at v6.10 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/bpf.h> 10#include <linux/refcount.h> 11#include <linux/compat.h> 12#include <linux/skbuff.h> 13#include <linux/linkage.h> 14#include <linux/printk.h> 15#include <linux/workqueue.h> 16#include <linux/sched.h> 17#include <linux/sched/clock.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25#include <linux/u64_stats_sync.h> 26 27#include <net/sch_generic.h> 28 29#include <asm/byteorder.h> 30#include <uapi/linux/filter.h> 31 32struct sk_buff; 33struct sock; 34struct seccomp_data; 35struct bpf_prog_aux; 36struct xdp_rxq_info; 37struct xdp_buff; 38struct sock_reuseport; 39struct ctl_table; 40struct ctl_table_header; 41 42/* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46#define BPF_REG_ARG1 BPF_REG_1 47#define BPF_REG_ARG2 BPF_REG_2 48#define BPF_REG_ARG3 BPF_REG_3 49#define BPF_REG_ARG4 BPF_REG_4 50#define BPF_REG_ARG5 BPF_REG_5 51#define BPF_REG_CTX BPF_REG_6 52#define BPF_REG_FP BPF_REG_10 53 54/* Additional register mappings for converted user programs. */ 55#define BPF_REG_A BPF_REG_0 56#define BPF_REG_X BPF_REG_7 57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61/* Kernel hidden auxiliary/helper register. */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66/* unused opcode to mark special call to bpf_tail_call() helper */ 67#define BPF_TAIL_CALL 0xf0 68 69/* unused opcode to mark special load instruction. Same as BPF_ABS */ 70#define BPF_PROBE_MEM 0x20 71 72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73#define BPF_PROBE_MEMSX 0x40 74 75/* unused opcode to mark special load instruction. Same as BPF_MSH */ 76#define BPF_PROBE_MEM32 0xa0 77 78/* unused opcode to mark special atomic instruction */ 79#define BPF_PROBE_ATOMIC 0xe0 80 81/* unused opcode to mark call to interpreter with arguments */ 82#define BPF_CALL_ARGS 0xe0 83 84/* unused opcode to mark speculation barrier for mitigating 85 * Speculative Store Bypass 86 */ 87#define BPF_NOSPEC 0xc0 88 89/* As per nm, we expose JITed images as text (code) section for 90 * kallsyms. That way, tools like perf can find it to match 91 * addresses. 92 */ 93#define BPF_SYM_ELF_TYPE 't' 94 95/* BPF program can access up to 512 bytes of stack space. */ 96#define MAX_BPF_STACK 512 97 98/* Helper macros for filter block array initializers. */ 99 100/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 101 102#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 105 .dst_reg = DST, \ 106 .src_reg = SRC, \ 107 .off = OFF, \ 108 .imm = 0 }) 109 110#define BPF_ALU64_REG(OP, DST, SRC) \ 111 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 112 113#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 116 .dst_reg = DST, \ 117 .src_reg = SRC, \ 118 .off = OFF, \ 119 .imm = 0 }) 120 121#define BPF_ALU32_REG(OP, DST, SRC) \ 122 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 123 124/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 125 126#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 127 ((struct bpf_insn) { \ 128 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 129 .dst_reg = DST, \ 130 .src_reg = 0, \ 131 .off = OFF, \ 132 .imm = IMM }) 133#define BPF_ALU64_IMM(OP, DST, IMM) \ 134 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 135 136#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 137 ((struct bpf_insn) { \ 138 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 139 .dst_reg = DST, \ 140 .src_reg = 0, \ 141 .off = OFF, \ 142 .imm = IMM }) 143#define BPF_ALU32_IMM(OP, DST, IMM) \ 144 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 145 146/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 147 148#define BPF_ENDIAN(TYPE, DST, LEN) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = LEN }) 155 156/* Byte Swap, bswap16/32/64 */ 157 158#define BPF_BSWAP(DST, LEN) \ 159 ((struct bpf_insn) { \ 160 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 161 .dst_reg = DST, \ 162 .src_reg = 0, \ 163 .off = 0, \ 164 .imm = LEN }) 165 166/* Short form of mov, dst_reg = src_reg */ 167 168#define BPF_MOV64_REG(DST, SRC) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = SRC, \ 173 .off = 0, \ 174 .imm = 0 }) 175 176#define BPF_MOV32_REG(DST, SRC) \ 177 ((struct bpf_insn) { \ 178 .code = BPF_ALU | BPF_MOV | BPF_X, \ 179 .dst_reg = DST, \ 180 .src_reg = SRC, \ 181 .off = 0, \ 182 .imm = 0 }) 183 184/* Special (internal-only) form of mov, used to resolve per-CPU addrs: 185 * dst_reg = src_reg + <percpu_base_off> 186 * BPF_ADDR_PERCPU is used as a special insn->off value. 187 */ 188#define BPF_ADDR_PERCPU (-1) 189 190#define BPF_MOV64_PERCPU_REG(DST, SRC) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = BPF_ADDR_PERCPU, \ 196 .imm = 0 }) 197 198static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 199{ 200 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 201} 202 203/* Short form of mov, dst_reg = imm32 */ 204 205#define BPF_MOV64_IMM(DST, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 208 .dst_reg = DST, \ 209 .src_reg = 0, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213#define BPF_MOV32_IMM(DST, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_K, \ 216 .dst_reg = DST, \ 217 .src_reg = 0, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 222 223#define BPF_MOVSX64_REG(DST, SRC, OFF) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 226 .dst_reg = DST, \ 227 .src_reg = SRC, \ 228 .off = OFF, \ 229 .imm = 0 }) 230 231#define BPF_MOVSX32_REG(DST, SRC, OFF) \ 232 ((struct bpf_insn) { \ 233 .code = BPF_ALU | BPF_MOV | BPF_X, \ 234 .dst_reg = DST, \ 235 .src_reg = SRC, \ 236 .off = OFF, \ 237 .imm = 0 }) 238 239/* Special form of mov32, used for doing explicit zero extension on dst. */ 240#define BPF_ZEXT_REG(DST) \ 241 ((struct bpf_insn) { \ 242 .code = BPF_ALU | BPF_MOV | BPF_X, \ 243 .dst_reg = DST, \ 244 .src_reg = DST, \ 245 .off = 0, \ 246 .imm = 1 }) 247 248static inline bool insn_is_zext(const struct bpf_insn *insn) 249{ 250 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 251} 252 253/* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 254 * to pointers in user vma. 255 */ 256static inline bool insn_is_cast_user(const struct bpf_insn *insn) 257{ 258 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 259 insn->off == BPF_ADDR_SPACE_CAST && 260 insn->imm == 1U << 16; 261} 262 263/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 264#define BPF_LD_IMM64(DST, IMM) \ 265 BPF_LD_IMM64_RAW(DST, 0, IMM) 266 267#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 268 ((struct bpf_insn) { \ 269 .code = BPF_LD | BPF_DW | BPF_IMM, \ 270 .dst_reg = DST, \ 271 .src_reg = SRC, \ 272 .off = 0, \ 273 .imm = (__u32) (IMM) }), \ 274 ((struct bpf_insn) { \ 275 .code = 0, /* zero is reserved opcode */ \ 276 .dst_reg = 0, \ 277 .src_reg = 0, \ 278 .off = 0, \ 279 .imm = ((__u64) (IMM)) >> 32 }) 280 281/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 282#define BPF_LD_MAP_FD(DST, MAP_FD) \ 283 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 284 285/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 286 287#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 288 ((struct bpf_insn) { \ 289 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 290 .dst_reg = DST, \ 291 .src_reg = SRC, \ 292 .off = 0, \ 293 .imm = IMM }) 294 295#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 298 .dst_reg = DST, \ 299 .src_reg = SRC, \ 300 .off = 0, \ 301 .imm = IMM }) 302 303/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 304 305#define BPF_LD_ABS(SIZE, IMM) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 308 .dst_reg = 0, \ 309 .src_reg = 0, \ 310 .off = 0, \ 311 .imm = IMM }) 312 313/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 314 315#define BPF_LD_IND(SIZE, SRC, IMM) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 318 .dst_reg = 0, \ 319 .src_reg = SRC, \ 320 .off = 0, \ 321 .imm = IMM }) 322 323/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 324 325#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 334 335#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 338 .dst_reg = DST, \ 339 .src_reg = SRC, \ 340 .off = OFF, \ 341 .imm = 0 }) 342 343/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 344 345#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 348 .dst_reg = DST, \ 349 .src_reg = SRC, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353 354/* 355 * Atomic operations: 356 * 357 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 358 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 359 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 360 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 361 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 362 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 363 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 364 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 365 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 366 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 367 */ 368 369#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 370 ((struct bpf_insn) { \ 371 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 372 .dst_reg = DST, \ 373 .src_reg = SRC, \ 374 .off = OFF, \ 375 .imm = OP }) 376 377/* Legacy alias */ 378#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 379 380/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 381 382#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 383 ((struct bpf_insn) { \ 384 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 385 .dst_reg = DST, \ 386 .src_reg = 0, \ 387 .off = OFF, \ 388 .imm = IMM }) 389 390/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 391 392#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 393 ((struct bpf_insn) { \ 394 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 395 .dst_reg = DST, \ 396 .src_reg = SRC, \ 397 .off = OFF, \ 398 .imm = 0 }) 399 400/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 401 402#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 403 ((struct bpf_insn) { \ 404 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 405 .dst_reg = DST, \ 406 .src_reg = 0, \ 407 .off = OFF, \ 408 .imm = IMM }) 409 410/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 411 412#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 413 ((struct bpf_insn) { \ 414 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 415 .dst_reg = DST, \ 416 .src_reg = SRC, \ 417 .off = OFF, \ 418 .imm = 0 }) 419 420/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 421 422#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 423 ((struct bpf_insn) { \ 424 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 425 .dst_reg = DST, \ 426 .src_reg = 0, \ 427 .off = OFF, \ 428 .imm = IMM }) 429 430/* Unconditional jumps, goto pc + off16 */ 431 432#define BPF_JMP_A(OFF) \ 433 ((struct bpf_insn) { \ 434 .code = BPF_JMP | BPF_JA, \ 435 .dst_reg = 0, \ 436 .src_reg = 0, \ 437 .off = OFF, \ 438 .imm = 0 }) 439 440/* Relative call */ 441 442#define BPF_CALL_REL(TGT) \ 443 ((struct bpf_insn) { \ 444 .code = BPF_JMP | BPF_CALL, \ 445 .dst_reg = 0, \ 446 .src_reg = BPF_PSEUDO_CALL, \ 447 .off = 0, \ 448 .imm = TGT }) 449 450/* Convert function address to BPF immediate */ 451 452#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 453 454#define BPF_EMIT_CALL(FUNC) \ 455 ((struct bpf_insn) { \ 456 .code = BPF_JMP | BPF_CALL, \ 457 .dst_reg = 0, \ 458 .src_reg = 0, \ 459 .off = 0, \ 460 .imm = BPF_CALL_IMM(FUNC) }) 461 462/* Raw code statement block */ 463 464#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 465 ((struct bpf_insn) { \ 466 .code = CODE, \ 467 .dst_reg = DST, \ 468 .src_reg = SRC, \ 469 .off = OFF, \ 470 .imm = IMM }) 471 472/* Program exit */ 473 474#define