Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/isolation.h>
81#include <linux/sched/mm.h>
82#include <linux/smpboot.h>
83#include <linux/mutex.h>
84#include <linux/rwsem.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/skbuff.h>
96#include <linux/kthread.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dsa.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/gro.h>
108#include <net/pkt_sched.h>
109#include <net/pkt_cls.h>
110#include <net/checksum.h>
111#include <net/xfrm.h>
112#include <net/tcx.h>
113#include <linux/highmem.h>
114#include <linux/init.h>
115#include <linux/module.h>
116#include <linux/netpoll.h>
117#include <linux/rcupdate.h>
118#include <linux/delay.h>
119#include <net/iw_handler.h>
120#include <asm/current.h>
121#include <linux/audit.h>
122#include <linux/dmaengine.h>
123#include <linux/err.h>
124#include <linux/ctype.h>
125#include <linux/if_arp.h>
126#include <linux/if_vlan.h>
127#include <linux/ip.h>
128#include <net/ip.h>
129#include <net/mpls.h>
130#include <linux/ipv6.h>
131#include <linux/in.h>
132#include <linux/jhash.h>
133#include <linux/random.h>
134#include <trace/events/napi.h>
135#include <trace/events/net.h>
136#include <trace/events/skb.h>
137#include <trace/events/qdisc.h>
138#include <trace/events/xdp.h>
139#include <linux/inetdevice.h>
140#include <linux/cpu_rmap.h>
141#include <linux/static_key.h>
142#include <linux/hashtable.h>
143#include <linux/vmalloc.h>
144#include <linux/if_macvlan.h>
145#include <linux/errqueue.h>
146#include <linux/hrtimer.h>
147#include <linux/netfilter_netdev.h>
148#include <linux/crash_dump.h>
149#include <linux/sctp.h>
150#include <net/udp_tunnel.h>
151#include <linux/net_namespace.h>
152#include <linux/indirect_call_wrapper.h>
153#include <net/devlink.h>
154#include <linux/pm_runtime.h>
155#include <linux/prandom.h>
156#include <linux/once_lite.h>
157#include <net/netdev_rx_queue.h>
158#include <net/page_pool/types.h>
159#include <net/page_pool/helpers.h>
160#include <net/rps.h>
161
162#include "dev.h"
163#include "net-sysfs.h"
164
165static DEFINE_SPINLOCK(ptype_lock);
166struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
167
168static int netif_rx_internal(struct sk_buff *skb);
169static int call_netdevice_notifiers_extack(unsigned long val,
170 struct net_device *dev,
171 struct netlink_ext_ack *extack);
172
173static DEFINE_MUTEX(ifalias_mutex);
174
175/* protects napi_hash addition/deletion and napi_gen_id */
176static DEFINE_SPINLOCK(napi_hash_lock);
177
178static unsigned int napi_gen_id = NR_CPUS;
179static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
180
181static DECLARE_RWSEM(devnet_rename_sem);
182
183static inline void dev_base_seq_inc(struct net *net)
184{
185 unsigned int val = net->dev_base_seq + 1;
186
187 WRITE_ONCE(net->dev_base_seq, val ?: 1);
188}
189
190static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
191{
192 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
193
194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
195}
196
197static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
198{
199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
200}
201
202#ifndef CONFIG_PREEMPT_RT
203
204static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
205
206static int __init setup_backlog_napi_threads(char *arg)
207{
208 static_branch_enable(&use_backlog_threads_key);
209 return 0;
210}
211early_param("thread_backlog_napi", setup_backlog_napi_threads);
212
213static bool use_backlog_threads(void)
214{
215 return static_branch_unlikely(&use_backlog_threads_key);
216}
217
218#else
219
220static bool use_backlog_threads(void)
221{
222 return true;
223}
224
225#endif
226
227static inline void backlog_lock_irq_save(struct softnet_data *sd,
228 unsigned long *flags)
229{
230 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
231 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
232 else
233 local_irq_save(*flags);
234}
235
236static inline void backlog_lock_irq_disable(struct softnet_data *sd)
237{
238 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
239 spin_lock_irq(&sd->input_pkt_queue.lock);
240 else
241 local_irq_disable();
242}
243
244static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
245 unsigned long *flags)
246{
247 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
248 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
249 else
250 local_irq_restore(*flags);
251}
252
253static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
254{
255 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
256 spin_unlock_irq(&sd->input_pkt_queue.lock);
257 else
258 local_irq_enable();
259}
260
261static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
262 const char *name)
263{
264 struct netdev_name_node *name_node;
265
266 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
267 if (!name_node)
268 return NULL;
269 INIT_HLIST_NODE(&name_node->hlist);
270 name_node->dev = dev;
271 name_node->name = name;
272 return name_node;
273}
274
275static struct netdev_name_node *
276netdev_name_node_head_alloc(struct net_device *dev)
277{
278 struct netdev_name_node *name_node;
279
280 name_node = netdev_name_node_alloc(dev, dev->name);
281 if (!name_node)
282 return NULL;
283 INIT_LIST_HEAD(&name_node->list);
284 return name_node;
285}
286
287static void netdev_name_node_free(struct netdev_name_node *name_node)
288{
289 kfree(name_node);
290}
291
292static void netdev_name_node_add(struct net *net,
293 struct netdev_name_node *name_node)
294{
295 hlist_add_head_rcu(&name_node->hlist,
296 dev_name_hash(net, name_node->name));
297}
298
299static void netdev_name_node_del(struct netdev_name_node *name_node)
300{
301 hlist_del_rcu(&name_node->hlist);
302}
303
304static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
305 const char *name)
306{
307 struct hlist_head *head = dev_name_hash(net, name);
308 struct netdev_name_node *name_node;
309
310 hlist_for_each_entry(name_node, head, hlist)
311 if (!strcmp(name_node->name, name))
312 return name_node;
313 return NULL;
314}
315
316static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
317 const char *name)
318{
319 struct hlist_head *head = dev_name_hash(net, name);
320 struct netdev_name_node *name_node;
321
322 hlist_for_each_entry_rcu(name_node, head, hlist)
323 if (!strcmp(name_node->name, name))
324 return name_node;
325 return NULL;
326}
327
328bool netdev_name_in_use(struct net *net, const char *name)
329{
330 return netdev_name_node_lookup(net, name);
331}
332EXPORT_SYMBOL(netdev_name_in_use);
333
334int netdev_name_node_alt_create(struct net_device *dev, const char *name)
335{
336 struct netdev_name_node *name_node;
337 struct net *net = dev_net(dev);
338
339 name_node = netdev_name_node_lookup(net, name);
340 if (name_node)
341 return -EEXIST;
342 name_node = netdev_name_node_alloc(dev, name);
343 if (!name_node)
344 return -ENOMEM;
345 netdev_name_node_add(net, name_node);
346 /* The node that holds dev->name acts as a head of per-device list. */
347 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
348
349 return 0;
350}
351
352static void netdev_name_node_alt_free(struct rcu_head *head)
353{
354 struct netdev_name_node *name_node =
355 container_of(head, struct netdev_name_node, rcu);
356
357 kfree(name_node->name);
358 netdev_name_node_free(name_node);
359}
360
361static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
362{
363 netdev_name_node_del(name_node);
364 list_del(&name_node->list);
365 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
366}
367
368int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
369{
370 struct netdev_name_node *name_node;
371 struct net *net = dev_net(dev);
372
373 name_node = netdev_name_node_lookup(net, name);
374 if (!name_node)
375 return -ENOENT;
376 /* lookup might have found our primary name or a name belonging
377 * to another device.
378 */
379 if (name_node == dev->name_node || name_node->dev != dev)
380 return -EINVAL;
381
382 __netdev_name_node_alt_destroy(name_node);
383 return 0;
384}
385
386static void netdev_name_node_alt_flush(struct net_device *dev)
387{
388 struct netdev_name_node *name_node, *tmp;
389
390 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
391 list_del(&name_node->list);
392 netdev_name_node_alt_free(&name_node->rcu);
393 }
394}
395
396/* Device list insertion */
397static void list_netdevice(struct net_device *dev)
398{
399 struct netdev_name_node *name_node;
400 struct net *net = dev_net(dev);
401
402 ASSERT_RTNL();
403
404 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
405 netdev_name_node_add(net, dev->name_node);
406 hlist_add_head_rcu(&dev->index_hlist,
407 dev_index_hash(net, dev->ifindex));
408
409 netdev_for_each_altname(dev, name_node)
410 netdev_name_node_add(net, name_node);
411
412 /* We reserved the ifindex, this can't fail */
413 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
414
415 dev_base_seq_inc(net);
416}
417
418/* Device list removal
419 * caller must respect a RCU grace period before freeing/reusing dev
420 */
421static void unlist_netdevice(struct net_device *dev)
422{
423 struct netdev_name_node *name_node;
424 struct net *net = dev_net(dev);
425
426 ASSERT_RTNL();
427
428 xa_erase(&net->dev_by_index, dev->ifindex);
429
430 netdev_for_each_altname(dev, name_node)
431 netdev_name_node_del(name_node);
432
433 /* Unlink dev from the device chain */
434 list_del_rcu(&dev->dev_list);
435 netdev_name_node_del(dev->name_node);
436 hlist_del_rcu(&dev->index_hlist);
437
438 dev_base_seq_inc(dev_net(dev));
439}
440
441/*
442 * Our notifier list
443 */
444
445static RAW_NOTIFIER_HEAD(netdev_chain);
446
447/*
448 * Device drivers call our routines to queue packets here. We empty the
449 * queue in the local softnet handler.
450 */
451
452DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
453 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
454};
455EXPORT_PER_CPU_SYMBOL(softnet_data);
456
457/* Page_pool has a lockless array/stack to alloc/recycle pages.
458 * PP consumers must pay attention to run APIs in the appropriate context
459 * (e.g. NAPI context).
460 */
461static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
462
463#ifdef CONFIG_LOCKDEP
464/*
465 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
466 * according to dev->type
467 */
468static const unsigned short netdev_lock_type[] = {
469 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
470 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
471 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
472 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
473 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
474 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
475 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
476 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
477 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
478 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
479 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
480 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
481 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
482 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
483 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
484
485static const char *const netdev_lock_name[] = {
486 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
487 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
488 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
489 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
490 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
491 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
492 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
493 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
494 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
495 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
496 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
497 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
498 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
499 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
500 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
501
502static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
503static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
504
505static inline unsigned short netdev_lock_pos(unsigned short dev_type)
506{
507 int i;
508
509 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
510 if (netdev_lock_type[i] == dev_type)
511 return i;
512 /* the last key is used by default */
513 return ARRAY_SIZE(netdev_lock_type) - 1;
514}
515
516static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
517 unsigned short dev_type)
518{
519 int i;
520
521 i = netdev_lock_pos(dev_type);
522 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
523 netdev_lock_name[i]);
524}
525
526static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
527{
528 int i;
529
530 i = netdev_lock_pos(dev->type);
531 lockdep_set_class_and_name(&dev->addr_list_lock,
532 &netdev_addr_lock_key[i],
533 netdev_lock_name[i]);
534}
535#else
536static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
537 unsigned short dev_type)
538{
539}
540
541static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
542{
543}
544#endif
545
546/*******************************************************************************
547 *
548 * Protocol management and registration routines
549 *
550 *******************************************************************************/
551
552
553/*
554 * Add a protocol ID to the list. Now that the input handler is
555 * smarter we can dispense with all the messy stuff that used to be
556 * here.
557 *
558 * BEWARE!!! Protocol handlers, mangling input packets,
559 * MUST BE last in hash buckets and checking protocol handlers
560 * MUST start from promiscuous ptype_all chain in net_bh.
561 * It is true now, do not change it.
562 * Explanation follows: if protocol handler, mangling packet, will
563 * be the first on list, it is not able to sense, that packet
564 * is cloned and should be copied-on-write, so that it will
565 * change it and subsequent readers will get broken packet.
566 * --ANK (980803)
567 */
568
569static inline struct list_head *ptype_head(const struct packet_type *pt)
570{
571 if (pt->type == htons(ETH_P_ALL))
572 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
573 else
574 return pt->dev ? &pt->dev->ptype_specific :
575 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
576}
577
578/**
579 * dev_add_pack - add packet handler
580 * @pt: packet type declaration
581 *
582 * Add a protocol handler to the networking stack. The passed &packet_type
583 * is linked into kernel lists and may not be freed until it has been
584 * removed from the kernel lists.
585 *
586 * This call does not sleep therefore it can not
587 * guarantee all CPU's that are in middle of receiving packets
588 * will see the new packet type (until the next received packet).
589 */
590
591void dev_add_pack(struct packet_type *pt)
592{
593 struct list_head *head = ptype_head(pt);
594
595 spin_lock(&ptype_lock);
596 list_add_rcu(&pt->list, head);
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(dev_add_pack);
600
601/**
602 * __dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * The packet type might still be in use by receivers
611 * and must not be freed until after all the CPU's have gone
612 * through a quiescent state.
613 */
614void __dev_remove_pack(struct packet_type *pt)
615{
616 struct list_head *head = ptype_head(pt);
617 struct packet_type *pt1;
618
619 spin_lock(&ptype_lock);
620
621 list_for_each_entry(pt1, head, list) {
622 if (pt == pt1) {
623 list_del_rcu(&pt->list);
624 goto out;
625 }
626 }
627
628 pr_warn("dev_remove_pack: %p not found\n", pt);
629out:
630 spin_unlock(&ptype_lock);
631}
632EXPORT_SYMBOL(__dev_remove_pack);
633
634/**
635 * dev_remove_pack - remove packet handler
636 * @pt: packet type declaration
637 *
638 * Remove a protocol handler that was previously added to the kernel
639 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
640 * from the kernel lists and can be freed or reused once this function
641 * returns.
642 *
643 * This call sleeps to guarantee that no CPU is looking at the packet
644 * type after return.
645 */
646void dev_remove_pack(struct packet_type *pt)
647{
648 __dev_remove_pack(pt);
649
650 synchronize_net();
651}
652EXPORT_SYMBOL(dev_remove_pack);
653
654
655/*******************************************************************************
656 *
657 * Device Interface Subroutines
658 *
659 *******************************************************************************/
660
661/**
662 * dev_get_iflink - get 'iflink' value of a interface
663 * @dev: targeted interface
664 *
665 * Indicates the ifindex the interface is linked to.
666 * Physical interfaces have the same 'ifindex' and 'iflink' values.
667 */
668
669int dev_get_iflink(const struct net_device *dev)
670{
671 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
672 return dev->netdev_ops->ndo_get_iflink(dev);
673
674 return READ_ONCE(dev->ifindex);
675}
676EXPORT_SYMBOL(dev_get_iflink);
677
678/**
679 * dev_fill_metadata_dst - Retrieve tunnel egress information.
680 * @dev: targeted interface
681 * @skb: The packet.
682 *
683 * For better visibility of tunnel traffic OVS needs to retrieve
684 * egress tunnel information for a packet. Following API allows
685 * user to get this info.
686 */
687int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
688{
689 struct ip_tunnel_info *info;
690
691 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
692 return -EINVAL;
693
694 info = skb_tunnel_info_unclone(skb);
695 if (!info)
696 return -ENOMEM;
697 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
698 return -EINVAL;
699
700 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
701}
702EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
703
704static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
705{
706 int k = stack->num_paths++;
707
708 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
709 return NULL;
710
711 return &stack->path[k];
712}
713
714int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
715 struct net_device_path_stack *stack)
716{
717 const struct net_device *last_dev;
718 struct net_device_path_ctx ctx = {
719 .dev = dev,
720 };
721 struct net_device_path *path;
722 int ret = 0;
723
724 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
725 stack->num_paths = 0;
726 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
727 last_dev = ctx.dev;
728 path = dev_fwd_path(stack);
729 if (!path)
730 return -1;
731
732 memset(path, 0, sizeof(struct net_device_path));
733 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
734 if (ret < 0)
735 return -1;
736
737 if (WARN_ON_ONCE(last_dev == ctx.dev))
738 return -1;
739 }
740
741 if (!ctx.dev)
742 return ret;
743
744 path = dev_fwd_path(stack);
745 if (!path)
746 return -1;
747 path->type = DEV_PATH_ETHERNET;
748 path->dev = ctx.dev;
749
750 return ret;
751}
752EXPORT_SYMBOL_GPL(dev_fill_forward_path);
753
754/**
755 * __dev_get_by_name - find a device by its name
756 * @net: the applicable net namespace
757 * @name: name to find
758 *
759 * Find an interface by name. Must be called under RTNL semaphore.
760 * If the name is found a pointer to the device is returned.
761 * If the name is not found then %NULL is returned. The
762 * reference counters are not incremented so the caller must be
763 * careful with locks.
764 */
765
766struct net_device *__dev_get_by_name(struct net *net, const char *name)
767{
768 struct netdev_name_node *node_name;
769
770 node_name = netdev_name_node_lookup(net, name);
771 return node_name ? node_name->dev : NULL;
772}
773EXPORT_SYMBOL(__dev_get_by_name);
774
775/**
776 * dev_get_by_name_rcu - find a device by its name
777 * @net: the applicable net namespace
778 * @name: name to find
779 *
780 * Find an interface by name.
781 * If the name is found a pointer to the device is returned.
782 * If the name is not found then %NULL is returned.
783 * The reference counters are not incremented so the caller must be
784 * careful with locks. The caller must hold RCU lock.
785 */
786
787struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
788{
789 struct netdev_name_node *node_name;
790
791 node_name = netdev_name_node_lookup_rcu(net, name);
792 return node_name ? node_name->dev : NULL;
793}
794EXPORT_SYMBOL(dev_get_by_name_rcu);
795
796/* Deprecated for new users, call netdev_get_by_name() instead */
797struct net_device *dev_get_by_name(struct net *net, const char *name)
798{
799 struct net_device *dev;
800
801 rcu_read_lock();
802 dev = dev_get_by_name_rcu(net, name);
803 dev_hold(dev);
804 rcu_read_unlock();
805 return dev;
806}
807EXPORT_SYMBOL(dev_get_by_name);
808
809/**
810 * netdev_get_by_name() - find a device by its name
811 * @net: the applicable net namespace
812 * @name: name to find
813 * @tracker: tracking object for the acquired reference
814 * @gfp: allocation flags for the tracker
815 *
816 * Find an interface by name. This can be called from any
817 * context and does its own locking. The returned handle has
818 * the usage count incremented and the caller must use netdev_put() to
819 * release it when it is no longer needed. %NULL is returned if no
820 * matching device is found.
821 */
822struct net_device *netdev_get_by_name(struct net *net, const char *name,
823 netdevice_tracker *tracker, gfp_t gfp)
824{
825 struct net_device *dev;
826
827 dev = dev_get_by_name(net, name);
828 if (dev)
829 netdev_tracker_alloc(dev, tracker, gfp);
830 return dev;
831}
832EXPORT_SYMBOL(netdev_get_by_name);
833
834/**
835 * __dev_get_by_index - find a device by its ifindex
836 * @net: the applicable net namespace
837 * @ifindex: index of device
838 *
839 * Search for an interface by index. Returns %NULL if the device
840 * is not found or a pointer to the device. The device has not
841 * had its reference counter increased so the caller must be careful
842 * about locking. The caller must hold the RTNL semaphore.
843 */
844
845struct net_device *__dev_get_by_index(struct net *net, int ifindex)
846{
847 struct net_device *dev;
848 struct hlist_head *head = dev_index_hash(net, ifindex);
849
850 hlist_for_each_entry(dev, head, index_hlist)
851 if (dev->ifindex == ifindex)
852 return dev;
853
854 return NULL;
855}
856EXPORT_SYMBOL(__dev_get_by_index);
857
858/**
859 * dev_get_by_index_rcu - find a device by its ifindex
860 * @net: the applicable net namespace
861 * @ifindex: index of device
862 *
863 * Search for an interface by index. Returns %NULL if the device
864 * is not found or a pointer to the device. The device has not
865 * had its reference counter increased so the caller must be careful
866 * about locking. The caller must hold RCU lock.
867 */
868
869struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
870{
871 struct net_device *dev;
872 struct hlist_head *head = dev_index_hash(net, ifindex);
873
874 hlist_for_each_entry_rcu(dev, head, index_hlist)
875 if (dev->ifindex == ifindex)
876 return dev;
877
878 return NULL;
879}
880EXPORT_SYMBOL(dev_get_by_index_rcu);
881
882/* Deprecated for new users, call netdev_get_by_index() instead */
883struct net_device *dev_get_by_index(struct net *net, int ifindex)
884{
885 struct net_device *dev;
886
887 rcu_read_lock();
888 dev = dev_get_by_index_rcu(net, ifindex);
889 dev_hold(dev);
890 rcu_read_unlock();
891 return dev;
892}
893EXPORT_SYMBOL(dev_get_by_index);
894
895/**
896 * netdev_get_by_index() - find a device by its ifindex
897 * @net: the applicable net namespace
898 * @ifindex: index of device
899 * @tracker: tracking object for the acquired reference
900 * @gfp: allocation flags for the tracker
901 *
902 * Search for an interface by index. Returns NULL if the device
903 * is not found or a pointer to the device. The device returned has
904 * had a reference added and the pointer is safe until the user calls
905 * netdev_put() to indicate they have finished with it.
906 */
907struct net_device *netdev_get_by_index(struct net *net, int ifindex,
908 netdevice_tracker *tracker, gfp_t gfp)
909{
910 struct net_device *dev;
911
912 dev = dev_get_by_index(net, ifindex);
913 if (dev)
914 netdev_tracker_alloc(dev, tracker, gfp);
915 return dev;
916}
917EXPORT_SYMBOL(netdev_get_by_index);
918
919/**
920 * dev_get_by_napi_id - find a device by napi_id
921 * @napi_id: ID of the NAPI struct
922 *
923 * Search for an interface by NAPI ID. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not had
925 * its reference counter increased so the caller must be careful
926 * about locking. The caller must hold RCU lock.
927 */
928
929struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930{
931 struct napi_struct *napi;
932
933 WARN_ON_ONCE(!rcu_read_lock_held());
934
935 if (napi_id < MIN_NAPI_ID)
936 return NULL;
937
938 napi = napi_by_id(napi_id);
939
940 return napi ? napi->dev : NULL;
941}
942EXPORT_SYMBOL(dev_get_by_napi_id);
943
944static DEFINE_SEQLOCK(netdev_rename_lock);
945
946void netdev_copy_name(struct net_device *dev, char *name)
947{
948 unsigned int seq;
949
950 do {
951 seq = read_seqbegin(&netdev_rename_lock);
952 strscpy(name, dev->name, IFNAMSIZ);
953 } while (read_seqretry(&netdev_rename_lock, seq));
954}
955
956/**
957 * netdev_get_name - get a netdevice name, knowing its ifindex.
958 * @net: network namespace
959 * @name: a pointer to the buffer where the name will be stored.
960 * @ifindex: the ifindex of the interface to get the name from.
961 */
962int netdev_get_name(struct net *net, char *name, int ifindex)
963{
964 struct net_device *dev;
965 int ret;
966
967 rcu_read_lock();
968
969 dev = dev_get_by_index_rcu(net, ifindex);
970 if (!dev) {
971 ret = -ENODEV;
972 goto out;
973 }
974
975 netdev_copy_name(dev, name);
976
977 ret = 0;
978out:
979 rcu_read_unlock();
980 return ret;
981}
982
983/**
984 * dev_getbyhwaddr_rcu - find a device by its hardware address
985 * @net: the applicable net namespace
986 * @type: media type of device
987 * @ha: hardware address
988 *
989 * Search for an interface by MAC address. Returns NULL if the device
990 * is not found or a pointer to the device.
991 * The caller must hold RCU or RTNL.
992 * The returned device has not had its ref count increased
993 * and the caller must therefore be careful about locking
994 *
995 */
996
997struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
998 const char *ha)
999{
1000 struct net_device *dev;
1001
1002 for_each_netdev_rcu(net, dev)
1003 if (dev->type == type &&
1004 !memcmp(dev->dev_addr, ha, dev->addr_len))
1005 return dev;
1006
1007 return NULL;
1008}
1009EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1010
1011struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1012{
1013 struct net_device *dev, *ret = NULL;
1014
1015 rcu_read_lock();
1016 for_each_netdev_rcu(net, dev)
1017 if (dev->type == type) {
1018 dev_hold(dev);
1019 ret = dev;
1020 break;
1021 }
1022 rcu_read_unlock();
1023 return ret;
1024}
1025EXPORT_SYMBOL(dev_getfirstbyhwtype);
1026
1027/**
1028 * __dev_get_by_flags - find any device with given flags
1029 * @net: the applicable net namespace
1030 * @if_flags: IFF_* values
1031 * @mask: bitmask of bits in if_flags to check
1032 *
1033 * Search for any interface with the given flags. Returns NULL if a device
1034 * is not found or a pointer to the device. Must be called inside
1035 * rtnl_lock(), and result refcount is unchanged.
1036 */
1037
1038struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1039 unsigned short mask)
1040{
1041 struct net_device *dev, *ret;
1042
1043 ASSERT_RTNL();
1044
1045 ret = NULL;
1046 for_each_netdev(net, dev) {
1047 if (((dev->flags ^ if_flags) & mask) == 0) {
1048 ret = dev;
1049 break;
1050 }
1051 }
1052 return ret;
1053}
1054EXPORT_SYMBOL(__dev_get_by_flags);
1055
1056/**
1057 * dev_valid_name - check if name is okay for network device
1058 * @name: name string
1059 *
1060 * Network device names need to be valid file names to
1061 * allow sysfs to work. We also disallow any kind of
1062 * whitespace.
1063 */
1064bool dev_valid_name(const char *name)
1065{
1066 if (*name == '\0')
1067 return false;
1068 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1069 return false;
1070 if (!strcmp(name, ".") || !strcmp(name, ".."))
1071 return false;
1072
1073 while (*name) {
1074 if (*name == '/' || *name == ':' || isspace(*name))
1075 return false;
1076 name++;
1077 }
1078 return true;
1079}
1080EXPORT_SYMBOL(dev_valid_name);
1081
1082/**
1083 * __dev_alloc_name - allocate a name for a device
1084 * @net: network namespace to allocate the device name in
1085 * @name: name format string
1086 * @res: result name string
1087 *
1088 * Passed a format string - eg "lt%d" it will try and find a suitable
1089 * id. It scans list of devices to build up a free map, then chooses
1090 * the first empty slot. The caller must hold the dev_base or rtnl lock
1091 * while allocating the name and adding the device in order to avoid
1092 * duplicates.
1093 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1094 * Returns the number of the unit assigned or a negative errno code.
1095 */
1096
1097static int __dev_alloc_name(struct net *net, const char *name, char *res)
1098{
1099 int i = 0;
1100 const char *p;
1101 const int max_netdevices = 8*PAGE_SIZE;
1102 unsigned long *inuse;
1103 struct net_device *d;
1104 char buf[IFNAMSIZ];
1105
1106 /* Verify the string as this thing may have come from the user.
1107 * There must be one "%d" and no other "%" characters.
1108 */
1109 p = strchr(name, '%');
1110 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1111 return -EINVAL;
1112
1113 /* Use one page as a bit array of possible slots */
1114 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1115 if (!inuse)
1116 return -ENOMEM;
1117
1118 for_each_netdev(net, d) {
1119 struct netdev_name_node *name_node;
1120
1121 netdev_for_each_altname(d, name_node) {
1122 if (!sscanf(name_node->name, name, &i))
1123 continue;
1124 if (i < 0 || i >= max_netdevices)
1125 continue;
1126
1127 /* avoid cases where sscanf is not exact inverse of printf */
1128 snprintf(buf, IFNAMSIZ, name, i);
1129 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1130 __set_bit(i, inuse);
1131 }
1132 if (!sscanf(d->name, name, &i))
1133 continue;
1134 if (i < 0 || i >= max_netdevices)
1135 continue;
1136
1137 /* avoid cases where sscanf is not exact inverse of printf */
1138 snprintf(buf, IFNAMSIZ, name, i);
1139 if (!strncmp(buf, d->name, IFNAMSIZ))
1140 __set_bit(i, inuse);
1141 }
1142
1143 i = find_first_zero_bit(inuse, max_netdevices);
1144 bitmap_free(inuse);
1145 if (i == max_netdevices)
1146 return -ENFILE;
1147
1148 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1149 strscpy(buf, name, IFNAMSIZ);
1150 snprintf(res, IFNAMSIZ, buf, i);
1151 return i;
1152}
1153
1154/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1155static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1156 const char *want_name, char *out_name,
1157 int dup_errno)
1158{
1159 if (!dev_valid_name(want_name))
1160 return -EINVAL;
1161
1162 if (strchr(want_name, '%'))
1163 return __dev_alloc_name(net, want_name, out_name);
1164
1165 if (netdev_name_in_use(net, want_name))
1166 return -dup_errno;
1167 if (out_name != want_name)
1168 strscpy(out_name, want_name, IFNAMSIZ);
1169 return 0;
1170}
1171
1172/**
1173 * dev_alloc_name - allocate a name for a device
1174 * @dev: device
1175 * @name: name format string
1176 *
1177 * Passed a format string - eg "lt%d" it will try and find a suitable
1178 * id. It scans list of devices to build up a free map, then chooses
1179 * the first empty slot. The caller must hold the dev_base or rtnl lock
1180 * while allocating the name and adding the device in order to avoid
1181 * duplicates.
1182 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1183 * Returns the number of the unit assigned or a negative errno code.
1184 */
1185
1186int dev_alloc_name(struct net_device *dev, const char *name)
1187{
1188 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1189}
1190EXPORT_SYMBOL(dev_alloc_name);
1191
1192static int dev_get_valid_name(struct net *net, struct net_device *dev,
1193 const char *name)
1194{
1195 int ret;
1196
1197 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1198 return ret < 0 ? ret : 0;
1199}
1200
1201/**
1202 * dev_change_name - change name of a device
1203 * @dev: device
1204 * @newname: name (or format string) must be at least IFNAMSIZ
1205 *
1206 * Change name of a device, can pass format strings "eth%d".
1207 * for wildcarding.
1208 */
1209int dev_change_name(struct net_device *dev, const char *newname)
1210{
1211 unsigned char old_assign_type;
1212 char oldname[IFNAMSIZ];
1213 int err = 0;
1214 int ret;
1215 struct net *net;
1216
1217 ASSERT_RTNL();
1218 BUG_ON(!dev_net(dev));
1219
1220 net = dev_net(dev);
1221
1222 down_write(&devnet_rename_sem);
1223
1224 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1225 up_write(&devnet_rename_sem);
1226 return 0;
1227 }
1228
1229 memcpy(oldname, dev->name, IFNAMSIZ);
1230
1231 write_seqlock_bh(&netdev_rename_lock);
1232 err = dev_get_valid_name(net, dev, newname);
1233 write_sequnlock_bh(&netdev_rename_lock);
1234
1235 if (err < 0) {
1236 up_write(&devnet_rename_sem);
1237 return err;
1238 }
1239
1240 if (oldname[0] && !strchr(oldname, '%'))
1241 netdev_info(dev, "renamed from %s%s\n", oldname,
1242 dev->flags & IFF_UP ? " (while UP)" : "");
1243
1244 old_assign_type = dev->name_assign_type;
1245 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1246
1247rollback:
1248 ret = device_rename(&dev->dev, dev->name);
1249 if (ret) {
1250 memcpy(dev->name, oldname, IFNAMSIZ);
1251 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1252 up_write(&devnet_rename_sem);
1253 return ret;
1254 }
1255
1256 up_write(&devnet_rename_sem);
1257
1258 netdev_adjacent_rename_links(dev, oldname);
1259
1260 netdev_name_node_del(dev->name_node);
1261
1262 synchronize_net();
1263
1264 netdev_name_node_add(net, dev->name_node);
1265
1266 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1267 ret = notifier_to_errno(ret);
1268
1269 if (ret) {
1270 /* err >= 0 after dev_alloc_name() or stores the first errno */
1271 if (err >= 0) {
1272 err = ret;
1273 down_write(&devnet_rename_sem);
1274 write_seqlock_bh(&netdev_rename_lock);
1275 memcpy(dev->name, oldname, IFNAMSIZ);
1276 write_sequnlock_bh(&netdev_rename_lock);
1277 memcpy(oldname, newname, IFNAMSIZ);
1278 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1279 old_assign_type = NET_NAME_RENAMED;
1280 goto rollback;
1281 } else {
1282 netdev_err(dev, "name change rollback failed: %d\n",
1283 ret);
1284 }
1285 }
1286
1287 return err;
1288}
1289
1290/**
1291 * dev_set_alias - change ifalias of a device
1292 * @dev: device
1293 * @alias: name up to IFALIASZ
1294 * @len: limit of bytes to copy from info
1295 *
1296 * Set ifalias for a device,
1297 */
1298int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1299{
1300 struct dev_ifalias *new_alias = NULL;
1301
1302 if (len >= IFALIASZ)
1303 return -EINVAL;
1304
1305 if (len) {
1306 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1307 if (!new_alias)
1308 return -ENOMEM;
1309
1310 memcpy(new_alias->ifalias, alias, len);
1311 new_alias->ifalias[len] = 0;
1312 }
1313
1314 mutex_lock(&ifalias_mutex);
1315 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1316 mutex_is_locked(&ifalias_mutex));
1317 mutex_unlock(&ifalias_mutex);
1318
1319 if (new_alias)
1320 kfree_rcu(new_alias, rcuhead);
1321
1322 return len;
1323}
1324EXPORT_SYMBOL(dev_set_alias);
1325
1326/**
1327 * dev_get_alias - get ifalias of a device
1328 * @dev: device
1329 * @name: buffer to store name of ifalias
1330 * @len: size of buffer
1331 *
1332 * get ifalias for a device. Caller must make sure dev cannot go
1333 * away, e.g. rcu read lock or own a reference count to device.
1334 */
1335int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1336{
1337 const struct dev_ifalias *alias;
1338 int ret = 0;
1339
1340 rcu_read_lock();
1341 alias = rcu_dereference(dev->ifalias);
1342 if (alias)
1343 ret = snprintf(name, len, "%s", alias->ifalias);
1344 rcu_read_unlock();
1345
1346 return ret;
1347}
1348
1349/**
1350 * netdev_features_change - device changes features
1351 * @dev: device to cause notification
1352 *
1353 * Called to indicate a device has changed features.
1354 */
1355void netdev_features_change(struct net_device *dev)
1356{
1357 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1358}
1359EXPORT_SYMBOL(netdev_features_change);
1360
1361/**
1362 * netdev_state_change - device changes state
1363 * @dev: device to cause notification
1364 *
1365 * Called to indicate a device has changed state. This function calls
1366 * the notifier chains for netdev_chain and sends a NEWLINK message
1367 * to the routing socket.
1368 */
1369void netdev_state_change(struct net_device *dev)
1370{
1371 if (dev->flags & IFF_UP) {
1372 struct netdev_notifier_change_info change_info = {
1373 .info.dev = dev,
1374 };
1375
1376 call_netdevice_notifiers_info(NETDEV_CHANGE,
1377 &change_info.info);
1378 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1379 }
1380}
1381EXPORT_SYMBOL(netdev_state_change);
1382
1383/**
1384 * __netdev_notify_peers - notify network peers about existence of @dev,
1385 * to be called when rtnl lock is already held.
1386 * @dev: network device
1387 *
1388 * Generate traffic such that interested network peers are aware of
1389 * @dev, such as by generating a gratuitous ARP. This may be used when
1390 * a device wants to inform the rest of the network about some sort of
1391 * reconfiguration such as a failover event or virtual machine
1392 * migration.
1393 */
1394void __netdev_notify_peers(struct net_device *dev)
1395{
1396 ASSERT_RTNL();
1397 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1398 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1399}
1400EXPORT_SYMBOL(__netdev_notify_peers);
1401
1402/**
1403 * netdev_notify_peers - notify network peers about existence of @dev
1404 * @dev: network device
1405 *
1406 * Generate traffic such that interested network peers are aware of
1407 * @dev, such as by generating a gratuitous ARP. This may be used when
1408 * a device wants to inform the rest of the network about some sort of
1409 * reconfiguration such as a failover event or virtual machine
1410 * migration.
1411 */
1412void netdev_notify_peers(struct net_device *dev)
1413{
1414 rtnl_lock();
1415 __netdev_notify_peers(dev);
1416 rtnl_unlock();
1417}
1418EXPORT_SYMBOL(netdev_notify_peers);
1419
1420static int napi_threaded_poll(void *data);
1421
1422static int napi_kthread_create(struct napi_struct *n)
1423{
1424 int err = 0;
1425
1426 /* Create and wake up the kthread once to put it in
1427 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1428 * warning and work with loadavg.
1429 */
1430 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1431 n->dev->name, n->napi_id);
1432 if (IS_ERR(n->thread)) {
1433 err = PTR_ERR(n->thread);
1434 pr_err("kthread_run failed with err %d\n", err);
1435 n->thread = NULL;
1436 }
1437
1438 return err;
1439}
1440
1441static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1442{
1443 const struct net_device_ops *ops = dev->netdev_ops;
1444 int ret;
1445
1446 ASSERT_RTNL();
1447 dev_addr_check(dev);
1448
1449 if (!netif_device_present(dev)) {
1450 /* may be detached because parent is runtime-suspended */
1451 if (dev->dev.parent)
1452 pm_runtime_resume(dev->dev.parent);
1453 if (!netif_device_present(dev))
1454 return -ENODEV;
1455 }
1456
1457 /* Block netpoll from trying to do any rx path servicing.
1458 * If we don't do this there is a chance ndo_poll_controller
1459 * or ndo_poll may be running while we open the device
1460 */
1461 netpoll_poll_disable(dev);
1462
1463 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1464 ret = notifier_to_errno(ret);
1465 if (ret)
1466 return ret;
1467
1468 set_bit(__LINK_STATE_START, &dev->state);
1469
1470 if (ops->ndo_validate_addr)
1471 ret = ops->ndo_validate_addr(dev);
1472
1473 if (!ret && ops->ndo_open)
1474 ret = ops->ndo_open(dev);
1475
1476 netpoll_poll_enable(dev);
1477
1478 if (ret)
1479 clear_bit(__LINK_STATE_START, &dev->state);
1480 else {
1481 dev->flags |= IFF_UP;
1482 dev_set_rx_mode(dev);
1483 dev_activate(dev);
1484 add_device_randomness(dev->dev_addr, dev->addr_len);
1485 }
1486
1487 return ret;
1488}
1489
1490/**
1491 * dev_open - prepare an interface for use.
1492 * @dev: device to open
1493 * @extack: netlink extended ack
1494 *
1495 * Takes a device from down to up state. The device's private open
1496 * function is invoked and then the multicast lists are loaded. Finally
1497 * the device is moved into the up state and a %NETDEV_UP message is
1498 * sent to the netdev notifier chain.
1499 *
1500 * Calling this function on an active interface is a nop. On a failure
1501 * a negative errno code is returned.
1502 */
1503int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504{
1505 int ret;
1506
1507 if (dev->flags & IFF_UP)
1508 return 0;
1509
1510 ret = __dev_open(dev, extack);
1511 if (ret < 0)
1512 return ret;
1513
1514 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1515 call_netdevice_notifiers(NETDEV_UP, dev);
1516
1517 return ret;
1518}
1519EXPORT_SYMBOL(dev_open);
1520
1521static void __dev_close_many(struct list_head *head)
1522{
1523 struct net_device *dev;
1524
1525 ASSERT_RTNL();
1526 might_sleep();
1527
1528 list_for_each_entry(dev, head, close_list) {
1529 /* Temporarily disable netpoll until the interface is down */
1530 netpoll_poll_disable(dev);
1531
1532 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1533
1534 clear_bit(__LINK_STATE_START, &dev->state);
1535
1536 /* Synchronize to scheduled poll. We cannot touch poll list, it
1537 * can be even on different cpu. So just clear netif_running().
1538 *
1539 * dev->stop() will invoke napi_disable() on all of it's
1540 * napi_struct instances on this device.
1541 */
1542 smp_mb__after_atomic(); /* Commit netif_running(). */
1543 }
1544
1545 dev_deactivate_many(head);
1546
1547 list_for_each_entry(dev, head, close_list) {
1548 const struct net_device_ops *ops = dev->netdev_ops;
1549
1550 /*
1551 * Call the device specific close. This cannot fail.
1552 * Only if device is UP
1553 *
1554 * We allow it to be called even after a DETACH hot-plug
1555 * event.
1556 */
1557 if (ops->ndo_stop)
1558 ops->ndo_stop(dev);
1559
1560 dev->flags &= ~IFF_UP;
1561 netpoll_poll_enable(dev);
1562 }
1563}
1564
1565static void __dev_close(struct net_device *dev)
1566{
1567 LIST_HEAD(single);
1568
1569 list_add(&dev->close_list, &single);
1570 __dev_close_many(&single);
1571 list_del(&single);
1572}
1573
1574void dev_close_many(struct list_head *head, bool unlink)
1575{
1576 struct net_device *dev, *tmp;
1577
1578 /* Remove the devices that don't need to be closed */
1579 list_for_each_entry_safe(dev, tmp, head, close_list)
1580 if (!(dev->flags & IFF_UP))
1581 list_del_init(&dev->close_list);
1582
1583 __dev_close_many(head);
1584
1585 list_for_each_entry_safe(dev, tmp, head, close_list) {
1586 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1587 call_netdevice_notifiers(NETDEV_DOWN, dev);
1588 if (unlink)
1589 list_del_init(&dev->close_list);
1590 }
1591}
1592EXPORT_SYMBOL(dev_close_many);
1593
1594/**
1595 * dev_close - shutdown an interface.
1596 * @dev: device to shutdown
1597 *
1598 * This function moves an active device into down state. A
1599 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1600 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1601 * chain.
1602 */
1603void dev_close(struct net_device *dev)
1604{
1605 if (dev->flags & IFF_UP) {
1606 LIST_HEAD(single);
1607
1608 list_add(&dev->close_list, &single);
1609 dev_close_many(&single, true);
1610 list_del(&single);
1611 }
1612}
1613EXPORT_SYMBOL(dev_close);
1614
1615
1616/**
1617 * dev_disable_lro - disable Large Receive Offload on a device
1618 * @dev: device
1619 *
1620 * Disable Large Receive Offload (LRO) on a net device. Must be
1621 * called under RTNL. This is needed if received packets may be
1622 * forwarded to another interface.
1623 */
1624void dev_disable_lro(struct net_device *dev)
1625{
1626 struct net_device *lower_dev;
1627 struct list_head *iter;
1628
1629 dev->wanted_features &= ~NETIF_F_LRO;
1630 netdev_update_features(dev);
1631
1632 if (unlikely(dev->features & NETIF_F_LRO))
1633 netdev_WARN(dev, "failed to disable LRO!\n");
1634
1635 netdev_for_each_lower_dev(dev, lower_dev, iter)
1636 dev_disable_lro(lower_dev);
1637}
1638EXPORT_SYMBOL(dev_disable_lro);
1639
1640/**
1641 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1642 * @dev: device
1643 *
1644 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1645 * called under RTNL. This is needed if Generic XDP is installed on
1646 * the device.
