at v6.10 166 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12#define pr_fmt(fmt) "LSM: " fmt 13 14#include <linux/bpf.h> 15#include <linux/capability.h> 16#include <linux/dcache.h> 17#include <linux/export.h> 18#include <linux/init.h> 19#include <linux/kernel.h> 20#include <linux/kernel_read_file.h> 21#include <linux/lsm_hooks.h> 22#include <linux/fsnotify.h> 23#include <linux/mman.h> 24#include <linux/mount.h> 25#include <linux/personality.h> 26#include <linux/backing-dev.h> 27#include <linux/string.h> 28#include <linux/xattr.h> 29#include <linux/msg.h> 30#include <linux/overflow.h> 31#include <net/flow.h> 32 33/* How many LSMs were built into the kernel? */ 34#define LSM_COUNT (__end_lsm_info - __start_lsm_info) 35 36/* 37 * How many LSMs are built into the kernel as determined at 38 * build time. Used to determine fixed array sizes. 39 * The capability module is accounted for by CONFIG_SECURITY 40 */ 41#define LSM_CONFIG_COUNT ( \ 42 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 43 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_EVM) ? 1 : 0)) 55 56/* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93}; 94 95struct security_hook_heads security_hook_heads __ro_after_init; 96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98static struct kmem_cache *lsm_file_cache; 99static struct kmem_cache *lsm_inode_cache; 100 101char *lsm_names; 102static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104/* Boot-time LSM user choice */ 105static __initdata const char *chosen_lsm_order; 106static __initdata const char *chosen_major_lsm; 107 108static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110/* Ordered list of LSMs to initialize. */ 111static __initdata struct lsm_info **ordered_lsms; 112static __initdata struct lsm_info *exclusive; 113 114static __initdata bool debug; 115#define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121static bool __init is_enabled(struct lsm_info *lsm) 122{ 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127} 128 129/* Mark an LSM's enabled flag. */ 130static int lsm_enabled_true __initdata = 1; 131static int lsm_enabled_false __initdata = 0; 132static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133{ 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152} 153 154/* Is an LSM already listed in the ordered LSMs list? */ 155static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156{ 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164} 165 166/* Append an LSM to the list of ordered LSMs to initialize. */ 167static int last_lsm __initdata; 168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169{ 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184} 185 186/* Is an LSM allowed to be initialized? */ 187static bool __init lsm_allowed(struct lsm_info *lsm) 188{ 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200} 201 202static void __init lsm_set_blob_size(int *need, int *lbs) 203{ 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212} 213 214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215{ 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234} 235 236/* Prepare LSM for initialization. */ 237static void __init prepare_lsm(struct lsm_info *lsm) 238{ 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253} 254 255/* Initialize a given LSM, if it is enabled. */ 256static void __init initialize_lsm(struct lsm_info *lsm) 257{ 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265} 266 267/* 268 * Current index to use while initializing the lsm id list. 269 */ 270u32 lsm_active_cnt __ro_after_init; 271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273/* Populate ordered LSMs list from comma-separated LSM name list. */ 274static void __init ordered_lsm_parse(const char *order, const char *origin) 275{ 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351} 352 353static void __init lsm_early_cred(struct cred *cred); 354static void __init lsm_early_task(struct task_struct *task); 355 356static int lsm_append(const char *new, char **result); 357 358static void __init report_lsm_order(void) 359{ 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375} 376 377static void __init ordered_lsm_init(void) 378{ 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426} 427 428int __init early_security_init(void) 429{ 430 struct lsm_info *lsm; 431 432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434#include "linux/lsm_hook_defs.h" 435#undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445} 446 447/** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452int __init security_init(void) 453{ 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475} 476 477/* Save user chosen LSM */ 478static int __init choose_major_lsm(char *str) 479{ 480 chosen_major_lsm = str; 481 return 1; 482} 483__setup("security=", choose_major_lsm); 484 485/* Explicitly choose LSM initialization order. */ 486static int __init choose_lsm_order(char *str) 487{ 488 chosen_lsm_order = str; 489 return 1; 490} 491__setup("lsm=", choose_lsm_order); 492 493/* Enable LSM order debugging. */ 494static int __init enable_debug(char *str) 495{ 496 debug = true; 497 return 1; 498} 499__setup("lsm.debug", enable_debug); 500 501static bool match_last_lsm(const char *list, const char *lsm) 502{ 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514} 515 516static int lsm_append(const char *new, char **result) 517{ 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535} 536 537/** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547{ 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575} 576 577int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578{ 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581} 582EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584int register_blocking_lsm_notifier(struct notifier_block *nb) 585{ 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588} 589EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592{ 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595} 596EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598/** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608{ 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618} 619 620/** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626static void __init lsm_early_cred(struct cred *cred) 627{ 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632} 633 634/** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642static int lsm_file_alloc(struct file *file) 643{ 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653} 654 655/** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663int lsm_inode_alloc(struct inode *inode) 664{ 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674} 675 676/** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684static int lsm_task_alloc(struct task_struct *task) 685{ 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695} 696 697/** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706{ 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716} 717 718/** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726static int lsm_msg_msg_alloc(struct msg_msg *mp) 727{ 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737} 738 739/** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745static void __init lsm_early_task(struct task_struct *task) 746{ 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751} 752 753/** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761static int lsm_superblock_alloc(struct super_block *sb) 762{ 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772} 773 774/** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @uctx: a userspace LSM context to be filled 777 * @uctx_len: available uctx size (input), used uctx size (output) 778 * @val: the new LSM context value 779 * @val_len: the size of the new LSM context value 780 * @id: LSM id 781 * @flags: LSM defined flags 782 * 783 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL 784 * simply calculate the required size to output via @utc_len and return 785 * success. 786 * 787 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 788 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 789 */ 790int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, 791 void *val, size_t val_len, 792 u64 id, u64 flags) 793{ 794 struct lsm_ctx *nctx = NULL; 795 size_t nctx_len; 796 int rc = 0; 797 798 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 799 if (nctx_len > *uctx_len) { 800 rc = -E2BIG; 801 goto out; 802 } 803 804 /* no buffer - return success/0 and set @uctx_len to the req size */ 805 if (!uctx) 806 goto out; 807 808 nctx = kzalloc(nctx_len, GFP_KERNEL); 809 if (nctx == NULL) { 810 rc = -ENOMEM; 811 goto out; 812 } 813 nctx->id = id; 814 nctx->flags = flags; 815 nctx->len = nctx_len; 816 nctx->ctx_len = val_len; 817 memcpy(nctx->ctx, val, val_len); 818 819 if (copy_to_user(uctx, nctx, nctx_len)) 820 rc = -EFAULT; 821 822out: 823 kfree(nctx); 824 *uctx_len = nctx_len; 825 return rc; 826} 827 828/* 829 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 830 * can be accessed with: 831 * 832 * LSM_RET_DEFAULT(<hook_name>) 833 * 834 * The macros below define static constants for the default value of each 835 * LSM hook. 836 */ 837#define LSM_RET_DEFAULT(NAME) (NAME##_default) 838#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 839#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 840 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 841#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 842 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 843 844#include <linux/lsm_hook_defs.h> 845#undef LSM_HOOK 846 847/* 848 * Hook list operation macros. 849 * 850 * call_void_hook: 851 * This is a hook that does not return a value. 852 * 853 * call_int_hook: 854 * This is a hook that returns a value. 855 */ 856 857#define call_void_hook(FUNC, ...) \ 858 do { \ 859 struct security_hook_list *P; \ 860 \ 861 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 862 P->hook.FUNC(__VA_ARGS__); \ 863 } while (0) 864 865#define call_int_hook(FUNC, ...) ({ \ 866 int RC = LSM_RET_DEFAULT(FUNC); \ 867 do { \ 868 struct security_hook_list *P; \ 869 \ 870 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 871 RC = P->hook.FUNC(__VA_ARGS__); \ 872 if (RC != LSM_RET_DEFAULT(FUNC)) \ 873 break; \ 874 } \ 875 } while (0); \ 876 RC; \ 877}) 878 879/* Security operations */ 880 881/** 882 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 883 * @mgr: task credentials of current binder process 884 * 885 * Check whether @mgr is allowed to be the binder context manager. 886 * 887 * Return: Return 0 if permission is granted. 888 */ 889int security_binder_set_context_mgr(const struct cred *mgr) 890{ 891 return call_int_hook(binder_set_context_mgr, mgr); 892} 893 894/** 895 * security_binder_transaction() - Check if a binder transaction is allowed 896 * @from: sending process 897 * @to: receiving process 898 * 899 * Check whether @from is allowed to invoke a binder transaction call to @to. 900 * 901 * Return: Returns 0 if permission is granted. 902 */ 903int security_binder_transaction(const struct cred *from, 904 const struct cred *to) 905{ 906 return call_int_hook(binder_transaction, from, to); 907} 908 909/** 910 * security_binder_transfer_binder() - Check if a binder transfer is allowed 911 * @from: sending process 912 * @to: receiving process 913 * 914 * Check whether @from is allowed to transfer a binder reference to @to. 915 * 916 * Return: Returns 0 if permission is granted. 917 */ 918int security_binder_transfer_binder(const struct cred *from, 919 const struct cred *to) 920{ 921 return call_int_hook(binder_transfer_binder, from, to); 922} 923 924/** 925 * security_binder_transfer_file() - Check if a binder file xfer is allowed 926 * @from: sending process 927 * @to: receiving process 928 * @file: file being transferred 929 * 930 * Check whether @from is allowed to transfer @file to @to. 931 * 932 * Return: Returns 0 if permission is granted. 933 */ 934int security_binder_transfer_file(const struct cred *from, 935 const struct cred *to, const struct file *file) 936{ 937 return call_int_hook(binder_transfer_file, from, to, file); 938} 939 940/** 941 * security_ptrace_access_check() - Check if tracing is allowed 942 * @child: target process 943 * @mode: PTRACE_MODE flags 944 * 945 * Check permission before allowing the current process to trace the @child 946 * process. Security modules may also want to perform a process tracing check 947 * during an execve in the set_security or apply_creds hooks of tracing check 948 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 949 * process is being traced and its security attributes would be changed by the 950 * execve. 951 * 952 * Return: Returns 0 if permission is granted. 953 */ 954int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 955{ 956 return call_int_hook(ptrace_access_check, child, mode); 957} 958 959/** 960 * security_ptrace_traceme() - Check if tracing is allowed 961 * @parent: tracing process 962 * 963 * Check that the @parent process has sufficient permission to trace the 964 * current process before allowing the current process to present itself to the 965 * @parent process for tracing. 966 * 967 * Return: Returns 0 if permission is granted. 968 */ 969int security_ptrace_traceme(struct task_struct *parent) 970{ 971 return call_int_hook(ptrace_traceme, parent); 972} 973 974/** 975 * security_capget() - Get the capability sets for a process 976 * @target: target process 977 * @effective: effective capability set 978 * @inheritable: inheritable capability set 979 * @permitted: permitted capability set 980 * 981 * Get the @effective, @inheritable, and @permitted capability sets for the 982 * @target process. The hook may also perform permission checking to determine 983 * if the current process is allowed to see the capability sets of the @target 984 * process. 985 * 986 * Return: Returns 0 if the capability sets were successfully obtained. 987 */ 988int security_capget(const struct task_struct *target, 989 kernel_cap_t *effective, 990 kernel_cap_t *inheritable, 991 kernel_cap_t *permitted) 992{ 993 return call_int_hook(capget, target, effective, inheritable, permitted); 994} 995 996/** 997 * security_capset() - Set the capability sets for a process 998 * @new: new credentials for the target process 999 * @old: current credentials of the target process 1000 * @effective: effective capability set 1001 * @inheritable: inheritable capability set 1002 * @permitted: permitted capability set 1003 * 1004 * Set the @effective, @inheritable, and @permitted capability sets for the 1005 * current process. 1006 * 1007 * Return: Returns 0 and update @new if permission is granted. 1008 */ 1009int security_capset(struct cred *new, const struct cred *old, 1010 const kernel_cap_t *effective, 1011 const kernel_cap_t *inheritable, 1012 const kernel_cap_t *permitted) 1013{ 1014 return call_int_hook(capset, new, old, effective, inheritable, 1015 permitted); 1016} 1017 1018/** 1019 * security_capable() - Check if a process has the necessary capability 1020 * @cred: credentials to examine 1021 * @ns: user namespace 1022 * @cap: capability requested 1023 * @opts: capability check options 1024 * 1025 * Check whether the @tsk process has the @cap capability in the indicated 1026 * credentials. @cap contains the capability <include/linux/capability.h>. 1027 * @opts contains options for the capable check <include/linux/security.h>. 1028 * 1029 * Return: Returns 0 if the capability is granted. 1030 */ 1031int security_capable(const struct cred *cred, 1032 struct user_namespace *ns, 1033 int cap, 1034 unsigned int opts) 1035{ 1036 return call_int_hook(capable, cred, ns, cap, opts); 1037} 1038 1039/** 1040 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1041 * @cmds: commands 1042 * @type: type 1043 * @id: id 1044 * @sb: filesystem 1045 * 1046 * Check whether the quotactl syscall is allowed for this @sb. 1047 * 1048 * Return: Returns 0 if permission is granted. 1049 */ 1050int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1051{ 1052 return call_int_hook(quotactl, cmds, type, id, sb); 1053} 1054 1055/** 1056 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1057 * @dentry: dentry 1058 * 1059 * Check whether QUOTAON is allowed for @dentry. 1060 * 1061 * Return: Returns 0 if permission is granted. 1062 */ 1063int security_quota_on(struct dentry *dentry) 1064{ 1065 return call_int_hook(quota_on, dentry); 1066} 1067 1068/** 1069 * security_syslog() - Check if accessing the kernel message ring is allowed 1070 * @type: SYSLOG_ACTION_* type 1071 * 1072 * Check permission before accessing the kernel message ring or changing 1073 * logging to the console. See the syslog(2) manual page for an explanation of 1074 * the @type values. 1075 * 1076 * Return: Return 0 if permission is granted. 1077 */ 1078int security_syslog(int type) 1079{ 1080 return call_int_hook(syslog, type); 1081} 1082 1083/** 1084 * security_settime64() - Check if changing the system time is allowed 1085 * @ts: new time 1086 * @tz: timezone 1087 * 1088 * Check permission to change the system time, struct timespec64 is defined in 1089 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1090 * 1091 * Return: Returns 0 if permission is granted. 1092 */ 1093int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1094{ 1095 return call_int_hook(settime, ts, tz); 1096} 1097 1098/** 1099 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1100 * @mm: mm struct 1101 * @pages: number of pages 1102 * 1103 * Check permissions for allocating a new virtual mapping. If all LSMs return 1104 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1105 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1106 * called with cap_sys_admin cleared. 1107 * 1108 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1109 * caller. 1110 */ 1111int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1112{ 1113 struct security_hook_list *hp; 1114 int cap_sys_admin = 1; 1115 int rc; 1116 1117 /* 1118 * The module will respond with a positive value if 1119 * it thinks the __vm_enough_memory() call should be 1120 * made with the cap_sys_admin set. If all of the modules 1121 * agree that it should be set it will. If any module 1122 * thinks it should not be set it won't. 1123 */ 1124 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1125 rc = hp->hook.vm_enough_memory(mm, pages); 1126 if (rc <= 0) { 1127 cap_sys_admin = 0; 1128 break; 1129 } 1130 } 1131 return __vm_enough_memory(mm, pages, cap_sys_admin); 1132} 1133 1134/** 1135 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1136 * @bprm: binary program information 1137 * 1138 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1139 * properly for executing @bprm->file, update the LSM's portion of 1140 * @bprm->cred->security to be what commit_creds needs to install for the new 1141 * program. This hook may also optionally check permissions (e.g. for 1142 * transitions between security domains). The hook must set @bprm->secureexec 1143 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1144 * contains the linux_binprm structure. 1145 * 1146 * Return: Returns 0 if the hook is successful and permission is granted. 1147 */ 1148int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1149{ 1150 return call_int_hook(bprm_creds_for_exec, bprm); 1151} 1152 1153/** 1154 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1155 * @bprm: binary program information 1156 * @file: associated file 1157 * 1158 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1159 * exec, update @bprm->cred to reflect that change. This is called after 1160 * finding the binary that will be executed without an interpreter. This 1161 * ensures that the credentials will not be derived from a script that the 1162 * binary will need to reopen, which when reopend may end up being a completely 1163 * different file. This hook may also optionally check permissions (e.g. for 1164 * transitions between security domains). The hook must set @bprm->secureexec 1165 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1166 * hook must add to @bprm->per_clear any personality flags that should be 1167 * cleared from current->personality. @bprm contains the linux_binprm 1168 * structure. 1169 * 1170 * Return: Returns 0 if the hook is successful and permission is granted. 1171 */ 1172int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1173{ 1174 return call_int_hook(bprm_creds_from_file, bprm, file); 1175} 1176 1177/** 1178 * security_bprm_check() - Mediate binary handler search 1179 * @bprm: binary program information 1180 * 1181 * This hook mediates the point when a search for a binary handler will begin. 