BPF_EXIT_INSN() \ 475 ((struct bpf_insn) { \ 476 .code = BPF_JMP | BPF_EXIT, \ 477 .dst_reg = 0, \ 478 .src_reg = 0, \ 479 .off = 0, \ 480 .imm = 0 }) 481 482/* Speculation barrier */ 483 484#define BPF_ST_NOSPEC() \ 485 ((struct bpf_insn) { \ 486 .code = BPF_ST | BPF_NOSPEC, \ 487 .dst_reg = 0, \ 488 .src_reg = 0, \ 489 .off = 0, \ 490 .imm = 0 }) 491 492/* Internal classic blocks for direct assignment */ 493 494#define __BPF_STMT(CODE, K) \ 495 ((struct sock_filter) BPF_STMT(CODE, K)) 496 497#define __BPF_JUMP(CODE, K, JT, JF) \ 498 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 499 500#define bytes_to_bpf_size(bytes) \ 501({ \ 502 int bpf_size = -EINVAL; \ 503 \ 504 if (bytes == sizeof(u8)) \ 505 bpf_size = BPF_B; \ 506 else if (bytes == sizeof(u16)) \ 507 bpf_size = BPF_H; \ 508 else if (bytes == sizeof(u32)) \ 509 bpf_size = BPF_W; \ 510 else if (bytes == sizeof(u64)) \ 511 bpf_size = BPF_DW; \ 512 \ 513 bpf_size; \ 514}) 515 516#define bpf_size_to_bytes(bpf_size) \ 517({ \ 518 int bytes = -EINVAL; \ 519 \ 520 if (bpf_size == BPF_B) \ 521 bytes = sizeof(u8); \ 522 else if (bpf_size == BPF_H) \ 523 bytes = sizeof(u16); \ 524 else if (bpf_size == BPF_W) \ 525 bytes = sizeof(u32); \ 526 else if (bpf_size == BPF_DW) \ 527 bytes = sizeof(u64); \ 528 \ 529 bytes; \ 530}) 531 532#define BPF_SIZEOF(type) \ 533 ({ \ 534 const int __size = bytes_to_bpf_size(sizeof(type)); \ 535 BUILD_BUG_ON(__size < 0); \ 536 __size; \ 537 }) 538 539#define BPF_FIELD_SIZEOF(type, field) \ 540 ({ \ 541 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 542 BUILD_BUG_ON(__size < 0); \ 543 __size; \ 544 }) 545 546#define BPF_LDST_BYTES(insn) \ 547 ({ \ 548 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 549 WARN_ON(__size < 0); \ 550 __size; \ 551 }) 552 553#define __BPF_MAP_0(m, v, ...) v 554#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 555#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 556#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 557#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 558#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 559 560#define __BPF_REG_0(...) __BPF_PAD(5) 561#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 562#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 563#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 564#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 565#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 566 567#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 568#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 569 570#define __BPF_CAST(t, a) \ 571 (__force t) \ 572 (__force \ 573 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 574 (unsigned long)0, (t)0))) a 575#define __BPF_V void 576#define __BPF_N 577 578#define __BPF_DECL_ARGS(t, a) t a 579#define __BPF_DECL_REGS(t, a) u64 a 580 581#define __BPF_PAD(n) \ 582 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 583 u64, __ur_3, u64, __ur_4, u64, __ur_5) 584 585#define BPF_CALL_x(x, attr, name, ...) \ 586 static __always_inline \ 587 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 588 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 589 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 590 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 591 { \ 592 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 593 } \ 594 static __always_inline \ 595 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 596 597#define __NOATTR 598#define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 599#define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 600#define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 601#define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 602#define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 603#define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 604 605#define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 606 607#define bpf_ctx_range(TYPE, MEMBER) \ 608 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 609#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 610 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 611#if BITS_PER_LONG == 64 612# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 613 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 614#else 615# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 616 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 617#endif /* BITS_PER_LONG == 64 */ 618 619#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 620 ({ \ 621 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 622 *(PTR_SIZE) = (SIZE); \ 623 offsetof(TYPE, MEMBER); \ 624 }) 625 626/* A struct sock_filter is architecture independent. */ 627struct compat_sock_fprog { 628 u16 len; 629 compat_uptr_t filter; /* struct sock_filter * */ 630}; 631 632struct sock_fprog_kern { 633 u16 len; 634 struct sock_filter *filter; 635}; 636 637/* Some arches need doubleword alignment for their instructions and/or data */ 638#define BPF_IMAGE_ALIGNMENT 8 639 640struct bpf_binary_header { 641 u32 size; 642 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 643}; 644 645struct bpf_prog_stats { 646 u64_stats_t cnt; 647 u64_stats_t nsecs; 648 u64_stats_t misses; 649 struct u64_stats_sync syncp; 650} __aligned(2 * sizeof(u64)); 651 652struct sk_filter { 653 refcount_t refcnt; 654 struct rcu_head rcu; 655 struct bpf_prog *prog; 656}; 657 658DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 659 660extern struct mutex nf_conn_btf_access_lock; 661extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 662 const struct bpf_reg_state *reg, 663 int off, int size); 664 665typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 666 const struct bpf_insn *insnsi, 667 unsigned int (*bpf_func)(const void *, 668 const struct bpf_insn *)); 669 670static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 671 