1647 */
1648static void dev_disable_gro_hw(struct net_device *dev)
1649{
1650 dev->wanted_features &= ~NETIF_F_GRO_HW;
1651 netdev_update_features(dev);
1652
1653 if (unlikely(dev->features & NETIF_F_GRO_HW))
1654 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1655}
1656
1657const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1658{
1659#define N(val) \
1660 case NETDEV_##val: \
1661 return "NETDEV_" __stringify(val);
1662 switch (cmd) {
1663 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1664 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1665 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1666 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1667 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1668 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1669 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1670 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1671 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1672 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1673 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1674 N(XDP_FEAT_CHANGE)
1675 }
1676#undef N
1677 return "UNKNOWN_NETDEV_EVENT";
1678}
1679EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1680
1681static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1682 struct net_device *dev)
1683{
1684 struct netdev_notifier_info info = {
1685 .dev = dev,
1686 };
1687
1688 return nb->notifier_call(nb, val, &info);
1689}
1690
1691static int call_netdevice_register_notifiers(struct notifier_block *nb,
1692 struct net_device *dev)
1693{
1694 int err;
1695
1696 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1697 err = notifier_to_errno(err);
1698 if (err)
1699 return err;
1700
1701 if (!(dev->flags & IFF_UP))
1702 return 0;
1703
1704 call_netdevice_notifier(nb, NETDEV_UP, dev);
1705 return 0;
1706}
1707
1708static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1709 struct net_device *dev)
1710{
1711 if (dev->flags & IFF_UP) {
1712 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713 dev);
1714 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715 }
1716 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717}
1718
1719static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1720 struct net *net)
1721{
1722 struct net_device *dev;
1723 int err;
1724
1725 for_each_netdev(net, dev) {
1726 err = call_netdevice_register_notifiers(nb, dev);
1727 if (err)
1728 goto rollback;
1729 }
1730 return 0;
1731
1732rollback:
1733 for_each_netdev_continue_reverse(net, dev)
1734 call_netdevice_unregister_notifiers(nb, dev);
1735 return err;
1736}
1737
1738static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1739 struct net *net)
1740{
1741 struct net_device *dev;
1742
1743 for_each_netdev(net, dev)
1744 call_netdevice_unregister_notifiers(nb, dev);
1745}
1746
1747static int dev_boot_phase = 1;
1748
1749/**
1750 * register_netdevice_notifier - register a network notifier block
1751 * @nb: notifier
1752 *
1753 * Register a notifier to be called when network device events occur.
1754 * The notifier passed is linked into the kernel structures and must
1755 * not be reused until it has been unregistered. A negative errno code
1756 * is returned on a failure.
1757 *
1758 * When registered all registration and up events are replayed
1759 * to the new notifier to allow device to have a race free
1760 * view of the network device list.
1761 */
1762
1763int register_netdevice_notifier(struct notifier_block *nb)
1764{
1765 struct net *net;
1766 int err;
1767
1768 /* Close race with setup_net() and cleanup_net() */
1769 down_write(&pernet_ops_rwsem);
1770 rtnl_lock();
1771 err = raw_notifier_chain_register(&netdev_chain, nb);
1772 if (err)
1773 goto unlock;
1774 if (dev_boot_phase)
1775 goto unlock;
1776 for_each_net(net) {
1777 err = call_netdevice_register_net_notifiers(nb, net);
1778 if (err)
1779 goto rollback;
1780 }
1781
1782unlock:
1783 rtnl_unlock();
1784 up_write(&pernet_ops_rwsem);
1785 return err;
1786
1787rollback:
1788 for_each_net_continue_reverse(net)
1789 call_netdevice_unregister_net_notifiers(nb, net);
1790
1791 raw_notifier_chain_unregister(&netdev_chain, nb);
1792 goto unlock;
1793}
1794EXPORT_SYMBOL(register_netdevice_notifier);
1795
1796/**
1797 * unregister_netdevice_notifier - unregister a network notifier block
1798 * @nb: notifier
1799 *
1800 * Unregister a notifier previously registered by
1801 * register_netdevice_notifier(). The notifier is unlinked into the
1802 * kernel structures and may then be reused. A negative errno code
1803 * is returned on a failure.
1804 *
1805 * After unregistering unregister and down device events are synthesized
1806 * for all devices on the device list to the removed notifier to remove
1807 * the need for special case cleanup code.
1808 */
1809
1810int unregister_netdevice_notifier(struct notifier_block *nb)
1811{
1812 struct net *net;
1813 int err;
1814
1815 /* Close race with setup_net() and cleanup_net() */
1816 down_write(&pernet_ops_rwsem);
1817 rtnl_lock();
1818 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1819 if (err)
1820 goto unlock;
1821
1822 for_each_net(net)
1823 call_netdevice_unregister_net_notifiers(nb, net);
1824
1825unlock:
1826 rtnl_unlock();
1827 up_write(&pernet_ops_rwsem);
1828 return err;
1829}
1830EXPORT_SYMBOL(unregister_netdevice_notifier);
1831
1832static int __register_netdevice_notifier_net(struct net *net,
1833 struct notifier_block *nb,
1834 bool ignore_call_fail)
1835{
1836 int err;
1837
1838 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1839 if (err)
1840 return err;
1841 if (dev_boot_phase)
1842 return 0;
1843
1844 err = call_netdevice_register_net_notifiers(nb, net);
1845 if (err && !ignore_call_fail)
1846 goto chain_unregister;
1847
1848 return 0;
1849
1850chain_unregister:
1851 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1852 return err;
1853}
1854
1855static int __unregister_netdevice_notifier_net(struct net *net,
1856 struct notifier_block *nb)
1857{
1858 int err;
1859
1860 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1861 if (err)
1862 return err;
1863
1864 call_netdevice_unregister_net_notifiers(nb, net);
1865 return 0;
1866}
1867
1868/**
1869 * register_netdevice_notifier_net - register a per-netns network notifier block
1870 * @net: network namespace
1871 * @nb: notifier
1872 *
1873 * Register a notifier to be called when network device events occur.
1874 * The notifier passed is linked into the kernel structures and must
1875 * not be reused until it has been unregistered. A negative errno code
1876 * is returned on a failure.
1877 *
1878 * When registered all registration and up events are replayed
1879 * to the new notifier to allow device to have a race free
1880 * view of the network device list.
1881 */
1882
1883int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1884{
1885 int err;
1886
1887 rtnl_lock();
1888 err = __register_netdevice_notifier_net(net, nb, false);
1889 rtnl_unlock();
1890 return err;
1891}
1892EXPORT_SYMBOL(register_netdevice_notifier_net);
1893
1894/**
1895 * unregister_netdevice_notifier_net - unregister a per-netns
1896 * network notifier block
1897 * @net: network namespace
1898 * @nb: notifier
1899 *
1900 * Unregister a notifier previously registered by
1901 * register_netdevice_notifier_net(). The notifier is unlinked from the
1902 * kernel structures and may then be reused. A negative errno code
1903 * is returned on a failure.
1904 *
1905 * After unregistering unregister and down device events are synthesized
1906 * for all devices on the device list to the removed notifier to remove
1907 * the need for special case cleanup code.
1908 */
1909
1910int unregister_netdevice_notifier_net(struct net *net,
1911 struct notifier_block *nb)
1912{
1913 int err;
1914
1915 rtnl_lock();
1916 err = __unregister_netdevice_notifier_net(net, nb);
1917 rtnl_unlock();
1918 return err;
1919}
1920EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1921
1922static void __move_netdevice_notifier_net(struct net *src_net,
1923 struct net *dst_net,
1924 struct notifier_block *nb)
1925{
1926 __unregister_netdevice_notifier_net(src_net, nb);
1927 __register_netdevice_notifier_net(dst_net, nb, true);
1928}
1929
1930int register_netdevice_notifier_dev_net(struct net_device *dev,
1931 struct notifier_block *nb,
1932 struct netdev_net_notifier *nn)
1933{
1934 int err;
1935
1936 rtnl_lock();
1937 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938 if (!err) {
1939 nn->nb = nb;
1940 list_add(&nn->list, &dev->net_notifier_list);
1941 }
1942 rtnl_unlock();
1943 return err;
1944}
1945EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948 struct notifier_block *nb,
1949 struct netdev_net_notifier *nn)
1950{
1951 int err;
1952
1953 rtnl_lock();
1954 list_del(&nn->list);
1955 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956 rtnl_unlock();
1957 return err;
1958}
1959EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962 struct net *net)
1963{
1964 struct netdev_net_notifier *nn;
1965
1966 list_for_each_entry(nn, &dev->net_notifier_list, list)
1967 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1968}
1969
1970/**
1971 * call_netdevice_notifiers_info - call all network notifier blocks
1972 * @val: value passed unmodified to notifier function
1973 * @info: notifier information data
1974 *
1975 * Call all network notifier blocks. Parameters and return value
1976 * are as for raw_notifier_call_chain().
1977 */
1978
1979int call_netdevice_notifiers_info(unsigned long val,
1980 struct netdev_notifier_info *info)
1981{
1982 struct net *net = dev_net(info->dev);
1983 int ret;
1984
1985 ASSERT_RTNL();
1986
1987 /* Run per-netns notifier block chain first, then run the global one.
1988 * Hopefully, one day, the global one is going to be removed after
1989 * all notifier block registrators get converted to be per-netns.
1990 */
1991 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1992 if (ret & NOTIFY_STOP_MASK)
1993 return ret;
1994 return raw_notifier_call_chain(&netdev_chain, val, info);
1995}
1996
1997/**
1998 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1999 * for and rollback on error
2000 * @val_up: value passed unmodified to notifier function
2001 * @val_down: value passed unmodified to the notifier function when
2002 * recovering from an error on @val_up
2003 * @info: notifier information data
2004 *
2005 * Call all per-netns network notifier blocks, but not notifier blocks on
2006 * the global notifier chain. Parameters and return value are as for
2007 * raw_notifier_call_chain_robust().
2008 */
2009
2010static int
2011call_netdevice_notifiers_info_robust(unsigned long val_up,
2012 unsigned long val_down,
2013 struct netdev_notifier_info *info)
2014{
2015 struct net *net = dev_net(info->dev);
2016
2017 ASSERT_RTNL();
2018
2019 return raw_notifier_call_chain_robust(&net->netdev_chain,
2020 val_up, val_down, info);
2021}
2022
2023static int call_netdevice_notifiers_extack(unsigned long val,
2024 struct net_device *dev,
2025 struct netlink_ext_ack *extack)
2026{
2027 struct netdev_notifier_info info = {
2028 .dev = dev,
2029 .extack = extack,
2030 };
2031
2032 return call_netdevice_notifiers_info(val, &info);
2033}
2034
2035/**
2036 * call_netdevice_notifiers - call all network notifier blocks
2037 * @val: value passed unmodified to notifier function
2038 * @dev: net_device pointer passed unmodified to notifier function
2039 *
2040 * Call all network notifier blocks. Parameters and return value
2041 * are as for raw_notifier_call_chain().
2042 */
2043
2044int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2045{
2046 return call_netdevice_notifiers_extack(val, dev, NULL);
2047}
2048EXPORT_SYMBOL(call_netdevice_notifiers);
2049
2050/**
2051 * call_netdevice_notifiers_mtu - call all network notifier blocks
2052 * @val: value passed unmodified to notifier function
2053 * @dev: net_device pointer passed unmodified to notifier function
2054 * @arg: additional u32 argument passed to the notifier function
2055 *
2056 * Call all network notifier blocks. Parameters and return value
2057 * are as for raw_notifier_call_chain().
2058 */
2059static int call_netdevice_notifiers_mtu(unsigned long val,
2060 struct net_device *dev, u32 arg)
2061{
2062 struct netdev_notifier_info_ext info = {
2063 .info.dev = dev,
2064 .ext.mtu = arg,
2065 };
2066
2067 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2068
2069 return call_netdevice_notifiers_info(val, &info.info);
2070}
2071
2072#ifdef CONFIG_NET_INGRESS
2073static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2074
2075void net_inc_ingress_queue(void)
2076{
2077 static_branch_inc(&ingress_needed_key);
2078}
2079EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2080
2081void net_dec_ingress_queue(void)
2082{
2083 static_branch_dec(&ingress_needed_key);
2084}
2085EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2086#endif
2087
2088#ifdef CONFIG_NET_EGRESS
2089static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2090
2091void net_inc_egress_queue(void)
2092{
2093 static_branch_inc(&egress_needed_key);
2094}
2095EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2096
2097void net_dec_egress_queue(void)
2098{
2099 static_branch_dec(&egress_needed_key);
2100}
2101EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2102#endif
2103
2104#ifdef CONFIG_NET_CLS_ACT
2105DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2106EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2107#endif
2108
2109DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2110EXPORT_SYMBOL(netstamp_needed_key);
2111#ifdef CONFIG_JUMP_LABEL
2112static atomic_t netstamp_needed_deferred;
2113static atomic_t netstamp_wanted;
2114static void netstamp_clear(struct work_struct *work)
2115{
2116 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2117 int wanted;
2118
2119 wanted = atomic_add_return(deferred, &netstamp_wanted);
2120 if (wanted > 0)
2121 static_branch_enable(&netstamp_needed_key);
2122 else
2123 static_branch_disable(&netstamp_needed_key);
2124}
2125static DECLARE_WORK(netstamp_work, netstamp_clear);
2126#endif
2127
2128void net_enable_timestamp(void)
2129{
2130#ifdef CONFIG_JUMP_LABEL
2131 int wanted = atomic_read(&netstamp_wanted);
2132
2133 while (wanted > 0) {
2134 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2135 return;
2136 }
2137 atomic_inc(&netstamp_needed_deferred);
2138 schedule_work(&netstamp_work);
2139#else
2140 static_branch_inc(&netstamp_needed_key);
2141#endif
2142}
2143EXPORT_SYMBOL(net_enable_timestamp);
2144
2145void net_disable_timestamp(void)
2146{
2147#ifdef CONFIG_JUMP_LABEL
2148 int wanted = atomic_read(&netstamp_wanted);
2149
2150 while (wanted > 1) {
2151 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2152 return;
2153 }
2154 atomic_dec(&netstamp_needed_deferred);
2155 schedule_work(&netstamp_work);
2156#else
2157 static_branch_dec(&netstamp_needed_key);
2158#endif
2159}
2160EXPORT_SYMBOL(net_disable_timestamp);
2161
2162static inline void net_timestamp_set(struct sk_buff *skb)
2163{
2164 skb->tstamp = 0;
2165 skb->tstamp_type = SKB_CLOCK_REALTIME;
2166 if (static_branch_unlikely(&netstamp_needed_key))
2167 skb->tstamp = ktime_get_real();
2168}
2169
2170#define net_timestamp_check(COND, SKB) \
2171 if (static_branch_unlikely(&netstamp_needed_key)) { \
2172 if ((COND) && !(SKB)->tstamp) \
2173 (SKB)->tstamp = ktime_get_real(); \
2174 } \
2175
2176bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2177{
2178 return __is_skb_forwardable(dev, skb, true);
2179}
2180EXPORT_SYMBOL_GPL(is_skb_forwardable);
2181
2182static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2183 bool check_mtu)
2184{
2185 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2186
2187 if (likely(!ret)) {
2188 skb->protocol = eth_type_trans(skb, dev);
2189 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2190 }
2191
2192 return ret;
2193}
2194
2195int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2196{
2197 return __dev_forward_skb2(dev, skb, true);
2198}
2199EXPORT_SYMBOL_GPL(__dev_forward_skb);
2200
2201/**
2202 * dev_forward_skb - loopback an skb to another netif
2203 *
2204 * @dev: destination network device
2205 * @skb: buffer to forward
2206 *
2207 * return values:
2208 * NET_RX_SUCCESS (no congestion)
2209 * NET_RX_DROP (packet was dropped, but freed)
2210 *
2211 * dev_forward_skb can be used for injecting an skb from the
2212 * start_xmit function of one device into the receive queue
2213 * of another device.
2214 *
2215 * The receiving device may be in another namespace, so
2216 * we have to clear all information in the skb that could
2217 * impact namespace isolation.
2218 */
2219int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2220{
2221 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2222}
2223EXPORT_SYMBOL_GPL(dev_forward_skb);
2224
2225int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2226{
2227 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2228}
2229
2230static inline int deliver_skb(struct sk_buff *skb,
2231 struct packet_type *pt_prev,
2232 struct net_device *orig_dev)
2233{
2234 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2235 return -ENOMEM;
2236 refcount_inc(&skb->users);
2237 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2238}
2239
2240static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2241 struct packet_type **pt,
2242 struct net_device *orig_dev,
2243 __be16 type,
2244 struct list_head *ptype_list)
2245{
2246 struct packet_type *ptype, *pt_prev = *pt;
2247
2248 list_for_each_entry_rcu(ptype, ptype_list, list) {
2249 if (ptype->type != type)
2250 continue;
2251 if (pt_prev)
2252 deliver_skb(skb, pt_prev, orig_dev);
2253 pt_prev = ptype;
2254 }
2255 *pt = pt_prev;
2256}
2257
2258static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2259{
2260 if (!ptype->af_packet_priv || !skb->sk)
2261 return false;
2262
2263 if (ptype->id_match)
2264 return ptype->id_match(ptype, skb->sk);
2265 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2266 return true;
2267
2268 return false;
2269}
2270
2271/**
2272 * dev_nit_active - return true if any network interface taps are in use
2273 *
2274 * @dev: network device to check for the presence of taps
2275 */
2276bool dev_nit_active(struct net_device *dev)
2277{
2278 return !list_empty(&net_hotdata.ptype_all) ||
2279 !list_empty(&dev->ptype_all);
2280}
2281EXPORT_SYMBOL_GPL(dev_nit_active);
2282
2283/*
2284 * Support routine. Sends outgoing frames to any network
2285 * taps currently in use.
2286 */
2287
2288void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2289{
2290 struct list_head *ptype_list = &net_hotdata.ptype_all;
2291 struct packet_type *ptype, *pt_prev = NULL;
2292 struct sk_buff *skb2 = NULL;
2293
2294 rcu_read_lock();
2295again:
2296 list_for_each_entry_rcu(ptype, ptype_list, list) {
2297 if (READ_ONCE(ptype->ignore_outgoing))
2298 continue;
2299
2300 /* Never send packets back to the socket
2301 * they originated from - MvS (miquels@drinkel.ow.org)
2302 */
2303 if (skb_loop_sk(ptype, skb))
2304 continue;
2305
2306 if (pt_prev) {
2307 deliver_skb(skb2, pt_prev, skb->dev);
2308 pt_prev = ptype;
2309 continue;
2310 }
2311
2312 /* need to clone skb, done only once */
2313 skb2 = skb_clone(skb, GFP_ATOMIC);
2314 if (!skb2)
2315 goto out_unlock;
2316
2317 net_timestamp_set(skb2);
2318
2319 /* skb->nh should be correctly
2320 * set by sender, so that the second statement is
2321 * just protection against buggy protocols.
2322 */
2323 skb_reset_mac_header(skb2);
2324
2325 if (skb_network_header(skb2) < skb2->data ||
2326 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2327 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2328 ntohs(skb2->protocol),
2329 dev->name);
2330 skb_reset_network_header(skb2);
2331 }
2332
2333 skb2->transport_header = skb2->network_header;
2334 skb2->pkt_type = PACKET_OUTGOING;
2335 pt_prev = ptype;
2336 }
2337
2338 if (ptype_list == &net_hotdata.ptype_all) {
2339 ptype_list = &dev->ptype_all;
2340 goto again;
2341 }
2342out_unlock:
2343 if (pt_prev) {
2344 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2345 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2346 else
2347 kfree_skb(skb2);
2348 }
2349 rcu_read_unlock();
2350}
2351EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2352
2353/**
2354 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2355 * @dev: Network device
2356 * @txq: number of queues available
2357 *
2358 * If real_num_tx_queues is changed the tc mappings may no longer be
2359 * valid. To resolve this verify the tc mapping remains valid and if
2360 * not NULL the mapping. With no priorities mapping to this
2361 * offset/count pair it will no longer be used. In the worst case TC0
2362 * is invalid nothing can be done so disable priority mappings. If is
2363 * expected that drivers will fix this mapping if they can before
2364 * calling netif_set_real_num_tx_queues.
2365 */
2366static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2367{
2368 int i;
2369 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370
2371 /* If TC0 is invalidated disable TC mapping */
2372 if (tc->offset + tc->count > txq) {
2373 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2374 dev->num_tc = 0;
2375 return;
2376 }
2377
2378 /* Invalidated prio to tc mappings set to TC0 */
2379 for (i = 1; i < TC_BITMASK + 1; i++) {
2380 int q = netdev_get_prio_tc_map(dev, i);
2381
2382 tc = &dev->tc_to_txq[q];
2383 if (tc->offset + tc->count > txq) {
2384 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2385 i, q);
2386 netdev_set_prio_tc_map(dev, i, 0);
2387 }
2388 }
2389}
2390
2391int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2392{
2393 if (dev->num_tc) {
2394 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2395 int i;
2396
2397 /* walk through the TCs and see if it falls into any of them */
2398 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2399 if ((txq - tc->offset) < tc->count)
2400 return i;
2401 }
2402
2403 /* didn't find it, just return -1 to indicate no match */
2404 return -1;
2405 }
2406
2407 return 0;
2408}
2409EXPORT_SYMBOL(netdev_txq_to_tc);
2410
2411#ifdef CONFIG_XPS
2412static struct static_key xps_needed __read_mostly;
2413static struct static_key xps_rxqs_needed __read_mostly;
2414static DEFINE_MUTEX(xps_map_mutex);
2415#define xmap_dereference(P) \
2416 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2417
2418static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2419 struct xps_dev_maps *old_maps, int tci, u16 index)
2420{
2421 struct xps_map *map = NULL;
2422 int pos;
2423
2424 map = xmap_dereference(dev_maps->attr_map[tci]);
2425 if (!map)
2426 return false;
2427
2428 for (pos = map->len; pos--;) {
2429 if (map->queues[pos] != index)
2430 continue;
2431
2432 if (map->len > 1) {
2433 map->queues[pos] = map->queues[--map->len];
2434 break;
2435 }
2436
2437 if (old_maps)
2438 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2439 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2440 kfree_rcu(map, rcu);
2441 return false;
2442 }
2443
2444 return true;
2445}
2446
2447static bool remove_xps_queue_cpu(struct net_device *dev,
2448 struct xps_dev_maps *dev_maps,
2449 int cpu, u16 offset, u16 count)
2450{
2451 int num_tc = dev_maps->num_tc;
2452 bool active = false;
2453 int tci;
2454
2455 for (tci = cpu * num_tc; num_tc--; tci++) {
2456 int i, j;
2457
2458 for (i = count, j = offset; i--; j++) {
2459 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2460 break;
2461 }
2462
2463 active |= i < 0;
2464 }
2465
2466 return active;
2467}
2468
2469static void reset_xps_maps(struct net_device *dev,
2470 struct xps_dev_maps *dev_maps,
2471 enum xps_map_type type)
2472{
2473 static_key_slow_dec_cpuslocked(&xps_needed);
2474 if (type == XPS_RXQS)
2475 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2476
2477 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2478
2479 kfree_rcu(dev_maps, rcu);
2480}
2481
2482static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2483 u16 offset, u16 count)
2484{
2485 struct xps_dev_maps *dev_maps;
2486 bool active = false;
2487 int i, j;
2488
2489 dev_maps = xmap_dereference(dev->xps_maps[type]);
2490 if (!dev_maps)
2491 return;
2492
2493 for (j = 0; j < dev_maps->nr_ids; j++)
2494 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2495 if (!active)
2496 reset_xps_maps(dev, dev_maps, type);
2497
2498 if (type == XPS_CPUS) {
2499 for (i = offset + (count - 1); count--; i--)
2500 netdev_queue_numa_node_write(
2501 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2502 }
2503}
2504
2505static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2506 u16 count)
2507{
2508 if (!static_key_false(&xps_needed))
2509 return;
2510
2511 cpus_read_lock();
2512 mutex_lock(&xps_map_mutex);
2513
2514 if (static_key_false(&xps_rxqs_needed))
2515 clean_xps_maps(dev, XPS_RXQS, offset, count);
2516
2517 clean_xps_maps(dev, XPS_CPUS, offset, count);
2518
2519 mutex_unlock(&xps_map_mutex);
2520 cpus_read_unlock();
2521}
2522
2523static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2524{
2525 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2526}
2527
2528static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2529 u16 index, bool is_rxqs_map)
2530{
2531 struct xps_map *new_map;
2532 int alloc_len = XPS_MIN_MAP_ALLOC;
2533 int i, pos;
2534
2535 for (pos = 0; map && pos < map->len; pos++) {
2536 if (map->queues[pos] != index)
2537 continue;
2538 return map;
2539 }
2540
2541 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2542 if (map) {
2543 if (pos < map->alloc_len)
2544 return map;
2545
2546 alloc_len = map->alloc_len * 2;
2547 }
2548
2549 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2550 * map
2551 */
2552 if (is_rxqs_map)
2553 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2554 else
2555 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2556 cpu_to_node(attr_index));
2557 if (!new_map)
2558 return NULL;
2559
2560 for (i = 0; i < pos; i++)
2561 new_map->queues[i] = map->queues[i];
2562 new_map->alloc_len = alloc_len;
2563 new_map->len = pos;
2564
2565 return new_map;
2566}
2567
2568/* Copy xps maps at a given index */
2569static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2570 struct xps_dev_maps *new_dev_maps, int index,
2571 int tc, bool skip_tc)
2572{
2573 int i, tci = index * dev_maps->num_tc;
2574 struct xps_map *map;
2575
2576 /* copy maps belonging to foreign traffic classes */
2577 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2578 if (i == tc && skip_tc)
2579 continue;
2580
2581 /* fill in the new device map from the old device map */
2582 map = xmap_dereference(dev_maps->attr_map[tci]);
2583 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2584 }
2585}
2586
2587/* Must be called under cpus_read_lock */
2588int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2589 u16 index, enum xps_map_type type)
2590{
2591 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2592 const unsigned long *online_mask = NULL;
2593 bool active = false, copy = false;
2594 int i, j, tci, numa_node_id = -2;
2595 int maps_sz, num_tc = 1, tc = 0;
2596 struct xps_map *map, *new_map;
2597 unsigned int nr_ids;
2598
2599 WARN_ON_ONCE(index >= dev->num_tx_queues);
2600
2601 if (dev->num_tc) {
2602 /* Do not allow XPS on subordinate device directly */
2603 num_tc = dev->num_tc;
2604 if (num_tc < 0)
2605 return -EINVAL;
2606
2607 /* If queue belongs to subordinate dev use its map */
2608 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2609
2610 tc = netdev_txq_to_tc(dev, index);
2611 if (tc < 0)
2612 return -EINVAL;
2613 }
2614
2615 mutex_lock(&xps_map_mutex);
2616
2617 dev_maps = xmap_dereference(dev->xps_maps[type]);
2618 if (type == XPS_RXQS) {
2619 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2620 nr_ids = dev->num_rx_queues;
2621 } else {
2622 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2623 if (num_possible_cpus() > 1)
2624 online_mask = cpumask_bits(cpu_online_mask);
2625 nr_ids = nr_cpu_ids;
2626 }
2627
2628 if (maps_sz < L1_CACHE_BYTES)
2629 maps_sz = L1_CACHE_BYTES;
2630
2631 /* The old dev_maps could be larger or smaller than the one we're
2632 * setting up now, as dev->num_tc or nr_ids could have been updated in
2633 * between. We could try to be smart, but let's be safe instead and only
2634 * copy foreign traffic classes if the two map sizes match.
2635 */
2636 if (dev_maps &&
2637 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2638 copy = true;
2639
2640 /* allocate memory for queue storage */
2641 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2642 j < nr_ids;) {
2643 if (!new_dev_maps) {
2644 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2645 if (!new_dev_maps) {
2646 mutex_unlock(&xps_map_mutex);
2647 return -ENOMEM;
2648 }
2649
2650 new_dev_maps->nr_ids = nr_ids;
2651 new_dev_maps->num_tc = num_tc;
2652 }
2653
2654 tci = j * num_tc + tc;
2655 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2656
2657 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2658 if (!map)
2659 goto error;
2660
2661 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2662 }
2663
2664 if (!new_dev_maps)
2665 goto out_no_new_maps;
2666
2667 if (!dev_maps) {
2668 /* Increment static keys at most once per type */
2669 static_key_slow_inc_cpuslocked(&xps_needed);
2670 if (type == XPS_RXQS)
2671 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2672 }
2673
2674 for (j = 0; j < nr_ids; j++) {
2675 bool skip_tc = false;
2676
2677 tci = j * num_tc + tc;
2678 if (netif_attr_test_mask(j, mask, nr_ids) &&
2679 netif_attr_test_online(j, online_mask, nr_ids)) {
2680 /* add tx-queue to CPU/rx-queue maps */
2681 int pos = 0;
2682
2683 skip_tc = true;
2684
2685 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2686 while ((pos < map->len) && (map->queues[pos] != index))
2687 pos++;
2688
2689 if (pos == map->len)
2690 map->queues[map->len++] = index;
2691#ifdef CONFIG_NUMA
2692 if (type == XPS_CPUS) {
2693 if (numa_node_id == -2)
2694 numa_node_id = cpu_to_node(j);
2695 else if (numa_node_id != cpu_to_node(j))
2696 numa_node_id = -1;
2697 }
2698#endif
2699 }
2700
2701 if (copy)
2702 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2703 skip_tc);
2704 }
2705
2706 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2707
2708 /* Cleanup old maps */
2709 if (!dev_maps)
2710 goto out_no_old_maps;
2711
2712 for (j = 0; j < dev_maps->nr_ids; j++) {
2713 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2714 map = xmap_dereference(dev_maps->attr_map[tci]);
2715 if (!map)
2716 continue;
2717
2718 if (copy) {
2719 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2720 if (map == new_map)
2721 continue;
2722 }
2723
2724 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2725 kfree_rcu(map, rcu);
2726 }
2727 }
2728
2729 old_dev_maps = dev_maps;
2730
2731out_no_old_maps:
2732 dev_maps = new_dev_maps;
2733 active = true;
2734
2735out_no_new_maps:
2736 if (type == XPS_CPUS)
2737 /* update Tx queue numa node */
2738 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2739 (numa_node_id >= 0) ?
2740 numa_node_id : NUMA_NO_NODE);
2741
2742 if (!dev_maps)
2743 goto out_no_maps;
2744
2745 /* removes tx-queue from unused CPUs/rx-queues */
2746 for (j = 0; j < dev_maps->nr_ids; j++) {
2747 tci = j * dev_maps->num_tc;
2748
2749 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2750 if (i == tc &&
2751 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2752 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2753 continue;
2754
2755 active |= remove_xps_queue(dev_maps,
2756 copy ? old_dev_maps : NULL,
2757 tci, index);
2758 }
2759 }
2760
2761 if (old_dev_maps)
2762 kfree_rcu(old_dev_maps, rcu);
2763
2764 /* free map if not active */
2765 if (!active)
2766 reset_xps_maps(dev, dev_maps, type);
2767
2768out_no_maps:
2769 mutex_unlock(&xps_map_mutex);
2770
2771 return 0;
2772error:
2773 /* remove any maps that we added */
2774 for (j = 0; j < nr_ids; j++) {
2775 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2776 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2777 map = copy ?
2778 xmap_dereference(dev_maps->attr_map[tci]) :
2779 NULL;
2780 if (new_map && new_map != map)
2781 kfree(new_map);
2782 }
2783 }
2784
2785 mutex_unlock(&xps_map_mutex);
2786
2787 kfree(new_dev_maps);
2788 return -ENOMEM;
2789}
2790EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2791
2792int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2793 u16 index)
2794{
2795 int ret;
2796
2797 cpus_read_lock();
2798 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2799 cpus_read_unlock();
2800
2801 return ret;
2802}
2803EXPORT_SYMBOL(netif_set_xps_queue);
2804
2805#endif
2806static void netdev_unbind_all_sb_channels(struct net_device *dev)
2807{
2808 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2809
2810 /* Unbind any subordinate channels */
2811 while (txq-- != &dev->_tx[0]) {
2812 if (txq->sb_dev)
2813 netdev_unbind_sb_channel(dev, txq->sb_dev);
2814 }
2815}
2816
2817void netdev_reset_tc(struct net_device *dev)
2818{
2819#ifdef CONFIG_XPS
2820 netif_reset_xps_queues_gt(dev, 0);
2821#endif
2822 netdev_unbind_all_sb_channels(dev);
2823
2824 /* Reset TC configuration of device */
2825 dev->num_tc = 0;
2826 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2827 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2828}
2829EXPORT_SYMBOL(netdev_reset_tc);
2830
2831int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2832{
2833 if (tc >= dev->num_tc)
2834 return -EINVAL;
2835
2836#ifdef CONFIG_XPS
2837 netif_reset_xps_queues(dev, offset, count);
2838#endif
2839 dev->tc_to_txq[tc].count = count;
2840 dev->tc_to_txq[tc].offset = offset;
2841 return 0;
2842}
2843EXPORT_SYMBOL(netdev_set_tc_queue);
2844
2845int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2846{
2847 if (num_tc > TC_MAX_QUEUE)
2848 return -EINVAL;
2849
2850#ifdef CONFIG_XPS
2851 netif_reset_xps_queues_gt(dev, 0);
2852#endif
2853 netdev_unbind_all_sb_channels(dev);
2854
2855 dev->num_tc = num_tc;
2856 return 0;
2857}
2858EXPORT_SYMBOL(netdev_set_num_tc);
2859
2860void netdev_unbind_sb_channel(struct net_device *dev,
2861 struct net_device *sb_dev)
2862{
2863 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2864
2865#ifdef CONFIG_XPS
2866 netif_reset_xps_queues_gt(sb_dev, 0);
2867#endif
2868 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2869 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2870
2871 while (txq-- != &dev->_tx[0]) {
2872 if (txq->sb_dev == sb_dev)
2873 txq->sb_dev = NULL;
2874 }
2875}
2876EXPORT_SYMBOL(netdev_unbind_sb_channel);
2877
2878int netdev_bind_sb_channel_queue(struct net_device *dev,
2879 struct net_device *sb_dev,
2880 u8 tc, u16 count, u16 offset)
2881{
2882 /* Make certain the sb_dev and dev are already configured */
2883 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2884 return -EINVAL;
2885
2886 /* We cannot hand out queues we don't have */
2887 if ((offset + count) > dev->real_num_tx_queues)
2888 return -EINVAL;
2889
2890 /* Record the mapping */
2891 sb_dev->tc_to_txq[tc].count = count;
2892 sb_dev->tc_to_txq[tc].offset = offset;
2893
2894 /* Provide a way for Tx queue to find the tc_to_txq map or
2895 * XPS map for itself.
2896 */
2897 while (count--)
2898 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2899
2900 return 0;
2901}
2902EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2903
2904int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2905{
2906 /* Do not use a multiqueue device to represent a subordinate channel */
2907 if (netif_is_multiqueue(dev))
2908 return -ENODEV;
2909
2910 /* We allow channels 1 - 32767 to be used for subordinate channels.
2911 * Channel 0 is meant to be "native" mode and used only to represent
2912 * the main root device. We allow writing 0 to reset the device back
2913 * to normal mode after being used as a subordinate channel.
2914 */
2915 if (channel > S16_MAX)
2916 return -EINVAL;
2917
2918 dev->num_tc = -channel;
2919
2920 return 0;
2921}
2922EXPORT_SYMBOL(netdev_set_sb_channel);
2923
2924/*
2925 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2926 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2927 */
2928int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2929{
2930 bool disabling;
2931 int rc;
2932
2933 disabling = txq < dev->real_num_tx_queues;
2934
2935 if (txq < 1 || txq > dev->num_tx_queues)
2936 return -EINVAL;
2937
2938 if (dev->reg_state == NETREG_REGISTERED ||
2939 dev->reg_state == NETREG_UNREGISTERING) {
2940 ASSERT_RTNL();
2941
2942 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2943 txq);
2944 if (rc)
2945 return rc;
2946
2947 if (dev->num_tc)
2948 netif_setup_tc(dev, txq);
2949
2950 dev_qdisc_change_real_num_tx(dev, txq);
2951
2952 dev->real_num_tx_queues = txq;
2953
2954 if (disabling) {
2955 synchronize_net();
2956 qdisc_reset_all_tx_gt(dev, txq);
2957#ifdef CONFIG_XPS
2958 netif_reset_xps_queues_gt(dev, txq);
2959#endif
2960 }
2961 } else {
2962 dev->real_num_tx_queues = txq;
2963 }
2964
2965 return 0;
2966}
2967EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2968
2969#ifdef CONFIG_SYSFS
2970/**
2971 * netif_set_real_num_rx_queues - set actual number of RX queues used
2972 * @dev: Network device
2973 * @rxq: Actual number of RX queues
2974 *
2975 * This must be called either with the rtnl_lock held or before
2976 * registration of the net device. Returns 0 on success, or a
2977 * negative error code. If called before registration, it always
2978 * succeeds.
2979 */
2980int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2981{
2982 int rc;
2983
2984 if (rxq < 1 || rxq > dev->num_rx_queues)
2985 return -EINVAL;
2986
2987 if (dev->reg_state == NETREG_REGISTERED) {
2988 ASSERT_RTNL();
2989
2990 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2991 rxq);
2992 if (rc)
2993 return rc;
2994 }
2995
2996 dev->real_num_rx_queues = rxq;
2997 return 0;
2998}
2999EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3000#endif
3001
3002/**
3003 * netif_set_real_num_queues - set actual number of RX and TX queues used
3004 * @dev: Network device
3005 * @txq: Actual number of TX queues
3006 * @rxq: Actual number of RX queues
3007 *
3008 * Set the real number of both TX and RX queues.
3009 * Does nothing if the number of queues is already correct.
3010 */
3011int netif_set_real_num_queues(struct net_device *dev,
3012 unsigned int txq, unsigned int rxq)
3013{
3014 unsigned int old_rxq = dev->real_num_rx_queues;
3015 int err;
3016
3017 if (txq < 1 || txq > dev->num_tx_queues ||
3018 rxq < 1 || rxq > dev->num_rx_queues)
3019 return -EINVAL;
3020
3021 /* Start from increases, so the error path only does decreases -
3022 * decreases can't fail.
3023 */
3024 if (rxq > dev->real_num_rx_queues) {
3025 err = netif_set_real_num_rx_queues(dev, rxq);
3026 if (err)
3027 return err;
3028 }
3029 if (txq > dev->real_num_tx_queues) {
3030 err = netif_set_real_num_tx_queues(dev, txq);
3031 if (err)
3032 goto undo_rx;
3033 }
3034 if (rxq < dev->real_num_rx_queues)
3035 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3036 if (txq < dev->real_num_tx_queues)
3037 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3038
3039 return 0;
3040undo_rx:
3041 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3042 return err;
3043}
3044EXPORT_SYMBOL(netif_set_real_num_queues);
3045
3046/**
3047 * netif_set_tso_max_size() - set the max size of TSO frames supported
3048 * @dev: netdev to update
3049 * @size: max skb->len of a TSO frame
3050 *
3051 * Set the limit on the size of TSO super-frames the device can handle.
3052 * Unless explicitly set the stack will assume the value of
3053 * %GSO_LEGACY_MAX_SIZE.
3054 */
3055void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3056{
3057 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3058 if (size < READ_ONCE(dev->gso_max_size))
3059 netif_set_gso_max_size(dev, size);
3060 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3061 netif_set_gso_ipv4_max_size(dev, size);
3062}
3063EXPORT_SYMBOL(netif_set_tso_max_size);
3064
3065/**
3066 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3067 * @dev: netdev to update
3068 * @segs: max number of TCP segments
3069 *
3070 * Set the limit on the number of TCP segments the device can generate from
3071 * a single TSO super-frame.
3072 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3073 */
3074void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3075{
3076 dev->tso_max_segs = segs;
3077 if (segs < READ_ONCE(dev->gso_max_segs))
3078 netif_set_gso_max_segs(dev, segs);
3079}
3080EXPORT_SYMBOL(netif_set_tso_max_segs);
3081
3082/**
3083 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3084 * @to: netdev to update
3085 * @from: netdev from which to copy the limits
3086 */
3087void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3088{
3089 netif_set_tso_max_size(to, from->tso_max_size);
3090 netif_set_tso_max_segs(to, from->tso_max_segs);
3091}
3092EXPORT_SYMBOL(netif_inherit_tso_max);
3093
3094/**
3095 * netif_get_num_default_rss_queues - default number of RSS queues
3096 *
3097 * Default value is the number of physical cores if there are only 1 or 2, or
3098 * divided by 2 if there are more.
3099 */
3100int netif_get_num_default_rss_queues(void)
3101{
3102 cpumask_var_t cpus;
3103 int cpu, count = 0;
3104
3105 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3106 return 1;
3107
3108 cpumask_copy(cpus, cpu_online_mask);
3109 for_each_cpu(cpu, cpus) {
3110 ++count;
3111 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3112 }
3113 free_cpumask_var(cpus);
3114
3115 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3116}
3117EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3118
3119static void __netif_reschedule(struct Qdisc *q)
3120{
3121 struct softnet_data *sd;
3122 unsigned long flags;
3123
3124 local_irq_save(flags);
3125 sd = this_cpu_ptr(&softnet_data);
3126 q->next_sched = NULL;
3127 *sd->output_queue_tailp = q;
3128 sd->output_queue_tailp = &q->next_sched;
3129 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3130 local_irq_restore(flags);
3131}
3132
3133void __netif_schedule(struct Qdisc *q)
3134{
3135 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3136 __netif_reschedule(q);
3137}
3138EXPORT_SYMBOL(__netif_schedule);
3139
3140struct dev_kfree_skb_cb {
3141 enum skb_drop_reason reason;
3142};
3143
3144static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3145{
3146 return (struct dev_kfree_skb_cb *)skb->cb;
3147}
3148
3149void netif_schedule_queue(struct netdev_queue *txq)
3150{
3151 rcu_read_lock();
3152 if (!netif_xmit_stopped(txq)) {
3153 struct Qdisc *q = rcu_dereference(txq->qdisc);
3154
3155 __netif_schedule(q);
3156 }
3157 rcu_read_unlock();
3158}
3159EXPORT_SYMBOL(netif_schedule_queue);
3160
3161void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3162{
3163 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3164 struct Qdisc *q;
3165
3166 rcu_read_lock();
3167 q = rcu_dereference(dev_queue->qdisc);
3168 __netif_schedule(q);
3169 rcu_read_unlock();
3170 }
3171}
3172EXPORT_SYMBOL(netif_tx_wake_queue);
3173
3174void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3175{
3176 unsigned long flags;
3177
3178 if (unlikely(!skb))
3179 return;
3180
3181 if (likely(refcount_read(&skb->users) == 1)) {
3182 smp_rmb();
3183 refcount_set(&skb->users, 0);
3184 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3185 return;
3186 }
3187 get_kfree_skb_cb(skb)->reason = reason;
3188 local_irq_save(flags);
3189 skb->next = __this_cpu_read(softnet_data.completion_queue);
3190 __this_cpu_write(softnet_data.completion_queue, skb);
3191 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3192 local_irq_restore(flags);
3193}
3194EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3195
3196void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3197{
3198 if (in_hardirq() || irqs_disabled())
3199 dev_kfree_skb_irq_reason(skb, reason);
3200 else
3201 kfree_skb_reason(skb, reason);
3202}
3203EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3204
3205
3206/**
3207 * netif_device_detach - mark device as removed
3208 * @dev: network device
3209 *
3210 * Mark device as removed from system and therefore no longer available.