1182 * It allows a check against the @bprm->cred->security value which was set in 1183 * the preceding creds_for_exec call. The argv list and envp list are reliably 1184 * available in @bprm. This hook may be called multiple times during a single 1185 * execve. @bprm contains the linux_binprm structure. 1186 * 1187 * Return: Returns 0 if the hook is successful and permission is granted. 1188 */ 1189int security_bprm_check(struct linux_binprm *bprm) 1190{ 1191 return call_int_hook(bprm_check_security, bprm); 1192} 1193 1194/** 1195 * security_bprm_committing_creds() - Install creds for a process during exec() 1196 * @bprm: binary program information 1197 * 1198 * Prepare to install the new security attributes of a process being 1199 * transformed by an execve operation, based on the old credentials pointed to 1200 * by @current->cred and the information set in @bprm->cred by the 1201 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1202 * hook is a good place to perform state changes on the process such as closing 1203 * open file descriptors to which access will no longer be granted when the 1204 * attributes are changed. This is called immediately before commit_creds(). 1205 */ 1206void security_bprm_committing_creds(const struct linux_binprm *bprm) 1207{ 1208 call_void_hook(bprm_committing_creds, bprm); 1209} 1210 1211/** 1212 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1213 * @bprm: binary program information 1214 * 1215 * Tidy up after the installation of the new security attributes of a process 1216 * being transformed by an execve operation. The new credentials have, by this 1217 * point, been set to @current->cred. @bprm points to the linux_binprm 1218 * structure. This hook is a good place to perform state changes on the 1219 * process such as clearing out non-inheritable signal state. This is called 1220 * immediately after commit_creds(). 1221 */ 1222void security_bprm_committed_creds(const struct linux_binprm *bprm) 1223{ 1224 call_void_hook(bprm_committed_creds, bprm); 1225} 1226 1227/** 1228 * security_fs_context_submount() - Initialise fc->security 1229 * @fc: new filesystem context 1230 * @reference: dentry reference for submount/remount 1231 * 1232 * Fill out the ->security field for a new fs_context. 1233 * 1234 * Return: Returns 0 on success or negative error code on failure. 1235 */ 1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1237{ 1238 return call_int_hook(fs_context_submount, fc, reference); 1239} 1240 1241/** 1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1243 * @fc: destination filesystem context 1244 * @src_fc: source filesystem context 1245 * 1246 * Allocate and attach a security structure to sc->security. This pointer is 1247 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1248 * @src_fc indicates the original filesystem context. 1249 * 1250 * Return: Returns 0 on success or a negative error code on failure. 1251 */ 1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1253{ 1254 return call_int_hook(fs_context_dup, fc, src_fc); 1255} 1256 1257/** 1258 * security_fs_context_parse_param() - Configure a filesystem context 1259 * @fc: filesystem context 1260 * @param: filesystem parameter 1261 * 1262 * Userspace provided a parameter to configure a superblock. The LSM can 1263 * consume the parameter or return it to the caller for use elsewhere. 1264 * 1265 * Return: If the parameter is used by the LSM it should return 0, if it is 1266 * returned to the caller -ENOPARAM is returned, otherwise a negative 1267 * error code is returned. 1268 */ 1269int security_fs_context_parse_param(struct fs_context *fc, 1270 struct fs_parameter *param) 1271{ 1272 struct security_hook_list *hp; 1273 int trc; 1274 int rc = -ENOPARAM; 1275 1276 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1277 list) { 1278 trc = hp->hook.fs_context_parse_param(fc, param); 1279 if (trc == 0) 1280 rc = 0; 1281 else if (trc != -ENOPARAM) 1282 return trc; 1283 } 1284 return rc; 1285} 1286 1287/** 1288 * security_sb_alloc() - Allocate a super_block LSM blob 1289 * @sb: filesystem superblock 1290 * 1291 * Allocate and attach a security structure to the sb->s_security field. The 1292 * s_security field is initialized to NULL when the structure is allocated. 1293 * @sb contains the super_block structure to be modified. 1294 * 1295 * Return: Returns 0 if operation was successful. 1296 */ 1297int security_sb_alloc(struct super_block *sb) 1298{ 1299 int rc = lsm_superblock_alloc(sb); 1300 1301 if (unlikely(rc)) 1302 return rc; 1303 rc = call_int_hook(sb_alloc_security, sb); 1304 if (unlikely(rc)) 1305 security_sb_free(sb); 1306 return rc; 1307} 1308 1309/** 1310 * security_sb_delete() - Release super_block LSM associated objects 1311 * @sb: filesystem superblock 1312 * 1313 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1314 * super_block structure being released. 1315 */ 1316void security_sb_delete(struct super_block *sb) 1317{ 1318 call_void_hook(sb_delete, sb); 1319} 1320 1321/** 1322 * security_sb_free() - Free a super_block LSM blob 1323 * @sb: filesystem superblock 1324 * 1325 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1326 * structure to be modified. 1327 */ 1328void security_sb_free(struct super_block *sb) 1329{ 1330 call_void_hook(sb_free_security, sb); 1331 kfree(sb->s_security); 1332 sb->s_security = NULL; 1333} 1334 1335/** 1336 * security_free_mnt_opts() - Free memory associated with mount options 1337 * @mnt_opts: LSM processed mount options 1338 * 1339 * Free memory associated with @mnt_ops. 1340 */ 1341void security_free_mnt_opts(void **mnt_opts) 1342{ 1343 if (!*mnt_opts) 1344 return; 1345 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1346 *mnt_opts = NULL; 1347} 1348EXPORT_SYMBOL(security_free_mnt_opts); 1349 1350/** 1351 * security_sb_eat_lsm_opts() - Consume LSM mount options 1352 * @options: mount options 1353 * @mnt_opts: LSM processed mount options 1354 * 1355 * Eat (scan @options) and save them in @mnt_opts. 1356 * 1357 * Return: Returns 0 on success, negative values on failure. 1358 */ 1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1360{ 1361 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); 1362} 1363EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1364 1365/** 1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1367 * @sb: filesystem superblock 1368 * @mnt_opts: new mount options 1369 * 1370 * Determine if the new mount options in @mnt_opts are allowed given the 1371 * existing mounted filesystem at @sb. @sb superblock being compared. 1372 * 1373 * Return: Returns 0 if options are compatible. 1374 */ 1375int security_sb_mnt_opts_compat(struct super_block *sb, 1376 void *mnt_opts) 1377{ 1378 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); 1379} 1380EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1381 1382/** 1383 * security_sb_remount() - Verify no incompatible mount changes during remount 1384 * @sb: filesystem superblock 1385 * @mnt_opts: (re)mount options 1386 * 1387 * Extracts security system specific mount options and verifies no changes are 1388 * being made to those options. 1389 * 1390 * Return: Returns 0 if permission is granted. 1391 */ 1392int security_sb_remount(struct super_block *sb, 1393 void *mnt_opts) 1394{ 1395 return call_int_hook(sb_remount, sb, mnt_opts); 1396} 1397EXPORT_SYMBOL(security_sb_remount); 1398 1399/** 1400 * security_sb_kern_mount() - Check if a kernel mount is allowed 1401 * @sb: filesystem superblock 1402 * 1403 * Mount this @sb if allowed by permissions. 1404 * 1405 * Return: Returns 0 if permission is granted. 1406 */ 1407int security_sb_kern_mount(const struct super_block *sb) 1408{ 1409 return call_int_hook(sb_kern_mount, sb); 1410} 1411 1412/** 1413 * security_sb_show_options() - Output the mount options for a superblock 1414 * @m: output file 1415 * @sb: filesystem superblock 1416 * 1417 * Show (print on @m) mount options for this @sb. 1418 * 1419 * Return: Returns 0 on success, negative values on failure. 1420 */ 1421int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1422{ 1423 return call_int_hook(sb_show_options, m, sb); 1424} 1425 1426/** 1427 * security_sb_statfs() - Check if accessing fs stats is allowed 1428 * @dentry: superblock handle 1429 * 1430 * Check permission before obtaining filesystem statistics for the @mnt 1431 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1432 * 1433 * Return: Returns 0 if permission is granted. 1434 */ 1435int security_sb_statfs(struct dentry *dentry) 1436{ 1437 return call_int_hook(sb_statfs, dentry); 1438} 1439 1440/** 1441 * security_sb_mount() - Check permission for mounting a filesystem 1442 * @dev_name: filesystem backing device 1443 * @path: mount point 1444 * @type: filesystem type 1445 * @flags: mount flags 1446 * @data: filesystem specific data 1447 * 1448 * Check permission before an object specified by @dev_name is mounted on the 1449 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1450 * device if the file system type requires a device. For a remount 1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1452 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1453 * mounted. 1454 * 1455 * Return: Returns 0 if permission is granted. 1456 */ 1457int security_sb_mount(const char *dev_name, const struct path *path, 1458 const char *type, unsigned long flags, void *data) 1459{ 1460 return call_int_hook(sb_mount, dev_name, path, type, flags, data); 1461} 1462 1463/** 1464 * security_sb_umount() - Check permission for unmounting a filesystem 1465 * @mnt: mounted filesystem 1466 * @flags: unmount flags 1467 * 1468 * Check permission before the @mnt file system is unmounted. 1469 * 1470 * Return: Returns 0 if permission is granted. 1471 */ 1472int security_sb_umount(struct vfsmount *mnt, int flags) 1473{ 1474 return call_int_hook(sb_umount, mnt, flags); 1475} 1476 1477/** 1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1479 * @old_path: new location for current rootfs 1480 * @new_path: location of the new rootfs 1481 * 1482 * Check permission before pivoting the root filesystem. 1483 * 1484 * Return: Returns 0 if permission is granted. 1485 */ 1486int security_sb_pivotroot(const struct path *old_path, 1487 const struct path *new_path) 1488{ 1489 return call_int_hook(sb_pivotroot, old_path, new_path); 1490} 1491 1492/** 1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1494 * @sb: filesystem superblock 1495 * @mnt_opts: binary mount options 1496 * @kern_flags: kernel flags (in) 1497 * @set_kern_flags: kernel flags (out) 1498 * 1499 * Set the security relevant mount options used for a superblock. 1500 * 1501 * Return: Returns 0 on success, error on failure. 1502 */ 1503int security_sb_set_mnt_opts(struct super_block *sb, 1504 void *mnt_opts, 1505 unsigned long kern_flags, 1506 unsigned long *set_kern_flags) 1507{ 1508 struct security_hook_list *hp; 1509 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); 1510 1511 hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts, 1512 list) { 1513 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, 1514 set_kern_flags); 1515 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) 1516 break; 1517 } 1518 return rc; 1519} 1520EXPORT_SYMBOL(security_sb_set_mnt_opts); 1521 1522/** 1523 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1524 * @oldsb: source superblock 1525 * @newsb: destination superblock 1526 * @kern_flags: kernel flags (in) 1527 * @set_kern_flags: kernel flags (out) 1528 * 1529 * Copy all security options from a given superblock to another. 1530 * 1531 * Return: Returns 0 on success, error on failure. 1532 */ 1533int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1534 struct super_block *newsb, 1535 unsigned long kern_flags, 1536 unsigned long *set_kern_flags) 1537{ 1538 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, 1539 kern_flags, set_kern_flags); 1540} 1541EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1542 1543/** 1544 * security_move_mount() - Check permissions for moving a mount 1545 * @from_path: source mount point 1546 * @to_path: destination mount point 1547 * 1548 * Check permission before a mount is moved. 1549 * 1550 * Return: Returns 0 if permission is granted. 1551 */ 1552int security_move_mount(const struct path *from_path, 1553 const struct path *to_path) 1554{ 1555 return call_int_hook(move_mount, from_path, to_path); 1556} 1557 1558/** 1559 * security_path_notify() - Check if setting a watch is allowed 1560 * @path: file path 1561 * @mask: event mask 1562 * @obj_type: file path type 1563 * 1564 * Check permissions before setting a watch on events as defined by @mask, on 1565 * an object at @path, whose type is defined by @obj_type. 1566 * 1567 * Return: Returns 0 if permission is granted. 1568 */ 1569int security_path_notify(const struct path *path, u64 mask, 1570 unsigned int obj_type) 1571{ 1572 return call_int_hook(path_notify, path, mask, obj_type); 1573} 1574 1575/** 1576 * security_inode_alloc() - Allocate an inode LSM blob 1577 * @inode: the inode 1578 * 1579 * Allocate and attach a security structure to @inode->i_security. The 1580 * i_security field is initialized to NULL when the inode structure is 1581 * allocated. 1582 * 1583 * Return: Return 0 if operation was successful. 1584 */ 1585int security_inode_alloc(struct inode *inode) 1586{ 1587 int rc = lsm_inode_alloc(inode); 1588 1589 if (unlikely(rc)) 1590 return rc; 1591 rc = call_int_hook(inode_alloc_security, inode); 1592 if (unlikely(rc)) 1593 security_inode_free(inode); 1594 return rc; 1595} 1596 1597static void inode_free_by_rcu(struct rcu_head *head) 1598{ 1599 /* 1600 * The rcu head is at the start of the inode blob 1601 */ 1602 kmem_cache_free(lsm_inode_cache, head); 1603} 1604 1605/** 1606 * security_inode_free() - Free an inode's LSM blob 1607 * @inode: the inode 1608 * 1609 * Deallocate the inode security structure and set @inode->i_security to NULL. 1610 */ 1611void security_inode_free(struct inode *inode) 1612{ 1613 call_void_hook(inode_free_security, inode); 1614 /* 1615 * The inode may still be referenced in a path walk and 1616 * a call to security_inode_permission() can be made 1617 * after inode_free_security() is called. Ideally, the VFS 1618 * wouldn't do this, but fixing that is a much harder 1619 * job. For now, simply free the i_security via RCU, and 1620 * leave the current inode->i_security pointer intact. 1621 * The inode will be freed after the RCU grace period too. 1622 */ 1623 if (inode->i_security) 1624 call_rcu((struct rcu_head *)inode->i_security, 1625 inode_free_by_rcu); 1626} 1627 1628/** 1629 * security_dentry_init_security() - Perform dentry initialization 1630 * @dentry: the dentry to initialize 1631 * @mode: mode used to determine resource type 1632 * @name: name of the last path component 1633 * @xattr_name: name of the security/LSM xattr 1634 * @ctx: pointer to the resulting LSM context 1635 * @ctxlen: length of @ctx 1636 * 1637 * Compute a context for a dentry as the inode is not yet available since NFSv4 1638 * has no label backed by an EA anyway. It is important to note that 1639 * @xattr_name does not need to be free'd by the caller, it is a static string. 1640 * 1641 * Return: Returns 0 on success, negative values on failure. 1642 */ 1643int security_dentry_init_security(struct dentry *dentry, int mode, 1644 const struct qstr *name, 1645 const char **xattr_name, void **ctx, 1646 u32 *ctxlen) 1647{ 1648 return call_int_hook(dentry_init_security, dentry, mode, name, 1649 xattr_name, ctx, ctxlen); 1650} 1651EXPORT_SYMBOL(security_dentry_init_security); 1652 1653/** 1654 * security_dentry_create_files_as() - Perform dentry initialization 1655 * @dentry: the dentry to initialize 1656 * @mode: mode used to determine resource type 1657 * @name: name of the last path component 1658 * @old: creds to use for LSM context calculations 1659 * @new: creds to modify 1660 * 1661 * Compute a context for a dentry as the inode is not yet available and set 1662 * that context in passed in creds so that new files are created using that 1663 * context. Context is calculated using the passed in creds and not the creds 1664 * of the caller. 1665 * 1666 * Return: Returns 0 on success, error on failure. 1667 */ 1668int security_dentry_create_files_as(struct dentry *dentry, int mode, 1669 struct qstr *name, 1670 const struct cred *old, struct cred *new) 1671{ 1672 return call_int_hook(dentry_create_files_as, dentry, mode, 1673 name, old, new); 1674} 1675EXPORT_SYMBOL(security_dentry_create_files_as); 1676 1677/** 1678 * security_inode_init_security() - Initialize an inode's LSM context 1679 * @inode: the inode 1680 * @dir: parent directory 1681 * @qstr: last component of the pathname 1682 * @initxattrs: callback function to write xattrs 1683 * @fs_data: filesystem specific data 1684 * 1685 * Obtain the security attribute name suffix and value to set on a newly 1686 * created inode and set up the incore security field for the new inode. This 1687 * hook is called by the fs code as part of the inode creation transaction and 1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1689 * hooks called by the VFS. 1690 * 1691 * The hook function is expected to populate the xattrs array, by calling 1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1694 * slot, the hook function should set ->name to the attribute name suffix 1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1696 * to the attribute value, to set ->value_len to the length of the value. If 1697 * the security module does not use security attributes or does not wish to put 1698 * a security attribute on this particular inode, then it should return 1699 * -EOPNOTSUPP to skip this processing. 1700 * 1701 * Return: Returns 0 if the LSM successfully initialized all of the inode 1702 * security attributes that are required, negative values otherwise. 1703 */ 1704int security_inode_init_security(struct inode *inode, struct inode *dir, 1705 const struct qstr *qstr, 1706 const initxattrs initxattrs, void *fs_data) 1707{ 1708 struct security_hook_list *hp; 1709 struct xattr *new_xattrs = NULL; 1710 int ret = -EOPNOTSUPP, xattr_count = 0; 1711 1712 if (unlikely(IS_PRIVATE(inode))) 1713 return 0; 1714 1715 if (!blob_sizes.lbs_xattr_count) 1716 return 0; 1717 1718 if (initxattrs) { 1719 /* Allocate +1 as terminator. */ 1720 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, 1721 sizeof(*new_xattrs), GFP_NOFS); 1722 if (!new_xattrs) 1723 return -ENOMEM; 1724 } 1725 1726 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1727 list) { 1728 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1729 &xattr_count); 1730 if (ret && ret != -EOPNOTSUPP) 1731 goto out; 1732 /* 1733 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1734 * means that the LSM is not willing to provide an xattr, not 1735 * that it wants to signal an error. Thus, continue to invoke 1736 * the remaining LSMs. 1737 */ 1738 } 1739 1740 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1741 if (!xattr_count) 1742 goto out; 1743 1744 ret = initxattrs(inode, new_xattrs, fs_data); 1745out: 1746 for (; xattr_count > 0; xattr_count--) 1747 kfree(new_xattrs[xattr_count - 1].value); 1748 kfree(new_xattrs); 1749 return (ret == -EOPNOTSUPP) ? 0 : ret; 1750} 1751EXPORT_SYMBOL(security_inode_init_security); 1752 1753/** 1754 * security_inode_init_security_anon() - Initialize an anonymous inode 1755 * @inode: the inode 1756 * @name: the anonymous inode class 1757 * @context_inode: an optional related inode 1758 * 1759 * Set up the incore security field for the new anonymous inode and return 1760 * whether the inode creation is permitted by the security module or not. 1761 * 1762 * Return: Returns 0 on success, -EACCES if the security module denies the 1763 * creation of this inode, or another -errno upon other errors. 1764 */ 1765int security_inode_init_security_anon(struct inode *inode, 1766 const struct qstr *name, 1767 const struct inode *context_inode) 1768{ 1769 return call_int_hook(inode_init_security_anon, inode, name, 1770 context_inode); 1771} 1772 1773#ifdef CONFIG_SECURITY_PATH 1774/** 1775 * security_path_mknod() - Check if creating a special file is allowed 1776 * @dir: parent directory 1777 * @dentry: new file 1778 * @mode: new file mode 1779 * @dev: device number 1780 * 1781 * Check permissions when creating a file. Note that this hook is called even 1782 * if mknod operation is being done for a regular file. 1783 * 1784 * Return: Returns 0 if permission is granted. 