const void *ctx, 672 bpf_dispatcher_fn dfunc) 673{ 674 u32 ret; 675 676 cant_migrate(); 677 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 678 struct bpf_prog_stats *stats; 679 u64 duration, start = sched_clock(); 680 unsigned long flags; 681 682 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 683 684 duration = sched_clock() - start; 685 stats = this_cpu_ptr(prog->stats); 686 flags = u64_stats_update_begin_irqsave(&stats->syncp); 687 u64_stats_inc(&stats->cnt); 688 u64_stats_add(&stats->nsecs, duration); 689 u64_stats_update_end_irqrestore(&stats->syncp, flags); 690 } else { 691 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 692 } 693 return ret; 694} 695 696static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 697{ 698 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 699} 700 701/* 702 * Use in preemptible and therefore migratable context to make sure that 703 * the execution of the BPF program runs on one CPU. 704 * 705 * This uses migrate_disable/enable() explicitly to document that the 706 * invocation of a BPF program does not require reentrancy protection 707 * against a BPF program which is invoked from a preempting task. 708 */ 709static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 710 const void *ctx) 711{ 712 u32 ret; 713 714 migrate_disable(); 715 ret = bpf_prog_run(prog, ctx); 716 migrate_enable(); 717 return ret; 718} 719 720#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 721 722struct bpf_skb_data_end { 723 struct qdisc_skb_cb qdisc_cb; 724 void *data_meta; 725 void *data_end; 726}; 727 728struct bpf_nh_params { 729 u32 nh_family; 730 union { 731 u32 ipv4_nh; 732 struct in6_addr ipv6_nh; 733 }; 734}; 735 736struct bpf_redirect_info { 737 u64 tgt_index; 738 void *tgt_value; 739 struct bpf_map *map; 740 u32 flags; 741 u32 kern_flags; 742 u32 map_id; 743 enum bpf_map_type map_type; 744 struct bpf_nh_params nh; 745}; 746 747DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 748 749/* flags for bpf_redirect_info kern_flags */ 750#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 751 752/* Compute the linear packet data range [data, data_end) which 753 * will be accessed by various program types (cls_bpf, act_bpf, 754 * lwt, ...). Subsystems allowing direct data access must (!) 755 * ensure that cb[] area can be written to when BPF program is 756 * invoked (otherwise cb[] save/restore is necessary). 757 */ 758static inline void bpf_compute_data_pointers(struct sk_buff *skb) 759{ 760 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 761 762 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 763 cb->data_meta = skb->data - skb_metadata_len(skb); 764 cb->data_end = skb->data + skb_headlen(skb); 765} 766 767/* Similar to bpf_compute_data_pointers(), except that save orginal 768 * data in cb->data and cb->meta_data for restore. 769 */ 770static inline void bpf_compute_and_save_data_end( 771 struct sk_buff *skb, void **saved_data_end) 772{ 773 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 774 775 *saved_data_end = cb->data_end; 776 cb->data_end = skb->data + skb_headlen(skb); 777} 778 779/* Restore data saved by bpf_compute_and_save_data_end(). */ 780static inline void bpf_restore_data_end( 781 struct sk_buff *skb, void *saved_data_end) 782{ 783 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 784 785 cb->data_end = saved_data_end; 786} 787 788static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 789{ 790 /* eBPF programs may read/write skb->cb[] area to transfer meta 791 * data between tail calls. Since this also needs to work with 792 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 793 * 794 * In some socket filter cases, the cb unfortunately needs to be 795 * saved/restored so that protocol specific skb->cb[] data won't 796 * be lost. In any case, due to unpriviledged eBPF programs 797 * attached to sockets, we need to clear the bpf_skb_cb() area 798 * to not leak previous contents to user space. 799 */ 800 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 801 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 802 sizeof_field(struct qdisc_skb_cb, data)); 803 804 return qdisc_skb_cb(skb)->data; 805} 806 807/* Must be invoked with migration disabled */ 808static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 809 const void *ctx) 810{ 811 const struct sk_buff *skb = ctx; 812 u8 *cb_data = bpf_skb_cb(skb); 813 u8 cb_saved[BPF_SKB_CB_LEN]; 814 u32 res; 815 816 if (unlikely(prog->cb_access)) { 817 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 818 memset(cb_data, 0, sizeof(cb_saved)); 819 } 820 821 res = bpf_prog_run(prog, skb); 822 823 if (unlikely(prog->cb_access)) 824 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 825 826 return res; 827} 828 829static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 830 struct sk_buff *skb) 831{ 832 u32 res; 833 834 migrate_disable(); 835 res = __bpf_prog_run_save_cb(prog, skb); 836 migrate_enable(); 837 return res; 838} 839 840static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 841 struct sk_buff *skb) 842{ 843 u8 *cb_data = bpf_skb_cb(skb); 844 u32 res; 845 846 if (unlikely(prog->cb_access)) 847 memset(cb_data, 0, BPF_SKB_CB_LEN); 848 849 res = bpf_prog_run_pin_on_cpu(prog, skb); 850 return res; 851} 852 853DECLARE_BPF_DISPATCHER(xdp) 854 855DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 856 857u32 xdp_master_redirect(struct xdp_buff *xdp); 858 859void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 860 861static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 862{ 863 return prog->len * sizeof(struct bpf_insn); 864} 865 866static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 867{ 868 return round_up(bpf_prog_insn_size(prog) + 869 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 870} 871 872static inline unsigned int bpf_prog_size(unsigned int proglen) 873{ 874 