at v6.10 109 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <linux/workqueue.h> 11#include <linux/file.h> 12#include <linux/percpu.h> 13#include <linux/err.h> 14#include <linux/rbtree_latch.h> 15#include <linux/numa.h> 16#include <linux/mm_types.h> 17#include <linux/wait.h> 18#include <linux/refcount.h> 19#include <linux/mutex.h> 20#include <linux/module.h> 21#include <linux/kallsyms.h> 22#include <linux/capability.h> 23#include <linux/sched/mm.h> 24#include <linux/slab.h> 25#include <linux/percpu-refcount.h> 26#include <linux/stddef.h> 27#include <linux/bpfptr.h> 28#include <linux/btf.h> 29#include <linux/rcupdate_trace.h> 30#include <linux/static_call.h> 31#include <linux/memcontrol.h> 32#include <linux/cfi.h> 33 34struct bpf_verifier_env; 35struct bpf_verifier_log; 36struct perf_event; 37struct bpf_prog; 38struct bpf_prog_aux; 39struct bpf_map; 40struct bpf_arena; 41struct sock; 42struct seq_file; 43struct btf; 44struct btf_type; 45struct exception_table_entry; 46struct seq_operations; 47struct bpf_iter_aux_info; 48struct bpf_local_storage; 49struct bpf_local_storage_map; 50struct kobject; 51struct mem_cgroup; 52struct module; 53struct bpf_func_state; 54struct ftrace_ops; 55struct cgroup; 56struct bpf_token; 57struct user_namespace; 58struct super_block; 59struct inode; 60 61extern struct idr btf_idr; 62extern spinlock_t btf_idr_lock; 63extern struct kobject *btf_kobj; 64extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65extern bool bpf_global_ma_set; 66 67typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78}; 79 80/* map is generic key/value storage optionally accessible by eBPF programs */ 81struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184}; 185 186enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189}; 190 191enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206}; 207 208typedef void (*btf_dtor_kfunc_t)(void *); 209 210struct btf_field_kptr { 211 struct btf *btf; 212 struct module *module; 213 /* dtor used if btf_is_kernel(btf), otherwise the type is 214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 215 */ 216 btf_dtor_kfunc_t dtor; 217 u32 btf_id; 218}; 219 220struct btf_field_graph_root { 221 struct btf *btf; 222 u32 value_btf_id; 223 u32 node_offset; 224 struct btf_record *value_rec; 225}; 226 227struct btf_field { 228 u32 offset; 229 u32 size; 230 enum btf_field_type type; 231 union { 232 struct btf_field_kptr kptr; 233 struct btf_field_graph_root graph_root; 234 }; 235}; 236 237struct btf_record { 238 u32 cnt; 239 u32 field_mask; 240 int spin_lock_off; 241 int timer_off; 242 int wq_off; 243 int refcount_off; 244 struct btf_field fields[]; 245}; 246 247/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 248struct bpf_rb_node_kern { 249 struct rb_node rb_node; 250 void *owner; 251} __attribute__((aligned(8))); 252 253/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 254struct bpf_list_node_kern { 255 struct list_head list_head; 256 void *owner; 257} __attribute__((aligned(8))); 258 259struct bpf_map { 260 const struct bpf_map_ops *ops; 261 struct bpf_map *inner_map_meta; 262#ifdef CONFIG_SECURITY 263 void *security; 264#endif 265 enum bpf_map_type map_type; 266 u32 key_size; 267 u32 value_size; 268 u32 max_entries; 269 u64 map_extra; /* any per-map-type extra fields */ 270 u32 map_flags; 271 u32 id; 272 struct btf_record *record; 273 int numa_node; 274 u32 btf_key_type_id; 275 u32 btf_value_type_id; 276 u32 btf_vmlinux_value_type_id; 277 struct btf *btf; 278#ifdef CONFIG_MEMCG_KMEM 279 struct obj_cgroup *objcg; 280#endif 281 char name[BPF_OBJ_NAME_LEN]; 282 struct mutex freeze_mutex; 283 atomic64_t refcnt; 284 atomic64_t usercnt; 285 /* rcu is used before freeing and work is only used during freeing */ 286 union { 287 struct work_struct work; 288 struct rcu_head rcu; 289 }; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 spinlock_t lock; 298 enum bpf_prog_type type; 299 bool jited; 300 bool xdp_has_frags; 301 } owner; 302 bool bypass_spec_v1; 303 bool frozen; /* write-once; write-protected by freeze_mutex */ 304 bool free_after_mult_rcu_gp; 305 bool free_after_rcu_gp; 306 atomic64_t sleepable_refcnt; 307 s64 __percpu *elem_count; 308}; 309 310static inline const char *btf_field_type_name(enum btf_field_type type) 311{ 312 switch (type) { 313 case BPF_SPIN_LOCK: 314 return "bpf_spin_lock"; 315 case BPF_TIMER: 316 return "bpf_timer"; 317 case BPF_WORKQUEUE: 318 return "bpf_wq"; 319 case BPF_KPTR_UNREF: 320 case BPF_KPTR_REF: 321 return "kptr"; 322 case BPF_KPTR_PERCPU: 323 return "percpu_kptr"; 324 case BPF_LIST_HEAD: 325 return "bpf_list_head"; 326 case BPF_LIST_NODE: 327 return "bpf_list_node"; 328 case BPF_RB_ROOT: 329 return "bpf_rb_root"; 330 case BPF_RB_NODE: 331 return "bpf_rb_node"; 332 case BPF_REFCOUNT: 333 return "bpf_refcount"; 334 default: 335 WARN_ON_ONCE(1); 336 return "unknown"; 337 } 338} 339 340static inline u32 btf_field_type_size(enum btf_field_type type) 341{ 342 switch (type) { 343 case BPF_SPIN_LOCK: 344 return sizeof(struct bpf_spin_lock); 345 case BPF_TIMER: 346 return sizeof(struct bpf_timer); 347 case BPF_WORKQUEUE: 348 return sizeof(struct bpf_wq); 349 case BPF_KPTR_UNREF: 350 case BPF_KPTR_REF: 351 case BPF_KPTR_PERCPU: 352 return sizeof(u64); 353 case BPF_LIST_HEAD: 354 return sizeof(struct bpf_list_head); 355 case BPF_LIST_NODE: 356 return sizeof(struct bpf_list_node); 357 case BPF_RB_ROOT: 358 return sizeof(struct bpf_rb_root); 359 case BPF_RB_NODE: 360 return sizeof(struct bpf_rb_node); 361 case BPF_REFCOUNT: 362 return sizeof(struct bpf_refcount); 363 default: 364 WARN_ON_ONCE(1); 365 return 0; 366 } 367} 368 369static inline u32 btf_field_type_align(enum btf_field_type type) 370{ 371 switch (type) { 372 case BPF_SPIN_LOCK: 373 return __alignof__(struct bpf_spin_lock); 374 case BPF_TIMER: 375 return __alignof__(struct bpf_timer); 376 case BPF_WORKQUEUE: 377 return __alignof__(struct bpf_wq); 378 case BPF_KPTR_UNREF: 379 case BPF_KPTR_REF: 380 case BPF_KPTR_PERCPU: 381 return __alignof__(u64); 382 case BPF_LIST_HEAD: 383 return __alignof__(struct bpf_list_head); 384 case BPF_LIST_NODE: 385 return __alignof__(struct bpf_list_node); 386 case BPF_RB_ROOT: 387 return __alignof__(struct bpf_rb_root); 388 case BPF_RB_NODE: 389 return __alignof__(struct bpf_rb_node); 390 case BPF_REFCOUNT: 391 return __alignof__(struct bpf_refcount); 392 default: 393 WARN_ON_ONCE(1); 394 return 0; 395 } 396} 397 398static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 399{ 400 memset(addr, 0, field->size); 401 402 switch (field->type) { 403 case BPF_REFCOUNT: 404 refcount_set((refcount_t *)addr, 1); 405 break; 406 case