Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/cpuid.h>
20#include <asm/page.h>
21#include <asm/pgtable_types.h>
22#include <asm/percpu.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29#include <asm/vdso/processor.h>
30#include <asm/shstk.h>
31
32#include <linux/personality.h>
33#include <linux/cache.h>
34#include <linux/threads.h>
35#include <linux/math64.h>
36#include <linux/err.h>
37#include <linux/irqflags.h>
38#include <linux/mem_encrypt.h>
39
40/*
41 * We handle most unaligned accesses in hardware. On the other hand
42 * unaligned DMA can be quite expensive on some Nehalem processors.
43 *
44 * Based on this we disable the IP header alignment in network drivers.
45 */
46#define NET_IP_ALIGN 0
47
48#define HBP_NUM 4
49
50/*
51 * These alignment constraints are for performance in the vSMP case,
52 * but in the task_struct case we must also meet hardware imposed
53 * alignment requirements of the FPU state:
54 */
55#ifdef CONFIG_X86_VSMP
56# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
57# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
58#else
59# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
60# define ARCH_MIN_MMSTRUCT_ALIGN 0
61#endif
62
63enum tlb_infos {
64 ENTRIES,
65 NR_INFO
66};
67
68extern u16 __read_mostly tlb_lli_4k[NR_INFO];
69extern u16 __read_mostly tlb_lli_2m[NR_INFO];
70extern u16 __read_mostly tlb_lli_4m[NR_INFO];
71extern u16 __read_mostly tlb_lld_4k[NR_INFO];
72extern u16 __read_mostly tlb_lld_2m[NR_INFO];
73extern u16 __read_mostly tlb_lld_4m[NR_INFO];
74extern u16 __read_mostly tlb_lld_1g[NR_INFO];
75
76/*
77 * CPU type and hardware bug flags. Kept separately for each CPU.
78 */
79
80struct cpuinfo_topology {
81 // Real APIC ID read from the local APIC
82 u32 apicid;
83 // The initial APIC ID provided by CPUID
84 u32 initial_apicid;
85
86 // Physical package ID
87 u32 pkg_id;
88
89 // Physical die ID on AMD, Relative on Intel
90 u32 die_id;
91
92 // Compute unit ID - AMD specific
93 u32 cu_id;
94
95 // Core ID relative to the package
96 u32 core_id;
97
98 // Logical ID mappings
99 u32 logical_pkg_id;
100 u32 logical_die_id;
101
102 // AMD Node ID and Nodes per Package info
103 u32 amd_node_id;
104
105 // Cache level topology IDs
106 u32 llc_id;
107 u32 l2c_id;
108};
109
110struct cpuinfo_x86 {
111 union {
112 /*
113 * The particular ordering (low-to-high) of (vendor,
114 * family, model) is done in case range of models, like
115 * it is usually done on AMD, need to be compared.
116 */
117 struct {
118 __u8 x86_model;
119 /* CPU family */
120 __u8 x86;
121 /* CPU vendor */
122 __u8 x86_vendor;
123 __u8 x86_reserved;
124 };
125 /* combined vendor, family, model */
126 __u32 x86_vfm;
127 };
128 __u8 x86_stepping;
129#ifdef CONFIG_X86_64
130 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
131 int x86_tlbsize;
132#endif
133#ifdef CONFIG_X86_VMX_FEATURE_NAMES
134 __u32 vmx_capability[NVMXINTS];
135#endif
136 __u8 x86_virt_bits;
137 __u8 x86_phys_bits;
138 /* Max extended CPUID function supported: */
139 __u32 extended_cpuid_level;
140 /* Maximum supported CPUID level, -1=no CPUID: */
141 int cpuid_level;
142 /*
143 * Align to size of unsigned long because the x86_capability array
144 * is passed to bitops which require the alignment. Use unnamed
145 * union to enforce the array is aligned to size of unsigned long.
