Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/kernel.h>
18#include <linux/page_counter.h>
19#include <linux/vmpressure.h>
20#include <linux/eventfd.h>
21#include <linux/mm.h>
22#include <linux/vmstat.h>
23#include <linux/writeback.h>
24#include <linux/page-flags.h>
25#include <linux/shrinker.h>
26
27struct mem_cgroup;
28struct obj_cgroup;
29struct page;
30struct mm_struct;
31struct kmem_cache;
32
33/* Cgroup-specific page state, on top of universal node page state */
34enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43};
44
45enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_NR_MEMORY_EVENTS,
56};
57
58struct mem_cgroup_reclaim_cookie {
59 pg_data_t *pgdat;
60 unsigned int generation;
61};
62
63#ifdef CONFIG_MEMCG
64
65#define MEM_CGROUP_ID_SHIFT 16
66
67struct mem_cgroup_id {
68 int id;
69 refcount_t ref;
70};
71
72/*
73 * Per memcg event counter is incremented at every pagein/pageout. With THP,
74 * it will be incremented by the number of pages. This counter is used
75 * to trigger some periodic events. This is straightforward and better
76 * than using jiffies etc. to handle periodic memcg event.
77 */
78enum mem_cgroup_events_target {
79 MEM_CGROUP_TARGET_THRESH,
80 MEM_CGROUP_TARGET_SOFTLIMIT,
81 MEM_CGROUP_NTARGETS,
82};
83
84struct memcg_vmstats_percpu;
85struct memcg_vmstats;
86struct lruvec_stats_percpu;
87struct lruvec_stats;
88
89struct mem_cgroup_reclaim_iter {
90 struct mem_cgroup *position;
91 /* scan generation, increased every round-trip */
92 unsigned int generation;
93};
94
95/*
96 * per-node information in memory controller.
97 */
98struct mem_cgroup_per_node {
99 struct lruvec lruvec;
100
101 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
102 struct lruvec_stats *lruvec_stats;
103
104 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
105
106 struct mem_cgroup_reclaim_iter iter;
107
108 struct shrinker_info __rcu *shrinker_info;
109
110 struct rb_node tree_node; /* RB tree node */
111 unsigned long usage_in_excess;/* Set to the value by which */
112 /* the soft limit is exceeded*/
113 bool on_tree;
114 struct mem_cgroup *memcg; /* Back pointer, we cannot */
115 /* use container_of */
116};
117
118struct mem_cgroup_threshold {
119 struct eventfd_ctx *eventfd;
120 unsigned long threshold;
121};
122
123/* For threshold */
124struct mem_cgroup_threshold_ary {
125 /* An array index points to threshold just below or equal to usage. */
126 int current_threshold;
127 /* Size of entries[] */
128 unsigned int size;
129 /* Array of thresholds */
130 struct mem_cgroup_threshold entries[] __counted_by(size);
131};
132
133struct mem_cgroup_thresholds {
134 /* Primary thresholds array */
135 struct mem_cgroup_threshold_ary *primary;
136 /*
137 * Spare threshold array.
138 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 * It must be able to store at least primary->size - 1 entries.
140 */
141 struct mem_cgroup_threshold_ary *spare;
142};
143
144/*
145 * Remember four most recent foreign writebacks with dirty pages in this
146 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
147 * one in a given round, we're likely to catch it later if it keeps
148 * foreign-dirtying, so a fairly low count should be enough.
149 *
150 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151 */
152#define MEMCG_CGWB_FRN_CNT 4
153
154struct memcg_cgwb_frn {
155 u64 bdi_id; /* bdi->id of the foreign inode */
156 int memcg_id; /* memcg->css.id of foreign inode */
157 u64 at; /* jiffies_64 at the time of dirtying */
158 struct wb_completion done; /* tracks in-flight foreign writebacks */
159};
160
161/*
162 * Bucket for arbitrarily byte-sized objects charged to a memory
163 * cgroup. The bucket can be reparented in one piece when the cgroup
164 * is destroyed, without having to round up the individual references
165 * of all live memory objects in the wild.
166 */
167struct obj_cgroup {
168 struct percpu_ref refcnt;
169 struct mem_cgroup *memcg;
170 atomic_t nr_charged_bytes;
171 union {
172 struct list_head list; /* protected by objcg_lock */
173 struct rcu_head rcu;
174 };
175};
176
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Private memcg ID. Used to ID objects that outlive the cgroup */
187 struct mem_cgroup_id id;
188
189 /* Accounted resources */
190 struct page_counter memory; /* Both v1 & v2 */
191
192 union {
193 struct page_counter swap; /* v2 only */
194 struct page_counter memsw; /* v1 only */
195 };
196
197 /* Legacy consumer-oriented counters */
198 struct page_counter kmem; /* v1 only */
199 struct page_counter tcpmem; /* v1 only */
200
201 /* Range enforcement for interrupt charges */
202 struct work_struct high_work;
203
204#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
205 unsigned long zswap_max;
206
207 /*
208 * Prevent pages from this memcg from being written back from zswap to
209 * swap, and from being swapped out on zswap store failures.
210 */
211 bool zswap_writeback;
212#endif
213
214 unsigned long soft_limit;
215
216 /* vmpressure notifications */
217 struct vmpressure vmpressure;
218
219 /*
220 * Should the OOM killer kill all belonging tasks, had it kill one?