BPF_RB_NODE: 407 RB_CLEAR_NODE((struct rb_node *)addr); 408 break; 409 case BPF_LIST_HEAD: 410 case BPF_LIST_NODE: 411 INIT_LIST_HEAD((struct list_head *)addr); 412 break; 413 case BPF_RB_ROOT: 414 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 415 case BPF_SPIN_LOCK: 416 case BPF_TIMER: 417 case BPF_WORKQUEUE: 418 case BPF_KPTR_UNREF: 419 case BPF_KPTR_REF: 420 case BPF_KPTR_PERCPU: 421 break; 422 default: 423 WARN_ON_ONCE(1); 424 return; 425 } 426} 427 428static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 429{ 430 if (IS_ERR_OR_NULL(rec)) 431 return false; 432 return rec->field_mask & type; 433} 434 435static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 436{ 437 int i; 438 439 if (IS_ERR_OR_NULL(rec)) 440 return; 441 for (i = 0; i < rec->cnt; i++) 442 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 443} 444 445/* 'dst' must be a temporary buffer and should not point to memory that is being 446 * used in parallel by a bpf program or bpf syscall, otherwise the access from 447 * the bpf program or bpf syscall may be corrupted by the reinitialization, 448 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 449 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 450 * program or bpf syscall. 451 */ 452static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 453{ 454 bpf_obj_init(map->record, dst); 455} 456 457/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 458 * forced to use 'long' read/writes to try to atomically copy long counters. 459 * Best-effort only. No barriers here, since it _will_ race with concurrent 460 * updates from BPF programs. Called from bpf syscall and mostly used with 461 * size 8 or 16 bytes, so ask compiler to inline it. 462 */ 463static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 464{ 465 const long *lsrc = src; 466 long *ldst = dst; 467 468 size /= sizeof(long); 469 while (size--) 470 data_race(*ldst++ = *lsrc++); 471} 472 473/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 474static inline void bpf_obj_memcpy(struct btf_record *rec, 475 void *dst, void *src, u32 size, 476 bool long_memcpy) 477{ 478 u32 curr_off = 0; 479 int i; 480 481 if (IS_ERR_OR_NULL(rec)) { 482 if (long_memcpy) 483 bpf_long_memcpy(dst, src, round_up(size, 8)); 484 else 485 memcpy(dst, src, size); 486 return; 487 } 488 489 for (i = 0; i < rec->cnt; i++) { 490 u32 next_off = rec->fields[i].offset; 491 u32 sz = next_off - curr_off; 492 493 memcpy(dst + curr_off, src + curr_off, sz); 494 curr_off += rec->fields[i].size + sz; 495 } 496 memcpy(dst + curr_off, src + curr_off, size - curr_off); 497} 498 499static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 500{ 501 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 502} 503 504static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 505{ 506 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 507} 508 509static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 510{ 511 u32 curr_off = 0; 512 int i; 513 514 if (IS_ERR_OR_NULL(rec)) { 515 memset(dst, 0, size); 516 return; 517 } 518 519 for (i = 0; i < rec->cnt; i++) { 520 u32 next_off = rec->fields[i].offset; 521 u32 sz = next_off - curr_off; 522 523 memset(dst + curr_off, 0, sz); 524 curr_off += rec->fields[i].size + sz; 525 } 526 memset(dst + curr_off, 0, size - curr_off); 527} 528 529static inline void zero_map_value(struct bpf_map *map, void *dst) 530{ 531 bpf_obj_memzero(map->record, dst, map->value_size); 532} 533 534void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 535 bool lock_src); 536void bpf_timer_cancel_and_free(void *timer); 537void bpf_wq_cancel_and_free(void *timer); 538void bpf_list_head_free(const struct btf_field *field, void *list_head, 539 struct bpf_spin_lock *spin_lock); 540void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 541 struct bpf_spin_lock *spin_lock); 542u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 543u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 544int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 545 546struct bpf_offload_dev; 547struct bpf_offloaded_map; 548 549struct bpf_map_dev_ops { 550 int (*map_get_next_key)(struct bpf_offloaded_map *map, 551 void *key, void *next_key); 552 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 553 void *key, void *value); 554 int (*map_update_elem)(struct bpf_offloaded_map *map, 555 void *key, void *value, u64 flags); 556 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 557}; 558 559struct bpf_offloaded_map { 560 struct bpf_map map; 561 struct net_device *netdev; 562 const struct bpf_map_dev_ops *dev_ops; 563 void *dev_priv; 564 struct list_head offloads; 565}; 566 567static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 568{ 569 return container_of(map, struct bpf_offloaded_map, map); 570} 571 572static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 573{ 574 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 575} 576 577static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 578{ 579 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 580 map->ops->map_seq_show_elem; 581} 582 583int map_check_no_btf(const struct bpf_map *map, 584 const struct btf *btf, 585 const struct btf_type *key_type, 586 const struct btf_type *value_type); 587 588bool bpf_map_meta_equal(const struct bpf_map *meta0, 589 const struct bpf_map *meta1); 590 591extern const struct bpf_map_ops bpf_map_offload_ops; 592 593/* bpf_type_flag contains a set of flags that are applicable to the values of 594 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 595 * or a memory is read-only. We classify types into two categories: base types 596 * and extended types. Extended types are base types combined with a type flag. 597 * 598 * Currently there are no more than 32 base types in arg_type, ret_type and 599 * reg_types. 600 */ 601#define BPF_BASE_TYPE_BITS 8 602 603enum bpf_type_flag { 604 /* PTR may be NULL. */ 605 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 606 607 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 608 * compatible with both mutable and immutable memory. 609 */ 610 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 611 612 /* MEM points to BPF ring buffer reservation. */ 613 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 614 615 /* MEM is in user address space. */ 616 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 617 618 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 619 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 620 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 621 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 622 * to the specified cpu. 623 */ 624 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 625 626 /* Indicates that the argument will be released. */ 627 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 628 629 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 630 * unreferenced and referenced kptr loaded from map value using a load 631 * instruction, so that they can only be dereferenced but not escape the 632 * BPF program into the kernel (i.e. cannot be passed as arguments to 633 * kfunc or bpf helpers). 