at v6.10 29 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FORTIFY_STRING_H_ 3#define _LINUX_FORTIFY_STRING_H_ 4 5#include <linux/bitfield.h> 6#include <linux/bug.h> 7#include <linux/const.h> 8#include <linux/limits.h> 9 10#define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable 11#define __RENAME(x) __asm__(#x) 12 13#define FORTIFY_REASON_DIR(r) FIELD_GET(BIT(0), r) 14#define FORTIFY_REASON_FUNC(r) FIELD_GET(GENMASK(7, 1), r) 15#define FORTIFY_REASON(func, write) (FIELD_PREP(BIT(0), write) | \ 16 FIELD_PREP(GENMASK(7, 1), func)) 17 18/* Overridden by KUnit tests. */ 19#ifndef fortify_panic 20# define fortify_panic(func, write, avail, size, retfail) \ 21 __fortify_panic(FORTIFY_REASON(func, write), avail, size) 22#endif 23#ifndef fortify_warn_once 24# define fortify_warn_once(x...) WARN_ONCE(x) 25#endif 26 27#define FORTIFY_READ 0 28#define FORTIFY_WRITE 1 29 30#define EACH_FORTIFY_FUNC(macro) \ 31 macro(strncpy), \ 32 macro(strnlen), \ 33 macro(strlen), \ 34 macro(strscpy), \ 35 macro(strlcat), \ 36 macro(strcat), \ 37 macro(strncat), \ 38 macro(memset), \ 39 macro(memcpy), \ 40 macro(memmove), \ 41 macro(memscan), \ 42 macro(memcmp), \ 43 macro(memchr), \ 44 macro(memchr_inv), \ 45 macro(kmemdup), \ 46 macro(strcpy), \ 47 macro(UNKNOWN), 48 49#define MAKE_FORTIFY_FUNC(func) FORTIFY_FUNC_##func 50 51enum fortify_func { 52 EACH_FORTIFY_FUNC(MAKE_FORTIFY_FUNC) 53}; 54 55void __fortify_report(const u8 reason, const size_t avail, const size_t size); 56void __fortify_panic(const u8 reason, const size_t avail, const size_t size) __cold __noreturn; 57void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)"); 58void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)"); 59void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?"); 60void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)"); 61void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?"); 62 63#define __compiletime_strlen(p) \ 64({ \ 65 char *__p = (char *)(p); \ 66 size_t __ret = SIZE_MAX; \ 67 const size_t __p_size = __member_size(p); \ 68 if (__p_size != SIZE_MAX && \ 69 __builtin_constant_p(*__p)) { \ 70 size_t __p_len = __p_size - 1; \ 71 if (__builtin_constant_p(__p[__p_len]) && \ 72 __p[__p_len] == '\0') \ 73 __ret = __builtin_strlen(__p); \ 74 } \ 75 __ret; \ 76}) 77 78#if defined(__SANITIZE_ADDRESS__) 79 80#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY) 81extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); 82extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); 83extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); 84#elif defined(CONFIG_KASAN_GENERIC) 85extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__asan_memset); 86extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memmove); 87extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memcpy); 88#else /* CONFIG_KASAN_SW_TAGS */ 89extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__hwasan_memset); 90extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memmove); 91extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memcpy); 92#endif 93 94extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); 95extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); 96extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); 97extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); 98extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); 99extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); 100extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); 101 102#else 103 104#if defined(__SANITIZE_MEMORY__) 105/* 106 * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the 107 * corresponding __msan_XXX functions. 