return max(sizeof(struct bpf_prog), 875 offsetof(struct bpf_prog, insns[proglen])); 876} 877 878static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 879{ 880 /* When classic BPF programs have been loaded and the arch 881 * does not have a classic BPF JIT (anymore), they have been 882 * converted via bpf_migrate_filter() to eBPF and thus always 883 * have an unspec program type. 884 */ 885 return prog->type == BPF_PROG_TYPE_UNSPEC; 886} 887 888static inline u32 bpf_ctx_off_adjust_machine(u32 size) 889{ 890 const u32 size_machine = sizeof(unsigned long); 891 892 if (size > size_machine && size % size_machine == 0) 893 size = size_machine; 894 895 return size; 896} 897 898static inline bool 899bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 900{ 901 return size <= size_default && (size & (size - 1)) == 0; 902} 903 904static inline u8 905bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 906{ 907 u8 access_off = off & (size_default - 1); 908 909#ifdef __LITTLE_ENDIAN 910 return access_off; 911#else 912 return size_default - (access_off + size); 913#endif 914} 915 916#define bpf_ctx_wide_access_ok(off, size, type, field) \ 917 (size == sizeof(__u64) && \ 918 off >= offsetof(type, field) && \ 919 off + sizeof(__u64) <= offsetofend(type, field) && \ 920 off % sizeof(__u64) == 0) 921 922#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 923 924static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 925{ 926#ifndef CONFIG_BPF_JIT_ALWAYS_ON 927 if (!fp->jited) { 928 set_vm_flush_reset_perms(fp); 929 return set_memory_ro((unsigned long)fp, fp->pages); 930 } 931#endif 932 return 0; 933} 934 935static inline int __must_check 936bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 937{ 938 set_vm_flush_reset_perms(hdr); 939 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 940} 941 942int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 943static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 944{ 945 return sk_filter_trim_cap(sk, skb, 1); 946} 947 948struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 949void bpf_prog_free(struct bpf_prog *fp); 950 951bool bpf_opcode_in_insntable(u8 code); 952 953void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 954 const u32 *insn_to_jit_off); 955int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 956void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 957 958struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 959struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 960struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 961 gfp_t gfp_extra_flags); 962void __bpf_prog_free(struct bpf_prog *fp); 963 964static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 965{ 966 __bpf_prog_free(fp); 967} 968 969typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 970 unsigned int flen); 971 972int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 973int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 974 bpf_aux_classic_check_t trans, bool save_orig); 975void bpf_prog_destroy(struct bpf_prog *fp); 976 977int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 978int sk_attach_bpf(u32 ufd, struct sock *sk); 979int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 980int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 981void sk_reuseport_prog_free(struct bpf_prog *prog); 982int sk_detach_filter(struct sock *sk); 983int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 984 985bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 986void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 987 988u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 989#define __bpf_call_base_args \ 990 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 991 (void *)__bpf_call_base) 992 993struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 994void bpf_jit_compile(struct bpf_prog *prog); 995bool bpf_jit_needs_zext(void); 996bool bpf_jit_inlines_helper_call(s32 imm); 997bool bpf_jit_supports_subprog_tailcalls(void); 998bool bpf_jit_supports_percpu_insn(void); 999bool bpf_jit_supports_kfunc_call(void); 1000bool bpf_jit_supports_far_kfunc_call(void); 1001bool bpf_jit_supports_exceptions(void); 1002bool bpf_jit_supports_ptr_xchg(void); 1003bool bpf_jit_supports_arena(void); 1004bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1005u64 bpf_arch_uaddress_limit(void); 1006void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1007bool bpf_helper_changes_pkt_data(void *func); 1008 1009static inline bool bpf_dump_raw_ok(const struct cred *cred) 1010{ 1011 /* Reconstruction of call-sites is dependent on kallsyms, 1012 * thus make dump the same restriction. 1013 */ 1014 return kallsyms_show_value(cred); 1015} 1016 1017struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1018 const struct bpf_insn *patch, u32 len); 1019int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1020 1021void bpf_clear_redirect_map(struct bpf_map *map); 1022 1023static inline bool xdp_return_frame_no_direct(void) 1024{ 1025 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1026 1027 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1028} 1029 1030static inline void xdp_set_return_frame_no_direct(void) 1031{ 1032 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1033 1034 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1035} 1036 1037static inline void xdp_clear_return_frame_no_direct(void) 1038{ 1039 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1040 1041 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1042} 1043 1044static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1045 unsigned int pktlen) 1046{ 1047 unsigned int len; 1048 1049 if (unlikely(!