634 */ 635 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 636 637 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 638 639 /* DYNPTR points to memory local to the bpf program. */ 640 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 641 642 /* DYNPTR points to a kernel-produced ringbuf record. */ 643 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 644 645 /* Size is known at compile time. */ 646 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 647 648 /* MEM is of an allocated object of type in program BTF. This is used to 649 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 650 */ 651 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 652 653 /* PTR was passed from the kernel in a trusted context, and may be 654 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 655 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 656 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 657 * without invoking bpf_kptr_xchg(). What we really need to know is 658 * whether a pointer is safe to pass to a kfunc or BPF helper function. 659 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 660 * helpers, they do not cover all possible instances of unsafe 661 * pointers. For example, a pointer that was obtained from walking a 662 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 663 * fact that it may be NULL, invalid, etc. This is due to backwards 664 * compatibility requirements, as this was the behavior that was first 665 * introduced when kptrs were added. The behavior is now considered 666 * deprecated, and PTR_UNTRUSTED will eventually be removed. 667 * 668 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 669 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 670 * For example, pointers passed to tracepoint arguments are considered 671 * PTR_TRUSTED, as are pointers that are passed to struct_ops 672 * callbacks. As alluded to above, pointers that are obtained from 673 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 674 * struct task_struct *task is PTR_TRUSTED, then accessing 675 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 676 * in a BPF register. Similarly, pointers passed to certain programs 677 * types such as kretprobes are not guaranteed to be valid, as they may 678 * for example contain an object that was recently freed. 679 */ 680 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 681 682 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 683 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 684 685 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 686 * Currently only valid for linked-list and rbtree nodes. If the nodes 687 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 688 */ 689 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 690 691 /* DYNPTR points to sk_buff */ 692 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 693 694 /* DYNPTR points to xdp_buff */ 695 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 696 697 __BPF_TYPE_FLAG_MAX, 698 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 699}; 700 701#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 702 | DYNPTR_TYPE_XDP) 703 704/* Max number of base types. */ 705#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 706 707/* Max number of all types. */ 708#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 709 710/* function argument constraints */ 711enum bpf_arg_type { 712 ARG_DONTCARE = 0, /* unused argument in helper function */ 713 714 /* the following constraints used to prototype 715 * bpf_map_lookup/update/delete_elem() functions 716 */ 717 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 718 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 719 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 720 721 /* Used to prototype bpf_memcmp() and other functions that access data 722 * on eBPF program stack 723 */ 724 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 725 ARG_PTR_TO_ARENA, 726 727 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 728 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 729 730 ARG_PTR_TO_CTX, /* pointer to context */ 731 ARG_ANYTHING, /* any (initialized) argument is ok */ 732 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 733 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 734 ARG_PTR_TO_INT, /* pointer to int */ 735 ARG_PTR_TO_LONG, /* pointer to long */ 736 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 737 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 738 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 739 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 740 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 741 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 742 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 743 ARG_PTR_TO_STACK, /* pointer to stack */ 744 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 745 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 746 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 747 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 748 __BPF_ARG_TYPE_MAX, 749 750 /* Extended arg_types. */ 751 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 752 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 753 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 754 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 755 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 756 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 757 /* pointer to memory does not need to be initialized, helper function must fill 758 * all bytes or clear them in error case. 759 */ 760 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 761 /* Pointer to valid memory of size known at compile time. */ 762 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 763 764 /* This must be the last entry. Its purpose is to ensure the enum is 765 * wide enough to hold the higher bits reserved for bpf_type_flag. 766 */ 767 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 768}; 769static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 770 771/* type of values returned from helper functions */ 772enum bpf_return_type { 773 