3211 */
3212void netif_device_detach(struct net_device *dev)
3213{
3214 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3215 netif_running(dev)) {
3216 netif_tx_stop_all_queues(dev);
3217 }
3218}
3219EXPORT_SYMBOL(netif_device_detach);
3220
3221/**
3222 * netif_device_attach - mark device as attached
3223 * @dev: network device
3224 *
3225 * Mark device as attached from system and restart if needed.
3226 */
3227void netif_device_attach(struct net_device *dev)
3228{
3229 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3230 netif_running(dev)) {
3231 netif_tx_wake_all_queues(dev);
3232 __netdev_watchdog_up(dev);
3233 }
3234}
3235EXPORT_SYMBOL(netif_device_attach);
3236
3237/*
3238 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3239 * to be used as a distribution range.
3240 */
3241static u16 skb_tx_hash(const struct net_device *dev,
3242 const struct net_device *sb_dev,
3243 struct sk_buff *skb)
3244{
3245 u32 hash;
3246 u16 qoffset = 0;
3247 u16 qcount = dev->real_num_tx_queues;
3248
3249 if (dev->num_tc) {
3250 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3251
3252 qoffset = sb_dev->tc_to_txq[tc].offset;
3253 qcount = sb_dev->tc_to_txq[tc].count;
3254 if (unlikely(!qcount)) {
3255 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3256 sb_dev->name, qoffset, tc);
3257 qoffset = 0;
3258 qcount = dev->real_num_tx_queues;
3259 }
3260 }
3261
3262 if (skb_rx_queue_recorded(skb)) {
3263 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3264 hash = skb_get_rx_queue(skb);
3265 if (hash >= qoffset)
3266 hash -= qoffset;
3267 while (unlikely(hash >= qcount))
3268 hash -= qcount;
3269 return hash + qoffset;
3270 }
3271
3272 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3273}
3274
3275void skb_warn_bad_offload(const struct sk_buff *skb)
3276{
3277 static const netdev_features_t null_features;
3278 struct net_device *dev = skb->dev;
3279 const char *name = "";
3280
3281 if (!net_ratelimit())
3282 return;
3283
3284 if (dev) {
3285 if (dev->dev.parent)
3286 name = dev_driver_string(dev->dev.parent);
3287 else
3288 name = netdev_name(dev);
3289 }
3290 skb_dump(KERN_WARNING, skb, false);
3291 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3292 name, dev ? &dev->features : &null_features,
3293 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3294}
3295
3296/*
3297 * Invalidate hardware checksum when packet is to be mangled, and
3298 * complete checksum manually on outgoing path.
3299 */
3300int skb_checksum_help(struct sk_buff *skb)
3301{
3302 __wsum csum;
3303 int ret = 0, offset;
3304
3305 if (skb->ip_summed == CHECKSUM_COMPLETE)
3306 goto out_set_summed;
3307
3308 if (unlikely(skb_is_gso(skb))) {
3309 skb_warn_bad_offload(skb);
3310 return -EINVAL;
3311 }
3312
3313 /* Before computing a checksum, we should make sure no frag could
3314 * be modified by an external entity : checksum could be wrong.
3315 */
3316 if (skb_has_shared_frag(skb)) {
3317 ret = __skb_linearize(skb);
3318 if (ret)
3319 goto out;
3320 }
3321
3322 offset = skb_checksum_start_offset(skb);
3323 ret = -EINVAL;
3324 if (unlikely(offset >= skb_headlen(skb))) {
3325 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3326 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3327 offset, skb_headlen(skb));
3328 goto out;
3329 }
3330 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3331
3332 offset += skb->csum_offset;
3333 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3334 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3335 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3336 offset + sizeof(__sum16), skb_headlen(skb));
3337 goto out;
3338 }
3339 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3340 if (ret)
3341 goto out;
3342
3343 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3344out_set_summed:
3345 skb->ip_summed = CHECKSUM_NONE;
3346out:
3347 return ret;
3348}
3349EXPORT_SYMBOL(skb_checksum_help);
3350
3351int skb_crc32c_csum_help(struct sk_buff *skb)
3352{
3353 __le32 crc32c_csum;
3354 int ret = 0, offset, start;
3355
3356 if (skb->ip_summed != CHECKSUM_PARTIAL)
3357 goto out;
3358
3359 if (unlikely(skb_is_gso(skb)))
3360 goto out;
3361
3362 /* Before computing a checksum, we should make sure no frag could
3363 * be modified by an external entity : checksum could be wrong.
3364 */
3365 if (unlikely(skb_has_shared_frag(skb))) {
3366 ret = __skb_linearize(skb);
3367 if (ret)
3368 goto out;
3369 }
3370 start = skb_checksum_start_offset(skb);
3371 offset = start + offsetof(struct sctphdr, checksum);
3372 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3373 ret = -EINVAL;
3374 goto out;
3375 }
3376
3377 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3378 if (ret)
3379 goto out;
3380
3381 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3382 skb->len - start, ~(__u32)0,
3383 crc32c_csum_stub));
3384 *(__le32 *)(skb->data + offset) = crc32c_csum;
3385 skb_reset_csum_not_inet(skb);
3386out:
3387 return ret;
3388}
3389
3390__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3391{
3392 __be16 type = skb->protocol;
3393
3394 /* Tunnel gso handlers can set protocol to ethernet. */
3395 if (type == htons(ETH_P_TEB)) {
3396 struct ethhdr *eth;
3397
3398 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3399 return 0;
3400
3401 eth = (struct ethhdr *)skb->data;
3402 type = eth->h_proto;
3403 }
3404
3405 return vlan_get_protocol_and_depth(skb, type, depth);
3406}
3407
3408
3409/* Take action when hardware reception checksum errors are detected. */
3410#ifdef CONFIG_BUG
3411static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3412{
3413 netdev_err(dev, "hw csum failure\n");
3414 skb_dump(KERN_ERR, skb, true);
3415 dump_stack();
3416}
3417
3418void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419{
3420 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3421}
3422EXPORT_SYMBOL(netdev_rx_csum_fault);
3423#endif
3424
3425/* XXX: check that highmem exists at all on the given machine. */
3426static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3427{
3428#ifdef CONFIG_HIGHMEM
3429 int i;
3430
3431 if (!(dev->features & NETIF_F_HIGHDMA)) {
3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3434
3435 if (PageHighMem(skb_frag_page(frag)))
3436 return 1;
3437 }
3438 }
3439#endif
3440 return 0;
3441}
3442
3443/* If MPLS offload request, verify we are testing hardware MPLS features
3444 * instead of standard features for the netdev.
3445 */
3446#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3447static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448 netdev_features_t features,
3449 __be16 type)
3450{
3451 if (eth_p_mpls(type))
3452 features &= skb->dev->mpls_features;
3453
3454 return features;
3455}
3456#else
3457static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458 netdev_features_t features,
3459 __be16 type)
3460{
3461 return features;
3462}
3463#endif
3464
3465static netdev_features_t harmonize_features(struct sk_buff *skb,
3466 netdev_features_t features)
3467{
3468 __be16 type;
3469
3470 type = skb_network_protocol(skb, NULL);
3471 features = net_mpls_features(skb, features, type);
3472
3473 if (skb->ip_summed != CHECKSUM_NONE &&
3474 !can_checksum_protocol(features, type)) {
3475 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3476 }
3477 if (illegal_highdma(skb->dev, skb))
3478 features &= ~NETIF_F_SG;
3479
3480 return features;
3481}
3482
3483netdev_features_t passthru_features_check(struct sk_buff *skb,
3484 struct net_device *dev,
3485 netdev_features_t features)
3486{
3487 return features;
3488}
3489EXPORT_SYMBOL(passthru_features_check);
3490
3491static netdev_features_t dflt_features_check(struct sk_buff *skb,
3492 struct net_device *dev,
3493 netdev_features_t features)
3494{
3495 return vlan_features_check(skb, features);
3496}
3497
3498static netdev_features_t gso_features_check(const struct sk_buff *skb,
3499 struct net_device *dev,
3500 netdev_features_t features)
3501{
3502 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3503
3504 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3505 return features & ~NETIF_F_GSO_MASK;
3506
3507 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3508 return features & ~NETIF_F_GSO_MASK;
3509
3510 if (!skb_shinfo(skb)->gso_type) {
3511 skb_warn_bad_offload(skb);
3512 return features & ~NETIF_F_GSO_MASK;
3513 }
3514
3515 /* Support for GSO partial features requires software
3516 * intervention before we can actually process the packets
3517 * so we need to strip support for any partial features now
3518 * and we can pull them back in after we have partially
3519 * segmented the frame.
3520 */
3521 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3522 features &= ~dev->gso_partial_features;
3523
3524 /* Make sure to clear the IPv4 ID mangling feature if the
3525 * IPv4 header has the potential to be fragmented.
3526 */
3527 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3528 struct iphdr *iph = skb->encapsulation ?
3529 inner_ip_hdr(skb) : ip_hdr(skb);
3530
3531 if (!(iph->frag_off & htons(IP_DF)))
3532 features &= ~NETIF_F_TSO_MANGLEID;
3533 }
3534
3535 return features;
3536}
3537
3538netdev_features_t netif_skb_features(struct sk_buff *skb)
3539{
3540 struct net_device *dev = skb->dev;
3541 netdev_features_t features = dev->features;
3542
3543 if (skb_is_gso(skb))
3544 features = gso_features_check(skb, dev, features);
3545
3546 /* If encapsulation offload request, verify we are testing
3547 * hardware encapsulation features instead of standard
3548 * features for the netdev
3549 */
3550 if (skb->encapsulation)
3551 features &= dev->hw_enc_features;
3552
3553 if (skb_vlan_tagged(skb))
3554 features = netdev_intersect_features(features,
3555 dev->vlan_features |
3556 NETIF_F_HW_VLAN_CTAG_TX |
3557 NETIF_F_HW_VLAN_STAG_TX);
3558
3559 if (dev->netdev_ops->ndo_features_check)
3560 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3561 features);
3562 else
3563 features &= dflt_features_check(skb, dev, features);
3564
3565 return harmonize_features(skb, features);
3566}
3567EXPORT_SYMBOL(netif_skb_features);
3568
3569static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3570 struct netdev_queue *txq, bool more)
3571{
3572 unsigned int len;
3573 int rc;
3574
3575 if (dev_nit_active(dev))
3576 dev_queue_xmit_nit(skb, dev);
3577
3578 len = skb->len;
3579 trace_net_dev_start_xmit(skb, dev);
3580 rc = netdev_start_xmit(skb, dev, txq, more);
3581 trace_net_dev_xmit(skb, rc, dev, len);
3582
3583 return rc;
3584}
3585
3586struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3587 struct netdev_queue *txq, int *ret)
3588{
3589 struct sk_buff *skb = first;
3590 int rc = NETDEV_TX_OK;
3591
3592 while (skb) {
3593 struct sk_buff *next = skb->next;
3594
3595 skb_mark_not_on_list(skb);
3596 rc = xmit_one(skb, dev, txq, next != NULL);
3597 if (unlikely(!dev_xmit_complete(rc))) {
3598 skb->next = next;
3599 goto out;
3600 }
3601
3602 skb = next;
3603 if (netif_tx_queue_stopped(txq) && skb) {
3604 rc = NETDEV_TX_BUSY;
3605 break;
3606 }
3607 }
3608
3609out:
3610 *ret = rc;
3611 return skb;
3612}
3613
3614static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3615 netdev_features_t features)
3616{
3617 if (skb_vlan_tag_present(skb) &&
3618 !vlan_hw_offload_capable(features, skb->vlan_proto))
3619 skb = __vlan_hwaccel_push_inside(skb);
3620 return skb;
3621}
3622
3623int skb_csum_hwoffload_help(struct sk_buff *skb,
3624 const netdev_features_t features)
3625{
3626 if (unlikely(skb_csum_is_sctp(skb)))
3627 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3628 skb_crc32c_csum_help(skb);
3629
3630 if (features & NETIF_F_HW_CSUM)
3631 return 0;
3632
3633 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3634 switch (skb->csum_offset) {
3635 case offsetof(struct tcphdr, check):
3636 case offsetof(struct udphdr, check):
3637 return 0;
3638 }
3639 }
3640
3641 return skb_checksum_help(skb);
3642}
3643EXPORT_SYMBOL(skb_csum_hwoffload_help);
3644
3645static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3646{
3647 netdev_features_t features;
3648
3649 features = netif_skb_features(skb);
3650 skb = validate_xmit_vlan(skb, features);
3651 if (unlikely(!skb))
3652 goto out_null;
3653
3654 skb = sk_validate_xmit_skb(skb, dev);
3655 if (unlikely(!skb))
3656 goto out_null;
3657
3658 if (netif_needs_gso(skb, features)) {
3659 struct sk_buff *segs;
3660
3661 segs = skb_gso_segment(skb, features);
3662 if (IS_ERR(segs)) {
3663 goto out_kfree_skb;
3664 } else if (segs) {
3665 consume_skb(skb);
3666 skb = segs;
3667 }
3668 } else {
3669 if (skb_needs_linearize(skb, features) &&
3670 __skb_linearize(skb))
3671 goto out_kfree_skb;
3672
3673 /* If packet is not checksummed and device does not
3674 * support checksumming for this protocol, complete
3675 * checksumming here.
3676 */
3677 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678 if (skb->encapsulation)
3679 skb_set_inner_transport_header(skb,
3680 skb_checksum_start_offset(skb));
3681 else
3682 skb_set_transport_header(skb,
3683 skb_checksum_start_offset(skb));
3684 if (skb_csum_hwoffload_help(skb, features))
3685 goto out_kfree_skb;
3686 }
3687 }
3688
3689 skb = validate_xmit_xfrm(skb, features, again);
3690
3691 return skb;
3692
3693out_kfree_skb:
3694 kfree_skb(skb);
3695out_null:
3696 dev_core_stats_tx_dropped_inc(dev);
3697 return NULL;
3698}
3699
3700struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3701{
3702 struct sk_buff *next, *head = NULL, *tail;
3703
3704 for (; skb != NULL; skb = next) {
3705 next = skb->next;
3706 skb_mark_not_on_list(skb);
3707
3708 /* in case skb wont be segmented, point to itself */
3709 skb->prev = skb;
3710
3711 skb = validate_xmit_skb(skb, dev, again);
3712 if (!skb)
3713 continue;
3714
3715 if (!head)
3716 head = skb;
3717 else
3718 tail->next = skb;
3719 /* If skb was segmented, skb->prev points to
3720 * the last segment. If not, it still contains skb.
3721 */
3722 tail = skb->prev;
3723 }
3724 return head;
3725}
3726EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3727
3728static void qdisc_pkt_len_init(struct sk_buff *skb)
3729{
3730 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3731
3732 qdisc_skb_cb(skb)->pkt_len = skb->len;
3733
3734 /* To get more precise estimation of bytes sent on wire,
3735 * we add to pkt_len the headers size of all segments
3736 */
3737 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3738 u16 gso_segs = shinfo->gso_segs;
3739 unsigned int hdr_len;
3740
3741 /* mac layer + network layer */
3742 hdr_len = skb_transport_offset(skb);
3743
3744 /* + transport layer */
3745 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3746 const struct tcphdr *th;
3747 struct tcphdr _tcphdr;
3748
3749 th = skb_header_pointer(skb, hdr_len,
3750 sizeof(_tcphdr), &_tcphdr);
3751 if (likely(th))
3752 hdr_len += __tcp_hdrlen(th);
3753 } else {
3754 struct udphdr _udphdr;
3755
3756 if (skb_header_pointer(skb, hdr_len,
3757 sizeof(_udphdr), &_udphdr))
3758 hdr_len += sizeof(struct udphdr);
3759 }
3760
3761 if (shinfo->gso_type & SKB_GSO_DODGY)
3762 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3763 shinfo->gso_size);
3764
3765 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3766 }
3767}
3768
3769static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3770 struct sk_buff **to_free,
3771 struct netdev_queue *txq)
3772{
3773 int rc;
3774
3775 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3776 if (rc == NET_XMIT_SUCCESS)
3777 trace_qdisc_enqueue(q, txq, skb);
3778 return rc;
3779}
3780
3781static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3782 struct net_device *dev,
3783 struct netdev_queue *txq)
3784{
3785 spinlock_t *root_lock = qdisc_lock(q);
3786 struct sk_buff *to_free = NULL;
3787 bool contended;
3788 int rc;
3789
3790 qdisc_calculate_pkt_len(skb, q);
3791
3792 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3793
3794 if (q->flags & TCQ_F_NOLOCK) {
3795 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3796 qdisc_run_begin(q)) {
3797 /* Retest nolock_qdisc_is_empty() within the protection
3798 * of q->seqlock to protect from racing with requeuing.
3799 */
3800 if (unlikely(!nolock_qdisc_is_empty(q))) {
3801 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3802 __qdisc_run(q);
3803 qdisc_run_end(q);
3804
3805 goto no_lock_out;
3806 }
3807
3808 qdisc_bstats_cpu_update(q, skb);
3809 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3810 !nolock_qdisc_is_empty(q))
3811 __qdisc_run(q);
3812
3813 qdisc_run_end(q);
3814 return NET_XMIT_SUCCESS;
3815 }
3816
3817 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818 qdisc_run(q);
3819
3820no_lock_out:
3821 if (unlikely(to_free))
3822 kfree_skb_list_reason(to_free,
3823 tcf_get_drop_reason(to_free));
3824 return rc;
3825 }
3826
3827 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3828 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3829 return NET_XMIT_DROP;
3830 }
3831 /*
3832 * Heuristic to force contended enqueues to serialize on a
3833 * separate lock before trying to get qdisc main lock.
3834 * This permits qdisc->running owner to get the lock more
3835 * often and dequeue packets faster.
3836 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3837 * and then other tasks will only enqueue packets. The packets will be
3838 * sent after the qdisc owner is scheduled again. To prevent this
3839 * scenario the task always serialize on the lock.
3840 */
3841 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3842 if (unlikely(contended))
3843 spin_lock(&q->busylock);
3844
3845 spin_lock(root_lock);
3846 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3847 __qdisc_drop(skb, &to_free);
3848 rc = NET_XMIT_DROP;
3849 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3850 qdisc_run_begin(q)) {
3851 /*
3852 * This is a work-conserving queue; there are no old skbs
3853 * waiting to be sent out; and the qdisc is not running -
3854 * xmit the skb directly.
3855 */
3856
3857 qdisc_bstats_update(q, skb);
3858
3859 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3860 if (unlikely(contended)) {
3861 spin_unlock(&q->busylock);
3862 contended = false;
3863 }
3864 __qdisc_run(q);
3865 }
3866
3867 qdisc_run_end(q);
3868 rc = NET_XMIT_SUCCESS;
3869 } else {
3870 WRITE_ONCE(q->owner, smp_processor_id());
3871 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3872 WRITE_ONCE(q->owner, -1);
3873 if (qdisc_run_begin(q)) {
3874 if (unlikely(contended)) {
3875 spin_unlock(&q->busylock);
3876 contended = false;
3877 }
3878 __qdisc_run(q);
3879 qdisc_run_end(q);
3880 }
3881 }
3882 spin_unlock(root_lock);
3883 if (unlikely(to_free))
3884 kfree_skb_list_reason(to_free,
3885 tcf_get_drop_reason(to_free));
3886 if (unlikely(contended))
3887 spin_unlock(&q->busylock);
3888 return rc;
3889}
3890
3891#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3892static void skb_update_prio(struct sk_buff *skb)
3893{
3894 const struct netprio_map *map;
3895 const struct sock *sk;
3896 unsigned int prioidx;
3897
3898 if (skb->priority)
3899 return;
3900 map = rcu_dereference_bh(skb->dev->priomap);
3901 if (!map)
3902 return;
3903 sk = skb_to_full_sk(skb);
3904 if (!sk)
3905 return;
3906
3907 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3908
3909 if (prioidx < map->priomap_len)
3910 skb->priority = map->priomap[prioidx];
3911}
3912#else
3913#define skb_update_prio(skb)
3914#endif
3915
3916/**
3917 * dev_loopback_xmit - loop back @skb
3918 * @net: network namespace this loopback is happening in
3919 * @sk: sk needed to be a netfilter okfn
3920 * @skb: buffer to transmit
3921 */
3922int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3923{
3924 skb_reset_mac_header(skb);
3925 __skb_pull(skb, skb_network_offset(skb));
3926 skb->pkt_type = PACKET_LOOPBACK;
3927 if (skb->ip_summed == CHECKSUM_NONE)
3928 skb->ip_summed = CHECKSUM_UNNECESSARY;
3929 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3930 skb_dst_force(skb);
3931 netif_rx(skb);
3932 return 0;
3933}
3934EXPORT_SYMBOL(dev_loopback_xmit);
3935
3936#ifdef CONFIG_NET_EGRESS
3937static struct netdev_queue *
3938netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3939{
3940 int qm = skb_get_queue_mapping(skb);
3941
3942 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3943}
3944
3945#ifndef CONFIG_PREEMPT_RT
3946static bool netdev_xmit_txqueue_skipped(void)
3947{
3948 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3949}
3950
3951void netdev_xmit_skip_txqueue(bool skip)
3952{
3953 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3954}
3955EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3956
3957#else
3958static bool netdev_xmit_txqueue_skipped(void)
3959{
3960 return current->net_xmit.skip_txqueue;
3961}
3962
3963void netdev_xmit_skip_txqueue(bool skip)
3964{
3965 current->net_xmit.skip_txqueue = skip;
3966}
3967EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3968#endif
3969#endif /* CONFIG_NET_EGRESS */
3970
3971#ifdef CONFIG_NET_XGRESS
3972static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3973 enum skb_drop_reason *drop_reason)
3974{
3975 int ret = TC_ACT_UNSPEC;
3976#ifdef CONFIG_NET_CLS_ACT
3977 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3978 struct tcf_result res;
3979
3980 if (!miniq)
3981 return ret;
3982
3983 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3984 if (tcf_block_bypass_sw(miniq->block))
3985 return ret;
3986 }
3987
3988 tc_skb_cb(skb)->mru = 0;
3989 tc_skb_cb(skb)->post_ct = false;
3990 tcf_set_drop_reason(skb, *drop_reason);
3991
3992 mini_qdisc_bstats_cpu_update(miniq, skb);
3993 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3994 /* Only tcf related quirks below. */
3995 switch (ret) {
3996 case TC_ACT_SHOT:
3997 *drop_reason = tcf_get_drop_reason(skb);
3998 mini_qdisc_qstats_cpu_drop(miniq);
3999 break;
4000 case TC_ACT_OK:
4001 case TC_ACT_RECLASSIFY:
4002 skb->tc_index = TC_H_MIN(res.classid);
4003 break;
4004 }
4005#endif /* CONFIG_NET_CLS_ACT */
4006 return ret;
4007}
4008
4009static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4010
4011void tcx_inc(void)
4012{
4013 static_branch_inc(&tcx_needed_key);
4014}
4015
4016void tcx_dec(void)
4017{
4018 static_branch_dec(&tcx_needed_key);
4019}
4020
4021static __always_inline enum tcx_action_base
4022tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4023 const bool needs_mac)
4024{
4025 const struct bpf_mprog_fp *fp;
4026 const struct bpf_prog *prog;
4027 int ret = TCX_NEXT;
4028
4029 if (needs_mac)
4030 __skb_push(skb, skb->mac_len);
4031 bpf_mprog_foreach_prog(entry, fp, prog) {
4032 bpf_compute_data_pointers(skb);
4033 ret = bpf_prog_run(prog, skb);
4034 if (ret != TCX_NEXT)
4035 break;
4036 }
4037 if (needs_mac)
4038 __skb_pull(skb, skb->mac_len);
4039 return tcx_action_code(skb, ret);
4040}
4041
4042static __always_inline struct sk_buff *
4043sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4044 struct net_device *orig_dev, bool *another)
4045{
4046 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4047 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4048 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4049 int sch_ret;
4050
4051 if (!entry)
4052 return skb;
4053
4054 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4055 if (*pt_prev) {
4056 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4057 *pt_prev = NULL;
4058 }
4059
4060 qdisc_skb_cb(skb)->pkt_len = skb->len;
4061 tcx_set_ingress(skb, true);
4062
4063 if (static_branch_unlikely(&tcx_needed_key)) {
4064 sch_ret = tcx_run(entry, skb, true);
4065 if (sch_ret != TC_ACT_UNSPEC)
4066 goto ingress_verdict;
4067 }
4068 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4069ingress_verdict:
4070 switch (sch_ret) {
4071 case TC_ACT_REDIRECT:
4072 /* skb_mac_header check was done by BPF, so we can safely
4073 * push the L2 header back before redirecting to another
4074 * netdev.
4075 */
4076 __skb_push(skb, skb->mac_len);
4077 if (skb_do_redirect(skb) == -EAGAIN) {
4078 __skb_pull(skb, skb->mac_len);
4079 *another = true;
4080 break;
4081 }
4082 *ret = NET_RX_SUCCESS;
4083 bpf_net_ctx_clear(bpf_net_ctx);
4084 return NULL;
4085 case TC_ACT_SHOT:
4086 kfree_skb_reason(skb, drop_reason);
4087 *ret = NET_RX_DROP;
4088 bpf_net_ctx_clear(bpf_net_ctx);
4089 return NULL;
4090 /* used by tc_run */
4091 case TC_ACT_STOLEN:
4092 case TC_ACT_QUEUED:
4093 case TC_ACT_TRAP:
4094 consume_skb(skb);
4095 fallthrough;
4096 case TC_ACT_CONSUMED:
4097 *ret = NET_RX_SUCCESS;
4098 bpf_net_ctx_clear(bpf_net_ctx);
4099 return NULL;
4100 }
4101 bpf_net_ctx_clear(bpf_net_ctx);
4102
4103 return skb;
4104}
4105
4106static __always_inline struct sk_buff *
4107sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4108{
4109 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4110 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4111 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4112 int sch_ret;
4113
4114 if (!entry)
4115 return skb;
4116
4117 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4118
4119 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4120 * already set by the caller.
4121 */
4122 if (static_branch_unlikely(&tcx_needed_key)) {
4123 sch_ret = tcx_run(entry, skb, false);
4124 if (sch_ret != TC_ACT_UNSPEC)
4125 goto egress_verdict;
4126 }
4127 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4128egress_verdict:
4129 switch (sch_ret) {
4130 case TC_ACT_REDIRECT:
4131 /* No need to push/pop skb's mac_header here on egress! */
4132 skb_do_redirect(skb);
4133 *ret = NET_XMIT_SUCCESS;
4134 bpf_net_ctx_clear(bpf_net_ctx);
4135 return NULL;
4136 case TC_ACT_SHOT:
4137 kfree_skb_reason(skb, drop_reason);
4138 *ret = NET_XMIT_DROP;
4139 bpf_net_ctx_clear(bpf_net_ctx);
4140 return NULL;
4141 /* used by tc_run */
4142 case TC_ACT_STOLEN:
4143 case TC_ACT_QUEUED:
4144 case TC_ACT_TRAP:
4145 consume_skb(skb);
4146 fallthrough;
4147 case TC_ACT_CONSUMED:
4148 *ret = NET_XMIT_SUCCESS;
4149 bpf_net_ctx_clear(bpf_net_ctx);
4150 return NULL;
4151 }
4152 bpf_net_ctx_clear(bpf_net_ctx);
4153
4154 return skb;
4155}
4156#else
4157static __always_inline struct sk_buff *
4158sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4159 struct net_device *orig_dev, bool *another)
4160{
4161 return skb;
4162}
4163
4164static __always_inline struct sk_buff *
4165sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4166{
4167 return skb;
4168}
4169#endif /* CONFIG_NET_XGRESS */
4170
4171#ifdef CONFIG_XPS
4172static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4173 struct xps_dev_maps *dev_maps, unsigned int tci)
4174{
4175 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4176 struct xps_map *map;
4177 int queue_index = -1;
4178
4179 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4180 return queue_index;
4181
4182 tci *= dev_maps->num_tc;
4183 tci += tc;
4184
4185 map = rcu_dereference(dev_maps->attr_map[tci]);
4186 if (map) {
4187 if (map->len == 1)
4188 queue_index = map->queues[0];
4189 else
4190 queue_index = map->queues[reciprocal_scale(
4191 skb_get_hash(skb), map->len)];
4192 if (unlikely(queue_index >= dev->real_num_tx_queues))
4193 queue_index = -1;
4194 }
4195 return queue_index;
4196}
4197#endif
4198
4199static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4200 struct sk_buff *skb)
4201{
4202#ifdef CONFIG_XPS
4203 struct xps_dev_maps *dev_maps;
4204 struct sock *sk = skb->sk;
4205 int queue_index = -1;
4206
4207 if (!static_key_false(&xps_needed))
4208 return -1;
4209
4210 rcu_read_lock();
4211 if (!static_key_false(&xps_rxqs_needed))
4212 goto get_cpus_map;
4213
4214 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4215 if (dev_maps) {
4216 int tci = sk_rx_queue_get(sk);
4217
4218 if (tci >= 0)
4219 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4220 tci);
4221 }
4222
4223get_cpus_map:
4224 if (queue_index < 0) {
4225 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4226 if (dev_maps) {
4227 unsigned int tci = skb->sender_cpu - 1;
4228
4229 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4230 tci);
4231 }
4232 }
4233 rcu_read_unlock();
4234
4235 return queue_index;
4236#else
4237 return -1;
4238#endif
4239}
4240
4241u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4242 struct net_device *sb_dev)
4243{
4244 return 0;
4245}
4246EXPORT_SYMBOL(dev_pick_tx_zero);
4247
4248u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4249 struct net_device *sb_dev)
4250{
4251 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4252}
4253EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4254
4255u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4256 struct net_device *sb_dev)
4257{
4258 struct sock *sk = skb->sk;
4259 int queue_index = sk_tx_queue_get(sk);
4260
4261 sb_dev = sb_dev ? : dev;
4262
4263 if (queue_index < 0 || skb->ooo_okay ||
4264 queue_index >= dev->real_num_tx_queues) {
4265 int new_index = get_xps_queue(dev, sb_dev, skb);
4266
4267 if (new_index < 0)
4268 new_index = skb_tx_hash(dev, sb_dev, skb);
4269
4270 if (queue_index != new_index && sk &&
4271 sk_fullsock(sk) &&
4272 rcu_access_pointer(sk->sk_dst_cache))
4273 sk_tx_queue_set(sk, new_index);
4274
4275 queue_index = new_index;
4276 }
4277
4278 return queue_index;
4279}
4280EXPORT_SYMBOL(netdev_pick_tx);
4281
4282struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4283 struct sk_buff *skb,
4284 struct net_device *sb_dev)
4285{
4286 int queue_index = 0;
4287
4288#ifdef CONFIG_XPS
4289 u32 sender_cpu = skb->sender_cpu - 1;
4290
4291 if (sender_cpu >= (u32)NR_CPUS)
4292 skb->sender_cpu = raw_smp_processor_id() + 1;
4293#endif
4294
4295 if (dev->real_num_tx_queues != 1) {
4296 const struct net_device_ops *ops = dev->netdev_ops;
4297
4298 if (ops->ndo_select_queue)
4299 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4300 else
4301 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4302
4303 queue_index = netdev_cap_txqueue(dev, queue_index);
4304 }
4305
4306 skb_set_queue_mapping(skb, queue_index);
4307 return netdev_get_tx_queue(dev, queue_index);
4308}
4309
4310/**
4311 * __dev_queue_xmit() - transmit a buffer
4312 * @skb: buffer to transmit
4313 * @sb_dev: suboordinate device used for L2 forwarding offload
4314 *
4315 * Queue a buffer for transmission to a network device. The caller must
4316 * have set the device and priority and built the buffer before calling
4317 * this function. The function can be called from an interrupt.
4318 *
4319 * When calling this method, interrupts MUST be enabled. This is because
4320 * the BH enable code must have IRQs enabled so that it will not deadlock.
4321 *
4322 * Regardless of the return value, the skb is consumed, so it is currently
4323 * difficult to retry a send to this method. (You can bump the ref count
4324 * before sending to hold a reference for retry if you are careful.)
4325 *
4326 * Return:
4327 * * 0 - buffer successfully transmitted
4328 * * positive qdisc return code - NET_XMIT_DROP etc.
4329 * * negative errno - other errors
4330 */
4331int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4332{
4333 struct net_device *dev = skb->dev;
4334 struct netdev_queue *txq = NULL;
4335 struct Qdisc *q;
4336 int rc = -ENOMEM;
4337 bool again = false;
4338
4339 skb_reset_mac_header(skb);
4340 skb_assert_len(skb);
4341
4342 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4343 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4344
4345 /* Disable soft irqs for various locks below. Also
4346 * stops preemption for RCU.
4347 */
4348 rcu_read_lock_bh();
4349
4350 skb_update_prio(skb);
4351
4352 qdisc_pkt_len_init(skb);
4353 tcx_set_ingress(skb, false);
4354#ifdef CONFIG_NET_EGRESS
4355 if (static_branch_unlikely(&egress_needed_key)) {
4356 if (nf_hook_egress_active()) {
4357 skb = nf_hook_egress(skb, &rc, dev);
4358 if (!skb)
4359 goto out;
4360 }
4361
4362 netdev_xmit_skip_txqueue(false);
4363
4364 nf_skip_egress(skb, true);
4365 skb = sch_handle_egress(skb, &rc, dev);
4366 if (!skb)
4367 goto out;
4368 nf_skip_egress(skb, false);
4369
4370 if (netdev_xmit_txqueue_skipped())
4371 txq = netdev_tx_queue_mapping(dev, skb);
4372 }
4373#endif
4374 /* If device/qdisc don't need skb->dst, release it right now while
4375 * its hot in this cpu cache.
4376 */
4377 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4378 skb_dst_drop(skb);
4379 else
4380 skb_dst_force(skb);
4381
4382 if (!txq)
4383 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4384
4385 q = rcu_dereference_bh(txq->qdisc);
4386
4387 trace_net_dev_queue(skb);
4388 if (q->enqueue) {
4389 rc = __dev_xmit_skb(skb, q, dev, txq);
4390 goto out;
4391 }
4392
4393 /* The device has no queue. Common case for software devices:
4394 * loopback, all the sorts of tunnels...
4395
4396 * Really, it is unlikely that netif_tx_lock protection is necessary
4397 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4398 * counters.)
4399 * However, it is possible, that they rely on protection
4400 * made by us here.
4401
4402 * Check this and shot the lock. It is not prone from deadlocks.
4403 *Either shot noqueue qdisc, it is even simpler 8)
4404 */
4405 if (dev->flags & IFF_UP) {
4406 int cpu = smp_processor_id(); /* ok because BHs are off */
4407
4408 /* Other cpus might concurrently change txq->xmit_lock_owner
4409 * to -1 or to their cpu id, but not to our id.
4410 */
4411 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4412 if (dev_xmit_recursion())
4413 goto recursion_alert;
4414
4415 skb = validate_xmit_skb(skb, dev, &again);
4416 if (!skb)
4417 goto out;
4418
4419 HARD_TX_LOCK(dev, txq, cpu);
4420
4421 if (!netif_xmit_stopped(txq)) {
4422 dev_xmit_recursion_inc();
4423 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4424 dev_xmit_recursion_dec();
4425 if (dev_xmit_complete(rc)) {
4426 HARD_TX_UNLOCK(dev, txq);
4427 goto out;
4428 }
4429 }
4430 HARD_TX_UNLOCK(dev, txq);
4431 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4432 dev->name);
4433 } else {
4434 /* Recursion is detected! It is possible,
4435 * unfortunately
4436 */
4437recursion_alert:
4438 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4439 dev->name);
4440 }
4441 }
4442
4443 rc = -ENETDOWN;
4444 rcu_read_unlock_bh();
4445
4446 dev_core_stats_tx_dropped_inc(dev);
4447 kfree_skb_list(skb);
4448 return rc;
4449out:
4450 rcu_read_unlock_bh();
4451 return rc;
4452}
4453EXPORT_SYMBOL(__dev_queue_xmit);
4454
4455int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4456{
4457 struct net_device *dev = skb->dev;
4458 struct sk_buff *orig_skb = skb;
4459 struct netdev_queue *txq;
4460 int ret = NETDEV_TX_BUSY;
4461 bool again = false;
4462
4463 if (unlikely(!netif_running(dev) ||
4464 !netif_carrier_ok(dev)))
4465 goto drop;
4466
4467 skb = validate_xmit_skb_list(skb, dev, &again);
4468 if (skb != orig_skb)
4469 goto drop;
4470
4471 skb_set_queue_mapping(skb, queue_id);
4472 txq = skb_get_tx_queue(dev, skb);
4473
4474 local_bh_disable();
4475
4476 dev_xmit_recursion_inc();
4477 HARD_TX_LOCK(dev, txq, smp_processor_id());
4478 if (!netif_xmit_frozen_or_drv_stopped(txq))
4479 ret = netdev_start_xmit(skb, dev, txq, false);
4480 HARD_TX_UNLOCK(dev, txq);
4481 dev_xmit_recursion_dec();
4482
4483 local_bh_enable();
4484 return ret;
4485drop:
4486 dev_core_stats_tx_dropped_inc(dev);
4487 kfree_skb_list(skb);
4488 return NET_XMIT_DROP;
4489}
4490EXPORT_SYMBOL(__dev_direct_xmit);
4491
4492/*************************************************************************
4493 * Receiver routines
4494 *************************************************************************/
4495static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4496
4497int weight_p __read_mostly = 64; /* old backlog weight */
4498int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4499int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4500
4501/* Called with irq disabled */
4502static inline void ____napi_schedule(struct softnet_data *sd,
4503 struct napi_struct *napi)
4504{
4505 struct task_struct *thread;
4506
4507 lockdep_assert_irqs_disabled();
4508
4509 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4510 /* Paired with smp_mb__before_atomic() in
4511 * napi_enable()/dev_set_threaded().
4512 * Use READ_ONCE() to guarantee a complete
4513 * read on napi->thread. Only call
4514 * wake_up_process() when it's not NULL.
4515 */
4516 thread = READ_ONCE(napi->thread);
4517 if (thread) {
4518 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4519 goto use_local_napi;
4520
4521 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4522 wake_up_process(thread);
4523 return;
4524 }
4525 }
4526
4527use_local_napi:
4528 list_add_tail(&napi->poll_list, &sd->poll_list);
4529 WRITE_ONCE(napi->list_owner, smp_processor_id());
4530 /* If not called from net_rx_action()
4531 * we have to raise NET_RX_SOFTIRQ.
4532 */
4533 if (!sd->in_net_rx_action)
4534 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4535}
4536
4537#ifdef CONFIG_RPS
4538
4539struct static_key_false rps_needed __read_mostly;
4540EXPORT_SYMBOL(rps_needed);
4541struct static_key_false rfs_needed __read_mostly;
4542EXPORT_SYMBOL(rfs_needed);
4543
4544static struct rps_dev_flow *
4545set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4546 struct rps_dev_flow *rflow, u16 next_cpu)
4547{
4548 if (next_cpu < nr_cpu_ids) {
4549 u32 head;
4550#ifdef CONFIG_RFS_ACCEL
4551 struct netdev_rx_queue *rxqueue;
4552 struct rps_dev_flow_table *flow_table;
4553 struct rps_dev_flow *old_rflow;
4554 u16 rxq_index;
4555 u32 flow_id;
4556 int rc;
4557
4558 /* Should we steer this flow to a different hardware queue? */
4559 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4560 !(dev->features & NETIF_F_NTUPLE))
4561 goto out;
4562 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4563 if (rxq_index == skb_get_rx_queue(skb))
4564 goto out;
4565
4566 rxqueue = dev->_rx + rxq_index;
4567 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4568 if (!flow_table)
4569 goto out;
4570 flow_id = skb_get_hash(skb) & flow_table->mask;
4571 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4572 rxq_index, flow_id);
4573 if (rc < 0)
4574 goto out;
4575 old_rflow = rflow;
4576 rflow = &flow_table->flows[flow_id];
4577 WRITE_ONCE(rflow->filter, rc);
4578 if (old_rflow->filter == rc)
4579 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4580 out:
4581#endif
4582 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4583 rps_input_queue_tail_save(&rflow->last_qtail, head);
4584 }
4585
4586 WRITE_ONCE(rflow->cpu, next_cpu);
4587 return rflow;
4588}
4589
4590/*
4591 * get_rps_cpu is called from netif_receive_skb and returns the target
4592 * CPU from the RPS map of the receiving queue for a given skb.
4593 * rcu_read_lock must be held on entry.
4594 */
4595static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4596 struct rps_dev_flow **rflowp)
4597{
4598 const struct rps_sock_flow_table *sock_flow_table;
4599 struct netdev_rx_queue *rxqueue = dev->_rx;
4600 struct rps_dev_flow_table *flow_table;
4601 struct rps_map *map;
4602 int cpu = -1;
4603 u32 tcpu;
4604 u32 hash;
4605
4606 if (skb_rx_queue_recorded(skb)) {
4607 u16 index = skb_get_rx_queue(skb);
4608
4609 if (unlikely(index >= dev->real_num_rx_queues)) {
4610 WARN_ONCE(dev->real_num_rx_queues > 1,
4611 "%s received packet on queue %u, but number "
4612 "of RX queues is %u\n",
4613 dev->name, index, dev->real_num_rx_queues);
4614 goto done;
4615 }
4616 rxqueue += index;
4617 }
4618
4619 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4620
4621 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4622 map = rcu_dereference(rxqueue->rps_map);
4623 if (!flow_table && !map)
4624 goto done;
4625
4626 skb_reset_network_header(skb);
4627 hash = skb_get_hash(skb);
4628 if (!hash)
4629 goto done;
4630
4631 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4632 if (flow_table && sock_flow_table) {
4633 struct rps_dev_flow *rflow;
4634 u32 next_cpu;
4635 u32 ident;
4636
4637 /* First check into global flow table if there is a match.