1785 */ 1786int security_path_mknod(const struct path *dir, struct dentry *dentry, 1787 umode_t mode, unsigned int dev) 1788{ 1789 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1790 return 0; 1791 return call_int_hook(path_mknod, dir, dentry, mode, dev); 1792} 1793EXPORT_SYMBOL(security_path_mknod); 1794 1795/** 1796 * security_path_post_mknod() - Update inode security after reg file creation 1797 * @idmap: idmap of the mount 1798 * @dentry: new file 1799 * 1800 * Update inode security field after a regular file has been created. 1801 */ 1802void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1803{ 1804 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1805 return; 1806 call_void_hook(path_post_mknod, idmap, dentry); 1807} 1808 1809/** 1810 * security_path_mkdir() - Check if creating a new directory is allowed 1811 * @dir: parent directory 1812 * @dentry: new directory 1813 * @mode: new directory mode 1814 * 1815 * Check permissions to create a new directory in the existing directory. 1816 * 1817 * Return: Returns 0 if permission is granted. 1818 */ 1819int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1820 umode_t mode) 1821{ 1822 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1823 return 0; 1824 return call_int_hook(path_mkdir, dir, dentry, mode); 1825} 1826EXPORT_SYMBOL(security_path_mkdir); 1827 1828/** 1829 * security_path_rmdir() - Check if removing a directory is allowed 1830 * @dir: parent directory 1831 * @dentry: directory to remove 1832 * 1833 * Check the permission to remove a directory. 1834 * 1835 * Return: Returns 0 if permission is granted. 1836 */ 1837int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1838{ 1839 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1840 return 0; 1841 return call_int_hook(path_rmdir, dir, dentry); 1842} 1843 1844/** 1845 * security_path_unlink() - Check if removing a hard link is allowed 1846 * @dir: parent directory 1847 * @dentry: file 1848 * 1849 * Check the permission to remove a hard link to a file. 1850 * 1851 * Return: Returns 0 if permission is granted. 1852 */ 1853int security_path_unlink(const struct path *dir, struct dentry *dentry) 1854{ 1855 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1856 return 0; 1857 return call_int_hook(path_unlink, dir, dentry); 1858} 1859EXPORT_SYMBOL(security_path_unlink); 1860 1861/** 1862 * security_path_symlink() - Check if creating a symbolic link is allowed 1863 * @dir: parent directory 1864 * @dentry: symbolic link 1865 * @old_name: file pathname 1866 * 1867 * Check the permission to create a symbolic link to a file. 1868 * 1869 * Return: Returns 0 if permission is granted. 1870 */ 1871int security_path_symlink(const struct path *dir, struct dentry *dentry, 1872 const char *old_name) 1873{ 1874 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1875 return 0; 1876 return call_int_hook(path_symlink, dir, dentry, old_name); 1877} 1878 1879/** 1880 * security_path_link - Check if creating a hard link is allowed 1881 * @old_dentry: existing file 1882 * @new_dir: new parent directory 1883 * @new_dentry: new link 1884 * 1885 * Check permission before creating a new hard link to a file. 1886 * 1887 * Return: Returns 0 if permission is granted. 1888 */ 1889int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1890 struct dentry *new_dentry) 1891{ 1892 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1893 return 0; 1894 return call_int_hook(path_link, old_dentry, new_dir, new_dentry); 1895} 1896 1897/** 1898 * security_path_rename() - Check if renaming a file is allowed 1899 * @old_dir: parent directory of the old file 1900 * @old_dentry: the old file 1901 * @new_dir: parent directory of the new file 1902 * @new_dentry: the new file 1903 * @flags: flags 1904 * 1905 * Check for permission to rename a file or directory. 1906 * 1907 * Return: Returns 0 if permission is granted. 1908 */ 1909int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1910 const struct path *new_dir, struct dentry *new_dentry, 1911 unsigned int flags) 1912{ 1913 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1914 (d_is_positive(new_dentry) && 1915 IS_PRIVATE(d_backing_inode(new_dentry))))) 1916 return 0; 1917 1918 return call_int_hook(path_rename, old_dir, old_dentry, new_dir, 1919 new_dentry, flags); 1920} 1921EXPORT_SYMBOL(security_path_rename); 1922 1923/** 1924 * security_path_truncate() - Check if truncating a file is allowed 1925 * @path: file 1926 * 1927 * Check permission before truncating the file indicated by path. Note that 1928 * truncation permissions may also be checked based on already opened files, 1929 * using the security_file_truncate() hook. 1930 * 1931 * Return: Returns 0 if permission is granted. 1932 */ 1933int security_path_truncate(const struct path *path) 1934{ 1935 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1936 return 0; 1937 return call_int_hook(path_truncate, path); 1938} 1939 1940/** 1941 * security_path_chmod() - Check if changing the file's mode is allowed 1942 * @path: file 1943 * @mode: new mode 1944 * 1945 * Check for permission to change a mode of the file @path. The new mode is 1946 * specified in @mode which is a bitmask of constants from 1947 * <include/uapi/linux/stat.h>. 1948 * 1949 * Return: Returns 0 if permission is granted. 1950 */ 1951int security_path_chmod(const struct path *path, umode_t mode) 1952{ 1953 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1954 return 0; 1955 return call_int_hook(path_chmod, path, mode); 1956} 1957 1958/** 1959 * security_path_chown() - Check if changing the file's owner/group is allowed 1960 * @path: file 1961 * @uid: file owner 1962 * @gid: file group 1963 * 1964 * Check for permission to change owner/group of a file or directory. 1965 * 1966 * Return: Returns 0 if permission is granted. 1967 */ 1968int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1969{ 1970 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1971 return 0; 1972 return call_int_hook(path_chown, path, uid, gid); 1973} 1974 1975/** 1976 * security_path_chroot() - Check if changing the root directory is allowed 1977 * @path: directory 1978 * 1979 * Check for permission to change root directory. 1980 * 1981 * Return: Returns 0 if permission is granted. 1982 */ 1983int security_path_chroot(const struct path *path) 1984{ 1985 return call_int_hook(path_chroot, path); 1986} 1987#endif /* CONFIG_SECURITY_PATH */ 1988 1989/** 1990 * security_inode_create() - Check if creating a file is allowed 1991 * @dir: the parent directory 1992 * @dentry: the file being created 1993 * @mode: requested file mode 1994 * 1995 * Check permission to create a regular file. 1996 * 1997 * Return: Returns 0 if permission is granted. 1998 */ 1999int security_inode_create(struct inode *dir, struct dentry *dentry, 2000 umode_t mode) 2001{ 2002 if (unlikely(IS_PRIVATE(dir))) 2003 return 0; 2004 return call_int_hook(inode_create, dir, dentry, mode); 2005} 2006EXPORT_SYMBOL_GPL(security_inode_create); 2007 2008/** 2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2010 * @idmap: idmap of the mount 2011 * @inode: inode of the new tmpfile 2012 * 2013 * Update inode security data after a tmpfile has been created. 2014 */ 2015void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2016 struct inode *inode) 2017{ 2018 if (unlikely(IS_PRIVATE(inode))) 2019 return; 2020 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2021} 2022 2023/** 2024 * security_inode_link() - Check if creating a hard link is allowed 2025 * @old_dentry: existing file 2026 * @dir: new parent directory 2027 * @new_dentry: new link 2028 * 2029 * Check permission before creating a new hard link to a file. 2030 * 2031 * Return: Returns 0 if permission is granted. 2032 */ 2033int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2034 struct dentry *new_dentry) 2035{ 2036 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2037 return 0; 2038 return call_int_hook(inode_link, old_dentry, dir, new_dentry); 2039} 2040 2041/** 2042 * security_inode_unlink() - Check if removing a hard link is allowed 2043 * @dir: parent directory 2044 * @dentry: file 2045 * 2046 * Check the permission to remove a hard link to a file. 2047 * 2048 * Return: Returns 0 if permission is granted. 2049 */ 2050int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2051{ 2052 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2053 return 0; 2054 return call_int_hook(inode_unlink, dir, dentry); 2055} 2056 2057/** 2058 * security_inode_symlink() - Check if creating a symbolic link is allowed 2059 * @dir: parent directory 2060 * @dentry: symbolic link 2061 * @old_name: existing filename 2062 * 2063 * Check the permission to create a symbolic link to a file. 2064 * 2065 * Return: Returns 0 if permission is granted. 2066 */ 2067int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2068 const char *old_name) 2069{ 2070 if (unlikely(IS_PRIVATE(dir))) 2071 return 0; 2072 return call_int_hook(inode_symlink, dir, dentry, old_name); 2073} 2074 2075/** 2076 * security_inode_mkdir() - Check if creation a new director is allowed 2077 * @dir: parent directory 2078 * @dentry: new directory 2079 * @mode: new directory mode 2080 * 2081 * Check permissions to create a new directory in the existing directory 2082 * associated with inode structure @dir. 2083 * 2084 * Return: Returns 0 if permission is granted. 2085 */ 2086int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2087{ 2088 if (unlikely(IS_PRIVATE(dir))) 2089 return 0; 2090 return call_int_hook(inode_mkdir, dir, dentry, mode); 2091} 2092EXPORT_SYMBOL_GPL(security_inode_mkdir); 2093 2094/** 2095 * security_inode_rmdir() - Check if removing a directory is allowed 2096 * @dir: parent directory 2097 * @dentry: directory to be removed 2098 * 2099 * Check the permission to remove a directory. 2100 * 2101 * Return: Returns 0 if permission is granted. 2102 */ 2103int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2104{ 2105 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2106 return 0; 2107 return call_int_hook(inode_rmdir, dir, dentry); 2108} 2109 2110/** 2111 * security_inode_mknod() - Check if creating a special file is allowed 2112 * @dir: parent directory 2113 * @dentry: new file 2114 * @mode: new file mode 2115 * @dev: device number 2116 * 2117 * Check permissions when creating a special file (or a socket or a fifo file 2118 * created via the mknod system call). Note that if mknod operation is being 2119 * done for a regular file, then the create hook will be called and not this 2120 * hook. 2121 * 2122 * Return: Returns 0 if permission is granted. 2123 */ 2124int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2125 umode_t mode, dev_t dev) 2126{ 2127 if (unlikely(IS_PRIVATE(dir))) 2128 return 0; 2129 return call_int_hook(inode_mknod, dir, dentry, mode, dev); 2130} 2131 2132/** 2133 * security_inode_rename() - Check if renaming a file is allowed 2134 * @old_dir: parent directory of the old file 2135 * @old_dentry: the old file 2136 * @new_dir: parent directory of the new file 2137 * @new_dentry: the new file 2138 * @flags: flags 2139 * 2140 * Check for permission to rename a file or directory. 2141 * 2142 * Return: Returns 0 if permission is granted. 2143 */ 2144int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2145 struct inode *new_dir, struct dentry *new_dentry, 2146 unsigned int flags) 2147{ 2148 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2149 (d_is_positive(new_dentry) && 2150 IS_PRIVATE(d_backing_inode(new_dentry))))) 2151 return 0; 2152 2153 if (flags & RENAME_EXCHANGE) { 2154 int err = call_int_hook(inode_rename, new_dir, new_dentry, 2155 old_dir, old_dentry); 2156 if (err) 2157 return err; 2158 } 2159 2160 return call_int_hook(inode_rename, old_dir, old_dentry, 2161 new_dir, new_dentry); 2162} 2163 2164/** 2165 * security_inode_readlink() - Check if reading a symbolic link is allowed 2166 * @dentry: link 2167 * 2168 * Check the permission to read the symbolic link. 2169 * 2170 * Return: Returns 0 if permission is granted. 2171 */ 2172int security_inode_readlink(struct dentry *dentry) 2173{ 2174 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2175 return 0; 2176 return call_int_hook(inode_readlink, dentry); 2177} 2178 2179/** 2180 * security_inode_follow_link() - Check if following a symbolic link is allowed 2181 * @dentry: link dentry 2182 * @inode: link inode 2183 * @rcu: true if in RCU-walk mode 2184 * 2185 * Check permission to follow a symbolic link when looking up a pathname. If 2186 * @rcu is true, @inode is not stable. 2187 * 2188 * Return: Returns 0 if permission is granted. 2189 */ 2190int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2191 bool rcu) 2192{ 2193 if (unlikely(IS_PRIVATE(inode))) 2194 return 0; 2195 return call_int_hook(inode_follow_link, dentry, inode, rcu); 2196} 2197 2198/** 2199 * security_inode_permission() - Check if accessing an inode is allowed 2200 * @inode: inode 2201 * @mask: access mask 2202 * 2203 * Check permission before accessing an inode. This hook is called by the 2204 * existing Linux permission function, so a security module can use it to 2205 * provide additional checking for existing Linux permission checks. Notice 2206 * that this hook is called when a file is opened (as well as many other 2207 * operations), whereas the file_security_ops permission hook is called when 2208 * the actual read/write operations are performed. 2209 * 2210 * Return: Returns 0 if permission is granted. 2211 */ 2212int security_inode_permission(struct inode *inode, int mask) 2213{ 2214 if (unlikely(IS_PRIVATE(inode))) 2215 return 0; 2216 return call_int_hook(inode_permission, inode, mask); 2217} 2218 2219/** 2220 * security_inode_setattr() - Check if setting file attributes is allowed 2221 * @idmap: idmap of the mount 2222 * @dentry: file 2223 * @attr: new attributes 2224 * 2225 * Check permission before setting file attributes. Note that the kernel call 2226 * to notify_change is performed from several locations, whenever file 2227 * attributes change (such as when a file is truncated, chown/chmod operations, 2228 * transferring disk quotas, etc). 2229 * 2230 * Return: Returns 0 if permission is granted. 2231 */ 2232int security_inode_setattr(struct mnt_idmap *idmap, 2233 struct dentry *dentry, struct iattr *attr) 2234{ 2235 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2236 return 0; 2237 return call_int_hook(inode_setattr, idmap, dentry, attr); 2238} 2239EXPORT_SYMBOL_GPL(security_inode_setattr); 2240 2241/** 2242 * security_inode_post_setattr() - Update the inode after a setattr operation 2243 * @idmap: idmap of the mount 2244 * @dentry: file 2245 * @ia_valid: file attributes set 2246 * 2247 * Update inode security field after successful setting file attributes. 2248 */ 2249void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2250 int ia_valid) 2251{ 2252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2253 return; 2254 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2255} 2256 2257/** 2258 * security_inode_getattr() - Check if getting file attributes is allowed 2259 * @path: file 2260 * 2261 * Check permission before obtaining file attributes. 2262 * 2263 * Return: Returns 0 if permission is granted. 2264 */ 2265int security_inode_getattr(const struct path *path) 2266{ 2267 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2268 return 0; 2269 return call_int_hook(inode_getattr, path); 2270} 2271 2272/** 2273 * security_inode_setxattr() - Check if setting file xattrs is allowed 2274 * @idmap: idmap of the mount 2275 * @dentry: file 2276 * @name: xattr name 2277 * @value: xattr value 2278 * @size: size of xattr value 2279 * @flags: flags 2280 * 2281 * Check permission before setting the extended attributes. 2282 * 2283 * Return: Returns 0 if permission is granted. 2284 */ 2285int security_inode_setxattr(struct mnt_idmap *idmap, 2286 struct dentry *dentry, const char *name, 2287 const void *value, size_t size, int flags) 2288{ 2289 int ret; 2290 2291 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2292 return 0; 2293 /* 2294 * SELinux and Smack integrate the cap call, 2295 * so assume that all LSMs supplying this call do so. 2296 */ 2297 ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size, 2298 flags); 2299 2300 if (ret == 1) 2301 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2302 return ret; 2303} 2304 2305/** 2306 * security_inode_set_acl() - Check if setting posix acls is allowed 2307 * @idmap: idmap of the mount 2308 * @dentry: file 2309 * @acl_name: acl name 2310 * @kacl: acl struct 2311 * 2312 * Check permission before setting posix acls, the posix acls in @kacl are 2313 * identified by @acl_name. 2314 * 2315 * Return: Returns 0 if permission is granted. 2316 */ 2317int security_inode_set_acl(struct mnt_idmap *idmap, 2318 struct dentry *dentry, const char *acl_name, 2319 struct posix_acl *kacl) 2320{ 2321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2322 return 0; 2323 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); 2324} 2325 2326/** 2327 * security_inode_post_set_acl() - Update inode security from posix acls set 2328 * @dentry: file 2329 * @acl_name: acl name 2330 * @kacl: acl struct 2331 * 2332 * Update inode security data after successfully setting posix acls on @dentry. 2333 * The posix acls in @kacl are identified by @acl_name. 2334 */ 2335void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2336 struct posix_acl *kacl) 2337{ 2338 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2339 return; 2340 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2341} 2342 2343/** 2344 * security_inode_get_acl() - Check if reading posix acls is allowed 2345 * @idmap: idmap of the mount 2346 * @dentry: file 2347 * @acl_name: acl name 2348 * 2349 * Check permission before getting osix acls, the posix acls are identified by 2350 * @acl_name. 2351 * 2352 * Return: Returns 0 if permission is granted. 2353 */ 2354int security_inode_get_acl(struct mnt_idmap *idmap, 2355 struct dentry *dentry, const char *acl_name) 2356{ 2357 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2358 return 0; 2359 return call_int_hook(inode_get_acl, idmap, dentry, acl_name); 2360} 2361 2362/** 2363 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2364 * @idmap: idmap of the mount 2365 * @dentry: file 2366 * @acl_name: acl name 2367 * 2368 * Check permission before removing posix acls, the posix acls are identified 2369 * by @acl_name. 2370 * 2371 * Return: Returns 0 if permission is granted. 2372 */ 2373int security_inode_remove_acl(struct mnt_idmap *idmap, 2374 struct dentry *dentry, const char *acl_name) 2375{ 2376 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2377 return 0; 2378 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); 2379} 2380 2381/** 2382 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2383 * @idmap: idmap of the mount 2384 * @dentry: file 2385 * @acl_name: acl name 2386 * 2387 * Update inode security data after successfully removing posix acls on 2388 * @dentry in @idmap. The posix acls are identified by @acl_name. 2389 */ 2390void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2391 struct dentry *dentry, const char *acl_name) 2392{ 2393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2394 return; 2395 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2396} 2397 2398/** 2399 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2400 * @dentry: file 2401 * @name: xattr name 2402 * @value: xattr value 2403 * @size: xattr value size 2404 * @flags: flags 2405 * 2406 * Update inode security field after successful setxattr operation. 2407 */ 2408void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2409 const void *value, size_t size, int flags) 2410{ 2411 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2412 return; 2413 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2414} 2415 2416/** 2417 * security_inode_getxattr() - Check if xattr access is allowed 2418 * @dentry: file 2419 * @name: xattr name 2420 * 2421 * Check permission before obtaining the extended attributes identified by 2422 * @name for @dentry. 2423 * 2424 * Return: Returns 0 if permission is granted. 2425 */ 2426int security_inode_getxattr(struct dentry *dentry, const char *name) 2427{ 2428 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2429 return 0; 2430 return call_int_hook(inode_getxattr, dentry, name); 2431} 2432 2433/** 2434 * security_inode_listxattr() - Check if listing xattrs is allowed 2435 * @dentry: file 2436 * 2437 * Check permission before obtaining the list of extended attribute names for 2438 * @dentry. 2439 * 2440 * Return: Returns 0 if permission is granted. 2441 */ 2442int security_inode_listxattr(struct dentry *dentry) 2443{ 2444 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2445 return 0; 2446 return call_int_hook(inode_listxattr, dentry); 2447} 2448 2449/** 2450 * security_inode_removexattr() - Check if removing an xattr is allowed 2451 * @idmap: idmap of the mount 2452 * @dentry: file 2453 * @name: xattr name 2454 * 2455 * Check permission before removing the extended attribute identified by @name 2456 * for @dentry. 