Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12#define pr_fmt(fmt) "LSM: " fmt
13
14#include <linux/bpf.h>
15#include <linux/capability.h>
16#include <linux/dcache.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/kernel_read_file.h>
21#include <linux/lsm_hooks.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <linux/backing-dev.h>
27#include <linux/string.h>
28#include <linux/xattr.h>
29#include <linux/msg.h>
30#include <linux/overflow.h>
31#include <net/flow.h>
32
33/* How many LSMs were built into the kernel? */
34#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
35
36/*
37 * How many LSMs are built into the kernel as determined at
38 * build time. Used to determine fixed array sizes.
39 * The capability module is accounted for by CONFIG_SECURITY
40 */
41#define LSM_CONFIG_COUNT ( \
42 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
43 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
44 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
45 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
46 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
47 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
48 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
49 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
50 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
51 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
52 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
53 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
54 (IS_ENABLED(CONFIG_EVM) ? 1 : 0))
55
56/*
57 * These are descriptions of the reasons that can be passed to the
58 * security_locked_down() LSM hook. Placing this array here allows
59 * all security modules to use the same descriptions for auditing
60 * purposes.
61 */
62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
63 [LOCKDOWN_NONE] = "none",
64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
67 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
68 [LOCKDOWN_HIBERNATION] = "hibernation",
69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
70 [LOCKDOWN_IOPORT] = "raw io port access",
71 [LOCKDOWN_MSR] = "raw MSR access",
72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
78 [LOCKDOWN_DEBUGFS] = "debugfs access",
79 [LOCKDOWN_XMON_WR] = "xmon write access",
80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
83 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
84 [LOCKDOWN_KCORE] = "/proc/kcore access",
85 [LOCKDOWN_KPROBES] = "use of kprobes",
86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
88 [LOCKDOWN_PERF] = "unsafe use of perf",
89 [LOCKDOWN_TRACEFS] = "use of tracefs",
90 [LOCKDOWN_XMON_RW] = "xmon read and write access",
91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
93};
94
95struct security_hook_heads security_hook_heads __ro_after_init;
96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
97
98static struct kmem_cache *lsm_file_cache;
99static struct kmem_cache *lsm_inode_cache;
100
101char *lsm_names;
102static struct lsm_blob_sizes blob_sizes __ro_after_init;
103
104/* Boot-time LSM user choice */
105static __initdata const char *chosen_lsm_order;
106static __initdata const char *chosen_major_lsm;
107
108static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
109
110/* Ordered list of LSMs to initialize. */
111static __initdata struct lsm_info **ordered_lsms;
112static __initdata struct lsm_info *exclusive;
113
114static __initdata bool debug;
115#define init_debug(...) \
116 do { \
117 if (debug) \
118 pr_info(__VA_ARGS__); \
119 } while (0)
120
121static bool __init is_enabled(struct lsm_info *lsm)
122{
123 if (!lsm->enabled)
124 return false;
125
126 return *lsm->enabled;
127}
128
129/* Mark an LSM's enabled flag. */
130static int lsm_enabled_true __initdata = 1;
131static int lsm_enabled_false __initdata = 0;
132static void __init set_enabled(struct lsm_info *lsm, bool enabled)
133{
134 /*
135 * When an LSM hasn't configured an enable variable, we can use
136 * a hard-coded location for storing the default enabled state.
137 */
138 if (!lsm->enabled) {
139 if (enabled)
140 lsm->enabled = &lsm_enabled_true;
141 else
142 lsm->enabled = &lsm_enabled_false;
143 } else if (lsm->enabled == &lsm_enabled_true) {
144 if (!enabled)
145 lsm->enabled = &lsm_enabled_false;
146 } else if (lsm->enabled == &lsm_enabled_false) {
147 if (enabled)
148 lsm->enabled = &lsm_enabled_true;
149 } else {
150 *lsm->enabled = enabled;
151 }
152}
153
154/* Is an LSM already listed in the ordered LSMs list? */
155static bool __init exists_ordered_lsm(struct lsm_info *lsm)
156{
157 struct lsm_info **check;
158
159 for (check = ordered_lsms; *check; check++)
160 if (*check == lsm)
161 return true;
162
163 return false;
164}
165
166/* Append an LSM to the list of ordered LSMs to initialize. */
167static int last_lsm __initdata;
168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
169{
170 /* Ignore duplicate selections. */
171 if (exists_ordered_lsm(lsm))
172 return;
173
174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
175 return;
176
177 /* Enable this LSM, if it is not already set. */
178 if (!lsm->enabled)
179 lsm->enabled = &lsm_enabled_true;
180 ordered_lsms[last_lsm++] = lsm;
181
182 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
183 is_enabled(lsm) ? "enabled" : "disabled");
184}
185
186/* Is an LSM allowed to be initialized? */
187static bool __init lsm_allowed(struct lsm_info *lsm)
188{
189 /* Skip if the LSM is disabled. */
190 if (!is_enabled(lsm))
191 return false;
192
193 /* Not allowed if another exclusive LSM already initialized. */
194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
195 init_debug("exclusive disabled: %s\n", lsm->name);
196 return false;
197 }
198
199 return true;
200}
201
202static void __init lsm_set_blob_size(int *need, int *lbs)
203{
204 int offset;
205
206 if (*need <= 0)
207 return;
208
209 offset = ALIGN(*lbs, sizeof(void *));
210 *lbs = offset + *need;
211 *need = offset;
212}
213
214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
215{
216 if (!needed)
217 return;
218
219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
221 /*
222 * The inode blob gets an rcu_head in addition to
223 * what the modules might need.
224 */
225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
226 blob_sizes.lbs_inode = sizeof(struct rcu_head);
227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
232 lsm_set_blob_size(&needed->lbs_xattr_count,
233 &blob_sizes.lbs_xattr_count);
234}
235
236/* Prepare LSM for initialization. */
237static void __init prepare_lsm(struct lsm_info *lsm)
238{
239 int enabled = lsm_allowed(lsm);
240
241 /* Record enablement (to handle any following exclusive LSMs). */
242 set_enabled(lsm, enabled);
243
244 /* If enabled, do pre-initialization work. */
245 if (enabled) {
246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
247 exclusive = lsm;
248 init_debug("exclusive chosen: %s\n", lsm->name);
249 }
250
251 lsm_set_blob_sizes(lsm->blobs);
252 }
253}
254
255/* Initialize a given LSM, if it is enabled. */
256static void __init initialize_lsm(struct lsm_info *lsm)
257{
258 if (is_enabled(lsm)) {
259 int ret;
260
261 init_debug("initializing %s\n", lsm->name);
262 ret = lsm->init();
263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
264 }
265}
266
267/*
268 * Current index to use while initializing the lsm id list.
269 */
270u32 lsm_active_cnt __ro_after_init;
271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
272
273/* Populate ordered LSMs list from comma-separated LSM name list. */
274static void __init ordered_lsm_parse(const char *order, const char *origin)
275{
276 struct lsm_info *lsm;
277 char *sep, *name, *next;
278
279 /* LSM_ORDER_FIRST is always first. */
280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281 if (lsm->order == LSM_ORDER_FIRST)
282 append_ordered_lsm(lsm, " first");
283 }
284
285 /* Process "security=", if given. */
286 if (chosen_major_lsm) {
287 struct lsm_info *major;
288
289 /*
290 * To match the original "security=" behavior, this
291 * explicitly does NOT fallback to another Legacy Major
292 * if the selected one was separately disabled: disable
293 * all non-matching Legacy Major LSMs.
294 */
295 for (major = __start_lsm_info; major < __end_lsm_info;
296 major++) {
297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
298 strcmp(major->name, chosen_major_lsm) != 0) {
299 set_enabled(major, false);
300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
301 chosen_major_lsm, major->name);
302 }
303 }
304 }
305
306 sep = kstrdup(order, GFP_KERNEL);
307 next = sep;
308 /* Walk the list, looking for matching LSMs. */
309 while ((name = strsep(&next, ",")) != NULL) {
310 bool found = false;
311
312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
313 if (strcmp(lsm->name, name) == 0) {
314 if (lsm->order == LSM_ORDER_MUTABLE)
315 append_ordered_lsm(lsm, origin);
316 found = true;
317 }
318 }
319
320 if (!found)
321 init_debug("%s ignored: %s (not built into kernel)\n",
322 origin, name);
323 }
324
325 /* Process "security=", if given. */
326 if (chosen_major_lsm) {
327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
328 if (exists_ordered_lsm(lsm))
329 continue;
330 if (strcmp(lsm->name, chosen_major_lsm) == 0)
331 append_ordered_lsm(lsm, "security=");
332 }
333 }
334
335 /* LSM_ORDER_LAST is always last. */
336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
337 if (lsm->order == LSM_ORDER_LAST)
338 append_ordered_lsm(lsm, " last");
339 }
340
341 /* Disable all LSMs not in the ordered list. */
342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
343 if (exists_ordered_lsm(lsm))
344 continue;
345 set_enabled(lsm, false);
346 init_debug("%s skipped: %s (not in requested order)\n",
347 origin, lsm->name);
348 }
349
350 kfree(sep);
351}
352
353static void __init lsm_early_cred(struct cred *cred);
354static void __init lsm_early_task(struct task_struct *task);
355
356static int lsm_append(const char *new, char **result);
357
358static void __init report_lsm_order(void)
359{
360 struct lsm_info **lsm, *early;
361 int first = 0;
362
363 pr_info("initializing lsm=");
364
365 /* Report each enabled LSM name, comma separated. */
366 for (early = __start_early_lsm_info;
367 early < __end_early_lsm_info; early++)
368 if (is_enabled(early))
369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
370 for (lsm = ordered_lsms; *lsm; lsm++)
371 if (is_enabled(*lsm))
372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
373
374 pr_cont("\n");
375}
376
377static void __init ordered_lsm_init(void)
378{
379 struct lsm_info **lsm;
380
381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
382 GFP_KERNEL);
383
384 if (chosen_lsm_order) {
385 if (chosen_major_lsm) {
386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
387 chosen_major_lsm, chosen_lsm_order);
388 chosen_major_lsm = NULL;
389 }
390 ordered_lsm_parse(chosen_lsm_order, "cmdline");
391 } else
392 ordered_lsm_parse(builtin_lsm_order, "builtin");
393
394 for (lsm = ordered_lsms; *lsm; lsm++)
395 prepare_lsm(*lsm);
396
397 report_lsm_order();
398
399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
400 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
405 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
407
408 /*
409 * Create any kmem_caches needed for blobs
410 */
411 if (blob_sizes.lbs_file)
412 lsm_file_cache = kmem_cache_create("lsm_file_cache",
413 blob_sizes.lbs_file, 0,
414 SLAB_PANIC, NULL);
415 if (blob_sizes.lbs_inode)
416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
417 blob_sizes.lbs_inode, 0,
418 SLAB_PANIC, NULL);
419
420 lsm_early_cred((struct cred *) current->cred);
421 lsm_early_task(current);
422 for (lsm = ordered_lsms; *lsm; lsm++)
423 initialize_lsm(*lsm);
424
425 kfree(ordered_lsms);
426}
427
428int __init early_security_init(void)
429{
430 struct lsm_info *lsm;
431
432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
433 INIT_HLIST_HEAD(&security_hook_heads.NAME);
434#include "linux/lsm_hook_defs.h"
435#undef LSM_HOOK
436
437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
438 if (!lsm->enabled)
439 lsm->enabled = &lsm_enabled_true;
440 prepare_lsm(lsm);
441 initialize_lsm(lsm);
442 }
443
444 return 0;
445}
446
447/**
448 * security_init - initializes the security framework
449 *
450 * This should be called early in the kernel initialization sequence.
451 */
452int __init security_init(void)
453{
454 struct lsm_info *lsm;
455
456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
459
460 /*
461 * Append the names of the early LSM modules now that kmalloc() is
462 * available
463 */
464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
465 init_debug(" early started: %s (%s)\n", lsm->name,
466 is_enabled(lsm) ? "enabled" : "disabled");
467 if (lsm->enabled)
468 lsm_append(lsm->name, &lsm_names);
469 }
470
471 /* Load LSMs in specified order. */
472 ordered_lsm_init();
473
474 return 0;
475}
476
477/* Save user chosen LSM */
478static int __init choose_major_lsm(char *str)
479{
480 chosen_major_lsm = str;
481 return 1;
482}
483__setup("security=", choose_major_lsm);
484
485/* Explicitly choose LSM initialization order. */
486static int __init choose_lsm_order(char *str)
487{
488 chosen_lsm_order = str;
489 return 1;
490}
491__setup("lsm=", choose_lsm_order);
492
493/* Enable LSM order debugging. */
494static int __init enable_debug(char *str)
495{
496 debug = true;
497 return 1;
498}
499__setup("lsm.debug", enable_debug);
500
501static bool match_last_lsm(const char *list, const char *lsm)
502{
503 const char *last;
504
505 if (WARN_ON(!list || !lsm))
506 return false;
507 last = strrchr(list, ',');
508 if (last)
509 /* Pass the comma, strcmp() will check for '\0' */
510 last++;
511 else
512 last = list;
513 return !strcmp(last, lsm);
514}
515
516static int lsm_append(const char *new, char **result)
517{
518 char *cp;
519
520 if (*result == NULL) {
521 *result = kstrdup(new, GFP_KERNEL);
522 if (*result == NULL)
523 return -ENOMEM;
524 } else {
525 /* Check if it is the last registered name */
526 if (match_last_lsm(*result, new))
527 return 0;
528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
529 if (cp == NULL)
530 return -ENOMEM;
531 kfree(*result);
532 *result = cp;
533 }
534 return 0;
535}
536
537/**
538 * security_add_hooks - Add a modules hooks to the hook lists.
539 * @hooks: the hooks to add
540 * @count: the number of hooks to add
541 * @lsmid: the identification information for the security module
542 *
543 * Each LSM has to register its hooks with the infrastructure.
544 */
545void __init security_add_hooks(struct security_hook_list *hooks, int count,
546 const struct lsm_id *lsmid)
547{
548 int i;
549
550 /*
551 * A security module may call security_add_hooks() more
552 * than once during initialization, and LSM initialization
553 * is serialized. Landlock is one such case.
554 * Look at the previous entry, if there is one, for duplication.
555 */
556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
557 if (lsm_active_cnt >= LSM_CONFIG_COUNT)
558 panic("%s Too many LSMs registered.\n", __func__);
559 lsm_idlist[lsm_active_cnt++] = lsmid;
560 }
561
562 for (i = 0; i < count; i++) {
563 hooks[i].lsmid = lsmid;
564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
565 }
566
567 /*
568 * Don't try to append during early_security_init(), we'll come back
569 * and fix this up afterwards.
570 */
571 if (slab_is_available()) {
572 if (lsm_append(lsmid->name, &lsm_names) < 0)
573 panic("%s - Cannot get early memory.\n", __func__);
574 }
575}
576
577int call_blocking_lsm_notifier(enum lsm_event event, void *data)
578{
579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
580 event, data);
581}
582EXPORT_SYMBOL(call_blocking_lsm_notifier);
583
584int register_blocking_lsm_notifier(struct notifier_block *nb)
585{
586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
587 nb);
588}
589EXPORT_SYMBOL(register_blocking_lsm_notifier);
590
591int unregister_blocking_lsm_notifier(struct notifier_block *nb)
592{
593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
594 nb);
595}
596EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
597
598/**
599 * lsm_cred_alloc - allocate a composite cred blob
600 * @cred: the cred that needs a blob
601 * @gfp: allocation type
602 *
603 * Allocate the cred blob for all the modules
604 *
605 * Returns 0, or -ENOMEM if memory can't be allocated.
606 */
607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
608{
609 if (blob_sizes.lbs_cred == 0) {
610 cred->security = NULL;
611 return 0;
612 }
613
614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
615 if (cred->security == NULL)
616 return -ENOMEM;
617 return 0;
618}
619
620/**
621 * lsm_early_cred - during initialization allocate a composite cred blob
622 * @cred: the cred that needs a blob
623 *
624 * Allocate the cred blob for all the modules
625 */
626static void __init lsm_early_cred(struct cred *cred)
627{
628 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
629
630 if (rc)
631 panic("%s: Early cred alloc failed.\n", __func__);
632}
633
634/**
635 * lsm_file_alloc - allocate a composite file blob
636 * @file: the file that needs a blob
637 *
638 * Allocate the file blob for all the modules
639 *
640 * Returns 0, or -ENOMEM if memory can't be allocated.
641 */
642static int lsm_file_alloc(struct file *file)
643{
644 if (!lsm_file_cache) {
645 file->f_security = NULL;
646 return 0;
647 }
648
649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
650 if (file->f_security == NULL)
651 return -ENOMEM;
652 return 0;
653}
654
655/**
656 * lsm_inode_alloc - allocate a composite inode blob
657 * @inode: the inode that needs a blob
658 *
659 * Allocate the inode blob for all the modules
660 *
661 * Returns 0, or -ENOMEM if memory can't be allocated.
662 */
663int lsm_inode_alloc(struct inode *inode)
664{
665 if (!lsm_inode_cache) {
666 inode->i_security = NULL;
667 return 0;
668 }
669
670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
671 if (inode->i_security == NULL)
672 return -ENOMEM;
673 return 0;
674}
675
676/**
677 * lsm_task_alloc - allocate a composite task blob
678 * @task: the task that needs a blob
679 *
680 * Allocate the task blob for all the modules
681 *
682 * Returns 0, or -ENOMEM if memory can't be allocated.
683 */
684static int lsm_task_alloc(struct task_struct *task)
685{
686 if (blob_sizes.lbs_task == 0) {
687 task->security = NULL;
688 return 0;
689 }
690
691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
692 if (task->security == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/**
698 * lsm_ipc_alloc - allocate a composite ipc blob
699 * @kip: the ipc that needs a blob
700 *
701 * Allocate the ipc blob for all the modules
702 *
703 * Returns 0, or -ENOMEM if memory can't be allocated.
704 */
705static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
706{
707 if (blob_sizes.lbs_ipc == 0) {
708 kip->security = NULL;
709 return 0;
710 }
711
712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
713 if (kip->security == NULL)
714 return -ENOMEM;
715 return 0;
716}
717
718/**
719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
720 * @mp: the msg_msg that needs a blob
721 *
722 * Allocate the ipc blob for all the modules
723 *
724 * Returns 0, or -ENOMEM if memory can't be allocated.
725 */
726static int lsm_msg_msg_alloc(struct msg_msg *mp)
727{
728 if (blob_sizes.lbs_msg_msg == 0) {
729 mp->security = NULL;
730 return 0;
731 }
732
733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
734 if (mp->security == NULL)
735 return -ENOMEM;
736 return 0;
737}
738
739/**
740 * lsm_early_task - during initialization allocate a composite task blob
741 * @task: the task that needs a blob
742 *
743 * Allocate the task blob for all the modules
744 */
745static void __init lsm_early_task(struct task_struct *task)
746{
747 int rc = lsm_task_alloc(task);
748
749 if (rc)
750 panic("%s: Early task alloc failed.\n", __func__);
751}
752
753/**
754 * lsm_superblock_alloc - allocate a composite superblock blob
755 * @sb: the superblock that needs a blob
756 *
757 * Allocate the superblock blob for all the modules
758 *
759 * Returns 0, or -ENOMEM if memory can't be allocated.
760 */
761static int lsm_superblock_alloc(struct super_block *sb)
762{
763 if (blob_sizes.lbs_superblock == 0) {
764 sb->s_security = NULL;
765 return 0;
766 }
767
768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
769 if (sb->s_security == NULL)
770 return -ENOMEM;
771 return 0;
772}
773
774/**
775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
776 * @uctx: a userspace LSM context to be filled
777 * @uctx_len: available uctx size (input), used uctx size (output)
778 * @val: the new LSM context value
779 * @val_len: the size of the new LSM context value
780 * @id: LSM id
781 * @flags: LSM defined flags
782 *
783 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
784 * simply calculate the required size to output via @utc_len and return
785 * success.
786 *
787 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
788 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
789 */
790int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
791 void *val, size_t val_len,
792 u64 id, u64 flags)
793{
794 struct lsm_ctx *nctx = NULL;
795 size_t nctx_len;
796 int rc = 0;
797
798 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
799 if (nctx_len > *uctx_len) {
800 rc = -E2BIG;
801 goto out;
802 }
803
804 /* no buffer - return success/0 and set @uctx_len to the req size */
805 if (!uctx)
806 goto out;
807
808 nctx = kzalloc(nctx_len, GFP_KERNEL);
809 if (nctx == NULL) {
810 rc = -ENOMEM;
811 goto out;
812 }
813 nctx->id = id;
814 nctx->flags = flags;
815 nctx->len = nctx_len;
816 nctx->ctx_len = val_len;
817 memcpy(nctx->ctx, val, val_len);
818
819 if (copy_to_user(uctx, nctx, nctx_len))
820 rc = -EFAULT;
821
822out:
823 kfree(nctx);
824 *uctx_len = nctx_len;
825 return rc;
826}
827
828/*
829 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
830 * can be accessed with:
831 *
832 * LSM_RET_DEFAULT(<hook_name>)
833 *
834 * The macros below define static constants for the default value of each
835 * LSM hook.