108 */ 109#include <linux/kmsan_string.h> 110#define __underlying_memcpy __msan_memcpy 111#define __underlying_memmove __msan_memmove 112#define __underlying_memset __msan_memset 113#else 114#define __underlying_memcpy __builtin_memcpy 115#define __underlying_memmove __builtin_memmove 116#define __underlying_memset __builtin_memset 117#endif 118 119#define __underlying_memchr __builtin_memchr 120#define __underlying_memcmp __builtin_memcmp 121#define __underlying_strcat __builtin_strcat 122#define __underlying_strcpy __builtin_strcpy 123#define __underlying_strlen __builtin_strlen 124#define __underlying_strncat __builtin_strncat 125#define __underlying_strncpy __builtin_strncpy 126 127#endif 128 129/** 130 * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking 131 * 132 * @dst: Destination memory address to write to 133 * @src: Source memory address to read from 134 * @bytes: How many bytes to write to @dst from @src 135 * @justification: Free-form text or comment describing why the use is needed 136 * 137 * This should be used for corner cases where the compiler cannot do the 138 * right thing, or during transitions between APIs, etc. It should be used 139 * very rarely, and includes a place for justification detailing where bounds 140 * checking has happened, and why existing solutions cannot be employed. 141 */ 142#define unsafe_memcpy(dst, src, bytes, justification) \ 143 __underlying_memcpy(dst, src, bytes) 144 145/* 146 * Clang's use of __builtin_*object_size() within inlines needs hinting via 147 * __pass_*object_size(). The preference is to only ever use type 1 (member 148 * size, rather than struct size), but there remain some stragglers using 149 * type 0 that will be converted in the future. 150 */ 151#if __has_builtin(__builtin_dynamic_object_size) 152#define POS __pass_dynamic_object_size(1) 153#define POS0 __pass_dynamic_object_size(0) 154#else 155#define POS __pass_object_size(1) 156#define POS0 __pass_object_size(0) 157#endif 158 159#define __compiletime_lessthan(bounds, length) ( \ 160 __builtin_constant_p((bounds) < (length)) && \ 161 (bounds) < (length) \ 162) 163 164/** 165 * strncpy - Copy a string to memory with non-guaranteed NUL padding 166 * 167 * @p: pointer to destination of copy 168 * @q: pointer to NUL-terminated source string to copy 169 * @size: bytes to write at @p 170 * 171 * If strlen(@q) >= @size, the copy of @q will stop after @size bytes, 172 * and @p will NOT be NUL-terminated 173 * 174 * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes 175 * will be written to @p until @size total bytes have been written. 176 * 177 * Do not use this function. While FORTIFY_SOURCE tries to avoid 178 * over-reads of @q, it cannot defend against writing unterminated 179 * results to @p. Using strncpy() remains ambiguous and fragile. 180 * Instead, please choose an alternative, so that the expectation 181 * of @p's contents is unambiguous: 182 * 183 * +--------------------+--------------------+------------+ 184 * | **p** needs to be: | padded to **size** | not padded | 185 * +====================+====================+============+ 186 * | NUL-terminated | strscpy_pad() | strscpy() | 187 * +--------------------+--------------------+------------+ 188 * | not NUL-terminated | strtomem_pad() | strtomem() | 189 * +--------------------+--------------------+------------+ 190 * 191 * Note strscpy*()'s differing return values for detecting truncation, 192 * and strtomem*()'s expectation that the destination is marked with 193 * __nonstring when it is a character array. 194 * 195 */ 196__FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3) 197char *strncpy(char * const POS p, const char *q, __kernel_size_t size) 198{ 199 const size_t p_size = __member_size(p); 200 201 if (__compiletime_lessthan(p_size, size)) 202 __write_overflow(); 203 if (p_size < size) 204 fortify_panic(FORTIFY_FUNC_strncpy, FORTIFY_WRITE, p_size, size, p); 205 return __underlying_strncpy(p, q, size); 206} 207 208extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); 209/** 210 * strnlen - Return bounded count of characters in a NUL-terminated string 211 * 212 * @p: pointer to NUL-terminated string to count. 213 * @maxlen: maximum number of characters to count. 214 * 215 * Returns number of characters in @p (NOT including the final NUL), or 216 * @maxlen, if no NUL has been found up to there. 