at v6.10 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 72 * file-backed pagecache (see mm/vmscan.c). 73 * 74 * PG_error is set to indicate that an I/O error occurred on this page. 75 * 76 * PG_arch_1 is an architecture specific page state bit. The generic code 77 * guarantees that this bit is cleared for a page when it first is entered into 78 * the page cache. 79 * 80 * PG_hwpoison indicates that a page got corrupted in hardware and contains 81 * data with incorrect ECC bits that triggered a machine check. Accessing is 82 * not safe since it may cause another machine check. Don't touch! 83 */ 84 85/* 86 * Don't use the pageflags directly. Use the PageFoo macros. 87 * 88 * The page flags field is split into two parts, the main flags area 89 * which extends from the low bits upwards, and the fields area which 90 * extends from the high bits downwards. 91 * 92 * | FIELD | ... | FLAGS | 93 * N-1 ^ 0 94 * (NR_PAGEFLAGS) 95 * 96 * The fields area is reserved for fields mapping zone, node (for NUMA) and 97 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 98 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 99 */ 100enum pageflags { 101 PG_locked, /* Page is locked. Don't touch. */ 102 PG_writeback, /* Page is under writeback */ 103 PG_referenced, 104 PG_uptodate, 105 PG_dirty, 106 PG_lru, 107 PG_head, /* Must be in bit 6 */ 108 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 109 PG_active, 110 PG_workingset, 111 PG_error, 112 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 113 PG_arch_1, 114 PG_reserved, 115 PG_private, /* If pagecache, has fs-private data */ 116 PG_private_2, /* If pagecache, has fs aux data */ 117 PG_mappedtodisk, /* Has blocks allocated on-disk */ 118 PG_reclaim, /* To be reclaimed asap */ 119 PG_swapbacked, /* Page is backed by RAM/swap */ 120 PG_unevictable, /* Page is "unevictable" */ 121#ifdef CONFIG_MMU 122 PG_mlocked, /* Page is vma mlocked */ 123#endif 124#ifdef CONFIG_ARCH_USES_PG_UNCACHED 125 PG_uncached, /* Page has been mapped as uncached */ 126#endif 127#ifdef CONFIG_MEMORY_FAILURE 128 PG_hwpoison, /* hardware poisoned page. Don't touch */ 129#endif 130#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 131 PG_young, 132 PG_idle, 133#endif 134#ifdef CONFIG_ARCH_USES_PG_ARCH_X 135 PG_arch_2, 136 PG_arch_3, 137#endif 138 __NR_PAGEFLAGS, 139 140 PG_readahead = PG_reclaim, 141 142 /* 143 * Depending on the way an anonymous folio can be mapped into a page 144 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 145 * THP), PG_anon_exclusive may be set only for the head page or for 146 * tail pages of an anonymous folio. For now, we only expect it to be 147 * set on tail pages for PTE-mapped THP. 148 */ 149 PG_anon_exclusive = PG_mappedtodisk, 150 151 /* Filesystems */ 152 PG_checked = PG_owner_priv_1, 153 154 /* SwapBacked */ 155 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 156 157 /* Two page bits are conscripted by FS-Cache to maintain local caching 158 * state. These bits are set on pages belonging to the netfs's inodes 159 * when those inodes are being locally cached. 160 */ 161 PG_fscache = PG_private_2, /* page backed by cache */ 162 163 /* XEN */ 164 /* Pinned in Xen as a read-only pagetable page. */ 165 PG_pinned = PG_owner_priv_1, 166 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 167 PG_savepinned = PG_dirty, 168 /* Has a grant mapping of another (foreign) domain's page. */ 169 PG_foreign = PG_owner_priv_1, 170 /* Remapped by swiotlb-xen. */ 171 PG_xen_remapped = PG_owner_priv_1, 172 173 /* non-lru isolated movable page */ 174 PG_isolated = PG_reclaim, 175 176 /* Only valid for buddy pages. Used to track pages that are reported */ 177 PG_reported = PG_uptodate, 178 179#ifdef CONFIG_MEMORY_HOTPLUG 180 /* For self-hosted memmap pages */ 181 PG_vmemmap_self_hosted = PG_owner_priv_1, 182#endif 183 184 /* 185 * Flags only valid for compound pages. Stored in first tail page's 186 * flags word. Cannot use the first 8 flags or any flag marked as 187 * PF_ANY. 188 */ 189 190 /* At least one page in this folio has the hwpoison flag set */ 191 PG_has_hwpoisoned = PG_error, 192 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 193}; 194 195#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 196 197#ifndef __GENERATING_BOUNDS_H 198 199#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 200DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 201 202/* 203 * Return the real head page struct iff the @page is a fake head page, otherwise 204 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 205 */ 206static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 207{ 208 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 209 return page; 210 211 /* 212 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 213 * struct page. The alignment check aims to avoid access the fields ( 214 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 215 * cold cacheline in some cases. 