221 */
222 bool oom_group;
223
224 /* protected by memcg_oom_lock */
225 bool oom_lock;
226 int under_oom;
227
228 int swappiness;
229 /* OOM-Killer disable */
230 int oom_kill_disable;
231
232 /* memory.events and memory.events.local */
233 struct cgroup_file events_file;
234 struct cgroup_file events_local_file;
235
236 /* handle for "memory.swap.events" */
237 struct cgroup_file swap_events_file;
238
239 /* protect arrays of thresholds */
240 struct mutex thresholds_lock;
241
242 /* thresholds for memory usage. RCU-protected */
243 struct mem_cgroup_thresholds thresholds;
244
245 /* thresholds for mem+swap usage. RCU-protected */
246 struct mem_cgroup_thresholds memsw_thresholds;
247
248 /* For oom notifier event fd */
249 struct list_head oom_notify;
250
251 /*
252 * Should we move charges of a task when a task is moved into this
253 * mem_cgroup ? And what type of charges should we move ?
254 */
255 unsigned long move_charge_at_immigrate;
256 /* taken only while moving_account > 0 */
257 spinlock_t move_lock;
258 unsigned long move_lock_flags;
259
260 CACHELINE_PADDING(_pad1_);
261
262 /* memory.stat */
263 struct memcg_vmstats *vmstats;
264
265 /* memory.events */
266 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
267 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
268
269 /*
270 * Hint of reclaim pressure for socket memroy management. Note
271 * that this indicator should NOT be used in legacy cgroup mode
272 * where socket memory is accounted/charged separately.
273 */
274 unsigned long socket_pressure;
275
276 /* Legacy tcp memory accounting */
277 bool tcpmem_active;
278 int tcpmem_pressure;
279
280#ifdef CONFIG_MEMCG_KMEM
281 int kmemcg_id;
282 /*
283 * memcg->objcg is wiped out as a part of the objcg repaprenting
284 * process. memcg->orig_objcg preserves a pointer (and a reference)
285 * to the original objcg until the end of live of memcg.
286 */
287 struct obj_cgroup __rcu *objcg;
288 struct obj_cgroup *orig_objcg;
289 /* list of inherited objcgs, protected by objcg_lock */
290 struct list_head objcg_list;
291#endif
292
293 CACHELINE_PADDING(_pad2_);
294
295 /*
296 * set > 0 if pages under this cgroup are moving to other cgroup.
297 */
298 atomic_t moving_account;
299 struct task_struct *move_lock_task;
300
301 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
302
303#ifdef CONFIG_CGROUP_WRITEBACK
304 struct list_head cgwb_list;
305 struct wb_domain cgwb_domain;
306 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
307#endif
308
309 /* List of events which userspace want to receive */
310 struct list_head event_list;
311 spinlock_t event_list_lock;
312
313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 struct deferred_split deferred_split_queue;
315#endif
316
317#ifdef CONFIG_LRU_GEN_WALKS_MMU
318 /* per-memcg mm_struct list */
319 struct lru_gen_mm_list mm_list;
320#endif
321
322 struct mem_cgroup_per_node *nodeinfo[];
323};
324
325/*
326 * size of first charge trial.
327 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
328 * workload.
329 */
330#define MEMCG_CHARGE_BATCH 64U
331
332extern struct mem_cgroup *root_mem_cgroup;
333
334enum page_memcg_data_flags {
335 /* page->memcg_data is a pointer to an slabobj_ext vector */
336 MEMCG_DATA_OBJEXTS = (1UL << 0),
337 /* page has been accounted as a non-slab kernel page */
338 MEMCG_DATA_KMEM = (1UL << 1),
339 /* the next bit after the last actual flag */
340 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
341};
342
343#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
344
345#else /* CONFIG_MEMCG */
346
347#define __FIRST_OBJEXT_FLAG (1UL << 0)
348
349#endif /* CONFIG_MEMCG */
350
351enum objext_flags {
352 /* slabobj_ext vector failed to allocate */
353 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
354 /* the next bit after the last actual flag */
355 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
356};
357
358#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
359
360#ifdef CONFIG_MEMCG
361
362static inline bool folio_memcg_kmem(struct folio *folio);
363
364/*
365 * After the initialization objcg->memcg is always pointing at
366 * a valid memcg, but can be atomically swapped to the parent memcg.
367 *
368 * The caller must ensure that the returned memcg won't be released:
369 * e.g. acquire the rcu_read_lock or css_set_lock.
370 */
371static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
372{
373 return READ_ONCE(objcg->memcg);
374}
375
376/*
377 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
378 * @folio: Pointer to the folio.
379 *
380 * Returns a pointer to the memory cgroup associated with the folio,
381 * or NULL. This function assumes that the folio is known to have a
382 * proper memory cgroup pointer. It's not safe to call this function
383 * against some type of folios, e.g. slab folios or ex-slab folios or
384 * kmem folios.
385 */
386static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
387{
388 unsigned long memcg_data = folio->memcg_data;
389
390 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
391 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
392 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
393
394 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
395}
396
397/*
398 * __folio_objcg - get the object cgroup associated with a kmem folio.
399 * @folio: Pointer to the folio.
400 *
401 * Returns a pointer to the object cgroup associated with the folio,
402 * or NULL. This function assumes that the folio is known to have a
403 * proper object cgroup pointer. It's not safe to call this function
404 * against some type of folios, e.g. slab folios or ex-slab folios or
405 * LRU folios.
406 */
407static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
408{
409 unsigned long memcg_data = folio->memcg_data;
410
411 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
412 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
413 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
414
415 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
416}
417
418/*
419 * folio_memcg - Get the memory cgroup associated with a folio.
420 * @folio: Pointer to the folio.
421 *
422 * Returns a pointer to the memory cgroup associated with the folio,
423 * or NULL. This function assumes that the folio is known to have a
424 * proper memory cgroup pointer. It's not safe to call this function
425 * against some type of folios, e.g. slab folios or ex-slab folios.
426 *
427 * For a non-kmem folio any of the following ensures folio and memcg binding
428 * stability:
429 *
430 * - the folio lock
431 * - LRU isolation
432 * - folio_memcg_lock()
433 * - exclusive reference
434 * - mem_cgroup_trylock_pages()
435 *
436 * For a kmem folio a caller should hold an rcu read lock to protect memcg
437 * associated with a kmem folio from being released.
