at v6.10 167 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43 44#include <linux/netdev_features.h> 45#include <linux/neighbour.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55 56struct netpoll_info; 57struct device; 58struct ethtool_ops; 59struct kernel_hwtstamp_config; 60struct phy_device; 61struct dsa_port; 62struct ip_tunnel_parm_kern; 63struct macsec_context; 64struct macsec_ops; 65struct netdev_name_node; 66struct sd_flow_limit; 67struct sfp_bus; 68/* 802.11 specific */ 69struct wireless_dev; 70/* 802.15.4 specific */ 71struct wpan_dev; 72struct mpls_dev; 73/* UDP Tunnel offloads */ 74struct udp_tunnel_info; 75struct udp_tunnel_nic_info; 76struct udp_tunnel_nic; 77struct bpf_prog; 78struct xdp_buff; 79struct xdp_frame; 80struct xdp_metadata_ops; 81struct xdp_md; 82 83typedef u32 xdp_features_t; 84 85void synchronize_net(void); 86void netdev_set_default_ethtool_ops(struct net_device *dev, 87 const struct ethtool_ops *ops); 88void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 89 90/* Backlog congestion levels */ 91#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 92#define NET_RX_DROP 1 /* packet dropped */ 93 94#define MAX_NEST_DEV 8 95 96/* 97 * Transmit return codes: transmit return codes originate from three different 98 * namespaces: 99 * 100 * - qdisc return codes 101 * - driver transmit return codes 102 * - errno values 103 * 104 * Drivers are allowed to return any one of those in their hard_start_xmit() 105 * function. Real network devices commonly used with qdiscs should only return 106 * the driver transmit return codes though - when qdiscs are used, the actual 107 * transmission happens asynchronously, so the value is not propagated to 108 * higher layers. Virtual network devices transmit synchronously; in this case 109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 110 * others are propagated to higher layers. 111 */ 112 113/* qdisc ->enqueue() return codes. */ 114#define NET_XMIT_SUCCESS 0x00 115#define NET_XMIT_DROP 0x01 /* skb dropped */ 116#define NET_XMIT_CN 0x02 /* congestion notification */ 117#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 118 119/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 120 * indicates that the device will soon be dropping packets, or already drops 121 * some packets of the same priority; prompting us to send less aggressively. */ 122#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 123#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 124 125/* Driver transmit return codes */ 126#define NETDEV_TX_MASK 0xf0 127 128enum netdev_tx { 129 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 130 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 131 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 132}; 133typedef enum netdev_tx netdev_tx_t; 134 135/* 136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 138 */ 139static inline bool dev_xmit_complete(int rc) 140{ 141 /* 142 * Positive cases with an skb consumed by a driver: 143 * - successful transmission (rc == NETDEV_TX_OK) 144 * - error while transmitting (rc < 0) 145 * - error while queueing to a different device (rc & NET_XMIT_MASK) 146 */ 147 if (likely(rc < NET_XMIT_MASK)) 148 return true; 149 150 return false; 151} 152 153/* 154 * Compute the worst-case header length according to the protocols 155 * used. 156 */ 157 158#if defined(CONFIG_HYPERV_NET) 159# define LL_MAX_HEADER 128 160#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 161# if defined(CONFIG_MAC80211_MESH) 162# define LL_MAX_HEADER 128 163# else 164# define LL_MAX_HEADER 96 165# endif 166#else 167# define LL_MAX_HEADER 32 168#endif 169 170#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 171 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 172#define MAX_HEADER LL_MAX_HEADER 173#else 174#define MAX_HEADER (LL_MAX_HEADER + 48) 175#endif 176 177/* 178 * Old network device statistics. Fields are native words 179 * (unsigned long) so they can be read and written atomically. 180 */ 181 182#define NET_DEV_STAT(FIELD) \ 183 union { \ 184 unsigned long FIELD; \ 185 atomic_long_t __##FIELD; \ 186 } 187 188struct net_device_stats { 189 NET_DEV_STAT(rx_packets); 190 NET_DEV_STAT(tx_packets); 191 NET_DEV_STAT(rx_bytes); 192 NET_DEV_STAT(tx_bytes); 193 NET_DEV_STAT(rx_errors); 194 NET_DEV_STAT(tx_errors); 195 NET_DEV_STAT(rx_dropped); 196 NET_DEV_STAT(tx_dropped); 197 NET_DEV_STAT(multicast); 198 NET_DEV_STAT(collisions); 199 NET_DEV_STAT(rx_length_errors); 200 NET_DEV_STAT(rx_over_errors); 201 NET_DEV_STAT(rx_crc_errors); 202 NET_DEV_STAT(rx_frame_errors); 203 NET_DEV_STAT(rx_fifo_errors); 204 NET_DEV_STAT(rx_missed_errors); 205 NET_DEV_STAT(tx_aborted_errors); 206 NET_DEV_STAT(tx_carrier_errors); 207 NET_DEV_STAT(tx_fifo_errors); 208 NET_DEV_STAT(tx_heartbeat_errors); 209 NET_DEV_STAT(tx_window_errors); 210 NET_DEV_STAT(rx_compressed); 211 NET_DEV_STAT(tx_compressed); 212}; 213#undef NET_DEV_STAT 214 215/* per-cpu stats, allocated on demand. 216 * Try to fit them in a single cache line, for dev_get_stats() sake. 217 */ 218struct net_device_core_stats { 219 unsigned long rx_dropped; 220 unsigned long tx_dropped; 221 unsigned long rx_nohandler; 222 unsigned long rx_otherhost_dropped; 223} __aligned(4 * sizeof(unsigned long)); 224 225#include <linux/cache.h> 226#include <linux/skbuff.h> 227 228struct neighbour; 229struct neigh_parms; 230struct sk_buff; 231 232struct netdev_hw_addr { 233 struct list_head list; 234 struct rb_node node; 235 unsigned char addr[MAX_ADDR_LEN]; 236 unsigned char type; 237#define NETDEV_HW_ADDR_T_LAN 1 238#define NETDEV_HW_ADDR_T_SAN 2 239#define NETDEV_HW_ADDR_T_UNICAST 3 240#define NETDEV_HW_ADDR_T_MULTICAST 4 241 bool global_use; 242 int sync_cnt; 243 int refcount; 244 int synced; 245 struct rcu_head rcu_head; 246}; 247 248struct netdev_hw_addr_list { 249 struct list_head list; 250 int count; 251 252 /* Auxiliary tree for faster lookup on addition and deletion */ 253 struct rb_root tree; 254}; 255 256#define netdev_hw_addr_list_count(l) ((l)->count) 257#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 258#define netdev_hw_addr_list_for_each(ha, l) \ 259 list_for_each_entry(ha, &(l)->list, list) 260 261#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 262#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 263#define netdev_for_each_uc_addr(ha, dev) \ 264 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 265#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 266 netdev_for_each_uc_addr((_ha), (_dev)) \ 267 if ((_ha)->sync_cnt) 268 269#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 270#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 271#define netdev_for_each_mc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 273#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 274 netdev_for_each_mc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277struct hh_cache { 278 unsigned int hh_len; 279 seqlock_t hh_lock; 280 281 /* cached hardware header; allow for machine alignment needs. */ 282#define HH_DATA_MOD 16 283#define HH_DATA_OFF(__len) \ 284 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 285#define HH_DATA_ALIGN(__len) \ 286 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 287 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 288}; 289 290/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 291 * Alternative is: 292 * dev->hard_header_len ? (dev->hard_header_len + 293 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 294 * 295 * We could use other alignment values, but we must maintain the 296 * relationship HH alignment <= LL alignment. 297 */ 298#define LL_RESERVED_SPACE(dev) \ 299 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 300 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 301#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 302 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 303 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 304 305struct header_ops { 306 int (*create) (struct sk_buff *skb, struct net_device *dev, 307 unsigned short type, const void *daddr, 308 const void *saddr, unsigned int len); 309 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 310 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 311 void (*cache_update)(struct hh_cache *hh, 312 const struct net_device *dev, 313 const unsigned char *haddr); 314 bool (*validate)(const char *ll_header, unsigned int len); 315 __be16 (*parse_protocol)(const struct sk_buff *skb); 316}; 317 318/* These flag bits are private to the generic network queueing 319 * layer; they may not be explicitly referenced by any other 320 * code. 321 */ 322 323enum netdev_state_t { 324 __LINK_STATE_START, 325 __LINK_STATE_PRESENT, 326 __LINK_STATE_NOCARRIER, 327 __LINK_STATE_LINKWATCH_PENDING, 328 __LINK_STATE_DORMANT, 329 __LINK_STATE_TESTING, 330}; 331 332struct gro_list { 333 struct list_head list; 334 int count; 335}; 336 337/* 338 * size of gro hash buckets, must less than bit number of 339 * napi_struct::gro_bitmask 340 */ 341#define GRO_HASH_BUCKETS 8 342 343/* 344 * Structure for NAPI scheduling similar to tasklet but with weighting 345 */ 346struct napi_struct { 347 /* The poll_list must only be managed by the entity which 348 * changes the state of the NAPI_STATE_SCHED bit. This means 349 * whoever atomically sets that bit can add this napi_struct 350 * to the per-CPU poll_list, and whoever clears that bit 351 * can remove from the list right before clearing the bit. 352 */ 353 struct list_head poll_list; 354 355 unsigned long state; 356 int weight; 357 int defer_hard_irqs_count; 358 unsigned long gro_bitmask; 359 int (*poll)(struct napi_struct *, int); 360#ifdef CONFIG_NETPOLL 361 /* CPU actively polling if netpoll is configured */ 362 int poll_owner; 363#endif 364 /* CPU on which NAPI has been scheduled for processing */ 365 int list_owner; 366 struct net_device *dev; 367 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 368 struct sk_buff *skb; 369 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 370 int rx_count; /* length of rx_list */ 371 unsigned int napi_id; 372 struct hrtimer timer; 373 struct task_struct *thread; 374 /* control-path-only fields follow */ 375 struct list_head dev_list; 376 struct hlist_node napi_hash_node; 377 int irq; 378}; 379 380enum { 381 NAPI_STATE_SCHED, /* Poll is scheduled */ 382 NAPI_STATE_MISSED, /* reschedule a napi */ 383 NAPI_STATE_DISABLE, /* Disable pending */ 384 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 385 NAPI_STATE_LISTED, /* NAPI added to system lists */ 386 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 387 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 388 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 389 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 390 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 391}; 392 393enum { 394 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 395 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 396 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 397 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 398 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 399 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 400 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 401 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 402 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 403 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 404}; 405 406enum gro_result { 407 GRO_MERGED, 408 GRO_MERGED_FREE, 409 GRO_HELD, 410 GRO_NORMAL, 411 GRO_CONSUMED, 412}; 413typedef enum gro_result gro_result_t; 414 415/* 416 * enum rx_handler_result - Possible return values for rx_handlers. 417 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 418 * further. 419 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 420 * case skb->dev was changed by rx_handler. 421 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 422 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 423 * 424 * rx_handlers are functions called from inside __netif_receive_skb(), to do 425 * special processing of the skb, prior to delivery to protocol handlers. 426 * 427 * Currently, a net_device can only have a single rx_handler registered. Trying 428 * to register a second rx_handler will return -EBUSY. 429 * 430 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 431 * To unregister a rx_handler on a net_device, use 432 * netdev_rx_handler_unregister(). 433 * 434 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 435 * do with the skb. 436 * 437 * If the rx_handler consumed the skb in some way, it should return 438 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 439 * the skb to be delivered in some other way. 440 * 441 * If the rx_handler changed skb->dev, to divert the skb to another 442 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 443 * new device will be called if it exists. 444 * 445 * If the rx_handler decides the skb should be ignored, it should return 446 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 447 * are registered on exact device (ptype->dev == skb->dev). 448 * 449 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 450 * delivered, it should return RX_HANDLER_PASS. 451 * 452 * A device without a registered rx_handler will behave as if rx_handler 453 * returned RX_HANDLER_PASS. 454 */ 455 456enum rx_handler_result { 457 RX_HANDLER_CONSUMED, 458 RX_HANDLER_ANOTHER, 459 RX_HANDLER_EXACT, 460 RX_HANDLER_PASS, 461}; 462typedef enum rx_handler_result rx_handler_result_t; 463typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 464 465void __napi_schedule(struct napi_struct *n); 466void __napi_schedule_irqoff(struct napi_struct *n); 467 468static inline bool napi_disable_pending(struct napi_struct *n) 469{ 470 return test_bit(NAPI_STATE_DISABLE, &n->state); 471} 472 473static inline bool napi_prefer_busy_poll(struct napi_struct *n) 474{ 475 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 476} 477 478/** 479 * napi_is_scheduled - test if NAPI is scheduled 480 * @n: NAPI context 481 * 482 * This check is "best-effort". With no locking implemented, 483 * a NAPI can be scheduled or terminate right after this check 484 * and produce not precise results. 485 * 486 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 487 * should not be used normally and napi_schedule should be 488 * used instead. 489 * 490 * Use only if the driver really needs to check if a NAPI 491 * is scheduled for example in the context of delayed timer 492 * that can be skipped if a NAPI is already scheduled. 493 * 494 * Return True if NAPI is scheduled, False otherwise. 495 */ 496static inline bool napi_is_scheduled(struct napi_struct *n) 497{ 498 return test_bit(NAPI_STATE_SCHED, &n->state); 499} 500 501bool napi_schedule_prep(struct napi_struct *n); 502 503/** 504 * napi_schedule - schedule NAPI poll 505 * @n: NAPI context 506 * 507 * Schedule NAPI poll routine to be called if it is not already 508 * running. 509 * Return true if we schedule a NAPI or false if not. 510 * Refer to napi_schedule_prep() for additional reason on why 511 * a NAPI might not be scheduled. 512 */ 513static inline bool napi_schedule(struct napi_struct *n) 514{ 515 if (napi_schedule_prep(n)) { 516 __napi_schedule(n); 517 return true; 518 } 519 520 return false; 521} 522 523/** 524 * napi_schedule_irqoff - schedule NAPI poll 525 * @n: NAPI context 526 * 527 * Variant of napi_schedule(), assuming hard irqs are masked. 528 */ 529static inline void napi_schedule_irqoff(struct napi_struct *n) 530{ 531 if (napi_schedule_prep(n)) 532 __napi_schedule_irqoff(n); 533} 534 535/** 536 * napi_complete_done - NAPI processing complete 537 * @n: NAPI context 538 * @work_done: number of packets processed 539 * 540 * Mark NAPI processing as complete. Should only be called if poll budget 541 * has not been completely consumed. 542 * Prefer over napi_complete(). 543 * Return false if device should avoid rearming interrupts. 544 */ 545bool napi_complete_done(struct napi_struct *n, int work_done); 546 547static inline bool napi_complete(struct napi_struct *n) 548{ 549 return napi_complete_done(n, 0); 550} 551 552int dev_set_threaded(struct net_device *dev, bool threaded); 553 554/** 555 * napi_disable - prevent NAPI from scheduling 556 * @n: NAPI context 557 * 558 * Stop NAPI from being scheduled on this context. 559 * Waits till any outstanding processing completes. 560 */ 561void napi_disable(struct napi_struct *n); 562 563void napi_enable(struct napi_struct *n); 564 565/** 566 * napi_synchronize - wait until NAPI is not running 567 * @n: NAPI context 568 * 569 * Wait until NAPI is done being scheduled on this context. 570 * Waits till any outstanding processing completes but 571 * does not disable future activations. 572 */ 573static inline void napi_synchronize(const struct napi_struct *n) 574{ 575 if (IS_ENABLED(CONFIG_SMP)) 576 while (test_bit(NAPI_STATE_SCHED, &n->state)) 577 msleep(1); 578 else 579 barrier(); 580} 581 582/** 583 * napi_if_scheduled_mark_missed - if napi is running, set the 584 * NAPIF_STATE_MISSED 585 * @n: NAPI context 586 * 587 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 588 * NAPI is scheduled. 589 **/ 590static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 591{ 592 unsigned long val, new; 593 594 val = READ_ONCE(n->state); 595 do { 596 if (val & NAPIF_STATE_DISABLE) 597 return true; 598 599 if (!(val & NAPIF_STATE_SCHED)) 600 return false; 601 602 new = val | NAPIF_STATE_MISSED; 603 } while (!try_cmpxchg(&n->state, &val, new)); 604 605 return true; 606} 607 608enum netdev_queue_state_t { 609 __QUEUE_STATE_DRV_XOFF, 610 __QUEUE_STATE_STACK_XOFF, 611 __QUEUE_STATE_FROZEN, 612}; 613 614#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 615#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 616#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 617 618#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 619#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 620 QUEUE_STATE_FROZEN) 621#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 624/* 625 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 626 * netif_tx_* functions below are used to manipulate this flag. The 627 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 628 * queue independently. The netif_xmit_*stopped functions below are called 629 * to check if the queue has been stopped by the driver or stack (either 630 * of the XOFF bits are set in the state). Drivers should not need to call 631 * netif_xmit*stopped functions, they should only be using netif_tx_*. 632 */ 633 634struct netdev_queue { 635/* 636 * read-mostly part 637 */ 638 struct net_device *dev; 639 netdevice_tracker dev_tracker; 640 641 struct Qdisc __rcu *qdisc; 642 struct Qdisc __rcu *qdisc_sleeping; 643#ifdef CONFIG_SYSFS 644 struct kobject kobj; 645#endif 646#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 647 int numa_node; 648#endif 649 unsigned long tx_maxrate; 650 /* 651 * Number of TX timeouts for this queue 652 * (/sys/class/net/DEV/Q/trans_timeout) 653 */ 654 atomic_long_t trans_timeout; 655 656 /* Subordinate device that the queue has been assigned to */ 657 struct net_device *sb_dev; 658#ifdef CONFIG_XDP_SOCKETS 659 struct xsk_buff_pool *pool; 660#endif 661 /* NAPI instance for the queue 662 * Readers and writers must hold RTNL 663 */ 664 struct napi_struct *napi; 665/* 666 * write-mostly part 667 */ 668 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 669 int xmit_lock_owner; 670 /* 671 * Time (in jiffies) of last Tx 672 */ 673 unsigned long trans_start; 674 675 unsigned long state; 676 677#ifdef CONFIG_BQL 678 struct dql dql; 679#endif 680} ____cacheline_aligned_in_smp; 681 682extern int sysctl_fb_tunnels_only_for_init_net; 683extern int sysctl_devconf_inherit_init_net; 684 685/* 686 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 687 * == 1 : For initns only 688 * == 2 : For none. 689 */ 690static inline bool net_has_fallback_tunnels(const struct net *net) 691{ 692#if IS_ENABLED(CONFIG_SYSCTL) 693 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 694 695 return !fb_tunnels_only_for_init_net || 696 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 697#else 698 return true; 699#endif 700} 701 702static inline int net_inherit_devconf(void) 703{ 704#if IS_ENABLED(CONFIG_SYSCTL) 705 return READ_ONCE(sysctl_devconf_inherit_init_net); 706#else 707 return 0; 708#endif 709} 710 711static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 712{ 713#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 714 return q->numa_node; 715#else 716 return NUMA_NO_NODE; 717#endif 718} 719 720static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 721{ 722#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 723 q->numa_node = node; 724#endif 725} 726 727#ifdef CONFIG_RFS_ACCEL 728bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 729 u16 filter_id); 730#endif 731 732/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 733enum xps_map_type { 734 XPS_CPUS = 0, 735 XPS_RXQS, 736 XPS_MAPS_MAX, 737}; 738 739#ifdef CONFIG_XPS 740/* 741 * This structure holds an XPS map which can be of variable length. The 742 * map is an array of queues. 743 */ 744struct xps_map { 745 unsigned int len; 746 unsigned int alloc_len; 747 struct rcu_head rcu; 748 u16 queues[]; 749}; 750#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 751#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 752 - sizeof(struct xps_map)) / sizeof(u16)) 753 754/* 755 * This structure holds all XPS maps for device. Maps are indexed by CPU. 756 * 757 * We keep track of the number of cpus/rxqs used when the struct is allocated, 758 * in nr_ids. This will help not accessing out-of-bound memory. 