &request->scan_6ghz_params[request->n_6ghz_params];
956 struct ieee80211_channel *chan =
957 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
958
959 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
960 continue;
961
962 for (i = 0; i < rdev_req->n_channels; i++) {
963 if (rdev_req->channels[i] == chan)
964 found = true;
965 }
966
967 if (!found)
968 continue;
969
970 if (request->n_ssids > 0 &&
971 !cfg80211_find_ssid_match(ap, request))
972 continue;
973
974 if (!is_broadcast_ether_addr(request->bssid) &&
975 !ether_addr_equal(request->bssid, ap->bssid))
976 continue;
977
978 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
979 continue;
980
981 cfg80211_scan_req_add_chan(request, chan, true);
982 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
983 scan_6ghz_params->short_ssid = ap->short_ssid;
984 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
985 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
986 scan_6ghz_params->psd_20 = ap->psd_20;
987
988 /*
989 * If a PSC channel is added to the scan and 'need_scan_psc' is
990 * set to false, then all the APs that the scan logic is
991 * interested with on the channel are collocated and thus there
992 * is no need to perform the initial PSC channel listen.
993 */
994 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
995 scan_6ghz_params->psc_no_listen = true;
996
997 request->n_6ghz_params++;
998 }
999
1000skip:
1001 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1002
1003 if (request->n_channels) {
1004 struct cfg80211_scan_request *old = rdev->int_scan_req;
1005
1006 rdev->int_scan_req = request;
1007
1008 /*
1009 * If this scan follows a previous scan, save the scan start
1010 * info from the first part of the scan
1011 */
1012 if (old)
1013 rdev->int_scan_req->info = old->info;
1014
1015 err = rdev_scan(rdev, request);
1016 if (err) {
1017 rdev->int_scan_req = old;
1018 kfree(request);
1019 } else {
1020 kfree(old);
1021 }
1022
1023 return err;
1024 }
1025
1026 kfree(request);
1027 return -EINVAL;
1028}
1029
1030int cfg80211_scan(struct cfg80211_registered_device *rdev)
1031{
1032 struct cfg80211_scan_request *request;
1033 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1034 u32 n_channels = 0, idx, i;
1035
1036 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1037 return rdev_scan(rdev, rdev_req);
1038
1039 for (i = 0; i < rdev_req->n_channels; i++) {
1040 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1041 n_channels++;
1042 }
1043
1044 if (!n_channels)
1045 return cfg80211_scan_6ghz(rdev);
1046
1047 request = kzalloc(struct_size(request, channels, n_channels),
1048 GFP_KERNEL);
1049 if (!request)
1050 return -ENOMEM;
1051
1052 *request = *rdev_req;
1053 request->n_channels = n_channels;
1054
1055 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1056 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1057 request->channels[idx++] = rdev_req->channels[i];
1058 }
1059
1060 rdev_req->scan_6ghz = false;
1061 rdev->int_scan_req = request;
1062 return rdev_scan(rdev, request);
1063}
1064
1065void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1066 bool send_message)
1067{
1068 struct cfg80211_scan_request *request, *rdev_req;
1069 struct wireless_dev *wdev;
1070 struct sk_buff *msg;
1071#ifdef CONFIG_CFG80211_WEXT
1072 union iwreq_data wrqu;
1073#endif
1074
1075 lockdep_assert_held(&rdev->wiphy.mtx);
1076
1077 if (rdev->scan_msg) {
1078 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1079 rdev->scan_msg = NULL;
1080 return;
1081 }
1082
1083 rdev_req = rdev->scan_req;
1084 if (!rdev_req)
1085 return;
1086
1087 wdev = rdev_req->wdev;
1088 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1089
1090 if (wdev_running(wdev) &&
1091 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1092 !rdev_req->scan_6ghz && !request->info.aborted &&
1093 !cfg80211_scan_6ghz(rdev))
1094 return;
1095
1096 /*
1097 * This must be before sending the other events!
1098 * Otherwise, wpa_supplicant gets completely confused with
1099 * wext events.
1100 */
1101 if (wdev->netdev)
1102 cfg80211_sme_scan_done(wdev->netdev);
1103
1104 if (!request->info.aborted &&
1105 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1106 /* flush entries from previous scans */
1107 spin_lock_bh(&rdev->bss_lock);
1108 __cfg80211_bss_expire(rdev, request->scan_start);
1109 spin_unlock_bh(&rdev->bss_lock);
1110 }
1111
1112 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1113
1114#ifdef CONFIG_CFG80211_WEXT
1115 if (wdev->netdev && !request->info.aborted) {
1116 memset(&wrqu, 0, sizeof(wrqu));
1117
1118 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1119 }
1120#endif
1121
1122 dev_put(wdev->netdev);
1123
1124 kfree(rdev->int_scan_req);
1125 rdev->int_scan_req = NULL;
1126
1127 kfree(rdev->scan_req);
1128 rdev->scan_req = NULL;
1129
1130 if (!send_message)
1131 rdev->scan_msg = msg;
1132 else
1133 nl80211_send_scan_msg(rdev, msg);
1134}
1135
1136void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1137{
1138 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1139}
1140
1141void cfg80211_scan_done(struct cfg80211_scan_request *request,
1142 struct cfg80211_scan_info *info)
1143{
1144 struct cfg80211_scan_info old_info = request->info;
1145
1146 trace_cfg80211_scan_done(request, info);
1147 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1148 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1149
1150 request->info = *info;
1151
1152 /*
1153 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1154 * be of the first part. In such a case old_info.scan_start_tsf should
1155 * be non zero.
1156 */
1157 if (request->scan_6ghz && old_info.scan_start_tsf) {
1158 request->info.scan_start_tsf = old_info.scan_start_tsf;
1159 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1160 sizeof(request->info.tsf_bssid));
1161 }
1162
1163 request->notified = true;
1164 wiphy_work_queue(request->wiphy,
1165 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1166}
1167EXPORT_SYMBOL(cfg80211_scan_done);
1168
1169void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1170 struct cfg80211_sched_scan_request *req)
1171{
1172 lockdep_assert_held(&rdev->wiphy.mtx);
1173
1174 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1175}
1176
1177static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1178 struct cfg80211_sched_scan_request *req)
1179{
1180 lockdep_assert_held(&rdev->wiphy.mtx);
1181
1182 list_del_rcu(&req->list);
1183 kfree_rcu(req, rcu_head);
1184}
1185
1186static struct cfg80211_sched_scan_request *
1187cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1188{
1189 struct cfg80211_sched_scan_request *pos;
1190
1191 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1192 lockdep_is_held(&rdev->wiphy.mtx)) {
1193 if (pos->reqid == reqid)
1194 return pos;
1195 }
1196 return NULL;
1197}
1198
1199/*
1200 * Determines if a scheduled scan request can be handled. When a legacy
1201 * scheduled scan is running no other scheduled scan is allowed regardless
1202 * whether the request is for legacy or multi-support scan. When a multi-support
1203 * scheduled scan is running a request for legacy scan is not allowed. In this
1204 * case a request for multi-support scan can be handled if resources are
1205 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1206 */
1207int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1208 bool want_multi)
1209{
1210 struct cfg80211_sched_scan_request *pos;
1211 int i = 0;
1212
1213 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1214 /* request id zero means legacy in progress */
1215 if (!i && !pos->reqid)
1216 return -EINPROGRESS;
1217 i++;
1218 }
1219
1220 if (i) {
1221 /* no legacy allowed when multi request(s) are active */
1222 if (!want_multi)
1223 return -EINPROGRESS;
1224
1225 /* resource limit reached */
1226 if (i == rdev->wiphy.max_sched_scan_reqs)
1227 return -ENOSPC;
1228 }
1229 return 0;
1230}
1231
1232void cfg80211_sched_scan_results_wk(struct work_struct *work)
1233{
1234 struct cfg80211_registered_device *rdev;
1235 struct cfg80211_sched_scan_request *req, *tmp;
1236
1237 rdev = container_of(work, struct cfg80211_registered_device,
1238 sched_scan_res_wk);
1239
1240 wiphy_lock(&rdev->wiphy);
1241 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1242 if (req->report_results) {
1243 req->report_results = false;
1244 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1245 /* flush entries from previous scans */
1246 spin_lock_bh(&rdev->bss_lock);
1247 __cfg80211_bss_expire(rdev, req->scan_start);
1248 spin_unlock_bh(&rdev->bss_lock);
1249 req->scan_start = jiffies;
1250 }
1251 nl80211_send_sched_scan(req,
1252 NL80211_CMD_SCHED_SCAN_RESULTS);
1253 }
1254 }
1255 wiphy_unlock(&rdev->wiphy);
1256}
1257
1258void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1259{
1260 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1261 struct cfg80211_sched_scan_request *request;
1262
1263 trace_cfg80211_sched_scan_results(wiphy, reqid);
1264 /* ignore if we're not scanning */
1265
1266 rcu_read_lock();
1267 request = cfg80211_find_sched_scan_req(rdev, reqid);
1268 if (request) {
1269 request->report_results = true;
1270 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1271 }
1272 rcu_read_unlock();
1273}
1274EXPORT_SYMBOL(cfg80211_sched_scan_results);
1275
1276void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1277{
1278 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1279
1280 lockdep_assert_held(&wiphy->mtx);
1281
1282 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1283
1284 __cfg80211_stop_sched_scan(rdev, reqid, true);
1285}
1286EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1287
1288void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1289{
1290 wiphy_lock(wiphy);
1291 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1292 wiphy_unlock(wiphy);
1293}
1294EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1295
1296int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1297 struct cfg80211_sched_scan_request *req,
1298 bool driver_initiated)
1299{
1300 lockdep_assert_held(&rdev->wiphy.mtx);
1301
1302 if (!driver_initiated) {
1303 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1304 if (err)
1305 return err;
1306 }
1307
1308 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1309
1310 cfg80211_del_sched_scan_req(rdev, req);
1311
1312 return 0;
1313}
1314
1315int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1316 u64 reqid, bool driver_initiated)
1317{
1318 struct cfg80211_sched_scan_request *sched_scan_req;
1319
1320 lockdep_assert_held(&rdev->wiphy.mtx);
1321
1322 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1323 if (!sched_scan_req)
1324 return -ENOENT;
1325
1326 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1327 driver_initiated);
1328}
1329
1330void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1331 unsigned long age_secs)
1332{
1333 struct cfg80211_internal_bss *bss;
1334 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1335
1336 spin_lock_bh(&rdev->bss_lock);
1337 list_for_each_entry(bss, &rdev->bss_list, list)
1338 bss->ts -= age_jiffies;
1339 spin_unlock_bh(&rdev->bss_lock);
1340}
1341
1342void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1343{
1344 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1345}
1346
1347void cfg80211_bss_flush(struct wiphy *wiphy)
1348{
1349 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1350
1351 spin_lock_bh(&rdev->bss_lock);
1352 __cfg80211_bss_expire(rdev, jiffies);
1353 spin_unlock_bh(&rdev->bss_lock);
1354}
1355EXPORT_SYMBOL(cfg80211_bss_flush);
1356
1357const struct element *
1358cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1359 const u8 *match, unsigned int match_len,
1360 unsigned int match_offset)
1361{
1362 const struct element *elem;
1363
1364 for_each_element_id(elem, eid, ies, len) {
1365 if (elem->datalen >= match_offset + match_len &&
1366 !memcmp(elem->data + match_offset, match, match_len))
1367 return elem;
1368 }
1369
1370 return NULL;
1371}
1372EXPORT_SYMBOL(cfg80211_find_elem_match);
1373
1374const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1375 const u8 *ies,
1376 unsigned int len)
1377{
1378 const struct element *elem;
1379 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1380 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1381
1382 if (WARN_ON(oui_type > 0xff))
1383 return NULL;
1384
1385 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1386 match, match_len, 0);
1387
1388 if (!elem || elem->datalen < 4)
1389 return NULL;
1390
1391 return elem;
1392}
1393EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1394
1395/**
1396 * enum bss_compare_mode - BSS compare mode
1397 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1398 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1399 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1400 */
1401enum bss_compare_mode {
1402 BSS_CMP_REGULAR,
1403 BSS_CMP_HIDE_ZLEN,
1404 BSS_CMP_HIDE_NUL,
1405};
1406
1407static int cmp_bss(struct cfg80211_bss *a,
1408 struct cfg80211_bss *b,
1409 enum bss_compare_mode mode)
1410{
1411 const struct cfg80211_bss_ies *a_ies, *b_ies;
1412 const u8 *ie1 = NULL;
1413 const u8 *ie2 = NULL;
1414 int i, r;
1415
1416 if (a->channel != b->channel)
1417 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1418 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1419
1420 a_ies = rcu_access_pointer(a->ies);
1421 if (!a_ies)
1422 return -1;
1423 b_ies = rcu_access_pointer(b->ies);
1424 if (!b_ies)
1425 return 1;
1426
1427 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1428 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1429 a_ies->data, a_ies->len);
1430 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1431 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1432 b_ies->data, b_ies->len);
1433 if (ie1 && ie2) {
1434 int mesh_id_cmp;
1435
1436 if (ie1[1] == ie2[1])
1437 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1438 else
1439 mesh_id_cmp = ie2[1] - ie1[1];
1440
1441 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 a_ies->data, a_ies->len);
1443 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1444 b_ies->data, b_ies->len);
1445 if (ie1 && ie2) {
1446 if (mesh_id_cmp)
1447 return mesh_id_cmp;
1448 if (ie1[1] != ie2[1])
1449 return ie2[1] - ie1[1];
1450 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1451 }
1452 }
1453
1454 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1455 if (r)
1456 return r;
1457
1458 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1459 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1460
1461 if (!ie1 && !ie2)
1462 return 0;
1463
1464 /*
1465 * Note that with "hide_ssid", the function returns a match if
1466 * the already-present BSS ("b") is a hidden SSID beacon for
1467 * the new BSS ("a").