217 * 218 */ 219__FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen) 220{ 221 const size_t p_size = __member_size(p); 222 const size_t p_len = __compiletime_strlen(p); 223 size_t ret; 224 225 /* We can take compile-time actions when maxlen is const. */ 226 if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) { 227 /* If p is const, we can use its compile-time-known len. */ 228 if (maxlen >= p_size) 229 return p_len; 230 } 231 232 /* Do not check characters beyond the end of p. */ 233 ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); 234 if (p_size <= ret && maxlen != ret) 235 fortify_panic(FORTIFY_FUNC_strnlen, FORTIFY_READ, p_size, ret + 1, ret); 236 return ret; 237} 238 239/* 240 * Defined after fortified strnlen to reuse it. However, it must still be 241 * possible for strlen() to be used on compile-time strings for use in 242 * static initializers (i.e. as a constant expression). 243 */ 244/** 245 * strlen - Return count of characters in a NUL-terminated string 246 * 247 * @p: pointer to NUL-terminated string to count. 248 * 249 * Do not use this function unless the string length is known at 250 * compile-time. When @p is unterminated, this function may crash 251 * or return unexpected counts that could lead to memory content 252 * exposures. Prefer strnlen(). 253 * 254 * Returns number of characters in @p (NOT including the final NUL). 255 * 256 */ 257#define strlen(p) \ 258 __builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \ 259 __builtin_strlen(p), __fortify_strlen(p)) 260__FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1) 261__kernel_size_t __fortify_strlen(const char * const POS p) 262{ 263 const size_t p_size = __member_size(p); 264 __kernel_size_t ret; 265 266 /* Give up if we don't know how large p is. */ 267 if (p_size == SIZE_MAX) 268 return __underlying_strlen(p); 269 ret = strnlen(p, p_size); 270 if (p_size <= ret) 271 fortify_panic(FORTIFY_FUNC_strlen, FORTIFY_READ, p_size, ret + 1, ret); 272 return ret; 273} 274 275/* Defined after fortified strnlen() to reuse it. */ 276extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(sized_strscpy); 277__FORTIFY_INLINE ssize_t sized_strscpy(char * const POS p, const char * const POS q, size_t size) 278{ 279 /* Use string size rather than possible enclosing struct size. */ 280 const size_t p_size = __member_size(p); 281 const size_t q_size = __member_size(q); 282 size_t len; 283 284 /* If we cannot get size of p and q default to call strscpy. */ 285 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 286 return __real_strscpy(p, q, size); 287 288 /* 289 * If size can be known at compile time and is greater than 290 * p_size, generate a compile time write overflow error. 291 */ 292 if (__compiletime_lessthan(p_size, size)) 293 __write_overflow(); 294 295 /* Short-circuit for compile-time known-safe lengths. */ 296 if (__compiletime_lessthan(p_size, SIZE_MAX)) { 297 len = __compiletime_strlen(q); 298 299 if (len < SIZE_MAX && __compiletime_lessthan(len, size)) { 300 __underlying_memcpy(p, q, len + 1); 301 return len; 302 } 303 } 304 305 /* 306 * This call protects from read overflow, because len will default to q 307 * length if it smaller than size. 308 */ 309 len = strnlen(q, size); 310 /* 311 * If len equals size, we will copy only size bytes which leads to 312 * -E2BIG being returned. 313 * Otherwise we will copy len + 1 because of the final '\O'. 314 */ 315 len = len == size ? size : len + 1; 316 317 /* 318 * Generate a runtime write overflow error if len is greater than 319 * p_size. 320 */ 321 if (p_size < len) 322 fortify_panic(FORTIFY_FUNC_strscpy, FORTIFY_WRITE, p_size, len, -E2BIG); 323 324 /* 325 * We can now safely call vanilla strscpy because we are protected from: 326 * 1. Read overflow thanks to call to strnlen(). 327 * 2. Write overflow thanks to above ifs. 328 */ 329 return __real_strscpy(p, q, len); 330} 331 332/* Defined after fortified strlen() to reuse it. */ 333extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat); 334/** 335 * strlcat - Append a string to an existing string 336 * 337 * @p: pointer to %NUL-terminated string to append to 338 * @q: pointer to %NUL-terminated string to append from 339 * @avail: Maximum bytes available in @p 340 * 341 * Appends %NUL-terminated string @q after the %NUL-terminated 342 * string at @p, but will not write beyond @avail bytes total, 343 * potentially truncating the copy from @q. @p will stay 344 * %NUL-terminated only if a %NUL already existed within 345 * the @avail bytes of @p. If so, the resulting number of 346 * bytes copied from @q will be at most "@avail - strlen(@p) - 1". 