4638 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4639 */
4640 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4641 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4642 goto try_rps;
4643
4644 next_cpu = ident & net_hotdata.rps_cpu_mask;
4645
4646 /* OK, now we know there is a match,
4647 * we can look at the local (per receive queue) flow table
4648 */
4649 rflow = &flow_table->flows[hash & flow_table->mask];
4650 tcpu = rflow->cpu;
4651
4652 /*
4653 * If the desired CPU (where last recvmsg was done) is
4654 * different from current CPU (one in the rx-queue flow
4655 * table entry), switch if one of the following holds:
4656 * - Current CPU is unset (>= nr_cpu_ids).
4657 * - Current CPU is offline.
4658 * - The current CPU's queue tail has advanced beyond the
4659 * last packet that was enqueued using this table entry.
4660 * This guarantees that all previous packets for the flow
4661 * have been dequeued, thus preserving in order delivery.
4662 */
4663 if (unlikely(tcpu != next_cpu) &&
4664 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4665 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4666 rflow->last_qtail)) >= 0)) {
4667 tcpu = next_cpu;
4668 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4669 }
4670
4671 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4672 *rflowp = rflow;
4673 cpu = tcpu;
4674 goto done;
4675 }
4676 }
4677
4678try_rps:
4679
4680 if (map) {
4681 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4682 if (cpu_online(tcpu)) {
4683 cpu = tcpu;
4684 goto done;
4685 }
4686 }
4687
4688done:
4689 return cpu;
4690}
4691
4692#ifdef CONFIG_RFS_ACCEL
4693
4694/**
4695 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4696 * @dev: Device on which the filter was set
4697 * @rxq_index: RX queue index
4698 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4699 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4700 *
4701 * Drivers that implement ndo_rx_flow_steer() should periodically call
4702 * this function for each installed filter and remove the filters for
4703 * which it returns %true.
4704 */
4705bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4706 u32 flow_id, u16 filter_id)
4707{
4708 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4709 struct rps_dev_flow_table *flow_table;
4710 struct rps_dev_flow *rflow;
4711 bool expire = true;
4712 unsigned int cpu;
4713
4714 rcu_read_lock();
4715 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4716 if (flow_table && flow_id <= flow_table->mask) {
4717 rflow = &flow_table->flows[flow_id];
4718 cpu = READ_ONCE(rflow->cpu);
4719 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4720 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4721 READ_ONCE(rflow->last_qtail)) <
4722 (int)(10 * flow_table->mask)))
4723 expire = false;
4724 }
4725 rcu_read_unlock();
4726 return expire;
4727}
4728EXPORT_SYMBOL(rps_may_expire_flow);
4729
4730#endif /* CONFIG_RFS_ACCEL */
4731
4732/* Called from hardirq (IPI) context */
4733static void rps_trigger_softirq(void *data)
4734{
4735 struct softnet_data *sd = data;
4736
4737 ____napi_schedule(sd, &sd->backlog);
4738 sd->received_rps++;
4739}
4740
4741#endif /* CONFIG_RPS */
4742
4743/* Called from hardirq (IPI) context */
4744static void trigger_rx_softirq(void *data)
4745{
4746 struct softnet_data *sd = data;
4747
4748 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4749 smp_store_release(&sd->defer_ipi_scheduled, 0);
4750}
4751
4752/*
4753 * After we queued a packet into sd->input_pkt_queue,
4754 * we need to make sure this queue is serviced soon.
4755 *
4756 * - If this is another cpu queue, link it to our rps_ipi_list,
4757 * and make sure we will process rps_ipi_list from net_rx_action().
4758 *
4759 * - If this is our own queue, NAPI schedule our backlog.
4760 * Note that this also raises NET_RX_SOFTIRQ.
4761 */
4762static void napi_schedule_rps(struct softnet_data *sd)
4763{
4764 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4765
4766#ifdef CONFIG_RPS
4767 if (sd != mysd) {
4768 if (use_backlog_threads()) {
4769 __napi_schedule_irqoff(&sd->backlog);
4770 return;
4771 }
4772
4773 sd->rps_ipi_next = mysd->rps_ipi_list;
4774 mysd->rps_ipi_list = sd;
4775
4776 /* If not called from net_rx_action() or napi_threaded_poll()
4777 * we have to raise NET_RX_SOFTIRQ.
4778 */
4779 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4780 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4781 return;
4782 }
4783#endif /* CONFIG_RPS */
4784 __napi_schedule_irqoff(&mysd->backlog);
4785}
4786
4787void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4788{
4789 unsigned long flags;
4790
4791 if (use_backlog_threads()) {
4792 backlog_lock_irq_save(sd, &flags);
4793
4794 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4795 __napi_schedule_irqoff(&sd->backlog);
4796
4797 backlog_unlock_irq_restore(sd, &flags);
4798
4799 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4800 smp_call_function_single_async(cpu, &sd->defer_csd);
4801 }
4802}
4803
4804#ifdef CONFIG_NET_FLOW_LIMIT
4805int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4806#endif
4807
4808static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4809{
4810#ifdef CONFIG_NET_FLOW_LIMIT
4811 struct sd_flow_limit *fl;
4812 struct softnet_data *sd;
4813 unsigned int old_flow, new_flow;
4814
4815 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4816 return false;
4817
4818 sd = this_cpu_ptr(&softnet_data);
4819
4820 rcu_read_lock();
4821 fl = rcu_dereference(sd->flow_limit);
4822 if (fl) {
4823 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4824 old_flow = fl->history[fl->history_head];
4825 fl->history[fl->history_head] = new_flow;
4826
4827 fl->history_head++;
4828 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4829
4830 if (likely(fl->buckets[old_flow]))
4831 fl->buckets[old_flow]--;
4832
4833 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4834 fl->count++;
4835 rcu_read_unlock();
4836 return true;
4837 }
4838 }
4839 rcu_read_unlock();
4840#endif
4841 return false;
4842}
4843
4844/*
4845 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4846 * queue (may be a remote CPU queue).
4847 */
4848static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4849 unsigned int *qtail)
4850{
4851 enum skb_drop_reason reason;
4852 struct softnet_data *sd;
4853 unsigned long flags;
4854 unsigned int qlen;
4855 int max_backlog;
4856 u32 tail;
4857
4858 reason = SKB_DROP_REASON_DEV_READY;
4859 if (!netif_running(skb->dev))
4860 goto bad_dev;
4861
4862 reason = SKB_DROP_REASON_CPU_BACKLOG;
4863 sd = &per_cpu(softnet_data, cpu);
4864
4865 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4866 max_backlog = READ_ONCE(net_hotdata.max_backlog);
4867 if (unlikely(qlen > max_backlog))
4868 goto cpu_backlog_drop;
4869 backlog_lock_irq_save(sd, &flags);
4870 qlen = skb_queue_len(&sd->input_pkt_queue);
4871 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4872 if (!qlen) {
4873 /* Schedule NAPI for backlog device. We can use
4874 * non atomic operation as we own the queue lock.
4875 */
4876 if (!__test_and_set_bit(NAPI_STATE_SCHED,
4877 &sd->backlog.state))
4878 napi_schedule_rps(sd);
4879 }
4880 __skb_queue_tail(&sd->input_pkt_queue, skb);
4881 tail = rps_input_queue_tail_incr(sd);
4882 backlog_unlock_irq_restore(sd, &flags);
4883
4884 /* save the tail outside of the critical section */
4885 rps_input_queue_tail_save(qtail, tail);
4886 return NET_RX_SUCCESS;
4887 }
4888
4889 backlog_unlock_irq_restore(sd, &flags);
4890
4891cpu_backlog_drop:
4892 atomic_inc(&sd->dropped);
4893bad_dev:
4894 dev_core_stats_rx_dropped_inc(skb->dev);
4895 kfree_skb_reason(skb, reason);
4896 return NET_RX_DROP;
4897}
4898
4899static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4900{
4901 struct net_device *dev = skb->dev;
4902 struct netdev_rx_queue *rxqueue;
4903
4904 rxqueue = dev->_rx;
4905
4906 if (skb_rx_queue_recorded(skb)) {
4907 u16 index = skb_get_rx_queue(skb);
4908
4909 if (unlikely(index >= dev->real_num_rx_queues)) {
4910 WARN_ONCE(dev->real_num_rx_queues > 1,
4911 "%s received packet on queue %u, but number "
4912 "of RX queues is %u\n",
4913 dev->name, index, dev->real_num_rx_queues);
4914
4915 return rxqueue; /* Return first rxqueue */
4916 }
4917 rxqueue += index;
4918 }
4919 return rxqueue;
4920}
4921
4922u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4923 struct bpf_prog *xdp_prog)
4924{
4925 void *orig_data, *orig_data_end, *hard_start;
4926 struct netdev_rx_queue *rxqueue;
4927 bool orig_bcast, orig_host;
4928 u32 mac_len, frame_sz;
4929 __be16 orig_eth_type;
4930 struct ethhdr *eth;
4931 u32 metalen, act;
4932 int off;
4933
4934 /* The XDP program wants to see the packet starting at the MAC
4935 * header.
4936 */
4937 mac_len = skb->data - skb_mac_header(skb);
4938 hard_start = skb->data - skb_headroom(skb);
4939
4940 /* SKB "head" area always have tailroom for skb_shared_info */
4941 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4942 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4943
4944 rxqueue = netif_get_rxqueue(skb);
4945 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4946 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4947 skb_headlen(skb) + mac_len, true);
4948 if (skb_is_nonlinear(skb)) {
4949 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4950 xdp_buff_set_frags_flag(xdp);
4951 } else {
4952 xdp_buff_clear_frags_flag(xdp);
4953 }
4954
4955 orig_data_end = xdp->data_end;
4956 orig_data = xdp->data;
4957 eth = (struct ethhdr *)xdp->data;
4958 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4959 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4960 orig_eth_type = eth->h_proto;
4961
4962 act = bpf_prog_run_xdp(xdp_prog, xdp);
4963
4964 /* check if bpf_xdp_adjust_head was used */
4965 off = xdp->data - orig_data;
4966 if (off) {
4967 if (off > 0)
4968 __skb_pull(skb, off);
4969 else if (off < 0)
4970 __skb_push(skb, -off);
4971
4972 skb->mac_header += off;
4973 skb_reset_network_header(skb);
4974 }
4975
4976 /* check if bpf_xdp_adjust_tail was used */
4977 off = xdp->data_end - orig_data_end;
4978 if (off != 0) {
4979 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4980 skb->len += off; /* positive on grow, negative on shrink */
4981 }
4982
4983 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4984 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4985 */
4986 if (xdp_buff_has_frags(xdp))
4987 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4988 else
4989 skb->data_len = 0;
4990
4991 /* check if XDP changed eth hdr such SKB needs update */
4992 eth = (struct ethhdr *)xdp->data;
4993 if ((orig_eth_type != eth->h_proto) ||
4994 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4995 skb->dev->dev_addr)) ||
4996 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4997 __skb_push(skb, ETH_HLEN);
4998 skb->pkt_type = PACKET_HOST;
4999 skb->protocol = eth_type_trans(skb, skb->dev);
5000 }
5001
5002 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5003 * before calling us again on redirect path. We do not call do_redirect
5004 * as we leave that up to the caller.
5005 *
5006 * Caller is responsible for managing lifetime of skb (i.e. calling
5007 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5008 */
5009 switch (act) {
5010 case XDP_REDIRECT:
5011 case XDP_TX:
5012 __skb_push(skb, mac_len);
5013 break;
5014 case XDP_PASS:
5015 metalen = xdp->data - xdp->data_meta;
5016 if (metalen)
5017 skb_metadata_set(skb, metalen);
5018 break;
5019 }
5020
5021 return act;
5022}
5023
5024static int
5025netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5026{
5027 struct sk_buff *skb = *pskb;
5028 int err, hroom, troom;
5029
5030 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5031 return 0;
5032
5033 /* In case we have to go down the path and also linearize,
5034 * then lets do the pskb_expand_head() work just once here.
5035 */
5036 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5037 troom = skb->tail + skb->data_len - skb->end;
5038 err = pskb_expand_head(skb,
5039 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5040 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5041 if (err)
5042 return err;
5043
5044 return skb_linearize(skb);
5045}
5046
5047static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5048 struct xdp_buff *xdp,
5049 struct bpf_prog *xdp_prog)
5050{
5051 struct sk_buff *skb = *pskb;
5052 u32 mac_len, act = XDP_DROP;
5053
5054 /* Reinjected packets coming from act_mirred or similar should
5055 * not get XDP generic processing.
5056 */
5057 if (skb_is_redirected(skb))
5058 return XDP_PASS;
5059
5060 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5061 * bytes. This is the guarantee that also native XDP provides,
5062 * thus we need to do it here as well.
5063 */
5064 mac_len = skb->data - skb_mac_header(skb);
5065 __skb_push(skb, mac_len);
5066
5067 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5068 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5069 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5070 goto do_drop;
5071 }
5072
5073 __skb_pull(*pskb, mac_len);
5074
5075 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5076 switch (act) {
5077 case XDP_REDIRECT:
5078 case XDP_TX:
5079 case XDP_PASS:
5080 break;
5081 default:
5082 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5083 fallthrough;
5084 case XDP_ABORTED:
5085 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5086 fallthrough;
5087 case XDP_DROP:
5088 do_drop:
5089 kfree_skb(*pskb);
5090 break;
5091 }
5092
5093 return act;
5094}
5095
5096/* When doing generic XDP we have to bypass the qdisc layer and the
5097 * network taps in order to match in-driver-XDP behavior. This also means
5098 * that XDP packets are able to starve other packets going through a qdisc,
5099 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5100 * queues, so they do not have this starvation issue.
5101 */
5102void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5103{
5104 struct net_device *dev = skb->dev;
5105 struct netdev_queue *txq;
5106 bool free_skb = true;
5107 int cpu, rc;
5108
5109 txq = netdev_core_pick_tx(dev, skb, NULL);
5110 cpu = smp_processor_id();
5111 HARD_TX_LOCK(dev, txq, cpu);
5112 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5113 rc = netdev_start_xmit(skb, dev, txq, 0);
5114 if (dev_xmit_complete(rc))
5115 free_skb = false;
5116 }
5117 HARD_TX_UNLOCK(dev, txq);
5118 if (free_skb) {
5119 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5120 dev_core_stats_tx_dropped_inc(dev);
5121 kfree_skb(skb);
5122 }
5123}
5124
5125static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5126
5127int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5128{
5129 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5130
5131 if (xdp_prog) {
5132 struct xdp_buff xdp;
5133 u32 act;
5134 int err;
5135
5136 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5137 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5138 if (act != XDP_PASS) {
5139 switch (act) {
5140 case XDP_REDIRECT:
5141 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5142 &xdp, xdp_prog);
5143 if (err)
5144 goto out_redir;
5145 break;
5146 case XDP_TX:
5147 generic_xdp_tx(*pskb, xdp_prog);
5148 break;
5149 }
5150 bpf_net_ctx_clear(bpf_net_ctx);
5151 return XDP_DROP;
5152 }
5153 }
5154 return XDP_PASS;
5155out_redir:
5156 bpf_net_ctx_clear(bpf_net_ctx);
5157 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5158 return XDP_DROP;
5159}
5160EXPORT_SYMBOL_GPL(do_xdp_generic);
5161
5162static int netif_rx_internal(struct sk_buff *skb)
5163{
5164 int ret;
5165
5166 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5167
5168 trace_netif_rx(skb);
5169
5170#ifdef CONFIG_RPS
5171 if (static_branch_unlikely(&rps_needed)) {
5172 struct rps_dev_flow voidflow, *rflow = &voidflow;
5173 int cpu;
5174
5175 rcu_read_lock();
5176
5177 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5178 if (cpu < 0)
5179 cpu = smp_processor_id();
5180
5181 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5182
5183 rcu_read_unlock();
5184 } else
5185#endif
5186 {
5187 unsigned int qtail;
5188
5189 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5190 }
5191 return ret;
5192}
5193
5194/**
5195 * __netif_rx - Slightly optimized version of netif_rx
5196 * @skb: buffer to post
5197 *
5198 * This behaves as netif_rx except that it does not disable bottom halves.
5199 * As a result this function may only be invoked from the interrupt context
5200 * (either hard or soft interrupt).
5201 */
5202int __netif_rx(struct sk_buff *skb)
5203{
5204 int ret;
5205
5206 lockdep_assert_once(hardirq_count() | softirq_count());
5207
5208 trace_netif_rx_entry(skb);
5209 ret = netif_rx_internal(skb);
5210 trace_netif_rx_exit(ret);
5211 return ret;
5212}
5213EXPORT_SYMBOL(__netif_rx);
5214
5215/**
5216 * netif_rx - post buffer to the network code
5217 * @skb: buffer to post
5218 *
5219 * This function receives a packet from a device driver and queues it for
5220 * the upper (protocol) levels to process via the backlog NAPI device. It
5221 * always succeeds. The buffer may be dropped during processing for
5222 * congestion control or by the protocol layers.
5223 * The network buffer is passed via the backlog NAPI device. Modern NIC
5224 * driver should use NAPI and GRO.
5225 * This function can used from interrupt and from process context. The
5226 * caller from process context must not disable interrupts before invoking
5227 * this function.
5228 *
5229 * return values:
5230 * NET_RX_SUCCESS (no congestion)
5231 * NET_RX_DROP (packet was dropped)
5232 *
5233 */
5234int netif_rx(struct sk_buff *skb)
5235{
5236 bool need_bh_off = !(hardirq_count() | softirq_count());
5237 int ret;
5238
5239 if (need_bh_off)
5240 local_bh_disable();
5241 trace_netif_rx_entry(skb);
5242 ret = netif_rx_internal(skb);
5243 trace_netif_rx_exit(ret);
5244 if (need_bh_off)
5245 local_bh_enable();
5246 return ret;
5247}
5248EXPORT_SYMBOL(netif_rx);
5249
5250static __latent_entropy void net_tx_action(struct softirq_action *h)
5251{
5252 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5253
5254 if (sd->completion_queue) {
5255 struct sk_buff *clist;
5256
5257 local_irq_disable();
5258 clist = sd->completion_queue;
5259 sd->completion_queue = NULL;
5260 local_irq_enable();
5261
5262 while (clist) {
5263 struct sk_buff *skb = clist;
5264
5265 clist = clist->next;
5266
5267 WARN_ON(refcount_read(&skb->users));
5268 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5269 trace_consume_skb(skb, net_tx_action);
5270 else
5271 trace_kfree_skb(skb, net_tx_action,
5272 get_kfree_skb_cb(skb)->reason, NULL);
5273
5274 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5275 __kfree_skb(skb);
5276 else
5277 __napi_kfree_skb(skb,
5278 get_kfree_skb_cb(skb)->reason);
5279 }
5280 }
5281
5282 if (sd->output_queue) {
5283 struct Qdisc *head;
5284
5285 local_irq_disable();
5286 head = sd->output_queue;
5287 sd->output_queue = NULL;
5288 sd->output_queue_tailp = &sd->output_queue;
5289 local_irq_enable();
5290
5291 rcu_read_lock();
5292
5293 while (head) {
5294 struct Qdisc *q = head;
5295 spinlock_t *root_lock = NULL;
5296
5297 head = head->next_sched;
5298
5299 /* We need to make sure head->next_sched is read
5300 * before clearing __QDISC_STATE_SCHED
5301 */
5302 smp_mb__before_atomic();
5303
5304 if (!(q->flags & TCQ_F_NOLOCK)) {
5305 root_lock = qdisc_lock(q);
5306 spin_lock(root_lock);
5307 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5308 &q->state))) {
5309 /* There is a synchronize_net() between
5310 * STATE_DEACTIVATED flag being set and
5311 * qdisc_reset()/some_qdisc_is_busy() in
5312 * dev_deactivate(), so we can safely bail out
5313 * early here to avoid data race between
5314 * qdisc_deactivate() and some_qdisc_is_busy()
5315 * for lockless qdisc.
5316 */
5317 clear_bit(__QDISC_STATE_SCHED, &q->state);
5318 continue;
5319 }
5320
5321 clear_bit(__QDISC_STATE_SCHED, &q->state);
5322 qdisc_run(q);
5323 if (root_lock)
5324 spin_unlock(root_lock);
5325 }
5326
5327 rcu_read_unlock();
5328 }
5329
5330 xfrm_dev_backlog(sd);
5331}
5332
5333#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5334/* This hook is defined here for ATM LANE */
5335int (*br_fdb_test_addr_hook)(struct net_device *dev,
5336 unsigned char *addr) __read_mostly;
5337EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5338#endif
5339
5340/**
5341 * netdev_is_rx_handler_busy - check if receive handler is registered
5342 * @dev: device to check
5343 *
5344 * Check if a receive handler is already registered for a given device.
5345 * Return true if there one.
5346 *
5347 * The caller must hold the rtnl_mutex.
5348 */
5349bool netdev_is_rx_handler_busy(struct net_device *dev)
5350{
5351 ASSERT_RTNL();
5352 return dev && rtnl_dereference(dev->rx_handler);
5353}
5354EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5355
5356/**
5357 * netdev_rx_handler_register - register receive handler
5358 * @dev: device to register a handler for
5359 * @rx_handler: receive handler to register
5360 * @rx_handler_data: data pointer that is used by rx handler
5361 *
5362 * Register a receive handler for a device. This handler will then be
5363 * called from __netif_receive_skb. A negative errno code is returned
5364 * on a failure.
5365 *
5366 * The caller must hold the rtnl_mutex.
5367 *
5368 * For a general description of rx_handler, see enum rx_handler_result.
5369 */
5370int netdev_rx_handler_register(struct net_device *dev,
5371 rx_handler_func_t *rx_handler,
5372 void *rx_handler_data)
5373{
5374 if (netdev_is_rx_handler_busy(dev))
5375 return -EBUSY;
5376
5377 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5378 return -EINVAL;
5379
5380 /* Note: rx_handler_data must be set before rx_handler */
5381 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5382 rcu_assign_pointer(dev->rx_handler, rx_handler);
5383
5384 return 0;
5385}
5386EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5387
5388/**
5389 * netdev_rx_handler_unregister - unregister receive handler
5390 * @dev: device to unregister a handler from
5391 *
5392 * Unregister a receive handler from a device.
5393 *
5394 * The caller must hold the rtnl_mutex.
5395 */
5396void netdev_rx_handler_unregister(struct net_device *dev)
5397{
5398
5399 ASSERT_RTNL();
5400 RCU_INIT_POINTER(dev->rx_handler, NULL);
5401 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5402 * section has a guarantee to see a non NULL rx_handler_data
5403 * as well.
5404 */
5405 synchronize_net();
5406 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5407}
5408EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5409
5410/*
5411 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5412 * the special handling of PFMEMALLOC skbs.
5413 */
5414static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5415{
5416 switch (skb->protocol) {
5417 case htons(ETH_P_ARP):
5418 case htons(ETH_P_IP):
5419 case htons(ETH_P_IPV6):
5420 case htons(ETH_P_8021Q):
5421 case htons(ETH_P_8021AD):
5422 return true;
5423 default:
5424 return false;
5425 }
5426}
5427
5428static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5429 int *ret, struct net_device *orig_dev)
5430{
5431 if (nf_hook_ingress_active(skb)) {
5432 int ingress_retval;
5433
5434 if (*pt_prev) {
5435 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5436 *pt_prev = NULL;
5437 }
5438
5439 rcu_read_lock();
5440 ingress_retval = nf_hook_ingress(skb);
5441 rcu_read_unlock();
5442 return ingress_retval;
5443 }
5444 return 0;
5445}
5446
5447static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5448 struct packet_type **ppt_prev)
5449{
5450 struct packet_type *ptype, *pt_prev;
5451 rx_handler_func_t *rx_handler;
5452 struct sk_buff *skb = *pskb;
5453 struct net_device *orig_dev;
5454 bool deliver_exact = false;
5455 int ret = NET_RX_DROP;
5456 __be16 type;
5457
5458 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5459
5460 trace_netif_receive_skb(skb);
5461
5462 orig_dev = skb->dev;
5463
5464 skb_reset_network_header(skb);
5465 if (!skb_transport_header_was_set(skb))
5466 skb_reset_transport_header(skb);
5467 skb_reset_mac_len(skb);
5468
5469 pt_prev = NULL;
5470
5471another_round:
5472 skb->skb_iif = skb->dev->ifindex;
5473
5474 __this_cpu_inc(softnet_data.processed);
5475
5476 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5477 int ret2;
5478
5479 migrate_disable();
5480 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5481 &skb);
5482 migrate_enable();
5483
5484 if (ret2 != XDP_PASS) {
5485 ret = NET_RX_DROP;
5486 goto out;
5487 }
5488 }
5489
5490 if (eth_type_vlan(skb->protocol)) {
5491 skb = skb_vlan_untag(skb);
5492 if (unlikely(!skb))
5493 goto out;
5494 }
5495
5496 if (skb_skip_tc_classify(skb))
5497 goto skip_classify;
5498
5499 if (pfmemalloc)
5500 goto skip_taps;
5501
5502 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5503 if (pt_prev)
5504 ret = deliver_skb(skb, pt_prev, orig_dev);
5505 pt_prev = ptype;
5506 }
5507
5508 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5509 if (pt_prev)
5510 ret = deliver_skb(skb, pt_prev, orig_dev);
5511 pt_prev = ptype;
5512 }
5513
5514skip_taps:
5515#ifdef CONFIG_NET_INGRESS
5516 if (static_branch_unlikely(&ingress_needed_key)) {
5517 bool another = false;
5518
5519 nf_skip_egress(skb, true);
5520 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5521 &another);
5522 if (another)
5523 goto another_round;
5524 if (!skb)
5525 goto out;
5526
5527 nf_skip_egress(skb, false);
5528 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5529 goto out;
5530 }
5531#endif
5532 skb_reset_redirect(skb);
5533skip_classify:
5534 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5535 goto drop;
5536
5537 if (skb_vlan_tag_present(skb)) {
5538 if (pt_prev) {
5539 ret = deliver_skb(skb, pt_prev, orig_dev);
5540 pt_prev = NULL;
5541 }
5542 if (vlan_do_receive(&skb))
5543 goto another_round;
5544 else if (unlikely(!skb))
5545 goto out;
5546 }
5547
5548 rx_handler = rcu_dereference(skb->dev->rx_handler);
5549 if (rx_handler) {
5550 if (pt_prev) {
5551 ret = deliver_skb(skb, pt_prev, orig_dev);
5552 pt_prev = NULL;
5553 }
5554 switch (rx_handler(&skb)) {
5555 case RX_HANDLER_CONSUMED:
5556 ret = NET_RX_SUCCESS;
5557 goto out;
5558 case RX_HANDLER_ANOTHER:
5559 goto another_round;
5560 case RX_HANDLER_EXACT:
5561 deliver_exact = true;
5562 break;
5563 case RX_HANDLER_PASS:
5564 break;
5565 default:
5566 BUG();
5567 }
5568 }
5569
5570 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5571check_vlan_id:
5572 if (skb_vlan_tag_get_id(skb)) {
5573 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5574 * find vlan device.
5575 */
5576 skb->pkt_type = PACKET_OTHERHOST;
5577 } else if (eth_type_vlan(skb->protocol)) {
5578 /* Outer header is 802.1P with vlan 0, inner header is
5579 * 802.1Q or 802.1AD and vlan_do_receive() above could
5580 * not find vlan dev for vlan id 0.
5581 */
5582 __vlan_hwaccel_clear_tag(skb);
5583 skb = skb_vlan_untag(skb);
5584 if (unlikely(!skb))
5585 goto out;
5586 if (vlan_do_receive(&skb))
5587 /* After stripping off 802.1P header with vlan 0
5588 * vlan dev is found for inner header.
5589 */
5590 goto another_round;
5591 else if (unlikely(!skb))
5592 goto out;
5593 else
5594 /* We have stripped outer 802.1P vlan 0 header.
5595 * But could not find vlan dev.
5596 * check again for vlan id to set OTHERHOST.
5597 */
5598 goto check_vlan_id;
5599 }
5600 /* Note: we might in the future use prio bits
5601 * and set skb->priority like in vlan_do_receive()
5602 * For the time being, just ignore Priority Code Point
5603 */
5604 __vlan_hwaccel_clear_tag(skb);
5605 }
5606
5607 type = skb->protocol;
5608
5609 /* deliver only exact match when indicated */
5610 if (likely(!deliver_exact)) {
5611 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5612 &ptype_base[ntohs(type) &
5613 PTYPE_HASH_MASK]);
5614 }
5615
5616 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5617 &orig_dev->ptype_specific);
5618
5619 if (unlikely(skb->dev != orig_dev)) {
5620 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5621 &skb->dev->ptype_specific);
5622 }
5623
5624 if (pt_prev) {
5625 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5626 goto drop;
5627 *ppt_prev = pt_prev;
5628 } else {
5629drop:
5630 if (!deliver_exact)
5631 dev_core_stats_rx_dropped_inc(skb->dev);
5632 else
5633 dev_core_stats_rx_nohandler_inc(skb->dev);
5634 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5635 /* Jamal, now you will not able to escape explaining
5636 * me how you were going to use this. :-)
5637 */
5638 ret = NET_RX_DROP;
5639 }
5640
5641out:
5642 /* The invariant here is that if *ppt_prev is not NULL
5643 * then skb should also be non-NULL.
5644 *
5645 * Apparently *ppt_prev assignment above holds this invariant due to
5646 * skb dereferencing near it.
5647 */
5648 *pskb = skb;
5649 return ret;
5650}
5651
5652static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5653{
5654 struct net_device *orig_dev = skb->dev;
5655 struct packet_type *pt_prev = NULL;
5656 int ret;
5657
5658 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5659 if (pt_prev)
5660 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5661 skb->dev, pt_prev, orig_dev);
5662 return ret;
5663}
5664
5665/**
5666 * netif_receive_skb_core - special purpose version of netif_receive_skb
5667 * @skb: buffer to process
5668 *
5669 * More direct receive version of netif_receive_skb(). It should
5670 * only be used by callers that have a need to skip RPS and Generic XDP.
5671 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5672 *
5673 * This function may only be called from softirq context and interrupts
5674 * should be enabled.
5675 *
5676 * Return values (usually ignored):
5677 * NET_RX_SUCCESS: no congestion
5678 * NET_RX_DROP: packet was dropped
5679 */
5680int netif_receive_skb_core(struct sk_buff *skb)
5681{
5682 int ret;
5683
5684 rcu_read_lock();
5685 ret = __netif_receive_skb_one_core(skb, false);
5686 rcu_read_unlock();
5687
5688 return ret;
5689}
5690EXPORT_SYMBOL(netif_receive_skb_core);
5691
5692static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5693 struct packet_type *pt_prev,
5694 struct net_device *orig_dev)
5695{
5696 struct sk_buff *skb, *next;
5697
5698 if (!pt_prev)
5699 return;
5700 if (list_empty(head))
5701 return;
5702 if (pt_prev->list_func != NULL)
5703 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5704 ip_list_rcv, head, pt_prev, orig_dev);
5705 else
5706 list_for_each_entry_safe(skb, next, head, list) {
5707 skb_list_del_init(skb);
5708 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5709 }
5710}
5711
5712static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5713{
5714 /* Fast-path assumptions:
5715 * - There is no RX handler.
5716 * - Only one packet_type matches.
5717 * If either of these fails, we will end up doing some per-packet
5718 * processing in-line, then handling the 'last ptype' for the whole
5719 * sublist. This can't cause out-of-order delivery to any single ptype,
5720 * because the 'last ptype' must be constant across the sublist, and all
5721 * other ptypes are handled per-packet.
5722 */
5723 /* Current (common) ptype of sublist */
5724 struct packet_type *pt_curr = NULL;
5725 /* Current (common) orig_dev of sublist */
5726 struct net_device *od_curr = NULL;
5727 struct list_head sublist;
5728 struct sk_buff *skb, *next;
5729
5730 INIT_LIST_HEAD(&sublist);
5731 list_for_each_entry_safe(skb, next, head, list) {
5732 struct net_device *orig_dev = skb->dev;
5733 struct packet_type *pt_prev = NULL;
5734
5735 skb_list_del_init(skb);
5736 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5737 if (!pt_prev)
5738 continue;
5739 if (pt_curr != pt_prev || od_curr != orig_dev) {
5740 /* dispatch old sublist */
5741 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5742 /* start new sublist */
5743 INIT_LIST_HEAD(&sublist);
5744 pt_curr = pt_prev;
5745 od_curr = orig_dev;
5746 }
5747 list_add_tail(&skb->list, &sublist);
5748 }
5749
5750 /* dispatch final sublist */
5751 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5752}
5753
5754static int __netif_receive_skb(struct sk_buff *skb)
5755{
5756 int ret;
5757
5758 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5759 unsigned int noreclaim_flag;
5760
5761 /*
5762 * PFMEMALLOC skbs are special, they should
5763 * - be delivered to SOCK_MEMALLOC sockets only
5764 * - stay away from userspace
5765 * - have bounded memory usage
5766 *
5767 * Use PF_MEMALLOC as this saves us from propagating the allocation
5768 * context down to all allocation sites.
5769 */
5770 noreclaim_flag = memalloc_noreclaim_save();
5771 ret = __netif_receive_skb_one_core(skb, true);
5772 memalloc_noreclaim_restore(noreclaim_flag);
5773 } else
5774 ret = __netif_receive_skb_one_core(skb, false);
5775
5776 return ret;
5777}
5778
5779static void __netif_receive_skb_list(struct list_head *head)
5780{
5781 unsigned long noreclaim_flag = 0;
5782 struct sk_buff *skb, *next;
5783 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5784
5785 list_for_each_entry_safe(skb, next, head, list) {
5786 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5787 struct list_head sublist;
5788
5789 /* Handle the previous sublist */
5790 list_cut_before(&sublist, head, &skb->list);
5791 if (!list_empty(&sublist))
5792 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5793 pfmemalloc = !pfmemalloc;
5794 /* See comments in __netif_receive_skb */
5795 if (pfmemalloc)
5796 noreclaim_flag = memalloc_noreclaim_save();
5797 else
5798 memalloc_noreclaim_restore(noreclaim_flag);
5799 }
5800 }
5801 /* Handle the remaining sublist */
5802 if (!list_empty(head))
5803 __netif_receive_skb_list_core(head, pfmemalloc);
5804 /* Restore pflags */
5805 if (pfmemalloc)
5806 memalloc_noreclaim_restore(noreclaim_flag);
5807}
5808
5809static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5810{
5811 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5812 struct bpf_prog *new = xdp->prog;
5813 int ret = 0;
5814
5815 switch (xdp->command) {
5816 case XDP_SETUP_PROG:
5817 rcu_assign_pointer(dev->xdp_prog, new);
5818 if (old)
5819 bpf_prog_put(old);
5820
5821 if (old && !new) {
5822 static_branch_dec(&generic_xdp_needed_key);
5823 } else if (new && !old) {
5824 static_branch_inc(&generic_xdp_needed_key);
5825 dev_disable_lro(dev);
5826 dev_disable_gro_hw(dev);
5827 }
5828 break;
5829
5830 default:
5831 ret = -EINVAL;
5832 break;
5833 }
5834
5835 return ret;
5836}
5837
5838static int netif_receive_skb_internal(struct sk_buff *skb)
5839{
5840 int ret;
5841
5842 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5843
5844 if (skb_defer_rx_timestamp(skb))
5845 return NET_RX_SUCCESS;
5846
5847 rcu_read_lock();
5848#ifdef CONFIG_RPS
5849 if (static_branch_unlikely(&rps_needed)) {
5850 struct rps_dev_flow voidflow, *rflow = &voidflow;
5851 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5852
5853 if (cpu >= 0) {
5854 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5855 rcu_read_unlock();
5856 return ret;
5857 }
5858 }
5859#endif
5860 ret = __netif_receive_skb(skb);
5861 rcu_read_unlock();
5862 return ret;
5863}
5864
5865void netif_receive_skb_list_internal(struct list_head *head)
5866{
5867 struct sk_buff *skb, *next;
5868 struct list_head sublist;
5869
5870 INIT_LIST_HEAD(&sublist);
5871 list_for_each_entry_safe(skb, next, head, list) {
5872 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5873 skb);
5874 skb_list_del_init(skb);
5875 if (!skb_defer_rx_timestamp(skb))
5876 list_add_tail(&skb->list, &sublist);
5877 }
5878 list_splice_init(&sublist, head);
5879
5880 rcu_read_lock();
5881#ifdef CONFIG_RPS
5882 if (static_branch_unlikely(&rps_needed)) {
5883 list_for_each_entry_safe(skb, next, head, list) {
5884 struct rps_dev_flow voidflow, *rflow = &voidflow;
5885 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5886
5887 if (cpu >= 0) {
5888 /* Will be handled, remove from list */
5889 skb_list_del_init(skb);
5890 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5891 }
5892 }
5893 }
5894#endif
5895 __netif_receive_skb_list(head);
5896 rcu_read_unlock();
5897}
5898
5899/**
5900 * netif_receive_skb - process receive buffer from network
5901 * @skb: buffer to process
5902 *
5903 * netif_receive_skb() is the main receive data processing function.
5904 * It always succeeds. The buffer may be dropped during processing
5905 * for congestion control or by the protocol layers.
5906 *
5907 * This function may only be called from softirq context and interrupts
5908 * should be enabled.
5909 *
5910 * Return values (usually ignored):
5911 * NET_RX_SUCCESS: no congestion
5912 * NET_RX_DROP: packet was dropped
5913 */
5914int netif_receive_skb(struct sk_buff *skb)
5915{
5916 int ret;
5917
5918 trace_netif_receive_skb_entry(skb);
5919
5920 ret = netif_receive_skb_internal(skb);
5921 trace_netif_receive_skb_exit(ret);
5922
5923 return ret;
5924}
5925EXPORT_SYMBOL(netif_receive_skb);
5926
5927/**
5928 * netif_receive_skb_list - process many receive buffers from network
5929 * @head: list of skbs to process.
5930 *
5931 * Since return value of netif_receive_skb() is normally ignored, and
5932 * wouldn't be meaningful for a list, this function returns void.
5933 *
5934 * This function may only be called from softirq context and interrupts
5935 * should be enabled.
5936 */
5937void netif_receive_skb_list(struct list_head *head)
5938{
5939 struct sk_buff *skb;
5940
5941 if (list_empty(head))
5942 return;
5943 if (trace_netif_receive_skb_list_entry_enabled()) {
5944 list_for_each_entry(skb, head, list)
5945 trace_netif_receive_skb_list_entry(skb);
5946 }
5947 netif_receive_skb_list_internal(head);
5948 trace_netif_receive_skb_list_exit(0);
5949}
5950EXPORT_SYMBOL(netif_receive_skb_list);
5951
5952static DEFINE_PER_CPU(struct work_struct, flush_works);
5953
5954/* Network device is going away, flush any packets still pending */
5955static void flush_backlog(struct work_struct *work)
5956{
5957 struct sk_buff *skb, *tmp;
5958 struct softnet_data *sd;
5959
5960 local_bh_disable();
5961 sd = this_cpu_ptr(&softnet_data);
5962
5963 backlog_lock_irq_disable(sd);
5964 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5965 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5966 __skb_unlink(skb, &sd->input_pkt_queue);
5967 dev_kfree_skb_irq(skb);
5968 rps_input_queue_head_incr(sd);
5969 }
5970 }
5971 backlog_unlock_irq_enable(sd);
5972
5973 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5974 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5975 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5976 __skb_unlink(skb, &sd->process_queue);
5977 kfree_skb(skb);
5978 rps_input_queue_head_incr(sd);
5979 }
5980 }
5981 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5982 local_bh_enable();
5983}
5984
5985static bool flush_required(int cpu)
5986{
5987#if IS_ENABLED(CONFIG_RPS)
5988 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5989 bool do_flush;
5990
5991 backlog_lock_irq_disable(sd);
5992
5993 /* as insertion into process_queue happens with the rps lock held,
5994 * process_queue access may race only with dequeue
5995 */
5996 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5997 !skb_queue_empty_lockless(&sd->process_queue);
5998 backlog_unlock_irq_enable(sd);
5999
6000 return do_flush;
6001#endif
6002 /* without RPS we can't safely check input_pkt_queue: during a
6003 * concurrent remote skb_queue_splice() we can detect as empty both
6004 * input_pkt_queue and process_queue even if the latter could end-up
6005 * containing a lot of packets.
6006 */
6007 return true;
6008}
6009
6010static void flush_all_backlogs(void)
6011{
6012 static cpumask_t flush_cpus;
6013 unsigned int cpu;
6014
6015 /* since we are under rtnl lock protection we can use static data
6016 * for the cpumask and avoid allocating on stack the possibly
6017 * large mask
6018 */
6019 ASSERT_RTNL();
6020
6021 cpus_read_lock();
6022
6023 cpumask_clear(&flush_cpus);
6024 for_each_online_cpu(cpu) {
6025 if (flush_required(cpu)) {
6026 queue_work_on(cpu, system_highpri_wq,
6027 per_cpu_ptr(&flush_works, cpu));
6028 cpumask_set_cpu(cpu, &flush_cpus);
6029 }
6030 }
6031
6032 /* we can have in flight packet[s] on the cpus we are not flushing,
6033 * synchronize_net() in unregister_netdevice_many() will take care of
6034 * them
6035 */
6036 for_each_cpu(cpu, &flush_cpus)
6037 flush_work(per_cpu_ptr(&flush_works, cpu));
6038
6039 cpus_read_unlock();
6040}
6041
6042static void net_rps_send_ipi(struct softnet_data *remsd)
6043{
6044#ifdef CONFIG_RPS
6045 while (remsd) {
6046 struct softnet_data *next = remsd->rps_ipi_next;
6047
6048 if (cpu_online(remsd->cpu))
6049 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6050 remsd = next;
6051 }
6052#endif
6053}
6054
6055/*
6056 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6057 * Note: called with local irq disabled, but exits with local irq enabled.
6058 */
6059static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6060{
6061#ifdef CONFIG_RPS
6062 struct softnet_data *remsd = sd->rps_ipi_list;
6063
6064 if (!use_backlog_threads() && remsd) {
6065 sd->rps_ipi_list = NULL;
6066
6067 local_irq_enable();
6068
6069 /* Send pending IPI's to kick RPS processing on remote cpus. */
6070 net_rps_send_ipi(remsd);
6071 } else
6072#endif
6073 local_irq_enable();
6074}
6075
6076static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6077{
6078#ifdef CONFIG_RPS
6079 return !use_backlog_threads() && sd->rps_ipi_list;
6080#else
6081 return false;
6082#endif
6083}
6084
6085static int process_backlog(struct napi_struct *napi, int quota)
6086{
6087 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6088 bool again = true;
6089 int work = 0;
6090
6091 /* Check if we have pending ipi, its better to send them now,
6092 * not waiting net_rx_action() end.