759 * 760 * We keep track of the number of traffic classes used when the struct is 761 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 762 * not crossing its upper bound, as the original dev->num_tc can be updated in 763 * the meantime. 764 */ 765struct xps_dev_maps { 766 struct rcu_head rcu; 767 unsigned int nr_ids; 768 s16 num_tc; 769 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 770}; 771 772#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 773 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 774 775#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 776 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 777 778#endif /* CONFIG_XPS */ 779 780#define TC_MAX_QUEUE 16 781#define TC_BITMASK 15 782/* HW offloaded queuing disciplines txq count and offset maps */ 783struct netdev_tc_txq { 784 u16 count; 785 u16 offset; 786}; 787 788#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 789/* 790 * This structure is to hold information about the device 791 * configured to run FCoE protocol stack. 792 */ 793struct netdev_fcoe_hbainfo { 794 char manufacturer[64]; 795 char serial_number[64]; 796 char hardware_version[64]; 797 char driver_version[64]; 798 char optionrom_version[64]; 799 char firmware_version[64]; 800 char model[256]; 801 char model_description[256]; 802}; 803#endif 804 805#define MAX_PHYS_ITEM_ID_LEN 32 806 807/* This structure holds a unique identifier to identify some 808 * physical item (port for example) used by a netdevice. 809 */ 810struct netdev_phys_item_id { 811 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 812 unsigned char id_len; 813}; 814 815static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 816 struct netdev_phys_item_id *b) 817{ 818 return a->id_len == b->id_len && 819 memcmp(a->id, b->id, a->id_len) == 0; 820} 821 822typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 823 struct sk_buff *skb, 824 struct net_device *sb_dev); 825 826enum net_device_path_type { 827 DEV_PATH_ETHERNET = 0, 828 DEV_PATH_VLAN, 829 DEV_PATH_BRIDGE, 830 DEV_PATH_PPPOE, 831 DEV_PATH_DSA, 832 DEV_PATH_MTK_WDMA, 833}; 834 835struct net_device_path { 836 enum net_device_path_type type; 837 const struct net_device *dev; 838 union { 839 struct { 840 u16 id; 841 __be16 proto; 842 u8 h_dest[ETH_ALEN]; 843 } encap; 844 struct { 845 enum { 846 DEV_PATH_BR_VLAN_KEEP, 847 DEV_PATH_BR_VLAN_TAG, 848 DEV_PATH_BR_VLAN_UNTAG, 849 DEV_PATH_BR_VLAN_UNTAG_HW, 850 } vlan_mode; 851 u16 vlan_id; 852 __be16 vlan_proto; 853 } bridge; 854 struct { 855 int port; 856 u16 proto; 857 } dsa; 858 struct { 859 u8 wdma_idx; 860 u8 queue; 861 u16 wcid; 862 u8 bss; 863 u8 amsdu; 864 } mtk_wdma; 865 }; 866}; 867 868#define NET_DEVICE_PATH_STACK_MAX 5 869#define NET_DEVICE_PATH_VLAN_MAX 2 870 871struct net_device_path_stack { 872 int num_paths; 873 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 874}; 875 876struct net_device_path_ctx { 877 const struct net_device *dev; 878 u8 daddr[ETH_ALEN]; 879 880 int num_vlans; 881 struct { 882 u16 id; 883 __be16 proto; 884 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 885}; 886 887enum tc_setup_type { 888 TC_QUERY_CAPS, 889 TC_SETUP_QDISC_MQPRIO, 890 TC_SETUP_CLSU32, 891 TC_SETUP_CLSFLOWER, 892 TC_SETUP_CLSMATCHALL, 893 TC_SETUP_CLSBPF, 894 TC_SETUP_BLOCK, 895 TC_SETUP_QDISC_CBS, 896 TC_SETUP_QDISC_RED, 897 TC_SETUP_QDISC_PRIO, 898 TC_SETUP_QDISC_MQ, 899 TC_SETUP_QDISC_ETF, 900 TC_SETUP_ROOT_QDISC, 901 TC_SETUP_QDISC_GRED, 902 TC_SETUP_QDISC_TAPRIO, 903 TC_SETUP_FT, 904 TC_SETUP_QDISC_ETS, 905 TC_SETUP_QDISC_TBF, 906 TC_SETUP_QDISC_FIFO, 907 TC_SETUP_QDISC_HTB, 908 TC_SETUP_ACT, 909}; 910 911/* These structures hold the attributes of bpf state that are being passed 912 * to the netdevice through the bpf op. 913 */ 914enum bpf_netdev_command { 915 /* Set or clear a bpf program used in the earliest stages of packet 916 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 917 * is responsible for calling bpf_prog_put on any old progs that are 918 * stored. In case of error, the callee need not release the new prog 919 * reference, but on success it takes ownership and must bpf_prog_put 920 * when it is no longer used. 921 */ 922 XDP_SETUP_PROG, 923 XDP_SETUP_PROG_HW, 924 /* BPF program for offload callbacks, invoked at program load time. */ 925 BPF_OFFLOAD_MAP_ALLOC, 926 BPF_OFFLOAD_MAP_FREE, 927 XDP_SETUP_XSK_POOL, 928}; 929 930struct bpf_prog_offload_ops; 931struct netlink_ext_ack; 932struct xdp_umem; 933struct xdp_dev_bulk_queue; 934struct bpf_xdp_link; 935 936enum bpf_xdp_mode { 937 XDP_MODE_SKB = 0, 938 XDP_MODE_DRV = 1, 939 XDP_MODE_HW = 2, 940 __MAX_XDP_MODE 941}; 942 943struct bpf_xdp_entity { 944 struct bpf_prog *prog; 945 struct bpf_xdp_link *link; 946}; 947 948struct netdev_bpf { 949 enum bpf_netdev_command command; 950 union { 951 /* XDP_SETUP_PROG */ 952 struct { 953 u32 flags; 954 struct bpf_prog *prog; 955 struct netlink_ext_ack *extack; 956 }; 957 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 958 struct { 959 struct bpf_offloaded_map *offmap; 960 }; 961 /* XDP_SETUP_XSK_POOL */ 962 struct { 963 struct xsk_buff_pool *pool; 964 u16 queue_id; 965 } xsk; 966 }; 967}; 968 969/* Flags for ndo_xsk_wakeup. */ 970#define XDP_WAKEUP_RX (1 << 0) 971#define XDP_WAKEUP_TX (1 << 1) 972 973#ifdef CONFIG_XFRM_OFFLOAD 974struct xfrmdev_ops { 975 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 976 void (*xdo_dev_state_delete) (struct xfrm_state *x); 977 void (*xdo_dev_state_free) (struct xfrm_state *x); 978 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 979 struct xfrm_state *x); 980 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 981 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 982 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 983 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 984 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 985}; 986#endif 987 988struct dev_ifalias { 989 struct rcu_head rcuhead; 990 char ifalias[]; 991}; 992 993struct devlink; 994struct tlsdev_ops; 995 996struct netdev_net_notifier { 997 struct list_head list; 998 struct notifier_block *nb; 999}; 1000 1001/* 1002 * This structure defines the management hooks for network devices. 1003 * The following hooks can be defined; unless noted otherwise, they are 1004 * optional and can be filled with a null pointer. 1005 * 1006 * int (*ndo_init)(struct net_device *dev); 1007 * This function is called once when a network device is registered. 1008 * The network device can use this for any late stage initialization 1009 * or semantic validation. It can fail with an error code which will 1010 * be propagated back to register_netdev. 1011 * 1012 * void (*ndo_uninit)(struct net_device *dev); 1013 * This function is called when device is unregistered or when registration 1014 * fails. It is not called if init fails. 1015 * 1016 * int (*ndo_open)(struct net_device *dev); 1017 * This function is called when a network device transitions to the up 1018 * state. 1019 * 1020 * int (*ndo_stop)(struct net_device *dev); 1021 * This function is called when a network device transitions to the down 1022 * state. 1023 * 1024 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1025 * struct net_device *dev); 1026 * Called when a packet needs to be transmitted. 1027 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1028 * the queue before that can happen; it's for obsolete devices and weird 1029 * corner cases, but the stack really does a non-trivial amount 1030 * of useless work if you return NETDEV_TX_BUSY. 1031 * Required; cannot be NULL. 1032 * 1033 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1034 * struct net_device *dev 1035 * netdev_features_t features); 1036 * Called by core transmit path to determine if device is capable of 1037 * performing offload operations on a given packet. This is to give 1038 * the device an opportunity to implement any restrictions that cannot 1039 * be otherwise expressed by feature flags. The check is called with 1040 * the set of features that the stack has calculated and it returns 1041 * those the driver believes to be appropriate. 1042 * 1043 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1044 * struct net_device *sb_dev); 1045 * Called to decide which queue to use when device supports multiple 1046 * transmit queues. 1047 * 1048 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1049 * This function is called to allow device receiver to make 1050 * changes to configuration when multicast or promiscuous is enabled. 1051 * 1052 * void (*ndo_set_rx_mode)(struct net_device *dev); 1053 * This function is called device changes address list filtering. 1054 * If driver handles unicast address filtering, it should set 1055 * IFF_UNICAST_FLT in its priv_flags. 1056 * 1057 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1058 * This function is called when the Media Access Control address 1059 * needs to be changed. If this interface is not defined, the 1060 * MAC address can not be changed. 1061 * 1062 * int (*ndo_validate_addr)(struct net_device *dev); 1063 * Test if Media Access Control address is valid for the device. 1064 * 1065 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1066 * Old-style ioctl entry point. This is used internally by the 1067 * appletalk and ieee802154 subsystems but is no longer called by 1068 * the device ioctl handler. 1069 * 1070 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1071 * Used by the bonding driver for its device specific ioctls: 1072 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1073 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1074 * 1075 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1076 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1077 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1078 * 1079 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1080 * Used to set network devices bus interface parameters. This interface 1081 * is retained for legacy reasons; new devices should use the bus 1082 * interface (PCI) for low level management. 1083 * 1084 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1085 * Called when a user wants to change the Maximum Transfer Unit 1086 * of a device. 1087 * 1088 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1089 * Callback used when the transmitter has not made any progress 1090 * for dev->watchdog ticks. 1091 * 1092 * void (*ndo_get_stats64)(struct net_device *dev, 1093 * struct rtnl_link_stats64 *storage); 1094 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1095 * Called when a user wants to get the network device usage 1096 * statistics. Drivers must do one of the following: 1097 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1098 * rtnl_link_stats64 structure passed by the caller. 1099 * 2. Define @ndo_get_stats to update a net_device_stats structure 1100 * (which should normally be dev->stats) and return a pointer to 1101 * it. The structure may be changed asynchronously only if each 1102 * field is written atomically. 1103 * 3. Update dev->stats asynchronously and atomically, and define 1104 * neither operation. 1105 * 1106 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1107 * Return true if this device supports offload stats of this attr_id. 1108 * 1109 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1110 * void *attr_data) 1111 * Get statistics for offload operations by attr_id. Write it into the 1112 * attr_data pointer. 1113 * 1114 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1115 * If device supports VLAN filtering this function is called when a 1116 * VLAN id is registered. 1117 * 1118 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1119 * If device supports VLAN filtering this function is called when a 1120 * VLAN id is unregistered. 1121 * 1122 * void (*ndo_poll_controller)(struct net_device *dev); 1123 * 1124 * SR-IOV management functions. 1125 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1126 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1127 * u8 qos, __be16 proto); 1128 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1129 * int max_tx_rate); 1130 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1131 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1132 * int (*ndo_get_vf_config)(struct net_device *dev, 1133 * int vf, struct ifla_vf_info *ivf); 1134 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1135 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1136 * struct nlattr *port[]); 1137 * 1138 * Enable or disable the VF ability to query its RSS Redirection Table and 1139 * Hash Key. This is needed since on some devices VF share this information 1140 * with PF and querying it may introduce a theoretical security risk. 1141 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1142 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1143 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1144 * void *type_data); 1145 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1146 * This is always called from the stack with the rtnl lock held and netif 1147 * tx queues stopped. This allows the netdevice to perform queue 1148 * management safely. 1149 * 1150 * Fiber Channel over Ethernet (FCoE) offload functions. 1151 * int (*ndo_fcoe_enable)(struct net_device *dev); 1152 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1153 * so the underlying device can perform whatever needed configuration or 1154 * initialization to support acceleration of FCoE traffic. 1155 * 1156 * int (*ndo_fcoe_disable)(struct net_device *dev); 1157 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1158 * so the underlying device can perform whatever needed clean-ups to 1159 * stop supporting acceleration of FCoE traffic. 1160 * 1161 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1162 * struct scatterlist *sgl, unsigned int sgc); 1163 * Called when the FCoE Initiator wants to initialize an I/O that 1164 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1165 * perform necessary setup and returns 1 to indicate the device is set up 1166 * successfully to perform DDP on this I/O, otherwise this returns 0. 1167 * 1168 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1169 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1170 * indicated by the FC exchange id 'xid', so the underlying device can 1171 * clean up and reuse resources for later DDP requests. 1172 * 1173 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1174 * struct scatterlist *sgl, unsigned int sgc); 1175 * Called when the FCoE Target wants to initialize an I/O that 1176 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1177 * perform necessary setup and returns 1 to indicate the device is set up 1178 * successfully to perform DDP on this I/O, otherwise this returns 0. 1179 * 1180 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1181 * struct netdev_fcoe_hbainfo *hbainfo); 1182 * Called when the FCoE Protocol stack wants information on the underlying 1183 * device. This information is utilized by the FCoE protocol stack to 1184 * register attributes with Fiber Channel management service as per the 1185 * FC-GS Fabric Device Management Information(FDMI) specification. 1186 * 1187 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1188 * Called when the underlying device wants to override default World Wide 1189 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1190 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1191 * protocol stack to use. 1192 * 1193 * RFS acceleration. 1194 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1195 * u16 rxq_index, u32 flow_id); 1196 * Set hardware filter for RFS. rxq_index is the target queue index; 1197 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1198 * Return the filter ID on success, or a negative error code. 1199 * 1200 * Slave management functions (for bridge, bonding, etc). 1201 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1202 * Called to make another netdev an underling. 1203 * 1204 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1205 * Called to release previously enslaved netdev. 1206 * 1207 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1208 * struct sk_buff *skb, 1209 * bool all_slaves); 1210 * Get the xmit slave of master device. If all_slaves is true, function 1211 * assume all the slaves can transmit. 1212 * 1213 * Feature/offload setting functions. 1214 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1215 * netdev_features_t features); 1216 * Adjusts the requested feature flags according to device-specific 1217 * constraints, and returns the resulting flags. Must not modify 1218 * the device state. 1219 * 1220 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1221 * Called to update device configuration to new features. Passed 1222 * feature set might be less than what was returned by ndo_fix_features()). 1223 * Must return >0 or -errno if it changed dev->features itself. 1224 * 1225 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1226 * struct net_device *dev, 1227 * const unsigned char *addr, u16 vid, u16 flags, 1228 * struct netlink_ext_ack *extack); 1229 * Adds an FDB entry to dev for addr. 1230 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1231 * struct net_device *dev, 1232 * const unsigned char *addr, u16 vid) 1233 * Deletes the FDB entry from dev coresponding to addr. 1234 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1235 * struct netlink_ext_ack *extack); 1236 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1237 * struct net_device *dev, struct net_device *filter_dev, 1238 * int *idx) 1239 * Used to add FDB entries to dump requests. Implementers should add 1240 * entries to skb and update idx with the number of entries. 1241 * 1242 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1243 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1244 * Adds an MDB entry to dev. 1245 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1246 * struct netlink_ext_ack *extack); 1247 * Deletes the MDB entry from dev. 1248 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1249 * struct netlink_ext_ack *extack); 1250 * Bulk deletes MDB entries from dev. 1251 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1252 * struct netlink_callback *cb); 1253 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1254 * callback is used by core rtnetlink code. 1255 * 1256 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1257 * u16 flags, struct netlink_ext_ack *extack) 1258 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1259 * struct net_device *dev, u32 filter_mask, 1260 * int nlflags) 1261 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1262 * u16 flags); 1263 * 1264 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1265 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1266 * which do not represent real hardware may define this to allow their 1267 * userspace components to manage their virtual carrier state. Devices 1268 * that determine carrier state from physical hardware properties (eg 1269 * network cables) or protocol-dependent mechanisms (eg 1270 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1271 * 1272 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1273 * struct netdev_phys_item_id *ppid); 1274 * Called to get ID of physical port of this device. If driver does 1275 * not implement this, it is assumed that the hw is not able to have 1276 * multiple net devices on single physical port. 1277 * 1278 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1279 * struct netdev_phys_item_id *ppid) 1280 * Called to get the parent ID of the physical port of this device. 1281 * 1282 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1283 * struct net_device *dev) 1284 * Called by upper layer devices to accelerate switching or other 1285 * station functionality into hardware. 'pdev is the lowerdev 1286 * to use for the offload and 'dev' is the net device that will 1287 * back the offload. Returns a pointer to the private structure 1288 * the upper layer will maintain. 1289 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1290 * Called by upper layer device to delete the station created 1291 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1292 * the station and priv is the structure returned by the add 1293 * operation. 1294 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1295 * int queue_index, u32 maxrate); 1296 * Called when a user wants to set a max-rate limitation of specific 1297 * TX queue. 1298 * int (*ndo_get_iflink)(const struct net_device *dev); 1299 * Called to get the iflink value of this device. 1300 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1301 * This function is used to get egress tunnel information for given skb. 1302 * This is useful for retrieving outer tunnel header parameters while 1303 * sampling packet. 1304 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1305 * This function is used to specify the headroom that the skb must 1306 * consider when allocation skb during packet reception. Setting 1307 * appropriate rx headroom value allows avoiding skb head copy on 1308 * forward. Setting a negative value resets the rx headroom to the 1309 * default value. 1310 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1311 * This function is used to set or query state related to XDP on the 1312 * netdevice and manage BPF offload. See definition of 1313 * enum bpf_netdev_command for details. 1314 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1315 * u32 flags); 1316 * This function is used to submit @n XDP packets for transmit on a 1317 * netdevice. Returns number of frames successfully transmitted, frames 1318 * that got dropped are freed/returned via xdp_return_frame(). 