347 * 348 * Do not use this function. While FORTIFY_SOURCE tries to avoid 349 * read and write overflows, this is only possible when the sizes 350 * of @p and @q are known to the compiler. Prefer building the 351 * string with formatting, via scnprintf(), seq_buf, or similar. 352 * 353 * Returns total bytes that _would_ have been contained by @p 354 * regardless of truncation, similar to snprintf(). If return 355 * value is >= @avail, the string has been truncated. 356 * 357 */ 358__FORTIFY_INLINE 359size_t strlcat(char * const POS p, const char * const POS q, size_t avail) 360{ 361 const size_t p_size = __member_size(p); 362 const size_t q_size = __member_size(q); 363 size_t p_len, copy_len; 364 size_t actual, wanted; 365 366 /* Give up immediately if both buffer sizes are unknown. */ 367 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 368 return __real_strlcat(p, q, avail); 369 370 p_len = strnlen(p, avail); 371 copy_len = strlen(q); 372 wanted = actual = p_len + copy_len; 373 374 /* Cannot append any more: report truncation. */ 375 if (avail <= p_len) 376 return wanted; 377 378 /* Give up if string is already overflowed. */ 379 if (p_size <= p_len) 380 fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_READ, p_size, p_len + 1, wanted); 381 382 if (actual >= avail) { 383 copy_len = avail - p_len - 1; 384 actual = p_len + copy_len; 385 } 386 387 /* Give up if copy will overflow. */ 388 if (p_size <= actual) 389 fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_WRITE, p_size, actual + 1, wanted); 390 __underlying_memcpy(p + p_len, q, copy_len); 391 p[actual] = '\0'; 392 393 return wanted; 394} 395 396/* Defined after fortified strlcat() to reuse it. */ 397/** 398 * strcat - Append a string to an existing string 399 * 400 * @p: pointer to NUL-terminated string to append to 401 * @q: pointer to NUL-terminated source string to append from 402 * 403 * Do not use this function. While FORTIFY_SOURCE tries to avoid 404 * read and write overflows, this is only possible when the 405 * destination buffer size is known to the compiler. Prefer 406 * building the string with formatting, via scnprintf() or similar. 407 * At the very least, use strncat(). 408 * 409 * Returns @p. 410 * 411 */ 412__FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2) 413char *strcat(char * const POS p, const char *q) 414{ 415 const size_t p_size = __member_size(p); 416 const size_t wanted = strlcat(p, q, p_size); 417 418 if (p_size <= wanted) 419 fortify_panic(FORTIFY_FUNC_strcat, FORTIFY_WRITE, p_size, wanted + 1, p); 420 return p; 421} 422 423/** 424 * strncat - Append a string to an existing string 425 * 426 * @p: pointer to NUL-terminated string to append to 427 * @q: pointer to source string to append from 428 * @count: Maximum bytes to read from @q 429 * 430 * Appends at most @count bytes from @q (stopping at the first 431 * NUL byte) after the NUL-terminated string at @p. @p will be 432 * NUL-terminated. 433 * 434 * Do not use this function. While FORTIFY_SOURCE tries to avoid 435 * read and write overflows, this is only possible when the sizes 436 * of @p and @q are known to the compiler. Prefer building the 437 * string with formatting, via scnprintf() or similar. 438 * 439 * Returns @p. 440 * 441 */ 442/* Defined after fortified strlen() and strnlen() to reuse them. */ 443__FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3) 444char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count) 445{ 446 const size_t p_size = __member_size(p); 447 const size_t q_size = __member_size(q); 448 size_t p_len, copy_len, total; 449 450 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 451 return __underlying_strncat(p, q, count); 452 p_len = strlen(p); 453 copy_len = strnlen(q, count); 454 total = p_len + copy_len + 1; 455 if (p_size < total) 456 fortify_panic(FORTIFY_FUNC_strncat, FORTIFY_WRITE, p_size, total, p); 457 __underlying_memcpy(p + p_len, q, copy_len); 458 p[p_len + copy_len] = '\0'; 459 return p; 460} 461 462__FORTIFY_INLINE bool fortify_memset_chk(__kernel_size_t size, 463 const size_t p_size, 464 const size_t p_size_field) 465{ 466 if (__builtin_constant_p(size)) { 467 /* 468 * Length