Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef pte_offset_kernel
94static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
95{
96 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
97}
98#define pte_offset_kernel pte_offset_kernel
99#endif
100
101#ifdef CONFIG_HIGHPTE
102#define __pte_map(pmd, address) \
103 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
104#define pte_unmap(pte) do { \
105 kunmap_local((pte)); \
106 rcu_read_unlock(); \
107} while (0)
108#else
109static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
110{
111 return pte_offset_kernel(pmd, address);
112}
113static inline void pte_unmap(pte_t *pte)
114{
115 rcu_read_unlock();
116}
117#endif
118
119void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
120
121/* Find an entry in the second-level page table.. */
122#ifndef pmd_offset
123static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
124{
125 return pud_pgtable(*pud) + pmd_index(address);
126}
127#define pmd_offset pmd_offset
128#endif
129
130#ifndef pud_offset
131static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
132{
133 return p4d_pgtable(*p4d) + pud_index(address);
134}
135#define pud_offset pud_offset
136#endif
137
138static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
139{
140 return (pgd + pgd_index(address));
141};
142
143/*
144 * a shortcut to get a pgd_t in a given mm
145 */
146#ifndef pgd_offset
147#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
148#endif
149
150/*
151 * a shortcut which implies the use of the kernel's pgd, instead
152 * of a process's
153 */
154#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
155
156/*
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
161 * helpers.
162 */
163static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164{
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166}
167
168static inline pmd_t *pmd_off_k(unsigned long va)
169{
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171}
172
173static inline pte_t *virt_to_kpte(unsigned long vaddr)
174{
175 pmd_t *pmd = pmd_off_k(vaddr);
176
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178}
179
180#ifndef pmd_young
181static inline int pmd_young(pmd_t pmd)
182{
183 return 0;
184}
185#endif
186
187#ifndef pmd_dirty
188static inline int pmd_dirty(pmd_t pmd)
189{
190 return 0;
191}
192#endif
193
194/*
195 * A facility to provide lazy MMU batching. This allows PTE updates and
196 * page invalidations to be delayed until a call to leave lazy MMU mode
197 * is issued. Some architectures may benefit from doing this, and it is
198 * beneficial for both shadow and direct mode hypervisors, which may batch
199 * the PTE updates which happen during this window. Note that using this
200 * interface requires that read hazards be removed from the code. A read
201 * hazard could result in the direct mode hypervisor case, since the actual
202 * write to the page tables may not yet have taken place, so reads though
203 * a raw PTE pointer after it has been modified are not guaranteed to be
204 * up to date. This mode can only be entered and left under the protection of
205 * the page table locks for all page tables which may be modified. In the UP
206 * case, this is required so that preemption is disabled, and in the SMP case,
207 * it must synchronize the delayed page table writes properly on other CPUs.
208 */
209#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210#define arch_enter_lazy_mmu_mode() do {} while (0)
211#define arch_leave_lazy_mmu_mode() do {} while (0)
212#define arch_flush_lazy_mmu_mode() do {} while (0)
213#endif
214
215#ifndef pte_batch_hint
216/**
217 * pte_batch_hint - Number of pages that can be added to batch without scanning.
218 * @ptep: Page table pointer for the entry.
219 * @pte: Page table entry.
220 *
221 * Some architectures know that a set of contiguous ptes all map the same
222 * contiguous memory with the same permissions. In this case, it can provide a
223 * hint to aid pte batching without the core code needing to scan every pte.
224 *
225 * An architecture implementation may ignore the PTE accessed state. Further,
226 * the dirty state must apply atomically to all the PTEs described by the hint.
227 *
228 * May be overridden by the architecture, else pte_batch_hint is always 1.
229 */
230static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
231{
232 return 1;
233}
234#endif
235
236#ifndef pte_advance_pfn
237static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
238{
239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
240}
241#endif
242
243#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
244
245#ifndef set_ptes
246/**
247 * set_ptes - Map consecutive pages to a contiguous range of addresses.
248 * @mm: Address space to map the pages into.
249 * @addr: Address to map the first page at.
250 * @ptep: Page table pointer for the first entry.
251 * @pte: Page table entry for the first page.
252 * @nr: Number of pages to map.
253 *
254 * When nr==1, initial state of pte may be present or not present, and new state
255 * may be present or not present. When nr>1, initial state of all ptes must be
256 * not present, and new state must be present.
257 *
258 * May be overridden by the architecture, or the architecture can define
259 * set_pte() and PFN_PTE_SHIFT.
260 *
261 * Context: The caller holds the page table lock. The pages all belong
262 * to the same folio. The PTEs are all in the same PMD.