1319 * Returns negative number, means general error invoking ndo, meaning 1320 * no frames were xmit'ed and core-caller will free all frames. 1321 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1322 * struct xdp_buff *xdp); 1323 * Get the xmit slave of master device based on the xdp_buff. 1324 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1325 * This function is used to wake up the softirq, ksoftirqd or kthread 1326 * responsible for sending and/or receiving packets on a specific 1327 * queue id bound to an AF_XDP socket. The flags field specifies if 1328 * only RX, only Tx, or both should be woken up using the flags 1329 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1330 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1331 * int cmd); 1332 * Add, change, delete or get information on an IPv4 tunnel. 1333 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1334 * If a device is paired with a peer device, return the peer instance. 1335 * The caller must be under RCU read context. 1336 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1337 * Get the forwarding path to reach the real device from the HW destination address 1338 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1339 * const struct skb_shared_hwtstamps *hwtstamps, 1340 * bool cycles); 1341 * Get hardware timestamp based on normal/adjustable time or free running 1342 * cycle counter. This function is required if physical clock supports a 1343 * free running cycle counter. 1344 * 1345 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1346 * struct kernel_hwtstamp_config *kernel_config); 1347 * Get the currently configured hardware timestamping parameters for the 1348 * NIC device. 1349 * 1350 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1351 * struct kernel_hwtstamp_config *kernel_config, 1352 * struct netlink_ext_ack *extack); 1353 * Change the hardware timestamping parameters for NIC device. 1354 */ 1355struct net_device_ops { 1356 int (*ndo_init)(struct net_device *dev); 1357 void (*ndo_uninit)(struct net_device *dev); 1358 int (*ndo_open)(struct net_device *dev); 1359 int (*ndo_stop)(struct net_device *dev); 1360 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1361 struct net_device *dev); 1362 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1363 struct net_device *dev, 1364 netdev_features_t features); 1365 u16 (*ndo_select_queue)(struct net_device *dev, 1366 struct sk_buff *skb, 1367 struct net_device *sb_dev); 1368 void (*ndo_change_rx_flags)(struct net_device *dev, 1369 int flags); 1370 void (*ndo_set_rx_mode)(struct net_device *dev); 1371 int (*ndo_set_mac_address)(struct net_device *dev, 1372 void *addr); 1373 int (*ndo_validate_addr)(struct net_device *dev); 1374 int (*ndo_do_ioctl)(struct net_device *dev, 1375 struct ifreq *ifr, int cmd); 1376 int (*ndo_eth_ioctl)(struct net_device *dev, 1377 struct ifreq *ifr, int cmd); 1378 int (*ndo_siocbond)(struct net_device *dev, 1379 struct ifreq *ifr, int cmd); 1380 int (*ndo_siocwandev)(struct net_device *dev, 1381 struct if_settings *ifs); 1382 int (*ndo_siocdevprivate)(struct net_device *dev, 1383 struct ifreq *ifr, 1384 void __user *data, int cmd); 1385 int (*ndo_set_config)(struct net_device *dev, 1386 struct ifmap *map); 1387 int (*ndo_change_mtu)(struct net_device *dev, 1388 int new_mtu); 1389 int (*ndo_neigh_setup)(struct net_device *dev, 1390 struct neigh_parms *); 1391 void (*ndo_tx_timeout) (struct net_device *dev, 1392 unsigned int txqueue); 1393 1394 void (*ndo_get_stats64)(struct net_device *dev, 1395 struct rtnl_link_stats64 *storage); 1396 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1397 int (*ndo_get_offload_stats)(int attr_id, 1398 const struct net_device *dev, 1399 void *attr_data); 1400 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1401 1402 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1403 __be16 proto, u16 vid); 1404 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1405 __be16 proto, u16 vid); 1406#ifdef CONFIG_NET_POLL_CONTROLLER 1407 void (*ndo_poll_controller)(struct net_device *dev); 1408 int (*ndo_netpoll_setup)(struct net_device *dev, 1409 struct netpoll_info *info); 1410 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1411#endif 1412 int (*ndo_set_vf_mac)(struct net_device *dev, 1413 int queue, u8 *mac); 1414 int (*ndo_set_vf_vlan)(struct net_device *dev, 1415 int queue, u16 vlan, 1416 u8 qos, __be16 proto); 1417 int (*ndo_set_vf_rate)(struct net_device *dev, 1418 int vf, int min_tx_rate, 1419 int max_tx_rate); 1420 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1421 int vf, bool setting); 1422 int (*ndo_set_vf_trust)(struct net_device *dev, 1423 int vf, bool setting); 1424 int (*ndo_get_vf_config)(struct net_device *dev, 1425 int vf, 1426 struct ifla_vf_info *ivf); 1427 int (*ndo_set_vf_link_state)(struct net_device *dev, 1428 int vf, int link_state); 1429 int (*ndo_get_vf_stats)(struct net_device *dev, 1430 int vf, 1431 struct ifla_vf_stats 1432 *vf_stats); 1433 int (*ndo_set_vf_port)(struct net_device *dev, 1434 int vf, 1435 struct nlattr *port[]); 1436 int (*ndo_get_vf_port)(struct net_device *dev, 1437 int vf, struct sk_buff *skb); 1438 int (*ndo_get_vf_guid)(struct net_device *dev, 1439 int vf, 1440 struct ifla_vf_guid *node_guid, 1441 struct ifla_vf_guid *port_guid); 1442 int (*ndo_set_vf_guid)(struct net_device *dev, 1443 int vf, u64 guid, 1444 int guid_type); 1445 int (*ndo_set_vf_rss_query_en)( 1446 struct net_device *dev, 1447 int vf, bool setting); 1448 int (*ndo_setup_tc)(struct net_device *dev, 1449 enum tc_setup_type type, 1450 void *type_data); 1451#if IS_ENABLED(CONFIG_FCOE) 1452 int (*ndo_fcoe_enable)(struct net_device *dev); 1453 int (*ndo_fcoe_disable)(struct net_device *dev); 1454 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1455 u16 xid, 1456 struct scatterlist *sgl, 1457 unsigned int sgc); 1458 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1459 u16 xid); 1460 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1461 u16 xid, 1462 struct scatterlist *sgl, 1463 unsigned int sgc); 1464 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1465 struct netdev_fcoe_hbainfo *hbainfo); 1466#endif 1467 1468#if IS_ENABLED(CONFIG_LIBFCOE) 1469#define NETDEV_FCOE_WWNN 0 1470#define NETDEV_FCOE_WWPN 1 1471 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1472 u64 *wwn, int type); 1473#endif 1474 1475#ifdef CONFIG_RFS_ACCEL 1476 int (*ndo_rx_flow_steer)(struct net_device *dev, 1477 const struct sk_buff *skb, 1478 u16 rxq_index, 1479 u32 flow_id); 1480#endif 1481 int (*ndo_add_slave)(struct net_device *dev, 1482 struct net_device *slave_dev, 1483 struct netlink_ext_ack *extack); 1484 int (*ndo_del_slave)(struct net_device *dev, 1485 struct net_device *slave_dev); 1486 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1487 struct sk_buff *skb, 1488 bool all_slaves); 1489 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1490 struct sock *sk); 1491 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1492 netdev_features_t features); 1493 int (*ndo_set_features)(struct net_device *dev, 1494 netdev_features_t features); 1495 int (*ndo_neigh_construct)(struct net_device *dev, 1496 struct neighbour *n); 1497 void (*ndo_neigh_destroy)(struct net_device *dev, 1498 struct neighbour *n); 1499 1500 int (*ndo_fdb_add)(struct ndmsg *ndm, 1501 struct nlattr *tb[], 1502 struct net_device *dev, 1503 const unsigned char *addr, 1504 u16 vid, 1505 u16 flags, 1506 struct netlink_ext_ack *extack); 1507 int (*ndo_fdb_del)(struct ndmsg *ndm, 1508 struct nlattr *tb[], 1509 struct net_device *dev, 1510 const unsigned char *addr, 1511 u16 vid, struct netlink_ext_ack *extack); 1512 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1513 struct net_device *dev, 1514 struct netlink_ext_ack *extack); 1515 int (*ndo_fdb_dump)(struct sk_buff *skb, 1516 struct netlink_callback *cb, 1517 struct net_device *dev, 1518 struct net_device *filter_dev, 1519 int *idx); 1520 int (*ndo_fdb_get)(struct sk_buff *skb, 1521 struct nlattr *tb[], 1522 struct net_device *dev, 1523 const unsigned char *addr, 1524 u16 vid, u32 portid, u32 seq, 1525 struct netlink_ext_ack *extack); 1526 int (*ndo_mdb_add)(struct net_device *dev, 1527 struct nlattr *tb[], 1528 u16 nlmsg_flags, 1529 struct netlink_ext_ack *extack); 1530 int (*ndo_mdb_del)(struct net_device *dev, 1531 struct nlattr *tb[], 1532 struct netlink_ext_ack *extack); 1533 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1534 struct nlattr *tb[], 1535 struct netlink_ext_ack *extack); 1536 int (*ndo_mdb_dump)(struct net_device *dev, 1537 struct sk_buff *skb, 1538 struct netlink_callback *cb); 1539 int (*ndo_mdb_get)(struct net_device *dev, 1540 struct nlattr *tb[], u32 portid, 1541 u32 seq, 1542 struct netlink_ext_ack *extack); 1543 int (*ndo_bridge_setlink)(struct net_device *dev, 1544 struct nlmsghdr *nlh, 1545 u16 flags, 1546 struct netlink_ext_ack *extack); 1547 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1548 u32 pid, u32 seq, 1549 struct net_device *dev, 1550 u32 filter_mask, 1551 int nlflags); 1552 int (*ndo_bridge_dellink)(struct net_device *dev, 1553 struct nlmsghdr *nlh, 1554 u16 flags); 1555 int (*ndo_change_carrier)(struct net_device *dev, 1556 bool new_carrier); 1557 int (*ndo_get_phys_port_id)(struct net_device *dev, 1558 struct netdev_phys_item_id *ppid); 1559 int (*ndo_get_port_parent_id)(struct net_device *dev, 1560 struct netdev_phys_item_id *ppid); 1561 int (*ndo_get_phys_port_name)(struct net_device *dev, 1562 char *name, size_t len); 1563 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1564 struct net_device *dev); 1565 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1566 void *priv); 1567 1568 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1569 int queue_index, 1570 u32 maxrate); 1571 int (*ndo_get_iflink)(const struct net_device *dev); 1572 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1573 struct sk_buff *skb); 1574 void (*ndo_set_rx_headroom)(struct net_device *dev, 1575 int needed_headroom); 1576 int (*ndo_bpf)(struct net_device *dev, 1577 struct netdev_bpf *bpf); 1578 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1579 struct xdp_frame **xdp, 1580 u32 flags); 1581 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1582 struct xdp_buff *xdp); 1583 int (*ndo_xsk_wakeup)(struct net_device *dev, 1584 u32 queue_id, u32 flags); 1585 int (*ndo_tunnel_ctl)(struct net_device *dev, 1586 struct ip_tunnel_parm_kern *p, 1587 int cmd); 1588 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1589 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1590 struct net_device_path *path); 1591 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1592 const struct skb_shared_hwtstamps *hwtstamps, 1593 bool cycles); 1594 int (*ndo_hwtstamp_get)(struct net_device *dev, 1595 struct kernel_hwtstamp_config *kernel_config); 1596 int (*ndo_hwtstamp_set)(struct net_device *dev, 1597 struct kernel_hwtstamp_config *kernel_config, 1598 struct netlink_ext_ack *extack); 1599}; 1600 1601/** 1602 * enum netdev_priv_flags - &struct net_device priv_flags 1603 * 1604 * These are the &struct net_device, they are only set internally 1605 * by drivers and used in the kernel. These flags are invisible to 1606 * userspace; this means that the order of these flags can change 1607 * during any kernel release. 1608 * 1609 * You should have a pretty good reason to be extending these flags. 1610 * 1611 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1612 * @IFF_EBRIDGE: Ethernet bridging device 1613 * @IFF_BONDING: bonding master or slave 1614 * @IFF_ISATAP: ISATAP interface (RFC4214) 1615 * @IFF_WAN_HDLC: WAN HDLC device 1616 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1617 * release skb->dst 1618 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1619 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1620 * @IFF_MACVLAN_PORT: device used as macvlan port 1621 * @IFF_BRIDGE_PORT: device used as bridge port 1622 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1623 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1624 * @IFF_UNICAST_FLT: Supports unicast filtering 1625 * @IFF_TEAM_PORT: device used as team port 1626 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1627 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1628 * change when it's running 1629 * @IFF_MACVLAN: Macvlan device 1630 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1631 * underlying stacked devices 1632 * @IFF_L3MDEV_MASTER: device is an L3 master device 1633 * @IFF_NO_QUEUE: device can run without qdisc attached 1634 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1635 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1636 * @IFF_TEAM: device is a team device 1637 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1638 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1639 * entity (i.e. the master device for bridged veth) 1640 * @IFF_MACSEC: device is a MACsec device 1641 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1642 * @IFF_FAILOVER: device is a failover master device 1643 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1644 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1645 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1646 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1647 * skb_headlen(skb) == 0 (data starts from frag0) 1648 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1649 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1650 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1651 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1652 */ 1653enum netdev_priv_flags { 1654 IFF_802_1Q_VLAN = 1<<0, 1655 IFF_EBRIDGE = 1<<1, 1656 IFF_BONDING = 1<<2, 1657 IFF_ISATAP = 1<<3, 1658 IFF_WAN_HDLC = 1<<4, 1659 IFF_XMIT_DST_RELEASE = 1<<5, 1660 IFF_DONT_BRIDGE = 1<<6, 1661 IFF_DISABLE_NETPOLL = 1<<7, 1662 IFF_MACVLAN_PORT = 1<<8, 1663 IFF_BRIDGE_PORT = 1<<9, 1664 IFF_OVS_DATAPATH = 1<<10, 1665 IFF_TX_SKB_SHARING = 1<<11, 1666 IFF_UNICAST_FLT = 1<<12, 1667 IFF_TEAM_PORT = 1<<13, 1668 IFF_SUPP_NOFCS = 1<<14, 1669 IFF_LIVE_ADDR_CHANGE = 1<<15, 1670 IFF_MACVLAN = 1<<16, 1671 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1672 IFF_L3MDEV_MASTER = 1<<18, 1673 IFF_NO_QUEUE = 1<<19, 1674 IFF_OPENVSWITCH = 1<<20, 1675 IFF_L3MDEV_SLAVE = 1<<21, 1676 IFF_TEAM = 1<<22, 1677 IFF_RXFH_CONFIGURED = 1<<23, 1678 IFF_PHONY_HEADROOM = 1<<24, 1679 IFF_MACSEC = 1<<25, 1680 IFF_NO_RX_HANDLER = 1<<26, 1681 IFF_FAILOVER = 1<<27, 1682 IFF_FAILOVER_SLAVE = 1<<28, 1683 IFF_L3MDEV_RX_HANDLER = 1<<29, 1684 IFF_NO_ADDRCONF = BIT_ULL(30), 1685 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1686 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1687 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1688}; 1689 1690#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1691#define IFF_EBRIDGE IFF_EBRIDGE 1692#define IFF_BONDING IFF_BONDING 1693#define IFF_ISATAP IFF_ISATAP 1694#define IFF_WAN_HDLC IFF_WAN_HDLC 1695#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1696#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1697#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1698#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1699#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1700#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1701#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1702#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1703#define IFF_TEAM_PORT IFF_TEAM_PORT 1704#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1705#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1706#define IFF_MACVLAN IFF_MACVLAN 1707#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1708#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1709#define IFF_NO_QUEUE IFF_NO_QUEUE 1710#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1711#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1712#define IFF_TEAM IFF_TEAM 1713#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1714#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1715#define IFF_MACSEC IFF_MACSEC 1716#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1717#define IFF_FAILOVER IFF_FAILOVER 1718#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1719#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1720#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1721 1722/* Specifies the type of the struct net_device::ml_priv pointer */ 1723enum netdev_ml_priv_type { 1724 ML_PRIV_NONE, 1725 ML_PRIV_CAN, 1726}; 1727 1728enum netdev_stat_type { 1729 NETDEV_PCPU_STAT_NONE, 1730 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1731 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1732 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1733}; 1734 1735enum netdev_reg_state { 1736 NETREG_UNINITIALIZED = 0, 1737 NETREG_REGISTERED, /* completed register_netdevice */ 1738 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1739 NETREG_UNREGISTERED, /* completed unregister todo */ 1740 NETREG_RELEASED, /* called free_netdev */ 1741 NETREG_DUMMY, /* dummy device for NAPI poll */ 1742}; 1743 1744/** 1745 * struct net_device - The DEVICE structure. 1746 * 1747 * Actually, this whole structure is a big mistake. It mixes I/O 1748 * data with strictly "high-level" data, and it has to know about 1749 * almost every data structure used in the INET module. 1750 * 1751 * @name: This is the first field of the "visible" part of this structure 1752 * (i.e. as seen by users in the "Space.c" file). It is the name 1753 * of the interface. 1754 * 1755 * @name_node: Name hashlist node 1756 * @ifalias: SNMP alias 1757 * @mem_end: Shared memory end 1758 * @mem_start: Shared memory start 1759 * @base_addr: Device I/O address 1760 * @irq: Device IRQ number 1761 * 1762 * @state: Generic network queuing layer state, see netdev_state_t 1763 * @dev_list: The global list of network devices 1764 * @napi_list: List entry used for polling NAPI devices 1765 * @unreg_list: List entry when we are unregistering the 1766 * device; see the function unregister_netdev 1767 * @close_list: List entry used when we are closing the device 1768 * @ptype_all: Device-specific packet handlers for all protocols 1769 * @ptype_specific: Device-specific, protocol-specific packet handlers 1770 * 1771 * @adj_list: Directly linked devices, like slaves for bonding 1772 * @features: Currently active device features 1773 * @hw_features: User-changeable features 1774 * 1775 * @wanted_features: User-requested features 1776 * @vlan_features: Mask of features inheritable by VLAN devices 1777 * 1778 * @hw_enc_features: Mask of features inherited by encapsulating devices 1779 * This field indicates what encapsulation 1780 * offloads the hardware is capable of doing, 1781 * and drivers will need to set them appropriately. 1782 * 1783 * @mpls_features: Mask of features inheritable by MPLS 1784 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1785 * 1786 * @ifindex: interface index 1787 * @group: The group the device belongs to 1788 * 1789 * @stats: Statistics struct, which was left as a legacy, use 1790 * rtnl_link_stats64 instead 1791 * 1792 * @core_stats: core networking counters, 1793 * do not use this in drivers 1794 * @carrier_up_count: Number of times the carrier has been up 1795 * @carrier_down_count: Number of times the carrier has been down 1796 * 1797 * @wireless_handlers: List of functions to handle Wireless Extensions, 1798 * instead of ioctl, 1799 * see <net/iw_handler.h> for details. 1800 * @wireless_data: Instance data managed by the core of wireless extensions 1801 * 1802 * @netdev_ops: Includes several pointers to callbacks, 1803 * if one wants to override the ndo_*() functions 1804 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1805 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1806 * @ethtool_ops: Management operations 1807 * @l3mdev_ops: Layer 3 master device operations 1808 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1809 * discovery handling. Necessary for e.g. 6LoWPAN. 1810 * @xfrmdev_ops: Transformation offload operations 1811 * @tlsdev_ops: Transport Layer Security offload operations 1812 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1813 * of Layer 2 headers. 1814 * 1815 * @flags: Interface flags (a la BSD) 1816 * @xdp_features: XDP capability supported by the device 1817 * @priv_flags: Like 'flags' but invisible to userspace, 1818 * see if.h for the definitions 1819 * @gflags: Global flags ( kept as legacy ) 1820 * @padded: How much padding added by alloc_netdev() 1821 * @operstate: RFC2863 operstate 1822 * @link_mode: Mapping policy to operstate 1823 * @if_port: Selectable AUI, TP, ... 1824 * @dma: DMA channel 1825 * @mtu: Interface MTU value 1826 * @min_mtu: Interface Minimum MTU value 1827 * @max_mtu: Interface Maximum MTU value 1828 * @type: Interface hardware type 1829 * @hard_header_len: Maximum hardware header length. 1830 * @min_header_len: Minimum hardware header length 1831 * 1832 * @needed_headroom: Extra headroom the hardware may need, but not in all 1833 * cases can this be guaranteed 1834 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1835 * cases can this be guaranteed. Some cases also use 1836 * LL_MAX_HEADER instead to allocate the skb 1837 * 1838 * interface address info: 1839 * 1840 * @perm_addr: Permanent hw address 1841 * @addr_assign_type: Hw address assignment type 1842 * @addr_len: Hardware address length 1843 * @upper_level: Maximum depth level of upper devices. 1844 * @lower_level: Maximum depth level of lower devices. 