216 */ 217 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 218 test_bit(PG_head, &page->flags)) { 219 /* 220 * We can safely access the field of the @page[1] with PG_head 221 * because the @page is a compound page composed with at least 222 * two contiguous pages. 223 */ 224 unsigned long head = READ_ONCE(page[1].compound_head); 225 226 if (likely(head & 1)) 227 return (const struct page *)(head - 1); 228 } 229 return page; 230} 231#else 232static inline const struct page *page_fixed_fake_head(const struct page *page) 233{ 234 return page; 235} 236#endif 237 238static __always_inline int page_is_fake_head(const struct page *page) 239{ 240 return page_fixed_fake_head(page) != page; 241} 242 243static inline unsigned long _compound_head(const struct page *page) 244{ 245 unsigned long head = READ_ONCE(page->compound_head); 246 247 if (unlikely(head & 1)) 248 return head - 1; 249 return (unsigned long)page_fixed_fake_head(page); 250} 251 252#define compound_head(page) ((typeof(page))_compound_head(page)) 253 254/** 255 * page_folio - Converts from page to folio. 256 * @p: The page. 257 * 258 * Every page is part of a folio. This function cannot be called on a 259 * NULL pointer. 260 * 261 * Context: No reference, nor lock is required on @page. If the caller 262 * does not hold a reference, this call may race with a folio split, so 263 * it should re-check the folio still contains this page after gaining 264 * a reference on the folio. 265 * Return: The folio which contains this page. 266 */ 267#define page_folio(p) (_Generic((p), \ 268 const struct page *: (const struct folio *)_compound_head(p), \ 269 struct page *: (struct folio *)_compound_head(p))) 270 271/** 272 * folio_page - Return a page from a folio. 273 * @folio: The folio. 274 * @n: The page number to return. 275 * 276 * @n is relative to the start of the folio. This function does not 277 * check that the page number lies within @folio; the caller is presumed 278 * to have a reference to the page. 279 */ 280#define folio_page(folio, n) nth_page(&(folio)->page, n) 281 282static __always_inline int PageTail(const struct page *page) 283{ 284 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 285} 286 287static __always_inline int PageCompound(const struct page *page) 288{ 289 return test_bit(PG_head, &page->flags) || 290 READ_ONCE(page->compound_head) & 1; 291} 292 293#define PAGE_POISON_PATTERN -1l 294static inline int PagePoisoned(const struct page *page) 295{ 296 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 297} 298 299#ifdef CONFIG_DEBUG_VM 300void page_init_poison(struct page *page, size_t size); 301#else 302static inline void page_init_poison(struct page *page, size_t size) 303{ 304} 305#endif 306 307static const unsigned long *const_folio_flags(const struct folio *folio, 308 unsigned n) 309{ 310 const struct page *page = &folio->page; 311 312 VM_BUG_ON_PGFLAGS(PageTail(page), page); 313 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 314 return &page[n].flags; 315} 316 317static unsigned long *folio_flags(struct folio *folio, unsigned n) 318{ 319 struct page *page = &folio->page; 320 321 VM_BUG_ON_PGFLAGS(PageTail(page), page); 322 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 323 return &page[n].flags; 324} 325 326/* 327 * Page flags policies wrt compound pages 328 * 329 * PF_POISONED_CHECK 330 * check if this struct page poisoned/uninitialized 331 * 332 * PF_ANY: 333 * the page flag is relevant for small, head and tail pages. 334 * 335 * PF_HEAD: 336 * for compound page all operations related to the page flag applied to 337 * head page. 338 * 339 * PF_NO_TAIL: 340 * modifications of the page flag must be done on small or head pages, 341 * checks can be done on tail pages too. 342 * 343 * PF_NO_COMPOUND: 344 * the page flag is not relevant for compound pages. 345 * 346 * PF_SECOND: 347 * the page flag is stored in the first tail page. 348 */ 349#define PF_POISONED_CHECK(page) ({ \ 350 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 351 page; }) 352#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 353#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 354#define PF_NO_TAIL(page, enforce) ({ \ 355 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 356 PF_POISONED_CHECK(compound_head(page)); }) 357#define PF_NO_COMPOUND(page, enforce) ({ \ 358 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 359 PF_POISONED_CHECK(page); }) 360#define PF_SECOND(page, enforce) ({ \ 361 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 362 PF_POISONED_CHECK(&page[1]); }) 363 364/* Which page is the flag stored in */ 365#define FOLIO_PF_ANY 0 366#define FOLIO_PF_HEAD 0 367#define FOLIO_PF_NO_TAIL 0 368#define FOLIO_PF_NO_COMPOUND 0 369#define FOLIO_PF_SECOND 1 370 371#define FOLIO_HEAD_PAGE 0 372#define FOLIO_SECOND_PAGE 1 373 374/* 375 * Macros to create function definitions for page flags 