(fwd->flags & IFF_UP))) 1050 return -ENETDOWN; 1051 1052 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1053 if (pktlen > len) 1054 return -EMSGSIZE; 1055 1056 return 0; 1057} 1058 1059/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1060 * same cpu context. Further for best results no more than a single map 1061 * for the do_redirect/do_flush pair should be used. This limitation is 1062 * because we only track one map and force a flush when the map changes. 1063 * This does not appear to be a real limitation for existing software. 1064 */ 1065int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1066 struct xdp_buff *xdp, struct bpf_prog *prog); 1067int xdp_do_redirect(struct net_device *dev, 1068 struct xdp_buff *xdp, 1069 struct bpf_prog *prog); 1070int xdp_do_redirect_frame(struct net_device *dev, 1071 struct xdp_buff *xdp, 1072 struct xdp_frame *xdpf, 1073 struct bpf_prog *prog); 1074void xdp_do_flush(void); 1075 1076void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); 1077 1078#ifdef CONFIG_INET 1079struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1080 struct bpf_prog *prog, struct sk_buff *skb, 1081 struct sock *migrating_sk, 1082 u32 hash); 1083#else 1084static inline struct sock * 1085bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1086 struct bpf_prog *prog, struct sk_buff *skb, 1087 struct sock *migrating_sk, 1088 u32 hash) 1089{ 1090 return NULL; 1091} 1092#endif 1093 1094#ifdef CONFIG_BPF_JIT 1095extern int bpf_jit_enable; 1096extern int bpf_jit_harden; 1097extern int bpf_jit_kallsyms; 1098extern long bpf_jit_limit; 1099extern long bpf_jit_limit_max; 1100 1101typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1102 1103void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1104 1105struct bpf_binary_header * 1106bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1107 unsigned int alignment, 1108 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1109void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1110u64 bpf_jit_alloc_exec_limit(void); 1111void *bpf_jit_alloc_exec(unsigned long size); 1112void bpf_jit_free_exec(void *addr); 1113void bpf_jit_free(struct bpf_prog *fp); 1114struct bpf_binary_header * 1115bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1116 1117void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1118void bpf_prog_pack_free(void *ptr, u32 size); 1119 1120static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1121{ 1122 return list_empty(&fp->aux->ksym.lnode) || 1123 fp->aux->ksym.lnode.prev == LIST_POISON2; 1124} 1125 1126struct bpf_binary_header * 1127bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1128 unsigned int alignment, 1129 struct bpf_binary_header **rw_hdr, 1130 u8 **rw_image, 1131 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1132int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, 1133 struct bpf_binary_header *ro_header, 1134 struct bpf_binary_header *rw_header); 1135void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1136 struct bpf_binary_header *rw_header); 1137 1138int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1139 struct bpf_jit_poke_descriptor *poke); 1140 1141int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1142 const struct bpf_insn *insn, bool extra_pass, 1143 u64 *func_addr, bool *func_addr_fixed); 1144 1145struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1146void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1147 1148static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1149 u32 pass, void *image) 1150{ 1151 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1152 proglen, pass, image, current->comm, task_pid_nr(current)); 1153 1154 if (image) 1155 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1156 16, 1, image, proglen, false); 1157} 1158 1159static inline bool bpf_jit_is_ebpf(void) 1160{ 1161# ifdef CONFIG_HAVE_EBPF_JIT 1162 return true; 1163# else 1164 return false; 1165# endif 1166} 1167 1168static inline bool ebpf_jit_enabled(void) 1169{ 1170 return bpf_jit_enable && bpf_jit_is_ebpf(); 1171} 1172 1173static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1174{ 1175 return fp->jited && bpf_jit_is_ebpf(); 1176} 1177 1178static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1179{ 1180 /* These are the prerequisites, should someone ever have the 1181 * idea to call blinding outside of them, we make sure to 1182 * bail out. 1183 */ 1184 if (!bpf_jit_is_ebpf()) 1185 return false; 1186 if (!prog->jit_requested) 1187 return false; 1188 if (!bpf_jit_harden) 1189 return false; 1190 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1191 return false; 1192 1193 return true; 1194} 1195 1196static inline bool bpf_jit_kallsyms_enabled(void) 1197{ 1198 /* There are a couple of corner cases where kallsyms should 1199 * not be enabled f.e. on hardening. 1200 */ 1201 if (bpf_jit_harden) 1202 return false; 1203 if (!bpf_jit_kallsyms) 1204 return false; 1205 if (bpf_jit_kallsyms == 1) 1206 return true; 1207 1208 return false; 1209} 1210 1211int __bpf_address_lookup(unsigned long addr, unsigned long *size, 1212 unsigned long *off, char *sym); 1213bool is_bpf_text_address(unsigned long addr); 1214int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1215 char *sym); 1216struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1217 1218static inline int 1219bpf_address_lookup(unsigned long addr, unsigned long *size, 1220 unsigned long *off, char **modname, char *sym) 1221{ 1222 int ret = __bpf_address_lookup(addr, size, off, sym); 1223 1224 if (ret && modname) 1225 *modname = NULL; 1226 return ret; 1227} 1228 1229void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1230void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1231 1232#else /* CONFIG_BPF_JIT */ 1233 1234static inline bool ebpf_jit_enabled(void) 1235{ 1236 return false; 1237} 1238 1239static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1240{ 1241 return false; 1242} 1243 1244static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1245{ 1246 return false; 1247} 1248 1249static inline int 