263 */
264static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
265 pte_t *ptep, pte_t pte, unsigned int nr)
266{
267 page_table_check_ptes_set(mm, ptep, pte, nr);
268
269 arch_enter_lazy_mmu_mode();
270 for (;;) {
271 set_pte(ptep, pte);
272 if (--nr == 0)
273 break;
274 ptep++;
275 pte = pte_next_pfn(pte);
276 }
277 arch_leave_lazy_mmu_mode();
278}
279#endif
280#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
281
282#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
283extern int ptep_set_access_flags(struct vm_area_struct *vma,
284 unsigned long address, pte_t *ptep,
285 pte_t entry, int dirty);
286#endif
287
288#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
289#ifdef CONFIG_TRANSPARENT_HUGEPAGE
290extern int pmdp_set_access_flags(struct vm_area_struct *vma,
291 unsigned long address, pmd_t *pmdp,
292 pmd_t entry, int dirty);
293extern int pudp_set_access_flags(struct vm_area_struct *vma,
294 unsigned long address, pud_t *pudp,
295 pud_t entry, int dirty);
296#else
297static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
298 unsigned long address, pmd_t *pmdp,
299 pmd_t entry, int dirty)
300{
301 BUILD_BUG();
302 return 0;
303}
304static inline int pudp_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pud_t *pudp,
306 pud_t entry, int dirty)
307{
308 BUILD_BUG();
309 return 0;
310}
311#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
312#endif
313
314#ifndef ptep_get
315static inline pte_t ptep_get(pte_t *ptep)
316{
317 return READ_ONCE(*ptep);
318}
319#endif
320
321#ifndef pmdp_get
322static inline pmd_t pmdp_get(pmd_t *pmdp)
323{
324 return READ_ONCE(*pmdp);
325}
326#endif
327
328#ifndef pudp_get
329static inline pud_t pudp_get(pud_t *pudp)
330{
331 return READ_ONCE(*pudp);
332}
333#endif
334
335#ifndef p4dp_get
336static inline p4d_t p4dp_get(p4d_t *p4dp)
337{
338 return READ_ONCE(*p4dp);
339}
340#endif
341
342#ifndef pgdp_get
343static inline pgd_t pgdp_get(pgd_t *pgdp)
344{
345 return READ_ONCE(*pgdp);
346}
347#endif
348
349#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
350static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
351 unsigned long address,
352 pte_t *ptep)
353{
354 pte_t pte = ptep_get(ptep);
355 int r = 1;
356 if (!pte_young(pte))
357 r = 0;
358 else
359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
360 return r;
361}
362#endif
363
364#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
365#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
366static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
367 unsigned long address,
368 pmd_t *pmdp)
369{
370 pmd_t pmd = *pmdp;
371 int r = 1;
372 if (!pmd_young(pmd))
373 r = 0;
374 else
375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
376 return r;
377}
378#else
379static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
380 unsigned long address,
381 pmd_t *pmdp)
382{
383 BUILD_BUG();
384 return 0;
385}
386#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
387#endif
388
389#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
390int ptep_clear_flush_young(struct vm_area_struct *vma,
391 unsigned long address, pte_t *ptep);
392#endif
393
394#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
395#ifdef CONFIG_TRANSPARENT_HUGEPAGE
396extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
397 unsigned long address, pmd_t *pmdp);
398#else
399/*
400 * Despite relevant to THP only, this API is called from generic rmap code
401 * under PageTransHuge(), hence needs a dummy implementation for !THP
402 */
403static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
404 unsigned long address, pmd_t *pmdp)
405{
406 BUILD_BUG();
407 return 0;
408}
409#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
410#endif
411
412#ifndef arch_has_hw_nonleaf_pmd_young
413/*
414 * Return whether the accessed bit in non-leaf PMD entries is supported on the
415 * local CPU.
416 */
417static inline bool arch_has_hw_nonleaf_pmd_young(void)
418{
419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
420}
421#endif
422
423#ifndef arch_has_hw_pte_young
424/*
425 * Return whether the accessed bit is supported on the local CPU.
426 *
427 * This stub assumes accessing through an old PTE triggers a page fault.
428 * Architectures that automatically set the access bit should overwrite it.
429 */
430static inline bool arch_has_hw_pte_young(void)
431{
432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
433}
434#endif
435
436#ifndef arch_check_zapped_pte
437static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
438 pte_t pte)
439{
440}
441#endif
442
443#ifndef arch_check_zapped_pmd
444static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
445 pmd_t pmd)
446{
447}
448#endif
449
450#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
451static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452 unsigned long address,
453 pte_t *ptep)
454{
455 pte_t pte = ptep_get(ptep);
456 pte_clear(mm, address, ptep);
457 page_table_check_pte_clear(mm, pte);
458 return pte;
459}
460#endif
461
462#ifndef clear_young_dirty_ptes
463/**
464 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
465 * same folio as old/clean.
466 * @mm: Address space the pages are mapped into.
467 * @addr: Address the first page is mapped at.
468 * @ptep: Page table pointer for the first entry.
469 * @nr: Number of entries to mark old/clean.
470 * @flags: Flags to modify the PTE batch semantics.
471 *
472 * May be overridden by the architecture; otherwise, implemented by
473 * get_and_clear/modify/set for each pte in the range.
474 *
475 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
476 * some PTEs might be write-protected.
477 *
478 * Context: The caller holds the page table lock. The PTEs map consecutive
479 * pages that belong to the same folio. The PTEs are all in the same PMD.
480 */
481static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
482 unsigned long addr, pte_t *ptep,
483 unsigned int nr, cydp_t flags)
484{
485 pte_t pte;
486
487 for (;;) {
488 if (flags == CYDP_CLEAR_YOUNG)
489 ptep_test_and_clear_young(vma, addr, ptep);
490 else {
491 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
492 if (flags & CYDP_CLEAR_YOUNG)
493 pte = pte_mkold(pte);
494 if (flags & CYDP_CLEAR_DIRTY)
495 pte = pte_mkclean(pte);
496 set_pte_at(vma->vm_mm, addr, ptep, pte);
497 }
498 if (--nr == 0)
499 break;
500 ptep++;
501 addr += PAGE_SIZE;
502 }
503}
504#endif
505
506static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
507 pte_t *ptep)
508{
509 ptep_get_and_clear(mm, addr, ptep);
510}
511
512#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
513/*
514 * For walking the pagetables without holding any locks. Some architectures
515 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
516 * instructions. We are guaranteed that a PTE will only either go from not
517 * present to present, or present to not present -- it will not switch to a
518 * completely different present page without a TLB flush inbetween; which we
519 * are blocking by holding interrupts off.
520 *
521 * Setting ptes from not present to present goes:
522 *
523 * ptep->pte_high = h;
524 * smp_wmb();
525 * ptep->pte_low = l;
526 *
527 * And present to not present goes:
528 *
529 * ptep->pte_low = 0;
530 * smp_wmb();
531 * ptep->pte_high = 0;
532 *
533 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
534 * We load pte_high *after* loading pte_low, which ensures we don't see an older
535 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
536 * picked up a changed pte high. We might have gotten rubbish values from
537 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
538 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
539 * operates on present ptes we're safe.
540 */
541static inline pte_t ptep_get_lockless(pte_t *ptep)
542{
543 pte_t pte;
544
545 do {
546 pte.pte_low = ptep->pte_low;
547 smp_rmb();
548 pte.pte_high = ptep->pte_high;
549 smp_rmb();
550 } while (unlikely(pte.pte_low != ptep->pte_low));
551
552 return pte;
553}
554#define ptep_get_lockless ptep_get_lockless
555
556#if CONFIG_PGTABLE_LEVELS > 2
557static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
558{
559 pmd_t pmd;
560
561 do {
562 pmd.pmd_low = pmdp->pmd_low;
563 smp_rmb();
564 pmd.pmd_high = pmdp->pmd_high;
565 smp_rmb();
566 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
567
568 return pmd;
569}
570#define pmdp_get_lockless pmdp_get_lockless
571#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
572#endif /* CONFIG_PGTABLE_LEVELS > 2 */
573#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
574
575/*
576 * We require that the PTE can be read atomically.