2457 * 2458 * Return: Returns 0 if permission is granted. 2459 */ 2460int security_inode_removexattr(struct mnt_idmap *idmap, 2461 struct dentry *dentry, const char *name) 2462{ 2463 int ret; 2464 2465 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2466 return 0; 2467 /* 2468 * SELinux and Smack integrate the cap call, 2469 * so assume that all LSMs supplying this call do so. 2470 */ 2471 ret = call_int_hook(inode_removexattr, idmap, dentry, name); 2472 if (ret == 1) 2473 ret = cap_inode_removexattr(idmap, dentry, name); 2474 return ret; 2475} 2476 2477/** 2478 * security_inode_post_removexattr() - Update the inode after a removexattr op 2479 * @dentry: file 2480 * @name: xattr name 2481 * 2482 * Update the inode after a successful removexattr operation. 2483 */ 2484void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2485{ 2486 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2487 return; 2488 call_void_hook(inode_post_removexattr, dentry, name); 2489} 2490 2491/** 2492 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2493 * @dentry: associated dentry 2494 * 2495 * Called when an inode has been changed to determine if 2496 * security_inode_killpriv() should be called. 2497 * 2498 * Return: Return <0 on error to abort the inode change operation, return 0 if 2499 * security_inode_killpriv() does not need to be called, return >0 if 2500 * security_inode_killpriv() does need to be called. 2501 */ 2502int security_inode_need_killpriv(struct dentry *dentry) 2503{ 2504 return call_int_hook(inode_need_killpriv, dentry); 2505} 2506 2507/** 2508 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2509 * @idmap: idmap of the mount 2510 * @dentry: associated dentry 2511 * 2512 * The @dentry's setuid bit is being removed. Remove similar security labels. 2513 * Called with the dentry->d_inode->i_mutex held. 2514 * 2515 * Return: Return 0 on success. If error is returned, then the operation 2516 * causing setuid bit removal is failed. 2517 */ 2518int security_inode_killpriv(struct mnt_idmap *idmap, 2519 struct dentry *dentry) 2520{ 2521 return call_int_hook(inode_killpriv, idmap, dentry); 2522} 2523 2524/** 2525 * security_inode_getsecurity() - Get the xattr security label of an inode 2526 * @idmap: idmap of the mount 2527 * @inode: inode 2528 * @name: xattr name 2529 * @buffer: security label buffer 2530 * @alloc: allocation flag 2531 * 2532 * Retrieve a copy of the extended attribute representation of the security 2533 * label associated with @name for @inode via @buffer. Note that @name is the 2534 * remainder of the attribute name after the security prefix has been removed. 2535 * @alloc is used to specify if the call should return a value via the buffer 2536 * or just the value length. 2537 * 2538 * Return: Returns size of buffer on success. 2539 */ 2540int security_inode_getsecurity(struct mnt_idmap *idmap, 2541 struct inode *inode, const char *name, 2542 void **buffer, bool alloc) 2543{ 2544 if (unlikely(IS_PRIVATE(inode))) 2545 return LSM_RET_DEFAULT(inode_getsecurity); 2546 2547 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, 2548 alloc); 2549} 2550 2551/** 2552 * security_inode_setsecurity() - Set the xattr security label of an inode 2553 * @inode: inode 2554 * @name: xattr name 2555 * @value: security label 2556 * @size: length of security label 2557 * @flags: flags 2558 * 2559 * Set the security label associated with @name for @inode from the extended 2560 * attribute value @value. @size indicates the size of the @value in bytes. 2561 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2562 * remainder of the attribute name after the security. prefix has been removed. 2563 * 2564 * Return: Returns 0 on success. 2565 */ 2566int security_inode_setsecurity(struct inode *inode, const char *name, 2567 const void *value, size_t size, int flags) 2568{ 2569 if (unlikely(IS_PRIVATE(inode))) 2570 return LSM_RET_DEFAULT(inode_setsecurity); 2571 2572 return call_int_hook(inode_setsecurity, inode, name, value, size, 2573 flags); 2574} 2575 2576/** 2577 * security_inode_listsecurity() - List the xattr security label names 2578 * @inode: inode 2579 * @buffer: buffer 2580 * @buffer_size: size of buffer 2581 * 2582 * Copy the extended attribute names for the security labels associated with 2583 * @inode into @buffer. The maximum size of @buffer is specified by 2584 * @buffer_size. @buffer may be NULL to request the size of the buffer 2585 * required. 2586 * 2587 * Return: Returns number of bytes used/required on success. 2588 */ 2589int security_inode_listsecurity(struct inode *inode, 2590 char *buffer, size_t buffer_size) 2591{ 2592 if (unlikely(IS_PRIVATE(inode))) 2593 return 0; 2594 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); 2595} 2596EXPORT_SYMBOL(security_inode_listsecurity); 2597 2598/** 2599 * security_inode_getsecid() - Get an inode's secid 2600 * @inode: inode 2601 * @secid: secid to return 2602 * 2603 * Get the secid associated with the node. In case of failure, @secid will be 2604 * set to zero. 2605 */ 2606void security_inode_getsecid(struct inode *inode, u32 *secid) 2607{ 2608 call_void_hook(inode_getsecid, inode, secid); 2609} 2610 2611/** 2612 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2613 * @src: union dentry of copy-up file 2614 * @new: newly created creds 2615 * 2616 * A file is about to be copied up from lower layer to upper layer of overlay 2617 * filesystem. Security module can prepare a set of new creds and modify as 2618 * need be and return new creds. Caller will switch to new creds temporarily to 2619 * create new file and release newly allocated creds. 2620 * 2621 * Return: Returns 0 on success or a negative error code on error. 2622 */ 2623int security_inode_copy_up(struct dentry *src, struct cred **new) 2624{ 2625 return call_int_hook(inode_copy_up, src, new); 2626} 2627EXPORT_SYMBOL(security_inode_copy_up); 2628 2629/** 2630 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2631 * @src: union dentry of copy-up file 2632 * @name: xattr name 2633 * 2634 * Filter the xattrs being copied up when a unioned file is copied up from a 2635 * lower layer to the union/overlay layer. The caller is responsible for 2636 * reading and writing the xattrs, this hook is merely a filter. 2637 * 2638 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2639 * if the security module does not know about attribute, or a negative 2640 * error code to abort the copy up. 2641 */ 2642int security_inode_copy_up_xattr(struct dentry *src, const char *name) 2643{ 2644 int rc; 2645 2646 /* 2647 * The implementation can return 0 (accept the xattr), 1 (discard the 2648 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2649 * any other error code in case of an error. 2650 */ 2651 rc = call_int_hook(inode_copy_up_xattr, src, name); 2652 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2653 return rc; 2654 2655 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2656} 2657EXPORT_SYMBOL(security_inode_copy_up_xattr); 2658 2659/** 2660 * security_kernfs_init_security() - Init LSM context for a kernfs node 2661 * @kn_dir: parent kernfs node 2662 * @kn: the kernfs node to initialize 2663 * 2664 * Initialize the security context of a newly created kernfs node based on its 2665 * own and its parent's attributes. 2666 * 2667 * Return: Returns 0 if permission is granted. 2668 */ 2669int security_kernfs_init_security(struct kernfs_node *kn_dir, 2670 struct kernfs_node *kn) 2671{ 2672 return call_int_hook(kernfs_init_security, kn_dir, kn); 2673} 2674 2675/** 2676 * security_file_permission() - Check file permissions 2677 * @file: file 2678 * @mask: requested permissions 2679 * 2680 * Check file permissions before accessing an open file. This hook is called 2681 * by various operations that read or write files. A security module can use 2682 * this hook to perform additional checking on these operations, e.g. to 2683 * revalidate permissions on use to support privilege bracketing or policy 2684 * changes. Notice that this hook is used when the actual read/write 2685 * operations are performed, whereas the inode_security_ops hook is called when 2686 * a file is opened (as well as many other operations). Although this hook can 2687 * be used to revalidate permissions for various system call operations that 2688 * read or write files, it does not address the revalidation of permissions for 2689 * memory-mapped files. Security modules must handle this separately if they 2690 * need such revalidation. 2691 * 2692 * Return: Returns 0 if permission is granted. 2693 */ 2694int security_file_permission(struct file *file, int mask) 2695{ 2696 return call_int_hook(file_permission, file, mask); 2697} 2698 2699/** 2700 * security_file_alloc() - Allocate and init a file's LSM blob 2701 * @file: the file 2702 * 2703 * Allocate and attach a security structure to the file->f_security field. The 2704 * security field is initialized to NULL when the structure is first created. 2705 * 2706 * Return: Return 0 if the hook is successful and permission is granted. 2707 */ 2708int security_file_alloc(struct file *file) 2709{ 2710 int rc = lsm_file_alloc(file); 2711 2712 if (rc) 2713 return rc; 2714 rc = call_int_hook(file_alloc_security, file); 2715 if (unlikely(rc)) 2716 security_file_free(file); 2717 return rc; 2718} 2719 2720/** 2721 * security_file_release() - Perform actions before releasing the file ref 2722 * @file: the file 2723 * 2724 * Perform actions before releasing the last reference to a file. 2725 */ 2726void security_file_release(struct file *file) 2727{ 2728 call_void_hook(file_release, file); 2729} 2730 2731/** 2732 * security_file_free() - Free a file's LSM blob 2733 * @file: the file 2734 * 2735 * Deallocate and free any security structures stored in file->f_security. 2736 */ 2737void security_file_free(struct file *file) 2738{ 2739 void *blob; 2740 2741 call_void_hook(file_free_security, file); 2742 2743 blob = file->f_security; 2744 if (blob) { 2745 file->f_security = NULL; 2746 kmem_cache_free(lsm_file_cache, blob); 2747 } 2748} 2749 2750/** 2751 * security_file_ioctl() - Check if an ioctl is allowed 2752 * @file: associated file 2753 * @cmd: ioctl cmd 2754 * @arg: ioctl arguments 2755 * 2756 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2757 * represents a user space pointer; in other cases, it may be a simple integer 2758 * value. When @arg represents a user space pointer, it should never be used 2759 * by the security module. 2760 * 2761 * Return: Returns 0 if permission is granted. 2762 */ 2763int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2764{ 2765 return call_int_hook(file_ioctl, file, cmd, arg); 2766} 2767EXPORT_SYMBOL_GPL(security_file_ioctl); 2768 2769/** 2770 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2771 * @file: associated file 2772 * @cmd: ioctl cmd 2773 * @arg: ioctl arguments 2774 * 2775 * Compat version of security_file_ioctl() that correctly handles 32-bit 2776 * processes running on 64-bit kernels. 2777 * 2778 * Return: Returns 0 if permission is granted. 2779 */ 2780int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2781 unsigned long arg) 2782{ 2783 return call_int_hook(file_ioctl_compat, file, cmd, arg); 2784} 2785EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2786 2787static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2788{ 2789 /* 2790 * Does we have PROT_READ and does the application expect 2791 * it to imply PROT_EXEC? If not, nothing to talk about... 2792 */ 2793 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2794 return prot; 2795 if (!(current->personality & READ_IMPLIES_EXEC)) 2796 return prot; 2797 /* 2798 * if that's an anonymous mapping, let it. 2799 */ 2800 if (!file) 2801 return prot | PROT_EXEC; 2802 /* 2803 * ditto if it's not on noexec mount, except that on !MMU we need 2804 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2805 */ 2806 if (!path_noexec(&file->f_path)) { 2807#ifndef CONFIG_MMU 2808 if (file->f_op->mmap_capabilities) { 2809 unsigned caps = file->f_op->mmap_capabilities(file); 2810 if (!(caps & NOMMU_MAP_EXEC)) 2811 return prot; 2812 } 2813#endif 2814 return prot | PROT_EXEC; 2815 } 2816 /* anything on noexec mount won't get PROT_EXEC */ 2817 return prot; 2818} 2819 2820/** 2821 * security_mmap_file() - Check if mmap'ing a file is allowed 2822 * @file: file 2823 * @prot: protection applied by the kernel 2824 * @flags: flags 2825 * 2826 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2827 * mapping anonymous memory. 2828 * 2829 * Return: Returns 0 if permission is granted. 2830 */ 2831int security_mmap_file(struct file *file, unsigned long prot, 2832 unsigned long flags) 2833{ 2834 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), 2835 flags); 2836} 2837 2838/** 2839 * security_mmap_addr() - Check if mmap'ing an address is allowed 2840 * @addr: address 2841 * 2842 * Check permissions for a mmap operation at @addr. 2843 * 2844 * Return: Returns 0 if permission is granted. 2845 */ 2846int security_mmap_addr(unsigned long addr) 2847{ 2848 return call_int_hook(mmap_addr, addr); 2849} 2850 2851/** 2852 * security_file_mprotect() - Check if changing memory protections is allowed 2853 * @vma: memory region 2854 * @reqprot: application requested protection 2855 * @prot: protection applied by the kernel 2856 * 2857 * Check permissions before changing memory access permissions. 2858 * 2859 * Return: Returns 0 if permission is granted. 2860 */ 2861int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2862 unsigned long prot) 2863{ 2864 return call_int_hook(file_mprotect, vma, reqprot, prot); 2865} 2866 2867/** 2868 * security_file_lock() - Check if a file lock is allowed 2869 * @file: file 2870 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2871 * 2872 * Check permission before performing file locking operations. Note the hook 2873 * mediates both flock and fcntl style locks. 2874 * 2875 * Return: Returns 0 if permission is granted. 2876 */ 2877int security_file_lock(struct file *file, unsigned int cmd) 2878{ 2879 return call_int_hook(file_lock, file, cmd); 2880} 2881 2882/** 2883 * security_file_fcntl() - Check if fcntl() op is allowed 2884 * @file: file 2885 * @cmd: fcntl command 2886 * @arg: command argument 2887 * 2888 * Check permission before allowing the file operation specified by @cmd from 2889 * being performed on the file @file. Note that @arg sometimes represents a 2890 * user space pointer; in other cases, it may be a simple integer value. When 2891 * @arg represents a user space pointer, it should never be used by the 2892 * security module. 2893 * 2894 * Return: Returns 0 if permission is granted. 2895 */ 2896int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2897{ 2898 return call_int_hook(file_fcntl, file, cmd, arg); 2899} 2900 2901/** 2902 * security_file_set_fowner() - Set the file owner info in the LSM blob 2903 * @file: the file 2904 * 2905 * Save owner security information (typically from current->security) in 2906 * file->f_security for later use by the send_sigiotask hook. 2907 * 2908 * Return: Returns 0 on success. 2909 */ 2910void security_file_set_fowner(struct file *file) 2911{ 2912 call_void_hook(file_set_fowner, file); 2913} 2914 2915/** 2916 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2917 * @tsk: target task 2918 * @fown: signal sender 2919 * @sig: signal to be sent, SIGIO is sent if 0 2920 * 2921 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2922 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2923 * that the fown_struct, @fown, is never outside the context of a struct file, 2924 * so the file structure (and associated security information) can always be 2925 * obtained: container_of(fown, struct file, f_owner). 2926 * 2927 * Return: Returns 0 if permission is granted. 2928 */ 2929int security_file_send_sigiotask(struct task_struct *tsk, 2930 struct fown_struct *fown, int sig) 2931{ 2932 return call_int_hook(file_send_sigiotask, tsk, fown, sig); 2933} 2934 2935/** 2936 * security_file_receive() - Check if receiving a file via IPC is allowed 2937 * @file: file being received 2938 * 2939 * This hook allows security modules to control the ability of a process to 2940 * receive an open file descriptor via socket IPC. 2941 * 2942 * Return: Returns 0 if permission is granted. 2943 */ 2944int security_file_receive(struct file *file) 2945{ 2946 return call_int_hook(file_receive, file); 2947} 2948 2949/** 2950 * security_file_open() - Save open() time state for late use by the LSM 2951 * @file: 2952 * 2953 * Save open-time permission checking state for later use upon file_permission, 2954 * and recheck access if anything has changed since inode_permission. 2955 * 2956 * Return: Returns 0 if permission is granted. 2957 */ 2958int security_file_open(struct file *file) 2959{ 2960 int ret; 2961 2962 ret = call_int_hook(file_open, file); 2963 if (ret) 2964 return ret; 2965 2966 return fsnotify_open_perm(file); 2967} 2968 2969/** 2970 * security_file_post_open() - Evaluate a file after it has been opened 2971 * @file: the file 2972 * @mask: access mask 2973 * 2974 * Evaluate an opened file and the access mask requested with open(). The hook 2975 * is useful for LSMs that require the file content to be available in order to 2976 * make decisions. 2977 * 2978 * Return: Returns 0 if permission is granted. 2979 */ 2980int security_file_post_open(struct file *file, int mask) 2981{ 2982 return call_int_hook(file_post_open, file, mask); 2983} 2984EXPORT_SYMBOL_GPL(security_file_post_open); 2985 2986/** 2987 * security_file_truncate() - Check if truncating a file is allowed 2988 * @file: file 2989 * 2990 * Check permission before truncating a file, i.e. using ftruncate. Note that 2991 * truncation permission may also be checked based on the path, using the 2992 * @path_truncate hook. 2993 * 2994 * Return: Returns 0 if permission is granted. 2995 */ 2996int security_file_truncate(struct file *file) 2997{ 2998 return call_int_hook(file_truncate, file); 2999} 3000 3001/** 3002 * security_task_alloc() - Allocate a task's LSM blob 3003 * @task: the task 3004 * @clone_flags: flags indicating what is being shared 3005 * 3006 * Handle allocation of task-related resources. 3007 * 3008 * Return: Returns a zero on success, negative values on failure. 3009 */ 3010int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 3011{ 3012 int rc = lsm_task_alloc(task); 3013 3014 if (rc) 3015 return rc; 3016 rc = call_int_hook(task_alloc, task, clone_flags); 3017 if (unlikely(rc)) 3018 security_task_free(task); 3019 return rc; 3020} 3021 3022/** 3023 * security_task_free() - Free a task's LSM blob and related resources 3024 * @task: task 3025 * 3026 * Handle release of task-related resources. Note that this can be called from 3027 * interrupt context. 3028 */ 3029void security_task_free(struct task_struct *task) 3030{ 3031 call_void_hook(task_free, task); 3032 3033 kfree(task->security); 3034 task->security = NULL; 3035} 3036 3037/** 3038 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3039 * @cred: credentials 3040 * @gfp: gfp flags 3041 * 3042 * Only allocate sufficient memory and attach to @cred such that 3043 * cred_transfer() will not get ENOMEM. 3044 * 3045 * Return: Returns 0 on success, negative values on failure. 3046 */ 3047int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3048{ 3049 int rc = lsm_cred_alloc(cred, gfp); 3050 3051 if (rc) 3052 return rc; 3053 3054 rc = call_int_hook(cred_alloc_blank, cred, gfp); 3055 if (unlikely(rc)) 3056 security_cred_free(cred); 3057 return rc; 3058} 3059 3060/** 3061 * security_cred_free() - Free the cred's LSM blob and associated resources 3062 * @cred: credentials 3063 * 3064 * Deallocate and clear the cred->security field in a set of credentials. 3065 */ 3066void security_cred_free(struct cred *cred) 3067{ 3068 /* 3069 * There is a failure case in prepare_creds() that 3070 * may result in a call here with ->security being NULL. 3071 */ 3072 if (unlikely(cred->security == NULL)) 3073 return; 3074 3075 call_void_hook(cred_free, cred); 3076 3077 kfree(cred->security); 3078 cred->security = NULL; 3079} 3080 3081/** 3082 * security_prepare_creds() - Prepare a new set of credentials 3083 * @new: new credentials 3084 * @old: original credentials 3085 * @gfp: gfp flags 3086 * 3087 * Prepare a new set of credentials by copying the data from the old set. 3088 * 3089 * Return: Returns 0 on success, negative values on failure. 