836 */
837#define LSM_RET_DEFAULT(NAME) (NAME##_default)
838#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
839#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
840 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
841#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
842 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
843
844#include <linux/lsm_hook_defs.h>
845#undef LSM_HOOK
846
847/*
848 * Hook list operation macros.
849 *
850 * call_void_hook:
851 * This is a hook that does not return a value.
852 *
853 * call_int_hook:
854 * This is a hook that returns a value.
855 */
856
857#define call_void_hook(FUNC, ...) \
858 do { \
859 struct security_hook_list *P; \
860 \
861 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
862 P->hook.FUNC(__VA_ARGS__); \
863 } while (0)
864
865#define call_int_hook(FUNC, ...) ({ \
866 int RC = LSM_RET_DEFAULT(FUNC); \
867 do { \
868 struct security_hook_list *P; \
869 \
870 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
871 RC = P->hook.FUNC(__VA_ARGS__); \
872 if (RC != LSM_RET_DEFAULT(FUNC)) \
873 break; \
874 } \
875 } while (0); \
876 RC; \
877})
878
879/* Security operations */
880
881/**
882 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
883 * @mgr: task credentials of current binder process
884 *
885 * Check whether @mgr is allowed to be the binder context manager.
886 *
887 * Return: Return 0 if permission is granted.
888 */
889int security_binder_set_context_mgr(const struct cred *mgr)
890{
891 return call_int_hook(binder_set_context_mgr, mgr);
892}
893
894/**
895 * security_binder_transaction() - Check if a binder transaction is allowed
896 * @from: sending process
897 * @to: receiving process
898 *
899 * Check whether @from is allowed to invoke a binder transaction call to @to.
900 *
901 * Return: Returns 0 if permission is granted.
902 */
903int security_binder_transaction(const struct cred *from,
904 const struct cred *to)
905{
906 return call_int_hook(binder_transaction, from, to);
907}
908
909/**
910 * security_binder_transfer_binder() - Check if a binder transfer is allowed
911 * @from: sending process
912 * @to: receiving process
913 *
914 * Check whether @from is allowed to transfer a binder reference to @to.
915 *
916 * Return: Returns 0 if permission is granted.
917 */
918int security_binder_transfer_binder(const struct cred *from,
919 const struct cred *to)
920{
921 return call_int_hook(binder_transfer_binder, from, to);
922}
923
924/**
925 * security_binder_transfer_file() - Check if a binder file xfer is allowed
926 * @from: sending process
927 * @to: receiving process
928 * @file: file being transferred
929 *
930 * Check whether @from is allowed to transfer @file to @to.
931 *
932 * Return: Returns 0 if permission is granted.
933 */
934int security_binder_transfer_file(const struct cred *from,
935 const struct cred *to, const struct file *file)
936{
937 return call_int_hook(binder_transfer_file, from, to, file);
938}
939
940/**
941 * security_ptrace_access_check() - Check if tracing is allowed
942 * @child: target process
943 * @mode: PTRACE_MODE flags
944 *
945 * Check permission before allowing the current process to trace the @child
946 * process. Security modules may also want to perform a process tracing check
947 * during an execve in the set_security or apply_creds hooks of tracing check
948 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
949 * process is being traced and its security attributes would be changed by the
950 * execve.
951 *
952 * Return: Returns 0 if permission is granted.
953 */
954int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
955{
956 return call_int_hook(ptrace_access_check, child, mode);
957}
958
959/**
960 * security_ptrace_traceme() - Check if tracing is allowed
961 * @parent: tracing process
962 *
963 * Check that the @parent process has sufficient permission to trace the
964 * current process before allowing the current process to present itself to the
965 * @parent process for tracing.
966 *
967 * Return: Returns 0 if permission is granted.
968 */
969int security_ptrace_traceme(struct task_struct *parent)
970{
971 return call_int_hook(ptrace_traceme, parent);
972}
973
974/**
975 * security_capget() - Get the capability sets for a process
976 * @target: target process
977 * @effective: effective capability set
978 * @inheritable: inheritable capability set
979 * @permitted: permitted capability set
980 *
981 * Get the @effective, @inheritable, and @permitted capability sets for the
982 * @target process. The hook may also perform permission checking to determine
983 * if the current process is allowed to see the capability sets of the @target
984 * process.
985 *
986 * Return: Returns 0 if the capability sets were successfully obtained.
987 */
988int security_capget(const struct task_struct *target,
989 kernel_cap_t *effective,
990 kernel_cap_t *inheritable,
991 kernel_cap_t *permitted)
992{
993 return call_int_hook(capget, target, effective, inheritable, permitted);
994}
995
996/**
997 * security_capset() - Set the capability sets for a process
998 * @new: new credentials for the target process
999 * @old: current credentials of the target process
1000 * @effective: effective capability set
1001 * @inheritable: inheritable capability set
1002 * @permitted: permitted capability set
1003 *
1004 * Set the @effective, @inheritable, and @permitted capability sets for the
1005 * current process.
1006 *
1007 * Return: Returns 0 and update @new if permission is granted.
1008 */
1009int security_capset(struct cred *new, const struct cred *old,
1010 const kernel_cap_t *effective,
1011 const kernel_cap_t *inheritable,
1012 const kernel_cap_t *permitted)
1013{
1014 return call_int_hook(capset, new, old, effective, inheritable,
1015 permitted);
1016}
1017
1018/**
1019 * security_capable() - Check if a process has the necessary capability
1020 * @cred: credentials to examine
1021 * @ns: user namespace
1022 * @cap: capability requested
1023 * @opts: capability check options
1024 *
1025 * Check whether the @tsk process has the @cap capability in the indicated
1026 * credentials. @cap contains the capability <include/linux/capability.h>.
1027 * @opts contains options for the capable check <include/linux/security.h>.
1028 *
1029 * Return: Returns 0 if the capability is granted.
1030 */
1031int security_capable(const struct cred *cred,
1032 struct user_namespace *ns,
1033 int cap,
1034 unsigned int opts)
1035{
1036 return call_int_hook(capable, cred, ns, cap, opts);
1037}
1038
1039/**
1040 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1041 * @cmds: commands
1042 * @type: type
1043 * @id: id
1044 * @sb: filesystem
1045 *
1046 * Check whether the quotactl syscall is allowed for this @sb.
1047 *
1048 * Return: Returns 0 if permission is granted.
1049 */
1050int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1051{
1052 return call_int_hook(quotactl, cmds, type, id, sb);
1053}
1054
1055/**
1056 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1057 * @dentry: dentry
1058 *
1059 * Check whether QUOTAON is allowed for @dentry.
1060 *
1061 * Return: Returns 0 if permission is granted.
1062 */
1063int security_quota_on(struct dentry *dentry)
1064{
1065 return call_int_hook(quota_on, dentry);
1066}
1067
1068/**
1069 * security_syslog() - Check if accessing the kernel message ring is allowed
1070 * @type: SYSLOG_ACTION_* type
1071 *
1072 * Check permission before accessing the kernel message ring or changing
1073 * logging to the console. See the syslog(2) manual page for an explanation of
1074 * the @type values.
1075 *
1076 * Return: Return 0 if permission is granted.
1077 */
1078int security_syslog(int type)
1079{
1080 return call_int_hook(syslog, type);
1081}
1082
1083/**
1084 * security_settime64() - Check if changing the system time is allowed
1085 * @ts: new time
1086 * @tz: timezone
1087 *
1088 * Check permission to change the system time, struct timespec64 is defined in
1089 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1090 *
1091 * Return: Returns 0 if permission is granted.
1092 */
1093int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1094{
1095 return call_int_hook(settime, ts, tz);
1096}
1097
1098/**
1099 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1100 * @mm: mm struct
1101 * @pages: number of pages
1102 *
1103 * Check permissions for allocating a new virtual mapping. If all LSMs return
1104 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1105 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1106 * called with cap_sys_admin cleared.
1107 *
1108 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1109 * caller.
1110 */
1111int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1112{
1113 struct security_hook_list *hp;
1114 int cap_sys_admin = 1;
1115 int rc;
1116
1117 /*
1118 * The module will respond with a positive value if
1119 * it thinks the __vm_enough_memory() call should be
1120 * made with the cap_sys_admin set. If all of the modules
1121 * agree that it should be set it will. If any module
1122 * thinks it should not be set it won't.
1123 */
1124 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1125 rc = hp->hook.vm_enough_memory(mm, pages);
1126 if (rc <= 0) {
1127 cap_sys_admin = 0;
1128 break;
1129 }
1130 }
1131 return __vm_enough_memory(mm, pages, cap_sys_admin);
1132}
1133
1134/**
1135 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1136 * @bprm: binary program information
1137 *
1138 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1139 * properly for executing @bprm->file, update the LSM's portion of
1140 * @bprm->cred->security to be what commit_creds needs to install for the new
1141 * program. This hook may also optionally check permissions (e.g. for
1142 * transitions between security domains). The hook must set @bprm->secureexec
1143 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1144 * contains the linux_binprm structure.
1145 *
1146 * Return: Returns 0 if the hook is successful and permission is granted.
1147 */
1148int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1149{
1150 return call_int_hook(bprm_creds_for_exec, bprm);
1151}
1152
1153/**
1154 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1155 * @bprm: binary program information
1156 * @file: associated file
1157 *
1158 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1159 * exec, update @bprm->cred to reflect that change. This is called after
1160 * finding the binary that will be executed without an interpreter. This
1161 * ensures that the credentials will not be derived from a script that the
1162 * binary will need to reopen, which when reopend may end up being a completely
1163 * different file. This hook may also optionally check permissions (e.g. for
1164 * transitions between security domains). The hook must set @bprm->secureexec
1165 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
1166 * hook must add to @bprm->per_clear any personality flags that should be
1167 * cleared from current->personality. @bprm contains the linux_binprm
1168 * structure.
1169 *
1170 * Return: Returns 0 if the hook is successful and permission is granted.
1171 */
1172int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1173{
1174 return call_int_hook(bprm_creds_from_file, bprm, file);
1175}
1176
1177/**
1178 * security_bprm_check() - Mediate binary handler search
1179 * @bprm: binary program information
1180 *
1181 * This hook mediates the point when a search for a binary handler will begin.
1182 * It allows a check against the @bprm->cred->security value which was set in
1183 * the preceding creds_for_exec call. The argv list and envp list are reliably
1184 * available in @bprm. This hook may be called multiple times during a single
1185 * execve. @bprm contains the linux_binprm structure.
1186 *
1187 * Return: Returns 0 if the hook is successful and permission is granted.
1188 */
1189int security_bprm_check(struct linux_binprm *bprm)
1190{
1191 return call_int_hook(bprm_check_security, bprm);
1192}
1193
1194/**
1195 * security_bprm_committing_creds() - Install creds for a process during exec()
1196 * @bprm: binary program information
1197 *
1198 * Prepare to install the new security attributes of a process being
1199 * transformed by an execve operation, based on the old credentials pointed to
1200 * by @current->cred and the information set in @bprm->cred by the
1201 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1202 * hook is a good place to perform state changes on the process such as closing
1203 * open file descriptors to which access will no longer be granted when the
1204 * attributes are changed. This is called immediately before commit_creds().
1205 */
1206void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207{
1208 call_void_hook(bprm_committing_creds, bprm);
1209}
1210
1211/**
1212 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213 * @bprm: binary program information
1214 *
1215 * Tidy up after the installation of the new security attributes of a process
1216 * being transformed by an execve operation. The new credentials have, by this
1217 * point, been set to @current->cred. @bprm points to the linux_binprm
1218 * structure. This hook is a good place to perform state changes on the
1219 * process such as clearing out non-inheritable signal state. This is called
1220 * immediately after commit_creds().
1221 */
1222void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223{
1224 call_void_hook(bprm_committed_creds, bprm);
1225}
1226
1227/**
1228 * security_fs_context_submount() - Initialise fc->security
1229 * @fc: new filesystem context
1230 * @reference: dentry reference for submount/remount
1231 *
1232 * Fill out the ->security field for a new fs_context.
1233 *
1234 * Return: Returns 0 on success or negative error code on failure.
1235 */
1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237{
1238 return call_int_hook(fs_context_submount, fc, reference);
1239}
1240
1241/**
1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243 * @fc: destination filesystem context
1244 * @src_fc: source filesystem context
1245 *
1246 * Allocate and attach a security structure to sc->security. This pointer is
1247 * initialised to NULL by the caller. @fc indicates the new filesystem context.
1248 * @src_fc indicates the original filesystem context.
1249 *
1250 * Return: Returns 0 on success or a negative error code on failure.
1251 */
1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253{
1254 return call_int_hook(fs_context_dup, fc, src_fc);
1255}
1256
1257/**
1258 * security_fs_context_parse_param() - Configure a filesystem context
1259 * @fc: filesystem context
1260 * @param: filesystem parameter
1261 *
1262 * Userspace provided a parameter to configure a superblock. The LSM can
1263 * consume the parameter or return it to the caller for use elsewhere.
1264 *
1265 * Return: If the parameter is used by the LSM it should return 0, if it is
1266 * returned to the caller -ENOPARAM is returned, otherwise a negative
1267 * error code is returned.
1268 */
1269int security_fs_context_parse_param(struct fs_context *fc,
1270 struct fs_parameter *param)
1271{
1272 struct security_hook_list *hp;
1273 int trc;
1274 int rc = -ENOPARAM;
1275
1276 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277 list) {
1278 trc = hp->hook.fs_context_parse_param(fc, param);
1279 if (trc == 0)
1280 rc = 0;
1281 else if (trc != -ENOPARAM)
1282 return trc;
1283 }
1284 return rc;
1285}
1286
1287/**
1288 * security_sb_alloc() - Allocate a super_block LSM blob
1289 * @sb: filesystem superblock
1290 *
1291 * Allocate and attach a security structure to the sb->s_security field. The
1292 * s_security field is initialized to NULL when the structure is allocated.
1293 * @sb contains the super_block structure to be modified.
1294 *
1295 * Return: Returns 0 if operation was successful.
1296 */
1297int security_sb_alloc(struct super_block *sb)
1298{
1299 int rc = lsm_superblock_alloc(sb);
1300
1301 if (unlikely(rc))
1302 return rc;
1303 rc = call_int_hook(sb_alloc_security, sb);
1304 if (unlikely(rc))
1305 security_sb_free(sb);
1306 return rc;
1307}
1308
1309/**
1310 * security_sb_delete() - Release super_block LSM associated objects
1311 * @sb: filesystem superblock
1312 *
1313 * Release objects tied to a superblock (e.g. inodes). @sb contains the
1314 * super_block structure being released.
1315 */
1316void security_sb_delete(struct super_block *sb)
1317{
1318 call_void_hook(sb_delete, sb);
1319}
1320
1321/**
1322 * security_sb_free() - Free a super_block LSM blob
1323 * @sb: filesystem superblock
1324 *
1325 * Deallocate and clear the sb->s_security field. @sb contains the super_block
1326 * structure to be modified.
1327 */
1328void security_sb_free(struct super_block *sb)
1329{
1330 call_void_hook(sb_free_security, sb);
1331 kfree(sb->s_security);
1332 sb->s_security = NULL;
1333}
1334
1335/**
1336 * security_free_mnt_opts() - Free memory associated with mount options
1337 * @mnt_opts: LSM processed mount options
1338 *
1339 * Free memory associated with @mnt_ops.
1340 */
1341void security_free_mnt_opts(void **mnt_opts)
1342{
1343 if (!*mnt_opts)
1344 return;
1345 call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346 *mnt_opts = NULL;
1347}
1348EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350/**
1351 * security_sb_eat_lsm_opts() - Consume LSM mount options
1352 * @options: mount options
1353 * @mnt_opts: LSM processed mount options
1354 *
1355 * Eat (scan @options) and save them in @mnt_opts.
1356 *
1357 * Return: Returns 0 on success, negative values on failure.
1358 */
1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360{
1361 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1362}
1363EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365/**
1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367 * @sb: filesystem superblock
1368 * @mnt_opts: new mount options
1369 *
1370 * Determine if the new mount options in @mnt_opts are allowed given the
1371 * existing mounted filesystem at @sb. @sb superblock being compared.
1372 *
1373 * Return: Returns 0 if options are compatible.
1374 */
1375int security_sb_mnt_opts_compat(struct super_block *sb,
1376 void *mnt_opts)
1377{
1378 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1379}
1380EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382/**
1383 * security_sb_remount() - Verify no incompatible mount changes during remount
1384 * @sb: filesystem superblock
1385 * @mnt_opts: (re)mount options
1386 *
1387 * Extracts security system specific mount options and verifies no changes are
1388 * being made to those options.
1389 *
1390 * Return: Returns 0 if permission is granted.
1391 */
1392int security_sb_remount(struct super_block *sb,
1393 void *mnt_opts)
1394{
1395 return call_int_hook(sb_remount, sb, mnt_opts);
1396}
1397EXPORT_SYMBOL(security_sb_remount);
1398
1399/**
1400 * security_sb_kern_mount() - Check if a kernel mount is allowed
1401 * @sb: filesystem superblock
1402 *
1403 * Mount this @sb if allowed by permissions.
1404 *
1405 * Return: Returns 0 if permission is granted.
1406 */
1407int security_sb_kern_mount(const struct super_block *sb)
1408{
1409 return call_int_hook(sb_kern_mount, sb);
1410}
1411
1412/**
1413 * security_sb_show_options() - Output the mount options for a superblock
1414 * @m: output file
1415 * @sb: filesystem superblock
1416 *
1417 * Show (print on @m) mount options for this @sb.
1418 *
1419 * Return: Returns 0 on success, negative values on failure.
1420 */
1421int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422{
1423 return call_int_hook(sb_show_options, m, sb);
1424}
1425
1426/**
1427 * security_sb_statfs() - Check if accessing fs stats is allowed
1428 * @dentry: superblock handle
1429 *
1430 * Check permission before obtaining filesystem statistics for the @mnt
1431 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1432 *
1433 * Return: Returns 0 if permission is granted.
1434 */
1435int security_sb_statfs(struct dentry *dentry)
1436{
1437 return call_int_hook(sb_statfs, dentry);
1438}
1439
1440/**
1441 * security_sb_mount() - Check permission for mounting a filesystem
1442 * @dev_name: filesystem backing device
1443 * @path: mount point
1444 * @type: filesystem type
1445 * @flags: mount flags
1446 * @data: filesystem specific data
1447 *
1448 * Check permission before an object specified by @dev_name is mounted on the
1449 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1450 * device if the file system type requires a device. For a remount
1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1452 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1453 * mounted.
1454 *
1455 * Return: Returns 0 if permission is granted.
1456 */
1457int security_sb_mount(const char *dev_name, const struct path *path,
1458 const char *type, unsigned long flags, void *data)
1459{
1460 return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1461}
1462
1463/**
1464 * security_sb_umount() - Check permission for unmounting a filesystem
1465 * @mnt: mounted filesystem
1466 * @flags: unmount flags
1467 *
1468 * Check permission before the @mnt file system is unmounted.
1469 *
1470 * Return: Returns 0 if permission is granted.
1471 */
1472int security_sb_umount(struct vfsmount *mnt, int flags)
1473{
1474 return call_int_hook(sb_umount, mnt, flags);
1475}
1476
1477/**
1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479 * @old_path: new location for current rootfs
1480 * @new_path: location of the new rootfs
1481 *
1482 * Check permission before pivoting the root filesystem.
1483 *
1484 * Return: Returns 0 if permission is granted.
1485 */
1486int security_sb_pivotroot(const struct path *old_path,
1487 const struct path *new_path)
1488{
1489 return call_int_hook(sb_pivotroot, old_path, new_path);
1490}
1491
1492/**
1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494 * @sb: filesystem superblock
1495 * @mnt_opts: binary mount options
1496 * @kern_flags: kernel flags (in)
1497 * @set_kern_flags: kernel flags (out)
1498 *
1499 * Set the security relevant mount options used for a superblock.
1500 *
1501 * Return: Returns 0 on success, error on failure.
1502 */
1503int security_sb_set_mnt_opts(struct super_block *sb,
1504 void *mnt_opts,
1505 unsigned long kern_flags,
1506 unsigned long *set_kern_flags)
1507{
1508 struct security_hook_list *hp;
1509 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1510
1511 hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1512 list) {
1513 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1514 set_kern_flags);
1515 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1516 break;
1517 }
1518 return rc;
1519}
1520EXPORT_SYMBOL(security_sb_set_mnt_opts);
1521
1522/**
1523 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1524 * @oldsb: source superblock
1525 * @newsb: destination superblock
1526 * @kern_flags: kernel flags (in)
1527 * @set_kern_flags: kernel flags (out)
1528 *
1529 * Copy all security options from a given superblock to another.