376 */ 377#define FOLIO_TEST_FLAG(name, page) \ 378static __always_inline bool folio_test_##name(const struct folio *folio) \ 379{ return test_bit(PG_##name, const_folio_flags(folio, page)); } 380 381#define FOLIO_SET_FLAG(name, page) \ 382static __always_inline void folio_set_##name(struct folio *folio) \ 383{ set_bit(PG_##name, folio_flags(folio, page)); } 384 385#define FOLIO_CLEAR_FLAG(name, page) \ 386static __always_inline void folio_clear_##name(struct folio *folio) \ 387{ clear_bit(PG_##name, folio_flags(folio, page)); } 388 389#define __FOLIO_SET_FLAG(name, page) \ 390static __always_inline void __folio_set_##name(struct folio *folio) \ 391{ __set_bit(PG_##name, folio_flags(folio, page)); } 392 393#define __FOLIO_CLEAR_FLAG(name, page) \ 394static __always_inline void __folio_clear_##name(struct folio *folio) \ 395{ __clear_bit(PG_##name, folio_flags(folio, page)); } 396 397#define FOLIO_TEST_SET_FLAG(name, page) \ 398static __always_inline bool folio_test_set_##name(struct folio *folio) \ 399{ return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 400 401#define FOLIO_TEST_CLEAR_FLAG(name, page) \ 402static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 403{ return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 404 405#define FOLIO_FLAG(name, page) \ 406FOLIO_TEST_FLAG(name, page) \ 407FOLIO_SET_FLAG(name, page) \ 408FOLIO_CLEAR_FLAG(name, page) 409 410#define TESTPAGEFLAG(uname, lname, policy) \ 411FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 412static __always_inline int Page##uname(const struct page *page) \ 413{ return test_bit(PG_##lname, &policy(page, 0)->flags); } 414 415#define SETPAGEFLAG(uname, lname, policy) \ 416FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 417static __always_inline void SetPage##uname(struct page *page) \ 418{ set_bit(PG_##lname, &policy(page, 1)->flags); } 419 420#define CLEARPAGEFLAG(uname, lname, policy) \ 421FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 422static __always_inline void ClearPage##uname(struct page *page) \ 423{ clear_bit(PG_##lname, &policy(page, 1)->flags); } 424 425#define __SETPAGEFLAG(uname, lname, policy) \ 426__FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 427static __always_inline void __SetPage##uname(struct page *page) \ 428{ __set_bit(PG_##lname, &policy(page, 1)->flags); } 429 430#define __CLEARPAGEFLAG(uname, lname, policy) \ 431__FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 432static __always_inline void __ClearPage##uname(struct page *page) \ 433{ __clear_bit(PG_##lname, &policy(page, 1)->flags); } 434 435#define TESTSETFLAG(uname, lname, policy) \ 436FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 437static __always_inline int TestSetPage##uname(struct page *page) \ 438{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 439 440#define TESTCLEARFLAG(uname, lname, policy) \ 441FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 442static __always_inline int TestClearPage##uname(struct page *page) \ 443{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 444 445#define PAGEFLAG(uname, lname, policy) \ 446 TESTPAGEFLAG(uname, lname, policy) \ 447 SETPAGEFLAG(uname, lname, policy) \ 448 CLEARPAGEFLAG(uname, lname, policy) 449 450#define __PAGEFLAG(uname, lname, policy) \ 451 TESTPAGEFLAG(uname, lname, policy) \ 452 __SETPAGEFLAG(uname, lname, policy) \ 453 __CLEARPAGEFLAG(uname, lname, policy) 454 455#define TESTSCFLAG(uname, lname, policy) \ 456 TESTSETFLAG(uname, lname, policy) \ 457 TESTCLEARFLAG(uname, lname, policy) 458 459#define FOLIO_TEST_FLAG_FALSE(name) \ 460static inline bool folio_test_##name(const struct folio *folio) \ 461{ return false; } 462#define FOLIO_SET_FLAG_NOOP(name) \ 463static inline void folio_set_##name(struct folio *folio) { } 464#define FOLIO_CLEAR_FLAG_NOOP(name) \ 465static inline void folio_clear_##name(struct folio *folio) { } 466#define __FOLIO_SET_FLAG_NOOP(name) \ 467static inline void __folio_set_##name(struct folio *folio) { } 468#define __FOLIO_CLEAR_FLAG_NOOP(name) \ 469static inline void __folio_clear_##name(struct folio *folio) { } 470#define FOLIO_TEST_SET_FLAG_FALSE(name) \ 471static inline bool folio_test_set_##name(struct folio *folio) \ 472{ return false; } 473#define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 474static inline bool folio_test_clear_##name(struct folio *folio) \ 475{ return false; } 476 477#define FOLIO_FLAG_FALSE(name) \ 478FOLIO_TEST_FLAG_FALSE(name) \ 479FOLIO_SET_FLAG_NOOP(name) \ 480FOLIO_CLEAR_FLAG_NOOP(name) 481 482#define TESTPAGEFLAG_FALSE(uname, lname) \ 483FOLIO_TEST_FLAG_FALSE(lname) \ 484static inline int Page##uname(const struct page *page) { return 0; } 485 486#define SETPAGEFLAG_NOOP(uname, lname) \ 487FOLIO_SET_FLAG_NOOP(lname) \ 488static inline void SetPage##uname(struct page *page) { } 489 490#define CLEARPAGEFLAG_NOOP(uname, lname) \ 491FOLIO_CLEAR_FLAG_NOOP(lname) \ 492static