3090 */ 3091int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3092{ 3093 int rc = lsm_cred_alloc(new, gfp); 3094 3095 if (rc) 3096 return rc; 3097 3098 rc = call_int_hook(cred_prepare, new, old, gfp); 3099 if (unlikely(rc)) 3100 security_cred_free(new); 3101 return rc; 3102} 3103 3104/** 3105 * security_transfer_creds() - Transfer creds 3106 * @new: target credentials 3107 * @old: original credentials 3108 * 3109 * Transfer data from original creds to new creds. 3110 */ 3111void security_transfer_creds(struct cred *new, const struct cred *old) 3112{ 3113 call_void_hook(cred_transfer, new, old); 3114} 3115 3116/** 3117 * security_cred_getsecid() - Get the secid from a set of credentials 3118 * @c: credentials 3119 * @secid: secid value 3120 * 3121 * Retrieve the security identifier of the cred structure @c. In case of 3122 * failure, @secid will be set to zero. 3123 */ 3124void security_cred_getsecid(const struct cred *c, u32 *secid) 3125{ 3126 *secid = 0; 3127 call_void_hook(cred_getsecid, c, secid); 3128} 3129EXPORT_SYMBOL(security_cred_getsecid); 3130 3131/** 3132 * security_kernel_act_as() - Set the kernel credentials to act as secid 3133 * @new: credentials 3134 * @secid: secid 3135 * 3136 * Set the credentials for a kernel service to act as (subjective context). 3137 * The current task must be the one that nominated @secid. 3138 * 3139 * Return: Returns 0 if successful. 3140 */ 3141int security_kernel_act_as(struct cred *new, u32 secid) 3142{ 3143 return call_int_hook(kernel_act_as, new, secid); 3144} 3145 3146/** 3147 * security_kernel_create_files_as() - Set file creation context using an inode 3148 * @new: target credentials 3149 * @inode: reference inode 3150 * 3151 * Set the file creation context in a set of credentials to be the same as the 3152 * objective context of the specified inode. The current task must be the one 3153 * that nominated @inode. 3154 * 3155 * Return: Returns 0 if successful. 3156 */ 3157int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3158{ 3159 return call_int_hook(kernel_create_files_as, new, inode); 3160} 3161 3162/** 3163 * security_kernel_module_request() - Check if loading a module is allowed 3164 * @kmod_name: module name 3165 * 3166 * Ability to trigger the kernel to automatically upcall to userspace for 3167 * userspace to load a kernel module with the given name. 3168 * 3169 * Return: Returns 0 if successful. 3170 */ 3171int security_kernel_module_request(char *kmod_name) 3172{ 3173 return call_int_hook(kernel_module_request, kmod_name); 3174} 3175 3176/** 3177 * security_kernel_read_file() - Read a file specified by userspace 3178 * @file: file 3179 * @id: file identifier 3180 * @contents: trust if security_kernel_post_read_file() will be called 3181 * 3182 * Read a file specified by userspace. 3183 * 3184 * Return: Returns 0 if permission is granted. 3185 */ 3186int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3187 bool contents) 3188{ 3189 return call_int_hook(kernel_read_file, file, id, contents); 3190} 3191EXPORT_SYMBOL_GPL(security_kernel_read_file); 3192 3193/** 3194 * security_kernel_post_read_file() - Read a file specified by userspace 3195 * @file: file 3196 * @buf: file contents 3197 * @size: size of file contents 3198 * @id: file identifier 3199 * 3200 * Read a file specified by userspace. This must be paired with a prior call 3201 * to security_kernel_read_file() call that indicated this hook would also be 3202 * called, see security_kernel_read_file() for more information. 3203 * 3204 * Return: Returns 0 if permission is granted. 3205 */ 3206int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3207 enum kernel_read_file_id id) 3208{ 3209 return call_int_hook(kernel_post_read_file, file, buf, size, id); 3210} 3211EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3212 3213/** 3214 * security_kernel_load_data() - Load data provided by userspace 3215 * @id: data identifier 3216 * @contents: true if security_kernel_post_load_data() will be called 3217 * 3218 * Load data provided by userspace. 3219 * 3220 * Return: Returns 0 if permission is granted. 3221 */ 3222int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3223{ 3224 return call_int_hook(kernel_load_data, id, contents); 3225} 3226EXPORT_SYMBOL_GPL(security_kernel_load_data); 3227 3228/** 3229 * security_kernel_post_load_data() - Load userspace data from a non-file source 3230 * @buf: data 3231 * @size: size of data 3232 * @id: data identifier 3233 * @description: text description of data, specific to the id value 3234 * 3235 * Load data provided by a non-file source (usually userspace buffer). This 3236 * must be paired with a prior security_kernel_load_data() call that indicated 3237 * this hook would also be called, see security_kernel_load_data() for more 3238 * information. 3239 * 3240 * Return: Returns 0 if permission is granted. 3241 */ 3242int security_kernel_post_load_data(char *buf, loff_t size, 3243 enum kernel_load_data_id id, 3244 char *description) 3245{ 3246 return call_int_hook(kernel_post_load_data, buf, size, id, description); 3247} 3248EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3249 3250/** 3251 * security_task_fix_setuid() - Update LSM with new user id attributes 3252 * @new: updated credentials 3253 * @old: credentials being replaced 3254 * @flags: LSM_SETID_* flag values 3255 * 3256 * Update the module's state after setting one or more of the user identity 3257 * attributes of the current process. The @flags parameter indicates which of 3258 * the set*uid system calls invoked this hook. If @new is the set of 3259 * credentials that will be installed. Modifications should be made to this 3260 * rather than to @current->cred. 3261 * 3262 * Return: Returns 0 on success. 3263 */ 3264int security_task_fix_setuid(struct cred *new, const struct cred *old, 3265 int flags) 3266{ 3267 return call_int_hook(task_fix_setuid, new, old, flags); 3268} 3269 3270/** 3271 * security_task_fix_setgid() - Update LSM with new group id attributes 3272 * @new: updated credentials 3273 * @old: credentials being replaced 3274 * @flags: LSM_SETID_* flag value 3275 * 3276 * Update the module's state after setting one or more of the group identity 3277 * attributes of the current process. The @flags parameter indicates which of 3278 * the set*gid system calls invoked this hook. @new is the set of credentials 3279 * that will be installed. Modifications should be made to this rather than to 3280 * @current->cred. 3281 * 3282 * Return: Returns 0 on success. 3283 */ 3284int security_task_fix_setgid(struct cred *new, const struct cred *old, 3285 int flags) 3286{ 3287 return call_int_hook(task_fix_setgid, new, old, flags); 3288} 3289 3290/** 3291 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3292 * @new: updated credentials 3293 * @old: credentials being replaced 3294 * 3295 * Update the module's state after setting the supplementary group identity 3296 * attributes of the current process. @new is the set of credentials that will 3297 * be installed. Modifications should be made to this rather than to 3298 * @current->cred. 3299 * 3300 * Return: Returns 0 on success. 3301 */ 3302int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3303{ 3304 return call_int_hook(task_fix_setgroups, new, old); 3305} 3306 3307/** 3308 * security_task_setpgid() - Check if setting the pgid is allowed 3309 * @p: task being modified 3310 * @pgid: new pgid 3311 * 3312 * Check permission before setting the process group identifier of the process 3313 * @p to @pgid. 3314 * 3315 * Return: Returns 0 if permission is granted. 3316 */ 3317int security_task_setpgid(struct task_struct *p, pid_t pgid) 3318{ 3319 return call_int_hook(task_setpgid, p, pgid); 3320} 3321 3322/** 3323 * security_task_getpgid() - Check if getting the pgid is allowed 3324 * @p: task 3325 * 3326 * Check permission before getting the process group identifier of the process 3327 * @p. 3328 * 3329 * Return: Returns 0 if permission is granted. 3330 */ 3331int security_task_getpgid(struct task_struct *p) 3332{ 3333 return call_int_hook(task_getpgid, p); 3334} 3335 3336/** 3337 * security_task_getsid() - Check if getting the session id is allowed 3338 * @p: task 3339 * 3340 * Check permission before getting the session identifier of the process @p. 3341 * 3342 * Return: Returns 0 if permission is granted. 3343 */ 3344int security_task_getsid(struct task_struct *p) 3345{ 3346 return call_int_hook(task_getsid, p); 3347} 3348 3349/** 3350 * security_current_getsecid_subj() - Get the current task's subjective secid 3351 * @secid: secid value 3352 * 3353 * Retrieve the subjective security identifier of the current task and return 3354 * it in @secid. In case of failure, @secid will be set to zero. 3355 */ 3356void security_current_getsecid_subj(u32 *secid) 3357{ 3358 *secid = 0; 3359 call_void_hook(current_getsecid_subj, secid); 3360} 3361EXPORT_SYMBOL(security_current_getsecid_subj); 3362 3363/** 3364 * security_task_getsecid_obj() - Get a task's objective secid 3365 * @p: target task 3366 * @secid: secid value 3367 * 3368 * Retrieve the objective security identifier of the task_struct in @p and 3369 * return it in @secid. In case of failure, @secid will be set to zero. 3370 */ 3371void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3372{ 3373 *secid = 0; 3374 call_void_hook(task_getsecid_obj, p, secid); 3375} 3376EXPORT_SYMBOL(security_task_getsecid_obj); 3377 3378/** 3379 * security_task_setnice() - Check if setting a task's nice value is allowed 3380 * @p: target task 3381 * @nice: nice value 3382 * 3383 * Check permission before setting the nice value of @p to @nice. 3384 * 3385 * Return: Returns 0 if permission is granted. 3386 */ 3387int security_task_setnice(struct task_struct *p, int nice) 3388{ 3389 return call_int_hook(task_setnice, p, nice); 3390} 3391 3392/** 3393 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3394 * @p: target task 3395 * @ioprio: ioprio value 3396 * 3397 * Check permission before setting the ioprio value of @p to @ioprio. 3398 * 3399 * Return: Returns 0 if permission is granted. 3400 */ 3401int security_task_setioprio(struct task_struct *p, int ioprio) 3402{ 3403 return call_int_hook(task_setioprio, p, ioprio); 3404} 3405 3406/** 3407 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3408 * @p: task 3409 * 3410 * Check permission before getting the ioprio value of @p. 3411 * 3412 * Return: Returns 0 if permission is granted. 3413 */ 3414int security_task_getioprio(struct task_struct *p) 3415{ 3416 return call_int_hook(task_getioprio, p); 3417} 3418 3419/** 3420 * security_task_prlimit() - Check if get/setting resources limits is allowed 3421 * @cred: current task credentials 3422 * @tcred: target task credentials 3423 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3424 * 3425 * Check permission before getting and/or setting the resource limits of 3426 * another task. 3427 * 3428 * Return: Returns 0 if permission is granted. 3429 */ 3430int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3431 unsigned int flags) 3432{ 3433 return call_int_hook(task_prlimit, cred, tcred, flags); 3434} 3435 3436/** 3437 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3438 * @p: target task's group leader 3439 * @resource: resource whose limit is being set 3440 * @new_rlim: new resource limit 3441 * 3442 * Check permission before setting the resource limits of process @p for 3443 * @resource to @new_rlim. The old resource limit values can be examined by 3444 * dereferencing (p->signal->rlim + resource). 3445 * 3446 * Return: Returns 0 if permission is granted. 3447 */ 3448int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3449 struct rlimit *new_rlim) 3450{ 3451 return call_int_hook(task_setrlimit, p, resource, new_rlim); 3452} 3453 3454/** 3455 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3456 * @p: target task 3457 * 3458 * Check permission before setting scheduling policy and/or parameters of 3459 * process @p. 3460 * 3461 * Return: Returns 0 if permission is granted. 3462 */ 3463int security_task_setscheduler(struct task_struct *p) 3464{ 3465 return call_int_hook(task_setscheduler, p); 3466} 3467 3468/** 3469 * security_task_getscheduler() - Check if getting scheduling info is allowed 3470 * @p: target task 3471 * 3472 * Check permission before obtaining scheduling information for process @p. 3473 * 3474 * Return: Returns 0 if permission is granted. 3475 */ 3476int security_task_getscheduler(struct task_struct *p) 3477{ 3478 return call_int_hook(task_getscheduler, p); 3479} 3480 3481/** 3482 * security_task_movememory() - Check if moving memory is allowed 3483 * @p: task 3484 * 3485 * Check permission before moving memory owned by process @p. 3486 * 3487 * Return: Returns 0 if permission is granted. 3488 */ 3489int security_task_movememory(struct task_struct *p) 3490{ 3491 return call_int_hook(task_movememory, p); 3492} 3493 3494/** 3495 * security_task_kill() - Check if sending a signal is allowed 3496 * @p: target process 3497 * @info: signal information 3498 * @sig: signal value 3499 * @cred: credentials of the signal sender, NULL if @current 3500 * 3501 * Check permission before sending signal @sig to @p. @info can be NULL, the 3502 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3503 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3504 * the kernel and should typically be permitted. SIGIO signals are handled 3505 * separately by the send_sigiotask hook in file_security_ops. 3506 * 3507 * Return: Returns 0 if permission is granted. 3508 */ 3509int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3510 int sig, const struct cred *cred) 3511{ 3512 return call_int_hook(task_kill, p, info, sig, cred); 3513} 3514 3515/** 3516 * security_task_prctl() - Check if a prctl op is allowed 3517 * @option: operation 3518 * @arg2: argument 3519 * @arg3: argument 3520 * @arg4: argument 3521 * @arg5: argument 3522 * 3523 * Check permission before performing a process control operation on the 3524 * current process. 3525 * 3526 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3527 * to cause prctl() to return immediately with that value. 3528 */ 3529int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3530 unsigned long arg4, unsigned long arg5) 3531{ 3532 int thisrc; 3533 int rc = LSM_RET_DEFAULT(task_prctl); 3534 struct security_hook_list *hp; 3535 3536 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3537 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3538 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3539 rc = thisrc; 3540 if (thisrc != 0) 3541 break; 3542 } 3543 } 3544 return rc; 3545} 3546 3547/** 3548 * security_task_to_inode() - Set the security attributes of a task's inode 3549 * @p: task 3550 * @inode: inode 3551 * 3552 * Set the security attributes for an inode based on an associated task's 3553 * security attributes, e.g. for /proc/pid inodes. 3554 */ 3555void security_task_to_inode(struct task_struct *p, struct inode *inode) 3556{ 3557 call_void_hook(task_to_inode, p, inode); 3558} 3559 3560/** 3561 * security_create_user_ns() - Check if creating a new userns is allowed 3562 * @cred: prepared creds 3563 * 3564 * Check permission prior to creating a new user namespace. 3565 * 3566 * Return: Returns 0 if successful, otherwise < 0 error code. 3567 */ 3568int security_create_user_ns(const struct cred *cred) 3569{ 3570 return call_int_hook(userns_create, cred); 3571} 3572 3573/** 3574 * security_ipc_permission() - Check if sysv ipc access is allowed 3575 * @ipcp: ipc permission structure 3576 * @flag: requested permissions 3577 * 3578 * Check permissions for access to IPC. 3579 * 3580 * Return: Returns 0 if permission is granted. 3581 */ 3582int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3583{ 3584 return call_int_hook(ipc_permission, ipcp, flag); 3585} 3586 3587/** 3588 * security_ipc_getsecid() - Get the sysv ipc object's secid 3589 * @ipcp: ipc permission structure 3590 * @secid: secid pointer 3591 * 3592 * Get the secid associated with the ipc object. In case of failure, @secid 3593 * will be set to zero. 3594 */ 3595void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3596{ 3597 *secid = 0; 3598 call_void_hook(ipc_getsecid, ipcp, secid); 3599} 3600 3601/** 3602 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3603 * @msg: message structure 3604 * 3605 * Allocate and attach a security structure to the msg->security field. The 3606 * security field is initialized to NULL when the structure is first created. 3607 * 3608 * Return: Return 0 if operation was successful and permission is granted. 3609 */ 3610int security_msg_msg_alloc(struct msg_msg *msg) 3611{ 3612 int rc = lsm_msg_msg_alloc(msg); 3613 3614 if (unlikely(rc)) 3615 return rc; 3616 rc = call_int_hook(msg_msg_alloc_security, msg); 3617 if (unlikely(rc)) 3618 security_msg_msg_free(msg); 3619 return rc; 3620} 3621 3622/** 3623 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3624 * @msg: message structure 3625 * 3626 * Deallocate the security structure for this message. 3627 */ 3628void security_msg_msg_free(struct msg_msg *msg) 3629{ 3630 call_void_hook(msg_msg_free_security, msg); 3631 kfree(msg->security); 3632 msg->security = NULL; 3633} 3634 3635/** 3636 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3637 * @msq: sysv ipc permission structure 3638 * 3639 * Allocate and attach a security structure to @msg. The security field is 3640 * initialized to NULL when the structure is first created. 3641 * 3642 * Return: Returns 0 if operation was successful and permission is granted. 3643 */ 3644int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3645{ 3646 int rc = lsm_ipc_alloc(msq); 3647 3648 if (unlikely(rc)) 3649 return rc; 3650 rc = call_int_hook(msg_queue_alloc_security, msq); 3651 if (unlikely(rc)) 3652 security_msg_queue_free(msq); 3653 return rc; 3654} 3655 3656/** 3657 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3658 * @msq: sysv ipc permission structure 3659 * 3660 * Deallocate security field @perm->security for the message queue. 3661 */ 3662void security_msg_queue_free(struct kern_ipc_perm *msq) 3663{ 3664 call_void_hook(msg_queue_free_security, msq); 3665 kfree(msq->security); 3666 msq->security = NULL; 3667} 3668 3669/** 3670 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3671 * @msq: sysv ipc permission structure 3672 * @msqflg: operation flags 3673 * 3674 * Check permission when a message queue is requested through the msgget system 3675 * call. This hook is only called when returning the message queue identifier 3676 * for an existing message queue, not when a new message queue is created. 3677 * 3678 * Return: Return 0 if permission is granted. 3679 */ 3680int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3681{ 3682 return call_int_hook(msg_queue_associate, msq, msqflg); 3683} 3684 3685/** 3686 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3687 * @msq: sysv ipc permission structure 3688 * @cmd: operation 3689 * 3690 * Check permission when a message control operation specified by @cmd is to be 3691 * performed on the message queue with permissions. 3692 * 3693 * Return: Returns 0 if permission is granted. 3694 */ 3695int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3696{ 3697 return call_int_hook(msg_queue_msgctl, msq, cmd); 3698} 3699 3700/** 3701 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3702 * @msq: sysv ipc permission structure 3703 * @msg: message 3704 * @msqflg: operation flags 3705 * 3706 * Check permission before a message, @msg, is enqueued on the message queue 3707 * with permissions specified in @msq. 3708 * 3709 * Return: Returns 0 if permission is granted. 3710 */ 3711int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3712 struct msg_msg *msg, int msqflg) 3713{ 3714 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); 3715} 3716 3717/** 3718 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3719 * @msq: sysv ipc permission structure 3720 * @msg: message 3721 * @target: target task 3722 * @type: type of message requested 3723 * @mode: operation flags 3724 * 3725 * Check permission before a message, @msg, is removed from the message queue. 3726 * The @target task structure contains a pointer to the process that will be 3727 * receiving the message (not equal to the current process when inline receives 3728 * are being performed). 3729 * 3730 * Return: Returns 0 if permission is granted. 3731 */ 3732int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3733 struct task_struct *target, long type, int mode) 3734{ 3735 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); 3736} 3737 3738/** 3739 * security_shm_alloc() - Allocate a sysv shm LSM blob 3740 * @shp: sysv ipc permission structure 3741 * 3742 * Allocate and attach a security structure to the @shp security field. The 3743 * security field is initialized to NULL when the structure is first created. 