1530 *
1531 * Return: Returns 0 on success, error on failure.
1532 */
1533int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1534 struct super_block *newsb,
1535 unsigned long kern_flags,
1536 unsigned long *set_kern_flags)
1537{
1538 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1539 kern_flags, set_kern_flags);
1540}
1541EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1542
1543/**
1544 * security_move_mount() - Check permissions for moving a mount
1545 * @from_path: source mount point
1546 * @to_path: destination mount point
1547 *
1548 * Check permission before a mount is moved.
1549 *
1550 * Return: Returns 0 if permission is granted.
1551 */
1552int security_move_mount(const struct path *from_path,
1553 const struct path *to_path)
1554{
1555 return call_int_hook(move_mount, from_path, to_path);
1556}
1557
1558/**
1559 * security_path_notify() - Check if setting a watch is allowed
1560 * @path: file path
1561 * @mask: event mask
1562 * @obj_type: file path type
1563 *
1564 * Check permissions before setting a watch on events as defined by @mask, on
1565 * an object at @path, whose type is defined by @obj_type.
1566 *
1567 * Return: Returns 0 if permission is granted.
1568 */
1569int security_path_notify(const struct path *path, u64 mask,
1570 unsigned int obj_type)
1571{
1572 return call_int_hook(path_notify, path, mask, obj_type);
1573}
1574
1575/**
1576 * security_inode_alloc() - Allocate an inode LSM blob
1577 * @inode: the inode
1578 *
1579 * Allocate and attach a security structure to @inode->i_security. The
1580 * i_security field is initialized to NULL when the inode structure is
1581 * allocated.
1582 *
1583 * Return: Return 0 if operation was successful.
1584 */
1585int security_inode_alloc(struct inode *inode)
1586{
1587 int rc = lsm_inode_alloc(inode);
1588
1589 if (unlikely(rc))
1590 return rc;
1591 rc = call_int_hook(inode_alloc_security, inode);
1592 if (unlikely(rc))
1593 security_inode_free(inode);
1594 return rc;
1595}
1596
1597static void inode_free_by_rcu(struct rcu_head *head)
1598{
1599 /*
1600 * The rcu head is at the start of the inode blob
1601 */
1602 kmem_cache_free(lsm_inode_cache, head);
1603}
1604
1605/**
1606 * security_inode_free() - Free an inode's LSM blob
1607 * @inode: the inode
1608 *
1609 * Deallocate the inode security structure and set @inode->i_security to NULL.
1610 */
1611void security_inode_free(struct inode *inode)
1612{
1613 call_void_hook(inode_free_security, inode);
1614 /*
1615 * The inode may still be referenced in a path walk and
1616 * a call to security_inode_permission() can be made
1617 * after inode_free_security() is called. Ideally, the VFS
1618 * wouldn't do this, but fixing that is a much harder
1619 * job. For now, simply free the i_security via RCU, and
1620 * leave the current inode->i_security pointer intact.
1621 * The inode will be freed after the RCU grace period too.
1622 */
1623 if (inode->i_security)
1624 call_rcu((struct rcu_head *)inode->i_security,
1625 inode_free_by_rcu);
1626}
1627
1628/**
1629 * security_dentry_init_security() - Perform dentry initialization
1630 * @dentry: the dentry to initialize
1631 * @mode: mode used to determine resource type
1632 * @name: name of the last path component
1633 * @xattr_name: name of the security/LSM xattr
1634 * @ctx: pointer to the resulting LSM context
1635 * @ctxlen: length of @ctx
1636 *
1637 * Compute a context for a dentry as the inode is not yet available since NFSv4
1638 * has no label backed by an EA anyway. It is important to note that
1639 * @xattr_name does not need to be free'd by the caller, it is a static string.
1640 *
1641 * Return: Returns 0 on success, negative values on failure.
1642 */
1643int security_dentry_init_security(struct dentry *dentry, int mode,
1644 const struct qstr *name,
1645 const char **xattr_name, void **ctx,
1646 u32 *ctxlen)
1647{
1648 return call_int_hook(dentry_init_security, dentry, mode, name,
1649 xattr_name, ctx, ctxlen);
1650}
1651EXPORT_SYMBOL(security_dentry_init_security);
1652
1653/**
1654 * security_dentry_create_files_as() - Perform dentry initialization
1655 * @dentry: the dentry to initialize
1656 * @mode: mode used to determine resource type
1657 * @name: name of the last path component
1658 * @old: creds to use for LSM context calculations
1659 * @new: creds to modify
1660 *
1661 * Compute a context for a dentry as the inode is not yet available and set
1662 * that context in passed in creds so that new files are created using that
1663 * context. Context is calculated using the passed in creds and not the creds
1664 * of the caller.
1665 *
1666 * Return: Returns 0 on success, error on failure.
1667 */
1668int security_dentry_create_files_as(struct dentry *dentry, int mode,
1669 struct qstr *name,
1670 const struct cred *old, struct cred *new)
1671{
1672 return call_int_hook(dentry_create_files_as, dentry, mode,
1673 name, old, new);
1674}
1675EXPORT_SYMBOL(security_dentry_create_files_as);
1676
1677/**
1678 * security_inode_init_security() - Initialize an inode's LSM context
1679 * @inode: the inode
1680 * @dir: parent directory
1681 * @qstr: last component of the pathname
1682 * @initxattrs: callback function to write xattrs
1683 * @fs_data: filesystem specific data
1684 *
1685 * Obtain the security attribute name suffix and value to set on a newly
1686 * created inode and set up the incore security field for the new inode. This
1687 * hook is called by the fs code as part of the inode creation transaction and
1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1689 * hooks called by the VFS.
1690 *
1691 * The hook function is expected to populate the xattrs array, by calling
1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1694 * slot, the hook function should set ->name to the attribute name suffix
1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1696 * to the attribute value, to set ->value_len to the length of the value. If
1697 * the security module does not use security attributes or does not wish to put
1698 * a security attribute on this particular inode, then it should return
1699 * -EOPNOTSUPP to skip this processing.
1700 *
1701 * Return: Returns 0 if the LSM successfully initialized all of the inode
1702 * security attributes that are required, negative values otherwise.
1703 */
1704int security_inode_init_security(struct inode *inode, struct inode *dir,
1705 const struct qstr *qstr,
1706 const initxattrs initxattrs, void *fs_data)
1707{
1708 struct security_hook_list *hp;
1709 struct xattr *new_xattrs = NULL;
1710 int ret = -EOPNOTSUPP, xattr_count = 0;
1711
1712 if (unlikely(IS_PRIVATE(inode)))
1713 return 0;
1714
1715 if (!blob_sizes.lbs_xattr_count)
1716 return 0;
1717
1718 if (initxattrs) {
1719 /* Allocate +1 as terminator. */
1720 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1721 sizeof(*new_xattrs), GFP_NOFS);
1722 if (!new_xattrs)
1723 return -ENOMEM;
1724 }
1725
1726 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1727 list) {
1728 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1729 &xattr_count);
1730 if (ret && ret != -EOPNOTSUPP)
1731 goto out;
1732 /*
1733 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1734 * means that the LSM is not willing to provide an xattr, not
1735 * that it wants to signal an error. Thus, continue to invoke
1736 * the remaining LSMs.
1737 */
1738 }
1739
1740 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1741 if (!xattr_count)
1742 goto out;
1743
1744 ret = initxattrs(inode, new_xattrs, fs_data);
1745out:
1746 for (; xattr_count > 0; xattr_count--)
1747 kfree(new_xattrs[xattr_count - 1].value);
1748 kfree(new_xattrs);
1749 return (ret == -EOPNOTSUPP) ? 0 : ret;
1750}
1751EXPORT_SYMBOL(security_inode_init_security);
1752
1753/**
1754 * security_inode_init_security_anon() - Initialize an anonymous inode
1755 * @inode: the inode
1756 * @name: the anonymous inode class
1757 * @context_inode: an optional related inode
1758 *
1759 * Set up the incore security field for the new anonymous inode and return
1760 * whether the inode creation is permitted by the security module or not.
1761 *
1762 * Return: Returns 0 on success, -EACCES if the security module denies the
1763 * creation of this inode, or another -errno upon other errors.
1764 */
1765int security_inode_init_security_anon(struct inode *inode,
1766 const struct qstr *name,
1767 const struct inode *context_inode)
1768{
1769 return call_int_hook(inode_init_security_anon, inode, name,
1770 context_inode);
1771}
1772
1773#ifdef CONFIG_SECURITY_PATH
1774/**
1775 * security_path_mknod() - Check if creating a special file is allowed
1776 * @dir: parent directory
1777 * @dentry: new file
1778 * @mode: new file mode
1779 * @dev: device number
1780 *
1781 * Check permissions when creating a file. Note that this hook is called even
1782 * if mknod operation is being done for a regular file.
1783 *
1784 * Return: Returns 0 if permission is granted.
1785 */
1786int security_path_mknod(const struct path *dir, struct dentry *dentry,
1787 umode_t mode, unsigned int dev)
1788{
1789 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1790 return 0;
1791 return call_int_hook(path_mknod, dir, dentry, mode, dev);
1792}
1793EXPORT_SYMBOL(security_path_mknod);
1794
1795/**
1796 * security_path_post_mknod() - Update inode security after reg file creation
1797 * @idmap: idmap of the mount
1798 * @dentry: new file
1799 *
1800 * Update inode security field after a regular file has been created.
1801 */
1802void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1803{
1804 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1805 return;
1806 call_void_hook(path_post_mknod, idmap, dentry);
1807}
1808
1809/**
1810 * security_path_mkdir() - Check if creating a new directory is allowed
1811 * @dir: parent directory
1812 * @dentry: new directory
1813 * @mode: new directory mode
1814 *
1815 * Check permissions to create a new directory in the existing directory.
1816 *
1817 * Return: Returns 0 if permission is granted.
1818 */
1819int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1820 umode_t mode)
1821{
1822 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1823 return 0;
1824 return call_int_hook(path_mkdir, dir, dentry, mode);
1825}
1826EXPORT_SYMBOL(security_path_mkdir);
1827
1828/**
1829 * security_path_rmdir() - Check if removing a directory is allowed
1830 * @dir: parent directory
1831 * @dentry: directory to remove
1832 *
1833 * Check the permission to remove a directory.
1834 *
1835 * Return: Returns 0 if permission is granted.
1836 */
1837int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1838{
1839 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1840 return 0;
1841 return call_int_hook(path_rmdir, dir, dentry);
1842}
1843
1844/**
1845 * security_path_unlink() - Check if removing a hard link is allowed
1846 * @dir: parent directory
1847 * @dentry: file
1848 *
1849 * Check the permission to remove a hard link to a file.
1850 *
1851 * Return: Returns 0 if permission is granted.
1852 */
1853int security_path_unlink(const struct path *dir, struct dentry *dentry)
1854{
1855 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1856 return 0;
1857 return call_int_hook(path_unlink, dir, dentry);
1858}
1859EXPORT_SYMBOL(security_path_unlink);
1860
1861/**
1862 * security_path_symlink() - Check if creating a symbolic link is allowed
1863 * @dir: parent directory
1864 * @dentry: symbolic link
1865 * @old_name: file pathname
1866 *
1867 * Check the permission to create a symbolic link to a file.
1868 *
1869 * Return: Returns 0 if permission is granted.
1870 */
1871int security_path_symlink(const struct path *dir, struct dentry *dentry,
1872 const char *old_name)
1873{
1874 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1875 return 0;
1876 return call_int_hook(path_symlink, dir, dentry, old_name);
1877}
1878
1879/**
1880 * security_path_link - Check if creating a hard link is allowed
1881 * @old_dentry: existing file
1882 * @new_dir: new parent directory
1883 * @new_dentry: new link
1884 *
1885 * Check permission before creating a new hard link to a file.
1886 *
1887 * Return: Returns 0 if permission is granted.
1888 */
1889int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1890 struct dentry *new_dentry)
1891{
1892 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1893 return 0;
1894 return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1895}
1896
1897/**
1898 * security_path_rename() - Check if renaming a file is allowed
1899 * @old_dir: parent directory of the old file
1900 * @old_dentry: the old file
1901 * @new_dir: parent directory of the new file
1902 * @new_dentry: the new file
1903 * @flags: flags
1904 *
1905 * Check for permission to rename a file or directory.
1906 *
1907 * Return: Returns 0 if permission is granted.
1908 */
1909int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1910 const struct path *new_dir, struct dentry *new_dentry,
1911 unsigned int flags)
1912{
1913 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1914 (d_is_positive(new_dentry) &&
1915 IS_PRIVATE(d_backing_inode(new_dentry)))))
1916 return 0;
1917
1918 return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1919 new_dentry, flags);
1920}
1921EXPORT_SYMBOL(security_path_rename);
1922
1923/**
1924 * security_path_truncate() - Check if truncating a file is allowed
1925 * @path: file
1926 *
1927 * Check permission before truncating the file indicated by path. Note that
1928 * truncation permissions may also be checked based on already opened files,
1929 * using the security_file_truncate() hook.
1930 *
1931 * Return: Returns 0 if permission is granted.
1932 */
1933int security_path_truncate(const struct path *path)
1934{
1935 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1936 return 0;
1937 return call_int_hook(path_truncate, path);
1938}
1939
1940/**
1941 * security_path_chmod() - Check if changing the file's mode is allowed
1942 * @path: file
1943 * @mode: new mode
1944 *
1945 * Check for permission to change a mode of the file @path. The new mode is
1946 * specified in @mode which is a bitmask of constants from
1947 * <include/uapi/linux/stat.h>.
1948 *
1949 * Return: Returns 0 if permission is granted.
1950 */
1951int security_path_chmod(const struct path *path, umode_t mode)
1952{
1953 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1954 return 0;
1955 return call_int_hook(path_chmod, path, mode);
1956}
1957
1958/**
1959 * security_path_chown() - Check if changing the file's owner/group is allowed
1960 * @path: file
1961 * @uid: file owner
1962 * @gid: file group
1963 *
1964 * Check for permission to change owner/group of a file or directory.
1965 *
1966 * Return: Returns 0 if permission is granted.
1967 */
1968int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1969{
1970 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1971 return 0;
1972 return call_int_hook(path_chown, path, uid, gid);
1973}
1974
1975/**
1976 * security_path_chroot() - Check if changing the root directory is allowed
1977 * @path: directory
1978 *
1979 * Check for permission to change root directory.
1980 *
1981 * Return: Returns 0 if permission is granted.
1982 */
1983int security_path_chroot(const struct path *path)
1984{
1985 return call_int_hook(path_chroot, path);
1986}
1987#endif /* CONFIG_SECURITY_PATH */
1988
1989/**
1990 * security_inode_create() - Check if creating a file is allowed
1991 * @dir: the parent directory
1992 * @dentry: the file being created
1993 * @mode: requested file mode
1994 *
1995 * Check permission to create a regular file.
1996 *
1997 * Return: Returns 0 if permission is granted.
1998 */
1999int security_inode_create(struct inode *dir, struct dentry *dentry,
2000 umode_t mode)
2001{
2002 if (unlikely(IS_PRIVATE(dir)))
2003 return 0;
2004 return call_int_hook(inode_create, dir, dentry, mode);
2005}
2006EXPORT_SYMBOL_GPL(security_inode_create);
2007
2008/**
2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2010 * @idmap: idmap of the mount
2011 * @inode: inode of the new tmpfile
2012 *
2013 * Update inode security data after a tmpfile has been created.
2014 */
2015void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2016 struct inode *inode)
2017{
2018 if (unlikely(IS_PRIVATE(inode)))
2019 return;
2020 call_void_hook(inode_post_create_tmpfile, idmap, inode);
2021}
2022
2023/**
2024 * security_inode_link() - Check if creating a hard link is allowed
2025 * @old_dentry: existing file
2026 * @dir: new parent directory
2027 * @new_dentry: new link
2028 *
2029 * Check permission before creating a new hard link to a file.
2030 *
2031 * Return: Returns 0 if permission is granted.
2032 */
2033int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2034 struct dentry *new_dentry)
2035{
2036 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2037 return 0;
2038 return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2039}
2040
2041/**
2042 * security_inode_unlink() - Check if removing a hard link is allowed
2043 * @dir: parent directory
2044 * @dentry: file
2045 *
2046 * Check the permission to remove a hard link to a file.
2047 *
2048 * Return: Returns 0 if permission is granted.
2049 */
2050int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2051{
2052 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2053 return 0;
2054 return call_int_hook(inode_unlink, dir, dentry);
2055}
2056
2057/**
2058 * security_inode_symlink() - Check if creating a symbolic link is allowed
2059 * @dir: parent directory
2060 * @dentry: symbolic link
2061 * @old_name: existing filename
2062 *
2063 * Check the permission to create a symbolic link to a file.
2064 *
2065 * Return: Returns 0 if permission is granted.
2066 */
2067int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2068 const char *old_name)
2069{
2070 if (unlikely(IS_PRIVATE(dir)))
2071 return 0;
2072 return call_int_hook(inode_symlink, dir, dentry, old_name);
2073}
2074
2075/**
2076 * security_inode_mkdir() - Check if creation a new director is allowed
2077 * @dir: parent directory
2078 * @dentry: new directory
2079 * @mode: new directory mode
2080 *
2081 * Check permissions to create a new directory in the existing directory
2082 * associated with inode structure @dir.
2083 *
2084 * Return: Returns 0 if permission is granted.
2085 */
2086int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2087{
2088 if (unlikely(IS_PRIVATE(dir)))
2089 return 0;
2090 return call_int_hook(inode_mkdir, dir, dentry, mode);
2091}
2092EXPORT_SYMBOL_GPL(security_inode_mkdir);
2093
2094/**
2095 * security_inode_rmdir() - Check if removing a directory is allowed
2096 * @dir: parent directory
2097 * @dentry: directory to be removed
2098 *
2099 * Check the permission to remove a directory.
2100 *
2101 * Return: Returns 0 if permission is granted.
2102 */
2103int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2104{
2105 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2106 return 0;
2107 return call_int_hook(inode_rmdir, dir, dentry);
2108}
2109
2110/**
2111 * security_inode_mknod() - Check if creating a special file is allowed
2112 * @dir: parent directory
2113 * @dentry: new file
2114 * @mode: new file mode
2115 * @dev: device number
2116 *
2117 * Check permissions when creating a special file (or a socket or a fifo file
2118 * created via the mknod system call). Note that if mknod operation is being
2119 * done for a regular file, then the create hook will be called and not this
2120 * hook.
2121 *
2122 * Return: Returns 0 if permission is granted.
2123 */
2124int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2125 umode_t mode, dev_t dev)
2126{
2127 if (unlikely(IS_PRIVATE(dir)))
2128 return 0;
2129 return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2130}
2131
2132/**
2133 * security_inode_rename() - Check if renaming a file is allowed
2134 * @old_dir: parent directory of the old file
2135 * @old_dentry: the old file
2136 * @new_dir: parent directory of the new file
2137 * @new_dentry: the new file
2138 * @flags: flags
2139 *
2140 * Check for permission to rename a file or directory.
2141 *
2142 * Return: Returns 0 if permission is granted.
2143 */
2144int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2145 struct inode *new_dir, struct dentry *new_dentry,
2146 unsigned int flags)
2147{
2148 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2149 (d_is_positive(new_dentry) &&
2150 IS_PRIVATE(d_backing_inode(new_dentry)))))
2151 return 0;
2152
2153 if (flags & RENAME_EXCHANGE) {
2154 int err = call_int_hook(inode_rename, new_dir, new_dentry,
2155 old_dir, old_dentry);
2156 if (err)
2157 return err;
2158 }
2159
2160 return call_int_hook(inode_rename, old_dir, old_dentry,
2161 new_dir, new_dentry);
2162}
2163
2164/**
2165 * security_inode_readlink() - Check if reading a symbolic link is allowed
2166 * @dentry: link
2167 *
2168 * Check the permission to read the symbolic link.
2169 *
2170 * Return: Returns 0 if permission is granted.
2171 */
2172int security_inode_readlink(struct dentry *dentry)
2173{
2174 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2175 return 0;
2176 return call_int_hook(inode_readlink, dentry);
2177}
2178
2179/**
2180 * security_inode_follow_link() - Check if following a symbolic link is allowed
2181 * @dentry: link dentry
2182 * @inode: link inode
2183 * @rcu: true if in RCU-walk mode
2184 *
2185 * Check permission to follow a symbolic link when looking up a pathname. If
2186 * @rcu is true, @inode is not stable.
2187 *
2188 * Return: Returns 0 if permission is granted.