1468 */
1469
1470 /* sort missing IE before (left of) present IE */
1471 if (!ie1)
1472 return -1;
1473 if (!ie2)
1474 return 1;
1475
1476 switch (mode) {
1477 case BSS_CMP_HIDE_ZLEN:
1478 /*
1479 * In ZLEN mode we assume the BSS entry we're
1480 * looking for has a zero-length SSID. So if
1481 * the one we're looking at right now has that,
1482 * return 0. Otherwise, return the difference
1483 * in length, but since we're looking for the
1484 * 0-length it's really equivalent to returning
1485 * the length of the one we're looking at.
1486 *
1487 * No content comparison is needed as we assume
1488 * the content length is zero.
1489 */
1490 return ie2[1];
1491 case BSS_CMP_REGULAR:
1492 default:
1493 /* sort by length first, then by contents */
1494 if (ie1[1] != ie2[1])
1495 return ie2[1] - ie1[1];
1496 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1497 case BSS_CMP_HIDE_NUL:
1498 if (ie1[1] != ie2[1])
1499 return ie2[1] - ie1[1];
1500 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1501 for (i = 0; i < ie2[1]; i++)
1502 if (ie2[i + 2])
1503 return -1;
1504 return 0;
1505 }
1506}
1507
1508static bool cfg80211_bss_type_match(u16 capability,
1509 enum nl80211_band band,
1510 enum ieee80211_bss_type bss_type)
1511{
1512 bool ret = true;
1513 u16 mask, val;
1514
1515 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1516 return ret;
1517
1518 if (band == NL80211_BAND_60GHZ) {
1519 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1520 switch (bss_type) {
1521 case IEEE80211_BSS_TYPE_ESS:
1522 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1523 break;
1524 case IEEE80211_BSS_TYPE_PBSS:
1525 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1526 break;
1527 case IEEE80211_BSS_TYPE_IBSS:
1528 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1529 break;
1530 default:
1531 return false;
1532 }
1533 } else {
1534 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1535 switch (bss_type) {
1536 case IEEE80211_BSS_TYPE_ESS:
1537 val = WLAN_CAPABILITY_ESS;
1538 break;
1539 case IEEE80211_BSS_TYPE_IBSS:
1540 val = WLAN_CAPABILITY_IBSS;
1541 break;
1542 case IEEE80211_BSS_TYPE_MBSS:
1543 val = 0;
1544 break;
1545 default:
1546 return false;
1547 }
1548 }
1549
1550 ret = ((capability & mask) == val);
1551 return ret;
1552}
1553
1554/* Returned bss is reference counted and must be cleaned up appropriately. */
1555struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1556 struct ieee80211_channel *channel,
1557 const u8 *bssid,
1558 const u8 *ssid, size_t ssid_len,
1559 enum ieee80211_bss_type bss_type,
1560 enum ieee80211_privacy privacy,
1561 u32 use_for)
1562{
1563 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1564 struct cfg80211_internal_bss *bss, *res = NULL;
1565 unsigned long now = jiffies;
1566 int bss_privacy;
1567
1568 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1569 privacy);
1570
1571 spin_lock_bh(&rdev->bss_lock);
1572
1573 list_for_each_entry(bss, &rdev->bss_list, list) {
1574 if (!cfg80211_bss_type_match(bss->pub.capability,
1575 bss->pub.channel->band, bss_type))
1576 continue;
1577
1578 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1579 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1580 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1581 continue;
1582 if (channel && bss->pub.channel != channel)
1583 continue;
1584 if (!is_valid_ether_addr(bss->pub.bssid))
1585 continue;
1586 if ((bss->pub.use_for & use_for) != use_for)
1587 continue;
1588 /* Don't get expired BSS structs */
1589 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1590 !atomic_read(&bss->hold))
1591 continue;
1592 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1593 res = bss;
1594 bss_ref_get(rdev, res);
1595 break;
1596 }
1597 }
1598
1599 spin_unlock_bh(&rdev->bss_lock);
1600 if (!res)
1601 return NULL;
1602 trace_cfg80211_return_bss(&res->pub);
1603 return &res->pub;
1604}
1605EXPORT_SYMBOL(__cfg80211_get_bss);
1606
1607static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1608 struct cfg80211_internal_bss *bss)
1609{
1610 struct rb_node **p = &rdev->bss_tree.rb_node;
1611 struct rb_node *parent = NULL;
1612 struct cfg80211_internal_bss *tbss;
1613 int cmp;
1614
1615 while (*p) {
1616 parent = *p;
1617 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1618
1619 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1620
1621 if (WARN_ON(!cmp)) {
1622 /* will sort of leak this BSS */
1623 return false;
1624 }
1625
1626 if (cmp < 0)
1627 p = &(*p)->rb_left;
1628 else
1629 p = &(*p)->rb_right;
1630 }
1631
1632 rb_link_node(&bss->rbn, parent, p);
1633 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1634 return true;
1635}
1636
1637static struct cfg80211_internal_bss *
1638rb_find_bss(struct cfg80211_registered_device *rdev,
1639 struct cfg80211_internal_bss *res,
1640 enum bss_compare_mode mode)
1641{
1642 struct rb_node *n = rdev->bss_tree.rb_node;
1643 struct cfg80211_internal_bss *bss;
1644 int r;
1645
1646 while (n) {
1647 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1648 r = cmp_bss(&res->pub, &bss->pub, mode);
1649
1650 if (r == 0)
1651 return bss;
1652 else if (r < 0)
1653 n = n->rb_left;
1654 else
1655 n = n->rb_right;
1656 }
1657
1658 return NULL;
1659}
1660
1661static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1662 struct cfg80211_internal_bss *bss)
1663{
1664 lockdep_assert_held(&rdev->bss_lock);
1665
1666 if (!rb_insert_bss(rdev, bss))
1667 return;
1668 list_add_tail(&bss->list, &rdev->bss_list);
1669 rdev->bss_entries++;
1670}
1671
1672static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1673 struct cfg80211_internal_bss *bss)
1674{
1675 lockdep_assert_held(&rdev->bss_lock);
1676
1677 rb_erase(&bss->rbn, &rdev->bss_tree);
1678 if (!rb_insert_bss(rdev, bss)) {
1679 list_del(&bss->list);
1680 if (!list_empty(&bss->hidden_list))
1681 list_del_init(&bss->hidden_list);
1682 if (!list_empty(&bss->pub.nontrans_list))
1683 list_del_init(&bss->pub.nontrans_list);
1684 rdev->bss_entries--;
1685 }
1686 rdev->bss_generation++;
1687}
1688
1689static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1690 struct cfg80211_internal_bss *new)
1691{
1692 const struct cfg80211_bss_ies *ies;
1693 struct cfg80211_internal_bss *bss;
1694 const u8 *ie;
1695 int i, ssidlen;
1696 u8 fold = 0;
1697 u32 n_entries = 0;
1698
1699 ies = rcu_access_pointer(new->pub.beacon_ies);
1700 if (WARN_ON(!ies))
1701 return false;
1702
1703 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1704 if (!ie) {
1705 /* nothing to do */
1706 return true;
1707 }
1708
1709 ssidlen = ie[1];
1710 for (i = 0; i < ssidlen; i++)
1711 fold |= ie[2 + i];
1712
1713 if (fold) {
1714 /* not a hidden SSID */
1715 return true;
1716 }
1717
1718 /* This is the bad part ... */
1719
1720 list_for_each_entry(bss, &rdev->bss_list, list) {
1721 /*
1722 * we're iterating all the entries anyway, so take the
1723 * opportunity to validate the list length accounting
1724 */
1725 n_entries++;
1726
1727 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1728 continue;
1729 if (bss->pub.channel != new->pub.channel)
1730 continue;
1731 if (rcu_access_pointer(bss->pub.beacon_ies))
1732 continue;
1733 ies = rcu_access_pointer(bss->pub.ies);
1734 if (!ies)
1735 continue;
1736 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1737 if (!ie)
1738 continue;
1739 if (ssidlen && ie[1] != ssidlen)
1740 continue;
1741 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1742 continue;
1743 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1744 list_del(&bss->hidden_list);
1745 /* combine them */
1746 list_add(&bss->hidden_list, &new->hidden_list);
1747 bss->pub.hidden_beacon_bss = &new->pub;
1748 new->refcount += bss->refcount;
1749 rcu_assign_pointer(bss->pub.beacon_ies,
1750 new->pub.beacon_ies);
1751 }
1752
1753 WARN_ONCE(n_entries != rdev->bss_entries,
1754 "rdev bss entries[%d]/list[len:%d] corruption\n",
1755 rdev->bss_entries, n_entries);
1756
1757 return true;
1758}
1759
1760static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1761 const struct cfg80211_bss_ies *new_ies,
1762 const struct cfg80211_bss_ies *old_ies)
1763{
1764 struct cfg80211_internal_bss *bss;
1765
1766 /* Assign beacon IEs to all sub entries */
1767 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1768 const struct cfg80211_bss_ies *ies;
1769
1770 ies = rcu_access_pointer(bss->pub.beacon_ies);
1771 WARN_ON(ies != old_ies);
1772
1773 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1774 }
1775}
1776
1777static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1778 struct cfg80211_internal_bss *known,
1779 const struct cfg80211_bss_ies *old)
1780{
1781 const struct ieee80211_ext_chansw_ie *ecsa;
1782 const struct element *elem_new, *elem_old;
1783 const struct cfg80211_bss_ies *new, *bcn;
1784
1785 if (known->pub.proberesp_ecsa_stuck)
1786 return;
1787
1788 new = rcu_dereference_protected(known->pub.proberesp_ies,
1789 lockdep_is_held(&rdev->bss_lock));
1790 if (WARN_ON(!new))
1791 return;
1792
1793 if (new->tsf - old->tsf < USEC_PER_SEC)
1794 return;
1795
1796 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1797 old->data, old->len);
1798 if (!elem_old)
1799 return;
1800
1801 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1802 new->data, new->len);
1803 if (!elem_new)
1804 return;
1805
1806 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1807 lockdep_is_held(&rdev->bss_lock));
1808 if (bcn &&
1809 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1810 bcn->data, bcn->len))
1811 return;
1812
1813 if (elem_new->datalen != elem_old->datalen)