146 */
147 union {
148 __u32 x86_capability[NCAPINTS + NBUGINTS];
149 unsigned long x86_capability_alignment;
150 };
151 char x86_vendor_id[16];
152 char x86_model_id[64];
153 struct cpuinfo_topology topo;
154 /* in KB - valid for CPUS which support this call: */
155 unsigned int x86_cache_size;
156 int x86_cache_alignment; /* In bytes */
157 /* Cache QoS architectural values, valid only on the BSP: */
158 int x86_cache_max_rmid; /* max index */
159 int x86_cache_occ_scale; /* scale to bytes */
160 int x86_cache_mbm_width_offset;
161 int x86_power;
162 unsigned long loops_per_jiffy;
163 /* protected processor identification number */
164 u64 ppin;
165 u16 x86_clflush_size;
166 /* number of cores as seen by the OS: */
167 u16 booted_cores;
168 /* Index into per_cpu list: */
169 u16 cpu_index;
170 /* Is SMT active on this core? */
171 bool smt_active;
172 u32 microcode;
173 /* Address space bits used by the cache internally */
174 u8 x86_cache_bits;
175 unsigned initialized : 1;
176} __randomize_layout;
177
178#define X86_VENDOR_INTEL 0
179#define X86_VENDOR_CYRIX 1
180#define X86_VENDOR_AMD 2
181#define X86_VENDOR_UMC 3
182#define X86_VENDOR_CENTAUR 5
183#define X86_VENDOR_TRANSMETA 7
184#define X86_VENDOR_NSC 8
185#define X86_VENDOR_HYGON 9
186#define X86_VENDOR_ZHAOXIN 10
187#define X86_VENDOR_VORTEX 11
188#define X86_VENDOR_NUM 12
189
190#define X86_VENDOR_UNKNOWN 0xff
191
192/*
193 * capabilities of CPUs
194 */
195extern struct cpuinfo_x86 boot_cpu_data;
196extern struct cpuinfo_x86 new_cpu_data;
197
198extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
199extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
200
201DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
202#define cpu_data(cpu) per_cpu(cpu_info, cpu)
203
204extern const struct seq_operations cpuinfo_op;
205
206#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
207
208extern void cpu_detect(struct cpuinfo_x86 *c);
209
210static inline unsigned long long l1tf_pfn_limit(void)
211{
212 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
213}
214
215extern void early_cpu_init(void);
216extern void identify_secondary_cpu(struct cpuinfo_x86 *);
217extern void print_cpu_info(struct cpuinfo_x86 *);
218void print_cpu_msr(struct cpuinfo_x86 *);
219
220/*
221 * Friendlier CR3 helpers.
222 */
223static inline unsigned long read_cr3_pa(void)
224{
225 return __read_cr3() & CR3_ADDR_MASK;
226}
227
228static inline unsigned long native_read_cr3_pa(void)
229{
230 return __native_read_cr3() & CR3_ADDR_MASK;
231}
232
233static inline void load_cr3(pgd_t *pgdir)
234{
235 write_cr3(__sme_pa(pgdir));
236}
237
238/*
239 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
240 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
241 * unrelated to the task-switch mechanism:
242 */
243#ifdef CONFIG_X86_32
244/* This is the TSS defined by the hardware. */
245struct x86_hw_tss {
246 unsigned short back_link, __blh;
247 unsigned long sp0;
248 unsigned short ss0, __ss0h;
249 unsigned long sp1;
250
251 /*
252 * We don't use ring 1, so ss1 is a convenient scratch space in
253 * the same cacheline as sp0. We use ss1 to cache the value in
254 * MSR_IA32_SYSENTER_CS. When we context switch
255 * MSR_IA32_SYSENTER_CS, we first check if the new value being
256 * written matches ss1, and, if it's not, then we wrmsr the new
257 * value and update ss1.
258 *
259 * The only reason we context switch MSR_IA32_SYSENTER_CS is
260 * that we set it to zero in vm86 tasks to avoid corrupting the
261 * stack if we were to go through the sysenter path from vm86
262 * mode.
263 */
264 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
265
266 unsigned short __ss1h;
267 unsigned long sp2;
268 unsigned short ss2, __ss2h;
269 unsigned long __cr3;
270 unsigned long ip;
271 unsigned long flags;
272 unsigned long ax;
273 unsigned long cx;
274 unsigned long dx;
275 unsigned long bx;
276 unsigned long sp;
277 unsigned long bp;
278 unsigned long si;
279 unsigned long di;
280 unsigned short es, __esh;
281 unsigned short cs, __csh;
282 unsigned short ss, __ssh;
283 unsigned short ds, __dsh;
284 unsigned short fs, __fsh;
285 unsigned short gs, __gsh;
286 unsigned short ldt, __ldth;
287 unsigned short trace;
288 unsigned short io_bitmap_base;
289
290} __attribute__((packed));
291#else
292struct x86_hw_tss {
293 u32 reserved1;
294 u64 sp0;
295 u64 sp1;
296
297 /*
298 * Since Linux does not use ring 2, the 'sp2' slot is unused by
299 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
300 * the user RSP value.