1845 * @neigh_priv_len: Used in neigh_alloc() 1846 * @dev_id: Used to differentiate devices that share 1847 * the same link layer address 1848 * @dev_port: Used to differentiate devices that share 1849 * the same function 1850 * @addr_list_lock: XXX: need comments on this one 1851 * @name_assign_type: network interface name assignment type 1852 * @uc_promisc: Counter that indicates promiscuous mode 1853 * has been enabled due to the need to listen to 1854 * additional unicast addresses in a device that 1855 * does not implement ndo_set_rx_mode() 1856 * @uc: unicast mac addresses 1857 * @mc: multicast mac addresses 1858 * @dev_addrs: list of device hw addresses 1859 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1860 * @promiscuity: Number of times the NIC is told to work in 1861 * promiscuous mode; if it becomes 0 the NIC will 1862 * exit promiscuous mode 1863 * @allmulti: Counter, enables or disables allmulticast mode 1864 * 1865 * @vlan_info: VLAN info 1866 * @dsa_ptr: dsa specific data 1867 * @tipc_ptr: TIPC specific data 1868 * @atalk_ptr: AppleTalk link 1869 * @ip_ptr: IPv4 specific data 1870 * @ip6_ptr: IPv6 specific data 1871 * @ax25_ptr: AX.25 specific data 1872 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1873 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1874 * device struct 1875 * @mpls_ptr: mpls_dev struct pointer 1876 * @mctp_ptr: MCTP specific data 1877 * 1878 * @dev_addr: Hw address (before bcast, 1879 * because most packets are unicast) 1880 * 1881 * @_rx: Array of RX queues 1882 * @num_rx_queues: Number of RX queues 1883 * allocated at register_netdev() time 1884 * @real_num_rx_queues: Number of RX queues currently active in device 1885 * @xdp_prog: XDP sockets filter program pointer 1886 * @gro_flush_timeout: timeout for GRO layer in NAPI 1887 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1888 * allow to avoid NIC hard IRQ, on busy queues. 1889 * 1890 * @rx_handler: handler for received packets 1891 * @rx_handler_data: XXX: need comments on this one 1892 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1893 * @ingress_queue: XXX: need comments on this one 1894 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1895 * @broadcast: hw bcast address 1896 * 1897 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1898 * indexed by RX queue number. Assigned by driver. 1899 * This must only be set if the ndo_rx_flow_steer 1900 * operation is defined 1901 * @index_hlist: Device index hash chain 1902 * 1903 * @_tx: Array of TX queues 1904 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1905 * @real_num_tx_queues: Number of TX queues currently active in device 1906 * @qdisc: Root qdisc from userspace point of view 1907 * @tx_queue_len: Max frames per queue allowed 1908 * @tx_global_lock: XXX: need comments on this one 1909 * @xdp_bulkq: XDP device bulk queue 1910 * @xps_maps: all CPUs/RXQs maps for XPS device 1911 * 1912 * @xps_maps: XXX: need comments on this one 1913 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1914 * @nf_hooks_egress: netfilter hooks executed for egress packets 1915 * @qdisc_hash: qdisc hash table 1916 * @watchdog_timeo: Represents the timeout that is used by 1917 * the watchdog (see dev_watchdog()) 1918 * @watchdog_timer: List of timers 1919 * 1920 * @proto_down_reason: reason a netdev interface is held down 1921 * @pcpu_refcnt: Number of references to this device 1922 * @dev_refcnt: Number of references to this device 1923 * @refcnt_tracker: Tracker directory for tracked references to this device 1924 * @todo_list: Delayed register/unregister 1925 * @link_watch_list: XXX: need comments on this one 1926 * 1927 * @reg_state: Register/unregister state machine 1928 * @dismantle: Device is going to be freed 1929 * @rtnl_link_state: This enum represents the phases of creating 1930 * a new link 1931 * 1932 * @needs_free_netdev: Should unregister perform free_netdev? 1933 * @priv_destructor: Called from unregister 1934 * @npinfo: XXX: need comments on this one 1935 * @nd_net: Network namespace this network device is inside 1936 * 1937 * @ml_priv: Mid-layer private 1938 * @ml_priv_type: Mid-layer private type 1939 * 1940 * @pcpu_stat_type: Type of device statistics which the core should 1941 * allocate/free: none, lstats, tstats, dstats. none 1942 * means the driver is handling statistics allocation/ 1943 * freeing internally. 1944 * @lstats: Loopback statistics: packets, bytes 1945 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1946 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1947 * 1948 * @garp_port: GARP 1949 * @mrp_port: MRP 1950 * 1951 * @dm_private: Drop monitor private 1952 * 1953 * @dev: Class/net/name entry 1954 * @sysfs_groups: Space for optional device, statistics and wireless 1955 * sysfs groups 1956 * 1957 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1958 * @rtnl_link_ops: Rtnl_link_ops 1959 * @stat_ops: Optional ops for queue-aware statistics 1960 * @queue_mgmt_ops: Optional ops for queue management 1961 * 1962 * @gso_max_size: Maximum size of generic segmentation offload 1963 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1964 * @gso_max_segs: Maximum number of segments that can be passed to the 1965 * NIC for GSO 1966 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1967 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1968 * for IPv4. 1969 * 1970 * @dcbnl_ops: Data Center Bridging netlink ops 1971 * @num_tc: Number of traffic classes in the net device 1972 * @tc_to_txq: XXX: need comments on this one 1973 * @prio_tc_map: XXX: need comments on this one 1974 * 1975 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1976 * 1977 * @priomap: XXX: need comments on this one 1978 * @phydev: Physical device may attach itself 1979 * for hardware timestamping 1980 * @sfp_bus: attached &struct sfp_bus structure. 1981 * 1982 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1983 * 1984 * @proto_down: protocol port state information can be sent to the 1985 * switch driver and used to set the phys state of the 1986 * switch port. 1987 * 1988 * @wol_enabled: Wake-on-LAN is enabled 1989 * 1990 * @threaded: napi threaded mode is enabled 1991 * 1992 * @net_notifier_list: List of per-net netdev notifier block 1993 * that follow this device when it is moved 1994 * to another network namespace. 1995 * 1996 * @macsec_ops: MACsec offloading ops 1997 * 1998 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1999 * offload capabilities of the device 2000 * @udp_tunnel_nic: UDP tunnel offload state 2001 * @xdp_state: stores info on attached XDP BPF programs 2002 * 2003 * @nested_level: Used as a parameter of spin_lock_nested() of 2004 * dev->addr_list_lock. 2005 * @unlink_list: As netif_addr_lock() can be called recursively, 2006 * keep a list of interfaces to be deleted. 2007 * @gro_max_size: Maximum size of aggregated packet in generic 2008 * receive offload (GRO) 2009 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2010 * receive offload (GRO), for IPv4. 2011 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2012 * zero copy driver 2013 * 2014 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2015 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2016 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2017 * @dev_registered_tracker: tracker for reference held while 2018 * registered 2019 * @offload_xstats_l3: L3 HW stats for this netdevice. 2020 * 2021 * @devlink_port: Pointer to related devlink port structure. 2022 * Assigned by a driver before netdev registration using 2023 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2024 * during the time netdevice is registered. 2025 * 2026 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2027 * where the clock is recovered. 2028 * 2029 * FIXME: cleanup struct net_device such that network protocol info 2030 * moves out. 2031 */ 2032 2033struct net_device { 2034 /* Cacheline organization can be found documented in 2035 * Documentation/networking/net_cachelines/net_device.rst. 2036 * Please update the document when adding new fields. 2037 */ 2038 2039 /* TX read-mostly hotpath */ 2040 __cacheline_group_begin(net_device_read_tx); 2041 unsigned long long priv_flags; 2042 const struct net_device_ops *netdev_ops; 2043 const struct header_ops *header_ops; 2044 struct netdev_queue *_tx; 2045 netdev_features_t gso_partial_features; 2046 unsigned int real_num_tx_queues; 2047 unsigned int gso_max_size; 2048 unsigned int gso_ipv4_max_size; 2049 u16 gso_max_segs; 2050 s16 num_tc; 2051 /* Note : dev->mtu is often read without holding a lock. 2052 * Writers usually hold RTNL. 2053 * It is recommended to use READ_ONCE() to annotate the reads, 2054 * and to use WRITE_ONCE() to annotate the writes. 2055 */ 2056 unsigned int mtu; 2057 unsigned short needed_headroom; 2058 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2059#ifdef CONFIG_XPS 2060 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2061#endif 2062#ifdef CONFIG_NETFILTER_EGRESS 2063 struct nf_hook_entries __rcu *nf_hooks_egress; 2064#endif 2065#ifdef CONFIG_NET_XGRESS 2066 struct bpf_mprog_entry __rcu *tcx_egress; 2067#endif 2068 __cacheline_group_end(net_device_read_tx); 2069 2070 /* TXRX read-mostly hotpath */ 2071 __cacheline_group_begin(net_device_read_txrx); 2072 union { 2073 struct pcpu_lstats __percpu *lstats; 2074 struct pcpu_sw_netstats __percpu *tstats; 2075 struct pcpu_dstats __percpu *dstats; 2076 }; 2077 unsigned long state; 2078 unsigned int flags; 2079 unsigned short hard_header_len; 2080 netdev_features_t features; 2081 struct inet6_dev __rcu *ip6_ptr; 2082 __cacheline_group_end(net_device_read_txrx); 2083 2084 /* RX read-mostly hotpath */ 2085 __cacheline_group_begin(net_device_read_rx); 2086 struct bpf_prog __rcu *xdp_prog; 2087 struct list_head ptype_specific; 2088 int ifindex; 2089 unsigned int real_num_rx_queues; 2090 struct netdev_rx_queue *_rx; 2091 unsigned long gro_flush_timeout; 2092 int napi_defer_hard_irqs; 2093 unsigned int gro_max_size; 2094 unsigned int gro_ipv4_max_size; 2095 rx_handler_func_t __rcu *rx_handler; 2096 void __rcu *rx_handler_data; 2097 possible_net_t nd_net; 2098#ifdef CONFIG_NETPOLL 2099 struct netpoll_info __rcu *npinfo; 2100#endif 2101#ifdef CONFIG_NET_XGRESS 2102 struct bpf_mprog_entry __rcu *tcx_ingress; 2103#endif 2104 __cacheline_group_end(net_device_read_rx); 2105 2106 char name[IFNAMSIZ]; 2107 struct netdev_name_node *name_node; 2108 struct dev_ifalias __rcu *ifalias; 2109 /* 2110 * I/O specific fields 2111 * FIXME: Merge these and struct ifmap into one 2112 */ 2113 unsigned long mem_end; 2114 unsigned long mem_start; 2115 unsigned long base_addr; 2116 2117 /* 2118 * Some hardware also needs these fields (state,dev_list, 2119 * napi_list,unreg_list,close_list) but they are not 2120 * part of the usual set specified in Space.c. 2121 */ 2122 2123 2124 struct list_head dev_list; 2125 struct list_head napi_list; 2126 struct list_head unreg_list; 2127 struct list_head close_list; 2128 struct list_head ptype_all; 2129 2130 struct { 2131 struct list_head upper; 2132 struct list_head lower; 2133 } adj_list; 2134 2135 /* Read-mostly cache-line for fast-path access */ 2136 xdp_features_t xdp_features; 2137 const struct xdp_metadata_ops *xdp_metadata_ops; 2138 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2139 unsigned short gflags; 2140 2141 unsigned short needed_tailroom; 2142 2143 netdev_features_t hw_features; 2144 netdev_features_t wanted_features; 2145 netdev_features_t vlan_features; 2146 netdev_features_t hw_enc_features; 2147 netdev_features_t mpls_features; 2148 2149 unsigned int min_mtu; 2150 unsigned int max_mtu; 2151 unsigned short type; 2152 unsigned char min_header_len; 2153 unsigned char name_assign_type; 2154 2155 int group; 2156 2157 struct net_device_stats stats; /* not used by modern drivers */ 2158 2159 struct net_device_core_stats __percpu *core_stats; 2160 2161 /* Stats to monitor link on/off, flapping */ 2162 atomic_t carrier_up_count; 2163 atomic_t carrier_down_count; 2164 2165#ifdef CONFIG_WIRELESS_EXT 2166 const struct iw_handler_def *wireless_handlers; 2167 struct iw_public_data *wireless_data; 2168#endif 2169 const struct ethtool_ops *ethtool_ops; 2170#ifdef CONFIG_NET_L3_MASTER_DEV 2171 const struct l3mdev_ops *l3mdev_ops; 2172#endif 2173#if IS_ENABLED(CONFIG_IPV6) 2174 const struct ndisc_ops *ndisc_ops; 2175#endif 2176 2177#ifdef CONFIG_XFRM_OFFLOAD 2178 const struct xfrmdev_ops *xfrmdev_ops; 2179#endif 2180 2181#if IS_ENABLED(CONFIG_TLS_DEVICE) 2182 const struct tlsdev_ops *tlsdev_ops; 2183#endif 2184 2185 unsigned int operstate; 2186 unsigned char link_mode; 2187 2188 unsigned char if_port; 2189 unsigned char dma; 2190 2191 /* Interface address info. */ 2192 unsigned char perm_addr[MAX_ADDR_LEN]; 2193 unsigned char addr_assign_type; 2194 unsigned char addr_len; 2195 unsigned char upper_level; 2196 unsigned char lower_level; 2197 2198 unsigned short neigh_priv_len; 2199 unsigned short dev_id; 2200 unsigned short dev_port; 2201 unsigned short padded; 2202 2203 spinlock_t addr_list_lock; 2204 int irq; 2205 2206 struct netdev_hw_addr_list uc; 2207 struct netdev_hw_addr_list mc; 2208 struct netdev_hw_addr_list dev_addrs; 2209 2210#ifdef CONFIG_SYSFS 2211 struct kset *queues_kset; 2212#endif 2213#ifdef CONFIG_LOCKDEP 2214 struct list_head unlink_list; 2215#endif 2216 unsigned int promiscuity; 2217 unsigned int allmulti; 2218 bool uc_promisc; 2219#ifdef CONFIG_LOCKDEP 2220 unsigned char nested_level; 2221#endif 2222 2223 2224 /* Protocol-specific pointers */ 2225 struct in_device __rcu *ip_ptr; 2226#if IS_ENABLED(CONFIG_VLAN_8021Q) 2227 struct vlan_info __rcu *vlan_info; 2228#endif 2229#if IS_ENABLED(CONFIG_NET_DSA) 2230 struct dsa_port *dsa_ptr; 2231#endif 2232#if IS_ENABLED(CONFIG_TIPC) 2233 struct tipc_bearer __rcu *tipc_ptr; 2234#endif 2235#if IS_ENABLED(CONFIG_ATALK) 2236 void *atalk_ptr; 2237#endif 2238#if IS_ENABLED(CONFIG_AX25) 2239 void *ax25_ptr; 2240#endif 2241#if IS_ENABLED(CONFIG_CFG80211) 2242 struct wireless_dev *ieee80211_ptr; 2243#endif 2244#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2245 struct wpan_dev *ieee802154_ptr; 2246#endif 2247#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2248 struct mpls_dev __rcu *mpls_ptr; 2249#endif 2250#if IS_ENABLED(CONFIG_MCTP) 2251 struct mctp_dev __rcu *mctp_ptr; 2252#endif 2253 2254/* 2255 * Cache lines mostly used on receive path (including eth_type_trans()) 2256 */ 2257 /* Interface address info used in eth_type_trans() */ 2258 const unsigned char *dev_addr; 2259 2260 unsigned int num_rx_queues; 2261#define GRO_LEGACY_MAX_SIZE 65536u 2262/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2263 * and shinfo->gso_segs is a 16bit field. 2264 */ 2265#define GRO_MAX_SIZE (8 * 65535u) 2266 unsigned int xdp_zc_max_segs; 2267 struct netdev_queue __rcu *ingress_queue; 2268#ifdef CONFIG_NETFILTER_INGRESS 2269 struct nf_hook_entries __rcu *nf_hooks_ingress; 2270#endif 2271 2272 unsigned char broadcast[MAX_ADDR_LEN]; 2273#ifdef CONFIG_RFS_ACCEL 2274 struct cpu_rmap *rx_cpu_rmap; 2275#endif 2276 struct hlist_node index_hlist; 2277 2278/* 2279 * Cache lines mostly used on transmit path 2280 */ 2281 unsigned int num_tx_queues; 2282 struct Qdisc __rcu *qdisc; 2283 unsigned int tx_queue_len; 2284 spinlock_t tx_global_lock; 2285 2286 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2287 2288#ifdef CONFIG_NET_SCHED 2289 DECLARE_HASHTABLE (qdisc_hash, 4); 2290#endif 2291 /* These may be needed for future network-power-down code. */ 2292 struct timer_list watchdog_timer; 2293 int watchdog_timeo; 2294 2295 u32 proto_down_reason; 2296 2297 struct list_head todo_list; 2298 2299#ifdef CONFIG_PCPU_DEV_REFCNT 2300 int __percpu *pcpu_refcnt; 2301#else 2302 refcount_t dev_refcnt; 2303#endif 2304 struct ref_tracker_dir refcnt_tracker; 2305 2306 struct list_head link_watch_list; 2307 2308 u8 reg_state; 2309 2310 bool dismantle; 2311 2312 enum { 2313 RTNL_LINK_INITIALIZED, 2314 RTNL_LINK_INITIALIZING, 2315 } rtnl_link_state:16; 2316 2317 bool needs_free_netdev; 2318 void (*priv_destructor)(struct net_device *dev); 2319 2320 /* mid-layer private */ 2321 void *ml_priv; 2322 enum netdev_ml_priv_type ml_priv_type; 2323 2324 enum netdev_stat_type pcpu_stat_type:8; 2325 2326#if IS_ENABLED(CONFIG_GARP) 2327 struct garp_port __rcu *garp_port; 2328#endif 2329#if IS_ENABLED(CONFIG_MRP) 2330 struct mrp_port __rcu *mrp_port; 2331#endif 2332#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2333 struct dm_hw_stat_delta __rcu *dm_private; 2334#endif 2335 struct device dev; 2336 const struct attribute_group *sysfs_groups[4]; 2337 const struct attribute_group *sysfs_rx_queue_group; 2338 2339 const struct rtnl_link_ops *rtnl_link_ops; 2340 2341 const struct netdev_stat_ops *stat_ops; 2342 2343 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2344 2345 /* for setting kernel sock attribute on TCP connection setup */ 2346#define GSO_MAX_SEGS 65535u 2347#define GSO_LEGACY_MAX_SIZE 65536u 2348/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2349 * and shinfo->gso_segs is a 16bit field. 2350 */ 2351#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2352 2353#define TSO_LEGACY_MAX_SIZE 65536 2354#define TSO_MAX_SIZE UINT_MAX 2355 unsigned int tso_max_size; 2356#define TSO_MAX_SEGS U16_MAX 2357 u16 tso_max_segs; 2358 2359#ifdef CONFIG_DCB 2360 const struct dcbnl_rtnl_ops *dcbnl_ops; 2361#endif 2362 u8 prio_tc_map[TC_BITMASK + 1]; 2363 2364#if IS_ENABLED(CONFIG_FCOE) 2365 unsigned int fcoe_ddp_xid; 2366#endif 2367#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2368 struct netprio_map __rcu *priomap; 2369#endif 2370 struct phy_device *phydev; 2371 struct sfp_bus *sfp_bus; 2372 struct lock_class_key *qdisc_tx_busylock; 2373 bool proto_down; 2374 bool threaded; 2375 unsigned wol_enabled:1; 2376 2377 struct list_head net_notifier_list; 2378 2379#if IS_ENABLED(CONFIG_MACSEC) 2380 /* MACsec management functions */ 2381 const struct macsec_ops *macsec_ops; 2382#endif 2383 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2384 struct udp_tunnel_nic *udp_tunnel_nic; 2385 2386 /* protected by rtnl_lock */ 2387 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2388 2389 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2390 netdevice_tracker linkwatch_dev_tracker; 2391 netdevice_tracker watchdog_dev_tracker; 2392 netdevice_tracker dev_registered_tracker; 2393 struct rtnl_hw_stats64 *offload_xstats_l3; 2394 2395 struct devlink_port *devlink_port; 2396 2397#if IS_ENABLED(CONFIG_DPLL) 2398 struct dpll_pin __rcu *dpll_pin; 2399#endif 2400#if IS_ENABLED(CONFIG_PAGE_POOL) 2401 /** @page_pools: page pools created for this netdevice */ 2402 struct hlist_head page_pools; 2403#endif 2404}; 2405#define to_net_dev(d) container_of(d, struct net_device, dev) 2406 2407/* 2408 * Driver should use this to assign devlink port instance to a netdevice 2409 * before it registers the netdevice. Therefore devlink_port is static 2410 * during the netdev lifetime after it is registered. 2411 */ 2412#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2413({ \ 2414 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2415 ((dev)->devlink_port = (port)); \ 2416}) 2417 2418static inline bool netif_elide_gro(const struct net_device *dev) 2419{ 2420 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2421 return true; 2422 return false; 2423} 2424 2425#define NETDEV_ALIGN 32 2426 2427static inline 2428int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2429{ 2430 return dev->prio_tc_map[prio & TC_BITMASK]; 2431} 2432 2433static inline 2434int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2435{ 2436 if (tc >= dev->num_tc) 2437 return -EINVAL; 2438 2439 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2440 return 0; 2441} 2442 2443int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2444void netdev_reset_tc(struct net_device *dev); 2445int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2446int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2447 2448static inline 2449int netdev_get_num_tc(struct net_device *dev) 2450{ 2451 return dev->num_tc; 2452} 2453 2454static inline void net_prefetch(void *p) 2455{ 2456 prefetch(p); 2457#if L1_CACHE_BYTES < 128 2458 prefetch((u8 *)p + L1_CACHE_BYTES); 2459#endif 2460} 2461 2462static inline void net_prefetchw(void *p) 2463{ 2464 prefetchw(p); 2465#if L1_CACHE_BYTES < 128 2466 prefetchw((u8 *)p + L1_CACHE_BYTES); 2467#endif 2468} 2469 2470void netdev_unbind_sb_channel(struct net_device *dev, 2471 struct net_device *sb_dev); 2472int netdev_bind_sb_channel_queue(struct net_device *dev, 2473 struct net_device *sb_dev, 2474 u8 tc, u16 count, u16 offset); 2475int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2476static inline int netdev_get_sb_channel(struct net_device *dev) 2477{ 2478 return max_t(int, -dev->num_tc, 0); 2479} 2480 2481static inline 2482struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2483 unsigned int index) 2484{ 2485 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2486 return &dev->_tx[index]; 2487} 2488 2489static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2490 const struct sk_buff *skb) 2491{ 2492 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2493} 2494 2495static inline void netdev_for_each_tx_queue(struct net_device *dev, 2496 void (*f)(struct net_device *, 2497 struct netdev_queue *, 2498 void *), 2499 void *arg) 2500{ 2501 unsigned int i; 2502 2503 for (i = 0; i < dev->num_tx_queues; i++) 2504 f(dev, &dev->_tx[i], arg); 2505} 2506 2507#define netdev_lockdep_set_classes(dev) \ 2508{ \ 2509 static struct lock_class_key qdisc_tx_busylock_key; \ 2510 static struct lock_class_key qdisc_xmit_lock_key; \ 2511 static struct lock_class_key dev_addr_list_lock_key; \ 2512 unsigned int i; \ 2513 \ 2514 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2515 lockdep_set_class(&(dev)->addr_list_lock, \ 2516 &dev_addr_list_lock_key); \ 2517 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2518 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2519 &qdisc_xmit_lock_key); \ 2520} 2521 2522u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2523 struct net_device *sb_dev); 2524struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2525 struct sk_buff *skb, 2526 struct net_device *sb_dev); 2527 2528/* returns the headroom that the master device needs to take in account 2529 * when forwarding to this dev 2530 */ 2531static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2532{ 2533 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2534} 2535 2536static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2537{ 2538 if (dev->netdev_ops->ndo_set_rx_headroom) 2539 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2540} 2541 2542/* set the device rx headroom to the dev's default */ 2543static inline void netdev_reset_rx_headroom(struct net_device *dev) 2544{ 2545 netdev_set_rx_headroom(dev, -1); 2546} 2547 2548static inline void *netdev_get_ml_priv(struct net_device *dev, 2549 enum netdev_ml_priv_type type) 2550{ 2551 if (dev->ml_priv_type != type) 2552 return NULL; 2553 2554 return dev->ml_priv; 2555} 2556 2557static inline void netdev_set_ml_priv(struct net_device *dev, 2558 void *ml_priv, 2559 enum netdev_ml_priv_type type) 2560{ 2561 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2562 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2563 dev->ml_priv_type, type); 2564 WARN(!dev->ml_priv_type && dev->ml_priv, 2565 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2566 2567 dev->ml_priv = ml_priv; 2568 dev->ml_priv_type = type; 2569} 2570 2571/* 2572 * Net namespace inlines 2573 */ 2574static inline 2575struct net *dev_net(const struct net_device *dev) 2576{ 2577 return read_pnet(&dev->nd_net); 2578} 2579 2580static inline 2581void dev_net_set(struct net_device *dev, struct net *net) 2582{ 2583 write_pnet(&dev->nd_net, net); 2584} 2585 2586/** 2587 * netdev_priv - access network device private data 2588 * @dev: network device 2589 * 2590 * Get network device private data 2591 */ 2592static inline void *netdev_priv(const struct net_device *dev) 2593{ 2594 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2595} 2596 2597/* Set the sysfs physical device reference for the network logical device 2598 * if set prior to registration will cause a symlink during initialization. 