1814 return;
1815 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1816 return;
1817 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1818 return;
1819
1820 ecsa = (void *)elem_new->data;
1821
1822 if (!ecsa->mode)
1823 return;
1824
1825 if (ecsa->new_ch_num !=
1826 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1827 return;
1828
1829 known->pub.proberesp_ecsa_stuck = 1;
1830}
1831
1832static bool
1833cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1834 struct cfg80211_internal_bss *known,
1835 struct cfg80211_internal_bss *new,
1836 bool signal_valid)
1837{
1838 lockdep_assert_held(&rdev->bss_lock);
1839
1840 /* Update IEs */
1841 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1842 const struct cfg80211_bss_ies *old;
1843
1844 old = rcu_access_pointer(known->pub.proberesp_ies);
1845
1846 rcu_assign_pointer(known->pub.proberesp_ies,
1847 new->pub.proberesp_ies);
1848 /* Override possible earlier Beacon frame IEs */
1849 rcu_assign_pointer(known->pub.ies,
1850 new->pub.proberesp_ies);
1851 if (old) {
1852 cfg80211_check_stuck_ecsa(rdev, known, old);
1853 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1854 }
1855 }
1856
1857 if (rcu_access_pointer(new->pub.beacon_ies)) {
1858 const struct cfg80211_bss_ies *old;
1859
1860 if (known->pub.hidden_beacon_bss &&
1861 !list_empty(&known->hidden_list)) {
1862 const struct cfg80211_bss_ies *f;
1863
1864 /* The known BSS struct is one of the probe
1865 * response members of a group, but we're
1866 * receiving a beacon (beacon_ies in the new
1867 * bss is used). This can only mean that the
1868 * AP changed its beacon from not having an
1869 * SSID to showing it, which is confusing so
1870 * drop this information.
1871 */
1872
1873 f = rcu_access_pointer(new->pub.beacon_ies);
1874 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1875 return false;
1876 }
1877
1878 old = rcu_access_pointer(known->pub.beacon_ies);
1879
1880 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1881
1882 /* Override IEs if they were from a beacon before */
1883 if (old == rcu_access_pointer(known->pub.ies))
1884 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1885
1886 cfg80211_update_hidden_bsses(known,
1887 rcu_access_pointer(new->pub.beacon_ies),
1888 old);
1889
1890 if (old)
1891 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1892 }
1893
1894 known->pub.beacon_interval = new->pub.beacon_interval;
1895
1896 /* don't update the signal if beacon was heard on
1897 * adjacent channel.
1898 */
1899 if (signal_valid)
1900 known->pub.signal = new->pub.signal;
1901 known->pub.capability = new->pub.capability;
1902 known->ts = new->ts;
1903 known->ts_boottime = new->ts_boottime;
1904 known->parent_tsf = new->parent_tsf;
1905 known->pub.chains = new->pub.chains;
1906 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1907 IEEE80211_MAX_CHAINS);
1908 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1909 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1910 known->pub.bssid_index = new->pub.bssid_index;
1911 known->pub.use_for &= new->pub.use_for;
1912 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1913
1914 return true;
1915}
1916
1917/* Returned bss is reference counted and must be cleaned up appropriately. */
1918static struct cfg80211_internal_bss *
1919__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1920 struct cfg80211_internal_bss *tmp,
1921 bool signal_valid, unsigned long ts)
1922{
1923 struct cfg80211_internal_bss *found = NULL;
1924 struct cfg80211_bss_ies *ies;
1925
1926 if (WARN_ON(!tmp->pub.channel))
1927 goto free_ies;
1928
1929 tmp->ts = ts;
1930
1931 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1932 goto free_ies;
1933
1934 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1935
1936 if (found) {
1937 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1938 return NULL;
1939 } else {
1940 struct cfg80211_internal_bss *new;
1941 struct cfg80211_internal_bss *hidden;
1942
1943 /*
1944 * create a copy -- the "res" variable that is passed in
1945 * is allocated on the stack since it's not needed in the
1946 * more common case of an update
1947 */
1948 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1949 GFP_ATOMIC);
1950 if (!new)
1951 goto free_ies;
1952 memcpy(new, tmp, sizeof(*new));
1953 new->refcount = 1;
1954 INIT_LIST_HEAD(&new->hidden_list);
1955 INIT_LIST_HEAD(&new->pub.nontrans_list);
1956 /* we'll set this later if it was non-NULL */
1957 new->pub.transmitted_bss = NULL;
1958
1959 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1960 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1961 if (!hidden)
1962 hidden = rb_find_bss(rdev, tmp,
1963 BSS_CMP_HIDE_NUL);
1964 if (hidden) {
1965 new->pub.hidden_beacon_bss = &hidden->pub;
1966 list_add(&new->hidden_list,
1967 &hidden->hidden_list);
1968 hidden->refcount++;
1969
1970 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1971 rcu_assign_pointer(new->pub.beacon_ies,
1972 hidden->pub.beacon_ies);
1973 if (ies)
1974 kfree_rcu(ies, rcu_head);
1975 }
1976 } else {
1977 /*
1978 * Ok so we found a beacon, and don't have an entry. If
1979 * it's a beacon with hidden SSID, we might be in for an
1980 * expensive search for any probe responses that should
1981 * be grouped with this beacon for updates ...
1982 */
1983 if (!cfg80211_combine_bsses(rdev, new)) {
1984 bss_ref_put(rdev, new);
1985 return NULL;
1986 }
1987 }
1988
1989 if (rdev->bss_entries >= bss_entries_limit &&
1990 !cfg80211_bss_expire_oldest(rdev)) {
1991 bss_ref_put(rdev, new);
1992 return NULL;
1993 }
1994
1995 /* This must be before the call to bss_ref_get */
1996 if (tmp->pub.transmitted_bss) {
1997 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1998 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1999 }
2000
2001 cfg80211_insert_bss(rdev, new);
2002 found = new;
2003 }
2004
2005 rdev->bss_generation++;
2006 bss_ref_get(rdev, found);
2007
2008 return found;
2009
2010free_ies:
2011 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
2012 if (ies)
2013 kfree_rcu(ies, rcu_head);
2014 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
2015 if (ies)
2016 kfree_rcu(ies, rcu_head);
2017
2018 return NULL;
2019}
2020
2021struct cfg80211_internal_bss *
2022cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2023 struct cfg80211_internal_bss *tmp,
2024 bool signal_valid, unsigned long ts)
2025{
2026 struct cfg80211_internal_bss *res;
2027
2028 spin_lock_bh(&rdev->bss_lock);
2029 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2030 spin_unlock_bh(&rdev->bss_lock);
2031
2032 return res;
2033}
2034
2035int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2036 enum nl80211_band band)
2037{
2038 const struct element *tmp;
2039
2040 if (band == NL80211_BAND_6GHZ) {
2041 struct ieee80211_he_operation *he_oper;
2042
2043 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2044 ielen);
2045 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2046 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2047 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2048
2049 he_oper = (void *)&tmp->data[1];
2050
2051 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2052 if (!he_6ghz_oper)
2053 return -1;
2054
2055 return he_6ghz_oper->primary;
2056 }
2057 } else if (band == NL80211_BAND_S1GHZ) {
2058 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2059 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2060 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2061
2062 return s1gop->oper_ch;
2063 }
2064 } else {
2065 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2066 if (tmp && tmp->datalen == 1)
2067 return tmp->data[0];
2068
2069 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2070 if (tmp &&
2071 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2072 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2073
2074 return htop->primary_chan;
2075 }
2076 }
2077
2078 return -1;
2079}
2080EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2081
2082/*
2083 * Update RX channel information based on the available frame payload
2084 * information. This is mainly for the 2.4 GHz band where frames can be received
2085 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2086 * element to indicate the current (transmitting) channel, but this might also
2087 * be needed on other bands if RX frequency does not match with the actual
2088 * operating channel of a BSS, or if the AP reports a different primary channel.
2089 */
2090static struct ieee80211_channel *
2091cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2092 struct ieee80211_channel *channel)
2093{
2094 u32 freq;
2095 int channel_number;
2096 struct ieee80211_channel *alt_channel;
2097
2098 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2099 channel->band);
2100
2101 if (channel_number < 0) {
2102 /* No channel information in frame payload */
2103 return channel;
2104 }
2105
2106 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2107
2108 /*
2109 * Frame info (beacon/prob res) is the same as received channel,
2110 * no need for further processing.
2111 */
2112 if (freq == ieee80211_channel_to_khz(channel))
2113 return channel;
2114
2115 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2116 if (!alt_channel) {
2117 if (channel->band == NL80211_BAND_2GHZ ||
2118 channel->band == NL80211_BAND_6GHZ) {
2119 /*
2120 * Better not allow unexpected channels when that could
2121 * be going beyond the 1-11 range (e.g., discovering
2122 * BSS on channel 12 when radio is configured for
2123 * channel 11) or beyond the 6 GHz channel range.