2189 */
2190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2191 bool rcu)
2192{
2193 if (unlikely(IS_PRIVATE(inode)))
2194 return 0;
2195 return call_int_hook(inode_follow_link, dentry, inode, rcu);
2196}
2197
2198/**
2199 * security_inode_permission() - Check if accessing an inode is allowed
2200 * @inode: inode
2201 * @mask: access mask
2202 *
2203 * Check permission before accessing an inode. This hook is called by the
2204 * existing Linux permission function, so a security module can use it to
2205 * provide additional checking for existing Linux permission checks. Notice
2206 * that this hook is called when a file is opened (as well as many other
2207 * operations), whereas the file_security_ops permission hook is called when
2208 * the actual read/write operations are performed.
2209 *
2210 * Return: Returns 0 if permission is granted.
2211 */
2212int security_inode_permission(struct inode *inode, int mask)
2213{
2214 if (unlikely(IS_PRIVATE(inode)))
2215 return 0;
2216 return call_int_hook(inode_permission, inode, mask);
2217}
2218
2219/**
2220 * security_inode_setattr() - Check if setting file attributes is allowed
2221 * @idmap: idmap of the mount
2222 * @dentry: file
2223 * @attr: new attributes
2224 *
2225 * Check permission before setting file attributes. Note that the kernel call
2226 * to notify_change is performed from several locations, whenever file
2227 * attributes change (such as when a file is truncated, chown/chmod operations,
2228 * transferring disk quotas, etc).
2229 *
2230 * Return: Returns 0 if permission is granted.
2231 */
2232int security_inode_setattr(struct mnt_idmap *idmap,
2233 struct dentry *dentry, struct iattr *attr)
2234{
2235 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2236 return 0;
2237 return call_int_hook(inode_setattr, idmap, dentry, attr);
2238}
2239EXPORT_SYMBOL_GPL(security_inode_setattr);
2240
2241/**
2242 * security_inode_post_setattr() - Update the inode after a setattr operation
2243 * @idmap: idmap of the mount
2244 * @dentry: file
2245 * @ia_valid: file attributes set
2246 *
2247 * Update inode security field after successful setting file attributes.
2248 */
2249void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2250 int ia_valid)
2251{
2252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253 return;
2254 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2255}
2256
2257/**
2258 * security_inode_getattr() - Check if getting file attributes is allowed
2259 * @path: file
2260 *
2261 * Check permission before obtaining file attributes.
2262 *
2263 * Return: Returns 0 if permission is granted.
2264 */
2265int security_inode_getattr(const struct path *path)
2266{
2267 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2268 return 0;
2269 return call_int_hook(inode_getattr, path);
2270}
2271
2272/**
2273 * security_inode_setxattr() - Check if setting file xattrs is allowed
2274 * @idmap: idmap of the mount
2275 * @dentry: file
2276 * @name: xattr name
2277 * @value: xattr value
2278 * @size: size of xattr value
2279 * @flags: flags
2280 *
2281 * Check permission before setting the extended attributes.
2282 *
2283 * Return: Returns 0 if permission is granted.
2284 */
2285int security_inode_setxattr(struct mnt_idmap *idmap,
2286 struct dentry *dentry, const char *name,
2287 const void *value, size_t size, int flags)
2288{
2289 int ret;
2290
2291 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2292 return 0;
2293 /*
2294 * SELinux and Smack integrate the cap call,
2295 * so assume that all LSMs supplying this call do so.
2296 */
2297 ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2298 flags);
2299
2300 if (ret == 1)
2301 ret = cap_inode_setxattr(dentry, name, value, size, flags);
2302 return ret;
2303}
2304
2305/**
2306 * security_inode_set_acl() - Check if setting posix acls is allowed
2307 * @idmap: idmap of the mount
2308 * @dentry: file
2309 * @acl_name: acl name
2310 * @kacl: acl struct
2311 *
2312 * Check permission before setting posix acls, the posix acls in @kacl are
2313 * identified by @acl_name.
2314 *
2315 * Return: Returns 0 if permission is granted.
2316 */
2317int security_inode_set_acl(struct mnt_idmap *idmap,
2318 struct dentry *dentry, const char *acl_name,
2319 struct posix_acl *kacl)
2320{
2321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322 return 0;
2323 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2324}
2325
2326/**
2327 * security_inode_post_set_acl() - Update inode security from posix acls set
2328 * @dentry: file
2329 * @acl_name: acl name
2330 * @kacl: acl struct
2331 *
2332 * Update inode security data after successfully setting posix acls on @dentry.
2333 * The posix acls in @kacl are identified by @acl_name.
2334 */
2335void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2336 struct posix_acl *kacl)
2337{
2338 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339 return;
2340 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2341}
2342
2343/**
2344 * security_inode_get_acl() - Check if reading posix acls is allowed
2345 * @idmap: idmap of the mount
2346 * @dentry: file
2347 * @acl_name: acl name
2348 *
2349 * Check permission before getting osix acls, the posix acls are identified by
2350 * @acl_name.
2351 *
2352 * Return: Returns 0 if permission is granted.
2353 */
2354int security_inode_get_acl(struct mnt_idmap *idmap,
2355 struct dentry *dentry, const char *acl_name)
2356{
2357 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2358 return 0;
2359 return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2360}
2361
2362/**
2363 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2364 * @idmap: idmap of the mount
2365 * @dentry: file
2366 * @acl_name: acl name
2367 *
2368 * Check permission before removing posix acls, the posix acls are identified
2369 * by @acl_name.
2370 *
2371 * Return: Returns 0 if permission is granted.
2372 */
2373int security_inode_remove_acl(struct mnt_idmap *idmap,
2374 struct dentry *dentry, const char *acl_name)
2375{
2376 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2377 return 0;
2378 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2379}
2380
2381/**
2382 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2383 * @idmap: idmap of the mount
2384 * @dentry: file
2385 * @acl_name: acl name
2386 *
2387 * Update inode security data after successfully removing posix acls on
2388 * @dentry in @idmap. The posix acls are identified by @acl_name.
2389 */
2390void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2391 struct dentry *dentry, const char *acl_name)
2392{
2393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2394 return;
2395 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2396}
2397
2398/**
2399 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2400 * @dentry: file
2401 * @name: xattr name
2402 * @value: xattr value
2403 * @size: xattr value size
2404 * @flags: flags
2405 *
2406 * Update inode security field after successful setxattr operation.
2407 */
2408void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2409 const void *value, size_t size, int flags)
2410{
2411 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2412 return;
2413 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2414}
2415
2416/**
2417 * security_inode_getxattr() - Check if xattr access is allowed
2418 * @dentry: file
2419 * @name: xattr name
2420 *
2421 * Check permission before obtaining the extended attributes identified by
2422 * @name for @dentry.
2423 *
2424 * Return: Returns 0 if permission is granted.
2425 */
2426int security_inode_getxattr(struct dentry *dentry, const char *name)
2427{
2428 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2429 return 0;
2430 return call_int_hook(inode_getxattr, dentry, name);
2431}
2432
2433/**
2434 * security_inode_listxattr() - Check if listing xattrs is allowed
2435 * @dentry: file
2436 *
2437 * Check permission before obtaining the list of extended attribute names for
2438 * @dentry.
2439 *
2440 * Return: Returns 0 if permission is granted.
2441 */
2442int security_inode_listxattr(struct dentry *dentry)
2443{
2444 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2445 return 0;
2446 return call_int_hook(inode_listxattr, dentry);
2447}
2448
2449/**
2450 * security_inode_removexattr() - Check if removing an xattr is allowed
2451 * @idmap: idmap of the mount
2452 * @dentry: file
2453 * @name: xattr name
2454 *
2455 * Check permission before removing the extended attribute identified by @name
2456 * for @dentry.
2457 *
2458 * Return: Returns 0 if permission is granted.
2459 */
2460int security_inode_removexattr(struct mnt_idmap *idmap,
2461 struct dentry *dentry, const char *name)
2462{
2463 int ret;
2464
2465 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2466 return 0;
2467 /*
2468 * SELinux and Smack integrate the cap call,
2469 * so assume that all LSMs supplying this call do so.
2470 */
2471 ret = call_int_hook(inode_removexattr, idmap, dentry, name);
2472 if (ret == 1)
2473 ret = cap_inode_removexattr(idmap, dentry, name);
2474 return ret;
2475}
2476
2477/**
2478 * security_inode_post_removexattr() - Update the inode after a removexattr op
2479 * @dentry: file
2480 * @name: xattr name
2481 *
2482 * Update the inode after a successful removexattr operation.
2483 */
2484void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2485{
2486 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2487 return;
2488 call_void_hook(inode_post_removexattr, dentry, name);
2489}
2490
2491/**
2492 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2493 * @dentry: associated dentry
2494 *
2495 * Called when an inode has been changed to determine if
2496 * security_inode_killpriv() should be called.
2497 *
2498 * Return: Return <0 on error to abort the inode change operation, return 0 if
2499 * security_inode_killpriv() does not need to be called, return >0 if
2500 * security_inode_killpriv() does need to be called.
2501 */
2502int security_inode_need_killpriv(struct dentry *dentry)
2503{
2504 return call_int_hook(inode_need_killpriv, dentry);
2505}
2506
2507/**
2508 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2509 * @idmap: idmap of the mount
2510 * @dentry: associated dentry
2511 *
2512 * The @dentry's setuid bit is being removed. Remove similar security labels.
2513 * Called with the dentry->d_inode->i_mutex held.
2514 *
2515 * Return: Return 0 on success. If error is returned, then the operation
2516 * causing setuid bit removal is failed.
2517 */
2518int security_inode_killpriv(struct mnt_idmap *idmap,
2519 struct dentry *dentry)
2520{
2521 return call_int_hook(inode_killpriv, idmap, dentry);
2522}
2523
2524/**
2525 * security_inode_getsecurity() - Get the xattr security label of an inode
2526 * @idmap: idmap of the mount
2527 * @inode: inode
2528 * @name: xattr name
2529 * @buffer: security label buffer
2530 * @alloc: allocation flag
2531 *
2532 * Retrieve a copy of the extended attribute representation of the security
2533 * label associated with @name for @inode via @buffer. Note that @name is the
2534 * remainder of the attribute name after the security prefix has been removed.
2535 * @alloc is used to specify if the call should return a value via the buffer
2536 * or just the value length.
2537 *
2538 * Return: Returns size of buffer on success.
2539 */
2540int security_inode_getsecurity(struct mnt_idmap *idmap,
2541 struct inode *inode, const char *name,
2542 void **buffer, bool alloc)
2543{
2544 if (unlikely(IS_PRIVATE(inode)))
2545 return LSM_RET_DEFAULT(inode_getsecurity);
2546
2547 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2548 alloc);
2549}
2550
2551/**
2552 * security_inode_setsecurity() - Set the xattr security label of an inode
2553 * @inode: inode
2554 * @name: xattr name
2555 * @value: security label
2556 * @size: length of security label
2557 * @flags: flags
2558 *
2559 * Set the security label associated with @name for @inode from the extended
2560 * attribute value @value. @size indicates the size of the @value in bytes.
2561 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2562 * remainder of the attribute name after the security. prefix has been removed.
2563 *
2564 * Return: Returns 0 on success.
2565 */
2566int security_inode_setsecurity(struct inode *inode, const char *name,
2567 const void *value, size_t size, int flags)
2568{
2569 if (unlikely(IS_PRIVATE(inode)))
2570 return LSM_RET_DEFAULT(inode_setsecurity);
2571
2572 return call_int_hook(inode_setsecurity, inode, name, value, size,
2573 flags);
2574}
2575
2576/**
2577 * security_inode_listsecurity() - List the xattr security label names
2578 * @inode: inode
2579 * @buffer: buffer
2580 * @buffer_size: size of buffer
2581 *
2582 * Copy the extended attribute names for the security labels associated with
2583 * @inode into @buffer. The maximum size of @buffer is specified by
2584 * @buffer_size. @buffer may be NULL to request the size of the buffer
2585 * required.
2586 *
2587 * Return: Returns number of bytes used/required on success.
2588 */
2589int security_inode_listsecurity(struct inode *inode,
2590 char *buffer, size_t buffer_size)
2591{
2592 if (unlikely(IS_PRIVATE(inode)))
2593 return 0;
2594 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2595}
2596EXPORT_SYMBOL(security_inode_listsecurity);
2597
2598/**
2599 * security_inode_getsecid() - Get an inode's secid
2600 * @inode: inode
2601 * @secid: secid to return
2602 *
2603 * Get the secid associated with the node. In case of failure, @secid will be
2604 * set to zero.
2605 */
2606void security_inode_getsecid(struct inode *inode, u32 *secid)
2607{
2608 call_void_hook(inode_getsecid, inode, secid);
2609}
2610
2611/**
2612 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2613 * @src: union dentry of copy-up file
2614 * @new: newly created creds
2615 *
2616 * A file is about to be copied up from lower layer to upper layer of overlay
2617 * filesystem. Security module can prepare a set of new creds and modify as
2618 * need be and return new creds. Caller will switch to new creds temporarily to
2619 * create new file and release newly allocated creds.
2620 *
2621 * Return: Returns 0 on success or a negative error code on error.
2622 */
2623int security_inode_copy_up(struct dentry *src, struct cred **new)
2624{
2625 return call_int_hook(inode_copy_up, src, new);
2626}
2627EXPORT_SYMBOL(security_inode_copy_up);
2628
2629/**
2630 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2631 * @src: union dentry of copy-up file
2632 * @name: xattr name
2633 *
2634 * Filter the xattrs being copied up when a unioned file is copied up from a
2635 * lower layer to the union/overlay layer. The caller is responsible for
2636 * reading and writing the xattrs, this hook is merely a filter.
2637 *
2638 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2639 * if the security module does not know about attribute, or a negative
2640 * error code to abort the copy up.
2641 */
2642int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2643{
2644 int rc;
2645
2646 /*
2647 * The implementation can return 0 (accept the xattr), 1 (discard the
2648 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2649 * any other error code in case of an error.
2650 */
2651 rc = call_int_hook(inode_copy_up_xattr, src, name);
2652 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2653 return rc;
2654
2655 return LSM_RET_DEFAULT(inode_copy_up_xattr);
2656}
2657EXPORT_SYMBOL(security_inode_copy_up_xattr);
2658
2659/**
2660 * security_kernfs_init_security() - Init LSM context for a kernfs node
2661 * @kn_dir: parent kernfs node
2662 * @kn: the kernfs node to initialize
2663 *
2664 * Initialize the security context of a newly created kernfs node based on its
2665 * own and its parent's attributes.
2666 *
2667 * Return: Returns 0 if permission is granted.
2668 */
2669int security_kernfs_init_security(struct kernfs_node *kn_dir,
2670 struct kernfs_node *kn)
2671{
2672 return call_int_hook(kernfs_init_security, kn_dir, kn);
2673}
2674
2675/**
2676 * security_file_permission() - Check file permissions
2677 * @file: file
2678 * @mask: requested permissions
2679 *
2680 * Check file permissions before accessing an open file. This hook is called
2681 * by various operations that read or write files. A security module can use
2682 * this hook to perform additional checking on these operations, e.g. to
2683 * revalidate permissions on use to support privilege bracketing or policy
2684 * changes. Notice that this hook is used when the actual read/write
2685 * operations are performed, whereas the inode_security_ops hook is called when
2686 * a file is opened (as well as many other operations). Although this hook can
2687 * be used to revalidate permissions for various system call operations that
2688 * read or write files, it does not address the revalidation of permissions for
2689 * memory-mapped files. Security modules must handle this separately if they
2690 * need such revalidation.
2691 *
2692 * Return: Returns 0 if permission is granted.
2693 */
2694int security_file_permission(struct file *file, int mask)
2695{
2696 return call_int_hook(file_permission, file, mask);
2697}
2698
2699/**
2700 * security_file_alloc() - Allocate and init a file's LSM blob
2701 * @file: the file
2702 *
2703 * Allocate and attach a security structure to the file->f_security field. The
2704 * security field is initialized to NULL when the structure is first created.
2705 *
2706 * Return: Return 0 if the hook is successful and permission is granted.
2707 */
2708int security_file_alloc(struct file *file)
2709{
2710 int rc = lsm_file_alloc(file);
2711
2712 if (rc)
2713 return rc;
2714 rc = call_int_hook(file_alloc_security, file);
2715 if (unlikely(rc))
2716 security_file_free(file);
2717 return rc;
2718}
2719
2720/**
2721 * security_file_release() - Perform actions before releasing the file ref
2722 * @file: the file
2723 *
2724 * Perform actions before releasing the last reference to a file.
2725 */
2726void security_file_release(struct file *file)
2727{
2728 call_void_hook(file_release, file);
2729}
2730
2731/**
2732 * security_file_free() - Free a file's LSM blob
2733 * @file: the file
2734 *
2735 * Deallocate and free any security structures stored in file->f_security.
2736 */
2737void security_file_free(struct file *file)
2738{
2739 void *blob;
2740
2741 call_void_hook(file_free_security, file);
2742
2743 blob = file->f_security;
2744 if (blob) {
2745 file->f_security = NULL;
2746 kmem_cache_free(lsm_file_cache, blob);
2747 }
2748}
2749
2750/**
2751 * security_file_ioctl() - Check if an ioctl is allowed
2752 * @file: associated file
2753 * @cmd: ioctl cmd
2754 * @arg: ioctl arguments
2755 *
2756 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2757 * represents a user space pointer; in other cases, it may be a simple integer
2758 * value. When @arg represents a user space pointer, it should never be used
2759 * by the security module.
2760 *
2761 * Return: Returns 0 if permission is granted.
2762 */
2763int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2764{
2765 return call_int_hook(file_ioctl, file, cmd, arg);
2766}
2767EXPORT_SYMBOL_GPL(security_file_ioctl);
2768
2769/**
2770 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2771 * @file: associated file
2772 * @cmd: ioctl cmd
2773 * @arg: ioctl arguments
2774 *
2775 * Compat version of security_file_ioctl() that correctly handles 32-bit
2776 * processes running on 64-bit kernels.
2777 *
2778 * Return: Returns 0 if permission is granted.
2779 */
2780int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2781 unsigned long arg)
2782{
2783 return call_int_hook(file_ioctl_compat, file, cmd, arg);
2784}
2785EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2786
2787static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2788{
2789 /*
2790 * Does we have PROT_READ and does the application expect
2791 * it to imply PROT_EXEC? If not, nothing to talk about...
2792 */
2793 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2794 return prot;
2795 if (!(current->personality & READ_IMPLIES_EXEC))
2796 return prot;
2797 /*
2798 * if that's an anonymous mapping, let it.
2799 */
2800 if (!file)
2801 return prot | PROT_EXEC;
2802 /*
2803 * ditto if it's not on noexec mount, except that on !MMU we need
2804 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2805 */
2806 if (!path_noexec(&file->f_path)) {
2807#ifndef CONFIG_MMU
2808 if (file->f_op->mmap_capabilities) {
2809 unsigned caps = file->f_op->mmap_capabilities(file);
2810 if (!(caps & NOMMU_MAP_EXEC))
2811 return prot;
2812 }
2813#endif
2814 return prot | PROT_EXEC;
2815 }
2816 /* anything on noexec mount won't get PROT_EXEC */
2817 return prot;
2818}
2819
2820/**
2821 * security_mmap_file() - Check if mmap'ing a file is allowed
2822 * @file: file
2823 * @prot: protection applied by the kernel
2824 * @flags: flags
2825 *
2826 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2827 * mapping anonymous memory.
2828 *
2829 * Return: Returns 0 if permission is granted.
2830 */
2831int security_mmap_file(struct file *file, unsigned long prot,
2832 unsigned long flags)
2833{
2834 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2835 flags);
2836}
2837
2838/**
2839 * security_mmap_addr() - Check if mmap'ing an address is allowed
2840 * @addr: address
2841 *
2842 * Check permissions for a mmap operation at @addr.
2843 *
2844 * Return: Returns 0 if permission is granted.
2845 */
2846int security_mmap_addr(unsigned long addr)
2847{
2848 return call_int_hook(mmap_addr, addr);
2849}
2850
2851/**
2852 * security_file_mprotect() - Check if changing memory protections is allowed
2853 * @vma: memory region
2854 * @reqprot: application requested protection
2855 * @prot: protection applied by the kernel
2856 *
2857 * Check permissions before changing memory access permissions.
2858 *
2859 * Return: Returns 0 if permission is granted.
2860 */
2861int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2862 unsigned long prot)
2863{
2864 return call_int_hook(file_mprotect, vma, reqprot, prot);
2865}
2866
2867/**
2868 * security_file_lock() - Check if a file lock is allowed
2869 * @file: file
2870 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2871 *
2872 * Check permission before performing file locking operations. Note the hook
2873 * mediates both flock and fcntl style locks.
2874 *
2875 * Return: Returns 0 if permission is granted.
2876 */
2877int security_file_lock(struct file *file, unsigned int cmd)
2878{
2879 return call_int_hook(file_lock, file, cmd);
2880}
2881
2882/**
2883 * security_file_fcntl() - Check if fcntl() op is allowed
2884 * @file: file
2885 * @cmd: fcntl command
2886 * @arg: command argument
2887 *
2888 * Check permission before allowing the file operation specified by @cmd from
2889 * being performed on the file @file. Note that @arg sometimes represents a
2890 * user space pointer; in other cases, it may be a simple integer value. When
2891 * @arg represents a user space pointer, it should never be used by the
2892 * security module.