RET_INTEGER, /* function returns integer */ 774 RET_VOID, /* function doesn't return anything */ 775 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 776 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 777 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 778 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 779 RET_PTR_TO_MEM, /* returns a pointer to memory */ 780 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 781 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 782 __BPF_RET_TYPE_MAX, 783 784 /* Extended ret_types. */ 785 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 786 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 787 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 788 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 789 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 790 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 791 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 792 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 793 794 /* This must be the last entry. Its purpose is to ensure the enum is 795 * wide enough to hold the higher bits reserved for bpf_type_flag. 796 */ 797 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 798}; 799static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 800 801/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 802 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 803 * instructions after verifying 804 */ 805struct bpf_func_proto { 806 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 807 bool gpl_only; 808 bool pkt_access; 809 bool might_sleep; 810 enum bpf_return_type ret_type; 811 union { 812 struct { 813 enum bpf_arg_type arg1_type; 814 enum bpf_arg_type arg2_type; 815 enum bpf_arg_type arg3_type; 816 enum bpf_arg_type arg4_type; 817 enum bpf_arg_type arg5_type; 818 }; 819 enum bpf_arg_type arg_type[5]; 820 }; 821 union { 822 struct { 823 u32 *arg1_btf_id; 824 u32 *arg2_btf_id; 825 u32 *arg3_btf_id; 826 u32 *arg4_btf_id; 827 u32 *arg5_btf_id; 828 }; 829 u32 *arg_btf_id[5]; 830 struct { 831 size_t arg1_size; 832 size_t arg2_size; 833 size_t arg3_size; 834 size_t arg4_size; 835 size_t arg5_size; 836 }; 837 size_t arg_size[5]; 838 }; 839 int *ret_btf_id; /* return value btf_id */ 840 bool (*allowed)(const struct bpf_prog *prog); 841}; 842 843/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 844 * the first argument to eBPF programs. 845 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 846 */ 847struct bpf_context; 848 849enum bpf_access_type { 850 BPF_READ = 1, 851 BPF_WRITE = 2 852}; 853 854/* types of values stored in eBPF registers */ 855/* Pointer types represent: 856 * pointer 857 * pointer + imm 858 * pointer + (u16) var 859 * pointer + (u16) var + imm 860 * if (range > 0) then [ptr, ptr + range - off) is safe to access 861 * if (id > 0) means that some 'var' was added 862 * if (off > 0) means that 'imm' was added 863 */ 864enum bpf_reg_type { 865 NOT_INIT = 0, /* nothing was written into register */ 866 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 867 PTR_TO_CTX, /* reg points to bpf_context */ 868 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 869 PTR_TO_MAP_VALUE, /* reg points to map element value */ 870 PTR_TO_MAP_KEY, /* reg points to a map element key */ 871 PTR_TO_STACK, /* reg == frame_pointer + offset */ 872 PTR_TO_PACKET_META, /* skb->data - meta_len */ 873 PTR_TO_PACKET, /* reg points to skb->data */ 874 PTR_TO_PACKET_END, /* skb->data + headlen */ 875 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 876 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 877 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 878 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 879 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 880 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 881 /* PTR_TO_BTF_ID points to a kernel struct that does not need 882 * to be null checked by the BPF program. This does not imply the 883 * pointer is _not_ null and in practice this can easily be a null 884 * pointer when reading pointer chains. The assumption is program 885 * context will handle null pointer dereference typically via fault 886 * handling. The verifier must keep this in mind and can make no 887 * assumptions about null or non-null when doing branch analysis. 888 * Further, when passed into helpers the helpers can not, without 889 * additional context, assume the value is non-null. 890 */ 891 PTR_TO_BTF_ID, 892 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 893 * been checked for null. Used primarily to inform the verifier 894 * an explicit null check is required for this struct. 895 */ 896 PTR_TO_MEM, /* reg points to valid memory region */ 897 PTR_TO_ARENA, 898 PTR_TO_BUF, /* reg points to a read/write buffer */ 899 PTR_TO_FUNC, /* reg points to a bpf program function */ 900 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 901 __BPF_REG_TYPE_MAX, 902 903 /* Extended reg_types. */ 904 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 905 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 906 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 907 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 908 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 909 910 /* This must be the last entry. Its purpose is to ensure the enum is 911 * wide enough to hold the higher bits reserved for bpf_type_flag. 912 */ 913 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 914}; 915static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 916 917/* The information passed from prog-specific *_is_valid_access 918 * back to the verifier. 