2124 */
2125 return NULL;
2126 }
2127
2128 /* No match for the payload channel number - ignore it */
2129 return channel;
2130 }
2131
2132 /*
2133 * Use the channel determined through the payload channel number
2134 * instead of the RX channel reported by the driver.
2135 */
2136 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2137 return NULL;
2138 return alt_channel;
2139}
2140
2141struct cfg80211_inform_single_bss_data {
2142 struct cfg80211_inform_bss *drv_data;
2143 enum cfg80211_bss_frame_type ftype;
2144 struct ieee80211_channel *channel;
2145 u8 bssid[ETH_ALEN];
2146 u64 tsf;
2147 u16 capability;
2148 u16 beacon_interval;
2149 const u8 *ie;
2150 size_t ielen;
2151
2152 enum {
2153 BSS_SOURCE_DIRECT = 0,
2154 BSS_SOURCE_MBSSID,
2155 BSS_SOURCE_STA_PROFILE,
2156 } bss_source;
2157 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2158 struct cfg80211_bss *source_bss;
2159 u8 max_bssid_indicator;
2160 u8 bssid_index;
2161
2162 u8 use_for;
2163 u64 cannot_use_reasons;
2164};
2165
2166enum ieee80211_ap_reg_power
2167cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2168{
2169 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2170 struct ieee80211_he_operation *he_oper;
2171 const struct element *tmp;
2172
2173 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2174 elems, elems_len);
2175 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2176 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2177 return IEEE80211_REG_UNSET_AP;
2178
2179 he_oper = (void *)&tmp->data[1];
2180 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2181
2182 if (!he_6ghz_oper)
2183 return IEEE80211_REG_UNSET_AP;
2184
2185 switch (u8_get_bits(he_6ghz_oper->control,
2186 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2187 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2188 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2189 return IEEE80211_REG_LPI_AP;
2190 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2191 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2192 return IEEE80211_REG_SP_AP;
2193 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2194 return IEEE80211_REG_VLP_AP;
2195 default:
2196 return IEEE80211_REG_UNSET_AP;
2197 }
2198}
2199
2200static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2201 const u32 flags)
2202{
2203 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2204 case IEEE80211_REG_LPI_AP:
2205 return true;
2206 case IEEE80211_REG_SP_AP:
2207 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2208 case IEEE80211_REG_VLP_AP:
2209 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2210 default:
2211 return false;
2212 }
2213}
2214
2215/* Returned bss is reference counted and must be cleaned up appropriately. */
2216static struct cfg80211_bss *
2217cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2218 struct cfg80211_inform_single_bss_data *data,
2219 gfp_t gfp)
2220{
2221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2222 struct cfg80211_inform_bss *drv_data = data->drv_data;
2223 struct cfg80211_bss_ies *ies;
2224 struct ieee80211_channel *channel;
2225 struct cfg80211_internal_bss tmp = {}, *res;
2226 int bss_type;
2227 bool signal_valid;
2228 unsigned long ts;
2229
2230 if (WARN_ON(!wiphy))
2231 return NULL;
2232
2233 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2234 (drv_data->signal < 0 || drv_data->signal > 100)))
2235 return NULL;
2236
2237 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2238 return NULL;
2239
2240 channel = data->channel;
2241 if (!channel)
2242 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2243 drv_data->chan);
2244 if (!channel)
2245 return NULL;
2246
2247 if (channel->band == NL80211_BAND_6GHZ &&
2248 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2249 channel->flags)) {
2250 data->use_for = 0;
2251 data->cannot_use_reasons =
2252 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2253 }
2254
2255 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2256 tmp.pub.channel = channel;
2257 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2258 tmp.pub.signal = drv_data->signal;
2259 else
2260 tmp.pub.signal = 0;
2261 tmp.pub.beacon_interval = data->beacon_interval;
2262 tmp.pub.capability = data->capability;
2263 tmp.ts_boottime = drv_data->boottime_ns;
2264 tmp.parent_tsf = drv_data->parent_tsf;
2265 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2266 tmp.pub.chains = drv_data->chains;
2267 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2268 IEEE80211_MAX_CHAINS);
2269 tmp.pub.use_for = data->use_for;
2270 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2271
2272 switch (data->bss_source) {
2273 case BSS_SOURCE_MBSSID:
2274 tmp.pub.transmitted_bss = data->source_bss;
2275 fallthrough;
2276 case BSS_SOURCE_STA_PROFILE:
2277 ts = bss_from_pub(data->source_bss)->ts;
2278 tmp.pub.bssid_index = data->bssid_index;
2279 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2280 break;
2281 case BSS_SOURCE_DIRECT:
2282 ts = jiffies;
2283
2284 if (channel->band == NL80211_BAND_60GHZ) {
2285 bss_type = data->capability &
2286 WLAN_CAPABILITY_DMG_TYPE_MASK;
2287 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2288 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2289 regulatory_hint_found_beacon(wiphy, channel,
2290 gfp);
2291 } else {
2292 if (data->capability & WLAN_CAPABILITY_ESS)
2293 regulatory_hint_found_beacon(wiphy, channel,
2294 gfp);
2295 }
2296 break;
2297 }
2298
2299 /*
2300 * If we do not know here whether the IEs are from a Beacon or Probe
2301 * Response frame, we need to pick one of the options and only use it
2302 * with the driver that does not provide the full Beacon/Probe Response
2303 * frame. Use Beacon frame pointer to avoid indicating that this should
2304 * override the IEs pointer should we have received an earlier
2305 * indication of Probe Response data.
2306 */
2307 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2308 if (!ies)
2309 return NULL;
2310 ies->len = data->ielen;
2311 ies->tsf = data->tsf;
2312 ies->from_beacon = false;
2313 memcpy(ies->data, data->ie, data->ielen);
2314
2315 switch (data->ftype) {
2316 case CFG80211_BSS_FTYPE_BEACON:
2317 case CFG80211_BSS_FTYPE_S1G_BEACON:
2318 ies->from_beacon = true;
2319 fallthrough;
2320 case CFG80211_BSS_FTYPE_UNKNOWN:
2321 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2322 break;
2323 case CFG80211_BSS_FTYPE_PRESP:
2324 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2325 break;
2326 }
2327 rcu_assign_pointer(tmp.pub.ies, ies);
2328
2329 signal_valid = drv_data->chan == channel;
2330 spin_lock_bh(&rdev->bss_lock);
2331 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2332 if (!res)
2333 goto drop;
2334
2335 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2336
2337 if (data->bss_source == BSS_SOURCE_MBSSID) {
2338 /* this is a nontransmitting bss, we need to add it to
2339 * transmitting bss' list if it is not there
2340 */
2341 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2342 if (__cfg80211_unlink_bss(rdev, res)) {
2343 rdev->bss_generation++;
2344 res = NULL;
2345 }
2346 }
2347
2348 if (!res)
2349 goto drop;
2350 }
2351 spin_unlock_bh(&rdev->bss_lock);
2352
2353 trace_cfg80211_return_bss(&res->pub);
2354 /* __cfg80211_bss_update gives us a referenced result */
2355 return &res->pub;
2356
2357drop:
2358 spin_unlock_bh(&rdev->bss_lock);
2359 return NULL;
2360}
2361
2362static const struct element
2363*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2364 const struct element *mbssid_elem,
2365 const struct element *sub_elem)
2366{
2367 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2368 const struct element *next_mbssid;
2369 const struct element *next_sub;
2370
2371 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2372 mbssid_end,
2373 ielen - (mbssid_end - ie));
2374
2375 /*
2376 * If it is not the last subelement in current MBSSID IE or there isn't
2377 * a next MBSSID IE - profile is complete.
2378 */
2379 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2380 !next_mbssid)
2381 return NULL;
2382
2383 /* For any length error, just return NULL */
2384
2385 if (next_mbssid->datalen < 4)
2386 return NULL;
2387
2388 next_sub = (void *)&next_mbssid->data[1];
2389
2390 if (next_mbssid->data + next_mbssid->datalen <
2391 next_sub->data + next_sub->datalen)
2392 return NULL;
2393
2394 if (next_sub->id != 0 || next_sub->datalen < 2)
2395 return NULL;
2396
2397 /*
2398 * Check if the first element in the next sub element is a start
2399 * of a new profile
2400 */
2401 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2402 NULL : next_mbssid;
2403}
2404
2405size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2406 const struct element *mbssid_elem,
2407 const struct element *sub_elem,
2408 u8 *merged_ie, size_t max_copy_len)
2409{
2410 size_t copied_len = sub_elem->datalen;
2411 const struct element *next_mbssid;
2412
2413 if (sub_elem->datalen > max_copy_len)
2414 return 0;
2415
2416 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2417
2418 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2419 mbssid_elem,
2420 sub_elem))) {
2421 const struct element *next_sub = (void *)&next_mbssid->data[1];
2422
2423 if (copied_len + next_sub->datalen > max_copy_len)
2424 break;
2425 memcpy(merged_ie + copied_len, next_sub->data,
2426 next_sub->datalen);
2427 copied_len += next_sub->datalen;
2428 }
2429
2430 return copied_len;
2431}
2432EXPORT_SYMBOL(cfg80211_merge_profile);
2433
2434static void
2435cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2436 struct cfg80211_inform_single_bss_data *tx_data,
2437 struct cfg80211_bss *source_bss,
2438 gfp_t gfp)
2439{
2440 struct cfg80211_inform_single_bss_data data = {
2441 .drv_data = tx_data->drv_data,
2442 .ftype = tx_data->ftype,
2443 .tsf = tx_data->tsf,
2444 .beacon_interval = tx_data->beacon_interval,
2445 .source_bss = source_bss,
2446 .bss_source = BSS_SOURCE_MBSSID,
2447 .use_for = tx_data->use_for,
2448 .cannot_use_reasons = tx_data->cannot_use_reasons,
2449 };
2450 const u8 *mbssid_index_ie;
2451 const struct element *elem, *sub;
2452 u8 *new_ie, *profile;
2453 u64 seen_indices = 0;
2454 struct cfg80211_bss *bss;
2455
2456 if (!source_bss)
2457 return;
2458 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2459 tx_data->ie, tx_data->ielen))
2460 return;
2461 if (!wiphy->support_mbssid)
2462 return;
2463 if (wiphy->support_only_he_mbssid &&
2464 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2465 tx_data->ie, tx_data->ielen))
2466 return;
2467
2468 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2469 if (!new_ie)
2470 return;
2471
2472 profile = kmalloc(tx_data->ielen, gfp);
2473 if (!profile)
2474 goto out;
2475
2476 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2477 tx_data->ie, tx_data->ielen) {
2478 if (elem->datalen < 4)
2479 continue;
2480 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2481 continue;
2482 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2483 u8 profile_len;
2484
2485 if (sub->id != 0 || sub->datalen < 4) {
2486 /* not a valid BSS profile */
2487 continue;
2488 }
2489
2490 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2491 sub->data[1] != 2) {
2492 /* The first element within the Nontransmitted
2493 * BSSID Profile is not the Nontransmitted
2494 * BSSID Capability element.