2893 *
2894 * Return: Returns 0 if permission is granted.
2895 */
2896int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2897{
2898 return call_int_hook(file_fcntl, file, cmd, arg);
2899}
2900
2901/**
2902 * security_file_set_fowner() - Set the file owner info in the LSM blob
2903 * @file: the file
2904 *
2905 * Save owner security information (typically from current->security) in
2906 * file->f_security for later use by the send_sigiotask hook.
2907 *
2908 * Return: Returns 0 on success.
2909 */
2910void security_file_set_fowner(struct file *file)
2911{
2912 call_void_hook(file_set_fowner, file);
2913}
2914
2915/**
2916 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2917 * @tsk: target task
2918 * @fown: signal sender
2919 * @sig: signal to be sent, SIGIO is sent if 0
2920 *
2921 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2922 * process @tsk. Note that this hook is sometimes called from interrupt. Note
2923 * that the fown_struct, @fown, is never outside the context of a struct file,
2924 * so the file structure (and associated security information) can always be
2925 * obtained: container_of(fown, struct file, f_owner).
2926 *
2927 * Return: Returns 0 if permission is granted.
2928 */
2929int security_file_send_sigiotask(struct task_struct *tsk,
2930 struct fown_struct *fown, int sig)
2931{
2932 return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2933}
2934
2935/**
2936 * security_file_receive() - Check if receiving a file via IPC is allowed
2937 * @file: file being received
2938 *
2939 * This hook allows security modules to control the ability of a process to
2940 * receive an open file descriptor via socket IPC.
2941 *
2942 * Return: Returns 0 if permission is granted.
2943 */
2944int security_file_receive(struct file *file)
2945{
2946 return call_int_hook(file_receive, file);
2947}
2948
2949/**
2950 * security_file_open() - Save open() time state for late use by the LSM
2951 * @file:
2952 *
2953 * Save open-time permission checking state for later use upon file_permission,
2954 * and recheck access if anything has changed since inode_permission.
2955 *
2956 * Return: Returns 0 if permission is granted.
2957 */
2958int security_file_open(struct file *file)
2959{
2960 int ret;
2961
2962 ret = call_int_hook(file_open, file);
2963 if (ret)
2964 return ret;
2965
2966 return fsnotify_open_perm(file);
2967}
2968
2969/**
2970 * security_file_post_open() - Evaluate a file after it has been opened
2971 * @file: the file
2972 * @mask: access mask
2973 *
2974 * Evaluate an opened file and the access mask requested with open(). The hook
2975 * is useful for LSMs that require the file content to be available in order to
2976 * make decisions.
2977 *
2978 * Return: Returns 0 if permission is granted.
2979 */
2980int security_file_post_open(struct file *file, int mask)
2981{
2982 return call_int_hook(file_post_open, file, mask);
2983}
2984EXPORT_SYMBOL_GPL(security_file_post_open);
2985
2986/**
2987 * security_file_truncate() - Check if truncating a file is allowed
2988 * @file: file
2989 *
2990 * Check permission before truncating a file, i.e. using ftruncate. Note that
2991 * truncation permission may also be checked based on the path, using the
2992 * @path_truncate hook.
2993 *
2994 * Return: Returns 0 if permission is granted.
2995 */
2996int security_file_truncate(struct file *file)
2997{
2998 return call_int_hook(file_truncate, file);
2999}
3000
3001/**
3002 * security_task_alloc() - Allocate a task's LSM blob
3003 * @task: the task
3004 * @clone_flags: flags indicating what is being shared
3005 *
3006 * Handle allocation of task-related resources.
3007 *
3008 * Return: Returns a zero on success, negative values on failure.
3009 */
3010int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3011{
3012 int rc = lsm_task_alloc(task);
3013
3014 if (rc)
3015 return rc;
3016 rc = call_int_hook(task_alloc, task, clone_flags);
3017 if (unlikely(rc))
3018 security_task_free(task);
3019 return rc;
3020}
3021
3022/**
3023 * security_task_free() - Free a task's LSM blob and related resources
3024 * @task: task
3025 *
3026 * Handle release of task-related resources. Note that this can be called from
3027 * interrupt context.
3028 */
3029void security_task_free(struct task_struct *task)
3030{
3031 call_void_hook(task_free, task);
3032
3033 kfree(task->security);
3034 task->security = NULL;
3035}
3036
3037/**
3038 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3039 * @cred: credentials
3040 * @gfp: gfp flags
3041 *
3042 * Only allocate sufficient memory and attach to @cred such that
3043 * cred_transfer() will not get ENOMEM.
3044 *
3045 * Return: Returns 0 on success, negative values on failure.
3046 */
3047int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3048{
3049 int rc = lsm_cred_alloc(cred, gfp);
3050
3051 if (rc)
3052 return rc;
3053
3054 rc = call_int_hook(cred_alloc_blank, cred, gfp);
3055 if (unlikely(rc))
3056 security_cred_free(cred);
3057 return rc;
3058}
3059
3060/**
3061 * security_cred_free() - Free the cred's LSM blob and associated resources
3062 * @cred: credentials
3063 *
3064 * Deallocate and clear the cred->security field in a set of credentials.
3065 */
3066void security_cred_free(struct cred *cred)
3067{
3068 /*
3069 * There is a failure case in prepare_creds() that
3070 * may result in a call here with ->security being NULL.
3071 */
3072 if (unlikely(cred->security == NULL))
3073 return;
3074
3075 call_void_hook(cred_free, cred);
3076
3077 kfree(cred->security);
3078 cred->security = NULL;
3079}
3080
3081/**
3082 * security_prepare_creds() - Prepare a new set of credentials
3083 * @new: new credentials
3084 * @old: original credentials
3085 * @gfp: gfp flags
3086 *
3087 * Prepare a new set of credentials by copying the data from the old set.
3088 *
3089 * Return: Returns 0 on success, negative values on failure.
3090 */
3091int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3092{
3093 int rc = lsm_cred_alloc(new, gfp);
3094
3095 if (rc)
3096 return rc;
3097
3098 rc = call_int_hook(cred_prepare, new, old, gfp);
3099 if (unlikely(rc))
3100 security_cred_free(new);
3101 return rc;
3102}
3103
3104/**
3105 * security_transfer_creds() - Transfer creds
3106 * @new: target credentials
3107 * @old: original credentials
3108 *
3109 * Transfer data from original creds to new creds.
3110 */
3111void security_transfer_creds(struct cred *new, const struct cred *old)
3112{
3113 call_void_hook(cred_transfer, new, old);
3114}
3115
3116/**
3117 * security_cred_getsecid() - Get the secid from a set of credentials
3118 * @c: credentials
3119 * @secid: secid value
3120 *
3121 * Retrieve the security identifier of the cred structure @c. In case of
3122 * failure, @secid will be set to zero.
3123 */
3124void security_cred_getsecid(const struct cred *c, u32 *secid)
3125{
3126 *secid = 0;
3127 call_void_hook(cred_getsecid, c, secid);
3128}
3129EXPORT_SYMBOL(security_cred_getsecid);
3130
3131/**
3132 * security_kernel_act_as() - Set the kernel credentials to act as secid
3133 * @new: credentials
3134 * @secid: secid
3135 *
3136 * Set the credentials for a kernel service to act as (subjective context).
3137 * The current task must be the one that nominated @secid.
3138 *
3139 * Return: Returns 0 if successful.
3140 */
3141int security_kernel_act_as(struct cred *new, u32 secid)
3142{
3143 return call_int_hook(kernel_act_as, new, secid);
3144}
3145
3146/**
3147 * security_kernel_create_files_as() - Set file creation context using an inode
3148 * @new: target credentials
3149 * @inode: reference inode
3150 *
3151 * Set the file creation context in a set of credentials to be the same as the
3152 * objective context of the specified inode. The current task must be the one
3153 * that nominated @inode.
3154 *
3155 * Return: Returns 0 if successful.
3156 */
3157int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3158{
3159 return call_int_hook(kernel_create_files_as, new, inode);
3160}
3161
3162/**
3163 * security_kernel_module_request() - Check if loading a module is allowed
3164 * @kmod_name: module name
3165 *
3166 * Ability to trigger the kernel to automatically upcall to userspace for
3167 * userspace to load a kernel module with the given name.
3168 *
3169 * Return: Returns 0 if successful.
3170 */
3171int security_kernel_module_request(char *kmod_name)
3172{
3173 return call_int_hook(kernel_module_request, kmod_name);
3174}
3175
3176/**
3177 * security_kernel_read_file() - Read a file specified by userspace
3178 * @file: file
3179 * @id: file identifier
3180 * @contents: trust if security_kernel_post_read_file() will be called
3181 *
3182 * Read a file specified by userspace.
3183 *
3184 * Return: Returns 0 if permission is granted.
3185 */
3186int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3187 bool contents)
3188{
3189 return call_int_hook(kernel_read_file, file, id, contents);
3190}
3191EXPORT_SYMBOL_GPL(security_kernel_read_file);
3192
3193/**
3194 * security_kernel_post_read_file() - Read a file specified by userspace
3195 * @file: file
3196 * @buf: file contents
3197 * @size: size of file contents
3198 * @id: file identifier
3199 *
3200 * Read a file specified by userspace. This must be paired with a prior call
3201 * to security_kernel_read_file() call that indicated this hook would also be
3202 * called, see security_kernel_read_file() for more information.
3203 *
3204 * Return: Returns 0 if permission is granted.
3205 */
3206int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3207 enum kernel_read_file_id id)
3208{
3209 return call_int_hook(kernel_post_read_file, file, buf, size, id);
3210}
3211EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3212
3213/**
3214 * security_kernel_load_data() - Load data provided by userspace
3215 * @id: data identifier
3216 * @contents: true if security_kernel_post_load_data() will be called
3217 *
3218 * Load data provided by userspace.
3219 *
3220 * Return: Returns 0 if permission is granted.
3221 */
3222int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3223{
3224 return call_int_hook(kernel_load_data, id, contents);
3225}
3226EXPORT_SYMBOL_GPL(security_kernel_load_data);
3227
3228/**
3229 * security_kernel_post_load_data() - Load userspace data from a non-file source
3230 * @buf: data
3231 * @size: size of data
3232 * @id: data identifier
3233 * @description: text description of data, specific to the id value
3234 *
3235 * Load data provided by a non-file source (usually userspace buffer). This
3236 * must be paired with a prior security_kernel_load_data() call that indicated
3237 * this hook would also be called, see security_kernel_load_data() for more
3238 * information.
3239 *
3240 * Return: Returns 0 if permission is granted.
3241 */
3242int security_kernel_post_load_data(char *buf, loff_t size,
3243 enum kernel_load_data_id id,
3244 char *description)
3245{
3246 return call_int_hook(kernel_post_load_data, buf, size, id, description);
3247}
3248EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3249
3250/**
3251 * security_task_fix_setuid() - Update LSM with new user id attributes
3252 * @new: updated credentials
3253 * @old: credentials being replaced
3254 * @flags: LSM_SETID_* flag values
3255 *
3256 * Update the module's state after setting one or more of the user identity
3257 * attributes of the current process. The @flags parameter indicates which of
3258 * the set*uid system calls invoked this hook. If @new is the set of
3259 * credentials that will be installed. Modifications should be made to this
3260 * rather than to @current->cred.
3261 *
3262 * Return: Returns 0 on success.
3263 */
3264int security_task_fix_setuid(struct cred *new, const struct cred *old,
3265 int flags)
3266{
3267 return call_int_hook(task_fix_setuid, new, old, flags);
3268}
3269
3270/**
3271 * security_task_fix_setgid() - Update LSM with new group id attributes
3272 * @new: updated credentials
3273 * @old: credentials being replaced
3274 * @flags: LSM_SETID_* flag value
3275 *
3276 * Update the module's state after setting one or more of the group identity
3277 * attributes of the current process. The @flags parameter indicates which of
3278 * the set*gid system calls invoked this hook. @new is the set of credentials
3279 * that will be installed. Modifications should be made to this rather than to
3280 * @current->cred.
3281 *
3282 * Return: Returns 0 on success.
3283 */
3284int security_task_fix_setgid(struct cred *new, const struct cred *old,
3285 int flags)
3286{
3287 return call_int_hook(task_fix_setgid, new, old, flags);
3288}
3289
3290/**
3291 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3292 * @new: updated credentials
3293 * @old: credentials being replaced
3294 *
3295 * Update the module's state after setting the supplementary group identity
3296 * attributes of the current process. @new is the set of credentials that will
3297 * be installed. Modifications should be made to this rather than to
3298 * @current->cred.
3299 *
3300 * Return: Returns 0 on success.
3301 */
3302int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3303{
3304 return call_int_hook(task_fix_setgroups, new, old);
3305}
3306
3307/**
3308 * security_task_setpgid() - Check if setting the pgid is allowed
3309 * @p: task being modified
3310 * @pgid: new pgid
3311 *
3312 * Check permission before setting the process group identifier of the process
3313 * @p to @pgid.
3314 *
3315 * Return: Returns 0 if permission is granted.
3316 */
3317int security_task_setpgid(struct task_struct *p, pid_t pgid)
3318{
3319 return call_int_hook(task_setpgid, p, pgid);
3320}
3321
3322/**
3323 * security_task_getpgid() - Check if getting the pgid is allowed
3324 * @p: task
3325 *
3326 * Check permission before getting the process group identifier of the process
3327 * @p.
3328 *
3329 * Return: Returns 0 if permission is granted.
3330 */
3331int security_task_getpgid(struct task_struct *p)
3332{
3333 return call_int_hook(task_getpgid, p);
3334}
3335
3336/**
3337 * security_task_getsid() - Check if getting the session id is allowed
3338 * @p: task
3339 *
3340 * Check permission before getting the session identifier of the process @p.
3341 *
3342 * Return: Returns 0 if permission is granted.
3343 */
3344int security_task_getsid(struct task_struct *p)
3345{
3346 return call_int_hook(task_getsid, p);
3347}
3348
3349/**
3350 * security_current_getsecid_subj() - Get the current task's subjective secid
3351 * @secid: secid value
3352 *
3353 * Retrieve the subjective security identifier of the current task and return
3354 * it in @secid. In case of failure, @secid will be set to zero.
3355 */
3356void security_current_getsecid_subj(u32 *secid)
3357{
3358 *secid = 0;
3359 call_void_hook(current_getsecid_subj, secid);
3360}
3361EXPORT_SYMBOL(security_current_getsecid_subj);
3362
3363/**
3364 * security_task_getsecid_obj() - Get a task's objective secid
3365 * @p: target task
3366 * @secid: secid value
3367 *
3368 * Retrieve the objective security identifier of the task_struct in @p and
3369 * return it in @secid. In case of failure, @secid will be set to zero.
3370 */
3371void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3372{
3373 *secid = 0;
3374 call_void_hook(task_getsecid_obj, p, secid);
3375}
3376EXPORT_SYMBOL(security_task_getsecid_obj);
3377
3378/**
3379 * security_task_setnice() - Check if setting a task's nice value is allowed
3380 * @p: target task
3381 * @nice: nice value
3382 *
3383 * Check permission before setting the nice value of @p to @nice.
3384 *
3385 * Return: Returns 0 if permission is granted.
3386 */
3387int security_task_setnice(struct task_struct *p, int nice)
3388{
3389 return call_int_hook(task_setnice, p, nice);
3390}
3391
3392/**
3393 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3394 * @p: target task
3395 * @ioprio: ioprio value
3396 *
3397 * Check permission before setting the ioprio value of @p to @ioprio.
3398 *
3399 * Return: Returns 0 if permission is granted.
3400 */
3401int security_task_setioprio(struct task_struct *p, int ioprio)
3402{
3403 return call_int_hook(task_setioprio, p, ioprio);
3404}
3405
3406/**
3407 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3408 * @p: task
3409 *
3410 * Check permission before getting the ioprio value of @p.
3411 *
3412 * Return: Returns 0 if permission is granted.
3413 */
3414int security_task_getioprio(struct task_struct *p)
3415{
3416 return call_int_hook(task_getioprio, p);
3417}
3418
3419/**
3420 * security_task_prlimit() - Check if get/setting resources limits is allowed
3421 * @cred: current task credentials
3422 * @tcred: target task credentials
3423 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3424 *
3425 * Check permission before getting and/or setting the resource limits of
3426 * another task.
3427 *
3428 * Return: Returns 0 if permission is granted.
3429 */
3430int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3431 unsigned int flags)
3432{
3433 return call_int_hook(task_prlimit, cred, tcred, flags);
3434}
3435
3436/**
3437 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3438 * @p: target task's group leader
3439 * @resource: resource whose limit is being set
3440 * @new_rlim: new resource limit
3441 *
3442 * Check permission before setting the resource limits of process @p for
3443 * @resource to @new_rlim. The old resource limit values can be examined by
3444 * dereferencing (p->signal->rlim + resource).
3445 *
3446 * Return: Returns 0 if permission is granted.
3447 */
3448int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3449 struct rlimit *new_rlim)
3450{
3451 return call_int_hook(task_setrlimit, p, resource, new_rlim);
3452}
3453
3454/**
3455 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3456 * @p: target task
3457 *
3458 * Check permission before setting scheduling policy and/or parameters of
3459 * process @p.
3460 *
3461 * Return: Returns 0 if permission is granted.
3462 */
3463int security_task_setscheduler(struct task_struct *p)
3464{
3465 return call_int_hook(task_setscheduler, p);
3466}
3467
3468/**
3469 * security_task_getscheduler() - Check if getting scheduling info is allowed
3470 * @p: target task
3471 *
3472 * Check permission before obtaining scheduling information for process @p.
3473 *
3474 * Return: Returns 0 if permission is granted.
3475 */
3476int security_task_getscheduler(struct task_struct *p)
3477{
3478 return call_int_hook(task_getscheduler, p);
3479}
3480
3481/**
3482 * security_task_movememory() - Check if moving memory is allowed
3483 * @p: task
3484 *
3485 * Check permission before moving memory owned by process @p.
3486 *
3487 * Return: Returns 0 if permission is granted.
3488 */
3489int security_task_movememory(struct task_struct *p)
3490{
3491 return call_int_hook(task_movememory, p);
3492}
3493
3494/**
3495 * security_task_kill() - Check if sending a signal is allowed
3496 * @p: target process
3497 * @info: signal information
3498 * @sig: signal value
3499 * @cred: credentials of the signal sender, NULL if @current
3500 *
3501 * Check permission before sending signal @sig to @p. @info can be NULL, the
3502 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3503 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3504 * the kernel and should typically be permitted. SIGIO signals are handled
3505 * separately by the send_sigiotask hook in file_security_ops.
3506 *
3507 * Return: Returns 0 if permission is granted.
3508 */
3509int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3510 int sig, const struct cred *cred)
3511{
3512 return call_int_hook(task_kill, p, info, sig, cred);
3513}
3514
3515/**
3516 * security_task_prctl() - Check if a prctl op is allowed
3517 * @option: operation
3518 * @arg2: argument
3519 * @arg3: argument
3520 * @arg4: argument
3521 * @arg5: argument
3522 *
3523 * Check permission before performing a process control operation on the
3524 * current process.
3525 *
3526 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3527 * to cause prctl() to return immediately with that value.
3528 */
3529int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3530 unsigned long arg4, unsigned long arg5)
3531{
3532 int thisrc;
3533 int rc = LSM_RET_DEFAULT(task_prctl);
3534 struct security_hook_list *hp;
3535
3536 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3537 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3538 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3539 rc = thisrc;
3540 if (thisrc != 0)
3541 break;
3542 }
3543 }
3544 return rc;
3545}
3546
3547/**
3548 * security_task_to_inode() - Set the security attributes of a task's inode
3549 * @p: task
3550 * @inode: inode
3551 *
3552 * Set the security attributes for an inode based on an associated task's
3553 * security attributes, e.g. for /proc/pid inodes.
3554 */
3555void security_task_to_inode(struct task_struct *p, struct inode *inode)
3556{
3557 call_void_hook(task_to_inode, p, inode);
3558}
3559
3560/**
3561 * security_create_user_ns() - Check if creating a new userns is allowed
3562 * @cred: prepared creds
3563 *
3564 * Check permission prior to creating a new user namespace.
3565 *
3566 * Return: Returns 0 if successful, otherwise < 0 error code.
3567 */
3568int security_create_user_ns(const struct cred *cred)
3569{
3570 return call_int_hook(userns_create, cred);
3571}
3572
3573/**
3574 * security_ipc_permission() - Check if sysv ipc access is allowed
3575 * @ipcp: ipc permission structure
3576 * @flag: requested permissions
3577 *
3578 * Check permissions for access to IPC.