3744 * 3745 * Return: Returns 0 if operation was successful and permission is granted. 3746 */ 3747int security_shm_alloc(struct kern_ipc_perm *shp) 3748{ 3749 int rc = lsm_ipc_alloc(shp); 3750 3751 if (unlikely(rc)) 3752 return rc; 3753 rc = call_int_hook(shm_alloc_security, shp); 3754 if (unlikely(rc)) 3755 security_shm_free(shp); 3756 return rc; 3757} 3758 3759/** 3760 * security_shm_free() - Free a sysv shm LSM blob 3761 * @shp: sysv ipc permission structure 3762 * 3763 * Deallocate the security structure @perm->security for the memory segment. 3764 */ 3765void security_shm_free(struct kern_ipc_perm *shp) 3766{ 3767 call_void_hook(shm_free_security, shp); 3768 kfree(shp->security); 3769 shp->security = NULL; 3770} 3771 3772/** 3773 * security_shm_associate() - Check if a sysv shm operation is allowed 3774 * @shp: sysv ipc permission structure 3775 * @shmflg: operation flags 3776 * 3777 * Check permission when a shared memory region is requested through the shmget 3778 * system call. This hook is only called when returning the shared memory 3779 * region identifier for an existing region, not when a new shared memory 3780 * region is created. 3781 * 3782 * Return: Returns 0 if permission is granted. 3783 */ 3784int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3785{ 3786 return call_int_hook(shm_associate, shp, shmflg); 3787} 3788 3789/** 3790 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3791 * @shp: sysv ipc permission structure 3792 * @cmd: operation 3793 * 3794 * Check permission when a shared memory control operation specified by @cmd is 3795 * to be performed on the shared memory region with permissions in @shp. 3796 * 3797 * Return: Return 0 if permission is granted. 3798 */ 3799int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3800{ 3801 return call_int_hook(shm_shmctl, shp, cmd); 3802} 3803 3804/** 3805 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3806 * @shp: sysv ipc permission structure 3807 * @shmaddr: address of memory region to attach 3808 * @shmflg: operation flags 3809 * 3810 * Check permissions prior to allowing the shmat system call to attach the 3811 * shared memory segment with permissions @shp to the data segment of the 3812 * calling process. The attaching address is specified by @shmaddr. 3813 * 3814 * Return: Returns 0 if permission is granted. 3815 */ 3816int security_shm_shmat(struct kern_ipc_perm *shp, 3817 char __user *shmaddr, int shmflg) 3818{ 3819 return call_int_hook(shm_shmat, shp, shmaddr, shmflg); 3820} 3821 3822/** 3823 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3824 * @sma: sysv ipc permission structure 3825 * 3826 * Allocate and attach a security structure to the @sma security field. The 3827 * security field is initialized to NULL when the structure is first created. 3828 * 3829 * Return: Returns 0 if operation was successful and permission is granted. 3830 */ 3831int security_sem_alloc(struct kern_ipc_perm *sma) 3832{ 3833 int rc = lsm_ipc_alloc(sma); 3834 3835 if (unlikely(rc)) 3836 return rc; 3837 rc = call_int_hook(sem_alloc_security, sma); 3838 if (unlikely(rc)) 3839 security_sem_free(sma); 3840 return rc; 3841} 3842 3843/** 3844 * security_sem_free() - Free a sysv semaphore LSM blob 3845 * @sma: sysv ipc permission structure 3846 * 3847 * Deallocate security structure @sma->security for the semaphore. 3848 */ 3849void security_sem_free(struct kern_ipc_perm *sma) 3850{ 3851 call_void_hook(sem_free_security, sma); 3852 kfree(sma->security); 3853 sma->security = NULL; 3854} 3855 3856/** 3857 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3858 * @sma: sysv ipc permission structure 3859 * @semflg: operation flags 3860 * 3861 * Check permission when a semaphore is requested through the semget system 3862 * call. This hook is only called when returning the semaphore identifier for 3863 * an existing semaphore, not when a new one must be created. 3864 * 3865 * Return: Returns 0 if permission is granted. 3866 */ 3867int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3868{ 3869 return call_int_hook(sem_associate, sma, semflg); 3870} 3871 3872/** 3873 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3874 * @sma: sysv ipc permission structure 3875 * @cmd: operation 3876 * 3877 * Check permission when a semaphore operation specified by @cmd is to be 3878 * performed on the semaphore. 3879 * 3880 * Return: Returns 0 if permission is granted. 3881 */ 3882int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3883{ 3884 return call_int_hook(sem_semctl, sma, cmd); 3885} 3886 3887/** 3888 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3889 * @sma: sysv ipc permission structure 3890 * @sops: operations to perform 3891 * @nsops: number of operations 3892 * @alter: flag indicating changes will be made 3893 * 3894 * Check permissions before performing operations on members of the semaphore 3895 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3896 * 3897 * Return: Returns 0 if permission is granted. 3898 */ 3899int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3900 unsigned nsops, int alter) 3901{ 3902 return call_int_hook(sem_semop, sma, sops, nsops, alter); 3903} 3904 3905/** 3906 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3907 * @dentry: dentry 3908 * @inode: inode 3909 * 3910 * Fill in @inode security information for a @dentry if allowed. 3911 */ 3912void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3913{ 3914 if (unlikely(inode && IS_PRIVATE(inode))) 3915 return; 3916 call_void_hook(d_instantiate, dentry, inode); 3917} 3918EXPORT_SYMBOL(security_d_instantiate); 3919 3920/* 3921 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3922 */ 3923 3924/** 3925 * security_getselfattr - Read an LSM attribute of the current process. 3926 * @attr: which attribute to return 3927 * @uctx: the user-space destination for the information, or NULL 3928 * @size: pointer to the size of space available to receive the data 3929 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3930 * attributes associated with the LSM identified in the passed @ctx be 3931 * reported. 3932 * 3933 * A NULL value for @uctx can be used to get both the number of attributes 3934 * and the size of the data. 3935 * 3936 * Returns the number of attributes found on success, negative value 3937 * on error. @size is reset to the total size of the data. 3938 * If @size is insufficient to contain the data -E2BIG is returned. 3939 */ 3940int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3941 u32 __user *size, u32 flags) 3942{ 3943 struct security_hook_list *hp; 3944 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3945 u8 __user *base = (u8 __user *)uctx; 3946 u32 entrysize; 3947 u32 total = 0; 3948 u32 left; 3949 bool toobig = false; 3950 bool single = false; 3951 int count = 0; 3952 int rc; 3953 3954 if (attr == LSM_ATTR_UNDEF) 3955 return -EINVAL; 3956 if (size == NULL) 3957 return -EINVAL; 3958 if (get_user(left, size)) 3959 return -EFAULT; 3960 3961 if (flags) { 3962 /* 3963 * Only flag supported is LSM_FLAG_SINGLE 3964 */ 3965 if (flags != LSM_FLAG_SINGLE || !uctx) 3966 return -EINVAL; 3967 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3968 return -EFAULT; 3969 /* 3970 * If the LSM ID isn't specified it is an error. 3971 */ 3972 if (lctx.id == LSM_ID_UNDEF) 3973 return -EINVAL; 3974 single = true; 3975 } 3976 3977 /* 3978 * In the usual case gather all the data from the LSMs. 3979 * In the single case only get the data from the LSM specified. 3980 */ 3981 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 3982 if (single && lctx.id != hp->lsmid->id) 3983 continue; 3984 entrysize = left; 3985 if (base) 3986 uctx = (struct lsm_ctx __user *)(base + total); 3987 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 3988 if (rc == -EOPNOTSUPP) { 3989 rc = 0; 3990 continue; 3991 } 3992 if (rc == -E2BIG) { 3993 rc = 0; 3994 left = 0; 3995 toobig = true; 3996 } else if (rc < 0) 3997 return rc; 3998 else 3999 left -= entrysize; 4000 4001 total += entrysize; 4002 count += rc; 4003 if (single) 4004 break; 4005 } 4006 if (put_user(total, size)) 4007 return -EFAULT; 4008 if (toobig) 4009 return -E2BIG; 4010 if (count == 0) 4011 return LSM_RET_DEFAULT(getselfattr); 4012 return count; 4013} 4014 4015/* 4016 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4017 */ 4018 4019/** 4020 * security_setselfattr - Set an LSM attribute on the current process. 4021 * @attr: which attribute to set 4022 * @uctx: the user-space source for the information 4023 * @size: the size of the data 4024 * @flags: reserved for future use, must be 0 4025 * 4026 * Set an LSM attribute for the current process. The LSM, attribute 4027 * and new value are included in @uctx. 4028 * 4029 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4030 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4031 * LSM specific failure. 4032 */ 4033int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4034 u32 size, u32 flags) 4035{ 4036 struct security_hook_list *hp; 4037 struct lsm_ctx *lctx; 4038 int rc = LSM_RET_DEFAULT(setselfattr); 4039 u64 required_len; 4040 4041 if (flags) 4042 return -EINVAL; 4043 if (size < sizeof(*lctx)) 4044 return -EINVAL; 4045 if (size > PAGE_SIZE) 4046 return -E2BIG; 4047 4048 lctx = memdup_user(uctx, size); 4049 if (IS_ERR(lctx)) 4050 return PTR_ERR(lctx); 4051 4052 if (size < lctx->len || 4053 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 4054 lctx->len < required_len) { 4055 rc = -EINVAL; 4056 goto free_out; 4057 } 4058 4059 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4060 if ((hp->lsmid->id) == lctx->id) { 4061 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4062 break; 4063 } 4064 4065free_out: 4066 kfree(lctx); 4067 return rc; 4068} 4069 4070/** 4071 * security_getprocattr() - Read an attribute for a task 4072 * @p: the task 4073 * @lsmid: LSM identification 4074 * @name: attribute name 4075 * @value: attribute value 4076 * 4077 * Read attribute @name for task @p and store it into @value if allowed. 4078 * 4079 * Return: Returns the length of @value on success, a negative value otherwise. 4080 */ 4081int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4082 char **value) 4083{ 4084 struct security_hook_list *hp; 4085 4086 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4087 if (lsmid != 0 && lsmid != hp->lsmid->id) 4088 continue; 4089 return hp->hook.getprocattr(p, name, value); 4090 } 4091 return LSM_RET_DEFAULT(getprocattr); 4092} 4093 4094/** 4095 * security_setprocattr() - Set an attribute for a task 4096 * @lsmid: LSM identification 4097 * @name: attribute name 4098 * @value: attribute value 4099 * @size: attribute value size 4100 * 4101 * Write (set) the current task's attribute @name to @value, size @size if 4102 * allowed. 4103 * 4104 * Return: Returns bytes written on success, a negative value otherwise. 4105 */ 4106int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4107{ 4108 struct security_hook_list *hp; 4109 4110 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4111 if (lsmid != 0 && lsmid != hp->lsmid->id) 4112 continue; 4113 return hp->hook.setprocattr(name, value, size); 4114 } 4115 return LSM_RET_DEFAULT(setprocattr); 4116} 4117 4118/** 4119 * security_netlink_send() - Save info and check if netlink sending is allowed 4120 * @sk: sending socket 4121 * @skb: netlink message 4122 * 4123 * Save security information for a netlink message so that permission checking 4124 * can be performed when the message is processed. The security information 4125 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4126 * Also may be used to provide fine grained control over message transmission. 4127 * 4128 * Return: Returns 0 if the information was successfully saved and message is 4129 * allowed to be transmitted. 4130 */ 4131int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4132{ 4133 return call_int_hook(netlink_send, sk, skb); 4134} 4135 4136/** 4137 * security_ismaclabel() - Check if the named attribute is a MAC label 4138 * @name: full extended attribute name 4139 * 4140 * Check if the extended attribute specified by @name represents a MAC label. 4141 * 4142 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4143 */ 4144int security_ismaclabel(const char *name) 4145{ 4146 return call_int_hook(ismaclabel, name); 4147} 4148EXPORT_SYMBOL(security_ismaclabel); 4149 4150/** 4151 * security_secid_to_secctx() - Convert a secid to a secctx 4152 * @secid: secid 4153 * @secdata: secctx 4154 * @seclen: secctx length 4155 * 4156 * Convert secid to security context. If @secdata is NULL the length of the 4157 * result will be returned in @seclen, but no @secdata will be returned. This 4158 * does mean that the length could change between calls to check the length and 4159 * the next call which actually allocates and returns the @secdata. 4160 * 4161 * Return: Return 0 on success, error on failure. 4162 */ 4163int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4164{ 4165 return call_int_hook(secid_to_secctx, secid, secdata, seclen); 4166} 4167EXPORT_SYMBOL(security_secid_to_secctx); 4168 4169/** 4170 * security_secctx_to_secid() - Convert a secctx to a secid 4171 * @secdata: secctx 4172 * @seclen: length of secctx 4173 * @secid: secid 4174 * 4175 * Convert security context to secid. 4176 * 4177 * Return: Returns 0 on success, error on failure. 4178 */ 4179int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4180{ 4181 *secid = 0; 4182 return call_int_hook(secctx_to_secid, secdata, seclen, secid); 4183} 4184EXPORT_SYMBOL(security_secctx_to_secid); 4185 4186/** 4187 * security_release_secctx() - Free a secctx buffer 4188 * @secdata: secctx 4189 * @seclen: length of secctx 4190 * 4191 * Release the security context. 4192 */ 4193void security_release_secctx(char *secdata, u32 seclen) 4194{ 4195 call_void_hook(release_secctx, secdata, seclen); 4196} 4197EXPORT_SYMBOL(security_release_secctx); 4198 4199/** 4200 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4201 * @inode: inode 4202 * 4203 * Notify the security module that it must revalidate the security context of 4204 * an inode. 4205 */ 4206void security_inode_invalidate_secctx(struct inode *inode) 4207{ 4208 call_void_hook(inode_invalidate_secctx, inode); 4209} 4210EXPORT_SYMBOL(security_inode_invalidate_secctx); 4211 4212/** 4213 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4214 * @inode: inode 4215 * @ctx: secctx 4216 * @ctxlen: length of secctx 4217 * 4218 * Notify the security module of what the security context of an inode should 4219 * be. Initializes the incore security context managed by the security module 4220 * for this inode. Example usage: NFS client invokes this hook to initialize 4221 * the security context in its incore inode to the value provided by the server 4222 * for the file when the server returned the file's attributes to the client. 4223 * Must be called with inode->i_mutex locked. 4224 * 4225 * Return: Returns 0 on success, error on failure. 4226 */ 4227int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4228{ 4229 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); 4230} 4231EXPORT_SYMBOL(security_inode_notifysecctx); 4232 4233/** 4234 * security_inode_setsecctx() - Change the security label of an inode 4235 * @dentry: inode 4236 * @ctx: secctx 4237 * @ctxlen: length of secctx 4238 * 4239 * Change the security context of an inode. Updates the incore security 4240 * context managed by the security module and invokes the fs code as needed 4241 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4242 * context. Example usage: NFS server invokes this hook to change the security 4243 * context in its incore inode and on the backing filesystem to a value 4244 * provided by the client on a SETATTR operation. Must be called with 4245 * inode->i_mutex locked. 4246 * 4247 * Return: Returns 0 on success, error on failure. 4248 */ 4249int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4250{ 4251 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); 4252} 4253EXPORT_SYMBOL(security_inode_setsecctx); 4254 4255/** 4256 * security_inode_getsecctx() - Get the security label of an inode 4257 * @inode: inode 4258 * @ctx: secctx 4259 * @ctxlen: length of secctx 4260 * 4261 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4262 * context for the given @inode. 4263 * 4264 * Return: Returns 0 on success, error on failure. 4265 */ 4266int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4267{ 4268 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen); 4269} 4270EXPORT_SYMBOL(security_inode_getsecctx); 4271 4272#ifdef CONFIG_WATCH_QUEUE 4273/** 4274 * security_post_notification() - Check if a watch notification can be posted 4275 * @w_cred: credentials of the task that set the watch 4276 * @cred: credentials of the task which triggered the watch 4277 * @n: the notification 4278 * 4279 * Check to see if a watch notification can be posted to a particular queue. 4280 * 4281 * Return: Returns 0 if permission is granted. 4282 */ 4283int security_post_notification(const struct cred *w_cred, 4284 const struct cred *cred, 4285 struct watch_notification *n) 4286{ 4287 return call_int_hook(post_notification, w_cred, cred, n); 4288} 4289#endif /* CONFIG_WATCH_QUEUE */ 4290 4291#ifdef CONFIG_KEY_NOTIFICATIONS 4292/** 4293 * security_watch_key() - Check if a task is allowed to watch for key events 4294 * @key: the key to watch 4295 * 4296 * Check to see if a process is allowed to watch for event notifications from 4297 * a key or keyring. 4298 * 4299 * Return: Returns 0 if permission is granted. 4300 */ 4301int security_watch_key(struct key *key) 4302{ 4303 return call_int_hook(watch_key, key); 4304} 4305#endif /* CONFIG_KEY_NOTIFICATIONS */ 4306 4307#ifdef CONFIG_SECURITY_NETWORK 4308/** 4309 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4310 * @sock: originating sock 4311 * @other: peer sock 4312 * @newsk: new sock 4313 * 4314 * Check permissions before establishing a Unix domain stream connection 4315 * between @sock and @other. 4316 * 4317 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4318 * Linux provides an alternative to the conventional file name space for Unix 4319 * domain sockets. Whereas binding and connecting to sockets in the file name 4320 * space is mediated by the typical file permissions (and caught by the mknod 4321 * and permission hooks in inode_security_ops), binding and connecting to 4322 * sockets in the abstract name space is completely unmediated. Sufficient 4323 * control of Unix domain sockets in the abstract name space isn't possible 4324 * using only the socket layer hooks, since we need to know the actual target 4325 * socket, which is not looked up until we are inside the af_unix code. 4326 * 4327 * Return: Returns 0 if permission is granted. 4328 */ 4329int security_unix_stream_connect(struct sock *sock, struct sock *other, 4330 struct sock *newsk) 4331{ 4332 return call_int_hook(unix_stream_connect, sock, other, newsk); 4333} 4334EXPORT_SYMBOL(security_unix_stream_connect); 4335 4336/** 4337 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4338 * @sock: originating sock 4339 * @other: peer sock 4340 * 4341 * Check permissions before connecting or sending datagrams from @sock to 4342 * @other. 4343 * 4344 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4345 * Linux provides an alternative to the conventional file name space for Unix 4346 * domain sockets. Whereas binding and connecting to sockets in the file name 4347 * space is mediated by the typical file permissions (and caught by the mknod 4348 * and permission hooks in inode_security_ops), binding and connecting to 4349 * sockets in the abstract name space is completely unmediated. Sufficient 4350 * control of Unix domain sockets in the abstract name space isn't possible 4351 * using only the socket layer hooks, since we need to know the actual target 4352 * socket, which is not looked up until we are inside the af_unix code. 4353 * 4354 * Return: Returns 0 if permission is granted. 4355 */ 4356int security_unix_may_send(struct socket *sock, struct socket *other) 4357{ 4358 return call_int_hook(unix_may_send, sock, other); 4359} 4360EXPORT_SYMBOL(security_unix_may_send); 4361 4362/** 4363 * security_socket_create() - Check if creating a new socket is allowed 4364 * @family: protocol family 4365 * @type: communications type 4366 * @protocol: requested protocol 4367 * @kern: set to 1 if a kernel socket is requested 4368 * 4369 * Check permissions prior to creating a new socket. 4370 * 4371 * Return: Returns 0 if permission is granted. 