2599 */ 2600#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2601 2602/* Set the sysfs device type for the network logical device to allow 2603 * fine-grained identification of different network device types. For 2604 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2605 */ 2606#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2607 2608void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2609 enum netdev_queue_type type, 2610 struct napi_struct *napi); 2611 2612static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2613{ 2614 napi->irq = irq; 2615} 2616 2617/* Default NAPI poll() weight 2618 * Device drivers are strongly advised to not use bigger value 2619 */ 2620#define NAPI_POLL_WEIGHT 64 2621 2622void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2623 int (*poll)(struct napi_struct *, int), int weight); 2624 2625/** 2626 * netif_napi_add() - initialize a NAPI context 2627 * @dev: network device 2628 * @napi: NAPI context 2629 * @poll: polling function 2630 * 2631 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2632 * *any* of the other NAPI-related functions. 2633 */ 2634static inline void 2635netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2636 int (*poll)(struct napi_struct *, int)) 2637{ 2638 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2639} 2640 2641static inline void 2642netif_napi_add_tx_weight(struct net_device *dev, 2643 struct napi_struct *napi, 2644 int (*poll)(struct napi_struct *, int), 2645 int weight) 2646{ 2647 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2648 netif_napi_add_weight(dev, napi, poll, weight); 2649} 2650 2651/** 2652 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2653 * @dev: network device 2654 * @napi: NAPI context 2655 * @poll: polling function 2656 * 2657 * This variant of netif_napi_add() should be used from drivers using NAPI 2658 * to exclusively poll a TX queue. 2659 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2660 */ 2661static inline void netif_napi_add_tx(struct net_device *dev, 2662 struct napi_struct *napi, 2663 int (*poll)(struct napi_struct *, int)) 2664{ 2665 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2666} 2667 2668/** 2669 * __netif_napi_del - remove a NAPI context 2670 * @napi: NAPI context 2671 * 2672 * Warning: caller must observe RCU grace period before freeing memory 2673 * containing @napi. Drivers might want to call this helper to combine 2674 * all the needed RCU grace periods into a single one. 2675 */ 2676void __netif_napi_del(struct napi_struct *napi); 2677 2678/** 2679 * netif_napi_del - remove a NAPI context 2680 * @napi: NAPI context 2681 * 2682 * netif_napi_del() removes a NAPI context from the network device NAPI list 2683 */ 2684static inline void netif_napi_del(struct napi_struct *napi) 2685{ 2686 __netif_napi_del(napi); 2687 synchronize_net(); 2688} 2689 2690struct packet_type { 2691 __be16 type; /* This is really htons(ether_type). */ 2692 bool ignore_outgoing; 2693 struct net_device *dev; /* NULL is wildcarded here */ 2694 netdevice_tracker dev_tracker; 2695 int (*func) (struct sk_buff *, 2696 struct net_device *, 2697 struct packet_type *, 2698 struct net_device *); 2699 void (*list_func) (struct list_head *, 2700 struct packet_type *, 2701 struct net_device *); 2702 bool (*id_match)(struct packet_type *ptype, 2703 struct sock *sk); 2704 struct net *af_packet_net; 2705 void *af_packet_priv; 2706 struct list_head list; 2707}; 2708 2709struct offload_callbacks { 2710 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2711 netdev_features_t features); 2712 struct sk_buff *(*gro_receive)(struct list_head *head, 2713 struct sk_buff *skb); 2714 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2715}; 2716 2717struct packet_offload { 2718 __be16 type; /* This is really htons(ether_type). */ 2719 u16 priority; 2720 struct offload_callbacks callbacks; 2721 struct list_head list; 2722}; 2723 2724/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2725struct pcpu_sw_netstats { 2726 u64_stats_t rx_packets; 2727 u64_stats_t rx_bytes; 2728 u64_stats_t tx_packets; 2729 u64_stats_t tx_bytes; 2730 struct u64_stats_sync syncp; 2731} __aligned(4 * sizeof(u64)); 2732 2733struct pcpu_dstats { 2734 u64 rx_packets; 2735 u64 rx_bytes; 2736 u64 rx_drops; 2737 u64 tx_packets; 2738 u64 tx_bytes; 2739 u64 tx_drops; 2740 struct u64_stats_sync syncp; 2741} __aligned(8 * sizeof(u64)); 2742 2743struct pcpu_lstats { 2744 u64_stats_t packets; 2745 u64_stats_t bytes; 2746 struct u64_stats_sync syncp; 2747} __aligned(2 * sizeof(u64)); 2748 2749void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2750 2751static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2752{ 2753 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2754 2755 u64_stats_update_begin(&tstats->syncp); 2756 u64_stats_add(&tstats->rx_bytes, len); 2757 u64_stats_inc(&tstats->rx_packets); 2758 u64_stats_update_end(&tstats->syncp); 2759} 2760 2761static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2762 unsigned int packets, 2763 unsigned int len) 2764{ 2765 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2766 2767 u64_stats_update_begin(&tstats->syncp); 2768 u64_stats_add(&tstats->tx_bytes, len); 2769 u64_stats_add(&tstats->tx_packets, packets); 2770 u64_stats_update_end(&tstats->syncp); 2771} 2772 2773static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2774{ 2775 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2776 2777 u64_stats_update_begin(&lstats->syncp); 2778 u64_stats_add(&lstats->bytes, len); 2779 u64_stats_inc(&lstats->packets); 2780 u64_stats_update_end(&lstats->syncp); 2781} 2782 2783#define __netdev_alloc_pcpu_stats(type, gfp) \ 2784({ \ 2785 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2786 if (pcpu_stats) { \ 2787 int __cpu; \ 2788 for_each_possible_cpu(__cpu) { \ 2789 typeof(type) *stat; \ 2790 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2791 u64_stats_init(&stat->syncp); \ 2792 } \ 2793 } \ 2794 pcpu_stats; \ 2795}) 2796 2797#define netdev_alloc_pcpu_stats(type) \ 2798 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2799 2800#define devm_netdev_alloc_pcpu_stats(dev, type) \ 2801({ \ 2802 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2803 if (pcpu_stats) { \ 2804 int __cpu; \ 2805 for_each_possible_cpu(__cpu) { \ 2806 typeof(type) *stat; \ 2807 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2808 u64_stats_init(&stat->syncp); \ 2809 } \ 2810 } \ 2811 pcpu_stats; \ 2812}) 2813 2814enum netdev_lag_tx_type { 2815 NETDEV_LAG_TX_TYPE_UNKNOWN, 2816 NETDEV_LAG_TX_TYPE_RANDOM, 2817 NETDEV_LAG_TX_TYPE_BROADCAST, 2818 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2819 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2820 NETDEV_LAG_TX_TYPE_HASH, 2821}; 2822 2823enum netdev_lag_hash { 2824 NETDEV_LAG_HASH_NONE, 2825 NETDEV_LAG_HASH_L2, 2826 NETDEV_LAG_HASH_L34, 2827 NETDEV_LAG_HASH_L23, 2828 NETDEV_LAG_HASH_E23, 2829 NETDEV_LAG_HASH_E34, 2830 NETDEV_LAG_HASH_VLAN_SRCMAC, 2831 NETDEV_LAG_HASH_UNKNOWN, 2832}; 2833 2834struct netdev_lag_upper_info { 2835 enum netdev_lag_tx_type tx_type; 2836 enum netdev_lag_hash hash_type; 2837}; 2838 2839struct netdev_lag_lower_state_info { 2840 u8 link_up : 1, 2841 tx_enabled : 1; 2842}; 2843 2844#include <linux/notifier.h> 2845 2846/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2847 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2848 * adding new types. 2849 */ 2850enum netdev_cmd { 2851 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2852 NETDEV_DOWN, 2853 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2854 detected a hardware crash and restarted 2855 - we can use this eg to kick tcp sessions 2856 once done */ 2857 NETDEV_CHANGE, /* Notify device state change */ 2858 NETDEV_REGISTER, 2859 NETDEV_UNREGISTER, 2860 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2861 NETDEV_CHANGEADDR, /* notify after the address change */ 2862 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2863 NETDEV_GOING_DOWN, 2864 NETDEV_CHANGENAME, 2865 NETDEV_FEAT_CHANGE, 2866 NETDEV_BONDING_FAILOVER, 2867 NETDEV_PRE_UP, 2868 NETDEV_PRE_TYPE_CHANGE, 2869 NETDEV_POST_TYPE_CHANGE, 2870 NETDEV_POST_INIT, 2871 NETDEV_PRE_UNINIT, 2872 NETDEV_RELEASE, 2873 NETDEV_NOTIFY_PEERS, 2874 NETDEV_JOIN, 2875 NETDEV_CHANGEUPPER, 2876 NETDEV_RESEND_IGMP, 2877 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2878 NETDEV_CHANGEINFODATA, 2879 NETDEV_BONDING_INFO, 2880 NETDEV_PRECHANGEUPPER, 2881 NETDEV_CHANGELOWERSTATE, 2882 NETDEV_UDP_TUNNEL_PUSH_INFO, 2883 NETDEV_UDP_TUNNEL_DROP_INFO, 2884 NETDEV_CHANGE_TX_QUEUE_LEN, 2885 NETDEV_CVLAN_FILTER_PUSH_INFO, 2886 NETDEV_CVLAN_FILTER_DROP_INFO, 2887 NETDEV_SVLAN_FILTER_PUSH_INFO, 2888 NETDEV_SVLAN_FILTER_DROP_INFO, 2889 NETDEV_OFFLOAD_XSTATS_ENABLE, 2890 NETDEV_OFFLOAD_XSTATS_DISABLE, 2891 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2892 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2893 NETDEV_XDP_FEAT_CHANGE, 2894}; 2895const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2896 2897int register_netdevice_notifier(struct notifier_block *nb); 2898int unregister_netdevice_notifier(struct notifier_block *nb); 2899int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2900int unregister_netdevice_notifier_net(struct net *net, 2901 struct notifier_block *nb); 2902int register_netdevice_notifier_dev_net(struct net_device *dev, 2903 struct notifier_block *nb, 2904 struct netdev_net_notifier *nn); 2905int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2906 struct notifier_block *nb, 2907 struct netdev_net_notifier *nn); 2908 2909struct netdev_notifier_info { 2910 struct net_device *dev; 2911 struct netlink_ext_ack *extack; 2912}; 2913 2914struct netdev_notifier_info_ext { 2915 struct netdev_notifier_info info; /* must be first */ 2916 union { 2917 u32 mtu; 2918 } ext; 2919}; 2920 2921struct netdev_notifier_change_info { 2922 struct netdev_notifier_info info; /* must be first */ 2923 unsigned int flags_changed; 2924}; 2925 2926struct netdev_notifier_changeupper_info { 2927 struct netdev_notifier_info info; /* must be first */ 2928 struct net_device *upper_dev; /* new upper dev */ 2929 bool master; /* is upper dev master */ 2930 bool linking; /* is the notification for link or unlink */ 2931 void *upper_info; /* upper dev info */ 2932}; 2933 2934struct netdev_notifier_changelowerstate_info { 2935 struct netdev_notifier_info info; /* must be first */ 2936 void *lower_state_info; /* is lower dev state */ 2937}; 2938 2939struct netdev_notifier_pre_changeaddr_info { 2940 struct netdev_notifier_info info; /* must be first */ 2941 const unsigned char *dev_addr; 2942}; 2943 2944enum netdev_offload_xstats_type { 2945 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2946}; 2947 2948struct netdev_notifier_offload_xstats_info { 2949 struct netdev_notifier_info info; /* must be first */ 2950 enum netdev_offload_xstats_type type; 2951 2952 union { 2953 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2954 struct netdev_notifier_offload_xstats_rd *report_delta; 2955 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2956 struct netdev_notifier_offload_xstats_ru *report_used; 2957 }; 2958}; 2959 2960int netdev_offload_xstats_enable(struct net_device *dev, 2961 enum netdev_offload_xstats_type type, 2962 struct netlink_ext_ack *extack); 2963int netdev_offload_xstats_disable(struct net_device *dev, 2964 enum netdev_offload_xstats_type type); 2965bool netdev_offload_xstats_enabled(const struct net_device *dev, 2966 enum netdev_offload_xstats_type type); 2967int netdev_offload_xstats_get(struct net_device *dev, 2968 enum netdev_offload_xstats_type type, 2969 struct rtnl_hw_stats64 *stats, bool *used, 2970 struct netlink_ext_ack *extack); 2971void 2972netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2973 const struct rtnl_hw_stats64 *stats); 2974void 2975netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2976void netdev_offload_xstats_push_delta(struct net_device *dev, 2977 enum netdev_offload_xstats_type type, 2978 const struct rtnl_hw_stats64 *stats); 2979 2980static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2981 struct net_device *dev) 2982{ 2983 info->dev = dev; 2984 info->extack = NULL; 2985} 2986 2987static inline struct net_device * 2988netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2989{ 2990 return info->dev; 2991} 2992 2993static inline struct netlink_ext_ack * 2994netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2995{ 2996 return info->extack; 2997} 2998 2999int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3000int call_netdevice_notifiers_info(unsigned long val, 3001 struct netdev_notifier_info *info); 3002 3003#define for_each_netdev(net, d) \ 3004 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3005#define for_each_netdev_reverse(net, d) \ 3006 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3007#define for_each_netdev_rcu(net, d) \ 3008 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3009#define for_each_netdev_safe(net, d, n) \ 3010 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3011#define for_each_netdev_continue(net, d) \ 3012 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3013#define for_each_netdev_continue_reverse(net, d) \ 3014 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3015 dev_list) 3016#define for_each_netdev_continue_rcu(net, d) \ 3017 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3018#define for_each_netdev_in_bond_rcu(bond, slave) \ 3019 for_each_netdev_rcu(&init_net, slave) \ 3020 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3021#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3022 3023#define for_each_netdev_dump(net, d, ifindex) \ 3024 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3025 3026static inline struct net_device *next_net_device(struct net_device *dev) 3027{ 3028 struct list_head *lh; 3029 struct net *net; 3030 3031 net = dev_net(dev); 3032 lh = dev->dev_list.next; 3033 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3034} 3035 3036static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3037{ 3038 struct list_head *lh; 3039 struct net *net; 3040 3041 net = dev_net(dev); 3042 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3043 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3044} 3045 3046static inline struct net_device *first_net_device(struct net *net) 3047{ 3048 return list_empty(&net->dev_base_head) ? NULL : 3049 net_device_entry(net->dev_base_head.next); 3050} 3051 3052static inline struct net_device *first_net_device_rcu(struct net *net) 3053{ 3054 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3055 3056 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3057} 3058 3059int netdev_boot_setup_check(struct net_device *dev); 3060struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3061 const char *hwaddr); 3062struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3063void dev_add_pack(struct packet_type *pt); 3064void dev_remove_pack(struct packet_type *pt); 3065void __dev_remove_pack(struct packet_type *pt); 3066void dev_add_offload(struct packet_offload *po); 3067void dev_remove_offload(struct packet_offload *po); 3068 3069int dev_get_iflink(const struct net_device *dev); 3070int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3071int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3072 struct net_device_path_stack *stack); 3073struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3074 unsigned short mask); 3075struct net_device *dev_get_by_name(struct net *net, const char *name); 3076struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3077struct net_device *__dev_get_by_name(struct net *net, const char *name); 3078bool netdev_name_in_use(struct net *net, const char *name); 3079int dev_alloc_name(struct net_device *dev, const char *name); 3080int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3081void dev_close(struct net_device *dev); 3082void dev_close_many(struct list_head *head, bool unlink); 3083void dev_disable_lro(struct net_device *dev); 3084int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3085u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3086 struct net_device *sb_dev); 3087u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3088 struct net_device *sb_dev); 3089 3090int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3091int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3092 3093static inline int dev_queue_xmit(struct sk_buff *skb) 3094{ 3095 return __dev_queue_xmit(skb, NULL); 3096} 3097 3098static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3099 struct net_device *sb_dev) 3100{ 3101 return __dev_queue_xmit(skb, sb_dev); 3102} 3103 3104static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3105{ 3106 int ret; 3107 3108 ret = __dev_direct_xmit(skb, queue_id); 3109 if (!dev_xmit_complete(ret)) 3110 kfree_skb(skb); 3111 return ret; 3112} 3113 3114int register_netdevice(struct net_device *dev); 3115void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3116void unregister_netdevice_many(struct list_head *head); 3117static inline void unregister_netdevice(struct net_device *dev) 3118{ 3119 unregister_netdevice_queue(dev, NULL); 3120} 3121 3122int netdev_refcnt_read(const struct net_device *dev); 3123void free_netdev(struct net_device *dev); 3124void netdev_freemem(struct net_device *dev); 3125void init_dummy_netdev(struct net_device *dev); 3126 3127struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3128 struct sk_buff *skb, 3129 bool all_slaves); 3130struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3131 struct sock *sk); 3132struct net_device *dev_get_by_index(struct net *net, int ifindex); 3133struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3134struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3135 netdevice_tracker *tracker, gfp_t gfp); 3136struct net_device *netdev_get_by_name(struct net *net, const char *name, 3137 netdevice_tracker *tracker, gfp_t gfp); 3138struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3139struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3140void netdev_copy_name(struct net_device *dev, char *name); 3141 3142static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3143 unsigned short type, 3144 const void *daddr, const void *saddr, 3145 unsigned int len) 3146{ 3147 if (!dev->header_ops || !dev->header_ops->create) 3148 return 0; 3149 3150 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3151} 3152 3153static inline int dev_parse_header(const struct sk_buff *skb, 3154 unsigned char *haddr) 3155{ 3156 const struct net_device *dev = skb->dev; 3157 3158 if (!dev->header_ops || !dev->header_ops->parse) 3159 return 0; 3160 return dev->header_ops->parse(skb, haddr); 3161} 3162 3163static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3164{ 3165 const struct net_device *dev = skb->dev; 3166 3167 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3168 return 0; 3169 return dev->header_ops->parse_protocol(skb); 3170} 3171 3172/* ll_header must have at least hard_header_len allocated */ 3173static inline bool dev_validate_header(const struct net_device *dev, 3174 char *ll_header, int len) 3175{ 3176 if (likely(len >= dev->hard_header_len)) 3177 return true; 3178 if (len < dev->min_header_len) 3179 return false; 3180 3181 if (capable(CAP_SYS_RAWIO)) { 3182 memset(ll_header + len, 0, dev->hard_header_len - len); 3183 return true; 3184 } 3185 3186 if (dev->header_ops && dev->header_ops->validate) 3187 return dev->header_ops->validate(ll_header, len); 3188 3189 return false; 3190} 3191 3192static inline bool dev_has_header(const struct net_device *dev) 3193{ 3194 return dev->header_ops && dev->header_ops->create; 3195} 3196 3197/* 3198 * Incoming packets are placed on per-CPU queues 3199 */ 3200struct softnet_data { 3201 struct list_head poll_list; 3202 struct sk_buff_head process_queue; 3203 3204 /* stats */ 3205 unsigned int processed; 3206 unsigned int time_squeeze; 3207#ifdef CONFIG_RPS 3208 struct softnet_data *rps_ipi_list; 3209#endif 3210 3211 unsigned int received_rps; 3212 bool in_net_rx_action; 3213 bool in_napi_threaded_poll; 3214 3215#ifdef CONFIG_NET_FLOW_LIMIT 3216 struct sd_flow_limit __rcu *flow_limit; 3217#endif 3218 struct Qdisc *output_queue; 3219 struct Qdisc **output_queue_tailp; 3220 struct sk_buff *completion_queue; 3221#ifdef CONFIG_XFRM_OFFLOAD 3222 struct sk_buff_head xfrm_backlog; 3223#endif 3224 /* written and read only by owning cpu: */ 3225 struct { 3226 u16 recursion; 3227 u8 more; 3228#ifdef CONFIG_NET_EGRESS 3229 u8 skip_txqueue; 3230#endif 3231 } xmit; 3232#ifdef CONFIG_RPS 3233 /* input_queue_head should be written by cpu owning this struct, 3234 * and only read by other cpus. Worth using a cache line. 3235 */ 3236 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3237 3238 /* Elements below can be accessed between CPUs for RPS/RFS */ 3239 call_single_data_t csd ____cacheline_aligned_in_smp; 3240 struct softnet_data *rps_ipi_next; 3241 unsigned int cpu; 3242 unsigned int input_queue_tail; 3243#endif 3244 struct sk_buff_head input_pkt_queue; 3245 struct napi_struct backlog; 3246 3247 atomic_t dropped ____cacheline_aligned_in_smp; 3248 3249 /* Another possibly contended cache line */ 3250 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3251 int defer_count; 3252 int defer_ipi_scheduled; 3253 struct sk_buff *defer_list; 3254 call_single_data_t defer_csd; 3255}; 3256 3257DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3258 3259static inline int dev_recursion_level(void) 3260{ 3261 return this_cpu_read(softnet_data.xmit.recursion); 3262} 3263 3264void __netif_schedule(struct Qdisc *q); 3265void netif_schedule_queue(struct netdev_queue *txq); 3266 3267static inline void netif_tx_schedule_all(struct net_device *dev) 3268{ 3269 unsigned int i; 3270 3271 for (i = 0; i < dev->num_tx_queues; i++) 3272 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3273} 3274 3275static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3276{ 3277 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3278} 3279 3280/** 3281 * netif_start_queue - allow transmit 3282 * @dev: network device 3283 * 3284 * Allow upper layers to call the device hard_start_xmit routine. 