301 */
302 u64 sp2;
303
304 u64 reserved2;
305 u64 ist[7];
306 u32 reserved3;
307 u32 reserved4;
308 u16 reserved5;
309 u16 io_bitmap_base;
310
311} __attribute__((packed));
312#endif
313
314/*
315 * IO-bitmap sizes:
316 */
317#define IO_BITMAP_BITS 65536
318#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
319#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
320
321#define IO_BITMAP_OFFSET_VALID_MAP \
322 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
323 offsetof(struct tss_struct, x86_tss))
324
325#define IO_BITMAP_OFFSET_VALID_ALL \
326 (offsetof(struct tss_struct, io_bitmap.mapall) - \
327 offsetof(struct tss_struct, x86_tss))
328
329#ifdef CONFIG_X86_IOPL_IOPERM
330/*
331 * sizeof(unsigned long) coming from an extra "long" at the end of the
332 * iobitmap. The limit is inclusive, i.e. the last valid byte.
333 */
334# define __KERNEL_TSS_LIMIT \
335 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
336 sizeof(unsigned long) - 1)
337#else
338# define __KERNEL_TSS_LIMIT \
339 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
340#endif
341
342/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
343#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
344
345struct entry_stack {
346 char stack[PAGE_SIZE];
347};
348
349struct entry_stack_page {
350 struct entry_stack stack;
351} __aligned(PAGE_SIZE);
352
353/*
354 * All IO bitmap related data stored in the TSS:
355 */
356struct x86_io_bitmap {
357 /* The sequence number of the last active bitmap. */
358 u64 prev_sequence;
359
360 /*
361 * Store the dirty size of the last io bitmap offender. The next
362 * one will have to do the cleanup as the switch out to a non io
363 * bitmap user will just set x86_tss.io_bitmap_base to a value
364 * outside of the TSS limit. So for sane tasks there is no need to
365 * actually touch the io_bitmap at all.
366 */
367 unsigned int prev_max;
368
369 /*
370 * The extra 1 is there because the CPU will access an
371 * additional byte beyond the end of the IO permission
372 * bitmap. The extra byte must be all 1 bits, and must
373 * be within the limit.
374 */
375 unsigned long bitmap[IO_BITMAP_LONGS + 1];
376
377 /*
378 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
379 * except the additional byte at the end.
380 */
381 unsigned long mapall[IO_BITMAP_LONGS + 1];
382};
383
384struct tss_struct {
385 /*
386 * The fixed hardware portion. This must not cross a page boundary
387 * at risk of violating the SDM's advice and potentially triggering
388 * errata.
389 */
390 struct x86_hw_tss x86_tss;
391
392 struct x86_io_bitmap io_bitmap;
393} __aligned(PAGE_SIZE);
394
395DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
396
397/* Per CPU interrupt stacks */
398struct irq_stack {
399 char stack[IRQ_STACK_SIZE];
400} __aligned(IRQ_STACK_SIZE);
401
402#ifdef CONFIG_X86_64
403struct fixed_percpu_data {
404 /*
405 * GCC hardcodes the stack canary as %gs:40. Since the
406 * irq_stack is the object at %gs:0, we reserve the bottom
407 * 48 bytes of the irq stack for the canary.
408 *
409 * Once we are willing to require -mstack-protector-guard-symbol=
410 * support for x86_64 stackprotector, we can get rid of this.
411 */
412 char gs_base[40];
413 unsigned long stack_canary;
414};
415
416DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
417DECLARE_INIT_PER_CPU(fixed_percpu_data);
418
419static inline unsigned long cpu_kernelmode_gs_base(int cpu)
420{
421 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
422}
423
424extern asmlinkage void entry_SYSCALL32_ignore(void);
425
426/* Save actual FS/GS selectors and bases to current->thread */
427void current_save_fsgs(void);
428#else /* X86_64 */
429#ifdef CONFIG_STACKPROTECTOR
430DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
431#endif
432#endif /* !X86_64 */
433
434struct perf_event;
435
436struct thread_struct {
437 /* Cached TLS descriptors: */
438 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
439#ifdef CONFIG_X86_32
440 unsigned long sp0;
441#endif
442 unsigned long sp;
443#ifdef CONFIG_X86_32
444 unsigned long sysenter_cs;
445#else
446 unsigned short es;
447 unsigned short ds;
448 unsigned short fsindex;
449 unsigned short gsindex;
450#endif
451
452#ifdef CONFIG_X86_64
453 unsigned long fsbase;
454 unsigned long gsbase;
455#else
456 /*
457 * XXX: this could presumably be unsigned short. Alternatively,
458 * 32-bit kernels could be taught to use fsindex instead.