argument is a constant expression, so we 469 * can perform compile-time bounds checking where 470 * buffer sizes are also known at compile time. 471 */ 472 473 /* Error when size is larger than enclosing struct. */ 474 if (__compiletime_lessthan(p_size_field, p_size) && 475 __compiletime_lessthan(p_size, size)) 476 __write_overflow(); 477 478 /* Warn when write size is larger than dest field. */ 479 if (__compiletime_lessthan(p_size_field, size)) 480 __write_overflow_field(p_size_field, size); 481 } 482 /* 483 * At this point, length argument may not be a constant expression, 484 * so run-time bounds checking can be done where buffer sizes are 485 * known. (This is not an "else" because the above checks may only 486 * be compile-time warnings, and we want to still warn for run-time 487 * overflows.) 488 */ 489 490 /* 491 * Always stop accesses beyond the struct that contains the 492 * field, when the buffer's remaining size is known. 493 * (The SIZE_MAX test is to optimize away checks where the buffer 494 * lengths are unknown.) 495 */ 496 if (p_size != SIZE_MAX && p_size < size) 497 fortify_panic(FORTIFY_FUNC_memset, FORTIFY_WRITE, p_size, size, true); 498 return false; 499} 500 501#define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \ 502 size_t __fortify_size = (size_t)(size); \ 503 fortify_memset_chk(__fortify_size, p_size, p_size_field), \ 504 __underlying_memset(p, c, __fortify_size); \ 505}) 506 507/* 508 * __struct_size() vs __member_size() must be captured here to avoid 509 * evaluating argument side-effects further into the macro layers. 510 */ 511#ifndef CONFIG_KMSAN 512#define memset(p, c, s) __fortify_memset_chk(p, c, s, \ 513 __struct_size(p), __member_size(p)) 514#endif 515 516/* 517 * To make sure the compiler can enforce protection against buffer overflows, 518 * memcpy(), memmove(), and memset() must not be used beyond individual 519 * struct members. If you need to copy across multiple members, please use 520 * struct_group() to create a named mirror of an anonymous struct union. 521 * (e.g. see struct sk_buff.) Read overflow checking is currently only 522 * done when a write overflow is also present, or when building with W=1. 523 * 524 * Mitigation coverage matrix 525 * Bounds checking at: 526 * +-------+-------+-------+-------+ 527 * | Compile time | Run time | 528 * memcpy() argument sizes: | write | read | write | read | 529 * dest source length +-------+-------+-------+-------+ 530 * memcpy(known, known, constant) | y | y | n/a | n/a | 531 * memcpy(known, unknown, constant) | y | n | n/a | V | 532 * memcpy(known, known, dynamic) | n | n | B | B | 533 * memcpy(known, unknown, dynamic) | n | n | B | V | 534 * memcpy(unknown, known, constant) | n | y | V | n/a | 535 * memcpy(unknown, unknown, constant) | n | n | V | V | 536 * memcpy(unknown, known, dynamic) | n | n | V | B | 537 * memcpy(unknown, unknown, dynamic) | n | n | V | V | 538 * +-------+-------+-------+-------+ 539 * 540 * y = perform deterministic compile-time bounds checking 541 * n = cannot perform deterministic compile-time bounds checking 542 * n/a = no run-time bounds checking needed since compile-time deterministic 543 * B = can perform run-time bounds checking (currently unimplemented) 544 * V = vulnerable to run-time overflow (will need refactoring to solve) 545 * 546 */ 547__FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size, 548 const size_t p_size, 549 const size_t q_size, 550 const size_t p_size_field, 551 const size_t q_size_field, 552 const u8 func) 553{ 554 if (__builtin_constant_p(size)) { 555 /* 556 * Length argument is a constant expression, so we 557 * can perform compile-time bounds checking where 558 * buffer sizes are also known at compile time. 559 */ 560 561 /* Error when size is larger than enclosing struct. */ 562 if (__compiletime_lessthan(p_size_field, p_size) && 563 __compiletime_lessthan(p_size, size)) 564 __write_overflow(); 565 if (__compiletime_lessthan(q_size_field, q_size) && 566 __compiletime_lessthan(q_size, size)) 567 __read_overflow2(); 568 569 /* Warn when write size argument larger than dest field. */ 570 if (__compiletime_lessthan(p_size_field, size)) 571 __write_overflow_field(p_size_field, size); 