6093 */
6094 if (sd_has_rps_ipi_waiting(sd)) {
6095 local_irq_disable();
6096 net_rps_action_and_irq_enable(sd);
6097 }
6098
6099 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6100 while (again) {
6101 struct sk_buff *skb;
6102
6103 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6104 while ((skb = __skb_dequeue(&sd->process_queue))) {
6105 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6106 rcu_read_lock();
6107 __netif_receive_skb(skb);
6108 rcu_read_unlock();
6109 if (++work >= quota) {
6110 rps_input_queue_head_add(sd, work);
6111 return work;
6112 }
6113
6114 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6115 }
6116 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6117
6118 backlog_lock_irq_disable(sd);
6119 if (skb_queue_empty(&sd->input_pkt_queue)) {
6120 /*
6121 * Inline a custom version of __napi_complete().
6122 * only current cpu owns and manipulates this napi,
6123 * and NAPI_STATE_SCHED is the only possible flag set
6124 * on backlog.
6125 * We can use a plain write instead of clear_bit(),
6126 * and we dont need an smp_mb() memory barrier.
6127 */
6128 napi->state &= NAPIF_STATE_THREADED;
6129 again = false;
6130 } else {
6131 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6132 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6133 &sd->process_queue);
6134 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6135 }
6136 backlog_unlock_irq_enable(sd);
6137 }
6138
6139 if (work)
6140 rps_input_queue_head_add(sd, work);
6141 return work;
6142}
6143
6144/**
6145 * __napi_schedule - schedule for receive
6146 * @n: entry to schedule
6147 *
6148 * The entry's receive function will be scheduled to run.
6149 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6150 */
6151void __napi_schedule(struct napi_struct *n)
6152{
6153 unsigned long flags;
6154
6155 local_irq_save(flags);
6156 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6157 local_irq_restore(flags);
6158}
6159EXPORT_SYMBOL(__napi_schedule);
6160
6161/**
6162 * napi_schedule_prep - check if napi can be scheduled
6163 * @n: napi context
6164 *
6165 * Test if NAPI routine is already running, and if not mark
6166 * it as running. This is used as a condition variable to
6167 * insure only one NAPI poll instance runs. We also make
6168 * sure there is no pending NAPI disable.
6169 */
6170bool napi_schedule_prep(struct napi_struct *n)
6171{
6172 unsigned long new, val = READ_ONCE(n->state);
6173
6174 do {
6175 if (unlikely(val & NAPIF_STATE_DISABLE))
6176 return false;
6177 new = val | NAPIF_STATE_SCHED;
6178
6179 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6180 * This was suggested by Alexander Duyck, as compiler
6181 * emits better code than :
6182 * if (val & NAPIF_STATE_SCHED)
6183 * new |= NAPIF_STATE_MISSED;
6184 */
6185 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6186 NAPIF_STATE_MISSED;
6187 } while (!try_cmpxchg(&n->state, &val, new));
6188
6189 return !(val & NAPIF_STATE_SCHED);
6190}
6191EXPORT_SYMBOL(napi_schedule_prep);
6192
6193/**
6194 * __napi_schedule_irqoff - schedule for receive
6195 * @n: entry to schedule
6196 *
6197 * Variant of __napi_schedule() assuming hard irqs are masked.
6198 *
6199 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6200 * because the interrupt disabled assumption might not be true
6201 * due to force-threaded interrupts and spinlock substitution.
6202 */
6203void __napi_schedule_irqoff(struct napi_struct *n)
6204{
6205 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6206 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6207 else
6208 __napi_schedule(n);
6209}
6210EXPORT_SYMBOL(__napi_schedule_irqoff);
6211
6212bool napi_complete_done(struct napi_struct *n, int work_done)
6213{
6214 unsigned long flags, val, new, timeout = 0;
6215 bool ret = true;
6216
6217 /*
6218 * 1) Don't let napi dequeue from the cpu poll list
6219 * just in case its running on a different cpu.
6220 * 2) If we are busy polling, do nothing here, we have
6221 * the guarantee we will be called later.
6222 */
6223 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6224 NAPIF_STATE_IN_BUSY_POLL)))
6225 return false;
6226
6227 if (work_done) {
6228 if (n->gro_bitmask)
6229 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6230 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6231 }
6232 if (n->defer_hard_irqs_count > 0) {
6233 n->defer_hard_irqs_count--;
6234 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6235 if (timeout)
6236 ret = false;
6237 }
6238 if (n->gro_bitmask) {
6239 /* When the NAPI instance uses a timeout and keeps postponing
6240 * it, we need to bound somehow the time packets are kept in
6241 * the GRO layer
6242 */
6243 napi_gro_flush(n, !!timeout);
6244 }
6245
6246 gro_normal_list(n);
6247
6248 if (unlikely(!list_empty(&n->poll_list))) {
6249 /* If n->poll_list is not empty, we need to mask irqs */
6250 local_irq_save(flags);
6251 list_del_init(&n->poll_list);
6252 local_irq_restore(flags);
6253 }
6254 WRITE_ONCE(n->list_owner, -1);
6255
6256 val = READ_ONCE(n->state);
6257 do {
6258 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6259
6260 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6261 NAPIF_STATE_SCHED_THREADED |
6262 NAPIF_STATE_PREFER_BUSY_POLL);
6263
6264 /* If STATE_MISSED was set, leave STATE_SCHED set,
6265 * because we will call napi->poll() one more time.
6266 * This C code was suggested by Alexander Duyck to help gcc.
6267 */
6268 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6269 NAPIF_STATE_SCHED;
6270 } while (!try_cmpxchg(&n->state, &val, new));
6271
6272 if (unlikely(val & NAPIF_STATE_MISSED)) {
6273 __napi_schedule(n);
6274 return false;
6275 }
6276
6277 if (timeout)
6278 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6279 HRTIMER_MODE_REL_PINNED);
6280 return ret;
6281}
6282EXPORT_SYMBOL(napi_complete_done);
6283
6284/* must be called under rcu_read_lock(), as we dont take a reference */
6285struct napi_struct *napi_by_id(unsigned int napi_id)
6286{
6287 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6288 struct napi_struct *napi;
6289
6290 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6291 if (napi->napi_id == napi_id)
6292 return napi;
6293
6294 return NULL;
6295}
6296
6297static void skb_defer_free_flush(struct softnet_data *sd)
6298{
6299 struct sk_buff *skb, *next;
6300
6301 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6302 if (!READ_ONCE(sd->defer_list))
6303 return;
6304
6305 spin_lock(&sd->defer_lock);
6306 skb = sd->defer_list;
6307 sd->defer_list = NULL;
6308 sd->defer_count = 0;
6309 spin_unlock(&sd->defer_lock);
6310
6311 while (skb != NULL) {
6312 next = skb->next;
6313 napi_consume_skb(skb, 1);
6314 skb = next;
6315 }
6316}
6317
6318#if defined(CONFIG_NET_RX_BUSY_POLL)
6319
6320static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6321{
6322 if (!skip_schedule) {
6323 gro_normal_list(napi);
6324 __napi_schedule(napi);
6325 return;
6326 }
6327
6328 if (napi->gro_bitmask) {
6329 /* flush too old packets
6330 * If HZ < 1000, flush all packets.
6331 */
6332 napi_gro_flush(napi, HZ >= 1000);
6333 }
6334
6335 gro_normal_list(napi);
6336 clear_bit(NAPI_STATE_SCHED, &napi->state);
6337}
6338
6339enum {
6340 NAPI_F_PREFER_BUSY_POLL = 1,
6341 NAPI_F_END_ON_RESCHED = 2,
6342};
6343
6344static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6345 unsigned flags, u16 budget)
6346{
6347 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6348 bool skip_schedule = false;
6349 unsigned long timeout;
6350 int rc;
6351
6352 /* Busy polling means there is a high chance device driver hard irq
6353 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6354 * set in napi_schedule_prep().
6355 * Since we are about to call napi->poll() once more, we can safely
6356 * clear NAPI_STATE_MISSED.
6357 *
6358 * Note: x86 could use a single "lock and ..." instruction
6359 * to perform these two clear_bit()
6360 */
6361 clear_bit(NAPI_STATE_MISSED, &napi->state);
6362 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6363
6364 local_bh_disable();
6365 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6366
6367 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6368 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6369 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6370 if (napi->defer_hard_irqs_count && timeout) {
6371 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6372 skip_schedule = true;
6373 }
6374 }
6375
6376 /* All we really want here is to re-enable device interrupts.
6377 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6378 */
6379 rc = napi->poll(napi, budget);
6380 /* We can't gro_normal_list() here, because napi->poll() might have
6381 * rearmed the napi (napi_complete_done()) in which case it could
6382 * already be running on another CPU.
6383 */
6384 trace_napi_poll(napi, rc, budget);
6385 netpoll_poll_unlock(have_poll_lock);
6386 if (rc == budget)
6387 __busy_poll_stop(napi, skip_schedule);
6388 bpf_net_ctx_clear(bpf_net_ctx);
6389 local_bh_enable();
6390}
6391
6392static void __napi_busy_loop(unsigned int napi_id,
6393 bool (*loop_end)(void *, unsigned long),
6394 void *loop_end_arg, unsigned flags, u16 budget)
6395{
6396 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6397 int (*napi_poll)(struct napi_struct *napi, int budget);
6398 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6399 void *have_poll_lock = NULL;
6400 struct napi_struct *napi;
6401
6402 WARN_ON_ONCE(!rcu_read_lock_held());
6403
6404restart:
6405 napi_poll = NULL;
6406
6407 napi = napi_by_id(napi_id);
6408 if (!napi)
6409 return;
6410
6411 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6412 preempt_disable();
6413 for (;;) {
6414 int work = 0;
6415
6416 local_bh_disable();
6417 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6418 if (!napi_poll) {
6419 unsigned long val = READ_ONCE(napi->state);
6420
6421 /* If multiple threads are competing for this napi,
6422 * we avoid dirtying napi->state as much as we can.
6423 */
6424 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6425 NAPIF_STATE_IN_BUSY_POLL)) {
6426 if (flags & NAPI_F_PREFER_BUSY_POLL)
6427 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6428 goto count;
6429 }
6430 if (cmpxchg(&napi->state, val,
6431 val | NAPIF_STATE_IN_BUSY_POLL |
6432 NAPIF_STATE_SCHED) != val) {
6433 if (flags & NAPI_F_PREFER_BUSY_POLL)
6434 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6435 goto count;
6436 }
6437 have_poll_lock = netpoll_poll_lock(napi);
6438 napi_poll = napi->poll;
6439 }
6440 work = napi_poll(napi, budget);
6441 trace_napi_poll(napi, work, budget);
6442 gro_normal_list(napi);
6443count:
6444 if (work > 0)
6445 __NET_ADD_STATS(dev_net(napi->dev),
6446 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6447 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6448 bpf_net_ctx_clear(bpf_net_ctx);
6449 local_bh_enable();
6450
6451 if (!loop_end || loop_end(loop_end_arg, start_time))
6452 break;
6453
6454 if (unlikely(need_resched())) {
6455 if (flags & NAPI_F_END_ON_RESCHED)
6456 break;
6457 if (napi_poll)
6458 busy_poll_stop(napi, have_poll_lock, flags, budget);
6459 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6460 preempt_enable();
6461 rcu_read_unlock();
6462 cond_resched();
6463 rcu_read_lock();
6464 if (loop_end(loop_end_arg, start_time))
6465 return;
6466 goto restart;
6467 }
6468 cpu_relax();
6469 }
6470 if (napi_poll)
6471 busy_poll_stop(napi, have_poll_lock, flags, budget);
6472 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6473 preempt_enable();
6474}
6475
6476void napi_busy_loop_rcu(unsigned int napi_id,
6477 bool (*loop_end)(void *, unsigned long),
6478 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6479{
6480 unsigned flags = NAPI_F_END_ON_RESCHED;
6481
6482 if (prefer_busy_poll)
6483 flags |= NAPI_F_PREFER_BUSY_POLL;
6484
6485 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6486}
6487
6488void napi_busy_loop(unsigned int napi_id,
6489 bool (*loop_end)(void *, unsigned long),
6490 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6491{
6492 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6493
6494 rcu_read_lock();
6495 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6496 rcu_read_unlock();
6497}
6498EXPORT_SYMBOL(napi_busy_loop);
6499
6500#endif /* CONFIG_NET_RX_BUSY_POLL */
6501
6502static void napi_hash_add(struct napi_struct *napi)
6503{
6504 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6505 return;
6506
6507 spin_lock(&napi_hash_lock);
6508
6509 /* 0..NR_CPUS range is reserved for sender_cpu use */
6510 do {
6511 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6512 napi_gen_id = MIN_NAPI_ID;
6513 } while (napi_by_id(napi_gen_id));
6514 napi->napi_id = napi_gen_id;
6515
6516 hlist_add_head_rcu(&napi->napi_hash_node,
6517 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6518
6519 spin_unlock(&napi_hash_lock);
6520}
6521
6522/* Warning : caller is responsible to make sure rcu grace period
6523 * is respected before freeing memory containing @napi
6524 */
6525static void napi_hash_del(struct napi_struct *napi)
6526{
6527 spin_lock(&napi_hash_lock);
6528
6529 hlist_del_init_rcu(&napi->napi_hash_node);
6530
6531 spin_unlock(&napi_hash_lock);
6532}
6533
6534static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6535{
6536 struct napi_struct *napi;
6537
6538 napi = container_of(timer, struct napi_struct, timer);
6539
6540 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6541 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6542 */
6543 if (!napi_disable_pending(napi) &&
6544 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6545 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6546 __napi_schedule_irqoff(napi);
6547 }
6548
6549 return HRTIMER_NORESTART;
6550}
6551
6552static void init_gro_hash(struct napi_struct *napi)
6553{
6554 int i;
6555
6556 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6557 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6558 napi->gro_hash[i].count = 0;
6559 }
6560 napi->gro_bitmask = 0;
6561}
6562
6563int dev_set_threaded(struct net_device *dev, bool threaded)
6564{
6565 struct napi_struct *napi;
6566 int err = 0;
6567
6568 if (dev->threaded == threaded)
6569 return 0;
6570
6571 if (threaded) {
6572 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6573 if (!napi->thread) {
6574 err = napi_kthread_create(napi);
6575 if (err) {
6576 threaded = false;
6577 break;
6578 }
6579 }
6580 }
6581 }
6582
6583 WRITE_ONCE(dev->threaded, threaded);
6584
6585 /* Make sure kthread is created before THREADED bit
6586 * is set.
6587 */
6588 smp_mb__before_atomic();
6589
6590 /* Setting/unsetting threaded mode on a napi might not immediately
6591 * take effect, if the current napi instance is actively being
6592 * polled. In this case, the switch between threaded mode and
6593 * softirq mode will happen in the next round of napi_schedule().
6594 * This should not cause hiccups/stalls to the live traffic.
6595 */
6596 list_for_each_entry(napi, &dev->napi_list, dev_list)
6597 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6598
6599 return err;
6600}
6601EXPORT_SYMBOL(dev_set_threaded);
6602
6603/**
6604 * netif_queue_set_napi - Associate queue with the napi
6605 * @dev: device to which NAPI and queue belong
6606 * @queue_index: Index of queue
6607 * @type: queue type as RX or TX
6608 * @napi: NAPI context, pass NULL to clear previously set NAPI
6609 *
6610 * Set queue with its corresponding napi context. This should be done after
6611 * registering the NAPI handler for the queue-vector and the queues have been
6612 * mapped to the corresponding interrupt vector.
6613 */
6614void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6615 enum netdev_queue_type type, struct napi_struct *napi)
6616{
6617 struct netdev_rx_queue *rxq;
6618 struct netdev_queue *txq;
6619
6620 if (WARN_ON_ONCE(napi && !napi->dev))
6621 return;
6622 if (dev->reg_state >= NETREG_REGISTERED)
6623 ASSERT_RTNL();
6624
6625 switch (type) {
6626 case NETDEV_QUEUE_TYPE_RX:
6627 rxq = __netif_get_rx_queue(dev, queue_index);
6628 rxq->napi = napi;
6629 return;
6630 case NETDEV_QUEUE_TYPE_TX:
6631 txq = netdev_get_tx_queue(dev, queue_index);
6632 txq->napi = napi;
6633 return;
6634 default:
6635 return;
6636 }
6637}
6638EXPORT_SYMBOL(netif_queue_set_napi);
6639
6640void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6641 int (*poll)(struct napi_struct *, int), int weight)
6642{
6643 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6644 return;
6645
6646 INIT_LIST_HEAD(&napi->poll_list);
6647 INIT_HLIST_NODE(&napi->napi_hash_node);
6648 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6649 napi->timer.function = napi_watchdog;
6650 init_gro_hash(napi);
6651 napi->skb = NULL;
6652 INIT_LIST_HEAD(&napi->rx_list);
6653 napi->rx_count = 0;
6654 napi->poll = poll;
6655 if (weight > NAPI_POLL_WEIGHT)
6656 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6657 weight);
6658 napi->weight = weight;
6659 napi->dev = dev;
6660#ifdef CONFIG_NETPOLL
6661 napi->poll_owner = -1;
6662#endif
6663 napi->list_owner = -1;
6664 set_bit(NAPI_STATE_SCHED, &napi->state);
6665 set_bit(NAPI_STATE_NPSVC, &napi->state);
6666 list_add_rcu(&napi->dev_list, &dev->napi_list);
6667 napi_hash_add(napi);
6668 napi_get_frags_check(napi);
6669 /* Create kthread for this napi if dev->threaded is set.
6670 * Clear dev->threaded if kthread creation failed so that
6671 * threaded mode will not be enabled in napi_enable().
6672 */
6673 if (dev->threaded && napi_kthread_create(napi))
6674 dev->threaded = false;
6675 netif_napi_set_irq(napi, -1);
6676}
6677EXPORT_SYMBOL(netif_napi_add_weight);
6678
6679void napi_disable(struct napi_struct *n)
6680{
6681 unsigned long val, new;
6682
6683 might_sleep();
6684 set_bit(NAPI_STATE_DISABLE, &n->state);
6685
6686 val = READ_ONCE(n->state);
6687 do {
6688 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6689 usleep_range(20, 200);
6690 val = READ_ONCE(n->state);
6691 }
6692
6693 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6694 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6695 } while (!try_cmpxchg(&n->state, &val, new));
6696
6697 hrtimer_cancel(&n->timer);
6698
6699 clear_bit(NAPI_STATE_DISABLE, &n->state);
6700}
6701EXPORT_SYMBOL(napi_disable);
6702
6703/**
6704 * napi_enable - enable NAPI scheduling
6705 * @n: NAPI context
6706 *
6707 * Resume NAPI from being scheduled on this context.
6708 * Must be paired with napi_disable.
6709 */
6710void napi_enable(struct napi_struct *n)
6711{
6712 unsigned long new, val = READ_ONCE(n->state);
6713
6714 do {
6715 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6716
6717 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6718 if (n->dev->threaded && n->thread)
6719 new |= NAPIF_STATE_THREADED;
6720 } while (!try_cmpxchg(&n->state, &val, new));
6721}
6722EXPORT_SYMBOL(napi_enable);
6723
6724static void flush_gro_hash(struct napi_struct *napi)
6725{
6726 int i;
6727
6728 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6729 struct sk_buff *skb, *n;
6730
6731 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6732 kfree_skb(skb);
6733 napi->gro_hash[i].count = 0;
6734 }
6735}
6736
6737/* Must be called in process context */
6738void __netif_napi_del(struct napi_struct *napi)
6739{
6740 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6741 return;
6742
6743 napi_hash_del(napi);
6744 list_del_rcu(&napi->dev_list);
6745 napi_free_frags(napi);
6746
6747 flush_gro_hash(napi);
6748 napi->gro_bitmask = 0;
6749
6750 if (napi->thread) {
6751 kthread_stop(napi->thread);
6752 napi->thread = NULL;
6753 }
6754}
6755EXPORT_SYMBOL(__netif_napi_del);
6756
6757static int __napi_poll(struct napi_struct *n, bool *repoll)
6758{
6759 int work, weight;
6760
6761 weight = n->weight;
6762
6763 /* This NAPI_STATE_SCHED test is for avoiding a race
6764 * with netpoll's poll_napi(). Only the entity which
6765 * obtains the lock and sees NAPI_STATE_SCHED set will
6766 * actually make the ->poll() call. Therefore we avoid
6767 * accidentally calling ->poll() when NAPI is not scheduled.
6768 */
6769 work = 0;
6770 if (napi_is_scheduled(n)) {
6771 work = n->poll(n, weight);
6772 trace_napi_poll(n, work, weight);
6773
6774 xdp_do_check_flushed(n);
6775 }
6776
6777 if (unlikely(work > weight))
6778 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6779 n->poll, work, weight);
6780
6781 if (likely(work < weight))
6782 return work;
6783
6784 /* Drivers must not modify the NAPI state if they
6785 * consume the entire weight. In such cases this code
6786 * still "owns" the NAPI instance and therefore can
6787 * move the instance around on the list at-will.
6788 */
6789 if (unlikely(napi_disable_pending(n))) {
6790 napi_complete(n);
6791 return work;
6792 }
6793
6794 /* The NAPI context has more processing work, but busy-polling
6795 * is preferred. Exit early.
6796 */
6797 if (napi_prefer_busy_poll(n)) {
6798 if (napi_complete_done(n, work)) {
6799 /* If timeout is not set, we need to make sure
6800 * that the NAPI is re-scheduled.
6801 */
6802 napi_schedule(n);
6803 }
6804 return work;
6805 }
6806
6807 if (n->gro_bitmask) {
6808 /* flush too old packets
6809 * If HZ < 1000, flush all packets.
6810 */
6811 napi_gro_flush(n, HZ >= 1000);
6812 }
6813
6814 gro_normal_list(n);
6815
6816 /* Some drivers may have called napi_schedule
6817 * prior to exhausting their budget.
6818 */
6819 if (unlikely(!list_empty(&n->poll_list))) {
6820 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6821 n->dev ? n->dev->name : "backlog");
6822 return work;
6823 }
6824
6825 *repoll = true;
6826
6827 return work;
6828}
6829
6830static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6831{
6832 bool do_repoll = false;
6833 void *have;
6834 int work;
6835
6836 list_del_init(&n->poll_list);
6837
6838 have = netpoll_poll_lock(n);
6839
6840 work = __napi_poll(n, &do_repoll);
6841
6842 if (do_repoll)
6843 list_add_tail(&n->poll_list, repoll);
6844
6845 netpoll_poll_unlock(have);
6846
6847 return work;
6848}
6849
6850static int napi_thread_wait(struct napi_struct *napi)
6851{
6852 set_current_state(TASK_INTERRUPTIBLE);
6853
6854 while (!kthread_should_stop()) {
6855 /* Testing SCHED_THREADED bit here to make sure the current
6856 * kthread owns this napi and could poll on this napi.
6857 * Testing SCHED bit is not enough because SCHED bit might be
6858 * set by some other busy poll thread or by napi_disable().
6859 */
6860 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6861 WARN_ON(!list_empty(&napi->poll_list));
6862 __set_current_state(TASK_RUNNING);
6863 return 0;
6864 }
6865
6866 schedule();
6867 set_current_state(TASK_INTERRUPTIBLE);
6868 }
6869 __set_current_state(TASK_RUNNING);
6870
6871 return -1;
6872}
6873
6874static void napi_threaded_poll_loop(struct napi_struct *napi)
6875{
6876 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6877 struct softnet_data *sd;
6878 unsigned long last_qs = jiffies;
6879
6880 for (;;) {
6881 bool repoll = false;
6882 void *have;
6883
6884 local_bh_disable();
6885 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6886
6887 sd = this_cpu_ptr(&softnet_data);
6888 sd->in_napi_threaded_poll = true;
6889
6890 have = netpoll_poll_lock(napi);
6891 __napi_poll(napi, &repoll);
6892 netpoll_poll_unlock(have);
6893
6894 sd->in_napi_threaded_poll = false;
6895 barrier();
6896
6897 if (sd_has_rps_ipi_waiting(sd)) {
6898 local_irq_disable();
6899 net_rps_action_and_irq_enable(sd);
6900 }
6901 skb_defer_free_flush(sd);
6902 bpf_net_ctx_clear(bpf_net_ctx);
6903 local_bh_enable();
6904
6905 if (!repoll)
6906 break;
6907
6908 rcu_softirq_qs_periodic(last_qs);
6909 cond_resched();
6910 }
6911}
6912
6913static int napi_threaded_poll(void *data)
6914{
6915 struct napi_struct *napi = data;
6916
6917 while (!napi_thread_wait(napi))
6918 napi_threaded_poll_loop(napi);
6919
6920 return 0;
6921}
6922
6923static __latent_entropy void net_rx_action(struct softirq_action *h)
6924{
6925 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6926 unsigned long time_limit = jiffies +
6927 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6928 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6929 int budget = READ_ONCE(net_hotdata.netdev_budget);
6930 LIST_HEAD(list);
6931 LIST_HEAD(repoll);
6932
6933 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6934start:
6935 sd->in_net_rx_action = true;
6936 local_irq_disable();
6937 list_splice_init(&sd->poll_list, &list);
6938 local_irq_enable();
6939
6940 for (;;) {
6941 struct napi_struct *n;
6942
6943 skb_defer_free_flush(sd);
6944
6945 if (list_empty(&list)) {
6946 if (list_empty(&repoll)) {
6947 sd->in_net_rx_action = false;
6948 barrier();
6949 /* We need to check if ____napi_schedule()
6950 * had refilled poll_list while
6951 * sd->in_net_rx_action was true.
6952 */
6953 if (!list_empty(&sd->poll_list))
6954 goto start;
6955 if (!sd_has_rps_ipi_waiting(sd))
6956 goto end;
6957 }
6958 break;
6959 }
6960
6961 n = list_first_entry(&list, struct napi_struct, poll_list);
6962 budget -= napi_poll(n, &repoll);
6963
6964 /* If softirq window is exhausted then punt.
6965 * Allow this to run for 2 jiffies since which will allow
6966 * an average latency of 1.5/HZ.
6967 */
6968 if (unlikely(budget <= 0 ||
6969 time_after_eq(jiffies, time_limit))) {
6970 sd->time_squeeze++;
6971 break;
6972 }
6973 }
6974
6975 local_irq_disable();
6976
6977 list_splice_tail_init(&sd->poll_list, &list);
6978 list_splice_tail(&repoll, &list);
6979 list_splice(&list, &sd->poll_list);
6980 if (!list_empty(&sd->poll_list))
6981 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6982 else
6983 sd->in_net_rx_action = false;
6984
6985 net_rps_action_and_irq_enable(sd);
6986end:
6987 bpf_net_ctx_clear(bpf_net_ctx);
6988}
6989
6990struct netdev_adjacent {
6991 struct net_device *dev;
6992 netdevice_tracker dev_tracker;
6993
6994 /* upper master flag, there can only be one master device per list */
6995 bool master;
6996
6997 /* lookup ignore flag */
6998 bool ignore;
6999
7000 /* counter for the number of times this device was added to us */
7001 u16 ref_nr;
7002
7003 /* private field for the users */
7004 void *private;
7005
7006 struct list_head list;
7007 struct rcu_head rcu;
7008};
7009
7010static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7011 struct list_head *adj_list)
7012{
7013 struct netdev_adjacent *adj;
7014
7015 list_for_each_entry(adj, adj_list, list) {
7016 if (adj->dev == adj_dev)
7017 return adj;
7018 }
7019 return NULL;
7020}
7021
7022static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7023 struct netdev_nested_priv *priv)
7024{
7025 struct net_device *dev = (struct net_device *)priv->data;
7026
7027 return upper_dev == dev;
7028}
7029
7030/**
7031 * netdev_has_upper_dev - Check if device is linked to an upper device
7032 * @dev: device
7033 * @upper_dev: upper device to check
7034 *
7035 * Find out if a device is linked to specified upper device and return true
7036 * in case it is. Note that this checks only immediate upper device,
7037 * not through a complete stack of devices. The caller must hold the RTNL lock.
7038 */
7039bool netdev_has_upper_dev(struct net_device *dev,
7040 struct net_device *upper_dev)
7041{
7042 struct netdev_nested_priv priv = {
7043 .data = (void *)upper_dev,
7044 };
7045
7046 ASSERT_RTNL();
7047
7048 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7049 &priv);
7050}
7051EXPORT_SYMBOL(netdev_has_upper_dev);
7052
7053/**
7054 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7055 * @dev: device
7056 * @upper_dev: upper device to check
7057 *
7058 * Find out if a device is linked to specified upper device and return true
7059 * in case it is. Note that this checks the entire upper device chain.
7060 * The caller must hold rcu lock.
7061 */
7062
7063bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7064 struct net_device *upper_dev)
7065{
7066 struct netdev_nested_priv priv = {
7067 .data = (void *)upper_dev,
7068 };
7069
7070 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7071 &priv);
7072}
7073EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7074
7075/**
7076 * netdev_has_any_upper_dev - Check if device is linked to some device
7077 * @dev: device
7078 *
7079 * Find out if a device is linked to an upper device and return true in case
7080 * it is. The caller must hold the RTNL lock.
7081 */
7082bool netdev_has_any_upper_dev(struct net_device *dev)
7083{
7084 ASSERT_RTNL();
7085
7086 return !list_empty(&dev->adj_list.upper);
7087}
7088EXPORT_SYMBOL(netdev_has_any_upper_dev);
7089
7090/**
7091 * netdev_master_upper_dev_get - Get master upper device
7092 * @dev: device
7093 *
7094 * Find a master upper device and return pointer to it or NULL in case
7095 * it's not there. The caller must hold the RTNL lock.
7096 */
7097struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7098{
7099 struct netdev_adjacent *upper;
7100
7101 ASSERT_RTNL();
7102
7103 if (list_empty(&dev->adj_list.upper))
7104 return NULL;
7105
7106 upper = list_first_entry(&dev->adj_list.upper,
7107 struct netdev_adjacent, list);
7108 if (likely(upper->master))
7109 return upper->dev;
7110 return NULL;
7111}
7112EXPORT_SYMBOL(netdev_master_upper_dev_get);
7113
7114static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7115{
7116 struct netdev_adjacent *upper;
7117
7118 ASSERT_RTNL();
7119
7120 if (list_empty(&dev->adj_list.upper))
7121 return NULL;
7122
7123 upper = list_first_entry(&dev->adj_list.upper,
7124 struct netdev_adjacent, list);
7125 if (likely(upper->master) && !upper->ignore)
7126 return upper->dev;
7127 return NULL;
7128}
7129
7130/**
7131 * netdev_has_any_lower_dev - Check if device is linked to some device
7132 * @dev: device
7133 *
7134 * Find out if a device is linked to a lower device and return true in case
7135 * it is. The caller must hold the RTNL lock.
7136 */
7137static bool netdev_has_any_lower_dev(struct net_device *dev)
7138{
7139 ASSERT_RTNL();
7140
7141 return !list_empty(&dev->adj_list.lower);
7142}
7143
7144void *netdev_adjacent_get_private(struct list_head *adj_list)
7145{
7146 struct netdev_adjacent *adj;
7147
7148 adj = list_entry(adj_list, struct netdev_adjacent, list);
7149
7150 return adj->private;
7151}
7152EXPORT_SYMBOL(netdev_adjacent_get_private);
7153
7154/**
7155 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7156 * @dev: device
7157 * @iter: list_head ** of the current position
7158 *
7159 * Gets the next device from the dev's upper list, starting from iter
7160 * position. The caller must hold RCU read lock.
7161 */
7162struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7163 struct list_head **iter)
7164{
7165 struct netdev_adjacent *upper;
7166
7167 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7168
7169 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7170
7171 if (&upper->list == &dev->adj_list.upper)
7172 return NULL;
7173
7174 *iter = &upper->list;
7175
7176 return upper->dev;
7177}
7178EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7179
7180static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7181 struct list_head **iter,
7182 bool *ignore)
7183{
7184 struct netdev_adjacent *upper;
7185
7186 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7187
7188 if (&upper->list == &dev->adj_list.upper)
7189 return NULL;
7190
7191 *iter = &upper->list;
7192 *ignore = upper->ignore;
7193
7194 return upper->dev;
7195}
7196
7197static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7198 struct list_head **iter)
7199{
7200 struct netdev_adjacent *upper;
7201
7202 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7203
7204 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7205
7206 if (&upper->list == &dev->adj_list.upper)
7207 return NULL;
7208
7209 *iter = &upper->list;
7210
7211 return upper->dev;
7212}
7213
7214static int __netdev_walk_all_upper_dev(struct net_device *dev,
7215 int (*fn)(struct net_device *dev,
7216 struct netdev_nested_priv *priv),
7217 struct netdev_nested_priv *priv)
7218{
7219 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7220 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7221 int ret, cur = 0;
7222 bool ignore;
7223
7224 now = dev;
7225 iter = &dev->adj_list.upper;
7226
7227 while (1) {
7228 if (now != dev) {
7229 ret = fn(now, priv);
7230 if (ret)
7231 return ret;
7232 }
7233
7234 next = NULL;
7235 while (1) {
7236 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7237 if (!udev)
7238 break;
7239 if (ignore)
7240 continue;
7241
7242 next = udev;
7243 niter = &udev->adj_list.upper;
7244 dev_stack[cur] = now;
7245 iter_stack[cur++] = iter;
7246 break;
7247 }
7248
7249 if (!next) {
7250 if (!cur)
7251 return 0;
7252 next = dev_stack[--cur];
7253 niter = iter_stack[cur];
7254 }
7255
7256 now = next;
7257 iter = niter;
7258 }
7259
7260 return 0;
7261}
7262
7263int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7264 int (*fn)(struct net_device *dev,
7265 struct netdev_nested_priv *priv),
7266 struct netdev_nested_priv *priv)
7267{
7268 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7269 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270 int ret, cur = 0;
7271
7272 now = dev;
7273 iter = &dev->adj_list.upper;
7274
7275 while (1) {
7276 if (now != dev) {
7277 ret = fn(now, priv);
7278 if (ret)
7279 return ret;
7280 }
7281
7282 next = NULL;
7283 while (1) {
7284 udev = netdev_next_upper_dev_rcu(now, &iter);
7285 if (!udev)
7286 break;
7287
7288 next = udev;
7289 niter = &udev->adj_list.upper;
7290 dev_stack[cur] = now;
7291 iter_stack[cur++] = iter;
7292 break;
7293 }
7294
7295 if (!next) {
7296 if (!cur)
7297 return 0;
7298 next = dev_stack[--cur];
7299 niter = iter_stack[cur];
7300 }
7301
7302 now = next;
7303 iter = niter;
7304 }
7305
7306 return 0;
7307}
7308EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7309
7310static bool __netdev_has_upper_dev(struct net_device *dev,
7311 struct net_device *upper_dev)
7312{
7313 struct netdev_nested_priv priv = {
7314 .flags = 0,
7315 .data = (void *)upper_dev,
7316 };
7317
7318 ASSERT_RTNL();
7319
7320 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7321 &priv);
7322}
7323
7324/**
7325 * netdev_lower_get_next_private - Get the next ->private from the
7326 * lower neighbour list
7327 * @dev: device
7328 * @iter: list_head ** of the current position
7329 *
7330 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7331 * list, starting from iter position. The caller must hold either hold the
7332 * RTNL lock or its own locking that guarantees that the neighbour lower
7333 * list will remain unchanged.
7334 */
7335void *netdev_lower_get_next_private(struct net_device *dev,
7336 struct list_head **iter)
7337{
7338 struct netdev_adjacent *lower;
7339
7340 lower = list_entry(*iter, struct netdev_adjacent, list);
7341
7342 if (&lower->list == &dev->adj_list.lower)
7343 return NULL;
7344
7345 *iter = lower->list.next;
7346
7347 return lower->private;
7348}
7349EXPORT_SYMBOL(netdev_lower_get_next_private);
7350
7351/**
7352 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7353 * lower neighbour list, RCU
7354 * variant
7355 * @dev: device
7356 * @iter: list_head ** of the current position
7357 *
7358 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7359 * list, starting from iter position. The caller must hold RCU read lock.
7360 */
7361void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7362 struct list_head **iter)
7363{
7364 struct netdev_adjacent *lower;
7365
7366 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7367
7368 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7369
7370 if (&lower->list == &dev->adj_list.lower)
7371 return NULL;
7372
7373 *iter = &lower->list;
7374
7375 return lower->private;
7376}
7377EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7378
7379/**
7380 * netdev_lower_get_next - Get the next device from the lower neighbour
7381 * list
7382 * @dev: device
7383 * @iter: list_head ** of the current position
7384 *
7385 * Gets the next netdev_adjacent from the dev's lower neighbour
7386 * list, starting from iter position. The caller must hold RTNL lock or
7387 * its own locking that guarantees that the neighbour lower
7388 * list will remain unchanged.
7389 */
7390void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7391{
7392 struct netdev_adjacent *lower;
7393
7394 lower = list_entry(*iter, struct netdev_adjacent, list);
7395
7396 if (&lower->list == &dev->adj_list.lower)
7397 return NULL;
7398
7399 *iter = lower->list.next;
7400
7401 return lower->dev;
7402}
7403EXPORT_SYMBOL(netdev_lower_get_next);
7404
7405static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7406 struct list_head **iter)
7407{
7408 struct netdev_adjacent *lower;
7409
7410 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7411
7412 if (&lower->list == &dev->adj_list.lower)
7413 return NULL;
7414
7415 *iter = &lower->list;
7416
7417 return lower->dev;
7418}
7419
7420static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7421 struct list_head **iter,
7422 bool *ignore)
7423{
7424 struct netdev_adjacent *lower;
7425
7426 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7427
7428 if (&lower->list == &dev->adj_list.lower)
7429 return NULL;
7430
7431 *iter = &lower->list;
7432 *ignore = lower->ignore;
7433
7434 return lower->dev;
7435}
7436
7437int netdev_walk_all_lower_dev(struct net_device *dev,
7438 int (*fn)(struct net_device *dev,
7439 struct netdev_nested_priv *priv),
7440 struct netdev_nested_priv *priv)
7441{
7442 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444 int ret, cur = 0;
7445
7446 now = dev;
7447 iter = &dev->adj_list.lower;
7448
7449 while (1) {
7450 if (now != dev) {
7451 ret = fn(now, priv);
7452 if (ret)
7453 return ret;
7454 }
7455
7456 next = NULL;
7457 while (1) {
7458 ldev = netdev_next_lower_dev(now, &iter);
7459 if (!ldev)
7460 break;
7461
7462 next = ldev;
7463 niter = &ldev->adj_list.lower;
7464 dev_stack[cur] = now;
7465 iter_stack[cur++] = iter;
7466 break;
7467 }
7468
7469 if (!next) {
7470 if (!cur)
7471 return 0;
7472 next = dev_stack[--cur];
7473 niter = iter_stack[cur];
7474 }
7475
7476 now = next;
7477 iter = niter;
7478 }
7479
7480 return 0;
7481}
7482EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7483
7484static int __netdev_walk_all_lower_dev(struct net_device *dev,
7485 int (*fn)(struct net_device *dev,
7486 struct netdev_nested_priv *priv),
7487 struct netdev_nested_priv *priv)
7488{
7489 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7490 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7491 int ret, cur = 0;
7492 bool ignore;
7493
7494 now = dev;
7495 iter = &dev->adj_list.lower;
7496
7497 while (1) {
7498 if (now != dev) {
7499 ret = fn(now, priv);
7500 if (ret)
7501 return ret;
7502 }
7503
7504 next = NULL;
7505 while (1) {
7506 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7507 if (!ldev)
7508 break;
7509 if (ignore)
7510 continue;
7511
7512 next = ldev;
7513 niter = &ldev->adj_list.lower;
7514 dev_stack[cur] = now;
7515 iter_stack[cur++] = iter;
7516 break;
7517 }
7518
7519 if (!next) {
7520 if (!cur)
7521 return 0;
7522 next = dev_stack[--cur];
7523 niter = iter_stack[cur];
7524 }
7525
7526 now = next;
7527 iter = niter;
7528 }
7529
7530 return 0;
7531}
7532
7533struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7534 struct list_head **iter)
7535{
7536 struct netdev_adjacent *lower;
7537
7538 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7539 if (&lower->list == &dev->adj_list.lower)
7540 return NULL;
7541
7542 *iter = &lower->list;
7543
7544 return lower->dev;
7545}
7546EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7547
7548static u8 __netdev_upper_depth(struct net_device *dev)
7549{
7550 struct net_device *udev;
7551 struct list_head *iter;
7552 u8 max_depth = 0;
7553 bool ignore;
7554
7555 for (iter = &dev->adj_list.upper,
7556 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7557 udev;
7558 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7559 if (ignore)
7560 continue;
7561 if (max_depth < udev->upper_level)
7562 max_depth = udev->upper_level;
7563 }
7564
7565 return max_depth;
7566}
7567
7568static u8 __netdev_lower_depth(struct net_device *dev)
7569{
7570 struct net_device *ldev;
7571 struct list_head *iter;
7572 u8 max_depth = 0;
7573 bool ignore;
7574
7575 for (iter = &dev->adj_list.lower,
7576 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7577 ldev;
7578 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7579 if (ignore)
7580 continue;
7581 if (max_depth < ldev->lower_level)
7582 max_depth = ldev->lower_level;
7583 }
7584
7585 return max_depth;
7586}
7587
7588static int __netdev_update_upper_level(struct net_device *dev,
7589 struct netdev_nested_priv *__unused)
7590{
7591 dev->upper_level = __netdev_upper_depth(dev) + 1;
7592 return 0;
7593}
7594
7595#ifdef CONFIG_LOCKDEP
7596static LIST_HEAD(net_unlink_list);
7597
7598static void net_unlink_todo(struct net_device *dev)
7599{
7600 if (list_empty(&dev->unlink_list))
7601 list_add_tail(&dev->unlink_list, &net_unlink_list);
7602}
7603#endif
7604
7605static int __netdev_update_lower_level(struct net_device *dev,
7606 struct netdev_nested_priv *priv)
7607{
7608 dev->lower_level = __netdev_lower_depth(dev) + 1;
7609
7610#ifdef CONFIG_LOCKDEP
7611 if (!priv)
7612 return 0;
7613
7614 if (priv->flags & NESTED_SYNC_IMM)
7615 dev->nested_level = dev->lower_level - 1;
7616 if (priv->flags & NESTED_SYNC_TODO)
7617 net_unlink_todo(dev);
7618#endif
7619 return 0;
7620}
7621
7622int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7623 int (*fn)(struct net_device *dev,
7624 struct netdev_nested_priv *priv),
7625 struct netdev_nested_priv *priv)
7626{
7627 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7628 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7629 int ret, cur = 0;
7630
7631 now = dev;
7632 iter = &dev->adj_list.lower;
7633
7634 while (1) {
7635 if (now != dev) {
7636 ret = fn(now, priv);
7637 if (ret)
7638 return ret;
7639 }
7640
7641 next = NULL;
7642 while (1) {
7643 ldev = netdev_next_lower_dev_rcu(now, &iter);
7644 if (!ldev)
7645 break;
7646
7647 next = ldev;
7648 niter = &ldev->adj_list.lower;
7649 dev_stack[cur] = now;
7650 iter_stack[cur++] = iter;
7651 break;
7652 }
7653
7654 if (!next) {
7655 if (!cur)
7656 return 0;
7657 next = dev_stack[--cur];
7658 niter = iter_stack[cur];
7659 }
7660
7661 now = next;
7662 iter = niter;
7663 }
7664
7665 return 0;
7666}
7667EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7668
7669/**
7670 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7671 * lower neighbour list, RCU
7672 * variant
7673 * @dev: device
7674 *
7675 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7676 * list. The caller must hold RCU read lock.