3579 *
3580 * Return: Returns 0 if permission is granted.
3581 */
3582int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3583{
3584 return call_int_hook(ipc_permission, ipcp, flag);
3585}
3586
3587/**
3588 * security_ipc_getsecid() - Get the sysv ipc object's secid
3589 * @ipcp: ipc permission structure
3590 * @secid: secid pointer
3591 *
3592 * Get the secid associated with the ipc object. In case of failure, @secid
3593 * will be set to zero.
3594 */
3595void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3596{
3597 *secid = 0;
3598 call_void_hook(ipc_getsecid, ipcp, secid);
3599}
3600
3601/**
3602 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3603 * @msg: message structure
3604 *
3605 * Allocate and attach a security structure to the msg->security field. The
3606 * security field is initialized to NULL when the structure is first created.
3607 *
3608 * Return: Return 0 if operation was successful and permission is granted.
3609 */
3610int security_msg_msg_alloc(struct msg_msg *msg)
3611{
3612 int rc = lsm_msg_msg_alloc(msg);
3613
3614 if (unlikely(rc))
3615 return rc;
3616 rc = call_int_hook(msg_msg_alloc_security, msg);
3617 if (unlikely(rc))
3618 security_msg_msg_free(msg);
3619 return rc;
3620}
3621
3622/**
3623 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3624 * @msg: message structure
3625 *
3626 * Deallocate the security structure for this message.
3627 */
3628void security_msg_msg_free(struct msg_msg *msg)
3629{
3630 call_void_hook(msg_msg_free_security, msg);
3631 kfree(msg->security);
3632 msg->security = NULL;
3633}
3634
3635/**
3636 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3637 * @msq: sysv ipc permission structure
3638 *
3639 * Allocate and attach a security structure to @msg. The security field is
3640 * initialized to NULL when the structure is first created.
3641 *
3642 * Return: Returns 0 if operation was successful and permission is granted.
3643 */
3644int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3645{
3646 int rc = lsm_ipc_alloc(msq);
3647
3648 if (unlikely(rc))
3649 return rc;
3650 rc = call_int_hook(msg_queue_alloc_security, msq);
3651 if (unlikely(rc))
3652 security_msg_queue_free(msq);
3653 return rc;
3654}
3655
3656/**
3657 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3658 * @msq: sysv ipc permission structure
3659 *
3660 * Deallocate security field @perm->security for the message queue.
3661 */
3662void security_msg_queue_free(struct kern_ipc_perm *msq)
3663{
3664 call_void_hook(msg_queue_free_security, msq);
3665 kfree(msq->security);
3666 msq->security = NULL;
3667}
3668
3669/**
3670 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3671 * @msq: sysv ipc permission structure
3672 * @msqflg: operation flags
3673 *
3674 * Check permission when a message queue is requested through the msgget system
3675 * call. This hook is only called when returning the message queue identifier
3676 * for an existing message queue, not when a new message queue is created.
3677 *
3678 * Return: Return 0 if permission is granted.
3679 */
3680int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3681{
3682 return call_int_hook(msg_queue_associate, msq, msqflg);
3683}
3684
3685/**
3686 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3687 * @msq: sysv ipc permission structure
3688 * @cmd: operation
3689 *
3690 * Check permission when a message control operation specified by @cmd is to be
3691 * performed on the message queue with permissions.
3692 *
3693 * Return: Returns 0 if permission is granted.
3694 */
3695int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3696{
3697 return call_int_hook(msg_queue_msgctl, msq, cmd);
3698}
3699
3700/**
3701 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3702 * @msq: sysv ipc permission structure
3703 * @msg: message
3704 * @msqflg: operation flags
3705 *
3706 * Check permission before a message, @msg, is enqueued on the message queue
3707 * with permissions specified in @msq.
3708 *
3709 * Return: Returns 0 if permission is granted.
3710 */
3711int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3712 struct msg_msg *msg, int msqflg)
3713{
3714 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3715}
3716
3717/**
3718 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3719 * @msq: sysv ipc permission structure
3720 * @msg: message
3721 * @target: target task
3722 * @type: type of message requested
3723 * @mode: operation flags
3724 *
3725 * Check permission before a message, @msg, is removed from the message queue.
3726 * The @target task structure contains a pointer to the process that will be
3727 * receiving the message (not equal to the current process when inline receives
3728 * are being performed).
3729 *
3730 * Return: Returns 0 if permission is granted.
3731 */
3732int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3733 struct task_struct *target, long type, int mode)
3734{
3735 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3736}
3737
3738/**
3739 * security_shm_alloc() - Allocate a sysv shm LSM blob
3740 * @shp: sysv ipc permission structure
3741 *
3742 * Allocate and attach a security structure to the @shp security field. The
3743 * security field is initialized to NULL when the structure is first created.
3744 *
3745 * Return: Returns 0 if operation was successful and permission is granted.
3746 */
3747int security_shm_alloc(struct kern_ipc_perm *shp)
3748{
3749 int rc = lsm_ipc_alloc(shp);
3750
3751 if (unlikely(rc))
3752 return rc;
3753 rc = call_int_hook(shm_alloc_security, shp);
3754 if (unlikely(rc))
3755 security_shm_free(shp);
3756 return rc;
3757}
3758
3759/**
3760 * security_shm_free() - Free a sysv shm LSM blob
3761 * @shp: sysv ipc permission structure
3762 *
3763 * Deallocate the security structure @perm->security for the memory segment.
3764 */
3765void security_shm_free(struct kern_ipc_perm *shp)
3766{
3767 call_void_hook(shm_free_security, shp);
3768 kfree(shp->security);
3769 shp->security = NULL;
3770}
3771
3772/**
3773 * security_shm_associate() - Check if a sysv shm operation is allowed
3774 * @shp: sysv ipc permission structure
3775 * @shmflg: operation flags
3776 *
3777 * Check permission when a shared memory region is requested through the shmget
3778 * system call. This hook is only called when returning the shared memory
3779 * region identifier for an existing region, not when a new shared memory
3780 * region is created.
3781 *
3782 * Return: Returns 0 if permission is granted.
3783 */
3784int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3785{
3786 return call_int_hook(shm_associate, shp, shmflg);
3787}
3788
3789/**
3790 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3791 * @shp: sysv ipc permission structure
3792 * @cmd: operation
3793 *
3794 * Check permission when a shared memory control operation specified by @cmd is
3795 * to be performed on the shared memory region with permissions in @shp.
3796 *
3797 * Return: Return 0 if permission is granted.
3798 */
3799int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3800{
3801 return call_int_hook(shm_shmctl, shp, cmd);
3802}
3803
3804/**
3805 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3806 * @shp: sysv ipc permission structure
3807 * @shmaddr: address of memory region to attach
3808 * @shmflg: operation flags
3809 *
3810 * Check permissions prior to allowing the shmat system call to attach the
3811 * shared memory segment with permissions @shp to the data segment of the
3812 * calling process. The attaching address is specified by @shmaddr.
3813 *
3814 * Return: Returns 0 if permission is granted.
3815 */
3816int security_shm_shmat(struct kern_ipc_perm *shp,
3817 char __user *shmaddr, int shmflg)
3818{
3819 return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3820}
3821
3822/**
3823 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3824 * @sma: sysv ipc permission structure
3825 *
3826 * Allocate and attach a security structure to the @sma security field. The
3827 * security field is initialized to NULL when the structure is first created.
3828 *
3829 * Return: Returns 0 if operation was successful and permission is granted.
3830 */
3831int security_sem_alloc(struct kern_ipc_perm *sma)
3832{
3833 int rc = lsm_ipc_alloc(sma);
3834
3835 if (unlikely(rc))
3836 return rc;
3837 rc = call_int_hook(sem_alloc_security, sma);
3838 if (unlikely(rc))
3839 security_sem_free(sma);
3840 return rc;
3841}
3842
3843/**
3844 * security_sem_free() - Free a sysv semaphore LSM blob
3845 * @sma: sysv ipc permission structure
3846 *
3847 * Deallocate security structure @sma->security for the semaphore.
3848 */
3849void security_sem_free(struct kern_ipc_perm *sma)
3850{
3851 call_void_hook(sem_free_security, sma);
3852 kfree(sma->security);
3853 sma->security = NULL;
3854}
3855
3856/**
3857 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3858 * @sma: sysv ipc permission structure
3859 * @semflg: operation flags
3860 *
3861 * Check permission when a semaphore is requested through the semget system
3862 * call. This hook is only called when returning the semaphore identifier for
3863 * an existing semaphore, not when a new one must be created.
3864 *
3865 * Return: Returns 0 if permission is granted.
3866 */
3867int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3868{
3869 return call_int_hook(sem_associate, sma, semflg);
3870}
3871
3872/**
3873 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3874 * @sma: sysv ipc permission structure
3875 * @cmd: operation
3876 *
3877 * Check permission when a semaphore operation specified by @cmd is to be
3878 * performed on the semaphore.
3879 *
3880 * Return: Returns 0 if permission is granted.
3881 */
3882int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3883{
3884 return call_int_hook(sem_semctl, sma, cmd);
3885}
3886
3887/**
3888 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3889 * @sma: sysv ipc permission structure
3890 * @sops: operations to perform
3891 * @nsops: number of operations
3892 * @alter: flag indicating changes will be made
3893 *
3894 * Check permissions before performing operations on members of the semaphore
3895 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3896 *
3897 * Return: Returns 0 if permission is granted.
3898 */
3899int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3900 unsigned nsops, int alter)
3901{
3902 return call_int_hook(sem_semop, sma, sops, nsops, alter);
3903}
3904
3905/**
3906 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3907 * @dentry: dentry
3908 * @inode: inode
3909 *
3910 * Fill in @inode security information for a @dentry if allowed.
3911 */
3912void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3913{
3914 if (unlikely(inode && IS_PRIVATE(inode)))
3915 return;
3916 call_void_hook(d_instantiate, dentry, inode);
3917}
3918EXPORT_SYMBOL(security_d_instantiate);
3919
3920/*
3921 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3922 */
3923
3924/**
3925 * security_getselfattr - Read an LSM attribute of the current process.
3926 * @attr: which attribute to return
3927 * @uctx: the user-space destination for the information, or NULL
3928 * @size: pointer to the size of space available to receive the data
3929 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3930 * attributes associated with the LSM identified in the passed @ctx be
3931 * reported.
3932 *
3933 * A NULL value for @uctx can be used to get both the number of attributes
3934 * and the size of the data.
3935 *
3936 * Returns the number of attributes found on success, negative value
3937 * on error. @size is reset to the total size of the data.
3938 * If @size is insufficient to contain the data -E2BIG is returned.
3939 */
3940int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3941 u32 __user *size, u32 flags)
3942{
3943 struct security_hook_list *hp;
3944 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3945 u8 __user *base = (u8 __user *)uctx;
3946 u32 entrysize;
3947 u32 total = 0;
3948 u32 left;
3949 bool toobig = false;
3950 bool single = false;
3951 int count = 0;
3952 int rc;
3953
3954 if (attr == LSM_ATTR_UNDEF)
3955 return -EINVAL;
3956 if (size == NULL)
3957 return -EINVAL;
3958 if (get_user(left, size))
3959 return -EFAULT;
3960
3961 if (flags) {
3962 /*
3963 * Only flag supported is LSM_FLAG_SINGLE
3964 */
3965 if (flags != LSM_FLAG_SINGLE || !uctx)
3966 return -EINVAL;
3967 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3968 return -EFAULT;
3969 /*
3970 * If the LSM ID isn't specified it is an error.
3971 */
3972 if (lctx.id == LSM_ID_UNDEF)
3973 return -EINVAL;
3974 single = true;
3975 }
3976
3977 /*
3978 * In the usual case gather all the data from the LSMs.
3979 * In the single case only get the data from the LSM specified.
3980 */
3981 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3982 if (single && lctx.id != hp->lsmid->id)
3983 continue;
3984 entrysize = left;
3985 if (base)
3986 uctx = (struct lsm_ctx __user *)(base + total);
3987 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3988 if (rc == -EOPNOTSUPP) {
3989 rc = 0;
3990 continue;
3991 }
3992 if (rc == -E2BIG) {
3993 rc = 0;
3994 left = 0;
3995 toobig = true;
3996 } else if (rc < 0)
3997 return rc;
3998 else
3999 left -= entrysize;
4000
4001 total += entrysize;
4002 count += rc;
4003 if (single)
4004 break;
4005 }
4006 if (put_user(total, size))
4007 return -EFAULT;
4008 if (toobig)
4009 return -E2BIG;
4010 if (count == 0)
4011 return LSM_RET_DEFAULT(getselfattr);
4012 return count;
4013}
4014
4015/*
4016 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4017 */
4018
4019/**
4020 * security_setselfattr - Set an LSM attribute on the current process.
4021 * @attr: which attribute to set
4022 * @uctx: the user-space source for the information
4023 * @size: the size of the data
4024 * @flags: reserved for future use, must be 0
4025 *
4026 * Set an LSM attribute for the current process. The LSM, attribute
4027 * and new value are included in @uctx.
4028 *
4029 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4030 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4031 * LSM specific failure.
4032 */
4033int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4034 u32 size, u32 flags)
4035{
4036 struct security_hook_list *hp;
4037 struct lsm_ctx *lctx;
4038 int rc = LSM_RET_DEFAULT(setselfattr);
4039 u64 required_len;
4040
4041 if (flags)
4042 return -EINVAL;
4043 if (size < sizeof(*lctx))
4044 return -EINVAL;
4045 if (size > PAGE_SIZE)
4046 return -E2BIG;
4047
4048 lctx = memdup_user(uctx, size);
4049 if (IS_ERR(lctx))
4050 return PTR_ERR(lctx);
4051
4052 if (size < lctx->len ||
4053 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4054 lctx->len < required_len) {
4055 rc = -EINVAL;
4056 goto free_out;
4057 }
4058
4059 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4060 if ((hp->lsmid->id) == lctx->id) {
4061 rc = hp->hook.setselfattr(attr, lctx, size, flags);
4062 break;
4063 }
4064
4065free_out:
4066 kfree(lctx);
4067 return rc;
4068}
4069
4070/**
4071 * security_getprocattr() - Read an attribute for a task
4072 * @p: the task
4073 * @lsmid: LSM identification
4074 * @name: attribute name
4075 * @value: attribute value
4076 *
4077 * Read attribute @name for task @p and store it into @value if allowed.
4078 *
4079 * Return: Returns the length of @value on success, a negative value otherwise.
4080 */
4081int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4082 char **value)
4083{
4084 struct security_hook_list *hp;
4085
4086 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4087 if (lsmid != 0 && lsmid != hp->lsmid->id)
4088 continue;
4089 return hp->hook.getprocattr(p, name, value);
4090 }
4091 return LSM_RET_DEFAULT(getprocattr);
4092}
4093
4094/**
4095 * security_setprocattr() - Set an attribute for a task
4096 * @lsmid: LSM identification
4097 * @name: attribute name
4098 * @value: attribute value
4099 * @size: attribute value size
4100 *
4101 * Write (set) the current task's attribute @name to @value, size @size if
4102 * allowed.
4103 *
4104 * Return: Returns bytes written on success, a negative value otherwise.
4105 */
4106int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4107{
4108 struct security_hook_list *hp;
4109
4110 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4111 if (lsmid != 0 && lsmid != hp->lsmid->id)
4112 continue;
4113 return hp->hook.setprocattr(name, value, size);
4114 }
4115 return LSM_RET_DEFAULT(setprocattr);
4116}
4117
4118/**
4119 * security_netlink_send() - Save info and check if netlink sending is allowed
4120 * @sk: sending socket
4121 * @skb: netlink message
4122 *
4123 * Save security information for a netlink message so that permission checking
4124 * can be performed when the message is processed. The security information
4125 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4126 * Also may be used to provide fine grained control over message transmission.
4127 *
4128 * Return: Returns 0 if the information was successfully saved and message is
4129 * allowed to be transmitted.
4130 */
4131int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4132{
4133 return call_int_hook(netlink_send, sk, skb);
4134}
4135
4136/**
4137 * security_ismaclabel() - Check if the named attribute is a MAC label
4138 * @name: full extended attribute name
4139 *
4140 * Check if the extended attribute specified by @name represents a MAC label.
4141 *
4142 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4143 */
4144int security_ismaclabel(const char *name)
4145{
4146 return call_int_hook(ismaclabel, name);
4147}
4148EXPORT_SYMBOL(security_ismaclabel);
4149
4150/**
4151 * security_secid_to_secctx() - Convert a secid to a secctx
4152 * @secid: secid
4153 * @secdata: secctx
4154 * @seclen: secctx length
4155 *
4156 * Convert secid to security context. If @secdata is NULL the length of the
4157 * result will be returned in @seclen, but no @secdata will be returned. This
4158 * does mean that the length could change between calls to check the length and
4159 * the next call which actually allocates and returns the @secdata.
4160 *
4161 * Return: Return 0 on success, error on failure.
4162 */
4163int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4164{
4165 return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4166}
4167EXPORT_SYMBOL(security_secid_to_secctx);
4168
4169/**
4170 * security_secctx_to_secid() - Convert a secctx to a secid
4171 * @secdata: secctx
4172 * @seclen: length of secctx
4173 * @secid: secid
4174 *
4175 * Convert security context to secid.
4176 *
4177 * Return: Returns 0 on success, error on failure.
4178 */
4179int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4180{
4181 *secid = 0;
4182 return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4183}
4184EXPORT_SYMBOL(security_secctx_to_secid);
4185
4186/**
4187 * security_release_secctx() - Free a secctx buffer
4188 * @secdata: secctx
4189 * @seclen: length of secctx
4190 *
4191 * Release the security context.
4192 */
4193void security_release_secctx(char *secdata, u32 seclen)
4194{
4195 call_void_hook(release_secctx, secdata, seclen);
4196}
4197EXPORT_SYMBOL(security_release_secctx);
4198
4199/**
4200 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4201 * @inode: inode
4202 *
4203 * Notify the security module that it must revalidate the security context of
4204 * an inode.
4205 */
4206void security_inode_invalidate_secctx(struct inode *inode)
4207{
4208 call_void_hook(inode_invalidate_secctx, inode);
4209}
4210EXPORT_SYMBOL(security_inode_invalidate_secctx);
4211
4212/**
4213 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4214 * @inode: inode
4215 * @ctx: secctx
4216 * @ctxlen: length of secctx
4217 *
4218 * Notify the security module of what the security context of an inode should
4219 * be. Initializes the incore security context managed by the security module
4220 * for this inode. Example usage: NFS client invokes this hook to initialize
4221 * the security context in its incore inode to the value provided by the server
4222 * for the file when the server returned the file's attributes to the client.
4223 * Must be called with inode->i_mutex locked.
4224 *
4225 * Return: Returns 0 on success, error on failure.
4226 */
4227int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4228{
4229 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4230}
4231EXPORT_SYMBOL(security_inode_notifysecctx);
4232
4233/**
4234 * security_inode_setsecctx() - Change the security label of an inode
4235 * @dentry: inode
4236 * @ctx: secctx
4237 * @ctxlen: length of secctx
4238 *
4239 * Change the security context of an inode. Updates the incore security
4240 * context managed by the security module and invokes the fs code as needed
4241 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4242 * context. Example usage: NFS server invokes this hook to change the security
4243 * context in its incore inode and on the backing filesystem to a value
4244 * provided by the client on a SETATTR operation. Must be called with
4245 * inode->i_mutex locked.
4246 *
4247 * Return: Returns 0 on success, error on failure.
4248 */
4249int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4250{
4251 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4252}
4253EXPORT_SYMBOL(security_inode_setsecctx);
4254
4255/**
4256 * security_inode_getsecctx() - Get the security label of an inode
4257 * @inode: inode
4258 * @ctx: secctx
4259 * @ctxlen: length of secctx
4260 *
4261 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4262 * context for the given @inode.
4263 *
4264 * Return: Returns 0 on success, error on failure.
4265 */
4266int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4267{
4268 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4269}
4270EXPORT_SYMBOL(security_inode_getsecctx);
4271
4272#ifdef CONFIG_WATCH_QUEUE
4273/**
4274 * security_post_notification() - Check if a watch notification can be posted
4275 * @w_cred: credentials of the task that set the watch
4276 * @cred: credentials of the task which triggered the watch
4277 * @n: the notification
4278 *
4279 * Check to see if a watch notification can be posted to a particular queue.
4280 *
4281 * Return: Returns 0 if permission is granted.
4282 */
4283int security_post_notification(const struct cred *w_cred,
4284 const struct cred *cred,
4285 struct watch_notification *n)
4286{
4287 return call_int_hook(post_notification, w_cred, cred, n);
4288}
4289#endif /* CONFIG_WATCH_QUEUE */
4290
4291#ifdef CONFIG_KEY_NOTIFICATIONS
4292/**
4293 * security_watch_key() - Check if a task is allowed to watch for key events
4294 * @key: the key to watch
4295 *
4296 * Check to see if a process is allowed to watch for event notifications from
4297 * a key or keyring.