2495 */
2496 continue;
2497 }
2498
2499 memset(profile, 0, tx_data->ielen);
2500 profile_len = cfg80211_merge_profile(tx_data->ie,
2501 tx_data->ielen,
2502 elem,
2503 sub,
2504 profile,
2505 tx_data->ielen);
2506
2507 /* found a Nontransmitted BSSID Profile */
2508 mbssid_index_ie = cfg80211_find_ie
2509 (WLAN_EID_MULTI_BSSID_IDX,
2510 profile, profile_len);
2511 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2512 mbssid_index_ie[2] == 0 ||
2513 mbssid_index_ie[2] > 46 ||
2514 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2515 /* No valid Multiple BSSID-Index element */
2516 continue;
2517 }
2518
2519 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2520 /* We don't support legacy split of a profile */
2521 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2522 mbssid_index_ie[2]);
2523
2524 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2525
2526 data.bssid_index = mbssid_index_ie[2];
2527 data.max_bssid_indicator = elem->data[0];
2528
2529 cfg80211_gen_new_bssid(tx_data->bssid,
2530 data.max_bssid_indicator,
2531 data.bssid_index,
2532 data.bssid);
2533
2534 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2535 data.ie = new_ie;
2536 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2537 tx_data->ielen,
2538 profile,
2539 profile_len,
2540 new_ie,
2541 IEEE80211_MAX_DATA_LEN);
2542 if (!data.ielen)
2543 continue;
2544
2545 data.capability = get_unaligned_le16(profile + 2);
2546 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2547 if (!bss)
2548 break;
2549 cfg80211_put_bss(wiphy, bss);
2550 }
2551 }
2552
2553out:
2554 kfree(new_ie);
2555 kfree(profile);
2556}
2557
2558ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2559 size_t ieslen, u8 *data, size_t data_len,
2560 u8 frag_id)
2561{
2562 const struct element *next;
2563 ssize_t copied;
2564 u8 elem_datalen;
2565
2566 if (!elem)
2567 return -EINVAL;
2568
2569 /* elem might be invalid after the memmove */
2570 next = (void *)(elem->data + elem->datalen);
2571 elem_datalen = elem->datalen;
2572
2573 if (elem->id == WLAN_EID_EXTENSION) {
2574 copied = elem->datalen - 1;
2575
2576 if (data) {
2577 if (copied > data_len)
2578 return -ENOSPC;
2579
2580 memmove(data, elem->data + 1, copied);
2581 }
2582 } else {
2583 copied = elem->datalen;
2584
2585 if (data) {
2586 if (copied > data_len)
2587 return -ENOSPC;
2588
2589 memmove(data, elem->data, copied);
2590 }
2591 }
2592
2593 /* Fragmented elements must have 255 bytes */
2594 if (elem_datalen < 255)
2595 return copied;
2596
2597 for (elem = next;
2598 elem->data < ies + ieslen &&
2599 elem->data + elem->datalen <= ies + ieslen;
2600 elem = next) {
2601 /* elem might be invalid after the memmove */
2602 next = (void *)(elem->data + elem->datalen);
2603
2604 if (elem->id != frag_id)
2605 break;
2606
2607 elem_datalen = elem->datalen;
2608
2609 if (data) {
2610 if (copied + elem_datalen > data_len)
2611 return -ENOSPC;
2612
2613 memmove(data + copied, elem->data, elem_datalen);
2614 }
2615
2616 copied += elem_datalen;
2617
2618 /* Only the last fragment may be short */
2619 if (elem_datalen != 255)
2620 break;
2621 }
2622
2623 return copied;
2624}
2625EXPORT_SYMBOL(cfg80211_defragment_element);
2626
2627struct cfg80211_mle {
2628 struct ieee80211_multi_link_elem *mle;
2629 struct ieee80211_mle_per_sta_profile
2630 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2631 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2632
2633 u8 data[];
2634};
2635
2636static struct cfg80211_mle *
2637cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2638 gfp_t gfp)
2639{
2640 const struct element *elem;
2641 struct cfg80211_mle *res;
2642 size_t buf_len;
2643 ssize_t mle_len;
2644 u8 common_size, idx;
2645
2646 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2647 return NULL;
2648
2649 /* Required length for first defragmentation */
2650 buf_len = mle->datalen - 1;
2651 for_each_element(elem, mle->data + mle->datalen,
2652 ielen - sizeof(*mle) + mle->datalen) {
2653 if (elem->id != WLAN_EID_FRAGMENT)
2654 break;
2655
2656 buf_len += elem->datalen;
2657 }
2658
2659 res = kzalloc(struct_size(res, data, buf_len), gfp);
2660 if (!res)
2661 return NULL;
2662
2663 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2664 res->data, buf_len,
2665 WLAN_EID_FRAGMENT);
2666 if (mle_len < 0)
2667 goto error;
2668
2669 res->mle = (void *)res->data;
2670
2671 /* Find the sub-element area in the buffer */
2672 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2673 ie = res->data + common_size;
2674 ielen = mle_len - common_size;
2675
2676 idx = 0;
2677 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2678 ie, ielen) {
2679 res->sta_prof[idx] = (void *)elem->data;
2680 res->sta_prof_len[idx] = elem->datalen;
2681
2682 idx++;
2683 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2684 break;
2685 }
2686 if (!for_each_element_completed(elem, ie, ielen))
2687 goto error;
2688
2689 /* Defragment sta_info in-place */
2690 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2691 idx++) {
2692 if (res->sta_prof_len[idx] < 255)
2693 continue;
2694
2695 elem = (void *)res->sta_prof[idx] - 2;
2696
2697 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2698 res->sta_prof[idx + 1])
2699 buf_len = (u8 *)res->sta_prof[idx + 1] -
2700 (u8 *)res->sta_prof[idx];
2701 else
2702 buf_len = ielen + ie - (u8 *)elem;
2703
2704 res->sta_prof_len[idx] =
2705 cfg80211_defragment_element(elem,
2706 (u8 *)elem, buf_len,
2707 (u8 *)res->sta_prof[idx],
2708 buf_len,
2709 IEEE80211_MLE_SUBELEM_FRAGMENT);
2710 if (res->sta_prof_len[idx] < 0)
2711 goto error;
2712 }
2713
2714 return res;
2715
2716error:
2717 kfree(res);
2718 return NULL;
2719}
2720
2721struct tbtt_info_iter_data {
2722 const struct ieee80211_neighbor_ap_info *ap_info;
2723 u8 param_ch_count;
2724 u32 use_for;
2725 u8 mld_id, link_id;
2726 bool non_tx;
2727};
2728
2729static enum cfg80211_rnr_iter_ret
2730cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2731 const struct ieee80211_neighbor_ap_info *info,
2732 const u8 *tbtt_info, u8 tbtt_info_len)
2733{
2734 const struct ieee80211_rnr_mld_params *mld_params;
2735 struct tbtt_info_iter_data *data = _data;
2736 u8 link_id;
2737 bool non_tx = false;
2738
2739 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2740 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2741 mld_params)) {
2742 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2743 (void *)tbtt_info;
2744
2745 non_tx = (tbtt_info_ge_11->bss_params &
2746 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2747 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2748 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2749 mld_params = &tbtt_info_ge_11->mld_params;
2750 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2751 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2752 mld_params = (void *)tbtt_info;
2753 else
2754 return RNR_ITER_CONTINUE;
2755
2756 link_id = le16_get_bits(mld_params->params,
2757 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2758
2759 if (data->mld_id != mld_params->mld_id)
2760 return RNR_ITER_CONTINUE;
2761
2762 if (data->link_id != link_id)
2763 return RNR_ITER_CONTINUE;
2764
2765 data->ap_info = info;
2766 data->param_ch_count =
2767 le16_get_bits(mld_params->params,
2768 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2769 data->non_tx = non_tx;
2770
2771 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2772 data->use_for = NL80211_BSS_USE_FOR_ALL;
2773 else
2774 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2775 return RNR_ITER_BREAK;
2776}
2777
2778static u8
2779cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2780 const struct ieee80211_neighbor_ap_info **ap_info,
2781 u8 *param_ch_count, bool *non_tx)
2782{
2783 struct tbtt_info_iter_data data = {
2784 .mld_id = mld_id,
2785 .link_id = link_id,
2786 };
2787
2788 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2789
2790 *ap_info = data.ap_info;
2791 *param_ch_count = data.param_ch_count;
2792 *non_tx = data.non_tx;
2793
2794 return data.use_for;
2795}
2796
2797static struct element *
2798cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2799 bool same_mld, u8 link_id, u8 bss_change_count,
2800 gfp_t gfp)
2801{
2802 const struct cfg80211_bss_ies *ies;
2803 struct ieee80211_neighbor_ap_info ap_info;
2804 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2805 u32 short_ssid;
2806 const struct element *elem;
2807 struct element *res;
2808
2809 /*
2810 * We only generate the RNR to permit ML lookups. For that we do not
2811 * need an entry for the corresponding transmitting BSS, lets just skip
2812 * it even though it would be easy to add.
2813 */
2814 if (!same_mld)
2815 return NULL;
2816
2817 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2818 rcu_read_lock();
2819 ies = rcu_dereference(source_bss->ies);
2820
2821 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2822 ap_info.tbtt_info_hdr =
2823 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2824 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2825 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2826
2827 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2828
2829 /* operating class */
2830 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2831 ies->data, ies->len);
2832 if (elem && elem->datalen >= 1) {
2833 ap_info.op_class = elem->data[0];
2834 } else {
2835 struct cfg80211_chan_def chandef;
2836
2837 /* The AP is not providing us with anything to work with. So
2838 * make up a somewhat reasonable operating class, but don't
2839 * bother with it too much as no one will ever use the
2840 * information.