1250bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1251 struct bpf_jit_poke_descriptor *poke) 1252{ 1253 return -ENOTSUPP; 1254} 1255 1256static inline void bpf_jit_free(struct bpf_prog *fp) 1257{ 1258 bpf_prog_unlock_free(fp); 1259} 1260 1261static inline bool bpf_jit_kallsyms_enabled(void) 1262{ 1263 return false; 1264} 1265 1266static inline int 1267__bpf_address_lookup(unsigned long addr, unsigned long *size, 1268 unsigned long *off, char *sym) 1269{ 1270 return 0; 1271} 1272 1273static inline bool is_bpf_text_address(unsigned long addr) 1274{ 1275 return false; 1276} 1277 1278static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1279 char *type, char *sym) 1280{ 1281 return -ERANGE; 1282} 1283 1284static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1285{ 1286 return NULL; 1287} 1288 1289static inline int 1290bpf_address_lookup(unsigned long addr, unsigned long *size, 1291 unsigned long *off, char **modname, char *sym) 1292{ 1293 return 0; 1294} 1295 1296static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1297{ 1298} 1299 1300static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1301{ 1302} 1303 1304#endif /* CONFIG_BPF_JIT */ 1305 1306void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1307 1308#define BPF_ANC BIT(15) 1309 1310static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1311{ 1312 switch (first->code) { 1313 case BPF_RET | BPF_K: 1314 case BPF_LD | BPF_W | BPF_LEN: 1315 return false; 1316 1317 case BPF_LD | BPF_W | BPF_ABS: 1318 case BPF_LD | BPF_H | BPF_ABS: 1319 case BPF_LD | BPF_B | BPF_ABS: 1320 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1321 return true; 1322 return false; 1323 1324 default: 1325 return true; 1326 } 1327} 1328 1329static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1330{ 1331 BUG_ON(ftest->code & BPF_ANC); 1332 1333 switch (ftest->code) { 1334 case BPF_LD | BPF_W | BPF_ABS: 1335 case BPF_LD | BPF_H | BPF_ABS: 1336 case BPF_LD | BPF_B | BPF_ABS: 1337#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1338 return BPF_ANC | SKF_AD_##CODE 1339 switch (ftest->k) { 1340 BPF_ANCILLARY(PROTOCOL); 1341 BPF_ANCILLARY(PKTTYPE); 1342 BPF_ANCILLARY(IFINDEX); 1343 BPF_ANCILLARY(NLATTR); 1344 BPF_ANCILLARY(NLATTR_NEST); 1345 BPF_ANCILLARY(MARK); 1346 BPF_ANCILLARY(QUEUE); 1347 BPF_ANCILLARY(HATYPE); 1348 BPF_ANCILLARY(RXHASH); 1349 BPF_ANCILLARY(CPU); 1350 BPF_ANCILLARY(ALU_XOR_X); 1351 BPF_ANCILLARY(VLAN_TAG); 1352 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1353 BPF_ANCILLARY(PAY_OFFSET); 1354 BPF_ANCILLARY(RANDOM); 1355 BPF_ANCILLARY(VLAN_TPID); 1356 } 1357 fallthrough; 1358 default: 1359 return ftest->code; 1360 } 1361} 1362 1363void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1364 int k, unsigned int size); 1365 1366static inline int bpf_tell_extensions(void) 1367{ 1368 return SKF_AD_MAX; 1369} 1370 1371struct bpf_sock_addr_kern { 1372 struct sock *sk; 1373 struct sockaddr *uaddr; 1374 /* Temporary "register" to make indirect stores to nested structures 1375 * defined above. We need three registers to make such a store, but 1376 * only two (src and dst) are available at convert_ctx_access time 1377 */ 1378 u64 tmp_reg; 1379 void *t_ctx; /* Attach type specific context. */ 1380 u32 uaddrlen; 1381}; 1382 1383struct bpf_sock_ops_kern { 1384 struct sock *sk; 1385 union { 1386 u32 args[4]; 1387 u32 reply; 1388 u32 replylong[4]; 1389 }; 1390 struct sk_buff *syn_skb; 1391 struct sk_buff *skb; 1392 void *skb_data_end; 1393 u8 op; 1394 u8 is_fullsock; 1395 u8 remaining_opt_len; 1396 u64 temp; /* temp and everything after is not 1397 * initialized to 0 before calling 1398 * the BPF program. New fields that 1399 * should be initialized to 0 should 1400 * be inserted before temp. 1401 * temp is scratch storage used by 1402 * sock_ops_convert_ctx_access 1403 * as temporary storage of a register. 1404 */ 1405}; 1406 1407struct bpf_sysctl_kern { 1408 struct ctl_table_header *head; 1409 struct ctl_table *table; 1410 void *cur_val; 1411 size_t cur_len; 1412 void *new_val; 1413 size_t new_len; 1414 int new_updated; 1415 int write; 1416 loff_t *ppos; 1417 /* Temporary "register" for indirect stores to ppos. */ 1418 u64 tmp_reg; 1419}; 1420 1421#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1422struct bpf_sockopt_buf { 1423 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1424}; 1425 1426struct bpf_sockopt_kern { 1427 struct sock *sk; 1428 u8 *optval; 1429 u8 *optval_end; 1430 s32 level; 1431 s32 optname; 1432 s32 optlen; 1433 /* for retval in struct bpf_cg_run_ctx */ 1434 struct task_struct *current_task; 1435 /* Temporary "register" for indirect stores to ppos. */ 1436 u64 tmp_reg; 1437}; 1438 1439int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1440 1441struct bpf_sk_lookup_kern { 1442 u16 family; 1443 u16 protocol; 1444 __be16 sport; 1445 u16 dport; 1446 struct { 1447 __be32 saddr; 1448 __be32 daddr; 1449 } v4; 1450 struct { 1451 const struct in6_addr *saddr; 1452 const struct in6_addr *daddr; 1453 } v6; 1454 struct sock *selected_sk; 1455 u32 ingress_ifindex; 1456 bool no_reuseport; 1457}; 1458 1459extern struct static_key_false bpf_sk_lookup_enabled; 1460 1461/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1462 * 1463 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1464 * SK_DROP. Their meaning is as follows: 1465 * 1466 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1467 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1468 * SK_DROP : terminate lookup with -ECONNREFUSED 1469 * 1470 * This macro aggregates return values and selected sockets from 1471 * multiple BPF programs according to following rules in order: 1472 * 1473 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1474 * macro result is SK_PASS and last ctx.selected_sk is used. 1475 * 2. If any program returned SK_DROP return value, 1476 * macro result is SK_DROP. 1477 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1478 * 1479 * Caller must ensure that the prog array is non-NULL, and that the 1480 * array as well as the programs it contains remain valid. 