572 /* 573 * Warn for source field over-read when building with W=1 574 * or when an over-write happened, so both can be fixed at 575 * the same time. 576 */ 577 if ((IS_ENABLED(KBUILD_EXTRA_WARN1) || 578 __compiletime_lessthan(p_size_field, size)) && 579 __compiletime_lessthan(q_size_field, size)) 580 __read_overflow2_field(q_size_field, size); 581 } 582 /* 583 * At this point, length argument may not be a constant expression, 584 * so run-time bounds checking can be done where buffer sizes are 585 * known. (This is not an "else" because the above checks may only 586 * be compile-time warnings, and we want to still warn for run-time 587 * overflows.) 588 */ 589 590 /* 591 * Always stop accesses beyond the struct that contains the 592 * field, when the buffer's remaining size is known. 593 * (The SIZE_MAX test is to optimize away checks where the buffer 594 * lengths are unknown.) 595 */ 596 if (p_size != SIZE_MAX && p_size < size) 597 fortify_panic(func, FORTIFY_WRITE, p_size, size, true); 598 else if (q_size != SIZE_MAX && q_size < size) 599 fortify_panic(func, FORTIFY_READ, p_size, size, true); 600 601 /* 602 * Warn when writing beyond destination field size. 603 * 604 * We must ignore p_size_field == 0 for existing 0-element 605 * fake flexible arrays, until they are all converted to 606 * proper flexible arrays. 607 * 608 * The implementation of __builtin_*object_size() behaves 609 * like sizeof() when not directly referencing a flexible 610 * array member, which means there will be many bounds checks 611 * that will appear at run-time, without a way for them to be 612 * detected at compile-time (as can be done when the destination 613 * is specifically the flexible array member). 614 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832 615 */ 616 if (p_size_field != 0 && p_size_field != SIZE_MAX && 617 p_size != p_size_field && p_size_field < size) 618 return true; 619 620 return false; 621} 622 623#define __fortify_memcpy_chk(p, q, size, p_size, q_size, \ 624 p_size_field, q_size_field, op) ({ \ 625 const size_t __fortify_size = (size_t)(size); \ 626 const size_t __p_size = (p_size); \ 627 const size_t __q_size = (q_size); \ 628 const size_t __p_size_field = (p_size_field); \ 629 const size_t __q_size_field = (q_size_field); \ 630 fortify_warn_once(fortify_memcpy_chk(__fortify_size, __p_size, \ 631 __q_size, __p_size_field, \ 632 __q_size_field, FORTIFY_FUNC_ ##op), \ 633 #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \ 634 __fortify_size, \ 635 "field \"" #p "\" at " FILE_LINE, \ 636 __p_size_field); \ 637 __underlying_##op(p, q, __fortify_size); \ 638}) 639 640/* 641 * Notes about compile-time buffer size detection: 642 * 643 * With these types... 644 * 645 * struct middle { 646 * u16 a; 647 * u8 middle_buf[16]; 648 * int b; 649 * }; 650 * struct end { 651 * u16 a; 652 * u8 end_buf[16]; 653 * }; 654 * struct flex { 655 * int a; 656 * u8 flex_buf[]; 657 * }; 658 * 659 * void func(TYPE *ptr) { ... } 660 * 661 * Cases where destination size cannot be currently detected: 662 * - the size of ptr's object (seemingly by design, gcc & clang fail): 663 * __builtin_object_size(ptr, 1) == SIZE_MAX 664 * - the size of flexible arrays in ptr's obj (by design, dynamic size): 665 * __builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX 666 * - the size of ANY array at the end of ptr's obj (gcc and clang bug): 667 * __builtin_object_size(ptr->end_buf, 1) == SIZE_MAX 668 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836 669 * 670 * Cases where destination size is currently detected: 671 * - the size of non-array members within ptr's object: 672 * __builtin_object_size(ptr->a, 1) == 2 673 * - the size of non-flexible-array in the middle of ptr's obj: 674 * __builtin_object_size(ptr->middle_buf, 1) == 16 675 * 676 */ 677 678/* 679 * __struct_size() vs __member_size() must be captured here to avoid 680 * evaluating argument side-effects further into the macro layers. 