2841 */
2842 cfg80211_chandef_create(&chandef, source_bss->channel,
2843 NL80211_CHAN_NO_HT);
2844
2845 if (!ieee80211_chandef_to_operating_class(&chandef,
2846 &ap_info.op_class))
2847 goto out_unlock;
2848 }
2849
2850 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2851 tbtt_info.tbtt_offset = 255;
2852 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2853
2854 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2855 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2856 goto out_unlock;
2857
2858 rcu_read_unlock();
2859
2860 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2861
2862 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2863
2864 if (is_mbssid) {
2865 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2866 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2867 }
2868
2869 tbtt_info.mld_params.mld_id = 0;
2870 tbtt_info.mld_params.params =
2871 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2872 le16_encode_bits(bss_change_count,
2873 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2874
2875 res = kzalloc(struct_size(res, data,
2876 sizeof(ap_info) + ap_info.tbtt_info_len),
2877 gfp);
2878 if (!res)
2879 return NULL;
2880
2881 /* Copy the data */
2882 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2883 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2884 memcpy(res->data, &ap_info, sizeof(ap_info));
2885 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2886
2887 return res;
2888
2889out_unlock:
2890 rcu_read_unlock();
2891 return NULL;
2892}
2893
2894static void
2895cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2896 struct cfg80211_inform_single_bss_data *tx_data,
2897 struct cfg80211_bss *source_bss,
2898 const struct element *elem,
2899 gfp_t gfp)
2900{
2901 struct cfg80211_inform_single_bss_data data = {
2902 .drv_data = tx_data->drv_data,
2903 .ftype = tx_data->ftype,
2904 .source_bss = source_bss,
2905 .bss_source = BSS_SOURCE_STA_PROFILE,
2906 };
2907 struct element *reporter_rnr = NULL;
2908 struct ieee80211_multi_link_elem *ml_elem;
2909 struct cfg80211_mle *mle;
2910 u16 control;
2911 u8 ml_common_len;
2912 u8 *new_ie = NULL;
2913 struct cfg80211_bss *bss;
2914 u8 mld_id, reporter_link_id, bss_change_count;
2915 u16 seen_links = 0;
2916 u8 i;
2917
2918 if (!ieee80211_mle_type_ok(elem->data + 1,
2919 IEEE80211_ML_CONTROL_TYPE_BASIC,
2920 elem->datalen - 1))
2921 return;
2922
2923 ml_elem = (void *)(elem->data + 1);
2924 control = le16_to_cpu(ml_elem->control);
2925 ml_common_len = ml_elem->variable[0];
2926
2927 /* Must be present when transmitted by an AP (in a probe response) */
2928 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2929 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2930 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2931 return;
2932
2933 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2934 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2935
2936 /*
2937 * The MLD ID of the reporting AP is always zero. It is set if the AP
2938 * is part of an MBSSID set and will be non-zero for ML Elements
2939 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2940 * Draft P802.11be_D3.2, 35.3.4.2)
2941 */
2942 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2943
2944 /* Fully defrag the ML element for sta information/profile iteration */
2945 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2946 if (!mle)
2947 return;
2948
2949 /* No point in doing anything if there is no per-STA profile */
2950 if (!mle->sta_prof[0])
2951 goto out;
2952
2953 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2954 if (!new_ie)
2955 goto out;
2956
2957 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2958 u16_get_bits(control,
2959 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2960 mld_id == 0, reporter_link_id,
2961 bss_change_count,
2962 gfp);
2963
2964 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2965 const struct ieee80211_neighbor_ap_info *ap_info;
2966 enum nl80211_band band;
2967 u32 freq;
2968 const u8 *profile;
2969 ssize_t profile_len;
2970 u8 param_ch_count;
2971 u8 link_id, use_for;
2972 bool non_tx;
2973
2974 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2975 mle->sta_prof_len[i]))
2976 continue;
2977
2978 control = le16_to_cpu(mle->sta_prof[i]->control);
2979
2980 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2981 continue;
2982
2983 link_id = u16_get_bits(control,
2984 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2985 if (seen_links & BIT(link_id))
2986 break;
2987 seen_links |= BIT(link_id);
2988
2989 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2990 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2991 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2992 continue;
2993
2994 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2995 data.beacon_interval =
2996 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2997 data.tsf = tx_data->tsf +
2998 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2999
3000 /* sta_info_len counts itself */
3001 profile = mle->sta_prof[i]->variable +
3002 mle->sta_prof[i]->sta_info_len - 1;
3003 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3004 profile;
3005
3006 if (profile_len < 2)
3007 continue;
3008
3009 data.capability = get_unaligned_le16(profile);
3010 profile += 2;
3011 profile_len -= 2;
3012
3013 /* Find in RNR to look up channel information */
3014 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3015 tx_data->ielen,
3016 mld_id, link_id,
3017 &ap_info,
3018 ¶m_ch_count,
3019 &non_tx);
3020 if (!use_for)
3021 continue;
3022
3023 /*
3024 * As of 802.11be_D5.0, the specification does not give us any
3025 * way of discovering both the MaxBSSID and the Multiple-BSSID
3026 * Index. It does seem like the Multiple-BSSID Index element
3027 * may be provided, but section 9.4.2.45 explicitly forbids
3028 * including a Multiple-BSSID Element (in this case without any
3029 * subelements).
3030 * Without both pieces of information we cannot calculate the
3031 * reference BSSID, so simply ignore the BSS.
3032 */
3033 if (non_tx)
3034 continue;
3035
3036 /* We could sanity check the BSSID is included */
3037
3038 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3039 &band))
3040 continue;
3041
3042 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3043 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3044
3045 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3046 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3047 use_for = 0;
3048 data.cannot_use_reasons =
3049 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3050 }
3051 data.use_for = use_for;
3052
3053 /* Generate new elements */
3054 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3055 data.ie = new_ie;
3056 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3057 profile, profile_len,
3058 new_ie,
3059 IEEE80211_MAX_DATA_LEN);
3060 if (!data.ielen)
3061 continue;
3062
3063 /* The generated elements do not contain:
3064 * - Basic ML element
3065 * - A TBTT entry in the RNR for the transmitting AP
3066 *
3067 * This information is needed both internally and in userspace
3068 * as such, we should append it here.
3069 */
3070 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3071 IEEE80211_MAX_DATA_LEN)
3072 continue;
3073
3074 /* Copy the Basic Multi-Link element including the common
3075 * information, and then fix up the link ID and BSS param
3076 * change count.
3077 * Note that the ML element length has been verified and we
3078 * also checked that it contains the link ID.
3079 */
3080 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3081 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3082 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3083 memcpy(new_ie + data.ielen, ml_elem,
3084 sizeof(*ml_elem) + ml_common_len);
3085
3086 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3087 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3088 param_ch_count;
3089
3090 data.ielen += sizeof(*ml_elem) + ml_common_len;
3091
3092 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3093 if (data.ielen + sizeof(struct element) +
3094 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3095 continue;
3096
3097 memcpy(new_ie + data.ielen, reporter_rnr,
3098 sizeof(struct element) + reporter_rnr->datalen);
3099 data.ielen += sizeof(struct element) +
3100 reporter_rnr->datalen;
3101 }
3102
3103 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3104 if (!bss)
3105 break;
3106 cfg80211_put_bss(wiphy, bss);
3107 }
3108
3109out:
3110 kfree(reporter_rnr);
3111 kfree(new_ie);
3112 kfree(mle);
3113}
3114
3115static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3116 struct cfg80211_inform_single_bss_data *tx_data,
3117 struct cfg80211_bss *source_bss,
3118 gfp_t gfp)
3119{
3120 const struct element *elem;
3121
3122 if (!source_bss)
3123 return;
3124
3125 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3126 return;
3127
3128 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3129 tx_data->ie, tx_data->ielen)
3130 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3131 elem, gfp);
3132}
3133
3134struct cfg80211_bss *
3135cfg80211_inform_bss_data(struct wiphy *wiphy,
3136 struct cfg80211_inform_bss *data,
3137 enum cfg80211_bss_frame_type ftype,
3138 const u8 *bssid, u64 tsf, u16 capability,
3139 u16 beacon_interval, const u8 *ie, size_t ielen,
3140 gfp_t gfp)
3141{
3142 struct cfg80211_inform_single_bss_data inform_data = {
3143 .drv_data = data,
3144 .ftype = ftype,
3145 .tsf = tsf,
3146 .capability = capability,
3147 .beacon_interval = beacon_interval,
3148 .ie = ie,
3149 .ielen = ielen,
3150 .use_for = data->restrict_use ?
3151 data->use_for :
3152 NL80211_BSS_USE_FOR_ALL,
3153 .cannot_use_reasons = data->cannot_use_reasons,
3154 };
3155 struct cfg80211_bss *res;
3156
3157 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3158
3159 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3160 if (!res)
3161 return NULL;
3162
3163 /* don't do any further MBSSID/ML handling for S1G */
3164 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3165 return res;
3166
3167 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3168
3169 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3170
3171 return res;
3172}
3173EXPORT_SYMBOL(cfg80211_inform_bss_data);
3174
3175struct cfg80211_bss *
3176cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3177 struct cfg80211_inform_bss *data,
3178 struct ieee80211_mgmt *mgmt, size_t len,
3179 gfp_t gfp)
3180{
3181 size_t min_hdr_len;
3182 struct ieee80211_ext *ext = NULL;
3183 enum cfg80211_bss_frame_type ftype;
3184 u16 beacon_interval;
3185 const u8 *bssid;
3186 u16 capability;
3187 const u8 *ie;
3188 size_t ielen;
3189 u64 tsf;
3190
3191 if (WARN_ON(!mgmt))
3192 return NULL;
3193
3194 if (WARN_ON(!wiphy))
3195 return NULL;
3196
3197 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3198 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3199
3200 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3201
3202 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3203 ext = (void *) mgmt;
3204 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3205 min_hdr_len = offsetof(struct ieee80211_ext,
3206 u.s1g_short_beacon.variable);
3207 else
3208 min_hdr_len = offsetof(struct ieee80211_ext,
3209 u.s1g_beacon.variable);
3210 } else {
3211 /* same for beacons */
3212 min_hdr_len = offsetof(struct ieee80211_mgmt,
3213 u.probe_resp.variable);
3214 }
3215
3216 if (WARN_ON(len < min_hdr_len))
3217 return NULL;
3218
3219 ielen = len - min_hdr_len;
3220 ie = mgmt->u.probe_resp.variable;
3221 if (ext) {
3222 const struct ieee80211_s1g_bcn_compat_ie *compat;
3223 const struct element *elem;
3224
3225 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3226 ie = ext->u.s1g_short_beacon.variable;
3227 else
3228 ie = ext->u.s1g_beacon.variable;
3229
3230 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3231 if (!elem)
3232 return NULL;
3233 if (elem->datalen < sizeof(*compat))
3234 return NULL;
3235 compat = (void *)elem->data;
3236 bssid = ext->u.s1g_beacon.sa;
3237 capability = le16_to_cpu(compat->compat_info);
3238 beacon_interval = le16_to_cpu(compat->beacon_int);
3239 } else {
3240 bssid = mgmt->bssid;
3241 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3242 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3243 }
3244
3245 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3246
3247 if (ieee80211_is_probe_resp(mgmt->frame_control))
3248 ftype = CFG80211_BSS_FTYPE_PRESP;
3249 else if (ext)
3250 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3251 else
3252 ftype = CFG80211_BSS_FTYPE_BEACON;
3253
3254 return cfg80211_inform_bss_data(wiphy, data, ftype,
3255 bssid, tsf, capability,
3256 beacon_interval, ie, ielen,
3257 gfp);
3258}
3259EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3260
3261void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3262{
3263 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3264
3265 if (!pub)
3266 return;
3267
3268 spin_lock_bh(&rdev->bss_lock);
3269 bss_ref_get(rdev, bss_from_pub(pub));
3270 spin_unlock_bh(&rdev->bss_lock);
3271}
3272EXPORT_SYMBOL(cfg80211_ref_bss);
3273
3274void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3275{
3276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3277
3278 if (!pub)
3279 return;
3280
3281 spin_lock_bh(&rdev->bss_lock);
3282 bss_ref_put(rdev, bss_from_pub(pub));
3283 spin_unlock_bh(&rdev->bss_lock);
3284}
3285EXPORT_SYMBOL(cfg80211_put_bss);
3286
3287void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3288{
3289 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3290 struct cfg80211_internal_bss *bss, *tmp1;
3291 struct cfg80211_bss *nontrans_bss, *tmp;
3292
3293 if (WARN_ON(!pub))
3294 return;
3295
3296 bss = bss_from_pub(pub);
3297
3298 spin_lock_bh(&rdev->bss_lock);
3299 if (list_empty(&bss->list))
3300 goto out;
3301
3302 list_for_each_entry_safe(nontrans_bss, tmp,
3303 &pub->nontrans_list,
3304 nontrans_list) {
3305 tmp1 = bss_from_pub(nontrans_bss);
3306 if (__cfg80211_unlink_bss(rdev, tmp1))
3307 rdev->bss_generation++;
3308 }
3309
3310 if (__cfg80211_unlink_bss(rdev, bss))
3311 rdev->bss_generation++;
3312out:
3313 spin_unlock_bh(&rdev->bss_lock);
3314}
3315EXPORT_SYMBOL(cfg80211_unlink_bss);
3316
3317void cfg80211_bss_iter(struct wiphy *wiphy,
3318 struct cfg80211_chan_def *chandef,
3319 void (*iter)(struct wiphy *wiphy,
3320 struct cfg80211_bss *bss,
3321 void *data),
3322 void *iter_data)
3323{
3324 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3325 struct cfg80211_internal_bss *bss;
3326
3327 spin_lock_bh(&rdev->bss_lock);
3328
3329 list_for_each_entry(bss, &rdev->bss_list, list) {
3330 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3331 false))
3332 iter(wiphy, &bss->pub, iter_data);
3333 }
3334
3335 spin_unlock_bh(&rdev->bss_lock);
3336}
3337EXPORT_SYMBOL(cfg80211_bss_iter);
3338
3339void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3340 unsigned int link_id,
3341 struct ieee80211_channel *chan)
3342{
3343 struct wiphy *wiphy = wdev->wiphy;
3344 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3345 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3346 struct cfg80211_internal_bss *new = NULL;
3347 struct cfg80211_internal_bss *bss;
3348 struct cfg80211_bss *nontrans_bss;
3349 struct cfg80211_bss *tmp;
3350
3351 spin_lock_bh(&rdev->bss_lock);
3352
3353 /*
3354 * Some APs use CSA also for bandwidth changes, i.e., without actually
3355 * changing the control channel, so no need to update in such a case.