438 */
439static inline struct mem_cgroup *folio_memcg(struct folio *folio)
440{
441 if (folio_memcg_kmem(folio))
442 return obj_cgroup_memcg(__folio_objcg(folio));
443 return __folio_memcg(folio);
444}
445
446static inline struct mem_cgroup *page_memcg(struct page *page)
447{
448 return folio_memcg(page_folio(page));
449}
450
451/**
452 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
453 * @folio: Pointer to the folio.
454 *
455 * This function assumes that the folio is known to have a
456 * proper memory cgroup pointer. It's not safe to call this function
457 * against some type of folios, e.g. slab folios or ex-slab folios.
458 *
459 * Return: A pointer to the memory cgroup associated with the folio,
460 * or NULL.
461 */
462static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
463{
464 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
465
466 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
467 WARN_ON_ONCE(!rcu_read_lock_held());
468
469 if (memcg_data & MEMCG_DATA_KMEM) {
470 struct obj_cgroup *objcg;
471
472 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
473 return obj_cgroup_memcg(objcg);
474 }
475
476 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
477}
478
479/*
480 * folio_memcg_check - Get the memory cgroup associated with a folio.
481 * @folio: Pointer to the folio.
482 *
483 * Returns a pointer to the memory cgroup associated with the folio,
484 * or NULL. This function unlike folio_memcg() can take any folio
485 * as an argument. It has to be used in cases when it's not known if a folio
486 * has an associated memory cgroup pointer or an object cgroups vector or
487 * an object cgroup.
488 *
489 * For a non-kmem folio any of the following ensures folio and memcg binding
490 * stability:
491 *
492 * - the folio lock
493 * - LRU isolation
494 * - lock_folio_memcg()
495 * - exclusive reference
496 * - mem_cgroup_trylock_pages()
497 *
498 * For a kmem folio a caller should hold an rcu read lock to protect memcg
499 * associated with a kmem folio from being released.
500 */
501static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
502{
503 /*
504 * Because folio->memcg_data might be changed asynchronously
505 * for slabs, READ_ONCE() should be used here.
506 */
507 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
508
509 if (memcg_data & MEMCG_DATA_OBJEXTS)
510 return NULL;
511
512 if (memcg_data & MEMCG_DATA_KMEM) {
513 struct obj_cgroup *objcg;
514
515 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
516 return obj_cgroup_memcg(objcg);
517 }
518
519 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
520}
521
522static inline struct mem_cgroup *page_memcg_check(struct page *page)
523{
524 if (PageTail(page))
525 return NULL;
526 return folio_memcg_check((struct folio *)page);
527}
528
529static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
530{
531 struct mem_cgroup *memcg;
532
533 rcu_read_lock();
534retry:
535 memcg = obj_cgroup_memcg(objcg);
536 if (unlikely(!css_tryget(&memcg->css)))
537 goto retry;
538 rcu_read_unlock();
539
540 return memcg;
541}
542
543#ifdef CONFIG_MEMCG_KMEM
544/*
545 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
546 * @folio: Pointer to the folio.
547 *
548 * Checks if the folio has MemcgKmem flag set. The caller must ensure
549 * that the folio has an associated memory cgroup. It's not safe to call
550 * this function against some types of folios, e.g. slab folios.
551 */
552static inline bool folio_memcg_kmem(struct folio *folio)
553{
554 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
555 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
556 return folio->memcg_data & MEMCG_DATA_KMEM;
557}
558
559
560#else
561static inline bool folio_memcg_kmem(struct folio *folio)
562{
563 return false;
564}
565
566#endif
567
568static inline bool PageMemcgKmem(struct page *page)
569{
570 return folio_memcg_kmem(page_folio(page));
571}
572
573static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
574{
575 return (memcg == root_mem_cgroup);
576}
577
578static inline bool mem_cgroup_disabled(void)
579{
580 return !cgroup_subsys_enabled(memory_cgrp_subsys);
581}
582
583static inline void mem_cgroup_protection(struct mem_cgroup *root,
584 struct mem_cgroup *memcg,
585 unsigned long *min,
586 unsigned long *low)
587{
588 *min = *low = 0;
589
590 if (mem_cgroup_disabled())
591 return;
592
593 /*
594 * There is no reclaim protection applied to a targeted reclaim.
595 * We are special casing this specific case here because
596 * mem_cgroup_calculate_protection is not robust enough to keep
597 * the protection invariant for calculated effective values for
598 * parallel reclaimers with different reclaim target. This is
599 * especially a problem for tail memcgs (as they have pages on LRU)
600 * which would want to have effective values 0 for targeted reclaim
601 * but a different value for external reclaim.
602 *
603 * Example
604 * Let's have global and A's reclaim in parallel:
605 * |
606 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
607 * |\
608 * | C (low = 1G, usage = 2.5G)
609 * B (low = 1G, usage = 0.5G)
610 *
611 * For the global reclaim
612 * A.elow = A.low
613 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
614 * C.elow = min(C.usage, C.low)
615 *
616 * With the effective values resetting we have A reclaim
617 * A.elow = 0
618 * B.elow = B.low
619 * C.elow = C.low
620 *
621 * If the global reclaim races with A's reclaim then
622 * B.elow = C.elow = 0 because children_low_usage > A.elow)
623 * is possible and reclaiming B would be violating the protection.