inline void ClearPage##uname(struct page *page) { } 493 494#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 495__FOLIO_CLEAR_FLAG_NOOP(lname) \ 496static inline void __ClearPage##uname(struct page *page) { } 497 498#define TESTSETFLAG_FALSE(uname, lname) \ 499FOLIO_TEST_SET_FLAG_FALSE(lname) \ 500static inline int TestSetPage##uname(struct page *page) { return 0; } 501 502#define TESTCLEARFLAG_FALSE(uname, lname) \ 503FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 504static inline int TestClearPage##uname(struct page *page) { return 0; } 505 506#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 507 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 508 509#define TESTSCFLAG_FALSE(uname, lname) \ 510 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 511 512__PAGEFLAG(Locked, locked, PF_NO_TAIL) 513FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 514PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 515FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 516 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 517 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 518PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 519 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 520PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 521 TESTCLEARFLAG(LRU, lru, PF_HEAD) 522PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 523 TESTCLEARFLAG(Active, active, PF_HEAD) 524PAGEFLAG(Workingset, workingset, PF_HEAD) 525 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 526PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 527 528/* Xen */ 529PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 530 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 531PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 532PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 533PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 534 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 535 536PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 537 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 538 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 539PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 540 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 541 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 542 543/* 544 * Private page markings that may be used by the filesystem that owns the page 545 * for its own purposes. 546 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 547 */ 548PAGEFLAG(Private, private, PF_ANY) 549PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 550PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 551 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 552 553/* 554 * Only test-and-set exist for PG_writeback. The unconditional operators are 555 * risky: they bypass page accounting. 556 */ 557TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 558 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 559PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 560 561/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 562PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 563 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 564PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) 565 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) 566 567#ifdef CONFIG_HIGHMEM 568/* 569 * Must use a macro here due to header dependency issues. page_zone() is not 570 * available at this point. 571 */ 572#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 573#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 574#else 575PAGEFLAG_FALSE(HighMem, highmem) 576#endif 577 578#ifdef CONFIG_SWAP 579static __always_inline bool folio_test_swapcache(const struct folio *folio) 580{ 581 return folio_test_swapbacked(folio) && 582 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 583} 584 585static __always_inline bool PageSwapCache(const struct page *page) 586{ 587 return folio_test_swapcache(page_folio(page)); 588} 589 590SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 591CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 592#else 593PAGEFLAG_FALSE(SwapCache, swapcache) 594#endif 595 596PAGEFLAG(Unevictable, unevictable, PF_HEAD) 597 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 598 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 599 600#ifdef CONFIG_MMU 601PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 602 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 603 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 604#else 605PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) 606 TESTSCFLAG_FALSE(Mlocked, mlocked) 607#endif 608 609#ifdef CONFIG_ARCH_USES_PG_UNCACHED 610PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 611#else 612PAGEFLAG_FALSE(Uncached, uncached) 613#endif 614 615#ifdef CONFIG_MEMORY_FAILURE 616PAGEFLAG(HWPoison, hwpoison, PF_ANY) 617TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 618#define __PG_HWPOISON (1UL << PG_hwpoison) 619#define MAGIC_HWPOISON 0x48575053U /* HWPS */ 620extern void SetPageHWPoisonTakenOff(struct page *page); 621extern void ClearPageHWPoisonTakenOff(struct page *page); 622extern bool take_page_off_buddy(struct page *page); 623extern bool put_page_back_buddy(struct page *page); 624#else 625PAGEFLAG_FALSE(HWPoison, hwpoison) 626#define __PG_HWPOISON 0 627#endif 628 629#ifdef CONFIG_PAGE_IDLE_FLAG 630#ifdef CONFIG_64BIT 631FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 632FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 633FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 634FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 635#endif 636/* See page_idle.h for !64BIT workaround */ 637#else /* !CONFIG_PAGE_IDLE_FLAG */ 638FOLIO_FLAG_FALSE(young) 639FOLIO_TEST_CLEAR_FLAG_FALSE(young) 640FOLIO_FLAG_FALSE(idle) 641#endif 642 643/* 644 * PageReported() is used to track reported free pages within the Buddy 645 * allocator. We can use the non-atomic version of the test and set 646 * operations as both should be shielded with the zone lock to prevent 647 * any possible races on the setting or clearing of the bit. 648 */ 649__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 650 651#ifdef CONFIG_MEMORY_HOTPLUG 652PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 653#else 654PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 655#endif 656 657/* 658 * On an anonymous page mapped into a user virtual memory area, 659 * page->mapping points to its anon_vma, not to a struct address_space; 660 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 661 * 662 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 663 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 664 * bit; and then page->mapping points, not to an anon_vma, but to a private 665 * structure which KSM associates with that merged page. See ksm.h. 666 * 667 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 668 * page and then page->mapping points to a struct movable_operations. 669 * 670 * Please note that, confusingly, "page_mapping" refers to the inode 671 * address_space which maps the page from disk; whereas "page_mapped" 672 * refers to user virtual address space into which the page is mapped. 673 * 674 * For slab pages, since slab reuses the bits in struct page to store its 675 * internal states, the page->mapping does not exist as such, nor do these 676 * flags below. So in order to avoid testing non-existent bits, please 677 * make sure that PageSlab(page) actually evaluates to false before calling 678 * the following functions (e.g., PageAnon). See mm/slab.h. 679 */ 680#define PAGE_MAPPING_ANON 0x1 681#define PAGE_MAPPING_MOVABLE 0x2 682#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 683#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 684 685/* 686 * Different with flags above, this flag is used only for fsdax mode. It 687 * indicates that this page->mapping is now under reflink case. 688 */ 689#define PAGE_MAPPING_DAX_SHARED ((void *)0x1) 690 691static __always_inline bool folio_mapping_flags(const struct folio *folio) 692{ 693 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 694} 695 696static __always_inline bool PageMappingFlags(const struct page *page) 697{ 698 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 699} 700 701static __always_inline bool folio_test_anon(const struct folio *folio) 702{ 703 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 704} 705 706static __always_inline bool PageAnon(const struct page *page) 707{ 708 return folio_test_anon(page_folio(page)); 709} 710 711static __always_inline bool __folio_test_movable(const struct folio *folio) 712{ 713 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 714 PAGE_MAPPING_MOVABLE; 715} 716 717static __always_inline bool __PageMovable(const struct page *page) 718{ 719 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 720 PAGE_MAPPING_MOVABLE; 721} 722 723#ifdef CONFIG_KSM 724/* 725 * A KSM page is one of those write-protected "shared pages" or "merged pages" 726 * which KSM maps into multiple mms, wherever identical anonymous page content 727 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 728 * anon_vma, but to that page's node of the stable tree. 729 */ 730static __always_inline bool folio_test_ksm(const struct folio *folio) 731{ 732 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 733 PAGE_MAPPING_KSM; 734} 735 736static __always_inline bool PageKsm(const struct page *page) 737{ 738 return folio_test_ksm(page_folio(page)); 739} 740#else 741TESTPAGEFLAG_FALSE(Ksm, ksm) 742#endif 743 744u64 stable_page_flags(const struct page *page); 745 746/** 747 * folio_xor_flags_has_waiters - Change some folio flags. 748 * @folio: The folio. 749 * @mask: Bits set in this word will be changed. 