577 */
578#ifndef ptep_get_lockless
579static inline pte_t ptep_get_lockless(pte_t *ptep)
580{
581 return ptep_get(ptep);
582}
583#endif
584
585#ifndef pmdp_get_lockless
586static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
587{
588 return pmdp_get(pmdp);
589}
590static inline void pmdp_get_lockless_sync(void)
591{
592}
593#endif
594
595#ifdef CONFIG_TRANSPARENT_HUGEPAGE
596#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
597static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
598 unsigned long address,
599 pmd_t *pmdp)
600{
601 pmd_t pmd = *pmdp;
602
603 pmd_clear(pmdp);
604 page_table_check_pmd_clear(mm, pmd);
605
606 return pmd;
607}
608#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
609#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
610static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
611 unsigned long address,
612 pud_t *pudp)
613{
614 pud_t pud = *pudp;
615
616 pud_clear(pudp);
617 page_table_check_pud_clear(mm, pud);
618
619 return pud;
620}
621#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
623
624#ifdef CONFIG_TRANSPARENT_HUGEPAGE
625#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
626static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
627 unsigned long address, pmd_t *pmdp,
628 int full)
629{
630 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
631}
632#endif
633
634#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
635static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
636 unsigned long address, pud_t *pudp,
637 int full)
638{
639 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
640}
641#endif
642#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
643
644#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
645static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
646 unsigned long address, pte_t *ptep,
647 int full)
648{
649 return ptep_get_and_clear(mm, address, ptep);
650}
651#endif
652
653#ifndef get_and_clear_full_ptes
654/**
655 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
656 * the same folio, collecting dirty/accessed bits.
657 * @mm: Address space the pages are mapped into.
658 * @addr: Address the first page is mapped at.
659 * @ptep: Page table pointer for the first entry.
660 * @nr: Number of entries to clear.
661 * @full: Whether we are clearing a full mm.
662 *
663 * May be overridden by the architecture; otherwise, implemented as a simple
664 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
665 * returned PTE.
666 *
667 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
668 * some PTEs might be write-protected.
669 *
670 * Context: The caller holds the page table lock. The PTEs map consecutive
671 * pages that belong to the same folio. The PTEs are all in the same PMD.
672 */
673static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
674 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
675{
676 pte_t pte, tmp_pte;
677
678 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
679 while (--nr) {
680 ptep++;
681 addr += PAGE_SIZE;
682 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
683 if (pte_dirty(tmp_pte))
684 pte = pte_mkdirty(pte);
685 if (pte_young(tmp_pte))
686 pte = pte_mkyoung(pte);
687 }
688 return pte;
689}
690#endif
691
692#ifndef clear_full_ptes
693/**
694 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
695 * folio.
696 * @mm: Address space the pages are mapped into.
697 * @addr: Address the first page is mapped at.
698 * @ptep: Page table pointer for the first entry.
699 * @nr: Number of entries to clear.
700 * @full: Whether we are clearing a full mm.
701 *
702 * May be overridden by the architecture; otherwise, implemented as a simple
703 * loop over ptep_get_and_clear_full().
704 *
705 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
706 * some PTEs might be write-protected.
707 *
708 * Context: The caller holds the page table lock. The PTEs map consecutive
709 * pages that belong to the same folio. The PTEs are all in the same PMD.
710 */
711static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
712 pte_t *ptep, unsigned int nr, int full)
713{
714 for (;;) {
715 ptep_get_and_clear_full(mm, addr, ptep, full);
716 if (--nr == 0)
717 break;
718 ptep++;
719 addr += PAGE_SIZE;
720 }
721}
722#endif
723
724/*
725 * If two threads concurrently fault at the same page, the thread that
726 * won the race updates the PTE and its local TLB/Cache. The other thread
727 * gives up, simply does nothing, and continues; on architectures where
728 * software can update TLB, local TLB can be updated here to avoid next page
729 * fault. This function updates TLB only, do nothing with cache or others.
730 * It is the difference with function update_mmu_cache.
731 */
732#ifndef update_mmu_tlb_range
733static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
734 unsigned long address, pte_t *ptep, unsigned int nr)
735{
736}
737#endif
738
739static inline void update_mmu_tlb(struct vm_area_struct *vma,
740 unsigned long address, pte_t *ptep)
741{
742 update_mmu_tlb_range(vma, address, ptep, 1);
743}
744
745/*
746 * Some architectures may be able to avoid expensive synchronization
747 * primitives when modifications are made to PTE's which are already
748 * not present, or in the process of an address space destruction.
749 */
750#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
751static inline void pte_clear_not_present_full(struct mm_struct *mm,
752 unsigned long address,
753 pte_t *ptep,
754 int full)
755{
756 pte_clear(mm, address, ptep);
757}
758#endif
759
760#ifndef clear_not_present_full_ptes
761/**
762 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
763 * consecutive in the pgtable.
764 * @mm: Address space the ptes represent.
765 * @addr: Address of the first pte.
766 * @ptep: Page table pointer for the first entry.
767 * @nr: Number of entries to clear.
768 * @full: Whether we are clearing a full mm.
769 *
770 * May be overridden by the architecture; otherwise, implemented as a simple
771 * loop over pte_clear_not_present_full().
772 *
773 * Context: The caller holds the page table lock. The PTEs are all not present.
774 * The PTEs are all in the same PMD.
775 */
776static inline void clear_not_present_full_ptes(struct mm_struct *mm,
777 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
778{
779 for (;;) {
780 pte_clear_not_present_full(mm, addr, ptep, full);
781 if (--nr == 0)
782 break;
783 ptep++;
784 addr += PAGE_SIZE;
785 }
786}
787#endif
788
789#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
790extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
791 unsigned long address,
792 pte_t *ptep);
793#endif
794
795#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
796extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
797 unsigned long address,
798 pmd_t *pmdp);
799extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
800 unsigned long address,
801 pud_t *pudp);
802#endif
803
804#ifndef pte_mkwrite
805static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
806{
807 return pte_mkwrite_novma(pte);
808}
809#endif
810
811#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
812static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
813{
814 return pmd_mkwrite_novma(pmd);
815}
816#endif
817
818#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
819struct mm_struct;
820static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
821{
822 pte_t old_pte = ptep_get(ptep);
823 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
824}
825#endif
826
827#ifndef wrprotect_ptes
828/**
829 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
830 * folio.