624 *
625 */
626 if (root == memcg)
627 return;
628
629 *min = READ_ONCE(memcg->memory.emin);
630 *low = READ_ONCE(memcg->memory.elow);
631}
632
633void mem_cgroup_calculate_protection(struct mem_cgroup *root,
634 struct mem_cgroup *memcg);
635
636static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
637 struct mem_cgroup *memcg)
638{
639 /*
640 * The root memcg doesn't account charges, and doesn't support
641 * protection. The target memcg's protection is ignored, see
642 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
643 */
644 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
645 memcg == target;
646}
647
648static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
649 struct mem_cgroup *memcg)
650{
651 if (mem_cgroup_unprotected(target, memcg))
652 return false;
653
654 return READ_ONCE(memcg->memory.elow) >=
655 page_counter_read(&memcg->memory);
656}
657
658static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
659 struct mem_cgroup *memcg)
660{
661 if (mem_cgroup_unprotected(target, memcg))
662 return false;
663
664 return READ_ONCE(memcg->memory.emin) >=
665 page_counter_read(&memcg->memory);
666}
667
668void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
669
670int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
671
672/**
673 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
674 * @folio: Folio to charge.
675 * @mm: mm context of the allocating task.
676 * @gfp: Reclaim mode.
677 *
678 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
679 * pages according to @gfp if necessary. If @mm is NULL, try to
680 * charge to the active memcg.
681 *
682 * Do not use this for folios allocated for swapin.
683 *
684 * Return: 0 on success. Otherwise, an error code is returned.
685 */
686static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
687 gfp_t gfp)
688{
689 if (mem_cgroup_disabled())
690 return 0;
691 return __mem_cgroup_charge(folio, mm, gfp);
692}
693
694int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
695 long nr_pages);
696
697int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
698 gfp_t gfp, swp_entry_t entry);
699void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700
701void __mem_cgroup_uncharge(struct folio *folio);
702
703/**
704 * mem_cgroup_uncharge - Uncharge a folio.
705 * @folio: Folio to uncharge.
706 *
707 * Uncharge a folio previously charged with mem_cgroup_charge().
708 */
709static inline void mem_cgroup_uncharge(struct folio *folio)
710{
711 if (mem_cgroup_disabled())
712 return;
713 __mem_cgroup_uncharge(folio);
714}
715
716void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
717static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
718{
719 if (mem_cgroup_disabled())
720 return;
721 __mem_cgroup_uncharge_folios(folios);
722}
723
724void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
725void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
726void mem_cgroup_migrate(struct folio *old, struct folio *new);
727
728/**
729 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
730 * @memcg: memcg of the wanted lruvec
731 * @pgdat: pglist_data
732 *
733 * Returns the lru list vector holding pages for a given @memcg &
734 * @pgdat combination. This can be the node lruvec, if the memory
735 * controller is disabled.
736 */
737static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
738 struct pglist_data *pgdat)
739{
740 struct mem_cgroup_per_node *mz;
741 struct lruvec *lruvec;
742
743 if (mem_cgroup_disabled()) {
744 lruvec = &pgdat->__lruvec;
745 goto out;
746 }
747
748 if (!memcg)
749 memcg = root_mem_cgroup;
750
751 mz = memcg->nodeinfo[pgdat->node_id];
752 lruvec = &mz->lruvec;
753out:
754 /*
755 * Since a node can be onlined after the mem_cgroup was created,
756 * we have to be prepared to initialize lruvec->pgdat here;
757 * and if offlined then reonlined, we need to reinitialize it.
758 */
759 if (unlikely(lruvec->pgdat != pgdat))
760 lruvec->pgdat = pgdat;
761 return lruvec;
762}
763
764/**
765 * folio_lruvec - return lruvec for isolating/putting an LRU folio
766 * @folio: Pointer to the folio.
767 *
768 * This function relies on folio->mem_cgroup being stable.
769 */
770static inline struct lruvec *folio_lruvec(struct folio *folio)
771{
772 struct mem_cgroup *memcg = folio_memcg(folio);
773
774 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
775 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
776}
777
778struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
779
780struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
781
782struct mem_cgroup *get_mem_cgroup_from_current(void);
783
784struct lruvec *folio_lruvec_lock(struct folio *folio);
785struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
786struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
787 unsigned long *flags);
788
789#ifdef CONFIG_DEBUG_VM
790void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
791#else
792static inline
793void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
794{
795}
796#endif
797
798static inline
799struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
800 return css ? container_of(css, struct mem_cgroup, css) : NULL;
801}
802
803static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
804{
805 return percpu_ref_tryget(&objcg->refcnt);
806}
807
808static inline void obj_cgroup_get(struct obj_cgroup *objcg)
809{
810 percpu_ref_get(&objcg->refcnt);
811}
812
813static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
814 unsigned long nr)
815{
816 percpu_ref_get_many(&objcg->refcnt, nr);
817}
818
819static inline void obj_cgroup_put(struct obj_cgroup *objcg)
820{
821 if (objcg)
822 percpu_ref_put(&objcg->refcnt);
823}
824
825static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
826{
827 return !memcg || css_tryget(&memcg->css);
828}
829
830static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
831{
832 return !memcg || css_tryget_online(&memcg->css);
833}
834
835static inline void mem_cgroup_put(struct mem_cgroup *memcg)
836{
837 if (memcg)
838 css_put(&memcg->css);
839}
840
841#define mem_cgroup_from_counter(counter, member) \
842 container_of(counter, struct mem_cgroup, member)
843
844struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
845 struct mem_cgroup *,
846 struct mem_cgroup_reclaim_cookie *);
847void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
848void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
849 int (*)(struct task_struct *, void *), void *arg);
850
851static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
852{
853 if (mem_cgroup_disabled())
854 return 0;
855
856 return memcg->id.id;
857}
858struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
859
860#ifdef CONFIG_SHRINKER_DEBUG
861static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
862{
863 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
864}
865
866struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
867#endif
868
869static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
870{
871 return mem_cgroup_from_css(seq_css(m));
872}
873
874static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
875{
876 struct mem_cgroup_per_node *mz;
877
878 if (mem_cgroup_disabled())
879 return NULL;
880
881 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
882 return mz->memcg;
883}
884
885/**
886 * parent_mem_cgroup - find the accounting parent of a memcg
887 * @memcg: memcg whose parent to find
888 *
889 * Returns the parent memcg, or NULL if this is the root.