459 */
460 unsigned long fs;
461 unsigned long gs;
462#endif
463
464 /* Save middle states of ptrace breakpoints */
465 struct perf_event *ptrace_bps[HBP_NUM];
466 /* Debug status used for traps, single steps, etc... */
467 unsigned long virtual_dr6;
468 /* Keep track of the exact dr7 value set by the user */
469 unsigned long ptrace_dr7;
470 /* Fault info: */
471 unsigned long cr2;
472 unsigned long trap_nr;
473 unsigned long error_code;
474#ifdef CONFIG_VM86
475 /* Virtual 86 mode info */
476 struct vm86 *vm86;
477#endif
478 /* IO permissions: */
479 struct io_bitmap *io_bitmap;
480
481 /*
482 * IOPL. Privilege level dependent I/O permission which is
483 * emulated via the I/O bitmap to prevent user space from disabling
484 * interrupts.
485 */
486 unsigned long iopl_emul;
487
488 unsigned int iopl_warn:1;
489
490 /*
491 * Protection Keys Register for Userspace. Loaded immediately on
492 * context switch. Store it in thread_struct to avoid a lookup in
493 * the tasks's FPU xstate buffer. This value is only valid when a
494 * task is scheduled out. For 'current' the authoritative source of
495 * PKRU is the hardware itself.
496 */
497 u32 pkru;
498
499#ifdef CONFIG_X86_USER_SHADOW_STACK
500 unsigned long features;
501 unsigned long features_locked;
502
503 struct thread_shstk shstk;
504#endif
505
506 /* Floating point and extended processor state */
507 struct fpu fpu;
508 /*
509 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
510 * the end.
511 */
512};
513
514extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
515
516static inline void arch_thread_struct_whitelist(unsigned long *offset,
517 unsigned long *size)
518{
519 fpu_thread_struct_whitelist(offset, size);
520}
521
522static inline void
523native_load_sp0(unsigned long sp0)
524{
525 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
526}
527
528static __always_inline void native_swapgs(void)
529{
530#ifdef CONFIG_X86_64
531 asm volatile("swapgs" ::: "memory");
532#endif
533}
534
535static __always_inline unsigned long current_top_of_stack(void)
536{
537 /*
538 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
539 * and around vm86 mode and sp0 on x86_64 is special because of the
540 * entry trampoline.
541 */
542 if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
543 return this_cpu_read_const(const_pcpu_hot.top_of_stack);
544
545 return this_cpu_read_stable(pcpu_hot.top_of_stack);
546}
547
548static __always_inline bool on_thread_stack(void)
549{
550 return (unsigned long)(current_top_of_stack() -
551 current_stack_pointer) < THREAD_SIZE;
552}
553
554#ifdef CONFIG_PARAVIRT_XXL
555#include <asm/paravirt.h>
556#else
557
558static inline void load_sp0(unsigned long sp0)
559{
560 native_load_sp0(sp0);
561}
562
563#endif /* CONFIG_PARAVIRT_XXL */
564
565unsigned long __get_wchan(struct task_struct *p);
566
567extern void select_idle_routine(void);
568extern void amd_e400_c1e_apic_setup(void);
569
570extern unsigned long boot_option_idle_override;
571
572enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
573 IDLE_POLL};
574
575extern void enable_sep_cpu(void);
576
577
578/* Defined in head.S */
579extern struct desc_ptr early_gdt_descr;
580
581extern void switch_gdt_and_percpu_base(int);
582extern void load_direct_gdt(int);
583extern void load_fixmap_gdt(int);
584extern void cpu_init(void);
585extern void cpu_init_exception_handling(void);
586extern void cr4_init(void);
587
588extern void set_task_blockstep(struct task_struct *task, bool on);
589
590/* Boot loader type from the setup header: */
591extern int bootloader_type;
592extern int bootloader_version;
593
594extern char ignore_fpu_irq;
595
596#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
597#define ARCH_HAS_PREFETCHW
598
599#ifdef CONFIG_X86_32
600# define BASE_PREFETCH ""
601# define ARCH_HAS_PREFETCH
602#else
603# define BASE_PREFETCH "prefetcht0 %1"
604#endif
605
606/*
607 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
608 *
609 * It's not worth to care about 3dnow prefetches for the K6
610 * because they are microcoded there and very slow.
611 */
612static inline void prefetch(const void *x)
613{
614 alternative_input(BASE_PREFETCH, "prefetchnta %1",
615 X86_FEATURE_XMM,
616 "m" (*(const char *)x));
617}
618
619/*
620 * 3dnow prefetch to get an exclusive cache line.