3285 */ 3286static inline void netif_start_queue(struct net_device *dev) 3287{ 3288 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3289} 3290 3291static inline void netif_tx_start_all_queues(struct net_device *dev) 3292{ 3293 unsigned int i; 3294 3295 for (i = 0; i < dev->num_tx_queues; i++) { 3296 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3297 netif_tx_start_queue(txq); 3298 } 3299} 3300 3301void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3302 3303/** 3304 * netif_wake_queue - restart transmit 3305 * @dev: network device 3306 * 3307 * Allow upper layers to call the device hard_start_xmit routine. 3308 * Used for flow control when transmit resources are available. 3309 */ 3310static inline void netif_wake_queue(struct net_device *dev) 3311{ 3312 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3313} 3314 3315static inline void netif_tx_wake_all_queues(struct net_device *dev) 3316{ 3317 unsigned int i; 3318 3319 for (i = 0; i < dev->num_tx_queues; i++) { 3320 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3321 netif_tx_wake_queue(txq); 3322 } 3323} 3324 3325static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3326{ 3327 /* Must be an atomic op see netif_txq_try_stop() */ 3328 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3329} 3330 3331/** 3332 * netif_stop_queue - stop transmitted packets 3333 * @dev: network device 3334 * 3335 * Stop upper layers calling the device hard_start_xmit routine. 3336 * Used for flow control when transmit resources are unavailable. 3337 */ 3338static inline void netif_stop_queue(struct net_device *dev) 3339{ 3340 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3341} 3342 3343void netif_tx_stop_all_queues(struct net_device *dev); 3344 3345static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3346{ 3347 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3348} 3349 3350/** 3351 * netif_queue_stopped - test if transmit queue is flowblocked 3352 * @dev: network device 3353 * 3354 * Test if transmit queue on device is currently unable to send. 3355 */ 3356static inline bool netif_queue_stopped(const struct net_device *dev) 3357{ 3358 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3359} 3360 3361static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3362{ 3363 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3364} 3365 3366static inline bool 3367netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3368{ 3369 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3370} 3371 3372static inline bool 3373netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3374{ 3375 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3376} 3377 3378/** 3379 * netdev_queue_set_dql_min_limit - set dql minimum limit 3380 * @dev_queue: pointer to transmit queue 3381 * @min_limit: dql minimum limit 3382 * 3383 * Forces xmit_more() to return true until the minimum threshold 3384 * defined by @min_limit is reached (or until the tx queue is 3385 * empty). Warning: to be use with care, misuse will impact the 3386 * latency. 3387 */ 3388static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3389 unsigned int min_limit) 3390{ 3391#ifdef CONFIG_BQL 3392 dev_queue->dql.min_limit = min_limit; 3393#endif 3394} 3395 3396static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3397{ 3398#ifdef CONFIG_BQL 3399 /* Non-BQL migrated drivers will return 0, too. */ 3400 return dql_avail(&txq->dql); 3401#else 3402 return 0; 3403#endif 3404} 3405 3406/** 3407 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3408 * @dev_queue: pointer to transmit queue 3409 * 3410 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3411 * to give appropriate hint to the CPU. 3412 */ 3413static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3414{ 3415#ifdef CONFIG_BQL 3416 prefetchw(&dev_queue->dql.num_queued); 3417#endif 3418} 3419 3420/** 3421 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3422 * @dev_queue: pointer to transmit queue 3423 * 3424 * BQL enabled drivers might use this helper in their TX completion path, 3425 * to give appropriate hint to the CPU. 3426 */ 3427static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3428{ 3429#ifdef CONFIG_BQL 3430 prefetchw(&dev_queue->dql.limit); 3431#endif 3432} 3433 3434/** 3435 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3436 * @dev_queue: network device queue 3437 * @bytes: number of bytes queued to the device queue 3438 * 3439 * Report the number of bytes queued for sending/completion to the network 3440 * device hardware queue. @bytes should be a good approximation and should 3441 * exactly match netdev_completed_queue() @bytes. 3442 * This is typically called once per packet, from ndo_start_xmit(). 3443 */ 3444static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3445 unsigned int bytes) 3446{ 3447#ifdef CONFIG_BQL 3448 dql_queued(&dev_queue->dql, bytes); 3449 3450 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3451 return; 3452 3453 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3454 3455 /* 3456 * The XOFF flag must be set before checking the dql_avail below, 3457 * because in netdev_tx_completed_queue we update the dql_completed 3458 * before checking the XOFF flag. 3459 */ 3460 smp_mb(); 3461 3462 /* check again in case another CPU has just made room avail */ 3463 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3464 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3465#endif 3466} 3467 3468/* Variant of netdev_tx_sent_queue() for drivers that are aware 3469 * that they should not test BQL status themselves. 3470 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3471 * skb of a batch. 3472 * Returns true if the doorbell must be used to kick the NIC. 3473 */ 3474static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3475 unsigned int bytes, 3476 bool xmit_more) 3477{ 3478 if (xmit_more) { 3479#ifdef CONFIG_BQL 3480 dql_queued(&dev_queue->dql, bytes); 3481#endif 3482 return netif_tx_queue_stopped(dev_queue); 3483 } 3484 netdev_tx_sent_queue(dev_queue, bytes); 3485 return true; 3486} 3487 3488/** 3489 * netdev_sent_queue - report the number of bytes queued to hardware 3490 * @dev: network device 3491 * @bytes: number of bytes queued to the hardware device queue 3492 * 3493 * Report the number of bytes queued for sending/completion to the network 3494 * device hardware queue#0. @bytes should be a good approximation and should 3495 * exactly match netdev_completed_queue() @bytes. 3496 * This is typically called once per packet, from ndo_start_xmit(). 3497 */ 3498static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3499{ 3500 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3501} 3502 3503static inline bool __netdev_sent_queue(struct net_device *dev, 3504 unsigned int bytes, 3505 bool xmit_more) 3506{ 3507 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3508 xmit_more); 3509} 3510 3511/** 3512 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3513 * @dev_queue: network device queue 3514 * @pkts: number of packets (currently ignored) 3515 * @bytes: number of bytes dequeued from the device queue 3516 * 3517 * Must be called at most once per TX completion round (and not per 3518 * individual packet), so that BQL can adjust its limits appropriately. 3519 */ 3520static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3521 unsigned int pkts, unsigned int bytes) 3522{ 3523#ifdef CONFIG_BQL 3524 if (unlikely(!bytes)) 3525 return; 3526 3527 dql_completed(&dev_queue->dql, bytes); 3528 3529 /* 3530 * Without the memory barrier there is a small possiblity that 3531 * netdev_tx_sent_queue will miss the update and cause the queue to 3532 * be stopped forever 3533 */ 3534 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3535 3536 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3537 return; 3538 3539 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3540 netif_schedule_queue(dev_queue); 3541#endif 3542} 3543 3544/** 3545 * netdev_completed_queue - report bytes and packets completed by device 3546 * @dev: network device 3547 * @pkts: actual number of packets sent over the medium 3548 * @bytes: actual number of bytes sent over the medium 3549 * 3550 * Report the number of bytes and packets transmitted by the network device 3551 * hardware queue over the physical medium, @bytes must exactly match the 3552 * @bytes amount passed to netdev_sent_queue() 3553 */ 3554static inline void netdev_completed_queue(struct net_device *dev, 3555 unsigned int pkts, unsigned int bytes) 3556{ 3557 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3558} 3559 3560static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3561{ 3562#ifdef CONFIG_BQL 3563 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3564 dql_reset(&q->dql); 3565#endif 3566} 3567 3568/** 3569 * netdev_reset_queue - reset the packets and bytes count of a network device 3570 * @dev_queue: network device 3571 * 3572 * Reset the bytes and packet count of a network device and clear the 3573 * software flow control OFF bit for this network device 3574 */ 3575static inline void netdev_reset_queue(struct net_device *dev_queue) 3576{ 3577 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3578} 3579 3580/** 3581 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3582 * @dev: network device 3583 * @queue_index: given tx queue index 3584 * 3585 * Returns 0 if given tx queue index >= number of device tx queues, 3586 * otherwise returns the originally passed tx queue index. 3587 */ 3588static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3589{ 3590 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3591 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3592 dev->name, queue_index, 3593 dev->real_num_tx_queues); 3594 return 0; 3595 } 3596 3597 return queue_index; 3598} 3599 3600/** 3601 * netif_running - test if up 3602 * @dev: network device 3603 * 3604 * Test if the device has been brought up. 3605 */ 3606static inline bool netif_running(const struct net_device *dev) 3607{ 3608 return test_bit(__LINK_STATE_START, &dev->state); 3609} 3610 3611/* 3612 * Routines to manage the subqueues on a device. We only need start, 3613 * stop, and a check if it's stopped. All other device management is 3614 * done at the overall netdevice level. 3615 * Also test the device if we're multiqueue. 3616 */ 3617 3618/** 3619 * netif_start_subqueue - allow sending packets on subqueue 3620 * @dev: network device 3621 * @queue_index: sub queue index 3622 * 3623 * Start individual transmit queue of a device with multiple transmit queues. 3624 */ 3625static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3626{ 3627 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3628 3629 netif_tx_start_queue(txq); 3630} 3631 3632/** 3633 * netif_stop_subqueue - stop sending packets on subqueue 3634 * @dev: network device 3635 * @queue_index: sub queue index 3636 * 3637 * Stop individual transmit queue of a device with multiple transmit queues. 3638 */ 3639static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3640{ 3641 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3642 netif_tx_stop_queue(txq); 3643} 3644 3645/** 3646 * __netif_subqueue_stopped - test status of subqueue 3647 * @dev: network device 3648 * @queue_index: sub queue index 3649 * 3650 * Check individual transmit queue of a device with multiple transmit queues. 3651 */ 3652static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3653 u16 queue_index) 3654{ 3655 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3656 3657 return netif_tx_queue_stopped(txq); 3658} 3659 3660/** 3661 * netif_subqueue_stopped - test status of subqueue 3662 * @dev: network device 3663 * @skb: sub queue buffer pointer 3664 * 3665 * Check individual transmit queue of a device with multiple transmit queues. 3666 */ 3667static inline bool netif_subqueue_stopped(const struct net_device *dev, 3668 struct sk_buff *skb) 3669{ 3670 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3671} 3672 3673/** 3674 * netif_wake_subqueue - allow sending packets on subqueue 3675 * @dev: network device 3676 * @queue_index: sub queue index 3677 * 3678 * Resume individual transmit queue of a device with multiple transmit queues. 3679 */ 3680static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3681{ 3682 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3683 3684 netif_tx_wake_queue(txq); 3685} 3686 3687#ifdef CONFIG_XPS 3688int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3689 u16 index); 3690int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3691 u16 index, enum xps_map_type type); 3692 3693/** 3694 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3695 * @j: CPU/Rx queue index 3696 * @mask: bitmask of all cpus/rx queues 3697 * @nr_bits: number of bits in the bitmask 3698 * 3699 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3700 */ 3701static inline bool netif_attr_test_mask(unsigned long j, 3702 const unsigned long *mask, 3703 unsigned int nr_bits) 3704{ 3705 cpu_max_bits_warn(j, nr_bits); 3706 return test_bit(j, mask); 3707} 3708 3709/** 3710 * netif_attr_test_online - Test for online CPU/Rx queue 3711 * @j: CPU/Rx queue index 3712 * @online_mask: bitmask for CPUs/Rx queues that are online 3713 * @nr_bits: number of bits in the bitmask 3714 * 3715 * Returns true if a CPU/Rx queue is online. 3716 */ 3717static inline bool netif_attr_test_online(unsigned long j, 3718 const unsigned long *online_mask, 3719 unsigned int nr_bits) 3720{ 3721 cpu_max_bits_warn(j, nr_bits); 3722 3723 if (online_mask) 3724 return test_bit(j, online_mask); 3725 3726 return (j < nr_bits); 3727} 3728 3729/** 3730 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3731 * @n: CPU/Rx queue index 3732 * @srcp: the cpumask/Rx queue mask pointer 3733 * @nr_bits: number of bits in the bitmask 3734 * 3735 * Returns >= nr_bits if no further CPUs/Rx queues set. 3736 */ 3737static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3738 unsigned int nr_bits) 3739{ 3740 /* -1 is a legal arg here. */ 3741 if (n != -1) 3742 cpu_max_bits_warn(n, nr_bits); 3743 3744 if (srcp) 3745 return find_next_bit(srcp, nr_bits, n + 1); 3746 3747 return n + 1; 3748} 3749 3750/** 3751 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3752 * @n: CPU/Rx queue index 3753 * @src1p: the first CPUs/Rx queues mask pointer 3754 * @src2p: the second CPUs/Rx queues mask pointer 3755 * @nr_bits: number of bits in the bitmask 3756 * 3757 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3758 */ 3759static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3760 const unsigned long *src2p, 3761 unsigned int nr_bits) 3762{ 3763 /* -1 is a legal arg here. */ 3764 if (n != -1) 3765 cpu_max_bits_warn(n, nr_bits); 3766 3767 if (src1p && src2p) 3768 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3769 else if (src1p) 3770 return find_next_bit(src1p, nr_bits, n + 1); 3771 else if (src2p) 3772 return find_next_bit(src2p, nr_bits, n + 1); 3773 3774 return n + 1; 3775} 3776#else 3777static inline int netif_set_xps_queue(struct net_device *dev, 3778 const struct cpumask *mask, 3779 u16 index) 3780{ 3781 return 0; 3782} 3783 3784static inline int __netif_set_xps_queue(struct net_device *dev, 3785 const unsigned long *mask, 3786 u16 index, enum xps_map_type type) 3787{ 3788 return 0; 3789} 3790#endif 3791 3792/** 3793 * netif_is_multiqueue - test if device has multiple transmit queues 3794 * @dev: network device 3795 * 3796 * Check if device has multiple transmit queues 3797 */ 3798static inline bool netif_is_multiqueue(const struct net_device *dev) 3799{ 3800 return dev->num_tx_queues > 1; 3801} 3802 3803int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3804 3805#ifdef CONFIG_SYSFS 3806int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3807#else 3808static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3809 unsigned int rxqs) 3810{ 3811 dev->real_num_rx_queues = rxqs; 3812 return 0; 3813} 3814#endif 3815int netif_set_real_num_queues(struct net_device *dev, 3816 unsigned int txq, unsigned int rxq); 3817 3818int netif_get_num_default_rss_queues(void); 3819 3820void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3821void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3822 3823/* 3824 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3825 * interrupt context or with hardware interrupts being disabled. 