750 * 751 * This must only be used for flags which are changed with the folio 752 * lock held. For example, it is unsafe to use for PG_dirty as that 753 * can be set without the folio lock held. It can also only be used 754 * on flags which are in the range 0-6 as some of the implementations 755 * only affect those bits. 756 * 757 * Return: Whether there are tasks waiting on the folio. 758 */ 759static inline bool folio_xor_flags_has_waiters(struct folio *folio, 760 unsigned long mask) 761{ 762 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 763} 764 765/** 766 * folio_test_uptodate - Is this folio up to date? 767 * @folio: The folio. 768 * 769 * The uptodate flag is set on a folio when every byte in the folio is 770 * at least as new as the corresponding bytes on storage. Anonymous 771 * and CoW folios are always uptodate. If the folio is not uptodate, 772 * some of the bytes in it may be; see the is_partially_uptodate() 773 * address_space operation. 774 */ 775static inline bool folio_test_uptodate(const struct folio *folio) 776{ 777 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 778 /* 779 * Must ensure that the data we read out of the folio is loaded 780 * _after_ we've loaded folio->flags to check the uptodate bit. 781 * We can skip the barrier if the folio is not uptodate, because 782 * we wouldn't be reading anything from it. 783 * 784 * See folio_mark_uptodate() for the other side of the story. 785 */ 786 if (ret) 787 smp_rmb(); 788 789 return ret; 790} 791 792static inline bool PageUptodate(const struct page *page) 793{ 794 return folio_test_uptodate(page_folio(page)); 795} 796 797static __always_inline void __folio_mark_uptodate(struct folio *folio) 798{ 799 smp_wmb(); 800 __set_bit(PG_uptodate, folio_flags(folio, 0)); 801} 802 803static __always_inline void folio_mark_uptodate(struct folio *folio) 804{ 805 /* 806 * Memory barrier must be issued before setting the PG_uptodate bit, 807 * so that all previous stores issued in order to bring the folio 808 * uptodate are actually visible before folio_test_uptodate becomes true. 809 */ 810 smp_wmb(); 811 set_bit(PG_uptodate, folio_flags(folio, 0)); 812} 813 814static __always_inline void __SetPageUptodate(struct page *page) 815{ 816 __folio_mark_uptodate((struct folio *)page); 817} 818 819static __always_inline void SetPageUptodate(struct page *page) 820{ 821 folio_mark_uptodate((struct folio *)page); 822} 823 824CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 825 826void __folio_start_writeback(struct folio *folio, bool keep_write); 827void set_page_writeback(struct page *page); 828 829#define folio_start_writeback(folio) \ 830 __folio_start_writeback(folio, false) 831#define folio_start_writeback_keepwrite(folio) \ 832 __folio_start_writeback(folio, true) 833 834static __always_inline bool folio_test_head(const struct folio *folio) 835{ 836 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 837} 838 839static __always_inline int PageHead(const struct page *page) 840{ 841 PF_POISONED_CHECK(page); 842 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 843} 844 845__SETPAGEFLAG(Head, head, PF_ANY) 846__CLEARPAGEFLAG(Head, head, PF_ANY) 847CLEARPAGEFLAG(Head, head, PF_ANY) 848 849/** 850 * folio_test_large() - Does this folio contain more than one page? 851 * @folio: The folio to test. 852 * 853 * Return: True if the folio is larger than one page. 854 */ 855static inline bool folio_test_large(const struct folio *folio) 856{ 857 return folio_test_head(folio); 858} 859 860static __always_inline void set_compound_head(struct page *page, struct page *head) 861{ 862 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 863} 864 865static __always_inline void clear_compound_head(struct page *page) 866{ 867 WRITE_ONCE(page->compound_head, 0); 868} 869 870#ifdef CONFIG_TRANSPARENT_HUGEPAGE 871static inline void ClearPageCompound(struct page *page) 872{ 873 BUG_ON(!PageHead(page)); 874 ClearPageHead(page); 875} 876FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 877#else 878FOLIO_FLAG_FALSE(large_rmappable) 879#endif 880 881#define PG_head_mask ((1UL << PG_head)) 882 883#ifdef CONFIG_TRANSPARENT_HUGEPAGE 884/* 885 * PageHuge() only returns true for hugetlbfs pages, but not for 886 * normal or transparent huge pages. 887 * 888 * PageTransHuge() returns true for both transparent huge and 889 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 890 * called only in the core VM paths where hugetlbfs pages can't exist. 891 */ 892static inline int PageTransHuge(const struct page *page) 893{ 894 VM_BUG_ON_PAGE(PageTail(page), page); 895 return PageHead(page); 896} 897 898/* 899 * PageTransCompound returns true for both transparent huge pages 900 * and hugetlbfs pages, so it should only be called when it's known 901 * that hugetlbfs pages aren't involved. 