831 * @mm: Address space the pages are mapped into.
832 * @addr: Address the first page is mapped at.
833 * @ptep: Page table pointer for the first entry.
834 * @nr: Number of entries to write-protect.
835 *
836 * May be overridden by the architecture; otherwise, implemented as a simple
837 * loop over ptep_set_wrprotect().
838 *
839 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
840 * some PTEs might be write-protected.
841 *
842 * Context: The caller holds the page table lock. The PTEs map consecutive
843 * pages that belong to the same folio. The PTEs are all in the same PMD.
844 */
845static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
846 pte_t *ptep, unsigned int nr)
847{
848 for (;;) {
849 ptep_set_wrprotect(mm, addr, ptep);
850 if (--nr == 0)
851 break;
852 ptep++;
853 addr += PAGE_SIZE;
854 }
855}
856#endif
857
858/*
859 * On some architectures hardware does not set page access bit when accessing
860 * memory page, it is responsibility of software setting this bit. It brings
861 * out extra page fault penalty to track page access bit. For optimization page
862 * access bit can be set during all page fault flow on these arches.
863 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
864 * where software maintains page access bit.
865 */
866#ifndef pte_sw_mkyoung
867static inline pte_t pte_sw_mkyoung(pte_t pte)
868{
869 return pte;
870}
871#define pte_sw_mkyoung pte_sw_mkyoung
872#endif
873
874#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
875#ifdef CONFIG_TRANSPARENT_HUGEPAGE
876static inline void pmdp_set_wrprotect(struct mm_struct *mm,
877 unsigned long address, pmd_t *pmdp)
878{
879 pmd_t old_pmd = *pmdp;
880 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
881}
882#else
883static inline void pmdp_set_wrprotect(struct mm_struct *mm,
884 unsigned long address, pmd_t *pmdp)
885{
886 BUILD_BUG();
887}
888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
889#endif
890#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
891#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
892#ifdef CONFIG_TRANSPARENT_HUGEPAGE
893static inline void pudp_set_wrprotect(struct mm_struct *mm,
894 unsigned long address, pud_t *pudp)
895{
896 pud_t old_pud = *pudp;
897
898 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
899}
900#else
901static inline void pudp_set_wrprotect(struct mm_struct *mm,
902 unsigned long address, pud_t *pudp)
903{
904 BUILD_BUG();
905}
906#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
907#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
908#endif
909
910#ifndef pmdp_collapse_flush
911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
912extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
913 unsigned long address, pmd_t *pmdp);
914#else
915static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
916 unsigned long address,
917 pmd_t *pmdp)
918{
919 BUILD_BUG();
920 return *pmdp;
921}
922#define pmdp_collapse_flush pmdp_collapse_flush
923#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
924#endif
925
926#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
927extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
928 pgtable_t pgtable);
929#endif
930
931#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
932extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
933#endif
934
935#ifndef arch_needs_pgtable_deposit
936#define arch_needs_pgtable_deposit() (false)
937#endif
938
939#ifdef CONFIG_TRANSPARENT_HUGEPAGE
940/*
941 * This is an implementation of pmdp_establish() that is only suitable for an
942 * architecture that doesn't have hardware dirty/accessed bits. In this case we
943 * can't race with CPU which sets these bits and non-atomic approach is fine.
944 */
945static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
946 unsigned long address, pmd_t *pmdp, pmd_t pmd)
947{
948 pmd_t old_pmd = *pmdp;
949 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
950 return old_pmd;
951}
952#endif
953
954#ifndef __HAVE_ARCH_PMDP_INVALIDATE
955extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
956 pmd_t *pmdp);
957#endif
958
959#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
960
961/*
962 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
963 * hugepage mapping in the page tables. This function is similar to
964 * pmdp_invalidate(), but should only be used if the access and dirty bits would
965 * not be cleared by the software in the new PMD value. The function ensures
966 * that hardware changes of the access and dirty bits updates would not be lost.
967 *
968 * Doing so can allow in certain architectures to avoid a TLB flush in most
969 * cases. Yet, another TLB flush might be necessary later if the PMD update
970 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
971 * even when a TLB flush is needed because of the update, the caller may be able
972 * to batch these TLB flushing operations, so fewer TLB flush operations are
973 * needed.
974 */
975extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
976 unsigned long address, pmd_t *pmdp);
977#endif
978
979#ifndef __HAVE_ARCH_PTE_SAME
980static inline int pte_same(pte_t pte_a, pte_t pte_b)
981{
982 return pte_val(pte_a) == pte_val(pte_b);
983}
984#endif
985
986#ifndef __HAVE_ARCH_PTE_UNUSED
987/*
988 * Some architectures provide facilities to virtualization guests
989 * so that they can flag allocated pages as unused. This allows the
990 * host to transparently reclaim unused pages. This function returns
991 * whether the pte's page is unused.
992 */
993static inline int pte_unused(pte_t pte)
994{
995 return 0;
996}
997#endif
998
999#ifndef pte_access_permitted
1000#define pte_access_permitted(pte, write) \
1001 (pte_present(pte) && (!(write) || pte_write(pte)))
1002#endif
1003
1004#ifndef pmd_access_permitted
1005#define pmd_access_permitted(pmd, write) \
1006 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1007#endif
1008
1009#ifndef pud_access_permitted
1010#define pud_access_permitted(pud, write) \
1011 (pud_present(pud) && (!(write) || pud_write(pud)))
1012#endif
1013
1014#ifndef p4d_access_permitted
1015#define p4d_access_permitted(p4d, write) \
1016 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1017#endif
1018
1019#ifndef pgd_access_permitted
1020#define pgd_access_permitted(pgd, write) \
1021 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1022#endif
1023
1024#ifndef __HAVE_ARCH_PMD_SAME
1025static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1026{
1027 return pmd_val(pmd_a) == pmd_val(pmd_b);
1028}
1029#endif
1030
1031#ifndef pud_same
1032static inline int pud_same(pud_t pud_a, pud_t pud_b)
1033{
1034 return pud_val(pud_a) == pud_val(pud_b);
1035}
1036#define pud_same pud_same
1037#endif
1038
1039#ifndef __HAVE_ARCH_P4D_SAME
1040static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1041{
1042 return p4d_val(p4d_a) == p4d_val(p4d_b);
1043}
1044#endif
1045
1046#ifndef __HAVE_ARCH_PGD_SAME
1047static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1048{
1049 return pgd_val(pgd_a) == pgd_val(pgd_b);
1050}
1051#endif
1052
1053/*
1054 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1055 * TLB flush will be required as a result of the "set". For example, use
1056 * in scenarios where it is known ahead of time that the routine is
1057 * setting non-present entries, or re-setting an existing entry to the
1058 * same value. Otherwise, use the typical "set" helpers and flush the
1059 * TLB.