4372 */ 4373int security_socket_create(int family, int type, int protocol, int kern) 4374{ 4375 return call_int_hook(socket_create, family, type, protocol, kern); 4376} 4377 4378/** 4379 * security_socket_post_create() - Initialize a newly created socket 4380 * @sock: socket 4381 * @family: protocol family 4382 * @type: communications type 4383 * @protocol: requested protocol 4384 * @kern: set to 1 if a kernel socket is requested 4385 * 4386 * This hook allows a module to update or allocate a per-socket security 4387 * structure. Note that the security field was not added directly to the socket 4388 * structure, but rather, the socket security information is stored in the 4389 * associated inode. Typically, the inode alloc_security hook will allocate 4390 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4391 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4392 * information that wasn't available when the inode was allocated. 4393 * 4394 * Return: Returns 0 if permission is granted. 4395 */ 4396int security_socket_post_create(struct socket *sock, int family, 4397 int type, int protocol, int kern) 4398{ 4399 return call_int_hook(socket_post_create, sock, family, type, 4400 protocol, kern); 4401} 4402 4403/** 4404 * security_socket_socketpair() - Check if creating a socketpair is allowed 4405 * @socka: first socket 4406 * @sockb: second socket 4407 * 4408 * Check permissions before creating a fresh pair of sockets. 4409 * 4410 * Return: Returns 0 if permission is granted and the connection was 4411 * established. 4412 */ 4413int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4414{ 4415 return call_int_hook(socket_socketpair, socka, sockb); 4416} 4417EXPORT_SYMBOL(security_socket_socketpair); 4418 4419/** 4420 * security_socket_bind() - Check if a socket bind operation is allowed 4421 * @sock: socket 4422 * @address: requested bind address 4423 * @addrlen: length of address 4424 * 4425 * Check permission before socket protocol layer bind operation is performed 4426 * and the socket @sock is bound to the address specified in the @address 4427 * parameter. 4428 * 4429 * Return: Returns 0 if permission is granted. 4430 */ 4431int security_socket_bind(struct socket *sock, 4432 struct sockaddr *address, int addrlen) 4433{ 4434 return call_int_hook(socket_bind, sock, address, addrlen); 4435} 4436 4437/** 4438 * security_socket_connect() - Check if a socket connect operation is allowed 4439 * @sock: socket 4440 * @address: address of remote connection point 4441 * @addrlen: length of address 4442 * 4443 * Check permission before socket protocol layer connect operation attempts to 4444 * connect socket @sock to a remote address, @address. 4445 * 4446 * Return: Returns 0 if permission is granted. 4447 */ 4448int security_socket_connect(struct socket *sock, 4449 struct sockaddr *address, int addrlen) 4450{ 4451 return call_int_hook(socket_connect, sock, address, addrlen); 4452} 4453 4454/** 4455 * security_socket_listen() - Check if a socket is allowed to listen 4456 * @sock: socket 4457 * @backlog: connection queue size 4458 * 4459 * Check permission before socket protocol layer listen operation. 4460 * 4461 * Return: Returns 0 if permission is granted. 4462 */ 4463int security_socket_listen(struct socket *sock, int backlog) 4464{ 4465 return call_int_hook(socket_listen, sock, backlog); 4466} 4467 4468/** 4469 * security_socket_accept() - Check if a socket is allowed to accept connections 4470 * @sock: listening socket 4471 * @newsock: newly creation connection socket 4472 * 4473 * Check permission before accepting a new connection. Note that the new 4474 * socket, @newsock, has been created and some information copied to it, but 4475 * the accept operation has not actually been performed. 4476 * 4477 * Return: Returns 0 if permission is granted. 4478 */ 4479int security_socket_accept(struct socket *sock, struct socket *newsock) 4480{ 4481 return call_int_hook(socket_accept, sock, newsock); 4482} 4483 4484/** 4485 * security_socket_sendmsg() - Check if sending a message is allowed 4486 * @sock: sending socket 4487 * @msg: message to send 4488 * @size: size of message 4489 * 4490 * Check permission before transmitting a message to another socket. 4491 * 4492 * Return: Returns 0 if permission is granted. 4493 */ 4494int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4495{ 4496 return call_int_hook(socket_sendmsg, sock, msg, size); 4497} 4498 4499/** 4500 * security_socket_recvmsg() - Check if receiving a message is allowed 4501 * @sock: receiving socket 4502 * @msg: message to receive 4503 * @size: size of message 4504 * @flags: operational flags 4505 * 4506 * Check permission before receiving a message from a socket. 4507 * 4508 * Return: Returns 0 if permission is granted. 4509 */ 4510int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4511 int size, int flags) 4512{ 4513 return call_int_hook(socket_recvmsg, sock, msg, size, flags); 4514} 4515 4516/** 4517 * security_socket_getsockname() - Check if reading the socket addr is allowed 4518 * @sock: socket 4519 * 4520 * Check permission before reading the local address (name) of the socket 4521 * object. 4522 * 4523 * Return: Returns 0 if permission is granted. 4524 */ 4525int security_socket_getsockname(struct socket *sock) 4526{ 4527 return call_int_hook(socket_getsockname, sock); 4528} 4529 4530/** 4531 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4532 * @sock: socket 4533 * 4534 * Check permission before the remote address (name) of a socket object. 4535 * 4536 * Return: Returns 0 if permission is granted. 4537 */ 4538int security_socket_getpeername(struct socket *sock) 4539{ 4540 return call_int_hook(socket_getpeername, sock); 4541} 4542 4543/** 4544 * security_socket_getsockopt() - Check if reading a socket option is allowed 4545 * @sock: socket 4546 * @level: option's protocol level 4547 * @optname: option name 4548 * 4549 * Check permissions before retrieving the options associated with socket 4550 * @sock. 4551 * 4552 * Return: Returns 0 if permission is granted. 4553 */ 4554int security_socket_getsockopt(struct socket *sock, int level, int optname) 4555{ 4556 return call_int_hook(socket_getsockopt, sock, level, optname); 4557} 4558 4559/** 4560 * security_socket_setsockopt() - Check if setting a socket option is allowed 4561 * @sock: socket 4562 * @level: option's protocol level 4563 * @optname: option name 4564 * 4565 * Check permissions before setting the options associated with socket @sock. 4566 * 4567 * Return: Returns 0 if permission is granted. 4568 */ 4569int security_socket_setsockopt(struct socket *sock, int level, int optname) 4570{ 4571 return call_int_hook(socket_setsockopt, sock, level, optname); 4572} 4573 4574/** 4575 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4576 * @sock: socket 4577 * @how: flag indicating how sends and receives are handled 4578 * 4579 * Checks permission before all or part of a connection on the socket @sock is 4580 * shut down. 4581 * 4582 * Return: Returns 0 if permission is granted. 4583 */ 4584int security_socket_shutdown(struct socket *sock, int how) 4585{ 4586 return call_int_hook(socket_shutdown, sock, how); 4587} 4588 4589/** 4590 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4591 * @sk: destination sock 4592 * @skb: incoming packet 4593 * 4594 * Check permissions on incoming network packets. This hook is distinct from 4595 * Netfilter's IP input hooks since it is the first time that the incoming 4596 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4597 * sleep inside this hook because some callers hold spinlocks. 4598 * 4599 * Return: Returns 0 if permission is granted. 4600 */ 4601int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4602{ 4603 return call_int_hook(socket_sock_rcv_skb, sk, skb); 4604} 4605EXPORT_SYMBOL(security_sock_rcv_skb); 4606 4607/** 4608 * security_socket_getpeersec_stream() - Get the remote peer label 4609 * @sock: socket 4610 * @optval: destination buffer 4611 * @optlen: size of peer label copied into the buffer 4612 * @len: maximum size of the destination buffer 4613 * 4614 * This hook allows the security module to provide peer socket security state 4615 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4616 * For tcp sockets this can be meaningful if the socket is associated with an 4617 * ipsec SA. 4618 * 4619 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4620 * values. 4621 */ 4622int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4623 sockptr_t optlen, unsigned int len) 4624{ 4625 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, 4626 len); 4627} 4628 4629/** 4630 * security_socket_getpeersec_dgram() - Get the remote peer label 4631 * @sock: socket 4632 * @skb: datagram packet 4633 * @secid: remote peer label secid 4634 * 4635 * This hook allows the security module to provide peer socket security state 4636 * for udp sockets on a per-packet basis to userspace via getsockopt 4637 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4638 * option via getsockopt. It can then retrieve the security state returned by 4639 * this hook for a packet via the SCM_SECURITY ancillary message type. 4640 * 4641 * Return: Returns 0 on success, error on failure. 4642 */ 4643int security_socket_getpeersec_dgram(struct socket *sock, 4644 struct sk_buff *skb, u32 *secid) 4645{ 4646 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); 4647} 4648EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4649 4650/** 4651 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4652 * @sk: sock 4653 * @family: protocol family 4654 * @priority: gfp flags 4655 * 4656 * Allocate and attach a security structure to the sk->sk_security field, which 4657 * is used to copy security attributes between local stream sockets. 4658 * 4659 * Return: Returns 0 on success, error on failure. 4660 */ 4661int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4662{ 4663 return call_int_hook(sk_alloc_security, sk, family, priority); 4664} 4665 4666/** 4667 * security_sk_free() - Free the sock's LSM blob 4668 * @sk: sock 4669 * 4670 * Deallocate security structure. 4671 */ 4672void security_sk_free(struct sock *sk) 4673{ 4674 call_void_hook(sk_free_security, sk); 4675} 4676 4677/** 4678 * security_sk_clone() - Clone a sock's LSM state 4679 * @sk: original sock 4680 * @newsk: target sock 4681 * 4682 * Clone/copy security structure. 4683 */ 4684void security_sk_clone(const struct sock *sk, struct sock *newsk) 4685{ 4686 call_void_hook(sk_clone_security, sk, newsk); 4687} 4688EXPORT_SYMBOL(security_sk_clone); 4689 4690/** 4691 * security_sk_classify_flow() - Set a flow's secid based on socket 4692 * @sk: original socket 4693 * @flic: target flow 4694 * 4695 * Set the target flow's secid to socket's secid. 4696 */ 4697void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4698{ 4699 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4700} 4701EXPORT_SYMBOL(security_sk_classify_flow); 4702 4703/** 4704 * security_req_classify_flow() - Set a flow's secid based on request_sock 4705 * @req: request_sock 4706 * @flic: target flow 4707 * 4708 * Sets @flic's secid to @req's secid. 4709 */ 4710void security_req_classify_flow(const struct request_sock *req, 4711 struct flowi_common *flic) 4712{ 4713 call_void_hook(req_classify_flow, req, flic); 4714} 4715EXPORT_SYMBOL(security_req_classify_flow); 4716 4717/** 4718 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4719 * @sk: sock being grafted 4720 * @parent: target parent socket 4721 * 4722 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4723 * LSM state from @parent. 4724 */ 4725void security_sock_graft(struct sock *sk, struct socket *parent) 4726{ 4727 call_void_hook(sock_graft, sk, parent); 4728} 4729EXPORT_SYMBOL(security_sock_graft); 4730 4731/** 4732 * security_inet_conn_request() - Set request_sock state using incoming connect 4733 * @sk: parent listening sock 4734 * @skb: incoming connection 4735 * @req: new request_sock 4736 * 4737 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4738 * 4739 * Return: Returns 0 if permission is granted. 4740 */ 4741int security_inet_conn_request(const struct sock *sk, 4742 struct sk_buff *skb, struct request_sock *req) 4743{ 4744 return call_int_hook(inet_conn_request, sk, skb, req); 4745} 4746EXPORT_SYMBOL(security_inet_conn_request); 4747 4748/** 4749 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4750 * @newsk: new sock 4751 * @req: connection request_sock 4752 * 4753 * Set that LSM state of @sock using the LSM state from @req. 4754 */ 4755void security_inet_csk_clone(struct sock *newsk, 4756 const struct request_sock *req) 4757{ 4758 call_void_hook(inet_csk_clone, newsk, req); 4759} 4760 4761/** 4762 * security_inet_conn_established() - Update sock's LSM state with connection 4763 * @sk: sock 4764 * @skb: connection packet 4765 * 4766 * Update @sock's LSM state to represent a new connection from @skb. 4767 */ 4768void security_inet_conn_established(struct sock *sk, 4769 struct sk_buff *skb) 4770{ 4771 call_void_hook(inet_conn_established, sk, skb); 4772} 4773EXPORT_SYMBOL(security_inet_conn_established); 4774 4775/** 4776 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4777 * @secid: new secmark value 4778 * 4779 * Check if the process should be allowed to relabel packets to @secid. 4780 * 4781 * Return: Returns 0 if permission is granted. 4782 */ 4783int security_secmark_relabel_packet(u32 secid) 4784{ 4785 return call_int_hook(secmark_relabel_packet, secid); 4786} 4787EXPORT_SYMBOL(security_secmark_relabel_packet); 4788 4789/** 4790 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4791 * 4792 * Tells the LSM to increment the number of secmark labeling rules loaded. 4793 */ 4794void security_secmark_refcount_inc(void) 4795{ 4796 call_void_hook(secmark_refcount_inc); 4797} 4798EXPORT_SYMBOL(security_secmark_refcount_inc); 4799 4800/** 4801 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4802 * 4803 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4804 */ 4805void security_secmark_refcount_dec(void) 4806{ 4807 call_void_hook(secmark_refcount_dec); 4808} 4809EXPORT_SYMBOL(security_secmark_refcount_dec); 4810 4811/** 4812 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4813 * @security: pointer to the LSM blob 4814 * 4815 * This hook allows a module to allocate a security structure for a TUN device, 4816 * returning the pointer in @security. 4817 * 4818 * Return: Returns a zero on success, negative values on failure. 4819 */ 4820int security_tun_dev_alloc_security(void **security) 4821{ 4822 return call_int_hook(tun_dev_alloc_security, security); 4823} 4824EXPORT_SYMBOL(security_tun_dev_alloc_security); 4825 4826/** 4827 * security_tun_dev_free_security() - Free a TUN device LSM blob 4828 * @security: LSM blob 4829 * 4830 * This hook allows a module to free the security structure for a TUN device. 4831 */ 4832void security_tun_dev_free_security(void *security) 4833{ 4834 call_void_hook(tun_dev_free_security, security); 4835} 4836EXPORT_SYMBOL(security_tun_dev_free_security); 4837 4838/** 4839 * security_tun_dev_create() - Check if creating a TUN device is allowed 4840 * 4841 * Check permissions prior to creating a new TUN device. 4842 * 4843 * Return: Returns 0 if permission is granted. 4844 */ 4845int security_tun_dev_create(void) 4846{ 4847 return call_int_hook(tun_dev_create); 4848} 4849EXPORT_SYMBOL(security_tun_dev_create); 4850 4851/** 4852 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4853 * @security: TUN device LSM blob 4854 * 4855 * Check permissions prior to attaching to a TUN device queue. 4856 * 4857 * Return: Returns 0 if permission is granted. 4858 */ 4859int security_tun_dev_attach_queue(void *security) 4860{ 4861 return call_int_hook(tun_dev_attach_queue, security); 4862} 4863EXPORT_SYMBOL(security_tun_dev_attach_queue); 4864 4865/** 4866 * security_tun_dev_attach() - Update TUN device LSM state on attach 4867 * @sk: associated sock 4868 * @security: TUN device LSM blob 4869 * 4870 * This hook can be used by the module to update any security state associated 4871 * with the TUN device's sock structure. 4872 * 4873 * Return: Returns 0 if permission is granted. 4874 */ 4875int security_tun_dev_attach(struct sock *sk, void *security) 4876{ 4877 return call_int_hook(tun_dev_attach, sk, security); 4878} 4879EXPORT_SYMBOL(security_tun_dev_attach); 4880 4881/** 4882 * security_tun_dev_open() - Update TUN device LSM state on open 4883 * @security: TUN device LSM blob 4884 * 4885 * This hook can be used by the module to update any security state associated 4886 * with the TUN device's security structure. 4887 * 4888 * Return: Returns 0 if permission is granted. 4889 */ 4890int security_tun_dev_open(void *security) 4891{ 4892 return call_int_hook(tun_dev_open, security); 4893} 4894EXPORT_SYMBOL(security_tun_dev_open); 4895 4896/** 4897 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4898 * @asoc: SCTP association 4899 * @skb: packet requesting the association 4900 * 4901 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4902 * 4903 * Return: Returns 0 on success, error on failure. 4904 */ 4905int security_sctp_assoc_request(struct sctp_association *asoc, 4906 struct sk_buff *skb) 4907{ 4908 return call_int_hook(sctp_assoc_request, asoc, skb); 4909} 4910EXPORT_SYMBOL(security_sctp_assoc_request); 4911 4912/** 4913 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4914 * @sk: socket 4915 * @optname: SCTP option to validate 4916 * @address: list of IP addresses to validate 4917 * @addrlen: length of the address list 4918 * 4919 * Validiate permissions required for each address associated with sock @sk. 4920 * Depending on @optname, the addresses will be treated as either a connect or 4921 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4922 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4923 * 4924 * Return: Returns 0 on success, error on failure. 4925 */ 4926int security_sctp_bind_connect(struct sock *sk, int optname, 4927 struct sockaddr *address, int addrlen) 4928{ 4929 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); 4930} 4931EXPORT_SYMBOL(security_sctp_bind_connect); 4932 4933/** 4934 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4935 * @asoc: SCTP association 4936 * @sk: original sock 4937 * @newsk: target sock 4938 * 4939 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4940 * socket) or when a socket is 'peeled off' e.g userspace calls 4941 * sctp_peeloff(3). 4942 */ 4943void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4944 struct sock *newsk) 4945{ 4946 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4947} 4948EXPORT_SYMBOL(security_sctp_sk_clone); 4949 4950/** 4951 * security_sctp_assoc_established() - Update LSM state when assoc established 4952 * @asoc: SCTP association 4953 * @skb: packet establishing the association 4954 * 4955 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4956 * security module. 4957 * 4958 * Return: Returns 0 if permission is granted. 4959 */ 4960int security_sctp_assoc_established(struct sctp_association *asoc, 4961 struct sk_buff *skb) 4962{ 4963 return call_int_hook(sctp_assoc_established, asoc, skb); 4964} 4965EXPORT_SYMBOL(security_sctp_assoc_established); 4966 4967/** 4968 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4969 * @sk: the owning MPTCP socket 4970 * @ssk: the new subflow 4971 * 4972 * Update the labeling for the given MPTCP subflow, to match the one of the 4973 * owning MPTCP socket. This hook has to be called after the socket creation and 4974 * initialization via the security_socket_create() and 4975 * security_socket_post_create() LSM hooks. 4976 * 4977 * Return: Returns 0 on success or a negative error code on failure. 4978 */ 4979int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4980{ 4981 return call_int_hook(mptcp_add_subflow, sk, ssk); 4982} 4983 4984#endif /* CONFIG_SECURITY_NETWORK */ 4985 4986#ifdef CONFIG_SECURITY_INFINIBAND 4987/** 4988 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4989 * @sec: LSM blob 4990 * @subnet_prefix: subnet prefix of the port 4991 * @pkey: IB pkey 4992 * 4993 * Check permission to access a pkey when modifying a QP. 4994 * 4995 * Return: Returns 0 if permission is granted. 4996 */ 4997int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4998{ 4999 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); 5000} 5001EXPORT_SYMBOL(security_ib_pkey_access); 5002 5003/** 5004 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5005 * @sec: LSM blob 5006 * @dev_name: IB device name 5007 * @port_num: port number 5008 * 5009 * Check permissions to send and receive SMPs on a end port. 5010 * 5011 * Return: Returns 0 if permission is granted. 