902 */ 903static inline int PageTransCompound(const struct page *page) 904{ 905 return PageCompound(page); 906} 907 908/* 909 * PageTransTail returns true for both transparent huge pages 910 * and hugetlbfs pages, so it should only be called when it's known 911 * that hugetlbfs pages aren't involved. 912 */ 913static inline int PageTransTail(const struct page *page) 914{ 915 return PageTail(page); 916} 917#else 918TESTPAGEFLAG_FALSE(TransHuge, transhuge) 919TESTPAGEFLAG_FALSE(TransCompound, transcompound) 920TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 921TESTPAGEFLAG_FALSE(TransTail, transtail) 922#endif 923 924#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 925/* 926 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 927 * compound page. 928 * 929 * This flag is set by hwpoison handler. Cleared by THP split or free page. 930 */ 931PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 932 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 933#else 934PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 935 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 936#endif 937 938/* 939 * For pages that are never mapped to userspace, 940 * page_type may be used. Because it is initialised to -1, we invert the 941 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 942 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 943 * low bits so that an underflow or overflow of _mapcount won't be 944 * mistaken for a page type value. 945 */ 946 947enum pagetype { 948 PG_buddy = 0x00000080, 949 PG_offline = 0x00000100, 950 PG_table = 0x00000200, 951 PG_guard = 0x00000400, 952 PG_hugetlb = 0x00000800, 953 PG_slab = 0x00001000, 954 955 PAGE_TYPE_BASE = 0xf0000000, 956 /* Reserve 0x0000007f to catch underflows of _mapcount */ 957 PAGE_MAPCOUNT_RESERVE = -128, 958}; 959 960#define PageType(page, flag) \ 961 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 962#define folio_test_type(folio, flag) \ 963 ((folio->page.page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 964 965static inline int page_type_has_type(unsigned int page_type) 966{ 967 return (int)page_type < PAGE_MAPCOUNT_RESERVE; 968} 969 970static inline int page_has_type(const struct page *page) 971{ 972 return page_type_has_type(page->page_type); 973} 974 975#define FOLIO_TYPE_OPS(lname, fname) \ 976static __always_inline bool folio_test_##fname(const struct folio *folio)\ 977{ \ 978 return folio_test_type(folio, PG_##lname); \ 979} \ 980static __always_inline void __folio_set_##fname(struct folio *folio) \ 981{ \ 982 VM_BUG_ON_FOLIO(!folio_test_type(folio, 0), folio); \ 983 folio->page.page_type &= ~PG_##lname; \ 984} \ 985static __always_inline void __folio_clear_##fname(struct folio *folio) \ 986{ \ 987 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 988 folio->page.page_type |= PG_##lname; \ 989} 990 991#define PAGE_TYPE_OPS(uname, lname, fname) \ 992FOLIO_TYPE_OPS(lname, fname) \ 993static __always_inline int Page##uname(const struct page *page) \ 994{ \ 995 return PageType(page, PG_##lname); \ 996} \ 997static __always_inline void __SetPage##uname(struct page *page) \ 998{ \ 999 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 1000 page->page_type &= ~PG_##lname; \ 1001} \ 1002static __always_inline void __ClearPage##uname(struct page *page) \ 1003{ \ 1004 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 1005 page->page_type |= PG_##lname; \ 1006} 1007 1008/* 1009 * PageBuddy() indicates that the page is free and in the buddy system 1010 * (see mm/page_alloc.c). 1011 */ 1012PAGE_TYPE_OPS(Buddy, buddy, buddy) 1013 1014/* 1015 * PageOffline() indicates that the page is logically offline although the 1016 * containing section is online. (e.g. inflated in a balloon driver or 1017 * not onlined when onlining the section). 1018 * The content of these pages is effectively stale. Such pages should not 1019 * be touched (read/write/dump/save) except by their owner. 1020 * 1021 * If a driver wants to allow to offline unmovable PageOffline() pages without 1022 * putting them back to the buddy, it can do so via the memory notifier by 1023 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1024 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1025 * pages (now with a reference count of zero) are treated like free pages, 1026 * allowing the containing memory block to get offlined. A driver that 1027 * relies on this feature is aware that re-onlining the memory block will 1028 * require to re-set the pages PageOffline() and not giving them to the 1029 * buddy via online_page_callback_t. 1030 * 1031 * There are drivers that mark a page PageOffline() and expect there won't be 1032 * any further access to page content. PFN walkers that read content of random 1033 * pages should check PageOffline() and synchronize with such drivers using 1034 * page_offline_freeze()/page_offline_thaw(). 1035 */ 1036PAGE_TYPE_OPS(Offline, offline, offline) 1037 1038extern void page_offline_freeze(void); 1039extern void page_offline_thaw(void); 1040extern void page_offline_begin(void); 1041extern void page_offline_end(void); 1042 1043/* 1044 * Marks pages in use as page tables. 