3826 * (in_hardirq() || irqs_disabled()) 3827 * 3828 * We provide four helpers that can be used in following contexts : 3829 * 3830 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3831 * replacing kfree_skb(skb) 3832 * 3833 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3834 * Typically used in place of consume_skb(skb) in TX completion path 3835 * 3836 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3837 * replacing kfree_skb(skb) 3838 * 3839 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3840 * and consumed a packet. Used in place of consume_skb(skb) 3841 */ 3842static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3843{ 3844 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3845} 3846 3847static inline void dev_consume_skb_irq(struct sk_buff *skb) 3848{ 3849 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3850} 3851 3852static inline void dev_kfree_skb_any(struct sk_buff *skb) 3853{ 3854 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3855} 3856 3857static inline void dev_consume_skb_any(struct sk_buff *skb) 3858{ 3859 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3860} 3861 3862u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3863 struct bpf_prog *xdp_prog); 3864void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3865int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3866int netif_rx(struct sk_buff *skb); 3867int __netif_rx(struct sk_buff *skb); 3868 3869int netif_receive_skb(struct sk_buff *skb); 3870int netif_receive_skb_core(struct sk_buff *skb); 3871void netif_receive_skb_list_internal(struct list_head *head); 3872void netif_receive_skb_list(struct list_head *head); 3873gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3874void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3875struct sk_buff *napi_get_frags(struct napi_struct *napi); 3876void napi_get_frags_check(struct napi_struct *napi); 3877gro_result_t napi_gro_frags(struct napi_struct *napi); 3878 3879static inline void napi_free_frags(struct napi_struct *napi) 3880{ 3881 kfree_skb(napi->skb); 3882 napi->skb = NULL; 3883} 3884 3885bool netdev_is_rx_handler_busy(struct net_device *dev); 3886int netdev_rx_handler_register(struct net_device *dev, 3887 rx_handler_func_t *rx_handler, 3888 void *rx_handler_data); 3889void netdev_rx_handler_unregister(struct net_device *dev); 3890 3891bool dev_valid_name(const char *name); 3892static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3893{ 3894 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3895} 3896int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3897int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3898int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3899 void __user *data, bool *need_copyout); 3900int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3901int generic_hwtstamp_get_lower(struct net_device *dev, 3902 struct kernel_hwtstamp_config *kernel_cfg); 3903int generic_hwtstamp_set_lower(struct net_device *dev, 3904 struct kernel_hwtstamp_config *kernel_cfg, 3905 struct netlink_ext_ack *extack); 3906int dev_set_hwtstamp_phylib(struct net_device *dev, 3907 struct kernel_hwtstamp_config *cfg, 3908 struct netlink_ext_ack *extack); 3909int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3910unsigned int dev_get_flags(const struct net_device *); 3911int __dev_change_flags(struct net_device *dev, unsigned int flags, 3912 struct netlink_ext_ack *extack); 3913int dev_change_flags(struct net_device *dev, unsigned int flags, 3914 struct netlink_ext_ack *extack); 3915int dev_set_alias(struct net_device *, const char *, size_t); 3916int dev_get_alias(const struct net_device *, char *, size_t); 3917int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3918 const char *pat, int new_ifindex); 3919static inline 3920int dev_change_net_namespace(struct net_device *dev, struct net *net, 3921 const char *pat) 3922{ 3923 return __dev_change_net_namespace(dev, net, pat, 0); 3924} 3925int __dev_set_mtu(struct net_device *, int); 3926int dev_set_mtu(struct net_device *, int); 3927int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3928 struct netlink_ext_ack *extack); 3929int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3930 struct netlink_ext_ack *extack); 3931int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3932 struct netlink_ext_ack *extack); 3933int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3934int dev_get_port_parent_id(struct net_device *dev, 3935 struct netdev_phys_item_id *ppid, bool recurse); 3936bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3937 3938struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3939struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3940 struct netdev_queue *txq, int *ret); 3941 3942int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3943u8 dev_xdp_prog_count(struct net_device *dev); 3944u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3945 3946int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3947int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3948int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3949bool is_skb_forwardable(const struct net_device *dev, 3950 const struct sk_buff *skb); 3951 3952static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3953 const struct sk_buff *skb, 3954 const bool check_mtu) 3955{ 3956 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3957 unsigned int len; 3958 3959 if (!(dev->flags & IFF_UP)) 3960 return false; 3961 3962 if (!check_mtu) 3963 return true; 3964 3965 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3966 if (skb->len <= len) 3967 return true; 3968 3969 /* if TSO is enabled, we don't care about the length as the packet 3970 * could be forwarded without being segmented before 3971 */ 3972 if (skb_is_gso(skb)) 3973 return true; 3974 3975 return false; 3976} 3977 3978void netdev_core_stats_inc(struct net_device *dev, u32 offset); 3979 3980#define DEV_CORE_STATS_INC(FIELD) \ 3981static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3982{ \ 3983 netdev_core_stats_inc(dev, \ 3984 offsetof(struct net_device_core_stats, FIELD)); \ 3985} 3986DEV_CORE_STATS_INC(rx_dropped) 3987DEV_CORE_STATS_INC(tx_dropped) 3988DEV_CORE_STATS_INC(rx_nohandler) 3989DEV_CORE_STATS_INC(rx_otherhost_dropped) 3990#undef DEV_CORE_STATS_INC 3991 3992static __always_inline int ____dev_forward_skb(struct net_device *dev, 3993 struct sk_buff *skb, 3994 const bool check_mtu) 3995{ 3996 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3997 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3998 dev_core_stats_rx_dropped_inc(dev); 3999 kfree_skb(skb); 4000 return NET_RX_DROP; 4001 } 4002 4003 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4004 skb->priority = 0; 4005 return 0; 4006} 4007 4008bool dev_nit_active(struct net_device *dev); 4009void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4010 4011static inline void __dev_put(struct net_device *dev) 4012{ 4013 if (dev) { 4014#ifdef CONFIG_PCPU_DEV_REFCNT 4015 this_cpu_dec(*dev->pcpu_refcnt); 4016#else 4017 refcount_dec(&dev->dev_refcnt); 4018#endif 4019 } 4020} 4021 4022static inline void __dev_hold(struct net_device *dev) 4023{ 4024 if (dev) { 4025#ifdef CONFIG_PCPU_DEV_REFCNT 4026 this_cpu_inc(*dev->pcpu_refcnt); 4027#else 4028 refcount_inc(&dev->dev_refcnt); 4029#endif 4030 } 4031} 4032 4033static inline void __netdev_tracker_alloc(struct net_device *dev, 4034 netdevice_tracker *tracker, 4035 gfp_t gfp) 4036{ 4037#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4038 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4039#endif 4040} 4041 4042/* netdev_tracker_alloc() can upgrade a prior untracked reference 4043 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4044 */ 4045static inline void netdev_tracker_alloc(struct net_device *dev, 4046 netdevice_tracker *tracker, gfp_t gfp) 4047{ 4048#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4049 refcount_dec(&dev->refcnt_tracker.no_tracker); 4050 __netdev_tracker_alloc(dev, tracker, gfp); 4051#endif 4052} 4053 4054static inline void netdev_tracker_free(struct net_device *dev, 4055 netdevice_tracker *tracker) 4056{ 4057#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4058 ref_tracker_free(&dev->refcnt_tracker, tracker); 4059#endif 4060} 4061 4062static inline void netdev_hold(struct net_device *dev, 4063 netdevice_tracker *tracker, gfp_t gfp) 4064{ 4065 if (dev) { 4066 __dev_hold(dev); 4067 __netdev_tracker_alloc(dev, tracker, gfp); 4068 } 4069} 4070 4071static inline void netdev_put(struct net_device *dev, 4072 netdevice_tracker *tracker) 4073{ 4074 if (dev) { 4075 netdev_tracker_free(dev, tracker); 4076 __dev_put(dev); 4077 } 4078} 4079 4080/** 4081 * dev_hold - get reference to device 4082 * @dev: network device 4083 * 4084 * Hold reference to device to keep it from being freed. 4085 * Try using netdev_hold() instead. 4086 */ 4087static inline void dev_hold(struct net_device *dev) 4088{ 4089 netdev_hold(dev, NULL, GFP_ATOMIC); 4090} 4091 4092/** 4093 * dev_put - release reference to device 4094 * @dev: network device 4095 * 4096 * Release reference to device to allow it to be freed. 4097 * Try using netdev_put() instead. 4098 */ 4099static inline void dev_put(struct net_device *dev) 4100{ 4101 netdev_put(dev, NULL); 4102} 4103 4104DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4105 4106static inline void netdev_ref_replace(struct net_device *odev, 4107 struct net_device *ndev, 4108 netdevice_tracker *tracker, 4109 gfp_t gfp) 4110{ 4111 if (odev) 4112 netdev_tracker_free(odev, tracker); 4113 4114 __dev_hold(ndev); 4115 __dev_put(odev); 4116 4117 if (ndev) 4118 __netdev_tracker_alloc(ndev, tracker, gfp); 4119} 4120 4121/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4122 * and _off may be called from IRQ context, but it is caller 4123 * who is responsible for serialization of these calls. 4124 * 4125 * The name carrier is inappropriate, these functions should really be 4126 * called netif_lowerlayer_*() because they represent the state of any 4127 * kind of lower layer not just hardware media. 4128 */ 4129void linkwatch_fire_event(struct net_device *dev); 4130 4131/** 4132 * linkwatch_sync_dev - sync linkwatch for the given device 4133 * @dev: network device to sync linkwatch for 4134 * 4135 * Sync linkwatch for the given device, removing it from the 4136 * pending work list (if queued). 4137 */ 4138void linkwatch_sync_dev(struct net_device *dev); 4139 4140/** 4141 * netif_carrier_ok - test if carrier present 4142 * @dev: network device 4143 * 4144 * Check if carrier is present on device 4145 */ 4146static inline bool netif_carrier_ok(const struct net_device *dev) 4147{ 4148 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4149} 4150 4151unsigned long dev_trans_start(struct net_device *dev); 4152 4153void __netdev_watchdog_up(struct net_device *dev); 4154 4155void netif_carrier_on(struct net_device *dev); 4156void netif_carrier_off(struct net_device *dev); 4157void netif_carrier_event(struct net_device *dev); 4158 4159/** 4160 * netif_dormant_on - mark device as dormant. 4161 * @dev: network device 4162 * 4163 * Mark device as dormant (as per RFC2863). 4164 * 4165 * The dormant state indicates that the relevant interface is not 4166 * actually in a condition to pass packets (i.e., it is not 'up') but is 4167 * in a "pending" state, waiting for some external event. For "on- 4168 * demand" interfaces, this new state identifies the situation where the 4169 * interface is waiting for events to place it in the up state. 4170 */ 4171static inline void netif_dormant_on(struct net_device *dev) 4172{ 4173 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4174 linkwatch_fire_event(dev); 4175} 4176 4177/** 4178 * netif_dormant_off - set device as not dormant. 4179 * @dev: network device 4180 * 4181 * Device is not in dormant state. 4182 */ 4183static inline void netif_dormant_off(struct net_device *dev) 4184{ 4185 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4186 linkwatch_fire_event(dev); 4187} 4188 4189/** 4190 * netif_dormant - test if device is dormant 4191 * @dev: network device 4192 * 4193 * Check if device is dormant. 4194 */ 4195static inline bool netif_dormant(const struct net_device *dev) 4196{ 4197 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4198} 4199 4200 4201/** 4202 * netif_testing_on - mark device as under test. 4203 * @dev: network device 4204 * 4205 * Mark device as under test (as per RFC2863). 4206 * 4207 * The testing state indicates that some test(s) must be performed on 4208 * the interface. After completion, of the test, the interface state 4209 * will change to up, dormant, or down, as appropriate. 4210 */ 4211static inline void netif_testing_on(struct net_device *dev) 4212{ 4213 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4214 linkwatch_fire_event(dev); 4215} 4216 4217/** 4218 * netif_testing_off - set device as not under test. 4219 * @dev: network device 4220 * 4221 * Device is not in testing state. 4222 */ 4223static inline void netif_testing_off(struct net_device *dev) 4224{ 4225 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4226 linkwatch_fire_event(dev); 4227} 4228 4229/** 4230 * netif_testing - test if device is under test 4231 * @dev: network device 4232 * 4233 * Check if device is under test 4234 */ 4235static inline bool netif_testing(const struct net_device *dev) 4236{ 4237 return test_bit(__LINK_STATE_TESTING, &dev->state); 4238} 4239 4240 4241/** 4242 * netif_oper_up - test if device is operational 4243 * @dev: network device 4244 * 4245 * Check if carrier is operational 4246 */ 4247static inline bool netif_oper_up(const struct net_device *dev) 4248{ 4249 unsigned int operstate = READ_ONCE(dev->operstate); 4250 4251 return operstate == IF_OPER_UP || 4252 operstate == IF_OPER_UNKNOWN /* backward compat */; 4253} 4254 4255/** 4256 * netif_device_present - is device available or removed 4257 * @dev: network device 4258 * 4259 * Check if device has not been removed from system. 4260 */ 4261static inline bool netif_device_present(const struct net_device *dev) 4262{ 4263 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4264} 4265 4266void netif_device_detach(struct net_device *dev); 4267 4268void netif_device_attach(struct net_device *dev); 4269 4270/* 4271 * Network interface message level settings 4272 */ 4273 4274enum { 4275 NETIF_MSG_DRV_BIT, 4276 NETIF_MSG_PROBE_BIT, 4277 NETIF_MSG_LINK_BIT, 4278 NETIF_MSG_TIMER_BIT, 4279 NETIF_MSG_IFDOWN_BIT, 4280 NETIF_MSG_IFUP_BIT, 4281 NETIF_MSG_RX_ERR_BIT, 4282 NETIF_MSG_TX_ERR_BIT, 4283 NETIF_MSG_TX_QUEUED_BIT, 4284 NETIF_MSG_INTR_BIT, 4285 NETIF_MSG_TX_DONE_BIT, 4286 NETIF_MSG_RX_STATUS_BIT, 4287 NETIF_MSG_PKTDATA_BIT, 4288 NETIF_MSG_HW_BIT, 4289 NETIF_MSG_WOL_BIT, 4290 4291 /* When you add a new bit above, update netif_msg_class_names array 4292 * in net/ethtool/common.c 4293 */ 4294 NETIF_MSG_CLASS_COUNT, 4295}; 4296/* Both ethtool_ops interface and internal driver implementation use u32 */ 4297static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4298 4299#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4300#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4301 4302#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4303#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4304#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4305#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4306#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4307#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4308#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4309#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4310#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4311#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4312#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4313#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4314#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4315#define NETIF_MSG_HW __NETIF_MSG(HW) 4316#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4317 4318#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4319#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4320#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4321#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4322#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4323#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4324#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4325#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4326#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4327#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4328#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4329#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4330#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4331#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4332#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4333 4334static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4335{ 4336 /* use default */ 4337 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4338 return default_msg_enable_bits; 4339 if (debug_value == 0) /* no output */ 4340 return 0; 4341 /* set low N bits */ 4342 return (1U << debug_value) - 1; 4343} 4344 4345static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4346{ 4347 spin_lock(&txq->_xmit_lock); 4348 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4349 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4350} 4351 4352static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4353{ 4354 __acquire(&txq->_xmit_lock); 4355 return true; 4356} 4357 4358static inline void __netif_tx_release(struct netdev_queue *txq) 4359{ 4360 __release(&txq->_xmit_lock); 4361} 4362 4363static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4364{ 4365 spin_lock_bh(&txq->_xmit_lock); 4366 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4367 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4368} 4369 4370static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4371{ 4372 bool ok = spin_trylock(&txq->_xmit_lock); 4373 4374 if (likely(ok)) { 4375 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4376 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4377 } 4378 return ok; 4379} 4380 4381static inline void __netif_tx_unlock(struct netdev_queue *txq) 4382{ 4383 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4384 WRITE_ONCE(txq->xmit_lock_owner, -1); 4385 spin_unlock(&txq->_xmit_lock); 4386} 4387 4388static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4389{ 4390 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4391 WRITE_ONCE(txq->xmit_lock_owner, -1); 4392 spin_unlock_bh(&txq->_xmit_lock); 4393} 4394 4395/* 4396 * txq->trans_start can be read locklessly from dev_watchdog() 4397 */ 4398static inline void txq_trans_update(struct netdev_queue *txq) 4399{ 4400 if (txq->xmit_lock_owner != -1) 4401 WRITE_ONCE(txq->trans_start, jiffies); 4402} 4403 4404static inline void txq_trans_cond_update(struct netdev_queue *txq) 4405{ 4406 unsigned long now = jiffies; 4407 4408 if (READ_ONCE(txq->trans_start) != now) 4409 WRITE_ONCE(txq->trans_start, now); 4410} 4411 4412/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4413static inline void netif_trans_update(struct net_device *dev) 4414{ 4415 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4416 4417 txq_trans_cond_update(txq); 4418} 4419 4420/** 4421 * netif_tx_lock - grab network device transmit lock 4422 * @dev: network device 4423 * 4424 * Get network device transmit lock 4425 */ 4426void netif_tx_lock(struct net_device *dev); 4427 4428static inline void netif_tx_lock_bh(struct net_device *dev) 4429{ 4430 local_bh_disable(); 4431 netif_tx_lock(dev); 4432} 4433 4434void netif_tx_unlock(struct net_device *dev); 4435 4436static inline void netif_tx_unlock_bh(struct net_device *dev) 4437{ 4438 netif_tx_unlock(dev); 4439 local_bh_enable(); 4440} 4441 4442#define HARD_TX_LOCK(dev, txq, cpu) { \ 4443 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4444 __netif_tx_lock(txq, cpu); \ 4445 } else { \ 4446 __netif_tx_acquire(txq); \ 4447 } \ 4448} 4449 4450#define HARD_TX_TRYLOCK(dev, txq) \ 4451 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4452 __netif_tx_trylock(txq) : \ 4453 __netif_tx_acquire(txq)) 4454 4455#define HARD_TX_UNLOCK(dev, txq) { \ 4456 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4457 __netif_tx_unlock(txq); \ 4458 } else { \ 4459 __netif_tx_release(txq); \ 4460 } \ 4461} 4462 4463static inline void netif_tx_disable(struct net_device *dev) 4464{ 4465 unsigned int i; 4466 int cpu; 4467 4468 local_bh_disable(); 4469 cpu = smp_processor_id(); 4470 spin_lock(&dev->tx_global_lock); 4471 for (i = 0; i < dev->num_tx_queues; i++) { 4472 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4473 4474 __netif_tx_lock(txq, cpu); 4475 netif_tx_stop_queue(txq); 4476 __netif_tx_unlock(txq); 4477 } 4478 spin_unlock(&dev->tx_global_lock); 4479 local_bh_enable(); 4480} 4481 4482static inline void netif_addr_lock(struct net_device *dev) 4483{ 4484 unsigned char nest_level = 0; 4485 4486#ifdef CONFIG_LOCKDEP 4487 nest_level = dev->nested_level; 4488#endif 4489 spin_lock_nested(&dev->addr_list_lock, nest_level); 4490} 4491 4492static inline void netif_addr_lock_bh(struct net_device *dev) 4493{ 4494 unsigned char nest_level = 0; 4495 4496#ifdef CONFIG_LOCKDEP 4497 nest_level = dev->nested_level; 4498#endif 4499 local_bh_disable(); 4500 spin_lock_nested(&dev->addr_list_lock, nest_level); 4501} 4502 4503static inline void netif_addr_unlock(struct net_device *dev) 4504{ 4505 spin_unlock(&dev->addr_list_lock); 4506} 4507 4508static inline void netif_addr_unlock_bh(struct net_device *dev) 4509{ 4510 spin_unlock_bh(&dev->addr_list_lock); 4511} 4512 4513/* 4514 * dev_addrs walker. Should be used only for read access. Call with 4515 * rcu_read_lock held. 4516 */ 4517#define for_each_dev_addr(dev, ha) \ 4518 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4519 4520/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4521 4522void ether_setup(struct net_device *dev); 4523 4524/* Allocate dummy net_device */ 4525struct net_device *alloc_netdev_dummy(int sizeof_priv); 4526 4527/* Support for loadable net-drivers */ 4528struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4529 unsigned char name_assign_type, 4530 void (*setup)(struct net_device *), 4531 unsigned int txqs, unsigned int rxqs); 4532#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4533 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4534 4535#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4536 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4537 count) 4538 4539int register_netdev(struct net_device *dev); 4540void unregister_netdev(struct net_device *dev); 4541 4542int devm_register_netdev(struct device *dev, struct net_device *ndev); 4543 4544/* General hardware address lists handling functions */ 4545int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4546 struct netdev_hw_addr_list *from_list, int addr_len); 4547void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4548 struct netdev_hw_addr_list *from_list, int addr_len); 4549int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4550 struct net_device *dev, 4551 int (*sync)(struct net_device *, const unsigned char *), 4552 int (*unsync)(struct net_device *, 4553 const unsigned char *)); 4554int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4555 struct net_device *dev, 4556 int (*sync)(struct net_device *, 4557 const unsigned char *, int), 4558 int (*unsync)(struct net_device *, 4559 const unsigned char *, int)); 4560void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4561 struct net_device *dev, 4562 int (*unsync)(struct net_device *, 4563 const unsigned char *, int)); 4564void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4565 struct net_device *dev, 4566 int (*unsync)(struct net_device *, 4567 const unsigned char *)); 4568void __hw_addr_init(struct netdev_hw_addr_list *list); 4569 4570/* Functions used for device addresses handling */ 4571void dev_addr_mod(struct net_device *dev, unsigned int offset, 4572 const void *addr, size_t len); 4573 4574static inline void 4575__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4576{ 4577 dev_addr_mod(dev, 0, addr, len); 4578} 4579 4580static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4581{ 4582 __dev_addr_set(dev, addr, dev->addr_len); 4583} 4584 4585int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4586 unsigned char addr_type); 4587int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4588 unsigned char addr_type); 4589 4590/* Functions used for unicast addresses handling */ 4591int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4592int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4593int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4594int dev_uc_sync(struct net_device *to, struct net_device *from); 4595int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4596void dev_uc_unsync(struct net_device *to, struct net_device *from); 4597void dev_uc_flush(struct net_device *dev); 4598void dev_uc_init(struct net_device *dev); 4599 4600/** 4601 * __dev_uc_sync - Synchonize device's unicast list 4602 * @dev: device to sync 4603 * @sync: function to call if address should be added 4604 * @unsync: function to call if address should be removed 4605 * 4606 * Add newly added addresses to the interface, and release 4607 * addresses that have been deleted. 