890 */
891static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
892{
893 return mem_cgroup_from_css(memcg->css.parent);
894}
895
896static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
897 struct mem_cgroup *root)
898{
899 if (root == memcg)
900 return true;
901 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
902}
903
904static inline bool mm_match_cgroup(struct mm_struct *mm,
905 struct mem_cgroup *memcg)
906{
907 struct mem_cgroup *task_memcg;
908 bool match = false;
909
910 rcu_read_lock();
911 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
912 if (task_memcg)
913 match = mem_cgroup_is_descendant(task_memcg, memcg);
914 rcu_read_unlock();
915 return match;
916}
917
918struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
919ino_t page_cgroup_ino(struct page *page);
920
921static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
922{
923 if (mem_cgroup_disabled())
924 return true;
925 return !!(memcg->css.flags & CSS_ONLINE);
926}
927
928void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
929 int zid, int nr_pages);
930
931static inline
932unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
933 enum lru_list lru, int zone_idx)
934{
935 struct mem_cgroup_per_node *mz;
936
937 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
938 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
939}
940
941void mem_cgroup_handle_over_high(gfp_t gfp_mask);
942
943unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
944
945unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
946
947void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
948 struct task_struct *p);
949
950void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
951
952static inline void mem_cgroup_enter_user_fault(void)
953{
954 WARN_ON(current->in_user_fault);
955 current->in_user_fault = 1;
956}
957
958static inline void mem_cgroup_exit_user_fault(void)
959{
960 WARN_ON(!current->in_user_fault);
961 current->in_user_fault = 0;
962}
963
964static inline bool task_in_memcg_oom(struct task_struct *p)
965{
966 return p->memcg_in_oom;
967}
968
969bool mem_cgroup_oom_synchronize(bool wait);
970struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
971 struct mem_cgroup *oom_domain);
972void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
973
974void folio_memcg_lock(struct folio *folio);
975void folio_memcg_unlock(struct folio *folio);
976
977void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
978 int val);
979
980/* try to stablize folio_memcg() for all the pages in a memcg */
981static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
982{
983 rcu_read_lock();
984
985 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
986 return true;
987
988 rcu_read_unlock();
989 return false;
990}
991
992static inline void mem_cgroup_unlock_pages(void)
993{
994 rcu_read_unlock();
995}
996
997/* idx can be of type enum memcg_stat_item or node_stat_item */
998static inline void mod_memcg_state(struct mem_cgroup *memcg,
999 enum memcg_stat_item idx, int val)
1000{
1001 unsigned long flags;
1002
1003 local_irq_save(flags);
1004 __mod_memcg_state(memcg, idx, val);
1005 local_irq_restore(flags);
1006}
1007
1008static inline void mod_memcg_page_state(struct page *page,
1009 enum memcg_stat_item idx, int val)
1010{
1011 struct mem_cgroup *memcg;
1012
1013 if (mem_cgroup_disabled())
1014 return;
1015
1016 rcu_read_lock();
1017 memcg = page_memcg(page);
1018 if (memcg)
1019 mod_memcg_state(memcg, idx, val);
1020 rcu_read_unlock();
1021}
1022
1023unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1024unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
1025unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1026 enum node_stat_item idx);
1027
1028void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1029void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1030
1031void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1032
1033static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1034 int val)
1035{
1036 unsigned long flags;
1037
1038 local_irq_save(flags);
1039 __mod_lruvec_kmem_state(p, idx, val);
1040 local_irq_restore(flags);
1041}
1042
1043void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1044 unsigned long count);
1045
1046static inline void count_memcg_events(struct mem_cgroup *memcg,
1047 enum vm_event_item idx,
1048 unsigned long count)
1049{
1050 unsigned long flags;
1051
1052 local_irq_save(flags);
1053 __count_memcg_events(memcg, idx, count);
1054 local_irq_restore(flags);
1055}
1056
1057static inline void count_memcg_folio_events(struct folio *folio,
1058 enum vm_event_item idx, unsigned long nr)
1059{
1060 struct mem_cgroup *memcg = folio_memcg(folio);
1061
1062 if (memcg)
1063 count_memcg_events(memcg, idx, nr);
1064}
1065
1066static inline void count_memcg_event_mm(struct mm_struct *mm,
1067 enum vm_event_item idx)
1068{
1069 struct mem_cgroup *memcg;
1070
1071 if (mem_cgroup_disabled())
1072 return;
1073
1074 rcu_read_lock();
1075 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1076 if (likely(memcg))
1077 count_memcg_events(memcg, idx, 1);
1078 rcu_read_unlock();
1079}
1080
1081static inline void memcg_memory_event(struct mem_cgroup *memcg,
1082 enum memcg_memory_event event)
1083{
1084 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1085 event == MEMCG_SWAP_FAIL;
1086
1087 atomic_long_inc(&memcg->memory_events_local[event]);
1088 if (!swap_event)
1089 cgroup_file_notify(&memcg->events_local_file);
1090
1091 do {
1092 atomic_long_inc(&memcg->memory_events[event]);
1093 if (swap_event)
1094 cgroup_file_notify(&memcg->swap_events_file);
1095 else
1096 cgroup_file_notify(&memcg->events_file);
1097
1098 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1099 break;
1100 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1101 break;
1102 } while ((memcg = parent_mem_cgroup(memcg)) &&
1103 !mem_cgroup_is_root(memcg));
1104}
1105
1106static inline void memcg_memory_event_mm(struct mm_struct *mm,
1107 enum memcg_memory_event event)
1108{
1109 struct mem_cgroup *memcg;
1110
1111 if (mem_cgroup_disabled())
1112 return;
1113
1114 rcu_read_lock();
1115 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1116 if (likely(memcg))
1117 memcg_memory_event(memcg, event);
1118 rcu_read_unlock();
1119}
1120
1121void split_page_memcg(struct page *head, int old_order, int new_order);
1122
1123unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1124 gfp_t gfp_mask,
1125 unsigned long *total_scanned);
1126
1127#else /* CONFIG_MEMCG */
1128