3356 */
3357 if (cbss->pub.channel == chan)
3358 goto done;
3359
3360 /* use transmitting bss */
3361 if (cbss->pub.transmitted_bss)
3362 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3363
3364 cbss->pub.channel = chan;
3365
3366 list_for_each_entry(bss, &rdev->bss_list, list) {
3367 if (!cfg80211_bss_type_match(bss->pub.capability,
3368 bss->pub.channel->band,
3369 wdev->conn_bss_type))
3370 continue;
3371
3372 if (bss == cbss)
3373 continue;
3374
3375 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3376 new = bss;
3377 break;
3378 }
3379 }
3380
3381 if (new) {
3382 /* to save time, update IEs for transmitting bss only */
3383 cfg80211_update_known_bss(rdev, cbss, new, false);
3384 new->pub.proberesp_ies = NULL;
3385 new->pub.beacon_ies = NULL;
3386
3387 list_for_each_entry_safe(nontrans_bss, tmp,
3388 &new->pub.nontrans_list,
3389 nontrans_list) {
3390 bss = bss_from_pub(nontrans_bss);
3391 if (__cfg80211_unlink_bss(rdev, bss))
3392 rdev->bss_generation++;
3393 }
3394
3395 WARN_ON(atomic_read(&new->hold));
3396 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3397 rdev->bss_generation++;
3398 }
3399 cfg80211_rehash_bss(rdev, cbss);
3400
3401 list_for_each_entry_safe(nontrans_bss, tmp,
3402 &cbss->pub.nontrans_list,
3403 nontrans_list) {
3404 bss = bss_from_pub(nontrans_bss);
3405 bss->pub.channel = chan;
3406 cfg80211_rehash_bss(rdev, bss);
3407 }
3408
3409done:
3410 spin_unlock_bh(&rdev->bss_lock);
3411}
3412
3413#ifdef CONFIG_CFG80211_WEXT
3414static struct cfg80211_registered_device *
3415cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3416{
3417 struct cfg80211_registered_device *rdev;
3418 struct net_device *dev;
3419
3420 ASSERT_RTNL();
3421
3422 dev = dev_get_by_index(net, ifindex);
3423 if (!dev)
3424 return ERR_PTR(-ENODEV);
3425 if (dev->ieee80211_ptr)
3426 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3427 else
3428 rdev = ERR_PTR(-ENODEV);
3429 dev_put(dev);
3430 return rdev;
3431}
3432
3433int cfg80211_wext_siwscan(struct net_device *dev,
3434 struct iw_request_info *info,
3435 union iwreq_data *wrqu, char *extra)
3436{
3437 struct cfg80211_registered_device *rdev;
3438 struct wiphy *wiphy;
3439 struct iw_scan_req *wreq = NULL;
3440 struct cfg80211_scan_request *creq;
3441 int i, err, n_channels = 0;
3442 enum nl80211_band band;
3443
3444 if (!netif_running(dev))
3445 return -ENETDOWN;
3446
3447 if (wrqu->data.length == sizeof(struct iw_scan_req))
3448 wreq = (struct iw_scan_req *)extra;
3449
3450 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3451
3452 if (IS_ERR(rdev))
3453 return PTR_ERR(rdev);
3454
3455 if (rdev->scan_req || rdev->scan_msg)
3456 return -EBUSY;
3457
3458 wiphy = &rdev->wiphy;
3459
3460 /* Determine number of channels, needed to allocate creq */
3461 if (wreq && wreq->num_channels) {
3462 /* Passed from userspace so should be checked */
3463 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3464 return -EINVAL;
3465 n_channels = wreq->num_channels;
3466 } else {
3467 n_channels = ieee80211_get_num_supported_channels(wiphy);
3468 }
3469
3470 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3471 n_channels * sizeof(void *),
3472 GFP_ATOMIC);
3473 if (!creq)
3474 return -ENOMEM;
3475
3476 creq->wiphy = wiphy;
3477 creq->wdev = dev->ieee80211_ptr;
3478 /* SSIDs come after channels */
3479 creq->ssids = (void *)&creq->channels[n_channels];
3480 creq->n_channels = n_channels;
3481 creq->n_ssids = 1;
3482 creq->scan_start = jiffies;
3483
3484 /* translate "Scan on frequencies" request */
3485 i = 0;
3486 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3487 int j;
3488
3489 if (!wiphy->bands[band])
3490 continue;
3491
3492 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3493 /* ignore disabled channels */
3494 if (wiphy->bands[band]->channels[j].flags &
3495 IEEE80211_CHAN_DISABLED)
3496 continue;
3497
3498 /* If we have a wireless request structure and the
3499 * wireless request specifies frequencies, then search
3500 * for the matching hardware channel.
3501 */
3502 if (wreq && wreq->num_channels) {
3503 int k;
3504 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3505 for (k = 0; k < wreq->num_channels; k++) {
3506 struct iw_freq *freq =
3507 &wreq->channel_list[k];
3508 int wext_freq =
3509 cfg80211_wext_freq(freq);
3510
3511 if (wext_freq == wiphy_freq)
3512 goto wext_freq_found;
3513 }
3514 goto wext_freq_not_found;
3515 }
3516
3517 wext_freq_found:
3518 creq->channels[i] = &wiphy->bands[band]->channels[j];
3519 i++;
3520 wext_freq_not_found: ;
3521 }
3522 }
3523 /* No channels found? */
3524 if (!i) {
3525 err = -EINVAL;
3526 goto out;
3527 }
3528
3529 /* Set real number of channels specified in creq->channels[] */
3530 creq->n_channels = i;
3531
3532 /* translate "Scan for SSID" request */
3533 if (wreq) {
3534 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3535 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3536 err = -EINVAL;
3537 goto out;
3538 }
3539 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3540 creq->ssids[0].ssid_len = wreq->essid_len;
3541 }
3542 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3543 creq->ssids = NULL;
3544 creq->n_ssids = 0;
3545 }
3546 }
3547
3548 for (i = 0; i < NUM_NL80211_BANDS; i++)
3549 if (wiphy->bands[i])
3550 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3551
3552 eth_broadcast_addr(creq->bssid);
3553
3554 wiphy_lock(&rdev->wiphy);
3555
3556 rdev->scan_req = creq;
3557 err = rdev_scan(rdev, creq);
3558 if (err) {
3559 rdev->scan_req = NULL;
3560 /* creq will be freed below */
3561 } else {
3562 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3563 /* creq now owned by driver */
3564 creq = NULL;
3565 dev_hold(dev);
3566 }
3567 wiphy_unlock(&rdev->wiphy);
3568 out:
3569 kfree(creq);
3570 return err;
3571}
3572EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3573
3574static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3575 const struct cfg80211_bss_ies *ies,
3576 char *current_ev, char *end_buf)
3577{
3578 const u8 *pos, *end, *next;
3579 struct iw_event iwe;
3580
3581 if (!ies)
3582 return current_ev;
3583
3584 /*
3585 * If needed, fragment the IEs buffer (at IE boundaries) into short
3586 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3587 */
3588 pos = ies->data;
3589 end = pos + ies->len;
3590
3591 while (end - pos > IW_GENERIC_IE_MAX) {
3592 next = pos + 2 + pos[1];
3593 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3594 next = next + 2 + next[1];
3595
3596 memset(&iwe, 0, sizeof(iwe));
3597 iwe.cmd = IWEVGENIE;
3598 iwe.u.data.length = next - pos;
3599 current_ev = iwe_stream_add_point_check(info, current_ev,
3600 end_buf, &iwe,
3601 (void *)pos);
3602 if (IS_ERR(current_ev))
3603 return current_ev;
3604 pos = next;
3605 }
3606
3607 if (end > pos) {
3608 memset(&iwe, 0, sizeof(iwe));
3609 iwe.cmd = IWEVGENIE;
3610 iwe.u.data.length = end - pos;
3611 current_ev = iwe_stream_add_point_check(info, current_ev,
3612 end_buf, &iwe,
3613 (void *)pos);
3614 if (IS_ERR(current_ev))
3615 return current_ev;
3616 }
3617
3618 return current_ev;
3619}
3620
3621static char *
3622ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3623 struct cfg80211_internal_bss *bss, char *current_ev,
3624 char *end_buf)
3625{
3626 const struct cfg80211_bss_ies *ies;
3627 struct iw_event iwe;
3628 const u8 *ie;
3629 u8 buf[50];
3630 u8 *cfg, *p, *tmp;
3631 int rem, i, sig;
3632 bool ismesh = false;
3633
3634 memset(&iwe, 0, sizeof(iwe));
3635 iwe.cmd = SIOCGIWAP;
3636 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3637 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3638 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3639 IW_EV_ADDR_LEN);
3640 if (IS_ERR(current_ev))
3641 return current_ev;
3642
3643 memset(&iwe, 0, sizeof(iwe));
3644 iwe.cmd = SIOCGIWFREQ;
3645 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3646 iwe.u.freq.e = 0;
3647 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3648 IW_EV_FREQ_LEN);