919 */ 920struct bpf_insn_access_aux { 921 enum bpf_reg_type reg_type; 922 union { 923 int ctx_field_size; 924 struct { 925 struct btf *btf; 926 u32 btf_id; 927 }; 928 }; 929 struct bpf_verifier_log *log; /* for verbose logs */ 930}; 931 932static inline void 933bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 934{ 935 aux->ctx_field_size = size; 936} 937 938static bool bpf_is_ldimm64(const struct bpf_insn *insn) 939{ 940 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 941} 942 943static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 944{ 945 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 946} 947 948struct bpf_prog_ops { 949 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 950 union bpf_attr __user *uattr); 951}; 952 953struct bpf_reg_state; 954struct bpf_verifier_ops { 955 /* return eBPF function prototype for verification */ 956 const struct bpf_func_proto * 957 (*get_func_proto)(enum bpf_func_id func_id, 958 const struct bpf_prog *prog); 959 960 /* return true if 'size' wide access at offset 'off' within bpf_context 961 * with 'type' (read or write) is allowed 962 */ 963 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 964 const struct bpf_prog *prog, 965 struct bpf_insn_access_aux *info); 966 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 967 const struct bpf_prog *prog); 968 int (*gen_ld_abs)(const struct bpf_insn *orig, 969 struct bpf_insn *insn_buf); 970 u32 (*convert_ctx_access)(enum bpf_access_type type, 971 const struct bpf_insn *src, 972 struct bpf_insn *dst, 973 struct bpf_prog *prog, u32 *target_size); 974 int (*btf_struct_access)(struct bpf_verifier_log *log, 975 const struct bpf_reg_state *reg, 976 int off, int size); 977}; 978 979struct bpf_prog_offload_ops { 980 /* verifier basic callbacks */ 981 int (*insn_hook)(struct bpf_verifier_env *env, 982 int insn_idx, int prev_insn_idx); 983 int (*finalize)(struct bpf_verifier_env *env); 984 /* verifier optimization callbacks (called after .finalize) */ 985 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 986 struct bpf_insn *insn); 987 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 988 /* program management callbacks */ 989 int (*prepare)(struct bpf_prog *prog); 990 int (*translate)(struct bpf_prog *prog); 991 void (*destroy)(struct bpf_prog *prog); 992}; 993 994struct bpf_prog_offload { 995 struct bpf_prog *prog; 996 struct net_device *netdev; 997 struct bpf_offload_dev *offdev; 998 void *dev_priv; 999 struct list_head offloads; 1000 bool dev_state; 1001 bool opt_failed; 1002 void *jited_image; 1003 u32 jited_len; 1004}; 1005 1006enum bpf_cgroup_storage_type { 1007 BPF_CGROUP_STORAGE_SHARED, 1008 BPF_CGROUP_STORAGE_PERCPU, 1009 __BPF_CGROUP_STORAGE_MAX 1010}; 1011 1012#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1013 1014/* The longest tracepoint has 12 args. 1015 * See include/trace/bpf_probe.h 1016 */ 1017#define MAX_BPF_FUNC_ARGS 12 1018 1019/* The maximum number of arguments passed through registers 1020 * a single function may have. 1021 */ 1022#define MAX_BPF_FUNC_REG_ARGS 5 1023 1024/* The argument is a structure. */ 1025#define BTF_FMODEL_STRUCT_ARG BIT(0) 1026 1027/* The argument is signed. */ 1028#define BTF_FMODEL_SIGNED_ARG BIT(1) 1029 1030struct btf_func_model { 1031 u8 ret_size; 1032 u8 ret_flags; 1033 u8 nr_args; 1034 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1035 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1036}; 1037 1038/* Restore arguments before returning from trampoline to let original function 1039 * continue executing. This flag is used for fentry progs when there are no 1040 * fexit progs. 1041 */ 1042#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1043/* Call original function after fentry progs, but before fexit progs. 1044 * Makes sense for fentry/fexit, normal calls and indirect calls. 1045 */ 1046#define BPF_TRAMP_F_CALL_ORIG BIT(1) 1047/* Skip current frame and return to parent. Makes sense for fentry/fexit 1048 * programs only. Should not be used with normal calls and indirect calls. 1049 */ 1050#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1051/* Store IP address of the caller on the trampoline stack, 1052 * so it's available for trampoline's programs. 1053 */ 1054#define BPF_TRAMP_F_IP_ARG BIT(3) 1055/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1056#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1057 1058/* Get original function from stack instead of from provided direct address. 1059 * Makes sense for trampolines with fexit or fmod_ret programs. 1060 */ 1061#define BPF_TRAMP_F_ORIG_STACK BIT(5) 1062 1063/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1064 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1065 */ 1066#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1067 1068/* Indicate that current trampoline is in a tail call context. Then, it has to 1069 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1070 */ 1071#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1072 1073/* 1074 * Indicate the trampoline should be suitable to receive indirect calls; 1075 * without this indirectly calling the generated code can result in #UD/#CP, 1076 * depending on the CFI options. 1077 * 1078 * Used by bpf_struct_ops. 1079 * 1080 * Incompatible with FENTRY usage, overloads @func_addr argument. 1081 */ 1082#define BPF_TRAMP_F_INDIRECT BIT(8) 1083 1084/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1085 * bytes on x86. 1086 */ 1087enum { 1088#if defined(__s390x__) 1089 BPF_MAX_TRAMP_LINKS = 27, 1090#else 1091 BPF_MAX_TRAMP_LINKS = 38, 1092#endif 1093}; 1094 1095struct bpf_tramp_links { 1096 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1097 int nr_links; 1098}; 1099 1100struct bpf_tramp_run_ctx; 1101 1102/* Different use cases for BPF trampoline: 1103 * 1. replace nop at the function entry (kprobe equivalent) 1104 * flags = BPF_TRAMP_F_RESTORE_REGS 1105 * fentry = a set of programs to run before returning from trampoline 1106 * 1107 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1108 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1109 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1110 * fentry = a set of program to run before calling original function 1111 * fexit = a set of program to run after original function 1112 * 1113 * 3. replace direct call instruction anywhere in the function body 1114 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1115 * With flags = 0 1116 * fentry = a set of programs to run before returning from trampoline 1117 * With flags = BPF_TRAMP_F_CALL_ORIG 1118 * orig_call = original callback addr or direct function addr 1119 * fentry = a set of program to run before calling original function 1120 * fexit = a set of program to run after original function 1121 */ 1122struct bpf_tramp_image; 1123int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1124 const struct btf_func_model *m, u32 flags, 1125 struct bpf_tramp_links *tlinks, 1126 void *func_addr); 1127void *arch_alloc_bpf_trampoline(unsigned int size); 1128void arch_free_bpf_trampoline(void *image, unsigned int size); 1129int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1130int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1131 struct bpf_tramp_links *tlinks, void *func_addr); 1132 1133u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1134 struct bpf_tramp_run_ctx *run_ctx); 1135void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1136 struct bpf_tramp_run_ctx *run_ctx); 1137void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1138void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1139typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1140 