1060 */
1061#define set_pte_safe(ptep, pte) \
1062({ \
1063 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1064 set_pte(ptep, pte); \
1065})
1066
1067#define set_pmd_safe(pmdp, pmd) \
1068({ \
1069 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1070 set_pmd(pmdp, pmd); \
1071})
1072
1073#define set_pud_safe(pudp, pud) \
1074({ \
1075 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1076 set_pud(pudp, pud); \
1077})
1078
1079#define set_p4d_safe(p4dp, p4d) \
1080({ \
1081 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1082 set_p4d(p4dp, p4d); \
1083})
1084
1085#define set_pgd_safe(pgdp, pgd) \
1086({ \
1087 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1088 set_pgd(pgdp, pgd); \
1089})
1090
1091#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1092static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1093 struct vm_area_struct *vma,
1094 unsigned long addr,
1095 pte_t pte, pte_t oldpte,
1096 int nr)
1097{
1098
1099}
1100#else
1101/*
1102 * Some architectures support metadata associated with a page. When a
1103 * page is being swapped out, this metadata must be saved so it can be
1104 * restored when the page is swapped back in. SPARC M7 and newer
1105 * processors support an ADI (Application Data Integrity) tag for the
1106 * page as metadata for the page. arch_do_swap_page() can restore this
1107 * metadata when a page is swapped back in.
1108 */
1109static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1110 struct vm_area_struct *vma,
1111 unsigned long addr,
1112 pte_t pte, pte_t oldpte,
1113 int nr)
1114{
1115 for (int i = 0; i < nr; i++) {
1116 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1117 pte_advance_pfn(pte, i),
1118 pte_advance_pfn(oldpte, i));
1119 }
1120}
1121#endif
1122
1123#ifndef __HAVE_ARCH_UNMAP_ONE
1124/*
1125 * Some architectures support metadata associated with a page. When a
1126 * page is being swapped out, this metadata must be saved so it can be
1127 * restored when the page is swapped back in. SPARC M7 and newer
1128 * processors support an ADI (Application Data Integrity) tag for the
1129 * page as metadata for the page. arch_unmap_one() can save this
1130 * metadata on a swap-out of a page.
1131 */
1132static inline int arch_unmap_one(struct mm_struct *mm,
1133 struct vm_area_struct *vma,
1134 unsigned long addr,
1135 pte_t orig_pte)
1136{
1137 return 0;
1138}
1139#endif
1140
1141/*
1142 * Allow architectures to preserve additional metadata associated with
1143 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1144 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1145 */
1146#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1147static inline int arch_prepare_to_swap(struct folio *folio)
1148{
1149 return 0;
1150}
1151#endif
1152
1153#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1154static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1155{
1156}
1157
1158static inline void arch_swap_invalidate_area(int type)
1159{
1160}
1161#endif
1162
1163#ifndef __HAVE_ARCH_SWAP_RESTORE
1164static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1165{
1166}
1167#endif
1168
1169#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1170#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1171#endif
1172
1173#ifndef __HAVE_ARCH_MOVE_PTE
1174#define move_pte(pte, old_addr, new_addr) (pte)
1175#endif
1176
1177#ifndef pte_accessible
1178# define pte_accessible(mm, pte) ((void)(pte), 1)
1179#endif
1180
1181#ifndef flush_tlb_fix_spurious_fault
1182#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1183#endif
1184
1185/*
1186 * When walking page tables, get the address of the next boundary,
1187 * or the end address of the range if that comes earlier. Although no
1188 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1189 */
1190
1191#define pgd_addr_end(addr, end) \
1192({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1193 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1194})
1195
1196#ifndef p4d_addr_end
1197#define p4d_addr_end(addr, end) \
1198({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1199 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1200})
1201#endif
1202
1203#ifndef pud_addr_end
1204#define pud_addr_end(addr, end) \
1205({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1206 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1207})
1208#endif
1209
1210#ifndef pmd_addr_end
1211#define pmd_addr_end(addr, end) \
1212({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1213 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1214})
1215#endif
1216
1217/*
1218 * When walking page tables, we usually want to skip any p?d_none entries;
1219 * and any p?d_bad entries - reporting the error before resetting to none.
1220 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1221 */
1222void pgd_clear_bad(pgd_t *);
1223
1224#ifndef __PAGETABLE_P4D_FOLDED
1225void p4d_clear_bad(p4d_t *);
1226#else
1227#define p4d_clear_bad(p4d) do { } while (0)
1228#endif
1229
1230#ifndef __PAGETABLE_PUD_FOLDED
1231void pud_clear_bad(pud_t *);
1232#else
1233#define pud_clear_bad(p4d) do { } while (0)
1234#endif
1235
1236void pmd_clear_bad(pmd_t *);
1237
1238static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1239{
1240 if (pgd_none(*pgd))
1241 return 1;
1242 if (unlikely(pgd_bad(*pgd))) {
1243 pgd_clear_bad(pgd);
1244 return 1;
1245 }
1246 return 0;
1247}
1248
1249static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1250{
1251 if (p4d_none(*p4d))
1252 return 1;
1253 if (unlikely(p4d_bad(*p4d))) {
1254 p4d_clear_bad(p4d);
1255 return 1;
1256 }
1257 return 0;
1258}
1259
1260static inline int pud_none_or_clear_bad(pud_t *pud)
1261{
1262 if (pud_none(*pud))
1263 return 1;
1264 if (unlikely(pud_bad(*pud))) {
1265 pud_clear_bad(pud);
1266 return 1;
1267 }
1268 return 0;
1269}
1270
1271static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1272{
1273 if (pmd_none(*pmd))
1274 return 1;
1275 if (unlikely(pmd_bad(*pmd))) {
1276 pmd_clear_bad(pmd);
1277 return 1;
1278 }
1279 return 0;
1280}
1281
1282static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1283 unsigned long addr,
1284 pte_t *ptep)
1285{
1286 /*
1287 * Get the current pte state, but zero it out to make it
1288 * non-present, preventing the hardware from asynchronously
1289 * updating it.