1129#define MEM_CGROUP_ID_SHIFT 0
1130
1131static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1132{
1133 return NULL;
1134}
1135
1136static inline struct mem_cgroup *page_memcg(struct page *page)
1137{
1138 return NULL;
1139}
1140
1141static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1142{
1143 WARN_ON_ONCE(!rcu_read_lock_held());
1144 return NULL;
1145}
1146
1147static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1148{
1149 return NULL;
1150}
1151
1152static inline struct mem_cgroup *page_memcg_check(struct page *page)
1153{
1154 return NULL;
1155}
1156
1157static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1158{
1159 return NULL;
1160}
1161
1162static inline bool folio_memcg_kmem(struct folio *folio)
1163{
1164 return false;
1165}
1166
1167static inline bool PageMemcgKmem(struct page *page)
1168{
1169 return false;
1170}
1171
1172static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1173{
1174 return true;
1175}
1176
1177static inline bool mem_cgroup_disabled(void)
1178{
1179 return true;
1180}
1181
1182static inline void memcg_memory_event(struct mem_cgroup *memcg,
1183 enum memcg_memory_event event)
1184{
1185}
1186
1187static inline void memcg_memory_event_mm(struct mm_struct *mm,
1188 enum memcg_memory_event event)
1189{
1190}
1191
1192static inline void mem_cgroup_protection(struct mem_cgroup *root,
1193 struct mem_cgroup *memcg,
1194 unsigned long *min,
1195 unsigned long *low)
1196{
1197 *min = *low = 0;
1198}
1199
1200static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1201 struct mem_cgroup *memcg)
1202{
1203}
1204
1205static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1206 struct mem_cgroup *memcg)
1207{
1208 return true;
1209}
1210static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1211 struct mem_cgroup *memcg)
1212{
1213 return false;
1214}
1215
1216static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1217 struct mem_cgroup *memcg)
1218{
1219 return false;
1220}
1221
1222static inline void mem_cgroup_commit_charge(struct folio *folio,
1223 struct mem_cgroup *memcg)
1224{
1225}
1226
1227static inline int mem_cgroup_charge(struct folio *folio,
1228 struct mm_struct *mm, gfp_t gfp)
1229{
1230 return 0;
1231}
1232
1233static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1234 gfp_t gfp, long nr_pages)
1235{
1236 return 0;
1237}
1238
1239static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1240 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1241{
1242 return 0;
1243}
1244
1245static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1246{
1247}
1248
1249static inline void mem_cgroup_uncharge(struct folio *folio)
1250{
1251}
1252
1253static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1254{
1255}
1256
1257static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1258 unsigned int nr_pages)
1259{
1260}
1261
1262static inline void mem_cgroup_replace_folio(struct folio *old,
1263 struct folio *new)
1264{
1265}
1266
1267static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1268{
1269}
1270
1271static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1272 struct pglist_data *pgdat)
1273{
1274 return &pgdat->__lruvec;
1275}
1276
1277static inline struct lruvec *folio_lruvec(struct folio *folio)
1278{
1279 struct pglist_data *pgdat = folio_pgdat(folio);
1280 return &pgdat->__lruvec;
1281}
1282
1283static inline
1284void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1285{
1286}
1287
1288static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1289{
1290 return NULL;
1291}
1292
1293static inline bool mm_match_cgroup(struct mm_struct *mm,
1294 struct mem_cgroup *memcg)
1295{
1296 return true;
1297}
1298
1299static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1300{
1301 return NULL;
1302}
1303
1304static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1305{
1306 return NULL;
1307}
1308
1309static inline
1310struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1311{
1312 return NULL;
1313}
1314
1315static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1316{
1317}
1318
1319static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1320{
1321 return true;
1322}
1323
1324static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1325{
1326 return true;
1327}
1328
1329static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1330{
1331}
1332
1333static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1334{
1335 struct pglist_data *pgdat = folio_pgdat(folio);
1336
1337 spin_lock(&pgdat->__lruvec.lru_lock);
1338 return &pgdat->__lruvec;
1339}
1340
1341static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1342{
1343 struct pglist_data *pgdat = folio_pgdat(folio);
1344
1345 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1346 return &pgdat->__lruvec;
1347}
1348
1349static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1350 unsigned long *flagsp)
1351{
1352 struct pglist_data *pgdat = folio_pgdat(folio);
1353
1354 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1355 return &pgdat->__lruvec;
1356}
1357
1358static inline struct mem_cgroup *
1359mem_cgroup_iter(struct mem_cgroup *root,
1360 struct mem_cgroup *prev,
1361 struct mem_cgroup_reclaim_cookie *reclaim)
1362{
1363 return NULL;
1364}
1365
1366static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1367 struct mem_cgroup *prev)
1368{
1369}
1370
1371static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1372 int (*fn)(struct task_struct *, void *), void *arg)
1373{
1374}
1375
1376static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1377{
1378 return 0;
1379}
1380
1381static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1382{
1383 WARN_ON_ONCE(id);
1384 /* XXX: This should always return root_mem_cgroup */
1385 return NULL;
1386}
1387
1388#ifdef CONFIG_SHRINKER_DEBUG
1389static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1390{
1391 return 0;
1392}
1393
1394static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1395{
1396 return NULL;
1397}
1398#endif
1399
1400static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1401{
1402 return NULL;
1403}
1404
1405static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1406{
1407 return NULL;
1408}
1409
1410static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1411{
1412 return true;
1413}
1414
1415static inline
1416unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1417 enum lru_list lru, int zone_idx)
1418{
1419 return 0;
1420}
1421
1422static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1423{
1424 return 0;