4298 *
4299 * Return: Returns 0 if permission is granted.
4300 */
4301int security_watch_key(struct key *key)
4302{
4303 return call_int_hook(watch_key, key);
4304}
4305#endif /* CONFIG_KEY_NOTIFICATIONS */
4306
4307#ifdef CONFIG_SECURITY_NETWORK
4308/**
4309 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4310 * @sock: originating sock
4311 * @other: peer sock
4312 * @newsk: new sock
4313 *
4314 * Check permissions before establishing a Unix domain stream connection
4315 * between @sock and @other.
4316 *
4317 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4318 * Linux provides an alternative to the conventional file name space for Unix
4319 * domain sockets. Whereas binding and connecting to sockets in the file name
4320 * space is mediated by the typical file permissions (and caught by the mknod
4321 * and permission hooks in inode_security_ops), binding and connecting to
4322 * sockets in the abstract name space is completely unmediated. Sufficient
4323 * control of Unix domain sockets in the abstract name space isn't possible
4324 * using only the socket layer hooks, since we need to know the actual target
4325 * socket, which is not looked up until we are inside the af_unix code.
4326 *
4327 * Return: Returns 0 if permission is granted.
4328 */
4329int security_unix_stream_connect(struct sock *sock, struct sock *other,
4330 struct sock *newsk)
4331{
4332 return call_int_hook(unix_stream_connect, sock, other, newsk);
4333}
4334EXPORT_SYMBOL(security_unix_stream_connect);
4335
4336/**
4337 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4338 * @sock: originating sock
4339 * @other: peer sock
4340 *
4341 * Check permissions before connecting or sending datagrams from @sock to
4342 * @other.
4343 *
4344 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4345 * Linux provides an alternative to the conventional file name space for Unix
4346 * domain sockets. Whereas binding and connecting to sockets in the file name
4347 * space is mediated by the typical file permissions (and caught by the mknod
4348 * and permission hooks in inode_security_ops), binding and connecting to
4349 * sockets in the abstract name space is completely unmediated. Sufficient
4350 * control of Unix domain sockets in the abstract name space isn't possible
4351 * using only the socket layer hooks, since we need to know the actual target
4352 * socket, which is not looked up until we are inside the af_unix code.
4353 *
4354 * Return: Returns 0 if permission is granted.
4355 */
4356int security_unix_may_send(struct socket *sock, struct socket *other)
4357{
4358 return call_int_hook(unix_may_send, sock, other);
4359}
4360EXPORT_SYMBOL(security_unix_may_send);
4361
4362/**
4363 * security_socket_create() - Check if creating a new socket is allowed
4364 * @family: protocol family
4365 * @type: communications type
4366 * @protocol: requested protocol
4367 * @kern: set to 1 if a kernel socket is requested
4368 *
4369 * Check permissions prior to creating a new socket.
4370 *
4371 * Return: Returns 0 if permission is granted.
4372 */
4373int security_socket_create(int family, int type, int protocol, int kern)
4374{
4375 return call_int_hook(socket_create, family, type, protocol, kern);
4376}
4377
4378/**
4379 * security_socket_post_create() - Initialize a newly created socket
4380 * @sock: socket
4381 * @family: protocol family
4382 * @type: communications type
4383 * @protocol: requested protocol
4384 * @kern: set to 1 if a kernel socket is requested
4385 *
4386 * This hook allows a module to update or allocate a per-socket security
4387 * structure. Note that the security field was not added directly to the socket
4388 * structure, but rather, the socket security information is stored in the
4389 * associated inode. Typically, the inode alloc_security hook will allocate
4390 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4391 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4392 * information that wasn't available when the inode was allocated.
4393 *
4394 * Return: Returns 0 if permission is granted.
4395 */
4396int security_socket_post_create(struct socket *sock, int family,
4397 int type, int protocol, int kern)
4398{
4399 return call_int_hook(socket_post_create, sock, family, type,
4400 protocol, kern);
4401}
4402
4403/**
4404 * security_socket_socketpair() - Check if creating a socketpair is allowed
4405 * @socka: first socket
4406 * @sockb: second socket
4407 *
4408 * Check permissions before creating a fresh pair of sockets.
4409 *
4410 * Return: Returns 0 if permission is granted and the connection was
4411 * established.
4412 */
4413int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4414{
4415 return call_int_hook(socket_socketpair, socka, sockb);
4416}
4417EXPORT_SYMBOL(security_socket_socketpair);
4418
4419/**
4420 * security_socket_bind() - Check if a socket bind operation is allowed
4421 * @sock: socket
4422 * @address: requested bind address
4423 * @addrlen: length of address
4424 *
4425 * Check permission before socket protocol layer bind operation is performed
4426 * and the socket @sock is bound to the address specified in the @address
4427 * parameter.
4428 *
4429 * Return: Returns 0 if permission is granted.
4430 */
4431int security_socket_bind(struct socket *sock,
4432 struct sockaddr *address, int addrlen)
4433{
4434 return call_int_hook(socket_bind, sock, address, addrlen);
4435}
4436
4437/**
4438 * security_socket_connect() - Check if a socket connect operation is allowed
4439 * @sock: socket
4440 * @address: address of remote connection point
4441 * @addrlen: length of address
4442 *
4443 * Check permission before socket protocol layer connect operation attempts to
4444 * connect socket @sock to a remote address, @address.
4445 *
4446 * Return: Returns 0 if permission is granted.
4447 */
4448int security_socket_connect(struct socket *sock,
4449 struct sockaddr *address, int addrlen)
4450{
4451 return call_int_hook(socket_connect, sock, address, addrlen);
4452}
4453
4454/**
4455 * security_socket_listen() - Check if a socket is allowed to listen
4456 * @sock: socket
4457 * @backlog: connection queue size
4458 *
4459 * Check permission before socket protocol layer listen operation.
4460 *
4461 * Return: Returns 0 if permission is granted.
4462 */
4463int security_socket_listen(struct socket *sock, int backlog)
4464{
4465 return call_int_hook(socket_listen, sock, backlog);
4466}
4467
4468/**
4469 * security_socket_accept() - Check if a socket is allowed to accept connections
4470 * @sock: listening socket
4471 * @newsock: newly creation connection socket
4472 *
4473 * Check permission before accepting a new connection. Note that the new
4474 * socket, @newsock, has been created and some information copied to it, but
4475 * the accept operation has not actually been performed.
4476 *
4477 * Return: Returns 0 if permission is granted.
4478 */
4479int security_socket_accept(struct socket *sock, struct socket *newsock)
4480{
4481 return call_int_hook(socket_accept, sock, newsock);
4482}
4483
4484/**
4485 * security_socket_sendmsg() - Check if sending a message is allowed
4486 * @sock: sending socket
4487 * @msg: message to send
4488 * @size: size of message
4489 *
4490 * Check permission before transmitting a message to another socket.
4491 *
4492 * Return: Returns 0 if permission is granted.
4493 */
4494int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4495{
4496 return call_int_hook(socket_sendmsg, sock, msg, size);
4497}
4498
4499/**
4500 * security_socket_recvmsg() - Check if receiving a message is allowed
4501 * @sock: receiving socket
4502 * @msg: message to receive
4503 * @size: size of message
4504 * @flags: operational flags
4505 *
4506 * Check permission before receiving a message from a socket.
4507 *
4508 * Return: Returns 0 if permission is granted.
4509 */
4510int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4511 int size, int flags)
4512{
4513 return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4514}
4515
4516/**
4517 * security_socket_getsockname() - Check if reading the socket addr is allowed
4518 * @sock: socket
4519 *
4520 * Check permission before reading the local address (name) of the socket
4521 * object.
4522 *
4523 * Return: Returns 0 if permission is granted.
4524 */
4525int security_socket_getsockname(struct socket *sock)
4526{
4527 return call_int_hook(socket_getsockname, sock);
4528}
4529
4530/**
4531 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4532 * @sock: socket
4533 *
4534 * Check permission before the remote address (name) of a socket object.
4535 *
4536 * Return: Returns 0 if permission is granted.
4537 */
4538int security_socket_getpeername(struct socket *sock)
4539{
4540 return call_int_hook(socket_getpeername, sock);
4541}
4542
4543/**
4544 * security_socket_getsockopt() - Check if reading a socket option is allowed
4545 * @sock: socket
4546 * @level: option's protocol level
4547 * @optname: option name
4548 *
4549 * Check permissions before retrieving the options associated with socket
4550 * @sock.
4551 *
4552 * Return: Returns 0 if permission is granted.
4553 */
4554int security_socket_getsockopt(struct socket *sock, int level, int optname)
4555{
4556 return call_int_hook(socket_getsockopt, sock, level, optname);
4557}
4558
4559/**
4560 * security_socket_setsockopt() - Check if setting a socket option is allowed
4561 * @sock: socket
4562 * @level: option's protocol level
4563 * @optname: option name
4564 *
4565 * Check permissions before setting the options associated with socket @sock.
4566 *
4567 * Return: Returns 0 if permission is granted.
4568 */
4569int security_socket_setsockopt(struct socket *sock, int level, int optname)
4570{
4571 return call_int_hook(socket_setsockopt, sock, level, optname);
4572}
4573
4574/**
4575 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4576 * @sock: socket
4577 * @how: flag indicating how sends and receives are handled
4578 *
4579 * Checks permission before all or part of a connection on the socket @sock is
4580 * shut down.
4581 *
4582 * Return: Returns 0 if permission is granted.
4583 */
4584int security_socket_shutdown(struct socket *sock, int how)
4585{
4586 return call_int_hook(socket_shutdown, sock, how);
4587}
4588
4589/**
4590 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4591 * @sk: destination sock
4592 * @skb: incoming packet
4593 *
4594 * Check permissions on incoming network packets. This hook is distinct from
4595 * Netfilter's IP input hooks since it is the first time that the incoming
4596 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4597 * sleep inside this hook because some callers hold spinlocks.
4598 *
4599 * Return: Returns 0 if permission is granted.
4600 */
4601int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4602{
4603 return call_int_hook(socket_sock_rcv_skb, sk, skb);
4604}
4605EXPORT_SYMBOL(security_sock_rcv_skb);
4606
4607/**
4608 * security_socket_getpeersec_stream() - Get the remote peer label
4609 * @sock: socket
4610 * @optval: destination buffer
4611 * @optlen: size of peer label copied into the buffer
4612 * @len: maximum size of the destination buffer
4613 *
4614 * This hook allows the security module to provide peer socket security state
4615 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4616 * For tcp sockets this can be meaningful if the socket is associated with an
4617 * ipsec SA.
4618 *
4619 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4620 * values.
4621 */
4622int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4623 sockptr_t optlen, unsigned int len)
4624{
4625 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4626 len);
4627}
4628
4629/**
4630 * security_socket_getpeersec_dgram() - Get the remote peer label
4631 * @sock: socket
4632 * @skb: datagram packet
4633 * @secid: remote peer label secid
4634 *
4635 * This hook allows the security module to provide peer socket security state
4636 * for udp sockets on a per-packet basis to userspace via getsockopt
4637 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4638 * option via getsockopt. It can then retrieve the security state returned by
4639 * this hook for a packet via the SCM_SECURITY ancillary message type.
4640 *
4641 * Return: Returns 0 on success, error on failure.
4642 */
4643int security_socket_getpeersec_dgram(struct socket *sock,
4644 struct sk_buff *skb, u32 *secid)
4645{
4646 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4647}
4648EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4649
4650/**
4651 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4652 * @sk: sock
4653 * @family: protocol family
4654 * @priority: gfp flags
4655 *
4656 * Allocate and attach a security structure to the sk->sk_security field, which
4657 * is used to copy security attributes between local stream sockets.
4658 *
4659 * Return: Returns 0 on success, error on failure.
4660 */
4661int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4662{
4663 return call_int_hook(sk_alloc_security, sk, family, priority);
4664}
4665
4666/**
4667 * security_sk_free() - Free the sock's LSM blob
4668 * @sk: sock
4669 *
4670 * Deallocate security structure.
4671 */
4672void security_sk_free(struct sock *sk)
4673{
4674 call_void_hook(sk_free_security, sk);
4675}
4676
4677/**
4678 * security_sk_clone() - Clone a sock's LSM state
4679 * @sk: original sock
4680 * @newsk: target sock
4681 *
4682 * Clone/copy security structure.
4683 */
4684void security_sk_clone(const struct sock *sk, struct sock *newsk)
4685{
4686 call_void_hook(sk_clone_security, sk, newsk);
4687}
4688EXPORT_SYMBOL(security_sk_clone);
4689
4690/**
4691 * security_sk_classify_flow() - Set a flow's secid based on socket
4692 * @sk: original socket
4693 * @flic: target flow
4694 *
4695 * Set the target flow's secid to socket's secid.
4696 */
4697void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4698{
4699 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4700}
4701EXPORT_SYMBOL(security_sk_classify_flow);
4702
4703/**
4704 * security_req_classify_flow() - Set a flow's secid based on request_sock
4705 * @req: request_sock
4706 * @flic: target flow
4707 *
4708 * Sets @flic's secid to @req's secid.
4709 */
4710void security_req_classify_flow(const struct request_sock *req,
4711 struct flowi_common *flic)
4712{
4713 call_void_hook(req_classify_flow, req, flic);
4714}
4715EXPORT_SYMBOL(security_req_classify_flow);
4716
4717/**
4718 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4719 * @sk: sock being grafted
4720 * @parent: target parent socket
4721 *
4722 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4723 * LSM state from @parent.
4724 */
4725void security_sock_graft(struct sock *sk, struct socket *parent)
4726{
4727 call_void_hook(sock_graft, sk, parent);
4728}
4729EXPORT_SYMBOL(security_sock_graft);
4730
4731/**
4732 * security_inet_conn_request() - Set request_sock state using incoming connect
4733 * @sk: parent listening sock
4734 * @skb: incoming connection
4735 * @req: new request_sock
4736 *
4737 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4738 *
4739 * Return: Returns 0 if permission is granted.
4740 */
4741int security_inet_conn_request(const struct sock *sk,
4742 struct sk_buff *skb, struct request_sock *req)
4743{
4744 return call_int_hook(inet_conn_request, sk, skb, req);
4745}
4746EXPORT_SYMBOL(security_inet_conn_request);
4747
4748/**
4749 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4750 * @newsk: new sock
4751 * @req: connection request_sock
4752 *
4753 * Set that LSM state of @sock using the LSM state from @req.
4754 */
4755void security_inet_csk_clone(struct sock *newsk,
4756 const struct request_sock *req)
4757{
4758 call_void_hook(inet_csk_clone, newsk, req);
4759}
4760
4761/**
4762 * security_inet_conn_established() - Update sock's LSM state with connection
4763 * @sk: sock
4764 * @skb: connection packet
4765 *
4766 * Update @sock's LSM state to represent a new connection from @skb.
4767 */
4768void security_inet_conn_established(struct sock *sk,
4769 struct sk_buff *skb)
4770{
4771 call_void_hook(inet_conn_established, sk, skb);
4772}
4773EXPORT_SYMBOL(security_inet_conn_established);
4774
4775/**
4776 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4777 * @secid: new secmark value
4778 *
4779 * Check if the process should be allowed to relabel packets to @secid.
4780 *
4781 * Return: Returns 0 if permission is granted.
4782 */
4783int security_secmark_relabel_packet(u32 secid)
4784{
4785 return call_int_hook(secmark_relabel_packet, secid);
4786}
4787EXPORT_SYMBOL(security_secmark_relabel_packet);
4788
4789/**
4790 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4791 *
4792 * Tells the LSM to increment the number of secmark labeling rules loaded.
4793 */
4794void security_secmark_refcount_inc(void)
4795{
4796 call_void_hook(secmark_refcount_inc);
4797}
4798EXPORT_SYMBOL(security_secmark_refcount_inc);
4799
4800/**
4801 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4802 *
4803 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4804 */
4805void security_secmark_refcount_dec(void)
4806{
4807 call_void_hook(secmark_refcount_dec);
4808}
4809EXPORT_SYMBOL(security_secmark_refcount_dec);
4810
4811/**
4812 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4813 * @security: pointer to the LSM blob
4814 *
4815 * This hook allows a module to allocate a security structure for a TUN device,
4816 * returning the pointer in @security.
4817 *
4818 * Return: Returns a zero on success, negative values on failure.
4819 */
4820int security_tun_dev_alloc_security(void **security)
4821{
4822 return call_int_hook(tun_dev_alloc_security, security);
4823}
4824EXPORT_SYMBOL(security_tun_dev_alloc_security);
4825
4826/**
4827 * security_tun_dev_free_security() - Free a TUN device LSM blob
4828 * @security: LSM blob
4829 *
4830 * This hook allows a module to free the security structure for a TUN device.
4831 */
4832void security_tun_dev_free_security(void *security)
4833{
4834 call_void_hook(tun_dev_free_security, security);
4835}
4836EXPORT_SYMBOL(security_tun_dev_free_security);
4837
4838/**
4839 * security_tun_dev_create() - Check if creating a TUN device is allowed
4840 *
4841 * Check permissions prior to creating a new TUN device.
4842 *
4843 * Return: Returns 0 if permission is granted.
4844 */
4845int security_tun_dev_create(void)
4846{
4847 return call_int_hook(tun_dev_create);
4848}
4849EXPORT_SYMBOL(security_tun_dev_create);
4850
4851/**
4852 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4853 * @security: TUN device LSM blob
4854 *
4855 * Check permissions prior to attaching to a TUN device queue.
4856 *
4857 * Return: Returns 0 if permission is granted.
4858 */
4859int security_tun_dev_attach_queue(void *security)
4860{
4861 return call_int_hook(tun_dev_attach_queue, security);
4862}
4863EXPORT_SYMBOL(security_tun_dev_attach_queue);
4864
4865/**
4866 * security_tun_dev_attach() - Update TUN device LSM state on attach
4867 * @sk: associated sock
4868 * @security: TUN device LSM blob
4869 *
4870 * This hook can be used by the module to update any security state associated
4871 * with the TUN device's sock structure.
4872 *
4873 * Return: Returns 0 if permission is granted.
4874 */
4875int security_tun_dev_attach(struct sock *sk, void *security)
4876{
4877 return call_int_hook(tun_dev_attach, sk, security);
4878}
4879EXPORT_SYMBOL(security_tun_dev_attach);
4880
4881/**
4882 * security_tun_dev_open() - Update TUN device LSM state on open
4883 * @security: TUN device LSM blob
4884 *
4885 * This hook can be used by the module to update any security state associated
4886 * with the TUN device's security structure.
4887 *
4888 * Return: Returns 0 if permission is granted.
4889 */
4890int security_tun_dev_open(void *security)
4891{
4892 return call_int_hook(tun_dev_open, security);
4893}
4894EXPORT_SYMBOL(security_tun_dev_open);
4895
4896/**
4897 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4898 * @asoc: SCTP association
4899 * @skb: packet requesting the association
4900 *
4901 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4902 *
4903 * Return: Returns 0 on success, error on failure.
4904 */
4905int security_sctp_assoc_request(struct sctp_association *asoc,
4906 struct sk_buff *skb)
4907{
4908 return call_int_hook(sctp_assoc_request, asoc, skb);
4909}
4910EXPORT_SYMBOL(security_sctp_assoc_request);
4911
4912/**
4913 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4914 * @sk: socket
4915 * @optname: SCTP option to validate
4916 * @address: list of IP addresses to validate
4917 * @addrlen: length of the address list
4918 *
4919 * Validiate permissions required for each address associated with sock @sk.
4920 * Depending on @optname, the addresses will be treated as either a connect or
4921 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4922 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4923 *
4924 * Return: Returns 0 on success, error on failure.
4925 */
4926int security_sctp_bind_connect(struct sock *sk, int optname,
4927 struct sockaddr *address, int addrlen)
4928{
4929 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4930}
4931EXPORT_SYMBOL(security_sctp_bind_connect);
4932
4933/**
4934 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4935 * @asoc: SCTP association
4936 * @sk: original sock
4937 * @newsk: target sock
4938 *
4939 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4940 * socket) or when a socket is 'peeled off' e.g userspace calls
4941 * sctp_peeloff(3).
4942 */
4943void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4944 struct sock *newsk)
4945{
4946 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4947}
4948EXPORT_SYMBOL(security_sctp_sk_clone);
4949
4950/**
4951 * security_sctp_assoc_established() - Update LSM state when assoc established
4952 * @asoc: SCTP association
4953 * @skb: packet establishing the association
4954 *
4955 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4956 * security module.
4957 *
4958 * Return: Returns 0 if permission is granted.