1290 */
1291 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1292}
1293
1294static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1295 unsigned long addr,
1296 pte_t *ptep, pte_t pte)
1297{
1298 /*
1299 * The pte is non-present, so there's no hardware state to
1300 * preserve.
1301 */
1302 set_pte_at(vma->vm_mm, addr, ptep, pte);
1303}
1304
1305#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1306/*
1307 * Start a pte protection read-modify-write transaction, which
1308 * protects against asynchronous hardware modifications to the pte.
1309 * The intention is not to prevent the hardware from making pte
1310 * updates, but to prevent any updates it may make from being lost.
1311 *
1312 * This does not protect against other software modifications of the
1313 * pte; the appropriate pte lock must be held over the transaction.
1314 *
1315 * Note that this interface is intended to be batchable, meaning that
1316 * ptep_modify_prot_commit may not actually update the pte, but merely
1317 * queue the update to be done at some later time. The update must be
1318 * actually committed before the pte lock is released, however.
1319 */
1320static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1321 unsigned long addr,
1322 pte_t *ptep)
1323{
1324 return __ptep_modify_prot_start(vma, addr, ptep);
1325}
1326
1327/*
1328 * Commit an update to a pte, leaving any hardware-controlled bits in
1329 * the PTE unmodified.
1330 */
1331static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1332 unsigned long addr,
1333 pte_t *ptep, pte_t old_pte, pte_t pte)
1334{
1335 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1336}
1337#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1338#endif /* CONFIG_MMU */
1339
1340/*
1341 * No-op macros that just return the current protection value. Defined here
1342 * because these macros can be used even if CONFIG_MMU is not defined.
1343 */
1344
1345#ifndef pgprot_nx
1346#define pgprot_nx(prot) (prot)
1347#endif
1348
1349#ifndef pgprot_noncached
1350#define pgprot_noncached(prot) (prot)
1351#endif
1352
1353#ifndef pgprot_writecombine
1354#define pgprot_writecombine pgprot_noncached
1355#endif
1356
1357#ifndef pgprot_writethrough
1358#define pgprot_writethrough pgprot_noncached
1359#endif
1360
1361#ifndef pgprot_device
1362#define pgprot_device pgprot_noncached
1363#endif
1364
1365#ifndef pgprot_mhp
1366#define pgprot_mhp(prot) (prot)
1367#endif
1368
1369#ifdef CONFIG_MMU
1370#ifndef pgprot_modify
1371#define pgprot_modify pgprot_modify
1372static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1373{
1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1375 newprot = pgprot_noncached(newprot);
1376 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1377 newprot = pgprot_writecombine(newprot);
1378 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1379 newprot = pgprot_device(newprot);
1380 return newprot;
1381}
1382#endif
1383#endif /* CONFIG_MMU */
1384
1385#ifndef pgprot_encrypted
1386#define pgprot_encrypted(prot) (prot)
1387#endif
1388
1389#ifndef pgprot_decrypted
1390#define pgprot_decrypted(prot) (prot)
1391#endif
1392
1393/*
1394 * A facility to provide batching of the reload of page tables and
1395 * other process state with the actual context switch code for
1396 * paravirtualized guests. By convention, only one of the batched
1397 * update (lazy) modes (CPU, MMU) should be active at any given time,
1398 * entry should never be nested, and entry and exits should always be
1399 * paired. This is for sanity of maintaining and reasoning about the
1400 * kernel code. In this case, the exit (end of the context switch) is
1401 * in architecture-specific code, and so doesn't need a generic
1402 * definition.
1403 */
1404#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1405#define arch_start_context_switch(prev) do {} while (0)
1406#endif
1407
1408#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1409#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1410static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1411{
1412 return pmd;
1413}
1414
1415static inline int pmd_swp_soft_dirty(pmd_t pmd)
1416{
1417 return 0;
1418}
1419
1420static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1421{
1422 return pmd;
1423}
1424#endif
1425#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1426static inline int pte_soft_dirty(pte_t pte)
1427{
1428 return 0;
1429}
1430
1431static inline int pmd_soft_dirty(pmd_t pmd)
1432{
1433 return 0;
1434}
1435
1436static inline pte_t pte_mksoft_dirty(pte_t pte)
1437{
1438 return pte;
1439}
1440
1441static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1442{
1443 return pmd;
1444}
1445
1446static inline pte_t pte_clear_soft_dirty(pte_t pte)
1447{
1448 return pte;
1449}
1450
1451static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1452{
1453 return pmd;
1454}
1455
1456static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1457{
1458 return pte;
1459}
1460
1461static inline int pte_swp_soft_dirty(pte_t pte)
1462{
1463 return 0;
1464}
1465
1466static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1467{
1468 return pte;
1469}
1470
1471static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1472{
1473 return pmd;
1474}
1475
1476static inline int pmd_swp_soft_dirty(pmd_t pmd)
1477{
1478 return 0;
1479}
1480
1481static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1482{
1483 return pmd;
1484}
1485#endif
1486
1487#ifndef __HAVE_PFNMAP_TRACKING
1488/*
1489 * Interfaces that can be used by architecture code to keep track of
1490 * memory type of pfn mappings specified by the remap_pfn_range,
1491 * vmf_insert_pfn.
1492 */
1493
1494/*
1495 * track_pfn_remap is called when a _new_ pfn mapping is being established
1496 * by remap_pfn_range() for physical range indicated by pfn and size.
1497 */
1498static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1499 unsigned long pfn, unsigned long addr,
1500 unsigned long size)
1501{
1502 return 0;
1503}
1504
1505/*
1506 * track_pfn_insert is called when a _new_ single pfn is established
1507 * by vmf_insert_pfn().
1508 */
1509static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1510 pfn_t pfn)
1511{
1512}
1513
1514/*
1515 * track_pfn_copy is called when vma that is covering the pfnmap gets
1516 * copied through copy_page_range().