7677 */
7678void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7679{
7680 struct netdev_adjacent *lower;
7681
7682 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7683 struct netdev_adjacent, list);
7684 if (lower)
7685 return lower->private;
7686 return NULL;
7687}
7688EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7689
7690/**
7691 * netdev_master_upper_dev_get_rcu - Get master upper device
7692 * @dev: device
7693 *
7694 * Find a master upper device and return pointer to it or NULL in case
7695 * it's not there. The caller must hold the RCU read lock.
7696 */
7697struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7698{
7699 struct netdev_adjacent *upper;
7700
7701 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7702 struct netdev_adjacent, list);
7703 if (upper && likely(upper->master))
7704 return upper->dev;
7705 return NULL;
7706}
7707EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7708
7709static int netdev_adjacent_sysfs_add(struct net_device *dev,
7710 struct net_device *adj_dev,
7711 struct list_head *dev_list)
7712{
7713 char linkname[IFNAMSIZ+7];
7714
7715 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7716 "upper_%s" : "lower_%s", adj_dev->name);
7717 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7718 linkname);
7719}
7720static void netdev_adjacent_sysfs_del(struct net_device *dev,
7721 char *name,
7722 struct list_head *dev_list)
7723{
7724 char linkname[IFNAMSIZ+7];
7725
7726 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7727 "upper_%s" : "lower_%s", name);
7728 sysfs_remove_link(&(dev->dev.kobj), linkname);
7729}
7730
7731static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7732 struct net_device *adj_dev,
7733 struct list_head *dev_list)
7734{
7735 return (dev_list == &dev->adj_list.upper ||
7736 dev_list == &dev->adj_list.lower) &&
7737 net_eq(dev_net(dev), dev_net(adj_dev));
7738}
7739
7740static int __netdev_adjacent_dev_insert(struct net_device *dev,
7741 struct net_device *adj_dev,
7742 struct list_head *dev_list,
7743 void *private, bool master)
7744{
7745 struct netdev_adjacent *adj;
7746 int ret;
7747
7748 adj = __netdev_find_adj(adj_dev, dev_list);
7749
7750 if (adj) {
7751 adj->ref_nr += 1;
7752 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7753 dev->name, adj_dev->name, adj->ref_nr);
7754
7755 return 0;
7756 }
7757
7758 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7759 if (!adj)
7760 return -ENOMEM;
7761
7762 adj->dev = adj_dev;
7763 adj->master = master;
7764 adj->ref_nr = 1;
7765 adj->private = private;
7766 adj->ignore = false;
7767 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7768
7769 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7770 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7771
7772 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7773 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7774 if (ret)
7775 goto free_adj;
7776 }
7777
7778 /* Ensure that master link is always the first item in list. */
7779 if (master) {
7780 ret = sysfs_create_link(&(dev->dev.kobj),
7781 &(adj_dev->dev.kobj), "master");
7782 if (ret)
7783 goto remove_symlinks;
7784
7785 list_add_rcu(&adj->list, dev_list);
7786 } else {
7787 list_add_tail_rcu(&adj->list, dev_list);
7788 }
7789
7790 return 0;
7791
7792remove_symlinks:
7793 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7794 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7795free_adj:
7796 netdev_put(adj_dev, &adj->dev_tracker);
7797 kfree(adj);
7798
7799 return ret;
7800}
7801
7802static void __netdev_adjacent_dev_remove(struct net_device *dev,
7803 struct net_device *adj_dev,
7804 u16 ref_nr,
7805 struct list_head *dev_list)
7806{
7807 struct netdev_adjacent *adj;
7808
7809 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7810 dev->name, adj_dev->name, ref_nr);
7811
7812 adj = __netdev_find_adj(adj_dev, dev_list);
7813
7814 if (!adj) {
7815 pr_err("Adjacency does not exist for device %s from %s\n",
7816 dev->name, adj_dev->name);
7817 WARN_ON(1);
7818 return;
7819 }
7820
7821 if (adj->ref_nr > ref_nr) {
7822 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7823 dev->name, adj_dev->name, ref_nr,
7824 adj->ref_nr - ref_nr);
7825 adj->ref_nr -= ref_nr;
7826 return;
7827 }
7828
7829 if (adj->master)
7830 sysfs_remove_link(&(dev->dev.kobj), "master");
7831
7832 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7833 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7834
7835 list_del_rcu(&adj->list);
7836 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7837 adj_dev->name, dev->name, adj_dev->name);
7838 netdev_put(adj_dev, &adj->dev_tracker);
7839 kfree_rcu(adj, rcu);
7840}
7841
7842static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7843 struct net_device *upper_dev,
7844 struct list_head *up_list,
7845 struct list_head *down_list,
7846 void *private, bool master)
7847{
7848 int ret;
7849
7850 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7851 private, master);
7852 if (ret)
7853 return ret;
7854
7855 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7856 private, false);
7857 if (ret) {
7858 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7859 return ret;
7860 }
7861
7862 return 0;
7863}
7864
7865static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7866 struct net_device *upper_dev,
7867 u16 ref_nr,
7868 struct list_head *up_list,
7869 struct list_head *down_list)
7870{
7871 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7872 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7873}
7874
7875static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7876 struct net_device *upper_dev,
7877 void *private, bool master)
7878{
7879 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7880 &dev->adj_list.upper,
7881 &upper_dev->adj_list.lower,
7882 private, master);
7883}
7884
7885static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7886 struct net_device *upper_dev)
7887{
7888 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7889 &dev->adj_list.upper,
7890 &upper_dev->adj_list.lower);
7891}
7892
7893static int __netdev_upper_dev_link(struct net_device *dev,
7894 struct net_device *upper_dev, bool master,
7895 void *upper_priv, void *upper_info,
7896 struct netdev_nested_priv *priv,
7897 struct netlink_ext_ack *extack)
7898{
7899 struct netdev_notifier_changeupper_info changeupper_info = {
7900 .info = {
7901 .dev = dev,
7902 .extack = extack,
7903 },
7904 .upper_dev = upper_dev,
7905 .master = master,
7906 .linking = true,
7907 .upper_info = upper_info,
7908 };
7909 struct net_device *master_dev;
7910 int ret = 0;
7911
7912 ASSERT_RTNL();
7913
7914 if (dev == upper_dev)
7915 return -EBUSY;
7916
7917 /* To prevent loops, check if dev is not upper device to upper_dev. */
7918 if (__netdev_has_upper_dev(upper_dev, dev))
7919 return -EBUSY;
7920
7921 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7922 return -EMLINK;
7923
7924 if (!master) {
7925 if (__netdev_has_upper_dev(dev, upper_dev))
7926 return -EEXIST;
7927 } else {
7928 master_dev = __netdev_master_upper_dev_get(dev);
7929 if (master_dev)
7930 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7931 }
7932
7933 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7934 &changeupper_info.info);
7935 ret = notifier_to_errno(ret);
7936 if (ret)
7937 return ret;
7938
7939 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7940 master);
7941 if (ret)
7942 return ret;
7943
7944 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7945 &changeupper_info.info);
7946 ret = notifier_to_errno(ret);
7947 if (ret)
7948 goto rollback;
7949
7950 __netdev_update_upper_level(dev, NULL);
7951 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7952
7953 __netdev_update_lower_level(upper_dev, priv);
7954 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7955 priv);
7956
7957 return 0;
7958
7959rollback:
7960 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7961
7962 return ret;
7963}
7964
7965/**
7966 * netdev_upper_dev_link - Add a link to the upper device
7967 * @dev: device
7968 * @upper_dev: new upper device
7969 * @extack: netlink extended ack
7970 *
7971 * Adds a link to device which is upper to this one. The caller must hold
7972 * the RTNL lock. On a failure a negative errno code is returned.
7973 * On success the reference counts are adjusted and the function
7974 * returns zero.
7975 */
7976int netdev_upper_dev_link(struct net_device *dev,
7977 struct net_device *upper_dev,
7978 struct netlink_ext_ack *extack)
7979{
7980 struct netdev_nested_priv priv = {
7981 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7982 .data = NULL,
7983 };
7984
7985 return __netdev_upper_dev_link(dev, upper_dev, false,
7986 NULL, NULL, &priv, extack);
7987}
7988EXPORT_SYMBOL(netdev_upper_dev_link);
7989
7990/**
7991 * netdev_master_upper_dev_link - Add a master link to the upper device
7992 * @dev: device
7993 * @upper_dev: new upper device
7994 * @upper_priv: upper device private
7995 * @upper_info: upper info to be passed down via notifier
7996 * @extack: netlink extended ack
7997 *
7998 * Adds a link to device which is upper to this one. In this case, only
7999 * one master upper device can be linked, although other non-master devices
8000 * might be linked as well. The caller must hold the RTNL lock.
8001 * On a failure a negative errno code is returned. On success the reference
8002 * counts are adjusted and the function returns zero.
8003 */
8004int netdev_master_upper_dev_link(struct net_device *dev,
8005 struct net_device *upper_dev,
8006 void *upper_priv, void *upper_info,
8007 struct netlink_ext_ack *extack)
8008{
8009 struct netdev_nested_priv priv = {
8010 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8011 .data = NULL,
8012 };
8013
8014 return __netdev_upper_dev_link(dev, upper_dev, true,
8015 upper_priv, upper_info, &priv, extack);
8016}
8017EXPORT_SYMBOL(netdev_master_upper_dev_link);
8018
8019static void __netdev_upper_dev_unlink(struct net_device *dev,
8020 struct net_device *upper_dev,
8021 struct netdev_nested_priv *priv)
8022{
8023 struct netdev_notifier_changeupper_info changeupper_info = {
8024 .info = {
8025 .dev = dev,
8026 },
8027 .upper_dev = upper_dev,
8028 .linking = false,
8029 };
8030
8031 ASSERT_RTNL();
8032
8033 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8034
8035 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8036 &changeupper_info.info);
8037
8038 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8039
8040 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8041 &changeupper_info.info);
8042
8043 __netdev_update_upper_level(dev, NULL);
8044 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8045
8046 __netdev_update_lower_level(upper_dev, priv);
8047 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8048 priv);
8049}
8050
8051/**
8052 * netdev_upper_dev_unlink - Removes a link to upper device
8053 * @dev: device
8054 * @upper_dev: new upper device
8055 *
8056 * Removes a link to device which is upper to this one. The caller must hold
8057 * the RTNL lock.
8058 */
8059void netdev_upper_dev_unlink(struct net_device *dev,
8060 struct net_device *upper_dev)
8061{
8062 struct netdev_nested_priv priv = {
8063 .flags = NESTED_SYNC_TODO,
8064 .data = NULL,
8065 };
8066
8067 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8068}
8069EXPORT_SYMBOL(netdev_upper_dev_unlink);
8070
8071static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8072 struct net_device *lower_dev,
8073 bool val)
8074{
8075 struct netdev_adjacent *adj;
8076
8077 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8078 if (adj)
8079 adj->ignore = val;
8080
8081 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8082 if (adj)
8083 adj->ignore = val;
8084}
8085
8086static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8087 struct net_device *lower_dev)
8088{
8089 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8090}
8091
8092static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8093 struct net_device *lower_dev)
8094{
8095 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8096}
8097
8098int netdev_adjacent_change_prepare(struct net_device *old_dev,
8099 struct net_device *new_dev,
8100 struct net_device *dev,
8101 struct netlink_ext_ack *extack)
8102{
8103 struct netdev_nested_priv priv = {
8104 .flags = 0,
8105 .data = NULL,
8106 };
8107 int err;
8108
8109 if (!new_dev)
8110 return 0;
8111
8112 if (old_dev && new_dev != old_dev)
8113 netdev_adjacent_dev_disable(dev, old_dev);
8114 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8115 extack);
8116 if (err) {
8117 if (old_dev && new_dev != old_dev)
8118 netdev_adjacent_dev_enable(dev, old_dev);
8119 return err;
8120 }
8121
8122 return 0;
8123}
8124EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8125
8126void netdev_adjacent_change_commit(struct net_device *old_dev,
8127 struct net_device *new_dev,
8128 struct net_device *dev)
8129{
8130 struct netdev_nested_priv priv = {
8131 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8132 .data = NULL,
8133 };
8134
8135 if (!new_dev || !old_dev)
8136 return;
8137
8138 if (new_dev == old_dev)
8139 return;
8140
8141 netdev_adjacent_dev_enable(dev, old_dev);
8142 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8143}
8144EXPORT_SYMBOL(netdev_adjacent_change_commit);
8145
8146void netdev_adjacent_change_abort(struct net_device *old_dev,
8147 struct net_device *new_dev,
8148 struct net_device *dev)
8149{
8150 struct netdev_nested_priv priv = {
8151 .flags = 0,
8152 .data = NULL,
8153 };
8154
8155 if (!new_dev)
8156 return;
8157
8158 if (old_dev && new_dev != old_dev)
8159 netdev_adjacent_dev_enable(dev, old_dev);
8160
8161 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8162}
8163EXPORT_SYMBOL(netdev_adjacent_change_abort);
8164
8165/**
8166 * netdev_bonding_info_change - Dispatch event about slave change
8167 * @dev: device
8168 * @bonding_info: info to dispatch
8169 *
8170 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8171 * The caller must hold the RTNL lock.
8172 */
8173void netdev_bonding_info_change(struct net_device *dev,
8174 struct netdev_bonding_info *bonding_info)
8175{
8176 struct netdev_notifier_bonding_info info = {
8177 .info.dev = dev,
8178 };
8179
8180 memcpy(&info.bonding_info, bonding_info,
8181 sizeof(struct netdev_bonding_info));
8182 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8183 &info.info);
8184}
8185EXPORT_SYMBOL(netdev_bonding_info_change);
8186
8187static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8188 struct netlink_ext_ack *extack)
8189{
8190 struct netdev_notifier_offload_xstats_info info = {
8191 .info.dev = dev,
8192 .info.extack = extack,
8193 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8194 };
8195 int err;
8196 int rc;
8197
8198 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8199 GFP_KERNEL);
8200 if (!dev->offload_xstats_l3)
8201 return -ENOMEM;
8202
8203 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8204 NETDEV_OFFLOAD_XSTATS_DISABLE,
8205 &info.info);
8206 err = notifier_to_errno(rc);
8207 if (err)
8208 goto free_stats;
8209
8210 return 0;
8211
8212free_stats:
8213 kfree(dev->offload_xstats_l3);
8214 dev->offload_xstats_l3 = NULL;
8215 return err;
8216}
8217
8218int netdev_offload_xstats_enable(struct net_device *dev,
8219 enum netdev_offload_xstats_type type,
8220 struct netlink_ext_ack *extack)
8221{
8222 ASSERT_RTNL();
8223
8224 if (netdev_offload_xstats_enabled(dev, type))
8225 return -EALREADY;
8226
8227 switch (type) {
8228 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8229 return netdev_offload_xstats_enable_l3(dev, extack);
8230 }
8231
8232 WARN_ON(1);
8233 return -EINVAL;
8234}
8235EXPORT_SYMBOL(netdev_offload_xstats_enable);
8236
8237static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8238{
8239 struct netdev_notifier_offload_xstats_info info = {
8240 .info.dev = dev,
8241 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8242 };
8243
8244 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8245 &info.info);
8246 kfree(dev->offload_xstats_l3);
8247 dev->offload_xstats_l3 = NULL;
8248}
8249
8250int netdev_offload_xstats_disable(struct net_device *dev,
8251 enum netdev_offload_xstats_type type)
8252{
8253 ASSERT_RTNL();
8254
8255 if (!netdev_offload_xstats_enabled(dev, type))
8256 return -EALREADY;
8257
8258 switch (type) {
8259 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8260 netdev_offload_xstats_disable_l3(dev);
8261 return 0;
8262 }
8263
8264 WARN_ON(1);
8265 return -EINVAL;
8266}
8267EXPORT_SYMBOL(netdev_offload_xstats_disable);
8268
8269static void netdev_offload_xstats_disable_all(struct net_device *dev)
8270{
8271 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8272}
8273
8274static struct rtnl_hw_stats64 *
8275netdev_offload_xstats_get_ptr(const struct net_device *dev,
8276 enum netdev_offload_xstats_type type)
8277{
8278 switch (type) {
8279 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8280 return dev->offload_xstats_l3;
8281 }
8282
8283 WARN_ON(1);
8284 return NULL;
8285}
8286
8287bool netdev_offload_xstats_enabled(const struct net_device *dev,
8288 enum netdev_offload_xstats_type type)
8289{
8290 ASSERT_RTNL();
8291
8292 return netdev_offload_xstats_get_ptr(dev, type);
8293}
8294EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8295
8296struct netdev_notifier_offload_xstats_ru {
8297 bool used;
8298};
8299
8300struct netdev_notifier_offload_xstats_rd {
8301 struct rtnl_hw_stats64 stats;
8302 bool used;
8303};
8304
8305static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8306 const struct rtnl_hw_stats64 *src)
8307{
8308 dest->rx_packets += src->rx_packets;
8309 dest->tx_packets += src->tx_packets;
8310 dest->rx_bytes += src->rx_bytes;
8311 dest->tx_bytes += src->tx_bytes;
8312 dest->rx_errors += src->rx_errors;
8313 dest->tx_errors += src->tx_errors;
8314 dest->rx_dropped += src->rx_dropped;
8315 dest->tx_dropped += src->tx_dropped;
8316 dest->multicast += src->multicast;
8317}
8318
8319static int netdev_offload_xstats_get_used(struct net_device *dev,
8320 enum netdev_offload_xstats_type type,
8321 bool *p_used,
8322 struct netlink_ext_ack *extack)
8323{
8324 struct netdev_notifier_offload_xstats_ru report_used = {};
8325 struct netdev_notifier_offload_xstats_info info = {
8326 .info.dev = dev,
8327 .info.extack = extack,
8328 .type = type,
8329 .report_used = &report_used,
8330 };
8331 int rc;
8332
8333 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8334 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8335 &info.info);
8336 *p_used = report_used.used;
8337 return notifier_to_errno(rc);
8338}
8339
8340static int netdev_offload_xstats_get_stats(struct net_device *dev,
8341 enum netdev_offload_xstats_type type,
8342 struct rtnl_hw_stats64 *p_stats,
8343 bool *p_used,
8344 struct netlink_ext_ack *extack)
8345{
8346 struct netdev_notifier_offload_xstats_rd report_delta = {};
8347 struct netdev_notifier_offload_xstats_info info = {
8348 .info.dev = dev,
8349 .info.extack = extack,
8350 .type = type,
8351 .report_delta = &report_delta,
8352 };
8353 struct rtnl_hw_stats64 *stats;
8354 int rc;
8355
8356 stats = netdev_offload_xstats_get_ptr(dev, type);
8357 if (WARN_ON(!stats))
8358 return -EINVAL;
8359
8360 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8361 &info.info);
8362
8363 /* Cache whatever we got, even if there was an error, otherwise the
8364 * successful stats retrievals would get lost.
8365 */
8366 netdev_hw_stats64_add(stats, &report_delta.stats);
8367
8368 if (p_stats)
8369 *p_stats = *stats;
8370 *p_used = report_delta.used;
8371
8372 return notifier_to_errno(rc);
8373}
8374
8375int netdev_offload_xstats_get(struct net_device *dev,
8376 enum netdev_offload_xstats_type type,
8377 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8378 struct netlink_ext_ack *extack)
8379{
8380 ASSERT_RTNL();
8381
8382 if (p_stats)
8383 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8384 p_used, extack);
8385 else
8386 return netdev_offload_xstats_get_used(dev, type, p_used,
8387 extack);
8388}
8389EXPORT_SYMBOL(netdev_offload_xstats_get);
8390
8391void
8392netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8393 const struct rtnl_hw_stats64 *stats)
8394{
8395 report_delta->used = true;
8396 netdev_hw_stats64_add(&report_delta->stats, stats);
8397}
8398EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8399
8400void
8401netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8402{
8403 report_used->used = true;
8404}
8405EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8406
8407void netdev_offload_xstats_push_delta(struct net_device *dev,
8408 enum netdev_offload_xstats_type type,
8409 const struct rtnl_hw_stats64 *p_stats)
8410{
8411 struct rtnl_hw_stats64 *stats;
8412
8413 ASSERT_RTNL();
8414
8415 stats = netdev_offload_xstats_get_ptr(dev, type);
8416 if (WARN_ON(!stats))
8417 return;
8418
8419 netdev_hw_stats64_add(stats, p_stats);
8420}
8421EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8422
8423/**
8424 * netdev_get_xmit_slave - Get the xmit slave of master device
8425 * @dev: device
8426 * @skb: The packet
8427 * @all_slaves: assume all the slaves are active
8428 *
8429 * The reference counters are not incremented so the caller must be
8430 * careful with locks. The caller must hold RCU lock.
8431 * %NULL is returned if no slave is found.
8432 */
8433
8434struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8435 struct sk_buff *skb,
8436 bool all_slaves)
8437{
8438 const struct net_device_ops *ops = dev->netdev_ops;
8439
8440 if (!ops->ndo_get_xmit_slave)
8441 return NULL;
8442 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8443}
8444EXPORT_SYMBOL(netdev_get_xmit_slave);
8445
8446static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8447 struct sock *sk)
8448{
8449 const struct net_device_ops *ops = dev->netdev_ops;
8450
8451 if (!ops->ndo_sk_get_lower_dev)
8452 return NULL;
8453 return ops->ndo_sk_get_lower_dev(dev, sk);
8454}
8455
8456/**
8457 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8458 * @dev: device
8459 * @sk: the socket
8460 *
8461 * %NULL is returned if no lower device is found.
8462 */
8463
8464struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8465 struct sock *sk)
8466{
8467 struct net_device *lower;
8468
8469 lower = netdev_sk_get_lower_dev(dev, sk);
8470 while (lower) {
8471 dev = lower;
8472 lower = netdev_sk_get_lower_dev(dev, sk);
8473 }
8474
8475 return dev;
8476}
8477EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8478
8479static void netdev_adjacent_add_links(struct net_device *dev)
8480{
8481 struct netdev_adjacent *iter;
8482
8483 struct net *net = dev_net(dev);
8484
8485 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8486 if (!net_eq(net, dev_net(iter->dev)))
8487 continue;
8488 netdev_adjacent_sysfs_add(iter->dev, dev,
8489 &iter->dev->adj_list.lower);
8490 netdev_adjacent_sysfs_add(dev, iter->dev,
8491 &dev->adj_list.upper);
8492 }
8493
8494 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8495 if (!net_eq(net, dev_net(iter->dev)))
8496 continue;
8497 netdev_adjacent_sysfs_add(iter->dev, dev,
8498 &iter->dev->adj_list.upper);
8499 netdev_adjacent_sysfs_add(dev, iter->dev,
8500 &dev->adj_list.lower);
8501 }
8502}
8503
8504static void netdev_adjacent_del_links(struct net_device *dev)
8505{
8506 struct netdev_adjacent *iter;
8507
8508 struct net *net = dev_net(dev);
8509
8510 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8511 if (!net_eq(net, dev_net(iter->dev)))
8512 continue;
8513 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8514 &iter->dev->adj_list.lower);
8515 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8516 &dev->adj_list.upper);
8517 }
8518
8519 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8520 if (!net_eq(net, dev_net(iter->dev)))
8521 continue;
8522 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8523 &iter->dev->adj_list.upper);
8524 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8525 &dev->adj_list.lower);
8526 }
8527}
8528
8529void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8530{
8531 struct netdev_adjacent *iter;
8532
8533 struct net *net = dev_net(dev);
8534
8535 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8536 if (!net_eq(net, dev_net(iter->dev)))
8537 continue;
8538 netdev_adjacent_sysfs_del(iter->dev, oldname,
8539 &iter->dev->adj_list.lower);
8540 netdev_adjacent_sysfs_add(iter->dev, dev,
8541 &iter->dev->adj_list.lower);
8542 }
8543
8544 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8545 if (!net_eq(net, dev_net(iter->dev)))
8546 continue;
8547 netdev_adjacent_sysfs_del(iter->dev, oldname,
8548 &iter->dev->adj_list.upper);
8549 netdev_adjacent_sysfs_add(iter->dev, dev,
8550 &iter->dev->adj_list.upper);
8551 }
8552}
8553
8554void *netdev_lower_dev_get_private(struct net_device *dev,
8555 struct net_device *lower_dev)
8556{
8557 struct netdev_adjacent *lower;
8558
8559 if (!lower_dev)
8560 return NULL;
8561 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8562 if (!lower)
8563 return NULL;
8564
8565 return lower->private;
8566}
8567EXPORT_SYMBOL(netdev_lower_dev_get_private);
8568
8569
8570/**
8571 * netdev_lower_state_changed - Dispatch event about lower device state change
8572 * @lower_dev: device
8573 * @lower_state_info: state to dispatch
8574 *
8575 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8576 * The caller must hold the RTNL lock.
8577 */
8578void netdev_lower_state_changed(struct net_device *lower_dev,
8579 void *lower_state_info)
8580{
8581 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8582 .info.dev = lower_dev,
8583 };
8584
8585 ASSERT_RTNL();
8586 changelowerstate_info.lower_state_info = lower_state_info;
8587 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8588 &changelowerstate_info.info);
8589}
8590EXPORT_SYMBOL(netdev_lower_state_changed);
8591
8592static void dev_change_rx_flags(struct net_device *dev, int flags)
8593{
8594 const struct net_device_ops *ops = dev->netdev_ops;
8595
8596 if (ops->ndo_change_rx_flags)
8597 ops->ndo_change_rx_flags(dev, flags);
8598}
8599
8600static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8601{
8602 unsigned int old_flags = dev->flags;
8603 unsigned int promiscuity, flags;
8604 kuid_t uid;
8605 kgid_t gid;
8606
8607 ASSERT_RTNL();
8608
8609 promiscuity = dev->promiscuity + inc;
8610 if (promiscuity == 0) {
8611 /*
8612 * Avoid overflow.
8613 * If inc causes overflow, untouch promisc and return error.
8614 */
8615 if (unlikely(inc > 0)) {
8616 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8617 return -EOVERFLOW;
8618 }
8619 flags = old_flags & ~IFF_PROMISC;
8620 } else {
8621 flags = old_flags | IFF_PROMISC;
8622 }
8623 WRITE_ONCE(dev->promiscuity, promiscuity);
8624 if (flags != old_flags) {
8625 WRITE_ONCE(dev->flags, flags);
8626 netdev_info(dev, "%s promiscuous mode\n",
8627 dev->flags & IFF_PROMISC ? "entered" : "left");
8628 if (audit_enabled) {
8629 current_uid_gid(&uid, &gid);
8630 audit_log(audit_context(), GFP_ATOMIC,
8631 AUDIT_ANOM_PROMISCUOUS,
8632 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8633 dev->name, (dev->flags & IFF_PROMISC),
8634 (old_flags & IFF_PROMISC),
8635 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8636 from_kuid(&init_user_ns, uid),
8637 from_kgid(&init_user_ns, gid),
8638 audit_get_sessionid(current));
8639 }
8640
8641 dev_change_rx_flags(dev, IFF_PROMISC);
8642 }
8643 if (notify)
8644 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8645 return 0;
8646}
8647
8648/**
8649 * dev_set_promiscuity - update promiscuity count on a device
8650 * @dev: device
8651 * @inc: modifier
8652 *
8653 * Add or remove promiscuity from a device. While the count in the device
8654 * remains above zero the interface remains promiscuous. Once it hits zero
8655 * the device reverts back to normal filtering operation. A negative inc
8656 * value is used to drop promiscuity on the device.
8657 * Return 0 if successful or a negative errno code on error.
8658 */
8659int dev_set_promiscuity(struct net_device *dev, int inc)
8660{
8661 unsigned int old_flags = dev->flags;
8662 int err;
8663
8664 err = __dev_set_promiscuity(dev, inc, true);
8665 if (err < 0)
8666 return err;
8667 if (dev->flags != old_flags)
8668 dev_set_rx_mode(dev);
8669 return err;
8670}
8671EXPORT_SYMBOL(dev_set_promiscuity);
8672
8673static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8674{
8675 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8676 unsigned int allmulti, flags;
8677
8678 ASSERT_RTNL();
8679
8680 allmulti = dev->allmulti + inc;
8681 if (allmulti == 0) {
8682 /*
8683 * Avoid overflow.
8684 * If inc causes overflow, untouch allmulti and return error.
8685 */
8686 if (unlikely(inc > 0)) {
8687 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8688 return -EOVERFLOW;
8689 }
8690 flags = old_flags & ~IFF_ALLMULTI;
8691 } else {
8692 flags = old_flags | IFF_ALLMULTI;
8693 }
8694 WRITE_ONCE(dev->allmulti, allmulti);
8695 if (flags != old_flags) {
8696 WRITE_ONCE(dev->flags, flags);
8697 netdev_info(dev, "%s allmulticast mode\n",
8698 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8699 dev_change_rx_flags(dev, IFF_ALLMULTI);
8700 dev_set_rx_mode(dev);
8701 if (notify)
8702 __dev_notify_flags(dev, old_flags,
8703 dev->gflags ^ old_gflags, 0, NULL);
8704 }
8705 return 0;
8706}
8707
8708/**
8709 * dev_set_allmulti - update allmulti count on a device
8710 * @dev: device
8711 * @inc: modifier
8712 *
8713 * Add or remove reception of all multicast frames to a device. While the
8714 * count in the device remains above zero the interface remains listening
8715 * to all interfaces. Once it hits zero the device reverts back to normal
8716 * filtering operation. A negative @inc value is used to drop the counter
8717 * when releasing a resource needing all multicasts.
8718 * Return 0 if successful or a negative errno code on error.
8719 */
8720
8721int dev_set_allmulti(struct net_device *dev, int inc)
8722{
8723 return __dev_set_allmulti(dev, inc, true);
8724}
8725EXPORT_SYMBOL(dev_set_allmulti);
8726
8727/*
8728 * Upload unicast and multicast address lists to device and
8729 * configure RX filtering. When the device doesn't support unicast
8730 * filtering it is put in promiscuous mode while unicast addresses
8731 * are present.
8732 */
8733void __dev_set_rx_mode(struct net_device *dev)
8734{
8735 const struct net_device_ops *ops = dev->netdev_ops;
8736
8737 /* dev_open will call this function so the list will stay sane. */
8738 if (!(dev->flags&IFF_UP))
8739 return;
8740
8741 if (!netif_device_present(dev))
8742 return;
8743
8744 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8745 /* Unicast addresses changes may only happen under the rtnl,
8746 * therefore calling __dev_set_promiscuity here is safe.
8747 */
8748 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8749 __dev_set_promiscuity(dev, 1, false);
8750 dev->uc_promisc = true;
8751 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8752 __dev_set_promiscuity(dev, -1, false);
8753 dev->uc_promisc = false;
8754 }
8755 }
8756
8757 if (ops->ndo_set_rx_mode)
8758 ops->ndo_set_rx_mode(dev);
8759}
8760
8761void dev_set_rx_mode(struct net_device *dev)
8762{
8763 netif_addr_lock_bh(dev);
8764 __dev_set_rx_mode(dev);
8765 netif_addr_unlock_bh(dev);
8766}
8767
8768/**
8769 * dev_get_flags - get flags reported to userspace
8770 * @dev: device
8771 *
8772 * Get the combination of flag bits exported through APIs to userspace.
8773 */
8774unsigned int dev_get_flags(const struct net_device *dev)
8775{
8776 unsigned int flags;
8777
8778 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8779 IFF_ALLMULTI |
8780 IFF_RUNNING |
8781 IFF_LOWER_UP |
8782 IFF_DORMANT)) |
8783 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8784 IFF_ALLMULTI));
8785
8786 if (netif_running(dev)) {
8787 if (netif_oper_up(dev))
8788 flags |= IFF_RUNNING;
8789 if (netif_carrier_ok(dev))
8790 flags |= IFF_LOWER_UP;
8791 if (netif_dormant(dev))
8792 flags |= IFF_DORMANT;
8793 }
8794
8795 return flags;
8796}
8797EXPORT_SYMBOL(dev_get_flags);
8798
8799int __dev_change_flags(struct net_device *dev, unsigned int flags,
8800 struct netlink_ext_ack *extack)
8801{
8802 unsigned int old_flags = dev->flags;
8803 int ret;
8804
8805 ASSERT_RTNL();
8806
8807 /*
8808 * Set the flags on our device.
8809 */
8810
8811 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8812 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8813 IFF_AUTOMEDIA)) |
8814 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8815 IFF_ALLMULTI));
8816
8817 /*
8818 * Load in the correct multicast list now the flags have changed.
8819 */
8820
8821 if ((old_flags ^ flags) & IFF_MULTICAST)
8822 dev_change_rx_flags(dev, IFF_MULTICAST);
8823
8824 dev_set_rx_mode(dev);
8825
8826 /*
8827 * Have we downed the interface. We handle IFF_UP ourselves
8828 * according to user attempts to set it, rather than blindly
8829 * setting it.
8830 */
8831
8832 ret = 0;
8833 if ((old_flags ^ flags) & IFF_UP) {
8834 if (old_flags & IFF_UP)
8835 __dev_close(dev);
8836 else
8837 ret = __dev_open(dev, extack);
8838 }
8839
8840 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8841 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8842 unsigned int old_flags = dev->flags;
8843
8844 dev->gflags ^= IFF_PROMISC;
8845
8846 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8847 if (dev->flags != old_flags)
8848 dev_set_rx_mode(dev);
8849 }
8850
8851 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8852 * is important. Some (broken) drivers set IFF_PROMISC, when
8853 * IFF_ALLMULTI is requested not asking us and not reporting.
8854 */
8855 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8856 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8857
8858 dev->gflags ^= IFF_ALLMULTI;
8859 __dev_set_allmulti(dev, inc, false);
8860 }
8861
8862 return ret;
8863}
8864
8865void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8866 unsigned int gchanges, u32 portid,
8867 const struct nlmsghdr *nlh)
8868{
8869 unsigned int changes = dev->flags ^ old_flags;
8870
8871 if (gchanges)
8872 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8873
8874 if (changes & IFF_UP) {
8875 if (dev->flags & IFF_UP)
8876 call_netdevice_notifiers(NETDEV_UP, dev);
8877 else
8878 call_netdevice_notifiers(NETDEV_DOWN, dev);
8879 }
8880
8881 if (dev->flags & IFF_UP &&
8882 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8883 struct netdev_notifier_change_info change_info = {
8884 .info = {
8885 .dev = dev,
8886 },
8887 .flags_changed = changes,
8888 };
8889
8890 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8891 }
8892}
8893
8894/**
8895 * dev_change_flags - change device settings
8896 * @dev: device
8897 * @flags: device state flags
8898 * @extack: netlink extended ack
8899 *
8900 * Change settings on device based state flags. The flags are
8901 * in the userspace exported format.
8902 */
8903int dev_change_flags(struct net_device *dev, unsigned int flags,
8904 struct netlink_ext_ack *extack)
8905{
8906 int ret;
8907 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8908
8909 ret = __dev_change_flags(dev, flags, extack);
8910 if (ret < 0)
8911 return ret;
8912
8913 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8914 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8915 return ret;
8916}
8917EXPORT_SYMBOL(dev_change_flags);
8918
8919int __dev_set_mtu(struct net_device *dev, int new_mtu)
8920{
8921 const struct net_device_ops *ops = dev->netdev_ops;
8922
8923 if (ops->ndo_change_mtu)
8924 return ops->ndo_change_mtu(dev, new_mtu);
8925
8926 /* Pairs with all the lockless reads of dev->mtu in the stack */
8927 WRITE_ONCE(dev->mtu, new_mtu);
8928 return 0;
8929}
8930EXPORT_SYMBOL(__dev_set_mtu);
8931
8932int dev_validate_mtu(struct net_device *dev, int new_mtu,
8933 struct netlink_ext_ack *extack)
8934{
8935 /* MTU must be positive, and in range */
8936 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8937 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8938 return -EINVAL;
8939 }
8940
8941 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8942 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8943 return -EINVAL;
8944 }
8945 return 0;
8946}
8947
8948/**
8949 * dev_set_mtu_ext - Change maximum transfer unit
8950 * @dev: device
8951 * @new_mtu: new transfer unit
8952 * @extack: netlink extended ack
8953 *
8954 * Change the maximum transfer size of the network device.
8955 */
8956int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8957 struct netlink_ext_ack *extack)
8958{
8959 int err, orig_mtu;
8960
8961 if (new_mtu == dev->mtu)
8962 return 0;
8963
8964 err = dev_validate_mtu(dev, new_mtu, extack);
8965 if (err)
8966 return err;
8967
8968 if (!netif_device_present(dev))
8969 return -ENODEV;
8970
8971 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8972 err = notifier_to_errno(err);
8973 if (err)
8974 return err;
8975
8976 orig_mtu = dev->mtu;
8977 err = __dev_set_mtu(dev, new_mtu);
8978
8979 if (!err) {
8980 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8981 orig_mtu);
8982 err = notifier_to_errno(err);
8983 if (err) {
8984 /* setting mtu back and notifying everyone again,
8985 * so that they have a chance to revert changes.
8986 */
8987 __dev_set_mtu(dev, orig_mtu);
8988 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8989 new_mtu);
8990 }
8991 }
8992 return err;
8993}
8994
8995int dev_set_mtu(struct net_device *dev, int new_mtu)
8996{
8997 struct netlink_ext_ack extack;
8998 int err;
8999
9000 memset(&extack, 0, sizeof(extack));
9001 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9002 if (err && extack._msg)
9003 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9004 return err;
9005}
9006EXPORT_SYMBOL(dev_set_mtu);
9007
9008/**
9009 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9010 * @dev: device
9011 * @new_len: new tx queue length
9012 */
9013int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9014{
9015 unsigned int orig_len = dev->tx_queue_len;
9016 int res;
9017
9018 if (new_len != (unsigned int)new_len)
9019 return -ERANGE;
9020
9021 if (new_len != orig_len) {
9022 WRITE_ONCE(dev->tx_queue_len, new_len);
9023 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9024 res = notifier_to_errno(res);
9025 if (res)
9026 goto err_rollback;
9027 res = dev_qdisc_change_tx_queue_len(dev);
9028 if (res)
9029 goto err_rollback;
9030 }
9031
9032 return 0;
9033
9034err_rollback:
9035 netdev_err(dev, "refused to change device tx_queue_len\n");
9036 WRITE_ONCE(dev->tx_queue_len, orig_len);
9037 return res;
9038}
9039
9040/**
9041 * dev_set_group - Change group this device belongs to
9042 * @dev: device
9043 * @new_group: group this device should belong to
9044 */
9045void dev_set_group(struct net_device *dev, int new_group)
9046{
9047 dev->group = new_group;
9048}
9049
9050/**
9051 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9052 * @dev: device
9053 * @addr: new address
9054 * @extack: netlink extended ack
9055 */
9056int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9057 struct netlink_ext_ack *extack)
9058{
9059 struct netdev_notifier_pre_changeaddr_info info = {
9060 .info.dev = dev,
9061 .info.extack = extack,
9062 .dev_addr = addr,
9063 };
9064 int rc;
9065
9066 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9067 return notifier_to_errno(rc);
9068}
9069EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9070
9071/**
9072 * dev_set_mac_address - Change Media Access Control Address
9073 * @dev: device
9074 * @sa: new address
9075 * @extack: netlink extended ack
9076 *
9077 * Change the hardware (MAC) address of the device
9078 */
9079int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9080 struct netlink_ext_ack *extack)
9081{
9082 const struct net_device_ops *ops = dev->netdev_ops;
9083 int err;
9084
9085 if (!ops->ndo_set_mac_address)
9086 return -EOPNOTSUPP;
9087 if (sa->sa_family != dev->type)
9088 return -EINVAL;
9089 if (!netif_device_present(dev))
9090 return -ENODEV;
9091 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9092 if (err)
9093 return err;
9094 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9095 err = ops->ndo_set_mac_address(dev, sa);
9096 if (err)
9097 return err;
9098 }
9099 dev->addr_assign_type = NET_ADDR_SET;
9100 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9101 add_device_randomness(dev->dev_addr, dev->addr_len);
9102 return 0;
9103}
9104EXPORT_SYMBOL(dev_set_mac_address);
9105
9106DECLARE_RWSEM(dev_addr_sem);
9107
9108int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9109 struct netlink_ext_ack *extack)
9110{
9111 int ret;
9112
9113 down_write(&dev_addr_sem);
9114 ret = dev_set_mac_address(dev, sa, extack);
9115 up_write(&dev_addr_sem);
9116 return ret;
9117}
9118EXPORT_SYMBOL(dev_set_mac_address_user);
9119
9120int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9121{
9122 size_t size = sizeof(sa->sa_data_min);
9123 struct net_device *dev;
9124 int ret = 0;
9125
9126 down_read(&dev_addr_sem);
9127 rcu_read_lock();
9128
9129 dev = dev_get_by_name_rcu(net, dev_name);
9130 if (!dev) {
9131 ret = -ENODEV;
9132 goto unlock;
9133 }
9134 if (!dev->addr_len)
9135 memset(sa->sa_data, 0, size);
9136 else
9137 memcpy(sa->sa_data, dev->dev_addr,
9138 min_t(size_t, size, dev->addr_len));
9139 sa->sa_family = dev->type;
9140
9141unlock:
9142 rcu_read_unlock();
9143 up_read(&dev_addr_sem);
9144 return ret;
9145}
9146EXPORT_SYMBOL(dev_get_mac_address);
9147
9148/**
9149 * dev_change_carrier - Change device carrier
9150 * @dev: device
9151 * @new_carrier: new value
9152 *
9153 * Change device carrier
9154 */
9155int dev_change_carrier(struct net_device *dev, bool new_carrier)
9156{
9157 const struct net_device_ops *ops = dev->netdev_ops;
9158
9159 if (!ops->ndo_change_carrier)
9160 return -EOPNOTSUPP;
9161 if (!netif_device_present(dev))
9162 return -ENODEV;
9163 return ops->ndo_change_carrier(dev, new_carrier);
9164}
9165
9166/**
9167 * dev_get_phys_port_id - Get device physical port ID
9168 * @dev: device
9169 * @ppid: port ID
9170 *
9171 * Get device physical port ID
9172 */
9173int dev_get_phys_port_id(struct net_device *dev,
9174 struct netdev_phys_item_id *ppid)
9175{
9176 const struct net_device_ops *ops = dev->netdev_ops;
9177
9178 if (!ops->ndo_get_phys_port_id)
9179 return -EOPNOTSUPP;
9180 return ops->ndo_get_phys_port_id(dev, ppid);
9181}
9182
9183/**
9184 * dev_get_phys_port_name - Get device physical port name
9185 * @dev: device
9186 * @name: port name
9187 * @len: limit of bytes to copy to name
9188 *
9189 * Get device physical port name
9190 */
9191int dev_get_phys_port_name(struct net_device *dev,
9192 char *name, size_t len)
9193{
9194 const struct net_device_ops *ops = dev->netdev_ops;
9195 int err;
9196
9197 if (ops->ndo_get_phys_port_name) {
9198 err = ops->ndo_get_phys_port_name(dev, name, len);
9199 if (err != -EOPNOTSUPP)
9200 return err;
9201 }
9202 return devlink_compat_phys_port_name_get(dev, name, len);
9203}
9204
9205/**
9206 * dev_get_port_parent_id - Get the device's port parent identifier
9207 * @dev: network device
9208 * @ppid: pointer to a storage for the port's parent identifier
9209 * @recurse: allow/disallow recursion to lower devices
9210 *
9211 * Get the devices's port parent identifier
9212 */
9213int dev_get_port_parent_id(struct net_device *dev,
9214 struct netdev_phys_item_id *ppid,
9215 bool recurse)
9216{
9217 const struct net_device_ops *ops = dev->netdev_ops;
9218 struct netdev_phys_item_id first = { };
9219 struct net_device *lower_dev;
9220 struct list_head *iter;
9221 int err;
9222
9223 if (ops->ndo_get_port_parent_id) {
9224 err = ops->ndo_get_port_parent_id(dev, ppid);
9225 if (err != -EOPNOTSUPP)
9226 return err;
9227 }
9228
9229 err = devlink_compat_switch_id_get(dev, ppid);
9230 if (!recurse || err != -EOPNOTSUPP)
9231 return err;
9232
9233 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9234 err = dev_get_port_parent_id(lower_dev, ppid, true);
9235 if (err)
9236 break;
9237 if (!first.id_len)
9238 first = *ppid;
9239 else if (memcmp(&first, ppid, sizeof(*ppid)))
9240 return -EOPNOTSUPP;
9241 }
9242
9243 return err;
9244}
9245EXPORT_SYMBOL(dev_get_port_parent_id);
9246
9247/**
9248 * netdev_port_same_parent_id - Indicate if two network devices have
9249 * the same port parent identifier
9250 * @a: first network device
9251 * @b: second network device
9252 */
9253bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9254{
9255 struct netdev_phys_item_id a_id = { };
9256 struct netdev_phys_item_id b_id = { };
9257
9258 if (dev_get_port_parent_id(a, &a_id, true) ||
9259 dev_get_port_parent_id(b, &b_id, true))
9260 return false;
9261
9262 return netdev_phys_item_id_same(&a_id, &b_id);
9263}
9264EXPORT_SYMBOL(netdev_port_same_parent_id);
9265
9266/**
9267 * dev_change_proto_down - set carrier according to proto_down.