681 */ 682#define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \ 683 __struct_size(p), __struct_size(q), \ 684 __member_size(p), __member_size(q), \ 685 memcpy) 686#define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \ 687 __struct_size(p), __struct_size(q), \ 688 __member_size(p), __member_size(q), \ 689 memmove) 690 691extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); 692__FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size) 693{ 694 const size_t p_size = __struct_size(p); 695 696 if (__compiletime_lessthan(p_size, size)) 697 __read_overflow(); 698 if (p_size < size) 699 fortify_panic(FORTIFY_FUNC_memscan, FORTIFY_READ, p_size, size, NULL); 700 return __real_memscan(p, c, size); 701} 702 703__FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3) 704int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size) 705{ 706 const size_t p_size = __struct_size(p); 707 const size_t q_size = __struct_size(q); 708 709 if (__builtin_constant_p(size)) { 710 if (__compiletime_lessthan(p_size, size)) 711 __read_overflow(); 712 if (__compiletime_lessthan(q_size, size)) 713 __read_overflow2(); 714 } 715 if (p_size < size) 716 fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, p_size, size, INT_MIN); 717 else if (q_size < size) 718 fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, q_size, size, INT_MIN); 719 return __underlying_memcmp(p, q, size); 720} 721 722__FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3) 723void *memchr(const void * const POS0 p, int c, __kernel_size_t size) 724{ 725 const size_t p_size = __struct_size(p); 726 727 if (__compiletime_lessthan(p_size, size)) 728 __read_overflow(); 729 if (p_size < size) 730 fortify_panic(FORTIFY_FUNC_memchr, FORTIFY_READ, p_size, size, NULL); 731 return __underlying_memchr(p, c, size); 732} 733 734void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); 735__FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size) 736{ 737 const size_t p_size = __struct_size(p); 738 739 if (__compiletime_lessthan(p_size, size)) 740 __read_overflow(); 741 if (p_size < size) 742 fortify_panic(FORTIFY_FUNC_memchr_inv, FORTIFY_READ, p_size, size, NULL); 743 return __real_memchr_inv(p, c, size); 744} 745 746extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup_noprof) 747 __realloc_size(2); 748__FORTIFY_INLINE void *kmemdup_noprof(const void * const POS0 p, size_t size, gfp_t gfp) 749{ 750 const size_t p_size = __struct_size(p); 751 752 if (__compiletime_lessthan(p_size, size)) 753 __read_overflow(); 754 if (p_size < size) 755 fortify_panic(FORTIFY_FUNC_kmemdup, FORTIFY_READ, p_size, size, 756 __real_kmemdup(p, 0, gfp)); 757 return __real_kmemdup(p, size, gfp); 758} 759#define kmemdup(...) alloc_hooks(kmemdup_noprof(__VA_ARGS__)) 760 761/** 762 * strcpy - Copy a string into another string buffer 763 * 764 * @p: pointer to destination of copy 765 * @q: pointer to NUL-terminated source string to copy 766 * 767 * Do not use this function. While FORTIFY_SOURCE tries to avoid 768 * overflows, this is only possible when the sizes of @q and @p are 769 * known to the compiler. Prefer strscpy(), though note its different 770 * return values for detecting truncation. 771 * 772 * Returns @p. 773 * 774 */ 775/* Defined after fortified strlen to reuse it. */ 776__FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2) 777char *strcpy(char * const POS p, const char * const POS q) 778{ 779 const size_t p_size = __member_size(p); 780 const size_t q_size = __member_size(q); 781 size_t size; 782 783 /* If neither buffer size is known, immediately give up. */ 784 if (__builtin_constant_p(p_size) && 785 __builtin_constant_p(q_size) && 786 p_size == SIZE_MAX && q_size == SIZE_MAX) 787 return __underlying_strcpy(p, q); 788 size = strlen(q) + 1; 789 /* Compile-time check for const size overflow. */ 790 if (__compiletime_lessthan(p_size, size)) 791 __write_overflow(); 792 /* Run-time check for dynamic size overflow. */ 793 if (p_size < size) 794 fortify_panic(FORTIFY_FUNC_strcpy, FORTIFY_WRITE, p_size, size, p); 795 __underlying_memcpy(p, q, size); 796 return p; 797} 798 799/* Don't use these outside the FORITFY_SOURCE implementation */ 800#undef __underlying_memchr 801#undef __underlying_memcmp 802#undef __underlying_strcat 803#undef __underlying_strcpy 804#undef __underlying_strlen 805#undef __underlying_strncat 806#undef __underlying_strncpy 807 808#undef POS 809#undef POS0 810 811#endif /* _LINUX_FORTIFY_STRING_H_ */