1481 */ 1482#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1483 ({ \ 1484 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1485 struct bpf_prog_array_item *_item; \ 1486 struct sock *_selected_sk = NULL; \ 1487 bool _no_reuseport = false; \ 1488 struct bpf_prog *_prog; \ 1489 bool _all_pass = true; \ 1490 u32 _ret; \ 1491 \ 1492 migrate_disable(); \ 1493 _item = &(array)->items[0]; \ 1494 while ((_prog = READ_ONCE(_item->prog))) { \ 1495 /* restore most recent selection */ \ 1496 _ctx->selected_sk = _selected_sk; \ 1497 _ctx->no_reuseport = _no_reuseport; \ 1498 \ 1499 _ret = func(_prog, _ctx); \ 1500 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1501 /* remember last non-NULL socket */ \ 1502 _selected_sk = _ctx->selected_sk; \ 1503 _no_reuseport = _ctx->no_reuseport; \ 1504 } else if (_ret == SK_DROP && _all_pass) { \ 1505 _all_pass = false; \ 1506 } \ 1507 _item++; \ 1508 } \ 1509 _ctx->selected_sk = _selected_sk; \ 1510 _ctx->no_reuseport = _no_reuseport; \ 1511 migrate_enable(); \ 1512 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1513 }) 1514 1515static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1516 const __be32 saddr, const __be16 sport, 1517 const __be32 daddr, const u16 dport, 1518 const int ifindex, struct sock **psk) 1519{ 1520 struct bpf_prog_array *run_array; 1521 struct sock *selected_sk = NULL; 1522 bool no_reuseport = false; 1523 1524 rcu_read_lock(); 1525 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1526 if (run_array) { 1527 struct bpf_sk_lookup_kern ctx = { 1528 .family = AF_INET, 1529 .protocol = protocol, 1530 .v4.saddr = saddr, 1531 .v4.daddr = daddr, 1532 .sport = sport, 1533 .dport = dport, 1534 .ingress_ifindex = ifindex, 1535 }; 1536 u32 act; 1537 1538 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1539 if (act == SK_PASS) { 1540 selected_sk = ctx.selected_sk; 1541 no_reuseport = ctx.no_reuseport; 1542 } else { 1543 selected_sk = ERR_PTR(-ECONNREFUSED); 1544 } 1545 } 1546 rcu_read_unlock(); 1547 *psk = selected_sk; 1548 return no_reuseport; 1549} 1550 1551#if IS_ENABLED(CONFIG_IPV6) 1552static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1553 const struct in6_addr *saddr, 1554 const __be16 sport, 1555 const struct in6_addr *daddr, 1556 const u16 dport, 1557 const int ifindex, struct sock **psk) 1558{ 1559 struct bpf_prog_array *run_array; 1560 struct sock *selected_sk = NULL; 1561 bool no_reuseport = false; 1562 1563 rcu_read_lock(); 1564 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1565 if (run_array) { 1566 struct bpf_sk_lookup_kern ctx = { 1567 .family = AF_INET6, 1568 .protocol = protocol, 1569 .v6.saddr = saddr, 1570 .v6.daddr = daddr, 1571 .sport = sport, 1572 .dport = dport, 1573 .ingress_ifindex = ifindex, 1574 }; 1575 u32 act; 1576 1577 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1578 if (act == SK_PASS) { 1579 selected_sk = ctx.selected_sk; 1580 no_reuseport = ctx.no_reuseport; 1581 } else { 1582 selected_sk = ERR_PTR(-ECONNREFUSED); 1583 } 1584 } 1585 rcu_read_unlock(); 1586 *psk = selected_sk; 1587 return no_reuseport; 1588} 1589#endif /* IS_ENABLED(CONFIG_IPV6) */ 1590 1591static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1592 u64 flags, const u64 flag_mask, 1593 void *lookup_elem(struct bpf_map *map, u32 key)) 1594{ 1595 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1596 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1597 1598 /* Lower bits of the flags are used as return code on lookup failure */ 1599 if (unlikely(flags & ~(action_mask | flag_mask))) 1600 return XDP_ABORTED; 1601 1602 ri->tgt_value = lookup_elem(map, index); 1603 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1604 /* If the lookup fails we want to clear out the state in the 1605 * redirect_info struct completely, so that if an eBPF program 1606 * performs multiple lookups, the last one always takes 1607 * precedence. 1608 */ 1609 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1610 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1611 return flags & action_mask; 1612 } 1613 1614 ri->tgt_index = index; 1615 ri->map_id = map->id; 1616 ri->map_type = map->map_type; 1617 1618 if (flags & BPF_F_BROADCAST) { 1619 WRITE_ONCE(ri->map, map); 1620 ri->flags = flags; 1621 } else { 1622 WRITE_ONCE(ri->map, NULL); 1623 ri->flags = 0; 1624 } 1625 1626 return XDP_REDIRECT; 1627} 1628 1629#ifdef CONFIG_NET 1630int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1631int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1632 u32 len, u64 flags); 1633int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1634int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1635void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1636void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1637 void *buf, unsigned long len, bool flush); 1638#else /* CONFIG_NET */ 1639static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1640 void *to, u32 len) 1641{ 1642 return -EOPNOTSUPP; 1643} 1644 1645static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1646 const void *from, u32 len, u64 flags) 1647{ 1648 return -EOPNOTSUPP; 1649} 1650 1651static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1652 void *buf, u32 len) 1653{ 1654 return -EOPNOTSUPP; 1655} 1656 1657static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1658 void *buf, u32 len) 1659{ 1660 return -EOPNOTSUPP; 1661} 1662 1663static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1664{ 1665 return NULL; 1666} 1667 1668static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1669 unsigned long len, bool flush) 1670{ 1671} 1672#endif /* CONFIG_NET */ 1673 1674#endif /* __LINUX_FILTER_H__ */