1045 */ 1046PAGE_TYPE_OPS(Table, table, pgtable) 1047 1048/* 1049 * Marks guardpages used with debug_pagealloc. 1050 */ 1051PAGE_TYPE_OPS(Guard, guard, guard) 1052 1053FOLIO_TYPE_OPS(slab, slab) 1054 1055/** 1056 * PageSlab - Determine if the page belongs to the slab allocator 1057 * @page: The page to test. 1058 * 1059 * Context: Any context. 1060 * Return: True for slab pages, false for any other kind of page. 1061 */ 1062static inline bool PageSlab(const struct page *page) 1063{ 1064 return folio_test_slab(page_folio(page)); 1065} 1066 1067#ifdef CONFIG_HUGETLB_PAGE 1068FOLIO_TYPE_OPS(hugetlb, hugetlb) 1069#else 1070FOLIO_TEST_FLAG_FALSE(hugetlb) 1071#endif 1072 1073/** 1074 * PageHuge - Determine if the page belongs to hugetlbfs 1075 * @page: The page to test. 1076 * 1077 * Context: Any context. 1078 * Return: True for hugetlbfs pages, false for anon pages or pages 1079 * belonging to other filesystems. 1080 */ 1081static inline bool PageHuge(const struct page *page) 1082{ 1083 return folio_test_hugetlb(page_folio(page)); 1084} 1085 1086/* 1087 * Check if a page is currently marked HWPoisoned. Note that this check is 1088 * best effort only and inherently racy: there is no way to synchronize with 1089 * failing hardware. 1090 */ 1091static inline bool is_page_hwpoison(const struct page *page) 1092{ 1093 const struct folio *folio; 1094 1095 if (PageHWPoison(page)) 1096 return true; 1097 folio = page_folio(page); 1098 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1099} 1100 1101bool is_free_buddy_page(const struct page *page); 1102 1103PAGEFLAG(Isolated, isolated, PF_ANY); 1104 1105static __always_inline int PageAnonExclusive(const struct page *page) 1106{ 1107 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1108 /* 1109 * HugeTLB stores this information on the head page; THP keeps it per 1110 * page 1111 */ 1112 if (PageHuge(page)) 1113 page = compound_head(page); 1114 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1115} 1116 1117static __always_inline void SetPageAnonExclusive(struct page *page) 1118{ 1119 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1120 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1121 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1122} 1123 1124static __always_inline void ClearPageAnonExclusive(struct page *page) 1125{ 1126 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1127 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1128 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1129} 1130 1131static __always_inline void __ClearPageAnonExclusive(struct page *page) 1132{ 1133 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1134 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1135 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1136} 1137 1138#ifdef CONFIG_MMU 1139#define __PG_MLOCKED (1UL << PG_mlocked) 1140#else 1141#define __PG_MLOCKED 0 1142#endif 1143 1144/* 1145 * Flags checked when a page is freed. Pages being freed should not have 1146 * these flags set. If they are, there is a problem. 1147 */ 1148#define PAGE_FLAGS_CHECK_AT_FREE \ 1149 (1UL << PG_lru | 1UL << PG_locked | \ 1150 1UL << PG_private | 1UL << PG_private_2 | \ 1151 1UL << PG_writeback | 1UL << PG_reserved | \ 1152 1UL << PG_active | \ 1153 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1154 1155/* 1156 * Flags checked when a page is prepped for return by the page allocator. 1157 * Pages being prepped should not have these flags set. If they are set, 1158 * there has been a kernel bug or struct page corruption. 1159 * 1160 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1161 * alloc-free cycle to prevent from reusing the page. 1162 */ 1163#define PAGE_FLAGS_CHECK_AT_PREP \ 1164 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1165 1166/* 1167 * Flags stored in the second page of a compound page. They may overlap 1168 * the CHECK_AT_FREE flags above, so need to be cleared. 1169 */ 1170#define PAGE_FLAGS_SECOND \ 1171 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1172 1UL << PG_large_rmappable) 1173 1174#define PAGE_FLAGS_PRIVATE \ 1175 (1UL << PG_private | 1UL << PG_private_2) 1176/** 1177 * page_has_private - Determine if page has private stuff 1178 * @page: The page to be checked 1179 * 1180 * Determine if a page has private stuff, indicating that release routines 1181 * should be invoked upon it. 1182 */ 1183static inline int page_has_private(const struct page *page) 1184{ 1185 return !!(page->flags & PAGE_FLAGS_PRIVATE); 1186} 1187 1188static inline bool folio_has_private(const struct folio *folio) 1189{ 1190 return page_has_private(&folio->page); 1191} 1192 1193#undef PF_ANY 1194#undef PF_HEAD 1195#undef PF_NO_TAIL 1196#undef PF_NO_COMPOUND 1197#undef PF_SECOND 1198#endif /* !__GENERATING_BOUNDS_H */ 1199 1200#endif /* PAGE_FLAGS_H */