4959 */
4960int security_sctp_assoc_established(struct sctp_association *asoc,
4961 struct sk_buff *skb)
4962{
4963 return call_int_hook(sctp_assoc_established, asoc, skb);
4964}
4965EXPORT_SYMBOL(security_sctp_assoc_established);
4966
4967/**
4968 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4969 * @sk: the owning MPTCP socket
4970 * @ssk: the new subflow
4971 *
4972 * Update the labeling for the given MPTCP subflow, to match the one of the
4973 * owning MPTCP socket. This hook has to be called after the socket creation and
4974 * initialization via the security_socket_create() and
4975 * security_socket_post_create() LSM hooks.
4976 *
4977 * Return: Returns 0 on success or a negative error code on failure.
4978 */
4979int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4980{
4981 return call_int_hook(mptcp_add_subflow, sk, ssk);
4982}
4983
4984#endif /* CONFIG_SECURITY_NETWORK */
4985
4986#ifdef CONFIG_SECURITY_INFINIBAND
4987/**
4988 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4989 * @sec: LSM blob
4990 * @subnet_prefix: subnet prefix of the port
4991 * @pkey: IB pkey
4992 *
4993 * Check permission to access a pkey when modifying a QP.
4994 *
4995 * Return: Returns 0 if permission is granted.
4996 */
4997int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4998{
4999 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5000}
5001EXPORT_SYMBOL(security_ib_pkey_access);
5002
5003/**
5004 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5005 * @sec: LSM blob
5006 * @dev_name: IB device name
5007 * @port_num: port number
5008 *
5009 * Check permissions to send and receive SMPs on a end port.
5010 *
5011 * Return: Returns 0 if permission is granted.
5012 */
5013int security_ib_endport_manage_subnet(void *sec,
5014 const char *dev_name, u8 port_num)
5015{
5016 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5017}
5018EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5019
5020/**
5021 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5022 * @sec: LSM blob
5023 *
5024 * Allocate a security structure for Infiniband objects.
5025 *
5026 * Return: Returns 0 on success, non-zero on failure.
5027 */
5028int security_ib_alloc_security(void **sec)
5029{
5030 return call_int_hook(ib_alloc_security, sec);
5031}
5032EXPORT_SYMBOL(security_ib_alloc_security);
5033
5034/**
5035 * security_ib_free_security() - Free an Infiniband LSM blob
5036 * @sec: LSM blob
5037 *
5038 * Deallocate an Infiniband security structure.
5039 */
5040void security_ib_free_security(void *sec)
5041{
5042 call_void_hook(ib_free_security, sec);
5043}
5044EXPORT_SYMBOL(security_ib_free_security);
5045#endif /* CONFIG_SECURITY_INFINIBAND */
5046
5047#ifdef CONFIG_SECURITY_NETWORK_XFRM
5048/**
5049 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5050 * @ctxp: xfrm security context being added to the SPD
5051 * @sec_ctx: security label provided by userspace
5052 * @gfp: gfp flags
5053 *
5054 * Allocate a security structure to the xp->security field; the security field
5055 * is initialized to NULL when the xfrm_policy is allocated.
5056 *
5057 * Return: Return 0 if operation was successful.
5058 */
5059int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5060 struct xfrm_user_sec_ctx *sec_ctx,
5061 gfp_t gfp)
5062{
5063 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5064}
5065EXPORT_SYMBOL(security_xfrm_policy_alloc);
5066
5067/**
5068 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5069 * @old_ctx: xfrm security context
5070 * @new_ctxp: target xfrm security context
5071 *
5072 * Allocate a security structure in new_ctxp that contains the information from
5073 * the old_ctx structure.
5074 *
5075 * Return: Return 0 if operation was successful.
5076 */
5077int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5078 struct xfrm_sec_ctx **new_ctxp)
5079{
5080 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5081}
5082
5083/**
5084 * security_xfrm_policy_free() - Free a xfrm security context
5085 * @ctx: xfrm security context
5086 *
5087 * Free LSM resources associated with @ctx.
5088 */
5089void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5090{
5091 call_void_hook(xfrm_policy_free_security, ctx);
5092}
5093EXPORT_SYMBOL(security_xfrm_policy_free);
5094
5095/**
5096 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5097 * @ctx: xfrm security context
5098 *
5099 * Authorize deletion of a SPD entry.
5100 *
5101 * Return: Returns 0 if permission is granted.
5102 */
5103int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5104{
5105 return call_int_hook(xfrm_policy_delete_security, ctx);
5106}
5107
5108/**
5109 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5110 * @x: xfrm state being added to the SAD
5111 * @sec_ctx: security label provided by userspace
5112 *
5113 * Allocate a security structure to the @x->security field; the security field
5114 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5115 * correspond to @sec_ctx.
5116 *
5117 * Return: Return 0 if operation was successful.
5118 */
5119int security_xfrm_state_alloc(struct xfrm_state *x,
5120 struct xfrm_user_sec_ctx *sec_ctx)
5121{
5122 return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5123}
5124EXPORT_SYMBOL(security_xfrm_state_alloc);
5125
5126/**
5127 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5128 * @x: xfrm state being added to the SAD
5129 * @polsec: associated policy's security context
5130 * @secid: secid from the flow
5131 *
5132 * Allocate a security structure to the x->security field; the security field
5133 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5134 * correspond to secid.
5135 *
5136 * Return: Returns 0 if operation was successful.
5137 */
5138int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5139 struct xfrm_sec_ctx *polsec, u32 secid)
5140{
5141 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5142}
5143
5144/**
5145 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5146 * @x: xfrm state
5147 *
5148 * Authorize deletion of x->security.
5149 *
5150 * Return: Returns 0 if permission is granted.
5151 */
5152int security_xfrm_state_delete(struct xfrm_state *x)
5153{
5154 return call_int_hook(xfrm_state_delete_security, x);
5155}
5156EXPORT_SYMBOL(security_xfrm_state_delete);
5157
5158/**
5159 * security_xfrm_state_free() - Free a xfrm state
5160 * @x: xfrm state
5161 *
5162 * Deallocate x->security.
5163 */
5164void security_xfrm_state_free(struct xfrm_state *x)
5165{
5166 call_void_hook(xfrm_state_free_security, x);
5167}
5168
5169/**
5170 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5171 * @ctx: target xfrm security context
5172 * @fl_secid: flow secid used to authorize access
5173 *
5174 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5175 * packet. The hook is called when selecting either a per-socket policy or a
5176 * generic xfrm policy.
5177 *
5178 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5179 * other errors.
5180 */
5181int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5182{
5183 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5184}
5185
5186/**
5187 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5188 * @x: xfrm state to match
5189 * @xp: xfrm policy to check for a match
5190 * @flic: flow to check for a match.
5191 *
5192 * Check @xp and @flic for a match with @x.
5193 *
5194 * Return: Returns 1 if there is a match.
5195 */
5196int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5197 struct xfrm_policy *xp,
5198 const struct flowi_common *flic)
5199{
5200 struct security_hook_list *hp;
5201 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5202
5203 /*
5204 * Since this function is expected to return 0 or 1, the judgment
5205 * becomes difficult if multiple LSMs supply this call. Fortunately,
5206 * we can use the first LSM's judgment because currently only SELinux
5207 * supplies this call.
5208 *
5209 * For speed optimization, we explicitly break the loop rather than
5210 * using the macro
5211 */
5212 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5213 list) {
5214 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5215 break;
5216 }
5217 return rc;
5218}
5219
5220/**
5221 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5222 * @skb: xfrm packet
5223 * @secid: secid
5224 *
5225 * Decode the packet in @skb and return the security label in @secid.
5226 *
5227 * Return: Return 0 if all xfrms used have the same secid.
5228 */
5229int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5230{
5231 return call_int_hook(xfrm_decode_session, skb, secid, 1);
5232}
5233
5234void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5235{
5236 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5237 0);
5238
5239 BUG_ON(rc);
5240}
5241EXPORT_SYMBOL(security_skb_classify_flow);
5242#endif /* CONFIG_SECURITY_NETWORK_XFRM */
5243
5244#ifdef CONFIG_KEYS
5245/**
5246 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5247 * @key: key
5248 * @cred: credentials
5249 * @flags: allocation flags
5250 *
5251 * Permit allocation of a key and assign security data. Note that key does not
5252 * have a serial number assigned at this point.
5253 *
5254 * Return: Return 0 if permission is granted, -ve error otherwise.
5255 */
5256int security_key_alloc(struct key *key, const struct cred *cred,
5257 unsigned long flags)
5258{
5259 return call_int_hook(key_alloc, key, cred, flags);
5260}
5261
5262/**
5263 * security_key_free() - Free a kernel key LSM blob
5264 * @key: key
5265 *
5266 * Notification of destruction; free security data.
5267 */
5268void security_key_free(struct key *key)
5269{
5270 call_void_hook(key_free, key);
5271}
5272
5273/**
5274 * security_key_permission() - Check if a kernel key operation is allowed
5275 * @key_ref: key reference
5276 * @cred: credentials of actor requesting access
5277 * @need_perm: requested permissions
5278 *
5279 * See whether a specific operational right is granted to a process on a key.
5280 *
5281 * Return: Return 0 if permission is granted, -ve error otherwise.
5282 */
5283int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5284 enum key_need_perm need_perm)
5285{
5286 return call_int_hook(key_permission, key_ref, cred, need_perm);
5287}
5288
5289/**
5290 * security_key_getsecurity() - Get the key's security label
5291 * @key: key
5292 * @buffer: security label buffer
5293 *
5294 * Get a textual representation of the security context attached to a key for
5295 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5296 * storage for the NUL-terminated string and the caller should free it.
5297 *
5298 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5299 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5300 * there is no security label assigned to the key.
5301 */
5302int security_key_getsecurity(struct key *key, char **buffer)
5303{
5304 *buffer = NULL;
5305 return call_int_hook(key_getsecurity, key, buffer);
5306}
5307
5308/**
5309 * security_key_post_create_or_update() - Notification of key create or update
5310 * @keyring: keyring to which the key is linked to
5311 * @key: created or updated key
5312 * @payload: data used to instantiate or update the key
5313 * @payload_len: length of payload
5314 * @flags: key flags
5315 * @create: flag indicating whether the key was created or updated
5316 *
5317 * Notify the caller of a key creation or update.
5318 */
5319void security_key_post_create_or_update(struct key *keyring, struct key *key,
5320 const void *payload, size_t payload_len,
5321 unsigned long flags, bool create)
5322{
5323 call_void_hook(key_post_create_or_update, keyring, key, payload,
5324 payload_len, flags, create);
5325}
5326#endif /* CONFIG_KEYS */
5327
5328#ifdef CONFIG_AUDIT
5329/**
5330 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5331 * @field: audit action
5332 * @op: rule operator
5333 * @rulestr: rule context
5334 * @lsmrule: receive buffer for audit rule struct
5335 * @gfp: GFP flag used for kmalloc
5336 *
5337 * Allocate and initialize an LSM audit rule structure.
5338 *
5339 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5340 * an invalid rule.
5341 */
5342int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5343 gfp_t gfp)
5344{
5345 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5346}
5347
5348/**
5349 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5350 * @krule: audit rule
5351 *
5352 * Specifies whether given @krule contains any fields related to the current
5353 * LSM.
5354 *
5355 * Return: Returns 1 in case of relation found, 0 otherwise.
5356 */
5357int security_audit_rule_known(struct audit_krule *krule)
5358{
5359 return call_int_hook(audit_rule_known, krule);
5360}
5361
5362/**
5363 * security_audit_rule_free() - Free an LSM audit rule struct
5364 * @lsmrule: audit rule struct
5365 *
5366 * Deallocate the LSM audit rule structure previously allocated by
5367 * audit_rule_init().
5368 */
5369void security_audit_rule_free(void *lsmrule)
5370{
5371 call_void_hook(audit_rule_free, lsmrule);
5372}
5373
5374/**
5375 * security_audit_rule_match() - Check if a label matches an audit rule
5376 * @secid: security label
5377 * @field: LSM audit field
5378 * @op: matching operator
5379 * @lsmrule: audit rule
5380 *
5381 * Determine if given @secid matches a rule previously approved by
5382 * security_audit_rule_known().
5383 *
5384 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5385 * failure.
5386 */
5387int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5388{
5389 return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5390}
5391#endif /* CONFIG_AUDIT */
5392
5393#ifdef CONFIG_BPF_SYSCALL
5394/**
5395 * security_bpf() - Check if the bpf syscall operation is allowed
5396 * @cmd: command
5397 * @attr: bpf attribute
5398 * @size: size
5399 *
5400 * Do a initial check for all bpf syscalls after the attribute is copied into
5401 * the kernel. The actual security module can implement their own rules to
5402 * check the specific cmd they need.
5403 *
5404 * Return: Returns 0 if permission is granted.
5405 */
5406int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5407{
5408 return call_int_hook(bpf, cmd, attr, size);
5409}
5410
5411/**
5412 * security_bpf_map() - Check if access to a bpf map is allowed
5413 * @map: bpf map
5414 * @fmode: mode
5415 *
5416 * Do a check when the kernel generates and returns a file descriptor for eBPF
5417 * maps.
5418 *
5419 * Return: Returns 0 if permission is granted.
5420 */
5421int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5422{
5423 return call_int_hook(bpf_map, map, fmode);
5424}
5425
5426/**
5427 * security_bpf_prog() - Check if access to a bpf program is allowed
5428 * @prog: bpf program
5429 *
5430 * Do a check when the kernel generates and returns a file descriptor for eBPF
5431 * programs.
5432 *
5433 * Return: Returns 0 if permission is granted.
5434 */
5435int security_bpf_prog(struct bpf_prog *prog)
5436{
5437 return call_int_hook(bpf_prog, prog);
5438}
5439
5440/**
5441 * security_bpf_map_create() - Check if BPF map creation is allowed
5442 * @map: BPF map object
5443 * @attr: BPF syscall attributes used to create BPF map
5444 * @token: BPF token used to grant user access
5445 *
5446 * Do a check when the kernel creates a new BPF map. This is also the
5447 * point where LSM blob is allocated for LSMs that need them.
5448 *
5449 * Return: Returns 0 on success, error on failure.
5450 */
5451int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5452 struct bpf_token *token)
5453{
5454 return call_int_hook(bpf_map_create, map, attr, token);
5455}
5456
5457/**
5458 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5459 * @prog: BPF program object
5460 * @attr: BPF syscall attributes used to create BPF program
5461 * @token: BPF token used to grant user access to BPF subsystem
5462 *
5463 * Perform an access control check when the kernel loads a BPF program and
5464 * allocates associated BPF program object. This hook is also responsible for
5465 * allocating any required LSM state for the BPF program.
5466 *
5467 * Return: Returns 0 on success, error on failure.
5468 */
5469int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5470 struct bpf_token *token)
5471{
5472 return call_int_hook(bpf_prog_load, prog, attr, token);
5473}
5474
5475/**
5476 * security_bpf_token_create() - Check if creating of BPF token is allowed
5477 * @token: BPF token object
5478 * @attr: BPF syscall attributes used to create BPF token
5479 * @path: path pointing to BPF FS mount point from which BPF token is created
5480 *
5481 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5482 * instance. This is also the point where LSM blob can be allocated for LSMs.
5483 *
5484 * Return: Returns 0 on success, error on failure.
5485 */
5486int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5487 struct path *path)
5488{
5489 return call_int_hook(bpf_token_create, token, attr, path);
5490}
5491
5492/**
5493 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5494 * requested BPF syscall command
5495 * @token: BPF token object
5496 * @cmd: BPF syscall command requested to be delegated by BPF token
5497 *
5498 * Do a check when the kernel decides whether provided BPF token should allow
5499 * delegation of requested BPF syscall command.
5500 *
5501 * Return: Returns 0 on success, error on failure.
5502 */
5503int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5504{
5505 return call_int_hook(bpf_token_cmd, token, cmd);
5506}
5507
5508/**
5509 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5510 * requested BPF-related capability
5511 * @token: BPF token object
5512 * @cap: capabilities requested to be delegated by BPF token
5513 *
5514 * Do a check when the kernel decides whether provided BPF token should allow
5515 * delegation of requested BPF-related capabilities.
5516 *
5517 * Return: Returns 0 on success, error on failure.
5518 */
5519int security_bpf_token_capable(const struct bpf_token *token, int cap)
5520{
5521 return call_int_hook(bpf_token_capable, token, cap);
5522}
5523
5524/**
5525 * security_bpf_map_free() - Free a bpf map's LSM blob
5526 * @map: bpf map
5527 *
5528 * Clean up the security information stored inside bpf map.
5529 */
5530void security_bpf_map_free(struct bpf_map *map)
5531{
5532 call_void_hook(bpf_map_free, map);
5533}
5534
5535/**
5536 * security_bpf_prog_free() - Free a BPF program's LSM blob
5537 * @prog: BPF program struct
5538 *
5539 * Clean up the security information stored inside BPF program.
5540 */
5541void security_bpf_prog_free(struct bpf_prog *prog)
5542{
5543 call_void_hook(bpf_prog_free, prog);
5544}
5545
5546/**
5547 * security_bpf_token_free() - Free a BPF token's LSM blob
5548 * @token: BPF token struct
5549 *
5550 * Clean up the security information stored inside BPF token.
5551 */
5552void security_bpf_token_free(struct bpf_token *token)
5553{
5554 call_void_hook(bpf_token_free, token);
5555}
5556#endif /* CONFIG_BPF_SYSCALL */
5557
5558/**
5559 * security_locked_down() - Check if a kernel feature is allowed
5560 * @what: requested kernel feature
5561 *
5562 * Determine whether a kernel feature that potentially enables arbitrary code
5563 * execution in kernel space should be permitted.
5564 *
5565 * Return: Returns 0 if permission is granted.
5566 */
5567int security_locked_down(enum lockdown_reason what)
5568{
5569 return call_int_hook(locked_down, what);
5570}
5571EXPORT_SYMBOL(security_locked_down);
5572
5573#ifdef CONFIG_PERF_EVENTS
5574/**
5575 * security_perf_event_open() - Check if a perf event open is allowed
5576 * @attr: perf event attribute
5577 * @type: type of event
5578 *
5579 * Check whether the @type of perf_event_open syscall is allowed.
5580 *
5581 * Return: Returns 0 if permission is granted.
5582 */
5583int security_perf_event_open(struct perf_event_attr *attr, int type)
5584{
5585 return call_int_hook(perf_event_open, attr, type);
5586}
5587
5588/**
5589 * security_perf_event_alloc() - Allocate a perf event LSM blob
5590 * @event: perf event
5591 *
5592 * Allocate and save perf_event security info.
5593 *
5594 * Return: Returns 0 on success, error on failure.
5595 */
5596int security_perf_event_alloc(struct perf_event *event)
5597{
5598 return call_int_hook(perf_event_alloc, event);
5599}
5600
5601/**
5602 * security_perf_event_free() - Free a perf event LSM blob
5603 * @event: perf event
5604 *
5605 * Release (free) perf_event security info.
5606 */
5607void security_perf_event_free(struct perf_event *event)
5608{
5609 call_void_hook(perf_event_free, event);
5610}
5611
5612/**
5613 * security_perf_event_read() - Check if reading a perf event label is allowed
5614 * @event: perf event
5615 *
5616 * Read perf_event security info if allowed.
5617 *
5618 * Return: Returns 0 if permission is granted.
5619 */
5620int security_perf_event_read(struct perf_event *event)
5621{
5622 return call_int_hook(perf_event_read, event);
5623}
5624
5625/**
5626 * security_perf_event_write() - Check if writing a perf event label is allowed
5627 * @event: perf event
5628 *
5629 * Write perf_event security info if allowed.
5630 *
5631 * Return: Returns 0 if permission is granted.
5632 */
5633int security_perf_event_write(struct perf_event *event)
5634{
5635 return call_int_hook(perf_event_write, event);
5636}
5637#endif /* CONFIG_PERF_EVENTS */
5638
5639#ifdef CONFIG_IO_URING
5640/**
5641 * security_uring_override_creds() - Check if overriding creds is allowed
5642 * @new: new credentials
5643 *
5644 * Check if the current task, executing an io_uring operation, is allowed to
5645 * override it's credentials with @new.
5646 *
5647 * Return: Returns 0 if permission is granted.
5648 */
5649int security_uring_override_creds(const struct cred *new)
5650{
5651 return call_int_hook(uring_override_creds, new);
5652}
5653
5654/**
5655 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5656 *
5657 * Check whether the current task is allowed to spawn a io_uring polling thread
5658 * (IORING_SETUP_SQPOLL).
5659 *
5660 * Return: Returns 0 if permission is granted.
5661 */
5662int security_uring_sqpoll(void)
5663{
5664 return call_int_hook(uring_sqpoll);
5665}
5666
5667/**
5668 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5669 * @ioucmd: command
5670 *
5671 * Check whether the file_operations uring_cmd is allowed to run.
5672 *
5673 * Return: Returns 0 if permission is granted.
5674 */
5675int security_uring_cmd(struct io_uring_cmd *ioucmd)
5676{
5677 return call_int_hook(uring_cmd, ioucmd);
5678}
5679#endif /* CONFIG_IO_URING */