5012 */ 5013int security_ib_endport_manage_subnet(void *sec, 5014 const char *dev_name, u8 port_num) 5015{ 5016 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); 5017} 5018EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5019 5020/** 5021 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5022 * @sec: LSM blob 5023 * 5024 * Allocate a security structure for Infiniband objects. 5025 * 5026 * Return: Returns 0 on success, non-zero on failure. 5027 */ 5028int security_ib_alloc_security(void **sec) 5029{ 5030 return call_int_hook(ib_alloc_security, sec); 5031} 5032EXPORT_SYMBOL(security_ib_alloc_security); 5033 5034/** 5035 * security_ib_free_security() - Free an Infiniband LSM blob 5036 * @sec: LSM blob 5037 * 5038 * Deallocate an Infiniband security structure. 5039 */ 5040void security_ib_free_security(void *sec) 5041{ 5042 call_void_hook(ib_free_security, sec); 5043} 5044EXPORT_SYMBOL(security_ib_free_security); 5045#endif /* CONFIG_SECURITY_INFINIBAND */ 5046 5047#ifdef CONFIG_SECURITY_NETWORK_XFRM 5048/** 5049 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5050 * @ctxp: xfrm security context being added to the SPD 5051 * @sec_ctx: security label provided by userspace 5052 * @gfp: gfp flags 5053 * 5054 * Allocate a security structure to the xp->security field; the security field 5055 * is initialized to NULL when the xfrm_policy is allocated. 5056 * 5057 * Return: Return 0 if operation was successful. 5058 */ 5059int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5060 struct xfrm_user_sec_ctx *sec_ctx, 5061 gfp_t gfp) 5062{ 5063 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); 5064} 5065EXPORT_SYMBOL(security_xfrm_policy_alloc); 5066 5067/** 5068 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5069 * @old_ctx: xfrm security context 5070 * @new_ctxp: target xfrm security context 5071 * 5072 * Allocate a security structure in new_ctxp that contains the information from 5073 * the old_ctx structure. 5074 * 5075 * Return: Return 0 if operation was successful. 5076 */ 5077int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5078 struct xfrm_sec_ctx **new_ctxp) 5079{ 5080 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); 5081} 5082 5083/** 5084 * security_xfrm_policy_free() - Free a xfrm security context 5085 * @ctx: xfrm security context 5086 * 5087 * Free LSM resources associated with @ctx. 5088 */ 5089void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5090{ 5091 call_void_hook(xfrm_policy_free_security, ctx); 5092} 5093EXPORT_SYMBOL(security_xfrm_policy_free); 5094 5095/** 5096 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5097 * @ctx: xfrm security context 5098 * 5099 * Authorize deletion of a SPD entry. 5100 * 5101 * Return: Returns 0 if permission is granted. 5102 */ 5103int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5104{ 5105 return call_int_hook(xfrm_policy_delete_security, ctx); 5106} 5107 5108/** 5109 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5110 * @x: xfrm state being added to the SAD 5111 * @sec_ctx: security label provided by userspace 5112 * 5113 * Allocate a security structure to the @x->security field; the security field 5114 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5115 * correspond to @sec_ctx. 5116 * 5117 * Return: Return 0 if operation was successful. 5118 */ 5119int security_xfrm_state_alloc(struct xfrm_state *x, 5120 struct xfrm_user_sec_ctx *sec_ctx) 5121{ 5122 return call_int_hook(xfrm_state_alloc, x, sec_ctx); 5123} 5124EXPORT_SYMBOL(security_xfrm_state_alloc); 5125 5126/** 5127 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5128 * @x: xfrm state being added to the SAD 5129 * @polsec: associated policy's security context 5130 * @secid: secid from the flow 5131 * 5132 * Allocate a security structure to the x->security field; the security field 5133 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5134 * correspond to secid. 5135 * 5136 * Return: Returns 0 if operation was successful. 5137 */ 5138int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5139 struct xfrm_sec_ctx *polsec, u32 secid) 5140{ 5141 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); 5142} 5143 5144/** 5145 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5146 * @x: xfrm state 5147 * 5148 * Authorize deletion of x->security. 5149 * 5150 * Return: Returns 0 if permission is granted. 5151 */ 5152int security_xfrm_state_delete(struct xfrm_state *x) 5153{ 5154 return call_int_hook(xfrm_state_delete_security, x); 5155} 5156EXPORT_SYMBOL(security_xfrm_state_delete); 5157 5158/** 5159 * security_xfrm_state_free() - Free a xfrm state 5160 * @x: xfrm state 5161 * 5162 * Deallocate x->security. 5163 */ 5164void security_xfrm_state_free(struct xfrm_state *x) 5165{ 5166 call_void_hook(xfrm_state_free_security, x); 5167} 5168 5169/** 5170 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5171 * @ctx: target xfrm security context 5172 * @fl_secid: flow secid used to authorize access 5173 * 5174 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5175 * packet. The hook is called when selecting either a per-socket policy or a 5176 * generic xfrm policy. 5177 * 5178 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5179 * other errors. 5180 */ 5181int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5182{ 5183 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); 5184} 5185 5186/** 5187 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5188 * @x: xfrm state to match 5189 * @xp: xfrm policy to check for a match 5190 * @flic: flow to check for a match. 5191 * 5192 * Check @xp and @flic for a match with @x. 5193 * 5194 * Return: Returns 1 if there is a match. 5195 */ 5196int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5197 struct xfrm_policy *xp, 5198 const struct flowi_common *flic) 5199{ 5200 struct security_hook_list *hp; 5201 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5202 5203 /* 5204 * Since this function is expected to return 0 or 1, the judgment 5205 * becomes difficult if multiple LSMs supply this call. Fortunately, 5206 * we can use the first LSM's judgment because currently only SELinux 5207 * supplies this call. 5208 * 5209 * For speed optimization, we explicitly break the loop rather than 5210 * using the macro 5211 */ 5212 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5213 list) { 5214 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5215 break; 5216 } 5217 return rc; 5218} 5219 5220/** 5221 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5222 * @skb: xfrm packet 5223 * @secid: secid 5224 * 5225 * Decode the packet in @skb and return the security label in @secid. 5226 * 5227 * Return: Return 0 if all xfrms used have the same secid. 5228 */ 5229int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5230{ 5231 return call_int_hook(xfrm_decode_session, skb, secid, 1); 5232} 5233 5234void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5235{ 5236 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 5237 0); 5238 5239 BUG_ON(rc); 5240} 5241EXPORT_SYMBOL(security_skb_classify_flow); 5242#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5243 5244#ifdef CONFIG_KEYS 5245/** 5246 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5247 * @key: key 5248 * @cred: credentials 5249 * @flags: allocation flags 5250 * 5251 * Permit allocation of a key and assign security data. Note that key does not 5252 * have a serial number assigned at this point. 5253 * 5254 * Return: Return 0 if permission is granted, -ve error otherwise. 5255 */ 5256int security_key_alloc(struct key *key, const struct cred *cred, 5257 unsigned long flags) 5258{ 5259 return call_int_hook(key_alloc, key, cred, flags); 5260} 5261 5262/** 5263 * security_key_free() - Free a kernel key LSM blob 5264 * @key: key 5265 * 5266 * Notification of destruction; free security data. 5267 */ 5268void security_key_free(struct key *key) 5269{ 5270 call_void_hook(key_free, key); 5271} 5272 5273/** 5274 * security_key_permission() - Check if a kernel key operation is allowed 5275 * @key_ref: key reference 5276 * @cred: credentials of actor requesting access 5277 * @need_perm: requested permissions 5278 * 5279 * See whether a specific operational right is granted to a process on a key. 5280 * 5281 * Return: Return 0 if permission is granted, -ve error otherwise. 5282 */ 5283int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5284 enum key_need_perm need_perm) 5285{ 5286 return call_int_hook(key_permission, key_ref, cred, need_perm); 5287} 5288 5289/** 5290 * security_key_getsecurity() - Get the key's security label 5291 * @key: key 5292 * @buffer: security label buffer 5293 * 5294 * Get a textual representation of the security context attached to a key for 5295 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5296 * storage for the NUL-terminated string and the caller should free it. 5297 * 5298 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5299 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5300 * there is no security label assigned to the key. 5301 */ 5302int security_key_getsecurity(struct key *key, char **buffer) 5303{ 5304 *buffer = NULL; 5305 return call_int_hook(key_getsecurity, key, buffer); 5306} 5307 5308/** 5309 * security_key_post_create_or_update() - Notification of key create or update 5310 * @keyring: keyring to which the key is linked to 5311 * @key: created or updated key 5312 * @payload: data used to instantiate or update the key 5313 * @payload_len: length of payload 5314 * @flags: key flags 5315 * @create: flag indicating whether the key was created or updated 5316 * 5317 * Notify the caller of a key creation or update. 5318 */ 5319void security_key_post_create_or_update(struct key *keyring, struct key *key, 5320 const void *payload, size_t payload_len, 5321 unsigned long flags, bool create) 5322{ 5323 call_void_hook(key_post_create_or_update, keyring, key, payload, 5324 payload_len, flags, create); 5325} 5326#endif /* CONFIG_KEYS */ 5327 5328#ifdef CONFIG_AUDIT 5329/** 5330 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5331 * @field: audit action 5332 * @op: rule operator 5333 * @rulestr: rule context 5334 * @lsmrule: receive buffer for audit rule struct 5335 * @gfp: GFP flag used for kmalloc 5336 * 5337 * Allocate and initialize an LSM audit rule structure. 5338 * 5339 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5340 * an invalid rule. 5341 */ 5342int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule, 5343 gfp_t gfp) 5344{ 5345 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp); 5346} 5347 5348/** 5349 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5350 * @krule: audit rule 5351 * 5352 * Specifies whether given @krule contains any fields related to the current 5353 * LSM. 5354 * 5355 * Return: Returns 1 in case of relation found, 0 otherwise. 5356 */ 5357int security_audit_rule_known(struct audit_krule *krule) 5358{ 5359 return call_int_hook(audit_rule_known, krule); 5360} 5361 5362/** 5363 * security_audit_rule_free() - Free an LSM audit rule struct 5364 * @lsmrule: audit rule struct 5365 * 5366 * Deallocate the LSM audit rule structure previously allocated by 5367 * audit_rule_init(). 5368 */ 5369void security_audit_rule_free(void *lsmrule) 5370{ 5371 call_void_hook(audit_rule_free, lsmrule); 5372} 5373 5374/** 5375 * security_audit_rule_match() - Check if a label matches an audit rule 5376 * @secid: security label 5377 * @field: LSM audit field 5378 * @op: matching operator 5379 * @lsmrule: audit rule 5380 * 5381 * Determine if given @secid matches a rule previously approved by 5382 * security_audit_rule_known(). 5383 * 5384 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5385 * failure. 5386 */ 5387int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5388{ 5389 return call_int_hook(audit_rule_match, secid, field, op, lsmrule); 5390} 5391#endif /* CONFIG_AUDIT */ 5392 5393#ifdef CONFIG_BPF_SYSCALL 5394/** 5395 * security_bpf() - Check if the bpf syscall operation is allowed 5396 * @cmd: command 5397 * @attr: bpf attribute 5398 * @size: size 5399 * 5400 * Do a initial check for all bpf syscalls after the attribute is copied into 5401 * the kernel. The actual security module can implement their own rules to 5402 * check the specific cmd they need. 5403 * 5404 * Return: Returns 0 if permission is granted. 5405 */ 5406int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5407{ 5408 return call_int_hook(bpf, cmd, attr, size); 5409} 5410 5411/** 5412 * security_bpf_map() - Check if access to a bpf map is allowed 5413 * @map: bpf map 5414 * @fmode: mode 5415 * 5416 * Do a check when the kernel generates and returns a file descriptor for eBPF 5417 * maps. 5418 * 5419 * Return: Returns 0 if permission is granted. 5420 */ 5421int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5422{ 5423 return call_int_hook(bpf_map, map, fmode); 5424} 5425 5426/** 5427 * security_bpf_prog() - Check if access to a bpf program is allowed 5428 * @prog: bpf program 5429 * 5430 * Do a check when the kernel generates and returns a file descriptor for eBPF 5431 * programs. 5432 * 5433 * Return: Returns 0 if permission is granted. 5434 */ 5435int security_bpf_prog(struct bpf_prog *prog) 5436{ 5437 return call_int_hook(bpf_prog, prog); 5438} 5439 5440/** 5441 * security_bpf_map_create() - Check if BPF map creation is allowed 5442 * @map: BPF map object 5443 * @attr: BPF syscall attributes used to create BPF map 5444 * @token: BPF token used to grant user access 5445 * 5446 * Do a check when the kernel creates a new BPF map. This is also the 5447 * point where LSM blob is allocated for LSMs that need them. 5448 * 5449 * Return: Returns 0 on success, error on failure. 5450 */ 5451int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 5452 struct bpf_token *token) 5453{ 5454 return call_int_hook(bpf_map_create, map, attr, token); 5455} 5456 5457/** 5458 * security_bpf_prog_load() - Check if loading of BPF program is allowed 5459 * @prog: BPF program object 5460 * @attr: BPF syscall attributes used to create BPF program 5461 * @token: BPF token used to grant user access to BPF subsystem 5462 * 5463 * Perform an access control check when the kernel loads a BPF program and 5464 * allocates associated BPF program object. This hook is also responsible for 5465 * allocating any required LSM state for the BPF program. 5466 * 5467 * Return: Returns 0 on success, error on failure. 5468 */ 5469int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 5470 struct bpf_token *token) 5471{ 5472 return call_int_hook(bpf_prog_load, prog, attr, token); 5473} 5474 5475/** 5476 * security_bpf_token_create() - Check if creating of BPF token is allowed 5477 * @token: BPF token object 5478 * @attr: BPF syscall attributes used to create BPF token 5479 * @path: path pointing to BPF FS mount point from which BPF token is created 5480 * 5481 * Do a check when the kernel instantiates a new BPF token object from BPF FS 5482 * instance. This is also the point where LSM blob can be allocated for LSMs. 5483 * 5484 * Return: Returns 0 on success, error on failure. 5485 */ 5486int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 5487 struct path *path) 5488{ 5489 return call_int_hook(bpf_token_create, token, attr, path); 5490} 5491 5492/** 5493 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate 5494 * requested BPF syscall command 5495 * @token: BPF token object 5496 * @cmd: BPF syscall command requested to be delegated by BPF token 5497 * 5498 * Do a check when the kernel decides whether provided BPF token should allow 5499 * delegation of requested BPF syscall command. 5500 * 5501 * Return: Returns 0 on success, error on failure. 5502 */ 5503int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) 5504{ 5505 return call_int_hook(bpf_token_cmd, token, cmd); 5506} 5507 5508/** 5509 * security_bpf_token_capable() - Check if BPF token is allowed to delegate 5510 * requested BPF-related capability 5511 * @token: BPF token object 5512 * @cap: capabilities requested to be delegated by BPF token 5513 * 5514 * Do a check when the kernel decides whether provided BPF token should allow 5515 * delegation of requested BPF-related capabilities. 5516 * 5517 * Return: Returns 0 on success, error on failure. 5518 */ 5519int security_bpf_token_capable(const struct bpf_token *token, int cap) 5520{ 5521 return call_int_hook(bpf_token_capable, token, cap); 5522} 5523 5524/** 5525 * security_bpf_map_free() - Free a bpf map's LSM blob 5526 * @map: bpf map 5527 * 5528 * Clean up the security information stored inside bpf map. 5529 */ 5530void security_bpf_map_free(struct bpf_map *map) 5531{ 5532 call_void_hook(bpf_map_free, map); 5533} 5534 5535/** 5536 * security_bpf_prog_free() - Free a BPF program's LSM blob 5537 * @prog: BPF program struct 5538 * 5539 * Clean up the security information stored inside BPF program. 5540 */ 5541void security_bpf_prog_free(struct bpf_prog *prog) 5542{ 5543 call_void_hook(bpf_prog_free, prog); 5544} 5545 5546/** 5547 * security_bpf_token_free() - Free a BPF token's LSM blob 5548 * @token: BPF token struct 5549 * 5550 * Clean up the security information stored inside BPF token. 5551 */ 5552void security_bpf_token_free(struct bpf_token *token) 5553{ 5554 call_void_hook(bpf_token_free, token); 5555} 5556#endif /* CONFIG_BPF_SYSCALL */ 5557 5558/** 5559 * security_locked_down() - Check if a kernel feature is allowed 5560 * @what: requested kernel feature 5561 * 5562 * Determine whether a kernel feature that potentially enables arbitrary code 5563 * execution in kernel space should be permitted. 5564 * 5565 * Return: Returns 0 if permission is granted. 5566 */ 5567int security_locked_down(enum lockdown_reason what) 5568{ 5569 return call_int_hook(locked_down, what); 5570} 5571EXPORT_SYMBOL(security_locked_down); 5572 5573#ifdef CONFIG_PERF_EVENTS 5574/** 5575 * security_perf_event_open() - Check if a perf event open is allowed 5576 * @attr: perf event attribute 5577 * @type: type of event 5578 * 5579 * Check whether the @type of perf_event_open syscall is allowed. 5580 * 5581 * Return: Returns 0 if permission is granted. 5582 */ 5583int security_perf_event_open(struct perf_event_attr *attr, int type) 5584{ 5585 return call_int_hook(perf_event_open, attr, type); 5586} 5587 5588/** 5589 * security_perf_event_alloc() - Allocate a perf event LSM blob 5590 * @event: perf event 5591 * 5592 * Allocate and save perf_event security info. 5593 * 5594 * Return: Returns 0 on success, error on failure. 5595 */ 5596int security_perf_event_alloc(struct perf_event *event) 5597{ 5598 return call_int_hook(perf_event_alloc, event); 5599} 5600 5601/** 5602 * security_perf_event_free() - Free a perf event LSM blob 5603 * @event: perf event 5604 * 5605 * Release (free) perf_event security info. 5606 */ 5607void security_perf_event_free(struct perf_event *event) 5608{ 5609 call_void_hook(perf_event_free, event); 5610} 5611 5612/** 5613 * security_perf_event_read() - Check if reading a perf event label is allowed 5614 * @event: perf event 5615 * 5616 * Read perf_event security info if allowed. 5617 * 5618 * Return: Returns 0 if permission is granted. 5619 */ 5620int security_perf_event_read(struct perf_event *event) 5621{ 5622 return call_int_hook(perf_event_read, event); 5623} 5624 5625/** 5626 * security_perf_event_write() - Check if writing a perf event label is allowed 5627 * @event: perf event 5628 * 5629 * Write perf_event security info if allowed. 5630 * 5631 * Return: Returns 0 if permission is granted. 5632 */ 5633int security_perf_event_write(struct perf_event *event) 5634{ 5635 return call_int_hook(perf_event_write, event); 5636} 5637#endif /* CONFIG_PERF_EVENTS */ 5638 5639#ifdef CONFIG_IO_URING 5640/** 5641 * security_uring_override_creds() - Check if overriding creds is allowed 5642 * @new: new credentials 5643 * 5644 * Check if the current task, executing an io_uring operation, is allowed to 5645 * override it's credentials with @new. 5646 * 5647 * Return: Returns 0 if permission is granted. 5648 */ 5649int security_uring_override_creds(const struct cred *new) 5650{ 5651 return call_int_hook(uring_override_creds, new); 5652} 5653 5654/** 5655 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5656 * 5657 * Check whether the current task is allowed to spawn a io_uring polling thread 5658 * (IORING_SETUP_SQPOLL). 5659 * 5660 * Return: Returns 0 if permission is granted. 5661 */ 5662int security_uring_sqpoll(void) 5663{ 5664 return call_int_hook(uring_sqpoll); 5665} 5666 5667/** 5668 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5669 * @ioucmd: command 5670 * 5671 * Check whether the file_operations uring_cmd is allowed to run. 5672 * 5673 * Return: Returns 0 if permission is granted. 5674 */ 5675int security_uring_cmd(struct io_uring_cmd *ioucmd) 5676{ 5677 return call_int_hook(uring_cmd, ioucmd); 5678} 5679#endif /* CONFIG_IO_URING */