1517 */
1518static inline int track_pfn_copy(struct vm_area_struct *vma)
1519{
1520 return 0;
1521}
1522
1523/*
1524 * untrack_pfn is called while unmapping a pfnmap for a region.
1525 * untrack can be called for a specific region indicated by pfn and size or
1526 * can be for the entire vma (in which case pfn, size are zero).
1527 */
1528static inline void untrack_pfn(struct vm_area_struct *vma,
1529 unsigned long pfn, unsigned long size,
1530 bool mm_wr_locked)
1531{
1532}
1533
1534/*
1535 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1536 * or fails to copy pgtable during duplicate vm area.
1537 */
1538static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1539{
1540}
1541#else
1542extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1543 unsigned long pfn, unsigned long addr,
1544 unsigned long size);
1545extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1546 pfn_t pfn);
1547extern int track_pfn_copy(struct vm_area_struct *vma);
1548extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1549 unsigned long size, bool mm_wr_locked);
1550extern void untrack_pfn_clear(struct vm_area_struct *vma);
1551#endif
1552
1553#ifdef CONFIG_MMU
1554#ifdef __HAVE_COLOR_ZERO_PAGE
1555static inline int is_zero_pfn(unsigned long pfn)
1556{
1557 extern unsigned long zero_pfn;
1558 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1559 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1560}
1561
1562#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1563
1564#else
1565static inline int is_zero_pfn(unsigned long pfn)
1566{
1567 extern unsigned long zero_pfn;
1568 return pfn == zero_pfn;
1569}
1570
1571static inline unsigned long my_zero_pfn(unsigned long addr)
1572{
1573 extern unsigned long zero_pfn;
1574 return zero_pfn;
1575}
1576#endif
1577#else
1578static inline int is_zero_pfn(unsigned long pfn)
1579{
1580 return 0;
1581}
1582
1583static inline unsigned long my_zero_pfn(unsigned long addr)
1584{
1585 return 0;
1586}
1587#endif /* CONFIG_MMU */
1588
1589#ifdef CONFIG_MMU
1590
1591#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1592static inline int pmd_trans_huge(pmd_t pmd)
1593{
1594 return 0;
1595}
1596#ifndef pmd_write
1597static inline int pmd_write(pmd_t pmd)
1598{
1599 BUG();
1600 return 0;
1601}
1602#endif /* pmd_write */
1603#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1604
1605#ifndef pud_write
1606static inline int pud_write(pud_t pud)
1607{
1608 BUG();
1609 return 0;
1610}
1611#endif /* pud_write */
1612
1613#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1614static inline int pmd_devmap(pmd_t pmd)
1615{
1616 return 0;
1617}
1618static inline int pud_devmap(pud_t pud)
1619{
1620 return 0;
1621}
1622static inline int pgd_devmap(pgd_t pgd)
1623{
1624 return 0;
1625}
1626#endif
1627
1628#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1629 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1630static inline int pud_trans_huge(pud_t pud)
1631{
1632 return 0;
1633}
1634#endif
1635
1636static inline int pud_trans_unstable(pud_t *pud)
1637{
1638#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1639 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1640 pud_t pudval = READ_ONCE(*pud);
1641
1642 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1643 return 1;
1644 if (unlikely(pud_bad(pudval))) {
1645 pud_clear_bad(pud);
1646 return 1;
1647 }
1648#endif
1649 return 0;
1650}
1651
1652#ifndef CONFIG_NUMA_BALANCING
1653/*
1654 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1655 * perfectly valid to indicate "no" in that case, which is why our default
1656 * implementation defaults to "always no".
1657 *
1658 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1659 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1660 * accessible VMAs.
1661 *
1662 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1663 * looking at the VMA accessibility is sufficient.
1664 */
1665static inline int pte_protnone(pte_t pte)
1666{
1667 return 0;
1668}
1669
1670static inline int pmd_protnone(pmd_t pmd)
1671{
1672 return 0;
1673}
1674#endif /* CONFIG_NUMA_BALANCING */
1675
1676#endif /* CONFIG_MMU */
1677
1678#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1679
1680#ifndef __PAGETABLE_P4D_FOLDED
1681int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1682void p4d_clear_huge(p4d_t *p4d);
1683#else
1684static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1685{
1686 return 0;
1687}
1688static inline void p4d_clear_huge(p4d_t *p4d) { }
1689#endif /* !__PAGETABLE_P4D_FOLDED */
1690
1691int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1692int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1693int pud_clear_huge(pud_t *pud);
1694int pmd_clear_huge(pmd_t *pmd);
1695int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1696int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1697int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1698#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1699static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1700{
1701 return 0;
1702}
1703static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1704{
1705 return 0;
1706}
1707static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1708{
1709 return 0;
1710}
1711static inline void p4d_clear_huge(p4d_t *p4d) { }
1712static inline int pud_clear_huge(pud_t *pud)
1713{
1714 return 0;
1715}
1716static inline int pmd_clear_huge(pmd_t *pmd)
1717{
1718 return 0;
1719}
1720static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1721{
1722 return 0;
1723}
1724static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1725{
1726 return 0;
1727}
1728static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1729{
1730 return 0;
1731}
1732#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1733
1734#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1735#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1736/*
1737 * ARCHes with special requirements for evicting THP backing TLB entries can
1738 * implement this. Otherwise also, it can help optimize normal TLB flush in
1739 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1740 * entire TLB if flush span is greater than a threshold, which will
1741 * likely be true for a single huge page. Thus a single THP flush will
1742 * invalidate the entire TLB which is not desirable.
1743 * e.g. see arch/arc: flush_pmd_tlb_range
1744 */
1745#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1746#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1747#else
1748#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1749#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1750#endif
1751#endif
1752
1753struct file;
1754int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1755 unsigned long size, pgprot_t *vma_prot);
1756
1757#ifndef CONFIG_X86_ESPFIX64
1758static inline void init_espfix_bsp(void) { }
1759#endif
1760
1761extern void __init pgtable_cache_init(void);
1762
1763#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1764static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1765{
1766 return true;
1767}
1768
1769static inline bool arch_has_pfn_modify_check(void)
1770{
1771 return false;
1772}
1773#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1774
1775/*
1776 * Architecture PAGE_KERNEL_* fallbacks
1777 *
1778 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1779 * because they really don't support them, or the port needs to be updated to
1780 * reflect the required functionality. Below are a set of relatively safe
1781 * fallbacks, as best effort, which we can count on in lieu of the architectures
1782 * not defining them on their own yet.