3649 if (IS_ERR(current_ev))
3650 return current_ev;
3651
3652 memset(&iwe, 0, sizeof(iwe));
3653 iwe.cmd = SIOCGIWFREQ;
3654 iwe.u.freq.m = bss->pub.channel->center_freq;
3655 iwe.u.freq.e = 6;
3656 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3657 IW_EV_FREQ_LEN);
3658 if (IS_ERR(current_ev))
3659 return current_ev;
3660
3661 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3662 memset(&iwe, 0, sizeof(iwe));
3663 iwe.cmd = IWEVQUAL;
3664 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3665 IW_QUAL_NOISE_INVALID |
3666 IW_QUAL_QUAL_UPDATED;
3667 switch (wiphy->signal_type) {
3668 case CFG80211_SIGNAL_TYPE_MBM:
3669 sig = bss->pub.signal / 100;
3670 iwe.u.qual.level = sig;
3671 iwe.u.qual.updated |= IW_QUAL_DBM;
3672 if (sig < -110) /* rather bad */
3673 sig = -110;
3674 else if (sig > -40) /* perfect */
3675 sig = -40;
3676 /* will give a range of 0 .. 70 */
3677 iwe.u.qual.qual = sig + 110;
3678 break;
3679 case CFG80211_SIGNAL_TYPE_UNSPEC:
3680 iwe.u.qual.level = bss->pub.signal;
3681 /* will give range 0 .. 100 */
3682 iwe.u.qual.qual = bss->pub.signal;
3683 break;
3684 default:
3685 /* not reached */
3686 break;
3687 }
3688 current_ev = iwe_stream_add_event_check(info, current_ev,
3689 end_buf, &iwe,
3690 IW_EV_QUAL_LEN);
3691 if (IS_ERR(current_ev))
3692 return current_ev;
3693 }
3694
3695 memset(&iwe, 0, sizeof(iwe));
3696 iwe.cmd = SIOCGIWENCODE;
3697 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3698 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3699 else
3700 iwe.u.data.flags = IW_ENCODE_DISABLED;
3701 iwe.u.data.length = 0;
3702 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3703 &iwe, "");
3704 if (IS_ERR(current_ev))
3705 return current_ev;
3706
3707 rcu_read_lock();
3708 ies = rcu_dereference(bss->pub.ies);
3709 rem = ies->len;
3710 ie = ies->data;
3711
3712 while (rem >= 2) {
3713 /* invalid data */
3714 if (ie[1] > rem - 2)
3715 break;
3716
3717 switch (ie[0]) {
3718 case WLAN_EID_SSID:
3719 memset(&iwe, 0, sizeof(iwe));
3720 iwe.cmd = SIOCGIWESSID;
3721 iwe.u.data.length = ie[1];
3722 iwe.u.data.flags = 1;
3723 current_ev = iwe_stream_add_point_check(info,
3724 current_ev,
3725 end_buf, &iwe,
3726 (u8 *)ie + 2);
3727 if (IS_ERR(current_ev))
3728 goto unlock;
3729 break;
3730 case WLAN_EID_MESH_ID:
3731 memset(&iwe, 0, sizeof(iwe));
3732 iwe.cmd = SIOCGIWESSID;
3733 iwe.u.data.length = ie[1];
3734 iwe.u.data.flags = 1;
3735 current_ev = iwe_stream_add_point_check(info,
3736 current_ev,
3737 end_buf, &iwe,
3738 (u8 *)ie + 2);
3739 if (IS_ERR(current_ev))
3740 goto unlock;
3741 break;
3742 case WLAN_EID_MESH_CONFIG:
3743 ismesh = true;
3744 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3745 break;
3746 cfg = (u8 *)ie + 2;
3747 memset(&iwe, 0, sizeof(iwe));
3748 iwe.cmd = IWEVCUSTOM;
3749 iwe.u.data.length = sprintf(buf,
3750 "Mesh Network Path Selection Protocol ID: 0x%02X",
3751 cfg[0]);
3752 current_ev = iwe_stream_add_point_check(info,
3753 current_ev,
3754 end_buf,
3755 &iwe, buf);
3756 if (IS_ERR(current_ev))
3757 goto unlock;
3758 iwe.u.data.length = sprintf(buf,
3759 "Path Selection Metric ID: 0x%02X",
3760 cfg[1]);
3761 current_ev = iwe_stream_add_point_check(info,
3762 current_ev,
3763 end_buf,
3764 &iwe, buf);
3765 if (IS_ERR(current_ev))
3766 goto unlock;
3767 iwe.u.data.length = sprintf(buf,
3768 "Congestion Control Mode ID: 0x%02X",
3769 cfg[2]);
3770 current_ev = iwe_stream_add_point_check(info,
3771 current_ev,
3772 end_buf,
3773 &iwe, buf);
3774 if (IS_ERR(current_ev))
3775 goto unlock;
3776 iwe.u.data.length = sprintf(buf,
3777 "Synchronization ID: 0x%02X",
3778 cfg[3]);
3779 current_ev = iwe_stream_add_point_check(info,
3780 current_ev,
3781 end_buf,
3782 &iwe, buf);
3783 if (IS_ERR(current_ev))
3784 goto unlock;
3785 iwe.u.data.length = sprintf(buf,
3786 "Authentication ID: 0x%02X",
3787 cfg[4]);
3788 current_ev = iwe_stream_add_point_check(info,
3789 current_ev,
3790 end_buf,
3791 &iwe, buf);
3792 if (IS_ERR(current_ev))
3793 goto unlock;
3794 iwe.u.data.length = sprintf(buf,
3795 "Formation Info: 0x%02X",
3796 cfg[5]);
3797 current_ev = iwe_stream_add_point_check(info,
3798 current_ev,
3799 end_buf,
3800 &iwe, buf);
3801 if (IS_ERR(current_ev))
3802 goto unlock;
3803 iwe.u.data.length = sprintf(buf,
3804 "Capabilities: 0x%02X",
3805 cfg[6]);
3806 current_ev = iwe_stream_add_point_check(info,
3807 current_ev,
3808 end_buf,
3809 &iwe, buf);
3810 if (IS_ERR(current_ev))
3811 goto unlock;
3812 break;
3813 case WLAN_EID_SUPP_RATES:
3814 case WLAN_EID_EXT_SUPP_RATES:
3815 /* display all supported rates in readable format */
3816 p = current_ev + iwe_stream_lcp_len(info);
3817
3818 memset(&iwe, 0, sizeof(iwe));
3819 iwe.cmd = SIOCGIWRATE;
3820 /* Those two flags are ignored... */
3821 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3822
3823 for (i = 0; i < ie[1]; i++) {
3824 iwe.u.bitrate.value =
3825 ((ie[i + 2] & 0x7f) * 500000);
3826 tmp = p;
3827 p = iwe_stream_add_value(info, current_ev, p,
3828 end_buf, &iwe,
3829 IW_EV_PARAM_LEN);
3830 if (p == tmp) {
3831 current_ev = ERR_PTR(-E2BIG);
3832 goto unlock;
3833 }
3834 }
3835 current_ev = p;
3836 break;
3837 }
3838 rem -= ie[1] + 2;
3839 ie += ie[1] + 2;
3840 }
3841
3842 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3843 ismesh) {
3844 memset(&iwe, 0, sizeof(iwe));
3845 iwe.cmd = SIOCGIWMODE;
3846 if (ismesh)
3847 iwe.u.mode = IW_MODE_MESH;
3848 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3849 iwe.u.mode = IW_MODE_MASTER;
3850 else
3851 iwe.u.mode = IW_MODE_ADHOC;
3852 current_ev = iwe_stream_add_event_check(info, current_ev,
3853 end_buf, &iwe,
3854 IW_EV_UINT_LEN);
3855 if (IS_ERR(current_ev))
3856 goto unlock;
3857 }
3858
3859 memset(&iwe, 0, sizeof(iwe));
3860 iwe.cmd = IWEVCUSTOM;
3861 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3862 (unsigned long long)(ies->tsf));
3863 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3864 &iwe, buf);
3865 if (IS_ERR(current_ev))
3866 goto unlock;
3867 memset(&iwe, 0, sizeof(iwe));
3868 iwe.cmd = IWEVCUSTOM;
3869 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3870 elapsed_jiffies_msecs(bss->ts));
3871 current_ev = iwe_stream_add_point_check(info, current_ev,
3872 end_buf, &iwe, buf);
3873 if (IS_ERR(current_ev))
3874 goto unlock;
3875
3876 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3877
3878 unlock:
3879 rcu_read_unlock();
3880 return current_ev;
3881}
3882
3883
3884static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3885 struct iw_request_info *info,
3886 char *buf, size_t len)
3887{
3888 char *current_ev = buf;
3889 char *end_buf = buf + len;
3890 struct cfg80211_internal_bss *bss;
3891 int err = 0;
3892
3893 spin_lock_bh(&rdev->bss_lock);
3894 cfg80211_bss_expire(rdev);
3895
3896 list_for_each_entry(bss, &rdev->bss_list, list) {
3897 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3898 err = -E2BIG;
3899 break;
3900 }
3901 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3902 current_ev, end_buf);
3903 if (IS_ERR(current_ev)) {
3904 err = PTR_ERR(current_ev);
3905 break;
3906 }
3907 }
3908 spin_unlock_bh(&rdev->bss_lock);
3909
3910 if (err)
3911 return err;
3912 return current_ev - buf;
3913}
3914
3915
3916int cfg80211_wext_giwscan(struct net_device *dev,
3917 struct iw_request_info *info,
3918 union iwreq_data *wrqu, char *extra)
3919{
3920 struct iw_point *data = &wrqu->data;
3921 struct cfg80211_registered_device *rdev;
3922 int res;
3923
3924 if (!netif_running(dev))
3925 return -ENETDOWN;
3926
3927 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3928
3929 if (IS_ERR(rdev))
3930 return PTR_ERR(rdev);
3931
3932 if (rdev->scan_req || rdev->scan_msg)
3933 return -EAGAIN;
3934
3935 res = ieee80211_scan_results(rdev, info, extra, data->length);
3936 data->length = 0;
3937 if (res >= 0) {
3938 data->length = res;
3939 res = 0;
3940 }
3941
3942 return res;
3943}
3944EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3945#endif