struct bpf_tramp_run_ctx *run_ctx); 1141typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1142 struct bpf_tramp_run_ctx *run_ctx); 1143bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1144bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1145 1146struct bpf_ksym { 1147 unsigned long start; 1148 unsigned long end; 1149 char name[KSYM_NAME_LEN]; 1150 struct list_head lnode; 1151 struct latch_tree_node tnode; 1152 bool prog; 1153}; 1154 1155enum bpf_tramp_prog_type { 1156 BPF_TRAMP_FENTRY, 1157 BPF_TRAMP_FEXIT, 1158 BPF_TRAMP_MODIFY_RETURN, 1159 BPF_TRAMP_MAX, 1160 BPF_TRAMP_REPLACE, /* more than MAX */ 1161}; 1162 1163struct bpf_tramp_image { 1164 void *image; 1165 int size; 1166 struct bpf_ksym ksym; 1167 struct percpu_ref pcref; 1168 void *ip_after_call; 1169 void *ip_epilogue; 1170 union { 1171 struct rcu_head rcu; 1172 struct work_struct work; 1173 }; 1174}; 1175 1176struct bpf_trampoline { 1177 /* hlist for trampoline_table */ 1178 struct hlist_node hlist; 1179 struct ftrace_ops *fops; 1180 /* serializes access to fields of this trampoline */ 1181 struct mutex mutex; 1182 refcount_t refcnt; 1183 u32 flags; 1184 u64 key; 1185 struct { 1186 struct btf_func_model model; 1187 void *addr; 1188 bool ftrace_managed; 1189 } func; 1190 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1191 * program by replacing one of its functions. func.addr is the address 1192 * of the function it replaced. 1193 */ 1194 struct bpf_prog *extension_prog; 1195 /* list of BPF programs using this trampoline */ 1196 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1197 /* Number of attached programs. A counter per kind. */ 1198 int progs_cnt[BPF_TRAMP_MAX]; 1199 /* Executable image of trampoline */ 1200 struct bpf_tramp_image *cur_image; 1201}; 1202 1203struct bpf_attach_target_info { 1204 struct btf_func_model fmodel; 1205 long tgt_addr; 1206 struct module *tgt_mod; 1207 const char *tgt_name; 1208 const struct btf_type *tgt_type; 1209}; 1210 1211#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1212 1213struct bpf_dispatcher_prog { 1214 struct bpf_prog *prog; 1215 refcount_t users; 1216}; 1217 1218struct bpf_dispatcher { 1219 /* dispatcher mutex */ 1220 struct mutex mutex; 1221 void *func; 1222 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1223 int num_progs; 1224 void *image; 1225 void *rw_image; 1226 u32 image_off; 1227 struct bpf_ksym ksym; 1228#ifdef CONFIG_HAVE_STATIC_CALL 1229 struct static_call_key *sc_key; 1230 void *sc_tramp; 1231#endif 1232}; 1233 1234#ifndef __bpfcall 1235#define __bpfcall __nocfi 1236#endif 1237 1238static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1239 const void *ctx, 1240 const struct bpf_insn *insnsi, 1241 bpf_func_t bpf_func) 1242{ 1243 return bpf_func(ctx, insnsi); 1244} 1245 1246/* the implementation of the opaque uapi struct bpf_dynptr */ 1247struct bpf_dynptr_kern { 1248 void *data; 1249 /* Size represents the number of usable bytes of dynptr data. 1250 * If for example the offset is at 4 for a local dynptr whose data is 1251 * of type u64, the number of usable bytes is 4. 1252 * 1253 * The upper 8 bits are reserved. It is as follows: 1254 * Bits 0 - 23 = size 1255 * Bits 24 - 30 = dynptr type 1256 * Bit 31 = whether dynptr is read-only 1257 */ 1258 u32 size; 1259 u32 offset; 1260} __aligned(8); 1261 1262enum bpf_dynptr_type { 1263 BPF_DYNPTR_TYPE_INVALID, 1264 /* Points to memory that is local to the bpf program */ 1265 BPF_DYNPTR_TYPE_LOCAL, 1266 /* Underlying data is a ringbuf record */ 1267 BPF_DYNPTR_TYPE_RINGBUF, 1268 /* Underlying data is a sk_buff */ 1269 BPF_DYNPTR_TYPE_SKB, 1270 /* Underlying data is a xdp_buff */ 1271 BPF_DYNPTR_TYPE_XDP, 1272}; 1273 1274int bpf_dynptr_check_size(u32 size); 1275u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1276const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1277void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1278bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1279 1280#ifdef CONFIG_BPF_JIT 1281int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1282int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1283struct bpf_trampoline *bpf_trampoline_get(u64 key, 1284 struct bpf_attach_target_info *tgt_info); 1285void bpf_trampoline_put(struct bpf_trampoline *tr); 1286int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1287 1288/* 1289 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1290 * indirection with a direct call to the bpf program. If the architecture does 1291 * not have STATIC_CALL, avoid a double-indirection. 1292 */ 1293#ifdef CONFIG_HAVE_STATIC_CALL 1294 1295#define __BPF_DISPATCHER_SC_INIT(_name) \ 1296 .sc_key = &STATIC_CALL_KEY(_name), \ 1297 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1298 1299#define __BPF_DISPATCHER_SC(name) \ 1300 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1301 1302#define __BPF_DISPATCHER_CALL(name) \ 1303 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1304 1305#define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1306 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1307 1308#else 1309#define __BPF_DISPATCHER_SC_INIT(name) 1310#define __BPF_DISPATCHER_SC(name) 1311#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1312#define __BPF_DISPATCHER_UPDATE(_d, _new) 1313#endif 1314 1315#define BPF_DISPATCHER_INIT(_name) { \ 1316 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1317 .func = &_name##_func, \ 1318 .progs = {}, \ 1319 .num_progs = 0, \ 1320 .image = NULL, \ 1321 .image_off = 0, \ 1322 .ksym = { \ 1323 .name = #_name, \ 1324 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1325 }, \ 1326 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1327} 1328 1329#define DEFINE_BPF_DISPATCHER(name) \ 1330 __BPF_DISPATCHER_SC(name); \ 1331 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1332 const void *ctx, \ 1333 const struct bpf_insn *insnsi, \ 1334 bpf_func_t bpf_func) \ 1335 { \ 1336 return __BPF_DISPATCHER_CALL(name); \ 1337 } \ 1338 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1339 struct bpf_dispatcher bpf_dispatcher_##name = \ 1340 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1341 1342#define DECLARE_BPF_DISPATCHER(name) \ 1343 unsigned int bpf_dispatcher_##name##_func( \ 1344 const void *ctx, \ 1345 const struct bpf_insn *insnsi, \ 1346 bpf_func_t bpf_func); \ 1347 extern struct bpf_dispatcher bpf_dispatcher_##name; 1348 1349#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1350#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1351void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1352 struct bpf_prog *to); 1353/* Called only from JIT-enabled code, so there's no need for stubs. */ 1354void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1355void bpf_image_ksym_del(struct bpf_ksym *ksym); 1356void bpf_ksym_add(struct bpf_ksym *ksym); 1357void bpf_ksym_del(struct bpf_ksym *ksym); 1358int bpf_jit_charge_modmem(u32 size); 1359void bpf_jit_uncharge_modmem(u32 size); 1360bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1361#else 1362static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1363 struct bpf_trampoline *tr) 1364{ 1365 return -ENOTSUPP; 1366} 1367static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1368 struct bpf_trampoline *tr) 1369{ 1370 return -ENOTSUPP; 1371} 1372static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1373 struct bpf_attach_target_info *tgt_info) 1374{ 1375 return NULL; 1376} 1377static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1378#define DEFINE_BPF_DISPATCHER(name) 1379#define DECLARE_BPF_DISPATCHER(name) 1380#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1381#define BPF_DISPATCHER_PTR(name) NULL 1382static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1383 struct bpf_prog *from, 1384 struct bpf_prog *to) {} 1385static inline bool is_bpf_image_address(unsigned long address) 1386{ 1387 return false; 1388} 1389static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1390{ 1391 return false; 1392} 1393#endif 1394 1395struct bpf_func_info_aux { 1396 u16 linkage; 1397 bool unreliable; 1398 bool called : 1; 1399 bool verified : 1; 1400}; 1401 1402enum bpf_jit_poke_reason { 1403 BPF_POKE_REASON_TAIL_CALL, 1404}; 1405 1406/* Descriptor of pokes pointing /into/ the JITed image. */ 1407struct bpf_jit_poke_descriptor { 1408 void *tailcall_target; 1409 void *tailcall_bypass; 1410 void *bypass_addr; 1411 void *aux; 1412 union { 1413 struct { 1414 struct bpf_map *map; 1415 u32 key; 1416 } tail_call; 1417 }; 1418 bool tailcall_target_stable; 1419 u8 adj_off; 1420 u16 reason; 1421 u32 insn_idx; 1422}; 1423 1424/* reg_type info for ctx arguments */ 1425struct bpf_ctx_arg_aux { 1426 u32 offset; 1427 enum bpf_reg_type reg_type; 1428 struct btf *btf; 1429 u32 btf_id; 1430}; 1431 1432struct btf_mod_pair { 1433 struct btf *btf; 1434 struct module *module; 1435}; 1436 1437struct bpf_kfunc_desc_tab; 1438 1439struct bpf_prog_aux { 1440 atomic64_t refcnt; 1441 u32 used_map_cnt; 1442 u32 used_btf_cnt; 1443 u32 max_ctx_offset; 1444 u32 max_pkt_offset; 1445 u32 max_tp_access; 1446 u32 stack_depth; 1447 u32 id; 1448 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1449 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1450 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1451 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1452 u32 ctx_arg_info_size; 1453 u32 max_rdonly_access; 1454 u32 max_rdwr_access; 1455 struct btf *attach_btf; 1456 const struct bpf_ctx_arg_aux *ctx_arg_info; 1457 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1458 struct bpf_prog *dst_prog; 1459 struct bpf_trampoline *dst_trampoline; 1460 enum bpf_prog_type saved_dst_prog_type; 1461 enum bpf_attach_type saved_dst_attach_type; 1462 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1463 bool dev_bound; /* Program is bound to the netdev. */ 1464 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1465 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1466 bool attach_tracing_prog; /* true if tracing another tracing program */ 1467 bool func_proto_unreliable; 1468 bool tail_call_reachable; 1469 bool xdp_has_frags; 1470 bool exception_cb; 1471 bool exception_boundary; 1472 struct bpf_arena *arena; 1473 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1474 const struct btf_type *attach_func_proto; 1475 /* function name for valid attach_btf_id */ 1476 const char *attach_func_name; 1477 struct bpf_prog **func; 1478 void *jit_data; /* JIT specific data. arch dependent */ 1479 struct bpf_jit_poke_descriptor *poke_tab; 1480 struct bpf_kfunc_desc_tab *kfunc_tab; 1481 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1482 u32 size_poke_tab; 1483#ifdef CONFIG_FINEIBT 1484 struct bpf_ksym ksym_prefix; 1485#endif 1486 struct bpf_ksym ksym; 1487 const struct bpf_prog_ops *ops; 1488 struct bpf_map **used_maps; 1489 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1490 struct btf_mod_pair *used_btfs; 1491 struct bpf_prog *prog; 1492 struct user_struct *user; 1493 u64 load_time; /* ns since boottime */ 1494 u32 verified_insns; 1495 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1496 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1497 char name[BPF_OBJ_NAME_LEN]; 1498 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1499#ifdef CONFIG_SECURITY 1500 void *security; 1501#endif 1502 struct bpf_token *token; 1503 struct bpf_prog_offload *offload; 1504 struct btf *btf; 1505 struct bpf_func_info *func_info; 1506 struct bpf_func_info_aux *func_info_aux; 1507 /* bpf_line_info loaded from userspace. linfo->insn_off 1508 * has the xlated insn offset. 1509 * Both the main and sub prog share the same linfo. 1510 * The subprog can access its first linfo by 1511 * using the linfo_idx. 1512 */ 1513 struct bpf_line_info *linfo; 1514 /* jited_linfo is the jited addr of the linfo. It has a 1515 * one to one mapping to linfo: 1516 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1517 * Both the main and sub prog share the same jited_linfo. 1518 * The subprog can access its first jited_linfo by 1519 * using the linfo_idx. 1520 */ 1521 void **jited_linfo; 1522 u32 func_info_cnt; 1523 u32 nr_linfo; 1524 /* subprog can use linfo_idx to access its first linfo and 1525 * jited_linfo. 1526 * main prog always has linfo_idx == 0 1527 */ 1528 u32 linfo_idx; 1529 struct module *mod; 1530 u32 num_exentries; 1531 struct exception_table_entry *extable; 1532 union { 1533 struct work_struct work; 1534 struct rcu_head rcu; 1535 }; 1536}; 1537 1538struct bpf_prog { 1539 u16 pages; /* Number of allocated pages */ 1540 u16 jited:1, /* Is our filter JIT'ed? */ 1541 jit_requested:1,/* archs need to JIT the prog */ 1542 gpl_compatible:1, /* Is filter GPL compatible? */ 1543 cb_access:1, /* Is control block accessed? */ 1544 dst_needed:1, /* Do we need dst entry? */ 1545 blinding_requested:1, /* needs constant blinding */ 1546 blinded:1, /* Was blinded */ 1547 is_func:1, /* program is a bpf function */ 1548 kprobe_override:1, /* Do we override a kprobe? */ 1549 has_callchain_buf:1, /* callchain buffer allocated? */ 1550 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1551 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1552 call_get_func_ip:1, /* Do we call get_func_ip() */ 1553 