1783 */
1784
1785#ifndef PAGE_KERNEL_RO
1786# define PAGE_KERNEL_RO PAGE_KERNEL
1787#endif
1788
1789#ifndef PAGE_KERNEL_EXEC
1790# define PAGE_KERNEL_EXEC PAGE_KERNEL
1791#endif
1792
1793/*
1794 * Page Table Modification bits for pgtbl_mod_mask.
1795 *
1796 * These are used by the p?d_alloc_track*() set of functions an in the generic
1797 * vmalloc/ioremap code to track at which page-table levels entries have been
1798 * modified. Based on that the code can better decide when vmalloc and ioremap
1799 * mapping changes need to be synchronized to other page-tables in the system.
1800 */
1801#define __PGTBL_PGD_MODIFIED 0
1802#define __PGTBL_P4D_MODIFIED 1
1803#define __PGTBL_PUD_MODIFIED 2
1804#define __PGTBL_PMD_MODIFIED 3
1805#define __PGTBL_PTE_MODIFIED 4
1806
1807#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1808#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1809#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1810#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1811#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1812
1813/* Page-Table Modification Mask */
1814typedef unsigned int pgtbl_mod_mask;
1815
1816#endif /* !__ASSEMBLY__ */
1817
1818#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1819#ifdef CONFIG_PHYS_ADDR_T_64BIT
1820/*
1821 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1822 * with physical address space extension, but falls back to
1823 * BITS_PER_LONG otherwise.
1824 */
1825#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1826#else
1827#define MAX_POSSIBLE_PHYSMEM_BITS 32
1828#endif
1829#endif
1830
1831#ifndef has_transparent_hugepage
1832#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1833#endif
1834
1835#ifndef has_transparent_pud_hugepage
1836#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1837#endif
1838/*
1839 * On some architectures it depends on the mm if the p4d/pud or pmd
1840 * layer of the page table hierarchy is folded or not.
1841 */
1842#ifndef mm_p4d_folded
1843#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1844#endif
1845
1846#ifndef mm_pud_folded
1847#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1848#endif
1849
1850#ifndef mm_pmd_folded
1851#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1852#endif
1853
1854#ifndef p4d_offset_lockless
1855#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1856#endif
1857#ifndef pud_offset_lockless
1858#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1859#endif
1860#ifndef pmd_offset_lockless
1861#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1862#endif
1863
1864/*
1865 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1866 * mapping. It should work globally across all archs, without any
1867 * dependency on CONFIG_* options. For architectures that do not support
1868 * huge mappings on specific levels, below fallbacks will be used.
1869 *
1870 * A leaf pgtable entry should always imply the following:
1871 *
1872 * - It is a "present" entry. IOW, before using this API, please check it
1873 * with pXd_present() first. NOTE: it may not always mean the "present
1874 * bit" is set. For example, PROT_NONE entries are always "present".
1875 *
1876 * - It should _never_ be a swap entry of any type. Above "present" check
1877 * should have guarded this, but let's be crystal clear on this.
1878 *
1879 * - It should contain a huge PFN, which points to a huge page larger than
1880 * PAGE_SIZE of the platform. The PFN format isn't important here.
1881 *
1882 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1883 * pXd_devmap(), or hugetlb mappings).
1884 */
1885#ifndef pgd_leaf
1886#define pgd_leaf(x) false
1887#endif
1888#ifndef p4d_leaf
1889#define p4d_leaf(x) false
1890#endif
1891#ifndef pud_leaf
1892#define pud_leaf(x) false
1893#endif
1894#ifndef pmd_leaf
1895#define pmd_leaf(x) false
1896#endif
1897
1898#ifndef pgd_leaf_size
1899#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1900#endif
1901#ifndef p4d_leaf_size
1902#define p4d_leaf_size(x) P4D_SIZE
1903#endif
1904#ifndef pud_leaf_size
1905#define pud_leaf_size(x) PUD_SIZE
1906#endif
1907#ifndef pmd_leaf_size
1908#define pmd_leaf_size(x) PMD_SIZE
1909#endif
1910#ifndef __pte_leaf_size
1911#ifndef pte_leaf_size
1912#define pte_leaf_size(x) PAGE_SIZE
1913#endif
1914#define __pte_leaf_size(x,y) pte_leaf_size(y)
1915#endif
1916
1917/*
1918 * We always define pmd_pfn for all archs as it's used in lots of generic
1919 * code. Now it happens too for pud_pfn (and can happen for larger
1920 * mappings too in the future; we're not there yet). Instead of defining
1921 * it for all archs (like pmd_pfn), provide a fallback.
1922 *
1923 * Note that returning 0 here means any arch that didn't define this can
1924 * get severely wrong when it hits a real pud leaf. It's arch's
1925 * responsibility to properly define it when a huge pud is possible.
1926 */
1927#ifndef pud_pfn
1928#define pud_pfn(x) 0
1929#endif
1930
1931/*
1932 * Some architectures have MMUs that are configurable or selectable at boot
1933 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1934 * helps to have a static maximum value.
1935 */
1936
1937#ifndef MAX_PTRS_PER_PTE
1938#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1939#endif
1940
1941#ifndef MAX_PTRS_PER_PMD
1942#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1943#endif
1944
1945#ifndef MAX_PTRS_PER_PUD
1946#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1947#endif
1948
1949#ifndef MAX_PTRS_PER_P4D
1950#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1951#endif
1952
1953/* description of effects of mapping type and prot in current implementation.
1954 * this is due to the limited x86 page protection hardware. The expected
1955 * behavior is in parens:
1956 *
1957 * map_type prot
1958 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1959 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1960 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1961 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1962 *
1963 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1964 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1965 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1966 *
1967 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1968 * MAP_PRIVATE (with Enhanced PAN supported):
1969 * r: (no) no
1970 * w: (no) no
1971 * x: (yes) yes
1972 */
1973#define DECLARE_VM_GET_PAGE_PROT \
1974pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1975{ \
1976 return protection_map[vm_flags & \
1977 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1978} \
1979EXPORT_SYMBOL(vm_get_page_prot);
1980
1981#endif /* _LINUX_PGTABLE_H */