1425}
1426
1427static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1428{
1429 return 0;
1430}
1431
1432static inline void
1433mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1434{
1435}
1436
1437static inline void
1438mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1439{
1440}
1441
1442static inline void folio_memcg_lock(struct folio *folio)
1443{
1444}
1445
1446static inline void folio_memcg_unlock(struct folio *folio)
1447{
1448}
1449
1450static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1451{
1452 /* to match folio_memcg_rcu() */
1453 rcu_read_lock();
1454 return true;
1455}
1456
1457static inline void mem_cgroup_unlock_pages(void)
1458{
1459 rcu_read_unlock();
1460}
1461
1462static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1463{
1464}
1465
1466static inline void mem_cgroup_enter_user_fault(void)
1467{
1468}
1469
1470static inline void mem_cgroup_exit_user_fault(void)
1471{
1472}
1473
1474static inline bool task_in_memcg_oom(struct task_struct *p)
1475{
1476 return false;
1477}
1478
1479static inline bool mem_cgroup_oom_synchronize(bool wait)
1480{
1481 return false;
1482}
1483
1484static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1485 struct task_struct *victim, struct mem_cgroup *oom_domain)
1486{
1487 return NULL;
1488}
1489
1490static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1491{
1492}
1493
1494static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1495 enum memcg_stat_item idx,
1496 int nr)
1497{
1498}
1499
1500static inline void mod_memcg_state(struct mem_cgroup *memcg,
1501 enum memcg_stat_item idx,
1502 int nr)
1503{
1504}
1505
1506static inline void mod_memcg_page_state(struct page *page,
1507 enum memcg_stat_item idx, int val)
1508{
1509}
1510
1511static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1512{
1513 return 0;
1514}
1515
1516static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1517 enum node_stat_item idx)
1518{
1519 return node_page_state(lruvec_pgdat(lruvec), idx);
1520}
1521
1522static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1523 enum node_stat_item idx)
1524{
1525 return node_page_state(lruvec_pgdat(lruvec), idx);
1526}
1527
1528static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1529{
1530}
1531
1532static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1533{
1534}
1535
1536static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1537 int val)
1538{
1539 struct page *page = virt_to_head_page(p);
1540
1541 __mod_node_page_state(page_pgdat(page), idx, val);
1542}
1543
1544static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1545 int val)
1546{
1547 struct page *page = virt_to_head_page(p);
1548
1549 mod_node_page_state(page_pgdat(page), idx, val);
1550}
1551
1552static inline void count_memcg_events(struct mem_cgroup *memcg,
1553 enum vm_event_item idx,
1554 unsigned long count)
1555{
1556}
1557
1558static inline void __count_memcg_events(struct mem_cgroup *memcg,
1559 enum vm_event_item idx,
1560 unsigned long count)
1561{
1562}
1563
1564static inline void count_memcg_folio_events(struct folio *folio,
1565 enum vm_event_item idx, unsigned long nr)
1566{
1567}
1568
1569static inline
1570void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1571{
1572}
1573
1574static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1575{
1576}
1577
1578static inline
1579unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1580 gfp_t gfp_mask,
1581 unsigned long *total_scanned)
1582{
1583 return 0;
1584}
1585#endif /* CONFIG_MEMCG */
1586
1587/*
1588 * Extended information for slab objects stored as an array in page->memcg_data
1589 * if MEMCG_DATA_OBJEXTS is set.
1590 */
1591struct slabobj_ext {
1592#ifdef CONFIG_MEMCG_KMEM
1593 struct obj_cgroup *objcg;
1594#endif
1595#ifdef CONFIG_MEM_ALLOC_PROFILING
1596 union codetag_ref ref;
1597#endif
1598} __aligned(8);
1599
1600static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1601{
1602 __mod_lruvec_kmem_state(p, idx, 1);
1603}
1604
1605static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1606{
1607 __mod_lruvec_kmem_state(p, idx, -1);
1608}
1609
1610static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1611{
1612 struct mem_cgroup *memcg;
1613
1614 memcg = lruvec_memcg(lruvec);
1615 if (!memcg)
1616 return NULL;
1617 memcg = parent_mem_cgroup(memcg);
1618 if (!memcg)
1619 return NULL;
1620 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1621}
1622
1623static inline void unlock_page_lruvec(struct lruvec *lruvec)
1624{
1625 spin_unlock(&lruvec->lru_lock);
1626}
1627
1628static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1629{
1630 spin_unlock_irq(&lruvec->lru_lock);
1631}
1632
1633static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1634 unsigned long flags)
1635{
1636 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1637}
1638
1639/* Test requires a stable page->memcg binding, see page_memcg() */
1640static inline bool folio_matches_lruvec(struct folio *folio,
1641 struct lruvec *lruvec)
1642{
1643 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1644 lruvec_memcg(lruvec) == folio_memcg(folio);
1645}
1646
1647/* Don't lock again iff page's lruvec locked */
1648static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1649 struct lruvec *locked_lruvec)
1650{
1651 if (locked_lruvec) {
1652 if (folio_matches_lruvec(folio, locked_lruvec))
1653 return locked_lruvec;
1654
1655 unlock_page_lruvec_irq(locked_lruvec);
1656 }
1657
1658 return folio_lruvec_lock_irq(folio);
1659}
1660
1661/* Don't lock again iff folio's lruvec locked */
1662static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1663 struct lruvec **lruvecp, unsigned long *flags)
1664{
1665 if (*lruvecp) {
1666 if (folio_matches_lruvec(folio, *lruvecp))
1667 return;
1668
1669 unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1670 }
1671
1672 *lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1673}
1674
1675#ifdef CONFIG_CGROUP_WRITEBACK
1676
1677struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1678void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1679 unsigned long *pheadroom, unsigned long *pdirty,
1680 unsigned long *pwriteback);
1681
1682void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1683 struct bdi_writeback *wb);
1684
1685static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1686 struct bdi_writeback *wb)
1687{
1688 struct mem_cgroup *memcg;
1689
1690 if (mem_cgroup_disabled())
1691 return;
1692
1693 memcg = folio_memcg(folio);