621 * Useful for spinlocks to avoid one state transition in the
622 * cache coherency protocol:
623 */
624static __always_inline void prefetchw(const void *x)
625{
626 alternative_input(BASE_PREFETCH, "prefetchw %1",
627 X86_FEATURE_3DNOWPREFETCH,
628 "m" (*(const char *)x));
629}
630
631#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
632 TOP_OF_KERNEL_STACK_PADDING)
633
634#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
635
636#define task_pt_regs(task) \
637({ \
638 unsigned long __ptr = (unsigned long)task_stack_page(task); \
639 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
640 ((struct pt_regs *)__ptr) - 1; \
641})
642
643#ifdef CONFIG_X86_32
644#define INIT_THREAD { \
645 .sp0 = TOP_OF_INIT_STACK, \
646 .sysenter_cs = __KERNEL_CS, \
647}
648
649#define KSTK_ESP(task) (task_pt_regs(task)->sp)
650
651#else
652extern unsigned long __top_init_kernel_stack[];
653
654#define INIT_THREAD { \
655 .sp = (unsigned long)&__top_init_kernel_stack, \
656}
657
658extern unsigned long KSTK_ESP(struct task_struct *task);
659
660#endif /* CONFIG_X86_64 */
661
662extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
663 unsigned long new_sp);
664
665/*
666 * This decides where the kernel will search for a free chunk of vm
667 * space during mmap's.
668 */
669#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
670#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
671
672#define KSTK_EIP(task) (task_pt_regs(task)->ip)
673
674/* Get/set a process' ability to use the timestamp counter instruction */
675#define GET_TSC_CTL(adr) get_tsc_mode((adr))
676#define SET_TSC_CTL(val) set_tsc_mode((val))
677
678extern int get_tsc_mode(unsigned long adr);
679extern int set_tsc_mode(unsigned int val);
680
681DECLARE_PER_CPU(u64, msr_misc_features_shadow);
682
683static inline u32 per_cpu_llc_id(unsigned int cpu)
684{
685 return per_cpu(cpu_info.topo.llc_id, cpu);
686}
687
688static inline u32 per_cpu_l2c_id(unsigned int cpu)
689{
690 return per_cpu(cpu_info.topo.l2c_id, cpu);
691}
692
693#ifdef CONFIG_CPU_SUP_AMD
694extern u32 amd_get_highest_perf(void);
695
696/*
697 * Issue a DIV 0/1 insn to clear any division data from previous DIV
698 * operations.
699 */
700static __always_inline void amd_clear_divider(void)
701{
702 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
703 :: "a" (0), "d" (0), "r" (1));
704}
705
706extern void amd_check_microcode(void);
707#else
708static inline u32 amd_get_highest_perf(void) { return 0; }
709static inline void amd_clear_divider(void) { }
710static inline void amd_check_microcode(void) { }
711#endif
712
713extern unsigned long arch_align_stack(unsigned long sp);
714void free_init_pages(const char *what, unsigned long begin, unsigned long end);
715extern void free_kernel_image_pages(const char *what, void *begin, void *end);
716
717void default_idle(void);
718#ifdef CONFIG_XEN
719bool xen_set_default_idle(void);
720#else
721#define xen_set_default_idle 0
722#endif
723
724void __noreturn stop_this_cpu(void *dummy);
725void microcode_check(struct cpuinfo_x86 *prev_info);
726void store_cpu_caps(struct cpuinfo_x86 *info);
727
728enum l1tf_mitigations {
729 L1TF_MITIGATION_OFF,
730 L1TF_MITIGATION_FLUSH_NOWARN,
731 L1TF_MITIGATION_FLUSH,
732 L1TF_MITIGATION_FLUSH_NOSMT,
733 L1TF_MITIGATION_FULL,
734 L1TF_MITIGATION_FULL_FORCE
735};
736
737extern enum l1tf_mitigations l1tf_mitigation;
738
739enum mds_mitigations {
740 MDS_MITIGATION_OFF,
741 MDS_MITIGATION_FULL,
742 MDS_MITIGATION_VMWERV,
743};
744
745extern bool gds_ucode_mitigated(void);
746
747/*
748 * Make previous memory operations globally visible before
749 * a WRMSR.
750 *
751 * MFENCE makes writes visible, but only affects load/store
752 * instructions. WRMSR is unfortunately not a load/store
753 * instruction and is unaffected by MFENCE. The LFENCE ensures
754 * that the WRMSR is not reordered.
755 *
756 * Most WRMSRs are full serializing instructions themselves and
757 * do not require this barrier. This is only required for the
758 * IA32_TSC_DEADLINE and X2APIC MSRs.
759 */
760static inline void weak_wrmsr_fence(void)
761{
762 alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
763}
764
765#endif /* _ASM_X86_PROCESSOR_H */