4608 */ 4609static inline int __dev_uc_sync(struct net_device *dev, 4610 int (*sync)(struct net_device *, 4611 const unsigned char *), 4612 int (*unsync)(struct net_device *, 4613 const unsigned char *)) 4614{ 4615 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4616} 4617 4618/** 4619 * __dev_uc_unsync - Remove synchronized addresses from device 4620 * @dev: device to sync 4621 * @unsync: function to call if address should be removed 4622 * 4623 * Remove all addresses that were added to the device by dev_uc_sync(). 4624 */ 4625static inline void __dev_uc_unsync(struct net_device *dev, 4626 int (*unsync)(struct net_device *, 4627 const unsigned char *)) 4628{ 4629 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4630} 4631 4632/* Functions used for multicast addresses handling */ 4633int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4634int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4635int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4636int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4637int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4638int dev_mc_sync(struct net_device *to, struct net_device *from); 4639int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4640void dev_mc_unsync(struct net_device *to, struct net_device *from); 4641void dev_mc_flush(struct net_device *dev); 4642void dev_mc_init(struct net_device *dev); 4643 4644/** 4645 * __dev_mc_sync - Synchonize device's multicast list 4646 * @dev: device to sync 4647 * @sync: function to call if address should be added 4648 * @unsync: function to call if address should be removed 4649 * 4650 * Add newly added addresses to the interface, and release 4651 * addresses that have been deleted. 4652 */ 4653static inline int __dev_mc_sync(struct net_device *dev, 4654 int (*sync)(struct net_device *, 4655 const unsigned char *), 4656 int (*unsync)(struct net_device *, 4657 const unsigned char *)) 4658{ 4659 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4660} 4661 4662/** 4663 * __dev_mc_unsync - Remove synchronized addresses from device 4664 * @dev: device to sync 4665 * @unsync: function to call if address should be removed 4666 * 4667 * Remove all addresses that were added to the device by dev_mc_sync(). 4668 */ 4669static inline void __dev_mc_unsync(struct net_device *dev, 4670 int (*unsync)(struct net_device *, 4671 const unsigned char *)) 4672{ 4673 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4674} 4675 4676/* Functions used for secondary unicast and multicast support */ 4677void dev_set_rx_mode(struct net_device *dev); 4678int dev_set_promiscuity(struct net_device *dev, int inc); 4679int dev_set_allmulti(struct net_device *dev, int inc); 4680void netdev_state_change(struct net_device *dev); 4681void __netdev_notify_peers(struct net_device *dev); 4682void netdev_notify_peers(struct net_device *dev); 4683void netdev_features_change(struct net_device *dev); 4684/* Load a device via the kmod */ 4685void dev_load(struct net *net, const char *name); 4686struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4687 struct rtnl_link_stats64 *storage); 4688void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4689 const struct net_device_stats *netdev_stats); 4690void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4691 const struct pcpu_sw_netstats __percpu *netstats); 4692void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4693 4694enum { 4695 NESTED_SYNC_IMM_BIT, 4696 NESTED_SYNC_TODO_BIT, 4697}; 4698 4699#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4700#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4701 4702#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4703#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4704 4705struct netdev_nested_priv { 4706 unsigned char flags; 4707 void *data; 4708}; 4709 4710bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4711struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4712 struct list_head **iter); 4713 4714/* iterate through upper list, must be called under RCU read lock */ 4715#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4716 for (iter = &(dev)->adj_list.upper, \ 4717 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4718 updev; \ 4719 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4720 4721int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4722 int (*fn)(struct net_device *upper_dev, 4723 struct netdev_nested_priv *priv), 4724 struct netdev_nested_priv *priv); 4725 4726bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4727 struct net_device *upper_dev); 4728 4729bool netdev_has_any_upper_dev(struct net_device *dev); 4730 4731void *netdev_lower_get_next_private(struct net_device *dev, 4732 struct list_head **iter); 4733void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4734 struct list_head **iter); 4735 4736#define netdev_for_each_lower_private(dev, priv, iter) \ 4737 for (iter = (dev)->adj_list.lower.next, \ 4738 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4739 priv; \ 4740 priv = netdev_lower_get_next_private(dev, &(iter))) 4741 4742#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4743 for (iter = &(dev)->adj_list.lower, \ 4744 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4745 priv; \ 4746 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4747 4748void *netdev_lower_get_next(struct net_device *dev, 4749 struct list_head **iter); 4750 4751#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4752 for (iter = (dev)->adj_list.lower.next, \ 4753 ldev = netdev_lower_get_next(dev, &(iter)); \ 4754 ldev; \ 4755 ldev = netdev_lower_get_next(dev, &(iter))) 4756 4757struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4758 struct list_head **iter); 4759int netdev_walk_all_lower_dev(struct net_device *dev, 4760 int (*fn)(struct net_device *lower_dev, 4761 struct netdev_nested_priv *priv), 4762 struct netdev_nested_priv *priv); 4763int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4764 int (*fn)(struct net_device *lower_dev, 4765 struct netdev_nested_priv *priv), 4766 struct netdev_nested_priv *priv); 4767 4768void *netdev_adjacent_get_private(struct list_head *adj_list); 4769void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4770struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4771struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4772int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4773 struct netlink_ext_ack *extack); 4774int netdev_master_upper_dev_link(struct net_device *dev, 4775 struct net_device *upper_dev, 4776 void *upper_priv, void *upper_info, 4777 struct netlink_ext_ack *extack); 4778void netdev_upper_dev_unlink(struct net_device *dev, 4779 struct net_device *upper_dev); 4780int netdev_adjacent_change_prepare(struct net_device *old_dev, 4781 struct net_device *new_dev, 4782 struct net_device *dev, 4783 struct netlink_ext_ack *extack); 4784void netdev_adjacent_change_commit(struct net_device *old_dev, 4785 struct net_device *new_dev, 4786 struct net_device *dev); 4787void netdev_adjacent_change_abort(struct net_device *old_dev, 4788 struct net_device *new_dev, 4789 struct net_device *dev); 4790void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4791void *netdev_lower_dev_get_private(struct net_device *dev, 4792 struct net_device *lower_dev); 4793void netdev_lower_state_changed(struct net_device *lower_dev, 4794 void *lower_state_info); 4795 4796/* RSS keys are 40 or 52 bytes long */ 4797#define NETDEV_RSS_KEY_LEN 52 4798extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4799void netdev_rss_key_fill(void *buffer, size_t len); 4800 4801int skb_checksum_help(struct sk_buff *skb); 4802int skb_crc32c_csum_help(struct sk_buff *skb); 4803int skb_csum_hwoffload_help(struct sk_buff *skb, 4804 const netdev_features_t features); 4805 4806struct netdev_bonding_info { 4807 ifslave slave; 4808 ifbond master; 4809}; 4810 4811struct netdev_notifier_bonding_info { 4812 struct netdev_notifier_info info; /* must be first */ 4813 struct netdev_bonding_info bonding_info; 4814}; 4815 4816void netdev_bonding_info_change(struct net_device *dev, 4817 struct netdev_bonding_info *bonding_info); 4818 4819#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4820void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4821#else 4822static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4823 const void *data) 4824{ 4825} 4826#endif 4827 4828__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4829 4830static inline bool can_checksum_protocol(netdev_features_t features, 4831 __be16 protocol) 4832{ 4833 if (protocol == htons(ETH_P_FCOE)) 4834 return !!(features & NETIF_F_FCOE_CRC); 4835 4836 /* Assume this is an IP checksum (not SCTP CRC) */ 4837 4838 if (features & NETIF_F_HW_CSUM) { 4839 /* Can checksum everything */ 4840 return true; 4841 } 4842 4843 switch (protocol) { 4844 case htons(ETH_P_IP): 4845 return !!(features & NETIF_F_IP_CSUM); 4846 case htons(ETH_P_IPV6): 4847 return !!(features & NETIF_F_IPV6_CSUM); 4848 default: 4849 return false; 4850 } 4851} 4852 4853#ifdef CONFIG_BUG 4854void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4855#else 4856static inline void netdev_rx_csum_fault(struct net_device *dev, 4857 struct sk_buff *skb) 4858{ 4859} 4860#endif 4861/* rx skb timestamps */ 4862void net_enable_timestamp(void); 4863void net_disable_timestamp(void); 4864 4865static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4866 const struct skb_shared_hwtstamps *hwtstamps, 4867 bool cycles) 4868{ 4869 const struct net_device_ops *ops = dev->netdev_ops; 4870 4871 if (ops->ndo_get_tstamp) 4872 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4873 4874 return hwtstamps->hwtstamp; 4875} 4876 4877static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4878 struct sk_buff *skb, struct net_device *dev, 4879 bool more) 4880{ 4881 __this_cpu_write(softnet_data.xmit.more, more); 4882 return ops->ndo_start_xmit(skb, dev); 4883} 4884 4885static inline bool netdev_xmit_more(void) 4886{ 4887 return __this_cpu_read(softnet_data.xmit.more); 4888} 4889 4890static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4891 struct netdev_queue *txq, bool more) 4892{ 4893 const struct net_device_ops *ops = dev->netdev_ops; 4894 netdev_tx_t rc; 4895 4896 rc = __netdev_start_xmit(ops, skb, dev, more); 4897 if (rc == NETDEV_TX_OK) 4898 txq_trans_update(txq); 4899 4900 return rc; 4901} 4902 4903int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4904 const void *ns); 4905void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4906 const void *ns); 4907 4908extern const struct kobj_ns_type_operations net_ns_type_operations; 4909 4910const char *netdev_drivername(const struct net_device *dev); 4911 4912static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4913 netdev_features_t f2) 4914{ 4915 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4916 if (f1 & NETIF_F_HW_CSUM) 4917 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4918 else 4919 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4920 } 4921 4922 return f1 & f2; 4923} 4924 4925static inline netdev_features_t netdev_get_wanted_features( 4926 struct net_device *dev) 4927{ 4928 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4929} 4930netdev_features_t netdev_increment_features(netdev_features_t all, 4931 netdev_features_t one, netdev_features_t mask); 4932 4933/* Allow TSO being used on stacked device : 4934 * Performing the GSO segmentation before last device 4935 * is a performance improvement. 4936 */ 4937static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4938 netdev_features_t mask) 4939{ 4940 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4941} 4942 4943int __netdev_update_features(struct net_device *dev); 4944void netdev_update_features(struct net_device *dev); 4945void netdev_change_features(struct net_device *dev); 4946 4947void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4948 struct net_device *dev); 4949 4950netdev_features_t passthru_features_check(struct sk_buff *skb, 4951 struct net_device *dev, 4952 netdev_features_t features); 4953netdev_features_t netif_skb_features(struct sk_buff *skb); 4954void skb_warn_bad_offload(const struct sk_buff *skb); 4955 4956static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4957{ 4958 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4959 4960 /* check flags correspondence */ 4961 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4962 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4963 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4964 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4965 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4966 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4967 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4968 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4969 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4970 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4974 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4975 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4976 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4977 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4978 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4979 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4980 4981 return (features & feature) == feature; 4982} 4983 4984static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4985{ 4986 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4987 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4988} 4989 4990static inline bool netif_needs_gso(struct sk_buff *skb, 4991 netdev_features_t features) 4992{ 4993 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4994 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4995 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4996} 4997 4998void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4999void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5000void netif_inherit_tso_max(struct net_device *to, 5001 const struct net_device *from); 5002 5003static inline bool netif_is_macsec(const struct net_device *dev) 5004{ 5005 return dev->priv_flags & IFF_MACSEC; 5006} 5007 5008static inline bool netif_is_macvlan(const struct net_device *dev) 5009{ 5010 return dev->priv_flags & IFF_MACVLAN; 5011} 5012 5013static inline bool netif_is_macvlan_port(const struct net_device *dev) 5014{ 5015 return dev->priv_flags & IFF_MACVLAN_PORT; 5016} 5017 5018static inline bool netif_is_bond_master(const struct net_device *dev) 5019{ 5020 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5021} 5022 5023static inline bool netif_is_bond_slave(const struct net_device *dev) 5024{ 5025 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5026} 5027 5028static inline bool netif_supports_nofcs(struct net_device *dev) 5029{ 5030 return dev->priv_flags & IFF_SUPP_NOFCS; 5031} 5032 5033static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5034{ 5035 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5036} 5037 5038static inline bool netif_is_l3_master(const struct net_device *dev) 5039{ 5040 return dev->priv_flags & IFF_L3MDEV_MASTER; 5041} 5042 5043static inline bool netif_is_l3_slave(const struct net_device *dev) 5044{ 5045 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5046} 5047 5048static inline int dev_sdif(const struct net_device *dev) 5049{ 5050#ifdef CONFIG_NET_L3_MASTER_DEV 5051 if (netif_is_l3_slave(dev)) 5052 return dev->ifindex; 5053#endif 5054 return 0; 5055} 5056 5057static inline bool netif_is_bridge_master(const struct net_device *dev) 5058{ 5059 return dev->priv_flags & IFF_EBRIDGE; 5060} 5061 5062static inline bool netif_is_bridge_port(const struct net_device *dev) 5063{ 5064 return dev->priv_flags & IFF_BRIDGE_PORT; 5065} 5066 5067static inline bool netif_is_ovs_master(const struct net_device *dev) 5068{ 5069 return dev->priv_flags & IFF_OPENVSWITCH; 5070} 5071 5072static inline bool netif_is_ovs_port(const struct net_device *dev) 5073{ 5074 return dev->priv_flags & IFF_OVS_DATAPATH; 5075} 5076 5077static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5078{ 5079 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5080} 5081 5082static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5083{ 5084 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5085} 5086 5087static inline bool netif_is_team_master(const struct net_device *dev) 5088{ 5089 return dev->priv_flags & IFF_TEAM; 5090} 5091 5092static inline bool netif_is_team_port(const struct net_device *dev) 5093{ 5094 return dev->priv_flags & IFF_TEAM_PORT; 5095} 5096 5097static inline bool netif_is_lag_master(const struct net_device *dev) 5098{ 5099 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5100} 5101 5102static inline bool netif_is_lag_port(const struct net_device *dev) 5103{ 5104 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5105} 5106 5107static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5108{ 5109 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5110} 5111 5112static inline bool netif_is_failover(const struct net_device *dev) 5113{ 5114 return dev->priv_flags & IFF_FAILOVER; 5115} 5116 5117static inline bool netif_is_failover_slave(const struct net_device *dev) 5118{ 5119 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5120} 5121 5122/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5123static inline void netif_keep_dst(struct net_device *dev) 5124{ 5125 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5126} 5127 5128/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5129static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5130{ 5131 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5132 return netif_is_macsec(dev); 5133} 5134 5135extern struct pernet_operations __net_initdata loopback_net_ops; 5136 5137/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5138 5139/* netdev_printk helpers, similar to dev_printk */ 5140 5141static inline const char *netdev_name(const struct net_device *dev) 5142{ 5143 if (!dev->name[0] || strchr(dev->name, '%')) 5144 return "(unnamed net_device)"; 5145 return dev->name; 5146} 5147 5148static inline const char *netdev_reg_state(const struct net_device *dev) 5149{ 5150 u8 reg_state = READ_ONCE(dev->reg_state); 5151 5152 switch (reg_state) { 5153 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5154 case NETREG_REGISTERED: return ""; 5155 case NETREG_UNREGISTERING: return " (unregistering)"; 5156 case NETREG_UNREGISTERED: return " (unregistered)"; 5157 case NETREG_RELEASED: return " (released)"; 5158 case NETREG_DUMMY: return " (dummy)"; 5159 } 5160 5161 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5162 return " (unknown)"; 5163} 5164 5165#define MODULE_ALIAS_NETDEV(device) \ 5166 MODULE_ALIAS("netdev-" device) 5167 5168/* 5169 * netdev_WARN() acts like dev_printk(), but with the key difference 5170 * of using a WARN/WARN_ON to get the message out, including the 5171 * file/line information and a backtrace. 5172 */ 5173#define netdev_WARN(dev, format, args...) \ 5174 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5175 netdev_reg_state(dev), ##args) 5176 5177#define netdev_WARN_ONCE(dev, format, args...) \ 5178 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5179 netdev_reg_state(dev), ##args) 5180 5181/* 5182 * The list of packet types we will receive (as opposed to discard) 5183 * and the routines to invoke. 5184 * 5185 * Why 16. Because with 16 the only overlap we get on a hash of the 5186 * low nibble of the protocol value is RARP/SNAP/X.25. 5187 * 5188 * 0800 IP 5189 * 0001 802.3 5190 * 0002 AX.25 5191 * 0004 802.2 5192 * 8035 RARP 5193 * 0005 SNAP 5194 * 0805 X.25 5195 * 0806 ARP 5196 * 8137 IPX 5197 * 0009 Localtalk 5198 * 86DD IPv6 5199 */ 5200#define PTYPE_HASH_SIZE (16) 5201#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5202 5203extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5204 5205extern struct net_device *blackhole_netdev; 5206 5207/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5208#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5209#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5210 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5211#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5212 5213#endif /* _LINUX_NETDEVICE_H */