9268 *
9269 * @dev: device
9270 * @proto_down: new value
9271 */
9272int dev_change_proto_down(struct net_device *dev, bool proto_down)
9273{
9274 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9275 return -EOPNOTSUPP;
9276 if (!netif_device_present(dev))
9277 return -ENODEV;
9278 if (proto_down)
9279 netif_carrier_off(dev);
9280 else
9281 netif_carrier_on(dev);
9282 WRITE_ONCE(dev->proto_down, proto_down);
9283 return 0;
9284}
9285
9286/**
9287 * dev_change_proto_down_reason - proto down reason
9288 *
9289 * @dev: device
9290 * @mask: proto down mask
9291 * @value: proto down value
9292 */
9293void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9294 u32 value)
9295{
9296 u32 proto_down_reason;
9297 int b;
9298
9299 if (!mask) {
9300 proto_down_reason = value;
9301 } else {
9302 proto_down_reason = dev->proto_down_reason;
9303 for_each_set_bit(b, &mask, 32) {
9304 if (value & (1 << b))
9305 proto_down_reason |= BIT(b);
9306 else
9307 proto_down_reason &= ~BIT(b);
9308 }
9309 }
9310 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9311}
9312
9313struct bpf_xdp_link {
9314 struct bpf_link link;
9315 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9316 int flags;
9317};
9318
9319static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9320{
9321 if (flags & XDP_FLAGS_HW_MODE)
9322 return XDP_MODE_HW;
9323 if (flags & XDP_FLAGS_DRV_MODE)
9324 return XDP_MODE_DRV;
9325 if (flags & XDP_FLAGS_SKB_MODE)
9326 return XDP_MODE_SKB;
9327 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9328}
9329
9330static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9331{
9332 switch (mode) {
9333 case XDP_MODE_SKB:
9334 return generic_xdp_install;
9335 case XDP_MODE_DRV:
9336 case XDP_MODE_HW:
9337 return dev->netdev_ops->ndo_bpf;
9338 default:
9339 return NULL;
9340 }
9341}
9342
9343static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9344 enum bpf_xdp_mode mode)
9345{
9346 return dev->xdp_state[mode].link;
9347}
9348
9349static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9350 enum bpf_xdp_mode mode)
9351{
9352 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9353
9354 if (link)
9355 return link->link.prog;
9356 return dev->xdp_state[mode].prog;
9357}
9358
9359u8 dev_xdp_prog_count(struct net_device *dev)
9360{
9361 u8 count = 0;
9362 int i;
9363
9364 for (i = 0; i < __MAX_XDP_MODE; i++)
9365 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9366 count++;
9367 return count;
9368}
9369EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9370
9371u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9372{
9373 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9374
9375 return prog ? prog->aux->id : 0;
9376}
9377
9378static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9379 struct bpf_xdp_link *link)
9380{
9381 dev->xdp_state[mode].link = link;
9382 dev->xdp_state[mode].prog = NULL;
9383}
9384
9385static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9386 struct bpf_prog *prog)
9387{
9388 dev->xdp_state[mode].link = NULL;
9389 dev->xdp_state[mode].prog = prog;
9390}
9391
9392static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9393 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9394 u32 flags, struct bpf_prog *prog)
9395{
9396 struct netdev_bpf xdp;
9397 int err;
9398
9399 memset(&xdp, 0, sizeof(xdp));
9400 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9401 xdp.extack = extack;
9402 xdp.flags = flags;
9403 xdp.prog = prog;
9404
9405 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9406 * "moved" into driver), so they don't increment it on their own, but
9407 * they do decrement refcnt when program is detached or replaced.
9408 * Given net_device also owns link/prog, we need to bump refcnt here
9409 * to prevent drivers from underflowing it.
9410 */
9411 if (prog)
9412 bpf_prog_inc(prog);
9413 err = bpf_op(dev, &xdp);
9414 if (err) {
9415 if (prog)
9416 bpf_prog_put(prog);
9417 return err;
9418 }
9419
9420 if (mode != XDP_MODE_HW)
9421 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9422
9423 return 0;
9424}
9425
9426static void dev_xdp_uninstall(struct net_device *dev)
9427{
9428 struct bpf_xdp_link *link;
9429 struct bpf_prog *prog;
9430 enum bpf_xdp_mode mode;
9431 bpf_op_t bpf_op;
9432
9433 ASSERT_RTNL();
9434
9435 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9436 prog = dev_xdp_prog(dev, mode);
9437 if (!prog)
9438 continue;
9439
9440 bpf_op = dev_xdp_bpf_op(dev, mode);
9441 if (!bpf_op)
9442 continue;
9443
9444 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9445
9446 /* auto-detach link from net device */
9447 link = dev_xdp_link(dev, mode);
9448 if (link)
9449 link->dev = NULL;
9450 else
9451 bpf_prog_put(prog);
9452
9453 dev_xdp_set_link(dev, mode, NULL);
9454 }
9455}
9456
9457static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9458 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9459 struct bpf_prog *old_prog, u32 flags)
9460{
9461 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9462 struct bpf_prog *cur_prog;
9463 struct net_device *upper;
9464 struct list_head *iter;
9465 enum bpf_xdp_mode mode;
9466 bpf_op_t bpf_op;
9467 int err;
9468
9469 ASSERT_RTNL();
9470
9471 /* either link or prog attachment, never both */
9472 if (link && (new_prog || old_prog))
9473 return -EINVAL;
9474 /* link supports only XDP mode flags */
9475 if (link && (flags & ~XDP_FLAGS_MODES)) {
9476 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9477 return -EINVAL;
9478 }
9479 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9480 if (num_modes > 1) {
9481 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9482 return -EINVAL;
9483 }
9484 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9485 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9486 NL_SET_ERR_MSG(extack,
9487 "More than one program loaded, unset mode is ambiguous");
9488 return -EINVAL;
9489 }
9490 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9491 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9492 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9493 return -EINVAL;
9494 }
9495
9496 mode = dev_xdp_mode(dev, flags);
9497 /* can't replace attached link */
9498 if (dev_xdp_link(dev, mode)) {
9499 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9500 return -EBUSY;
9501 }
9502
9503 /* don't allow if an upper device already has a program */
9504 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9505 if (dev_xdp_prog_count(upper) > 0) {
9506 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9507 return -EEXIST;
9508 }
9509 }
9510
9511 cur_prog = dev_xdp_prog(dev, mode);
9512 /* can't replace attached prog with link */
9513 if (link && cur_prog) {
9514 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9515 return -EBUSY;
9516 }
9517 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9518 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9519 return -EEXIST;
9520 }
9521
9522 /* put effective new program into new_prog */
9523 if (link)
9524 new_prog = link->link.prog;
9525
9526 if (new_prog) {
9527 bool offload = mode == XDP_MODE_HW;
9528 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9529 ? XDP_MODE_DRV : XDP_MODE_SKB;
9530
9531 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9532 NL_SET_ERR_MSG(extack, "XDP program already attached");
9533 return -EBUSY;
9534 }
9535 if (!offload && dev_xdp_prog(dev, other_mode)) {
9536 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9537 return -EEXIST;
9538 }
9539 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9540 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9541 return -EINVAL;
9542 }
9543 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9544 NL_SET_ERR_MSG(extack, "Program bound to different device");
9545 return -EINVAL;
9546 }
9547 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9548 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9549 return -EINVAL;
9550 }
9551 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9552 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9553 return -EINVAL;
9554 }
9555 }
9556
9557 /* don't call drivers if the effective program didn't change */
9558 if (new_prog != cur_prog) {
9559 bpf_op = dev_xdp_bpf_op(dev, mode);
9560 if (!bpf_op) {
9561 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9562 return -EOPNOTSUPP;
9563 }
9564
9565 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9566 if (err)
9567 return err;
9568 }
9569
9570 if (link)
9571 dev_xdp_set_link(dev, mode, link);
9572 else
9573 dev_xdp_set_prog(dev, mode, new_prog);
9574 if (cur_prog)
9575 bpf_prog_put(cur_prog);
9576
9577 return 0;
9578}
9579
9580static int dev_xdp_attach_link(struct net_device *dev,
9581 struct netlink_ext_ack *extack,
9582 struct bpf_xdp_link *link)
9583{
9584 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9585}
9586
9587static int dev_xdp_detach_link(struct net_device *dev,
9588 struct netlink_ext_ack *extack,
9589 struct bpf_xdp_link *link)
9590{
9591 enum bpf_xdp_mode mode;
9592 bpf_op_t bpf_op;
9593
9594 ASSERT_RTNL();
9595
9596 mode = dev_xdp_mode(dev, link->flags);
9597 if (dev_xdp_link(dev, mode) != link)
9598 return -EINVAL;
9599
9600 bpf_op = dev_xdp_bpf_op(dev, mode);
9601 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9602 dev_xdp_set_link(dev, mode, NULL);
9603 return 0;
9604}
9605
9606static void bpf_xdp_link_release(struct bpf_link *link)
9607{
9608 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9609
9610 rtnl_lock();
9611
9612 /* if racing with net_device's tear down, xdp_link->dev might be
9613 * already NULL, in which case link was already auto-detached
9614 */
9615 if (xdp_link->dev) {
9616 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9617 xdp_link->dev = NULL;
9618 }
9619
9620 rtnl_unlock();
9621}
9622
9623static int bpf_xdp_link_detach(struct bpf_link *link)
9624{
9625 bpf_xdp_link_release(link);
9626 return 0;
9627}
9628
9629static void bpf_xdp_link_dealloc(struct bpf_link *link)
9630{
9631 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9632
9633 kfree(xdp_link);
9634}
9635
9636static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9637 struct seq_file *seq)
9638{
9639 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9640 u32 ifindex = 0;
9641
9642 rtnl_lock();
9643 if (xdp_link->dev)
9644 ifindex = xdp_link->dev->ifindex;
9645 rtnl_unlock();
9646
9647 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9648}
9649
9650static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9651 struct bpf_link_info *info)
9652{
9653 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9654 u32 ifindex = 0;
9655
9656 rtnl_lock();
9657 if (xdp_link->dev)
9658 ifindex = xdp_link->dev->ifindex;
9659 rtnl_unlock();
9660
9661 info->xdp.ifindex = ifindex;
9662 return 0;
9663}
9664
9665static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9666 struct bpf_prog *old_prog)
9667{
9668 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9669 enum bpf_xdp_mode mode;
9670 bpf_op_t bpf_op;
9671 int err = 0;
9672
9673 rtnl_lock();
9674
9675 /* link might have been auto-released already, so fail */
9676 if (!xdp_link->dev) {
9677 err = -ENOLINK;
9678 goto out_unlock;
9679 }
9680
9681 if (old_prog && link->prog != old_prog) {
9682 err = -EPERM;
9683 goto out_unlock;
9684 }
9685 old_prog = link->prog;
9686 if (old_prog->type != new_prog->type ||
9687 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9688 err = -EINVAL;
9689 goto out_unlock;
9690 }
9691
9692 if (old_prog == new_prog) {
9693 /* no-op, don't disturb drivers */
9694 bpf_prog_put(new_prog);
9695 goto out_unlock;
9696 }
9697
9698 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9699 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9700 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9701 xdp_link->flags, new_prog);
9702 if (err)
9703 goto out_unlock;
9704
9705 old_prog = xchg(&link->prog, new_prog);
9706 bpf_prog_put(old_prog);
9707
9708out_unlock:
9709 rtnl_unlock();
9710 return err;
9711}
9712
9713static const struct bpf_link_ops bpf_xdp_link_lops = {
9714 .release = bpf_xdp_link_release,
9715 .dealloc = bpf_xdp_link_dealloc,
9716 .detach = bpf_xdp_link_detach,
9717 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9718 .fill_link_info = bpf_xdp_link_fill_link_info,
9719 .update_prog = bpf_xdp_link_update,
9720};
9721
9722int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9723{
9724 struct net *net = current->nsproxy->net_ns;
9725 struct bpf_link_primer link_primer;
9726 struct netlink_ext_ack extack = {};
9727 struct bpf_xdp_link *link;
9728 struct net_device *dev;
9729 int err, fd;
9730
9731 rtnl_lock();
9732 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9733 if (!dev) {
9734 rtnl_unlock();
9735 return -EINVAL;
9736 }
9737
9738 link = kzalloc(sizeof(*link), GFP_USER);
9739 if (!link) {
9740 err = -ENOMEM;
9741 goto unlock;
9742 }
9743
9744 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9745 link->dev = dev;
9746 link->flags = attr->link_create.flags;
9747
9748 err = bpf_link_prime(&link->link, &link_primer);
9749 if (err) {
9750 kfree(link);
9751 goto unlock;
9752 }
9753
9754 err = dev_xdp_attach_link(dev, &extack, link);
9755 rtnl_unlock();
9756
9757 if (err) {
9758 link->dev = NULL;
9759 bpf_link_cleanup(&link_primer);
9760 trace_bpf_xdp_link_attach_failed(extack._msg);
9761 goto out_put_dev;
9762 }
9763
9764 fd = bpf_link_settle(&link_primer);
9765 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9766 dev_put(dev);
9767 return fd;
9768
9769unlock:
9770 rtnl_unlock();
9771
9772out_put_dev:
9773 dev_put(dev);
9774 return err;
9775}
9776
9777/**
9778 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9779 * @dev: device
9780 * @extack: netlink extended ack
9781 * @fd: new program fd or negative value to clear
9782 * @expected_fd: old program fd that userspace expects to replace or clear
9783 * @flags: xdp-related flags
9784 *
9785 * Set or clear a bpf program for a device
9786 */
9787int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9788 int fd, int expected_fd, u32 flags)
9789{
9790 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9791 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9792 int err;
9793
9794 ASSERT_RTNL();
9795
9796 if (fd >= 0) {
9797 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9798 mode != XDP_MODE_SKB);
9799 if (IS_ERR(new_prog))
9800 return PTR_ERR(new_prog);
9801 }
9802
9803 if (expected_fd >= 0) {
9804 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9805 mode != XDP_MODE_SKB);
9806 if (IS_ERR(old_prog)) {
9807 err = PTR_ERR(old_prog);
9808 old_prog = NULL;
9809 goto err_out;
9810 }
9811 }
9812
9813 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9814
9815err_out:
9816 if (err && new_prog)
9817 bpf_prog_put(new_prog);
9818 if (old_prog)
9819 bpf_prog_put(old_prog);
9820 return err;
9821}
9822
9823/**
9824 * dev_index_reserve() - allocate an ifindex in a namespace
9825 * @net: the applicable net namespace
9826 * @ifindex: requested ifindex, pass %0 to get one allocated
9827 *
9828 * Allocate a ifindex for a new device. Caller must either use the ifindex
9829 * to store the device (via list_netdevice()) or call dev_index_release()
9830 * to give the index up.
9831 *
9832 * Return: a suitable unique value for a new device interface number or -errno.
9833 */
9834static int dev_index_reserve(struct net *net, u32 ifindex)
9835{
9836 int err;
9837
9838 if (ifindex > INT_MAX) {
9839 DEBUG_NET_WARN_ON_ONCE(1);
9840 return -EINVAL;
9841 }
9842
9843 if (!ifindex)
9844 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9845 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9846 else
9847 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9848 if (err < 0)
9849 return err;
9850
9851 return ifindex;
9852}
9853
9854static void dev_index_release(struct net *net, int ifindex)
9855{
9856 /* Expect only unused indexes, unlist_netdevice() removes the used */
9857 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9858}
9859
9860/* Delayed registration/unregisteration */
9861LIST_HEAD(net_todo_list);
9862DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9863atomic_t dev_unreg_count = ATOMIC_INIT(0);
9864
9865static void net_set_todo(struct net_device *dev)
9866{
9867 list_add_tail(&dev->todo_list, &net_todo_list);
9868}
9869
9870static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9871 struct net_device *upper, netdev_features_t features)
9872{
9873 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9874 netdev_features_t feature;
9875 int feature_bit;
9876
9877 for_each_netdev_feature(upper_disables, feature_bit) {
9878 feature = __NETIF_F_BIT(feature_bit);
9879 if (!(upper->wanted_features & feature)
9880 && (features & feature)) {
9881 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9882 &feature, upper->name);
9883 features &= ~feature;
9884 }
9885 }
9886
9887 return features;
9888}
9889
9890static void netdev_sync_lower_features(struct net_device *upper,
9891 struct net_device *lower, netdev_features_t features)
9892{
9893 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9894 netdev_features_t feature;
9895 int feature_bit;
9896
9897 for_each_netdev_feature(upper_disables, feature_bit) {
9898 feature = __NETIF_F_BIT(feature_bit);
9899 if (!(features & feature) && (lower->features & feature)) {
9900 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9901 &feature, lower->name);
9902 lower->wanted_features &= ~feature;
9903 __netdev_update_features(lower);
9904
9905 if (unlikely(lower->features & feature))
9906 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9907 &feature, lower->name);
9908 else
9909 netdev_features_change(lower);
9910 }
9911 }
9912}
9913
9914static netdev_features_t netdev_fix_features(struct net_device *dev,
9915 netdev_features_t features)
9916{
9917 /* Fix illegal checksum combinations */
9918 if ((features & NETIF_F_HW_CSUM) &&
9919 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9920 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9921 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9922 }
9923
9924 /* TSO requires that SG is present as well. */
9925 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9926 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9927 features &= ~NETIF_F_ALL_TSO;
9928 }
9929
9930 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9931 !(features & NETIF_F_IP_CSUM)) {
9932 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9933 features &= ~NETIF_F_TSO;
9934 features &= ~NETIF_F_TSO_ECN;
9935 }
9936
9937 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9938 !(features & NETIF_F_IPV6_CSUM)) {
9939 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9940 features &= ~NETIF_F_TSO6;
9941 }
9942
9943 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9944 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9945 features &= ~NETIF_F_TSO_MANGLEID;
9946
9947 /* TSO ECN requires that TSO is present as well. */
9948 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9949 features &= ~NETIF_F_TSO_ECN;
9950
9951 /* Software GSO depends on SG. */
9952 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9953 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9954 features &= ~NETIF_F_GSO;
9955 }
9956
9957 /* GSO partial features require GSO partial be set */
9958 if ((features & dev->gso_partial_features) &&
9959 !(features & NETIF_F_GSO_PARTIAL)) {
9960 netdev_dbg(dev,
9961 "Dropping partially supported GSO features since no GSO partial.\n");
9962 features &= ~dev->gso_partial_features;
9963 }
9964
9965 if (!(features & NETIF_F_RXCSUM)) {
9966 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9967 * successfully merged by hardware must also have the
9968 * checksum verified by hardware. If the user does not
9969 * want to enable RXCSUM, logically, we should disable GRO_HW.
9970 */
9971 if (features & NETIF_F_GRO_HW) {
9972 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9973 features &= ~NETIF_F_GRO_HW;
9974 }
9975 }
9976
9977 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9978 if (features & NETIF_F_RXFCS) {
9979 if (features & NETIF_F_LRO) {
9980 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9981 features &= ~NETIF_F_LRO;
9982 }
9983
9984 if (features & NETIF_F_GRO_HW) {
9985 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9986 features &= ~NETIF_F_GRO_HW;
9987 }
9988 }
9989
9990 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9991 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9992 features &= ~NETIF_F_LRO;
9993 }
9994
9995 if (features & NETIF_F_HW_TLS_TX) {
9996 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9997 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9998 bool hw_csum = features & NETIF_F_HW_CSUM;
9999
10000 if (!ip_csum && !hw_csum) {
10001 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10002 features &= ~NETIF_F_HW_TLS_TX;
10003 }
10004 }
10005
10006 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10007 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10008 features &= ~NETIF_F_HW_TLS_RX;
10009 }
10010
10011 return features;
10012}
10013
10014int __netdev_update_features(struct net_device *dev)
10015{
10016 struct net_device *upper, *lower;
10017 netdev_features_t features;
10018 struct list_head *iter;
10019 int err = -1;
10020
10021 ASSERT_RTNL();
10022
10023 features = netdev_get_wanted_features(dev);
10024
10025 if (dev->netdev_ops->ndo_fix_features)
10026 features = dev->netdev_ops->ndo_fix_features(dev, features);
10027
10028 /* driver might be less strict about feature dependencies */
10029 features = netdev_fix_features(dev, features);
10030
10031 /* some features can't be enabled if they're off on an upper device */
10032 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10033 features = netdev_sync_upper_features(dev, upper, features);
10034
10035 if (dev->features == features)
10036 goto sync_lower;
10037
10038 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10039 &dev->features, &features);
10040
10041 if (dev->netdev_ops->ndo_set_features)
10042 err = dev->netdev_ops->ndo_set_features(dev, features);
10043 else
10044 err = 0;
10045
10046 if (unlikely(err < 0)) {
10047 netdev_err(dev,
10048 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10049 err, &features, &dev->features);
10050 /* return non-0 since some features might have changed and
10051 * it's better to fire a spurious notification than miss it
10052 */
10053 return -1;
10054 }
10055
10056sync_lower:
10057 /* some features must be disabled on lower devices when disabled
10058 * on an upper device (think: bonding master or bridge)
10059 */
10060 netdev_for_each_lower_dev(dev, lower, iter)
10061 netdev_sync_lower_features(dev, lower, features);
10062
10063 if (!err) {
10064 netdev_features_t diff = features ^ dev->features;
10065
10066 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10067 /* udp_tunnel_{get,drop}_rx_info both need
10068 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10069 * device, or they won't do anything.
10070 * Thus we need to update dev->features
10071 * *before* calling udp_tunnel_get_rx_info,
10072 * but *after* calling udp_tunnel_drop_rx_info.
10073 */
10074 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10075 dev->features = features;
10076 udp_tunnel_get_rx_info(dev);
10077 } else {
10078 udp_tunnel_drop_rx_info(dev);
10079 }
10080 }
10081
10082 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10083 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10084 dev->features = features;
10085 err |= vlan_get_rx_ctag_filter_info(dev);
10086 } else {
10087 vlan_drop_rx_ctag_filter_info(dev);
10088 }
10089 }
10090
10091 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10092 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10093 dev->features = features;
10094 err |= vlan_get_rx_stag_filter_info(dev);
10095 } else {
10096 vlan_drop_rx_stag_filter_info(dev);
10097 }
10098 }
10099
10100 dev->features = features;
10101 }
10102
10103 return err < 0 ? 0 : 1;
10104}
10105
10106/**
10107 * netdev_update_features - recalculate device features
10108 * @dev: the device to check
10109 *
10110 * Recalculate dev->features set and send notifications if it
10111 * has changed. Should be called after driver or hardware dependent
10112 * conditions might have changed that influence the features.
10113 */
10114void netdev_update_features(struct net_device *dev)
10115{
10116 if (__netdev_update_features(dev))
10117 netdev_features_change(dev);
10118}
10119EXPORT_SYMBOL(netdev_update_features);
10120
10121/**
10122 * netdev_change_features - recalculate device features
10123 * @dev: the device to check
10124 *
10125 * Recalculate dev->features set and send notifications even
10126 * if they have not changed. Should be called instead of
10127 * netdev_update_features() if also dev->vlan_features might
10128 * have changed to allow the changes to be propagated to stacked
10129 * VLAN devices.
10130 */
10131void netdev_change_features(struct net_device *dev)
10132{
10133 __netdev_update_features(dev);
10134 netdev_features_change(dev);
10135}
10136EXPORT_SYMBOL(netdev_change_features);
10137
10138/**
10139 * netif_stacked_transfer_operstate - transfer operstate
10140 * @rootdev: the root or lower level device to transfer state from
10141 * @dev: the device to transfer operstate to
10142 *
10143 * Transfer operational state from root to device. This is normally
10144 * called when a stacking relationship exists between the root
10145 * device and the device(a leaf device).
10146 */
10147void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10148 struct net_device *dev)
10149{
10150 if (rootdev->operstate == IF_OPER_DORMANT)
10151 netif_dormant_on(dev);
10152 else
10153 netif_dormant_off(dev);
10154
10155 if (rootdev->operstate == IF_OPER_TESTING)
10156 netif_testing_on(dev);
10157 else
10158 netif_testing_off(dev);
10159
10160 if (netif_carrier_ok(rootdev))
10161 netif_carrier_on(dev);
10162 else
10163 netif_carrier_off(dev);
10164}
10165EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10166
10167static int netif_alloc_rx_queues(struct net_device *dev)
10168{
10169 unsigned int i, count = dev->num_rx_queues;
10170 struct netdev_rx_queue *rx;
10171 size_t sz = count * sizeof(*rx);
10172 int err = 0;
10173
10174 BUG_ON(count < 1);
10175
10176 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10177 if (!rx)
10178 return -ENOMEM;
10179
10180 dev->_rx = rx;
10181
10182 for (i = 0; i < count; i++) {
10183 rx[i].dev = dev;
10184
10185 /* XDP RX-queue setup */
10186 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10187 if (err < 0)
10188 goto err_rxq_info;
10189 }
10190 return 0;
10191
10192err_rxq_info:
10193 /* Rollback successful reg's and free other resources */
10194 while (i--)
10195 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10196 kvfree(dev->_rx);
10197 dev->_rx = NULL;
10198 return err;
10199}
10200
10201static void netif_free_rx_queues(struct net_device *dev)
10202{
10203 unsigned int i, count = dev->num_rx_queues;
10204
10205 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10206 if (!dev->_rx)
10207 return;
10208
10209 for (i = 0; i < count; i++)
10210 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10211
10212 kvfree(dev->_rx);
10213}
10214
10215static void netdev_init_one_queue(struct net_device *dev,
10216 struct netdev_queue *queue, void *_unused)
10217{
10218 /* Initialize queue lock */
10219 spin_lock_init(&queue->_xmit_lock);
10220 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10221 queue->xmit_lock_owner = -1;
10222 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10223 queue->dev = dev;
10224#ifdef CONFIG_BQL
10225 dql_init(&queue->dql, HZ);
10226#endif
10227}
10228
10229static void netif_free_tx_queues(struct net_device *dev)
10230{
10231 kvfree(dev->_tx);
10232}
10233
10234static int netif_alloc_netdev_queues(struct net_device *dev)
10235{
10236 unsigned int count = dev->num_tx_queues;
10237 struct netdev_queue *tx;
10238 size_t sz = count * sizeof(*tx);
10239
10240 if (count < 1 || count > 0xffff)
10241 return -EINVAL;
10242
10243 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10244 if (!tx)
10245 return -ENOMEM;
10246
10247 dev->_tx = tx;
10248
10249 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10250 spin_lock_init(&dev->tx_global_lock);
10251
10252 return 0;
10253}
10254
10255void netif_tx_stop_all_queues(struct net_device *dev)
10256{
10257 unsigned int i;
10258
10259 for (i = 0; i < dev->num_tx_queues; i++) {
10260 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10261
10262 netif_tx_stop_queue(txq);
10263 }
10264}
10265EXPORT_SYMBOL(netif_tx_stop_all_queues);
10266
10267static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10268{
10269 void __percpu *v;
10270
10271 /* Drivers implementing ndo_get_peer_dev must support tstat
10272 * accounting, so that skb_do_redirect() can bump the dev's
10273 * RX stats upon network namespace switch.
10274 */
10275 if (dev->netdev_ops->ndo_get_peer_dev &&
10276 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10277 return -EOPNOTSUPP;
10278
10279 switch (dev->pcpu_stat_type) {
10280 case NETDEV_PCPU_STAT_NONE:
10281 return 0;
10282 case NETDEV_PCPU_STAT_LSTATS:
10283 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10284 break;
10285 case NETDEV_PCPU_STAT_TSTATS:
10286 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10287 break;
10288 case NETDEV_PCPU_STAT_DSTATS:
10289 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10290 break;
10291 default:
10292 return -EINVAL;
10293 }
10294
10295 return v ? 0 : -ENOMEM;
10296}
10297
10298static void netdev_do_free_pcpu_stats(struct net_device *dev)
10299{
10300 switch (dev->pcpu_stat_type) {
10301 case NETDEV_PCPU_STAT_NONE:
10302 return;
10303 case NETDEV_PCPU_STAT_LSTATS:
10304 free_percpu(dev->lstats);
10305 break;
10306 case NETDEV_PCPU_STAT_TSTATS:
10307 free_percpu(dev->tstats);
10308 break;
10309 case NETDEV_PCPU_STAT_DSTATS:
10310 free_percpu(dev->dstats);
10311 break;
10312 }
10313}
10314
10315/**
10316 * register_netdevice() - register a network device
10317 * @dev: device to register
10318 *
10319 * Take a prepared network device structure and make it externally accessible.
10320 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10321 * Callers must hold the rtnl lock - you may want register_netdev()
10322 * instead of this.
10323 */
10324int register_netdevice(struct net_device *dev)
10325{
10326 int ret;
10327 struct net *net = dev_net(dev);
10328
10329 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10330 NETDEV_FEATURE_COUNT);
10331 BUG_ON(dev_boot_phase);
10332 ASSERT_RTNL();
10333
10334 might_sleep();
10335
10336 /* When net_device's are persistent, this will be fatal. */
10337 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10338 BUG_ON(!net);
10339
10340 ret = ethtool_check_ops(dev->ethtool_ops);
10341 if (ret)
10342 return ret;
10343
10344 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10345 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10346 mutex_init(&dev->ethtool->rss_lock);
10347
10348 spin_lock_init(&dev->addr_list_lock);
10349 netdev_set_addr_lockdep_class(dev);
10350
10351 ret = dev_get_valid_name(net, dev, dev->name);
10352 if (ret < 0)
10353 goto out;
10354
10355 ret = -ENOMEM;
10356 dev->name_node = netdev_name_node_head_alloc(dev);
10357 if (!dev->name_node)
10358 goto out;
10359
10360 /* Init, if this function is available */
10361 if (dev->netdev_ops->ndo_init) {
10362 ret = dev->netdev_ops->ndo_init(dev);
10363 if (ret) {
10364 if (ret > 0)
10365 ret = -EIO;
10366 goto err_free_name;
10367 }
10368 }
10369
10370 if (((dev->hw_features | dev->features) &
10371 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10372 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10373 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10374 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10375 ret = -EINVAL;
10376 goto err_uninit;
10377 }
10378
10379 ret = netdev_do_alloc_pcpu_stats(dev);
10380 if (ret)
10381 goto err_uninit;
10382
10383 ret = dev_index_reserve(net, dev->ifindex);
10384 if (ret < 0)
10385 goto err_free_pcpu;
10386 dev->ifindex = ret;
10387
10388 /* Transfer changeable features to wanted_features and enable
10389 * software offloads (GSO and GRO).
10390 */
10391 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10392 dev->features |= NETIF_F_SOFT_FEATURES;
10393
10394 if (dev->udp_tunnel_nic_info) {
10395 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10396 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10397 }
10398
10399 dev->wanted_features = dev->features & dev->hw_features;
10400
10401 if (!(dev->flags & IFF_LOOPBACK))
10402 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10403
10404 /* If IPv4 TCP segmentation offload is supported we should also
10405 * allow the device to enable segmenting the frame with the option
10406 * of ignoring a static IP ID value. This doesn't enable the
10407 * feature itself but allows the user to enable it later.
10408 */
10409 if (dev->hw_features & NETIF_F_TSO)
10410 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10411 if (dev->vlan_features & NETIF_F_TSO)
10412 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10413 if (dev->mpls_features & NETIF_F_TSO)
10414 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10415 if (dev->hw_enc_features & NETIF_F_TSO)
10416 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10417
10418 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10419 */
10420 dev->vlan_features |= NETIF_F_HIGHDMA;
10421
10422 /* Make NETIF_F_SG inheritable to tunnel devices.
10423 */
10424 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10425
10426 /* Make NETIF_F_SG inheritable to MPLS.
10427 */
10428 dev->mpls_features |= NETIF_F_SG;
10429
10430 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10431 ret = notifier_to_errno(ret);
10432 if (ret)
10433 goto err_ifindex_release;
10434
10435 ret = netdev_register_kobject(dev);
10436
10437 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10438
10439 if (ret)
10440 goto err_uninit_notify;
10441
10442 __netdev_update_features(dev);
10443
10444 /*
10445 * Default initial state at registry is that the
10446 * device is present.
10447 */
10448
10449 set_bit(__LINK_STATE_PRESENT, &dev->state);
10450
10451 linkwatch_init_dev(dev);
10452
10453 dev_init_scheduler(dev);
10454
10455 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10456 list_netdevice(dev);
10457
10458 add_device_randomness(dev->dev_addr, dev->addr_len);
10459
10460 /* If the device has permanent device address, driver should
10461 * set dev_addr and also addr_assign_type should be set to
10462 * NET_ADDR_PERM (default value).
10463 */
10464 if (dev->addr_assign_type == NET_ADDR_PERM)
10465 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10466
10467 /* Notify protocols, that a new device appeared. */
10468 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10469 ret = notifier_to_errno(ret);
10470 if (ret) {
10471 /* Expect explicit free_netdev() on failure */
10472 dev->needs_free_netdev = false;
10473 unregister_netdevice_queue(dev, NULL);
10474 goto out;
10475 }
10476 /*
10477 * Prevent userspace races by waiting until the network
10478 * device is fully setup before sending notifications.
10479 */
10480 if (!dev->rtnl_link_ops ||
10481 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10482 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10483
10484out:
10485 return ret;
10486
10487err_uninit_notify:
10488 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10489err_ifindex_release:
10490 dev_index_release(net, dev->ifindex);
10491err_free_pcpu:
10492 netdev_do_free_pcpu_stats(dev);
10493err_uninit:
10494 if (dev->netdev_ops->ndo_uninit)
10495 dev->netdev_ops->ndo_uninit(dev);
10496 if (dev->priv_destructor)
10497 dev->priv_destructor(dev);
10498err_free_name:
10499 netdev_name_node_free(dev->name_node);
10500 goto out;
10501}
10502EXPORT_SYMBOL(register_netdevice);
10503
10504/* Initialize the core of a dummy net device.
10505 * This is useful if you are calling this function after alloc_netdev(),
10506 * since it does not memset the net_device fields.
10507 */
10508static void init_dummy_netdev_core(struct net_device *dev)
10509{
10510 /* make sure we BUG if trying to hit standard
10511 * register/unregister code path
10512 */
10513 dev->reg_state = NETREG_DUMMY;
10514
10515 /* NAPI wants this */
10516 INIT_LIST_HEAD(&dev->napi_list);
10517
10518 /* a dummy interface is started by default */
10519 set_bit(__LINK_STATE_PRESENT, &dev->state);
10520 set_bit(__LINK_STATE_START, &dev->state);
10521
10522 /* napi_busy_loop stats accounting wants this */
10523 dev_net_set(dev, &init_net);
10524
10525 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10526 * because users of this 'device' dont need to change
10527 * its refcount.
10528 */
10529}
10530
10531/**
10532 * init_dummy_netdev - init a dummy network device for NAPI
10533 * @dev: device to init
10534 *
10535 * This takes a network device structure and initializes the minimum
10536 * amount of fields so it can be used to schedule NAPI polls without
10537 * registering a full blown interface. This is to be used by drivers
10538 * that need to tie several hardware interfaces to a single NAPI
10539 * poll scheduler due to HW limitations.
10540 */
10541void init_dummy_netdev(struct net_device *dev)
10542{
10543 /* Clear everything. Note we don't initialize spinlocks
10544 * as they aren't supposed to be taken by any of the
10545 * NAPI code and this dummy netdev is supposed to be
10546 * only ever used for NAPI polls
10547 */
10548 memset(dev, 0, sizeof(struct net_device));
10549 init_dummy_netdev_core(dev);
10550}
10551EXPORT_SYMBOL_GPL(init_dummy_netdev);
10552
10553/**
10554 * register_netdev - register a network device
10555 * @dev: device to register
10556 *
10557 * Take a completed network device structure and add it to the kernel
10558 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10559 * chain. 0 is returned on success. A negative errno code is returned
10560 * on a failure to set up the device, or if the name is a duplicate.
10561 *
10562 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10563 * and expands the device name if you passed a format string to
10564 * alloc_netdev.
10565 */
10566int register_netdev(struct net_device *dev)
10567{
10568 int err;
10569
10570 if (rtnl_lock_killable())
10571 return -EINTR;
10572 err = register_netdevice(dev);
10573 rtnl_unlock();
10574 return err;
10575}
10576EXPORT_SYMBOL(register_netdev);
10577
10578int netdev_refcnt_read(const struct net_device *dev)
10579{
10580#ifdef CONFIG_PCPU_DEV_REFCNT
10581 int i, refcnt = 0;
10582
10583 for_each_possible_cpu(i)
10584 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10585 return refcnt;
10586#else
10587 return refcount_read(&dev->dev_refcnt);
10588#endif
10589}
10590EXPORT_SYMBOL(netdev_refcnt_read);
10591
10592int netdev_unregister_timeout_secs __read_mostly = 10;
10593
10594#define WAIT_REFS_MIN_MSECS 1
10595#define WAIT_REFS_MAX_MSECS 250
10596/**
10597 * netdev_wait_allrefs_any - wait until all references are gone.
10598 * @list: list of net_devices to wait on
10599 *
10600 * This is called when unregistering network devices.
10601 *
10602 * Any protocol or device that holds a reference should register
10603 * for netdevice notification, and cleanup and put back the
10604 * reference if they receive an UNREGISTER event.
10605 * We can get stuck here if buggy protocols don't correctly
10606 * call dev_put.
10607 */
10608static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10609{
10610 unsigned long rebroadcast_time, warning_time;
10611 struct net_device *dev;
10612 int wait = 0;
10613
10614 rebroadcast_time = warning_time = jiffies;
10615
10616 list_for_each_entry(dev, list, todo_list)
10617 if (netdev_refcnt_read(dev) == 1)
10618 return dev;
10619
10620 while (true) {
10621 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10622 rtnl_lock();
10623
10624 /* Rebroadcast unregister notification */
10625 list_for_each_entry(dev, list, todo_list)
10626 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10627
10628 __rtnl_unlock();
10629 rcu_barrier();
10630 rtnl_lock();
10631
10632 list_for_each_entry(dev, list, todo_list)
10633 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10634 &dev->state)) {
10635 /* We must not have linkwatch events
10636 * pending on unregister. If this
10637 * happens, we simply run the queue
10638 * unscheduled, resulting in a noop
10639 * for this device.
10640 */
10641 linkwatch_run_queue();
10642 break;
10643 }
10644
10645 __rtnl_unlock();
10646
10647 rebroadcast_time = jiffies;
10648 }
10649
10650 rcu_barrier();
10651
10652 if (!wait) {
10653 wait = WAIT_REFS_MIN_MSECS;
10654 } else {
10655 msleep(wait);
10656 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10657 }
10658
10659 list_for_each_entry(dev, list, todo_list)
10660 if (netdev_refcnt_read(dev) == 1)
10661 return dev;
10662
10663 if (time_after(jiffies, warning_time +
10664 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10665 list_for_each_entry(dev, list, todo_list) {
10666 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10667 dev->name, netdev_refcnt_read(dev));
10668 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10669 }
10670
10671 warning_time = jiffies;
10672 }
10673 }
10674}
10675
10676/* The sequence is:
10677 *
10678 * rtnl_lock();
10679 * ...
10680 * register_netdevice(x1);
10681 * register_netdevice(x2);
10682 * ...
10683 * unregister_netdevice(y1);
10684 * unregister_netdevice(y2);
10685 * ...
10686 * rtnl_unlock();
10687 * free_netdev(y1);
10688 * free_netdev(y2);
10689 *
10690 * We are invoked by rtnl_unlock().
10691 * This allows us to deal with problems:
10692 * 1) We can delete sysfs objects which invoke hotplug
10693 * without deadlocking with linkwatch via keventd.
10694 * 2) Since we run with the RTNL semaphore not held, we can sleep
10695 * safely in order to wait for the netdev refcnt to drop to zero.
10696 *
10697 * We must not return until all unregister events added during
10698 * the interval the lock was held have been completed.