1694 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1695 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1696}
1697
1698void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1699
1700#else /* CONFIG_CGROUP_WRITEBACK */
1701
1702static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1703{
1704 return NULL;
1705}
1706
1707static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1708 unsigned long *pfilepages,
1709 unsigned long *pheadroom,
1710 unsigned long *pdirty,
1711 unsigned long *pwriteback)
1712{
1713}
1714
1715static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1716 struct bdi_writeback *wb)
1717{
1718}
1719
1720static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1721{
1722}
1723
1724#endif /* CONFIG_CGROUP_WRITEBACK */
1725
1726struct sock;
1727bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1728 gfp_t gfp_mask);
1729void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1730#ifdef CONFIG_MEMCG
1731extern struct static_key_false memcg_sockets_enabled_key;
1732#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1733void mem_cgroup_sk_alloc(struct sock *sk);
1734void mem_cgroup_sk_free(struct sock *sk);
1735static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1736{
1737 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1738 return !!memcg->tcpmem_pressure;
1739 do {
1740 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1741 return true;
1742 } while ((memcg = parent_mem_cgroup(memcg)));
1743 return false;
1744}
1745
1746int alloc_shrinker_info(struct mem_cgroup *memcg);
1747void free_shrinker_info(struct mem_cgroup *memcg);
1748void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1749void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1750#else
1751#define mem_cgroup_sockets_enabled 0
1752static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1753static inline void mem_cgroup_sk_free(struct sock *sk) { };
1754static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1755{
1756 return false;
1757}
1758
1759static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1760 int nid, int shrinker_id)
1761{
1762}
1763#endif
1764
1765#ifdef CONFIG_MEMCG_KMEM
1766bool mem_cgroup_kmem_disabled(void);
1767int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1768void __memcg_kmem_uncharge_page(struct page *page, int order);
1769
1770/*
1771 * The returned objcg pointer is safe to use without additional
1772 * protection within a scope. The scope is defined either by
1773 * the current task (similar to the "current" global variable)
1774 * or by set_active_memcg() pair.
1775 * Please, use obj_cgroup_get() to get a reference if the pointer
1776 * needs to be used outside of the local scope.
1777 */
1778struct obj_cgroup *current_obj_cgroup(void);
1779struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1780
1781static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1782{
1783 struct obj_cgroup *objcg = current_obj_cgroup();
1784
1785 if (objcg)
1786 obj_cgroup_get(objcg);
1787
1788 return objcg;
1789}
1790
1791int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1792void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1793
1794extern struct static_key_false memcg_bpf_enabled_key;
1795static inline bool memcg_bpf_enabled(void)
1796{
1797 return static_branch_likely(&memcg_bpf_enabled_key);
1798}
1799
1800extern struct static_key_false memcg_kmem_online_key;
1801
1802static inline bool memcg_kmem_online(void)
1803{
1804 return static_branch_likely(&memcg_kmem_online_key);
1805}
1806
1807static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1808 int order)
1809{
1810 if (memcg_kmem_online())
1811 return __memcg_kmem_charge_page(page, gfp, order);
1812 return 0;
1813}
1814
1815static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1816{
1817 if (memcg_kmem_online())
1818 __memcg_kmem_uncharge_page(page, order);
1819}
1820
1821/*
1822 * A helper for accessing memcg's kmem_id, used for getting
1823 * corresponding LRU lists.
1824 */
1825static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1826{
1827 return memcg ? memcg->kmemcg_id : -1;
1828}
1829
1830struct mem_cgroup *mem_cgroup_from_obj(void *p);
1831struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1832
1833static inline void count_objcg_event(struct obj_cgroup *objcg,
1834 enum vm_event_item idx)
1835{
1836 struct mem_cgroup *memcg;
1837
1838 if (!memcg_kmem_online())
1839 return;
1840
1841 rcu_read_lock();
1842 memcg = obj_cgroup_memcg(objcg);
1843 count_memcg_events(memcg, idx, 1);
1844 rcu_read_unlock();
1845}
1846
1847#else
1848static inline bool mem_cgroup_kmem_disabled(void)
1849{
1850 return true;
1851}
1852
1853static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1854 int order)
1855{
1856 return 0;
1857}
1858
1859static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1860{
1861}
1862
1863static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1864 int order)
1865{
1866 return 0;
1867}
1868
1869static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1870{
1871}
1872
1873static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1874{
1875 return NULL;
1876}
1877
1878static inline bool memcg_bpf_enabled(void)
1879{
1880 return false;
1881}
1882
1883static inline bool memcg_kmem_online(void)
1884{
1885 return false;
1886}
1887
1888static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1889{
1890 return -1;
1891}
1892
1893static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1894{
1895 return NULL;
1896}
1897
1898static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1899{
1900 return NULL;
1901}
1902
1903static inline void count_objcg_event(struct obj_cgroup *objcg,
1904 enum vm_event_item idx)
1905{
1906}
1907
1908#endif /* CONFIG_MEMCG_KMEM */
1909
1910#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1911bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1912void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1913void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1914bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1915#else
1916static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1917{
1918 return true;
1919}
1920static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1921 size_t size)
1922{
1923}
1924static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1925 size_t size)
1926{
1927}
1928static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1929{
1930 /* if zswap is disabled, do not block pages going to the swapping device */
1931 return true;
1932}
1933#endif
1934
1935#endif /* _LINUX_MEMCONTROL_H */