10699 */
10700void netdev_run_todo(void)
10701{
10702 struct net_device *dev, *tmp;
10703 struct list_head list;
10704 int cnt;
10705#ifdef CONFIG_LOCKDEP
10706 struct list_head unlink_list;
10707
10708 list_replace_init(&net_unlink_list, &unlink_list);
10709
10710 while (!list_empty(&unlink_list)) {
10711 struct net_device *dev = list_first_entry(&unlink_list,
10712 struct net_device,
10713 unlink_list);
10714 list_del_init(&dev->unlink_list);
10715 dev->nested_level = dev->lower_level - 1;
10716 }
10717#endif
10718
10719 /* Snapshot list, allow later requests */
10720 list_replace_init(&net_todo_list, &list);
10721
10722 __rtnl_unlock();
10723
10724 /* Wait for rcu callbacks to finish before next phase */
10725 if (!list_empty(&list))
10726 rcu_barrier();
10727
10728 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10729 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10730 netdev_WARN(dev, "run_todo but not unregistering\n");
10731 list_del(&dev->todo_list);
10732 continue;
10733 }
10734
10735 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10736 linkwatch_sync_dev(dev);
10737 }
10738
10739 cnt = 0;
10740 while (!list_empty(&list)) {
10741 dev = netdev_wait_allrefs_any(&list);
10742 list_del(&dev->todo_list);
10743
10744 /* paranoia */
10745 BUG_ON(netdev_refcnt_read(dev) != 1);
10746 BUG_ON(!list_empty(&dev->ptype_all));
10747 BUG_ON(!list_empty(&dev->ptype_specific));
10748 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10749 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10750
10751 netdev_do_free_pcpu_stats(dev);
10752 if (dev->priv_destructor)
10753 dev->priv_destructor(dev);
10754 if (dev->needs_free_netdev)
10755 free_netdev(dev);
10756
10757 cnt++;
10758
10759 /* Free network device */
10760 kobject_put(&dev->dev.kobj);
10761 }
10762 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10763 wake_up(&netdev_unregistering_wq);
10764}
10765
10766/* Collate per-cpu network dstats statistics
10767 *
10768 * Read per-cpu network statistics from dev->dstats and populate the related
10769 * fields in @s.
10770 */
10771static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10772 const struct pcpu_dstats __percpu *dstats)
10773{
10774 int cpu;
10775
10776 for_each_possible_cpu(cpu) {
10777 u64 rx_packets, rx_bytes, rx_drops;
10778 u64 tx_packets, tx_bytes, tx_drops;
10779 const struct pcpu_dstats *stats;
10780 unsigned int start;
10781
10782 stats = per_cpu_ptr(dstats, cpu);
10783 do {
10784 start = u64_stats_fetch_begin(&stats->syncp);
10785 rx_packets = u64_stats_read(&stats->rx_packets);
10786 rx_bytes = u64_stats_read(&stats->rx_bytes);
10787 rx_drops = u64_stats_read(&stats->rx_drops);
10788 tx_packets = u64_stats_read(&stats->tx_packets);
10789 tx_bytes = u64_stats_read(&stats->tx_bytes);
10790 tx_drops = u64_stats_read(&stats->tx_drops);
10791 } while (u64_stats_fetch_retry(&stats->syncp, start));
10792
10793 s->rx_packets += rx_packets;
10794 s->rx_bytes += rx_bytes;
10795 s->rx_dropped += rx_drops;
10796 s->tx_packets += tx_packets;
10797 s->tx_bytes += tx_bytes;
10798 s->tx_dropped += tx_drops;
10799 }
10800}
10801
10802/* ndo_get_stats64 implementation for dtstats-based accounting.
10803 *
10804 * Populate @s from dev->stats and dev->dstats. This is used internally by the
10805 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10806 */
10807static void dev_get_dstats64(const struct net_device *dev,
10808 struct rtnl_link_stats64 *s)
10809{
10810 netdev_stats_to_stats64(s, &dev->stats);
10811 dev_fetch_dstats(s, dev->dstats);
10812}
10813
10814/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10815 * all the same fields in the same order as net_device_stats, with only
10816 * the type differing, but rtnl_link_stats64 may have additional fields
10817 * at the end for newer counters.
10818 */
10819void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10820 const struct net_device_stats *netdev_stats)
10821{
10822 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10823 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10824 u64 *dst = (u64 *)stats64;
10825
10826 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10827 for (i = 0; i < n; i++)
10828 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10829 /* zero out counters that only exist in rtnl_link_stats64 */
10830 memset((char *)stats64 + n * sizeof(u64), 0,
10831 sizeof(*stats64) - n * sizeof(u64));
10832}
10833EXPORT_SYMBOL(netdev_stats_to_stats64);
10834
10835static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10836 struct net_device *dev)
10837{
10838 struct net_device_core_stats __percpu *p;
10839
10840 p = alloc_percpu_gfp(struct net_device_core_stats,
10841 GFP_ATOMIC | __GFP_NOWARN);
10842
10843 if (p && cmpxchg(&dev->core_stats, NULL, p))
10844 free_percpu(p);
10845
10846 /* This READ_ONCE() pairs with the cmpxchg() above */
10847 return READ_ONCE(dev->core_stats);
10848}
10849
10850noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10851{
10852 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10853 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10854 unsigned long __percpu *field;
10855
10856 if (unlikely(!p)) {
10857 p = netdev_core_stats_alloc(dev);
10858 if (!p)
10859 return;
10860 }
10861
10862 field = (__force unsigned long __percpu *)((__force void *)p + offset);
10863 this_cpu_inc(*field);
10864}
10865EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10866
10867/**
10868 * dev_get_stats - get network device statistics
10869 * @dev: device to get statistics from
10870 * @storage: place to store stats
10871 *
10872 * Get network statistics from device. Return @storage.
10873 * The device driver may provide its own method by setting
10874 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10875 * otherwise the internal statistics structure is used.
10876 */
10877struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10878 struct rtnl_link_stats64 *storage)
10879{
10880 const struct net_device_ops *ops = dev->netdev_ops;
10881 const struct net_device_core_stats __percpu *p;
10882
10883 if (ops->ndo_get_stats64) {
10884 memset(storage, 0, sizeof(*storage));
10885 ops->ndo_get_stats64(dev, storage);
10886 } else if (ops->ndo_get_stats) {
10887 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10888 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10889 dev_get_tstats64(dev, storage);
10890 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10891 dev_get_dstats64(dev, storage);
10892 } else {
10893 netdev_stats_to_stats64(storage, &dev->stats);
10894 }
10895
10896 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10897 p = READ_ONCE(dev->core_stats);
10898 if (p) {
10899 const struct net_device_core_stats *core_stats;
10900 int i;
10901
10902 for_each_possible_cpu(i) {
10903 core_stats = per_cpu_ptr(p, i);
10904 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10905 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10906 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10907 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10908 }
10909 }
10910 return storage;
10911}
10912EXPORT_SYMBOL(dev_get_stats);
10913
10914/**
10915 * dev_fetch_sw_netstats - get per-cpu network device statistics
10916 * @s: place to store stats
10917 * @netstats: per-cpu network stats to read from
10918 *
10919 * Read per-cpu network statistics and populate the related fields in @s.
10920 */
10921void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10922 const struct pcpu_sw_netstats __percpu *netstats)
10923{
10924 int cpu;
10925
10926 for_each_possible_cpu(cpu) {
10927 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10928 const struct pcpu_sw_netstats *stats;
10929 unsigned int start;
10930
10931 stats = per_cpu_ptr(netstats, cpu);
10932 do {
10933 start = u64_stats_fetch_begin(&stats->syncp);
10934 rx_packets = u64_stats_read(&stats->rx_packets);
10935 rx_bytes = u64_stats_read(&stats->rx_bytes);
10936 tx_packets = u64_stats_read(&stats->tx_packets);
10937 tx_bytes = u64_stats_read(&stats->tx_bytes);
10938 } while (u64_stats_fetch_retry(&stats->syncp, start));
10939
10940 s->rx_packets += rx_packets;
10941 s->rx_bytes += rx_bytes;
10942 s->tx_packets += tx_packets;
10943 s->tx_bytes += tx_bytes;
10944 }
10945}
10946EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10947
10948/**
10949 * dev_get_tstats64 - ndo_get_stats64 implementation
10950 * @dev: device to get statistics from
10951 * @s: place to store stats
10952 *
10953 * Populate @s from dev->stats and dev->tstats. Can be used as
10954 * ndo_get_stats64() callback.
10955 */
10956void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10957{
10958 netdev_stats_to_stats64(s, &dev->stats);
10959 dev_fetch_sw_netstats(s, dev->tstats);
10960}
10961EXPORT_SYMBOL_GPL(dev_get_tstats64);
10962
10963struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10964{
10965 struct netdev_queue *queue = dev_ingress_queue(dev);
10966
10967#ifdef CONFIG_NET_CLS_ACT
10968 if (queue)
10969 return queue;
10970 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10971 if (!queue)
10972 return NULL;
10973 netdev_init_one_queue(dev, queue, NULL);
10974 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10975 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10976 rcu_assign_pointer(dev->ingress_queue, queue);
10977#endif
10978 return queue;
10979}
10980
10981static const struct ethtool_ops default_ethtool_ops;
10982
10983void netdev_set_default_ethtool_ops(struct net_device *dev,
10984 const struct ethtool_ops *ops)
10985{
10986 if (dev->ethtool_ops == &default_ethtool_ops)
10987 dev->ethtool_ops = ops;
10988}
10989EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10990
10991/**
10992 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10993 * @dev: netdev to enable the IRQ coalescing on
10994 *
10995 * Sets a conservative default for SW IRQ coalescing. Users can use
10996 * sysfs attributes to override the default values.
10997 */
10998void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10999{
11000 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11001
11002 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11003 dev->gro_flush_timeout = 20000;
11004 dev->napi_defer_hard_irqs = 1;
11005 }
11006}
11007EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11008
11009/**
11010 * alloc_netdev_mqs - allocate network device
11011 * @sizeof_priv: size of private data to allocate space for
11012 * @name: device name format string
11013 * @name_assign_type: origin of device name
11014 * @setup: callback to initialize device
11015 * @txqs: the number of TX subqueues to allocate
11016 * @rxqs: the number of RX subqueues to allocate
11017 *
11018 * Allocates a struct net_device with private data area for driver use
11019 * and performs basic initialization. Also allocates subqueue structs
11020 * for each queue on the device.
11021 */
11022struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11023 unsigned char name_assign_type,
11024 void (*setup)(struct net_device *),
11025 unsigned int txqs, unsigned int rxqs)
11026{
11027 struct net_device *dev;
11028
11029 BUG_ON(strlen(name) >= sizeof(dev->name));
11030
11031 if (txqs < 1) {
11032 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11033 return NULL;
11034 }
11035
11036 if (rxqs < 1) {
11037 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11038 return NULL;
11039 }
11040
11041 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11042 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11043 if (!dev)
11044 return NULL;
11045
11046 dev->priv_len = sizeof_priv;
11047
11048 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11049#ifdef CONFIG_PCPU_DEV_REFCNT
11050 dev->pcpu_refcnt = alloc_percpu(int);
11051 if (!dev->pcpu_refcnt)
11052 goto free_dev;
11053 __dev_hold(dev);
11054#else
11055 refcount_set(&dev->dev_refcnt, 1);
11056#endif
11057
11058 if (dev_addr_init(dev))
11059 goto free_pcpu;
11060
11061 dev_mc_init(dev);
11062 dev_uc_init(dev);
11063
11064 dev_net_set(dev, &init_net);
11065
11066 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11067 dev->xdp_zc_max_segs = 1;
11068 dev->gso_max_segs = GSO_MAX_SEGS;
11069 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11070 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11071 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11072 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11073 dev->tso_max_segs = TSO_MAX_SEGS;
11074 dev->upper_level = 1;
11075 dev->lower_level = 1;
11076#ifdef CONFIG_LOCKDEP
11077 dev->nested_level = 0;
11078 INIT_LIST_HEAD(&dev->unlink_list);
11079#endif
11080
11081 INIT_LIST_HEAD(&dev->napi_list);
11082 INIT_LIST_HEAD(&dev->unreg_list);
11083 INIT_LIST_HEAD(&dev->close_list);
11084 INIT_LIST_HEAD(&dev->link_watch_list);
11085 INIT_LIST_HEAD(&dev->adj_list.upper);
11086 INIT_LIST_HEAD(&dev->adj_list.lower);
11087 INIT_LIST_HEAD(&dev->ptype_all);
11088 INIT_LIST_HEAD(&dev->ptype_specific);
11089 INIT_LIST_HEAD(&dev->net_notifier_list);
11090#ifdef CONFIG_NET_SCHED
11091 hash_init(dev->qdisc_hash);
11092#endif
11093 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11094 setup(dev);
11095
11096 if (!dev->tx_queue_len) {
11097 dev->priv_flags |= IFF_NO_QUEUE;
11098 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11099 }
11100
11101 dev->num_tx_queues = txqs;
11102 dev->real_num_tx_queues = txqs;
11103 if (netif_alloc_netdev_queues(dev))
11104 goto free_all;
11105
11106 dev->num_rx_queues = rxqs;
11107 dev->real_num_rx_queues = rxqs;
11108 if (netif_alloc_rx_queues(dev))
11109 goto free_all;
11110 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11111 if (!dev->ethtool)
11112 goto free_all;
11113
11114 strcpy(dev->name, name);
11115 dev->name_assign_type = name_assign_type;
11116 dev->group = INIT_NETDEV_GROUP;
11117 if (!dev->ethtool_ops)
11118 dev->ethtool_ops = &default_ethtool_ops;
11119
11120 nf_hook_netdev_init(dev);
11121
11122 return dev;
11123
11124free_all:
11125 free_netdev(dev);
11126 return NULL;
11127
11128free_pcpu:
11129#ifdef CONFIG_PCPU_DEV_REFCNT
11130 free_percpu(dev->pcpu_refcnt);
11131free_dev:
11132#endif
11133 kvfree(dev);
11134 return NULL;
11135}
11136EXPORT_SYMBOL(alloc_netdev_mqs);
11137
11138/**
11139 * free_netdev - free network device
11140 * @dev: device
11141 *
11142 * This function does the last stage of destroying an allocated device
11143 * interface. The reference to the device object is released. If this
11144 * is the last reference then it will be freed.Must be called in process
11145 * context.
11146 */
11147void free_netdev(struct net_device *dev)
11148{
11149 struct napi_struct *p, *n;
11150
11151 might_sleep();
11152
11153 /* When called immediately after register_netdevice() failed the unwind
11154 * handling may still be dismantling the device. Handle that case by
11155 * deferring the free.
11156 */
11157 if (dev->reg_state == NETREG_UNREGISTERING) {
11158 ASSERT_RTNL();
11159 dev->needs_free_netdev = true;
11160 return;
11161 }
11162
11163 kfree(dev->ethtool);
11164 netif_free_tx_queues(dev);
11165 netif_free_rx_queues(dev);
11166
11167 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11168
11169 /* Flush device addresses */
11170 dev_addr_flush(dev);
11171
11172 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11173 netif_napi_del(p);
11174
11175 ref_tracker_dir_exit(&dev->refcnt_tracker);
11176#ifdef CONFIG_PCPU_DEV_REFCNT
11177 free_percpu(dev->pcpu_refcnt);
11178 dev->pcpu_refcnt = NULL;
11179#endif
11180 free_percpu(dev->core_stats);
11181 dev->core_stats = NULL;
11182 free_percpu(dev->xdp_bulkq);
11183 dev->xdp_bulkq = NULL;
11184
11185 /* Compatibility with error handling in drivers */
11186 if (dev->reg_state == NETREG_UNINITIALIZED ||
11187 dev->reg_state == NETREG_DUMMY) {
11188 kvfree(dev);
11189 return;
11190 }
11191
11192 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11193 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11194
11195 /* will free via device release */
11196 put_device(&dev->dev);
11197}
11198EXPORT_SYMBOL(free_netdev);
11199
11200/**
11201 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11202 * @sizeof_priv: size of private data to allocate space for
11203 *
11204 * Return: the allocated net_device on success, NULL otherwise
11205 */
11206struct net_device *alloc_netdev_dummy(int sizeof_priv)
11207{
11208 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11209 init_dummy_netdev_core);
11210}
11211EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11212
11213/**
11214 * synchronize_net - Synchronize with packet receive processing
11215 *
11216 * Wait for packets currently being received to be done.
11217 * Does not block later packets from starting.
11218 */
11219void synchronize_net(void)
11220{
11221 might_sleep();
11222 if (rtnl_is_locked())
11223 synchronize_rcu_expedited();
11224 else
11225 synchronize_rcu();
11226}
11227EXPORT_SYMBOL(synchronize_net);
11228
11229static void netdev_rss_contexts_free(struct net_device *dev)
11230{
11231 struct ethtool_rxfh_context *ctx;
11232 unsigned long context;
11233
11234 mutex_lock(&dev->ethtool->rss_lock);
11235 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11236 struct ethtool_rxfh_param rxfh;
11237
11238 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11239 rxfh.key = ethtool_rxfh_context_key(ctx);
11240 rxfh.hfunc = ctx->hfunc;
11241 rxfh.input_xfrm = ctx->input_xfrm;
11242 rxfh.rss_context = context;
11243 rxfh.rss_delete = true;
11244
11245 xa_erase(&dev->ethtool->rss_ctx, context);
11246 if (dev->ethtool_ops->create_rxfh_context)
11247 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11248 context, NULL);
11249 else
11250 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11251 kfree(ctx);
11252 }
11253 xa_destroy(&dev->ethtool->rss_ctx);
11254 mutex_unlock(&dev->ethtool->rss_lock);
11255}
11256
11257/**
11258 * unregister_netdevice_queue - remove device from the kernel
11259 * @dev: device
11260 * @head: list
11261 *
11262 * This function shuts down a device interface and removes it
11263 * from the kernel tables.
11264 * If head not NULL, device is queued to be unregistered later.
11265 *
11266 * Callers must hold the rtnl semaphore. You may want
11267 * unregister_netdev() instead of this.
11268 */
11269
11270void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11271{
11272 ASSERT_RTNL();
11273
11274 if (head) {
11275 list_move_tail(&dev->unreg_list, head);
11276 } else {
11277 LIST_HEAD(single);
11278
11279 list_add(&dev->unreg_list, &single);
11280 unregister_netdevice_many(&single);
11281 }
11282}
11283EXPORT_SYMBOL(unregister_netdevice_queue);
11284
11285void unregister_netdevice_many_notify(struct list_head *head,
11286 u32 portid, const struct nlmsghdr *nlh)
11287{
11288 struct net_device *dev, *tmp;
11289 LIST_HEAD(close_head);
11290 int cnt = 0;
11291
11292 BUG_ON(dev_boot_phase);
11293 ASSERT_RTNL();
11294
11295 if (list_empty(head))
11296 return;
11297
11298 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11299 /* Some devices call without registering
11300 * for initialization unwind. Remove those
11301 * devices and proceed with the remaining.
11302 */
11303 if (dev->reg_state == NETREG_UNINITIALIZED) {
11304 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11305 dev->name, dev);
11306
11307 WARN_ON(1);
11308 list_del(&dev->unreg_list);
11309 continue;
11310 }
11311 dev->dismantle = true;
11312 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11313 }
11314
11315 /* If device is running, close it first. */
11316 list_for_each_entry(dev, head, unreg_list)
11317 list_add_tail(&dev->close_list, &close_head);
11318 dev_close_many(&close_head, true);
11319
11320 list_for_each_entry(dev, head, unreg_list) {
11321 /* And unlink it from device chain. */
11322 unlist_netdevice(dev);
11323 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11324 }
11325 flush_all_backlogs();
11326
11327 synchronize_net();
11328
11329 list_for_each_entry(dev, head, unreg_list) {
11330 struct sk_buff *skb = NULL;
11331
11332 /* Shutdown queueing discipline. */
11333 dev_shutdown(dev);
11334 dev_tcx_uninstall(dev);
11335 dev_xdp_uninstall(dev);
11336 bpf_dev_bound_netdev_unregister(dev);
11337
11338 netdev_offload_xstats_disable_all(dev);
11339
11340 /* Notify protocols, that we are about to destroy
11341 * this device. They should clean all the things.
11342 */
11343 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11344
11345 if (!dev->rtnl_link_ops ||
11346 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11347 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11348 GFP_KERNEL, NULL, 0,
11349 portid, nlh);
11350
11351 /*
11352 * Flush the unicast and multicast chains
11353 */
11354 dev_uc_flush(dev);
11355 dev_mc_flush(dev);
11356
11357 netdev_name_node_alt_flush(dev);
11358 netdev_name_node_free(dev->name_node);
11359
11360 netdev_rss_contexts_free(dev);
11361
11362 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11363
11364 if (dev->netdev_ops->ndo_uninit)
11365 dev->netdev_ops->ndo_uninit(dev);
11366
11367 mutex_destroy(&dev->ethtool->rss_lock);
11368
11369 if (skb)
11370 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11371
11372 /* Notifier chain MUST detach us all upper devices. */
11373 WARN_ON(netdev_has_any_upper_dev(dev));
11374 WARN_ON(netdev_has_any_lower_dev(dev));
11375
11376 /* Remove entries from kobject tree */
11377 netdev_unregister_kobject(dev);
11378#ifdef CONFIG_XPS
11379 /* Remove XPS queueing entries */
11380 netif_reset_xps_queues_gt(dev, 0);
11381#endif
11382 }
11383
11384 synchronize_net();
11385
11386 list_for_each_entry(dev, head, unreg_list) {
11387 netdev_put(dev, &dev->dev_registered_tracker);
11388 net_set_todo(dev);
11389 cnt++;
11390 }
11391 atomic_add(cnt, &dev_unreg_count);
11392
11393 list_del(head);
11394}
11395
11396/**
11397 * unregister_netdevice_many - unregister many devices
11398 * @head: list of devices
11399 *
11400 * Note: As most callers use a stack allocated list_head,
11401 * we force a list_del() to make sure stack wont be corrupted later.
11402 */
11403void unregister_netdevice_many(struct list_head *head)
11404{
11405 unregister_netdevice_many_notify(head, 0, NULL);
11406}
11407EXPORT_SYMBOL(unregister_netdevice_many);
11408
11409/**
11410 * unregister_netdev - remove device from the kernel
11411 * @dev: device
11412 *
11413 * This function shuts down a device interface and removes it
11414 * from the kernel tables.
11415 *
11416 * This is just a wrapper for unregister_netdevice that takes
11417 * the rtnl semaphore. In general you want to use this and not
11418 * unregister_netdevice.
11419 */
11420void unregister_netdev(struct net_device *dev)
11421{
11422 rtnl_lock();
11423 unregister_netdevice(dev);
11424 rtnl_unlock();
11425}
11426EXPORT_SYMBOL(unregister_netdev);
11427
11428/**
11429 * __dev_change_net_namespace - move device to different nethost namespace
11430 * @dev: device
11431 * @net: network namespace
11432 * @pat: If not NULL name pattern to try if the current device name
11433 * is already taken in the destination network namespace.
11434 * @new_ifindex: If not zero, specifies device index in the target
11435 * namespace.
11436 *
11437 * This function shuts down a device interface and moves it
11438 * to a new network namespace. On success 0 is returned, on
11439 * a failure a netagive errno code is returned.
11440 *
11441 * Callers must hold the rtnl semaphore.
11442 */
11443
11444int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11445 const char *pat, int new_ifindex)
11446{
11447 struct netdev_name_node *name_node;
11448 struct net *net_old = dev_net(dev);
11449 char new_name[IFNAMSIZ] = {};
11450 int err, new_nsid;
11451
11452 ASSERT_RTNL();
11453
11454 /* Don't allow namespace local devices to be moved. */
11455 err = -EINVAL;
11456 if (dev->features & NETIF_F_NETNS_LOCAL)
11457 goto out;
11458
11459 /* Ensure the device has been registrered */
11460 if (dev->reg_state != NETREG_REGISTERED)
11461 goto out;
11462
11463 /* Get out if there is nothing todo */
11464 err = 0;
11465 if (net_eq(net_old, net))
11466 goto out;
11467
11468 /* Pick the destination device name, and ensure
11469 * we can use it in the destination network namespace.
11470 */
11471 err = -EEXIST;
11472 if (netdev_name_in_use(net, dev->name)) {
11473 /* We get here if we can't use the current device name */
11474 if (!pat)
11475 goto out;
11476 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11477 if (err < 0)
11478 goto out;
11479 }
11480 /* Check that none of the altnames conflicts. */
11481 err = -EEXIST;
11482 netdev_for_each_altname(dev, name_node)
11483 if (netdev_name_in_use(net, name_node->name))
11484 goto out;
11485
11486 /* Check that new_ifindex isn't used yet. */
11487 if (new_ifindex) {
11488 err = dev_index_reserve(net, new_ifindex);
11489 if (err < 0)
11490 goto out;
11491 } else {
11492 /* If there is an ifindex conflict assign a new one */
11493 err = dev_index_reserve(net, dev->ifindex);
11494 if (err == -EBUSY)
11495 err = dev_index_reserve(net, 0);
11496 if (err < 0)
11497 goto out;
11498 new_ifindex = err;
11499 }
11500
11501 /*
11502 * And now a mini version of register_netdevice unregister_netdevice.
11503 */
11504
11505 /* If device is running close it first. */
11506 dev_close(dev);
11507
11508 /* And unlink it from device chain */
11509 unlist_netdevice(dev);
11510
11511 synchronize_net();
11512
11513 /* Shutdown queueing discipline. */
11514 dev_shutdown(dev);
11515
11516 /* Notify protocols, that we are about to destroy
11517 * this device. They should clean all the things.
11518 *
11519 * Note that dev->reg_state stays at NETREG_REGISTERED.
11520 * This is wanted because this way 8021q and macvlan know
11521 * the device is just moving and can keep their slaves up.
11522 */
11523 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11524 rcu_barrier();
11525
11526 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11527
11528 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11529 new_ifindex);
11530
11531 /*
11532 * Flush the unicast and multicast chains
11533 */
11534 dev_uc_flush(dev);
11535 dev_mc_flush(dev);
11536
11537 /* Send a netdev-removed uevent to the old namespace */
11538 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11539 netdev_adjacent_del_links(dev);
11540
11541 /* Move per-net netdevice notifiers that are following the netdevice */
11542 move_netdevice_notifiers_dev_net(dev, net);
11543
11544 /* Actually switch the network namespace */
11545 dev_net_set(dev, net);
11546 dev->ifindex = new_ifindex;
11547
11548 if (new_name[0]) {
11549 /* Rename the netdev to prepared name */
11550 write_seqlock_bh(&netdev_rename_lock);
11551 strscpy(dev->name, new_name, IFNAMSIZ);
11552 write_sequnlock_bh(&netdev_rename_lock);
11553 }
11554
11555 /* Fixup kobjects */
11556 dev_set_uevent_suppress(&dev->dev, 1);
11557 err = device_rename(&dev->dev, dev->name);
11558 dev_set_uevent_suppress(&dev->dev, 0);
11559 WARN_ON(err);
11560
11561 /* Send a netdev-add uevent to the new namespace */
11562 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11563 netdev_adjacent_add_links(dev);
11564
11565 /* Adapt owner in case owning user namespace of target network
11566 * namespace is different from the original one.
11567 */
11568 err = netdev_change_owner(dev, net_old, net);
11569 WARN_ON(err);
11570
11571 /* Add the device back in the hashes */
11572 list_netdevice(dev);
11573
11574 /* Notify protocols, that a new device appeared. */
11575 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11576
11577 /*
11578 * Prevent userspace races by waiting until the network
11579 * device is fully setup before sending notifications.
11580 */
11581 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11582
11583 synchronize_net();
11584 err = 0;
11585out:
11586 return err;
11587}
11588EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11589
11590static int dev_cpu_dead(unsigned int oldcpu)
11591{
11592 struct sk_buff **list_skb;
11593 struct sk_buff *skb;
11594 unsigned int cpu;
11595 struct softnet_data *sd, *oldsd, *remsd = NULL;
11596
11597 local_irq_disable();
11598 cpu = smp_processor_id();
11599 sd = &per_cpu(softnet_data, cpu);
11600 oldsd = &per_cpu(softnet_data, oldcpu);
11601
11602 /* Find end of our completion_queue. */
11603 list_skb = &sd->completion_queue;
11604 while (*list_skb)
11605 list_skb = &(*list_skb)->next;
11606 /* Append completion queue from offline CPU. */
11607 *list_skb = oldsd->completion_queue;
11608 oldsd->completion_queue = NULL;
11609
11610 /* Append output queue from offline CPU. */
11611 if (oldsd->output_queue) {
11612 *sd->output_queue_tailp = oldsd->output_queue;
11613 sd->output_queue_tailp = oldsd->output_queue_tailp;
11614 oldsd->output_queue = NULL;
11615 oldsd->output_queue_tailp = &oldsd->output_queue;
11616 }
11617 /* Append NAPI poll list from offline CPU, with one exception :
11618 * process_backlog() must be called by cpu owning percpu backlog.
11619 * We properly handle process_queue & input_pkt_queue later.
11620 */
11621 while (!list_empty(&oldsd->poll_list)) {
11622 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11623 struct napi_struct,
11624 poll_list);
11625
11626 list_del_init(&napi->poll_list);
11627 if (napi->poll == process_backlog)
11628 napi->state &= NAPIF_STATE_THREADED;
11629 else
11630 ____napi_schedule(sd, napi);
11631 }
11632
11633 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11634 local_irq_enable();
11635
11636 if (!use_backlog_threads()) {
11637#ifdef CONFIG_RPS
11638 remsd = oldsd->rps_ipi_list;
11639 oldsd->rps_ipi_list = NULL;
11640#endif
11641 /* send out pending IPI's on offline CPU */
11642 net_rps_send_ipi(remsd);
11643 }
11644
11645 /* Process offline CPU's input_pkt_queue */
11646 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11647 netif_rx(skb);
11648 rps_input_queue_head_incr(oldsd);
11649 }
11650 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11651 netif_rx(skb);
11652 rps_input_queue_head_incr(oldsd);
11653 }
11654
11655 return 0;
11656}
11657
11658/**
11659 * netdev_increment_features - increment feature set by one
11660 * @all: current feature set
11661 * @one: new feature set
11662 * @mask: mask feature set
11663 *
11664 * Computes a new feature set after adding a device with feature set
11665 * @one to the master device with current feature set @all. Will not
11666 * enable anything that is off in @mask. Returns the new feature set.
11667 */
11668netdev_features_t netdev_increment_features(netdev_features_t all,
11669 netdev_features_t one, netdev_features_t mask)
11670{
11671 if (mask & NETIF_F_HW_CSUM)
11672 mask |= NETIF_F_CSUM_MASK;
11673 mask |= NETIF_F_VLAN_CHALLENGED;
11674
11675 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11676 all &= one | ~NETIF_F_ALL_FOR_ALL;
11677
11678 /* If one device supports hw checksumming, set for all. */
11679 if (all & NETIF_F_HW_CSUM)
11680 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11681
11682 return all;
11683}
11684EXPORT_SYMBOL(netdev_increment_features);
11685
11686static struct hlist_head * __net_init netdev_create_hash(void)
11687{
11688 int i;
11689 struct hlist_head *hash;
11690
11691 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11692 if (hash != NULL)
11693 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11694 INIT_HLIST_HEAD(&hash[i]);
11695
11696 return hash;
11697}
11698
11699/* Initialize per network namespace state */
11700static int __net_init netdev_init(struct net *net)
11701{
11702 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11703 8 * sizeof_field(struct napi_struct, gro_bitmask));
11704
11705 INIT_LIST_HEAD(&net->dev_base_head);
11706
11707 net->dev_name_head = netdev_create_hash();
11708 if (net->dev_name_head == NULL)
11709 goto err_name;
11710
11711 net->dev_index_head = netdev_create_hash();
11712 if (net->dev_index_head == NULL)
11713 goto err_idx;
11714
11715 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11716
11717 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11718
11719 return 0;
11720
11721err_idx:
11722 kfree(net->dev_name_head);
11723err_name:
11724 return -ENOMEM;
11725}
11726
11727/**
11728 * netdev_drivername - network driver for the device
11729 * @dev: network device
11730 *
11731 * Determine network driver for device.
11732 */
11733const char *netdev_drivername(const struct net_device *dev)
11734{
11735 const struct device_driver *driver;
11736 const struct device *parent;
11737 const char *empty = "";
11738
11739 parent = dev->dev.parent;
11740 if (!parent)
11741 return empty;
11742
11743 driver = parent->driver;
11744 if (driver && driver->name)
11745 return driver->name;
11746 return empty;
11747}
11748
11749static void __netdev_printk(const char *level, const struct net_device *dev,
11750 struct va_format *vaf)
11751{
11752 if (dev && dev->dev.parent) {
11753 dev_printk_emit(level[1] - '0',
11754 dev->dev.parent,
11755 "%s %s %s%s: %pV",
11756 dev_driver_string(dev->dev.parent),
11757 dev_name(dev->dev.parent),
11758 netdev_name(dev), netdev_reg_state(dev),
11759 vaf);
11760 } else if (dev) {
11761 printk("%s%s%s: %pV",
11762 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11763 } else {
11764 printk("%s(NULL net_device): %pV", level, vaf);
11765 }
11766}
11767
11768void netdev_printk(const char *level, const struct net_device *dev,
11769 const char *format, ...)
11770{
11771 struct va_format vaf;
11772 va_list args;
11773
11774 va_start(args, format);
11775
11776 vaf.fmt = format;
11777 vaf.va = &args;
11778
11779 __netdev_printk(level, dev, &vaf);
11780
11781 va_end(args);
11782}
11783EXPORT_SYMBOL(netdev_printk);
11784
11785#define define_netdev_printk_level(func, level) \
11786void func(const struct net_device *dev, const char *fmt, ...) \
11787{ \
11788 struct va_format vaf; \
11789 va_list args; \
11790 \
11791 va_start(args, fmt); \
11792 \
11793 vaf.fmt = fmt; \
11794 vaf.va = &args; \
11795 \
11796 __netdev_printk(level, dev, &vaf); \
11797 \
11798 va_end(args); \
11799} \
11800EXPORT_SYMBOL(func);
11801
11802define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11803define_netdev_printk_level(netdev_alert, KERN_ALERT);
11804define_netdev_printk_level(netdev_crit, KERN_CRIT);
11805define_netdev_printk_level(netdev_err, KERN_ERR);
11806define_netdev_printk_level(netdev_warn, KERN_WARNING);
11807define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11808define_netdev_printk_level(netdev_info, KERN_INFO);
11809
11810static void __net_exit netdev_exit(struct net *net)
11811{
11812 kfree(net->dev_name_head);
11813 kfree(net->dev_index_head);
11814 xa_destroy(&net->dev_by_index);
11815 if (net != &init_net)
11816 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11817}
11818
11819static struct pernet_operations __net_initdata netdev_net_ops = {
11820 .init = netdev_init,
11821 .exit = netdev_exit,
11822};
11823
11824static void __net_exit default_device_exit_net(struct net *net)
11825{
11826 struct netdev_name_node *name_node, *tmp;
11827 struct net_device *dev, *aux;
11828 /*
11829 * Push all migratable network devices back to the
11830 * initial network namespace
11831 */
11832 ASSERT_RTNL();
11833 for_each_netdev_safe(net, dev, aux) {
11834 int err;
11835 char fb_name[IFNAMSIZ];
11836
11837 /* Ignore unmoveable devices (i.e. loopback) */
11838 if (dev->features & NETIF_F_NETNS_LOCAL)
11839 continue;
11840
11841 /* Leave virtual devices for the generic cleanup */
11842 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11843 continue;
11844
11845 /* Push remaining network devices to init_net */
11846 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11847 if (netdev_name_in_use(&init_net, fb_name))
11848 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11849
11850 netdev_for_each_altname_safe(dev, name_node, tmp)
11851 if (netdev_name_in_use(&init_net, name_node->name))
11852 __netdev_name_node_alt_destroy(name_node);
11853
11854 err = dev_change_net_namespace(dev, &init_net, fb_name);
11855 if (err) {
11856 pr_emerg("%s: failed to move %s to init_net: %d\n",
11857 __func__, dev->name, err);
11858 BUG();
11859 }
11860 }
11861}
11862
11863static void __net_exit default_device_exit_batch(struct list_head *net_list)
11864{
11865 /* At exit all network devices most be removed from a network
11866 * namespace. Do this in the reverse order of registration.
11867 * Do this across as many network namespaces as possible to
11868 * improve batching efficiency.
11869 */
11870 struct net_device *dev;
11871 struct net *net;
11872 LIST_HEAD(dev_kill_list);
11873
11874 rtnl_lock();
11875 list_for_each_entry(net, net_list, exit_list) {
11876 default_device_exit_net(net);
11877 cond_resched();
11878 }
11879
11880 list_for_each_entry(net, net_list, exit_list) {
11881 for_each_netdev_reverse(net, dev) {
11882 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11883 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11884 else
11885 unregister_netdevice_queue(dev, &dev_kill_list);
11886 }
11887 }
11888 unregister_netdevice_many(&dev_kill_list);
11889 rtnl_unlock();
11890}
11891
11892static struct pernet_operations __net_initdata default_device_ops = {
11893 .exit_batch = default_device_exit_batch,
11894};
11895
11896static void __init net_dev_struct_check(void)
11897{
11898 /* TX read-mostly hotpath */
11899 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11900 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11901 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11902 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11903 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11904 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11905 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11906 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11907 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11908 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11909 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11910 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11911 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11912#ifdef CONFIG_XPS
11913 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11914#endif
11915#ifdef CONFIG_NETFILTER_EGRESS
11916 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11917#endif
11918#ifdef CONFIG_NET_XGRESS
11919 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11920#endif
11921 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11922
11923 /* TXRX read-mostly hotpath */
11924 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11925 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11926 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11927 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11928 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11929 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11930 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11931
11932 /* RX read-mostly hotpath */
11933 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11934 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11935 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11936 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11937 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11938 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11939 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11940 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11941 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11942 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11943 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11944#ifdef CONFIG_NETPOLL
11945 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11946#endif
11947#ifdef CONFIG_NET_XGRESS
11948 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11949#endif
11950 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11951}
11952
11953/*
11954 * Initialize the DEV module. At boot time this walks the device list and
11955 * unhooks any devices that fail to initialise (normally hardware not
11956 * present) and leaves us with a valid list of present and active devices.
11957 *
11958 */
11959
11960/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11961#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
11962
11963static int net_page_pool_create(int cpuid)
11964{
11965#if IS_ENABLED(CONFIG_PAGE_POOL)
11966 struct page_pool_params page_pool_params = {
11967 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11968 .flags = PP_FLAG_SYSTEM_POOL,
11969 .nid = cpu_to_mem(cpuid),
11970 };
11971 struct page_pool *pp_ptr;
11972
11973 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11974 if (IS_ERR(pp_ptr))
11975 return -ENOMEM;
11976
11977 per_cpu(system_page_pool, cpuid) = pp_ptr;
11978#endif
11979 return 0;
11980}
11981
11982static int backlog_napi_should_run(unsigned int cpu)
11983{
11984 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11985 struct napi_struct *napi = &sd->backlog;
11986
11987 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
11988}
11989
11990static void run_backlog_napi(unsigned int cpu)
11991{
11992 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11993
11994 napi_threaded_poll_loop(&sd->backlog);
11995}
11996
11997static void backlog_napi_setup(unsigned int cpu)
11998{
11999 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12000 struct napi_struct *napi = &sd->backlog;
12001
12002 napi->thread = this_cpu_read(backlog_napi);
12003 set_bit(NAPI_STATE_THREADED, &napi->state);
12004}
12005
12006static struct smp_hotplug_thread backlog_threads = {
12007 .store = &backlog_napi,
12008 .thread_should_run = backlog_napi_should_run,
12009 .thread_fn = run_backlog_napi,
12010 .thread_comm = "backlog_napi/%u",
12011 .setup = backlog_napi_setup,
12012};
12013
12014/*
12015 * This is called single threaded during boot, so no need
12016 * to take the rtnl semaphore.
12017 */
12018static int __init net_dev_init(void)
12019{
12020 int i, rc = -ENOMEM;
12021
12022 BUG_ON(!dev_boot_phase);
12023
12024 net_dev_struct_check();
12025
12026 if (dev_proc_init())
12027 goto out;
12028
12029 if (netdev_kobject_init())
12030 goto out;
12031
12032 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12033 INIT_LIST_HEAD(&ptype_base[i]);
12034
12035 if (register_pernet_subsys(&netdev_net_ops))
12036 goto out;
12037
12038 /*
12039 * Initialise the packet receive queues.
12040 */
12041
12042 for_each_possible_cpu(i) {
12043 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12044 struct softnet_data *sd = &per_cpu(softnet_data, i);
12045
12046 INIT_WORK(flush, flush_backlog);
12047
12048 skb_queue_head_init(&sd->input_pkt_queue);
12049 skb_queue_head_init(&sd->process_queue);
12050#ifdef CONFIG_XFRM_OFFLOAD
12051 skb_queue_head_init(&sd->xfrm_backlog);
12052#endif
12053 INIT_LIST_HEAD(&sd->poll_list);
12054 sd->output_queue_tailp = &sd->output_queue;
12055#ifdef CONFIG_RPS
12056 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12057 sd->cpu = i;
12058#endif
12059 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12060 spin_lock_init(&sd->defer_lock);
12061
12062 init_gro_hash(&sd->backlog);
12063 sd->backlog.poll = process_backlog;
12064 sd->backlog.weight = weight_p;
12065 INIT_LIST_HEAD(&sd->backlog.poll_list);
12066
12067 if (net_page_pool_create(i))
12068 goto out;
12069 }
12070 if (use_backlog_threads())
12071 smpboot_register_percpu_thread(&backlog_threads);
12072
12073 dev_boot_phase = 0;
12074
12075 /* The loopback device is special if any other network devices
12076 * is present in a network namespace the loopback device must
12077 * be present. Since we now dynamically allocate and free the
12078 * loopback device ensure this invariant is maintained by
12079 * keeping the loopback device as the first device on the
12080 * list of network devices. Ensuring the loopback devices
12081 * is the first device that appears and the last network device
12082 * that disappears.
12083 */
12084 if (register_pernet_device(&loopback_net_ops))
12085 goto out;
12086
12087 if (register_pernet_device(&default_device_ops))
12088 goto out;
12089
12090 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12091 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12092
12093 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12094 NULL, dev_cpu_dead);
12095 WARN_ON(rc < 0);
12096 rc = 0;
12097
12098 /* avoid static key IPIs to isolated CPUs */
12099 if (housekeeping_enabled(HK_TYPE_MISC))
12100 net_enable_timestamp();
12101out:
12102 if (rc < 0) {
12103 for_each_possible_cpu(i) {
12104 struct page_pool *pp_ptr;
12105
12106 pp_ptr = per_cpu(system_page_pool, i);
12107 if (!pp_ptr)
12108 continue;
12109
12110 page_pool_destroy(pp_ptr);
12111 per_cpu(system_page_pool, i) = NULL;
12112 }
12113 }
12114
12115 return rc;
12116}
12117
12118subsys_initcall(net_dev_init);