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1554 sleepable:1; /* BPF program is sleepable */ 1555 enum bpf_prog_type type; /* Type of BPF program */ 1556 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1557 u32 len; /* Number of filter blocks */ 1558 u32 jited_len; /* Size of jited insns in bytes */ 1559 u8 tag[BPF_TAG_SIZE]; 1560 struct bpf_prog_stats __percpu *stats; 1561 int __percpu *active; 1562 unsigned int (*bpf_func)(const void *ctx, 1563 const struct bpf_insn *insn); 1564 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1565 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1566 /* Instructions for interpreter */ 1567 union { 1568 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1569 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1570 }; 1571}; 1572 1573struct bpf_array_aux { 1574 /* Programs with direct jumps into programs part of this array. */ 1575 struct list_head poke_progs; 1576 struct bpf_map *map; 1577 struct mutex poke_mutex; 1578 struct work_struct work; 1579}; 1580 1581struct bpf_link { 1582 atomic64_t refcnt; 1583 u32 id; 1584 enum bpf_link_type type; 1585 const struct bpf_link_ops *ops; 1586 struct bpf_prog *prog; 1587 /* rcu is used before freeing, work can be used to schedule that 1588 * RCU-based freeing before that, so they never overlap 1589 */ 1590 union { 1591 struct rcu_head rcu; 1592 struct work_struct work; 1593 }; 1594}; 1595 1596struct bpf_link_ops { 1597 void (*release)(struct bpf_link *link); 1598 /* deallocate link resources callback, called without RCU grace period 1599 * waiting 1600 */ 1601 void (*dealloc)(struct bpf_link *link); 1602 /* deallocate link resources callback, called after RCU grace period; 1603 * if underlying BPF program is sleepable we go through tasks trace 1604 * RCU GP and then "classic" RCU GP 1605 */ 1606 void (*dealloc_deferred)(struct bpf_link *link); 1607 int (*detach)(struct bpf_link *link); 1608 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1609 struct bpf_prog *old_prog); 1610 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1611 int (*fill_link_info)(const struct bpf_link *link, 1612 struct bpf_link_info *info); 1613 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1614 struct bpf_map *old_map); 1615}; 1616 1617struct bpf_tramp_link { 1618 struct bpf_link link; 1619 struct hlist_node tramp_hlist; 1620 u64 cookie; 1621}; 1622 1623struct bpf_shim_tramp_link { 1624 struct bpf_tramp_link link; 1625 struct bpf_trampoline *trampoline; 1626}; 1627 1628struct bpf_tracing_link { 1629 struct bpf_tramp_link link; 1630 enum bpf_attach_type attach_type; 1631 struct bpf_trampoline *trampoline; 1632 struct bpf_prog *tgt_prog; 1633}; 1634 1635struct bpf_raw_tp_link { 1636 struct bpf_link link; 1637 struct bpf_raw_event_map *btp; 1638 u64 cookie; 1639}; 1640 1641struct bpf_link_primer { 1642 struct bpf_link *link; 1643 struct file *file; 1644 int fd; 1645 u32 id; 1646}; 1647 1648struct bpf_mount_opts { 1649 kuid_t uid; 1650 kgid_t gid; 1651 umode_t mode; 1652 1653 /* BPF token-related delegation options */ 1654 u64 delegate_cmds; 1655 u64 delegate_maps; 1656 u64 delegate_progs; 1657 u64 delegate_attachs; 1658}; 1659 1660struct bpf_token { 1661 struct work_struct work; 1662 atomic64_t refcnt; 1663 struct user_namespace *userns; 1664 u64 allowed_cmds; 1665 u64 allowed_maps; 1666 u64 allowed_progs; 1667 u64 allowed_attachs; 1668#ifdef CONFIG_SECURITY 1669 void *security; 1670#endif 1671}; 1672 1673struct bpf_struct_ops_value; 1674struct btf_member; 1675 1676#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1677/** 1678 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1679 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1680 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1681 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1682 * when determining whether the struct_ops progs in the 1683 * struct_ops map are valid. 1684 * @init: A callback that is invoked a single time, and before any other 1685 * callback, to initialize the structure. A nonzero return value means 1686 * the subsystem could not be initialized. 1687 * @check_member: When defined, a callback invoked by the verifier to allow 1688 * the subsystem to determine if an entry in the struct_ops map 1689 * is valid. A nonzero return value means that the map is 1690 * invalid and should be rejected by the verifier. 1691 * @init_member: A callback that is invoked for each member of the struct_ops 1692 * map to allow the subsystem to initialize the member. A nonzero 1693 * value means the member could not be initialized. This callback 1694 * is exclusive with the @type, @type_id, @value_type, and 1695 * @value_id fields. 1696 * @reg: A callback that is invoked when the struct_ops map has been 1697 * initialized and is being attached to. Zero means the struct_ops map 1698 * has been successfully registered and is live. A nonzero return value 1699 * means the struct_ops map could not be registered. 1700 * @unreg: A callback that is invoked when the struct_ops map should be 1701 * unregistered. 1702 * @update: A callback that is invoked when the live struct_ops map is being 1703 * updated to contain new values. This callback is only invoked when 1704 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1705 * it is assumed that the struct_ops map cannot be updated. 1706 * @validate: A callback that is invoked after all of the members have been 1707 * initialized. This callback should perform static checks on the 1708 * map, meaning that it should either fail or succeed 1709 * deterministically. A struct_ops map that has been validated may 1710 * not necessarily succeed in being registered if the call to @reg 1711 * fails. For example, a valid struct_ops map may be loaded, but 1712 * then fail to be registered due to there being another active 1713 * struct_ops map on the system in the subsystem already. For this 1714 * reason, if this callback is not defined, the check is skipped as 1715 * the struct_ops map will have final verification performed in 1716 * @reg. 1717 * @type: BTF type. 1718 * @value_type: Value type. 1719 * @name: The name of the struct bpf_struct_ops object. 1720 * @func_models: Func models 1721 * @type_id: BTF type id. 1722 * @value_id: BTF value id. 1723 */ 1724struct bpf_struct_ops { 1725 const struct bpf_verifier_ops *verifier_ops; 1726 int (*init)(struct btf *btf); 1727 int (*check_member)(const struct btf_type *t, 1728 const struct btf_member *member, 1729 const struct bpf_prog *prog); 1730 int (*init_member)(const struct btf_type *t, 1731 const struct btf_member *member, 1732 void *kdata, const void *udata); 1733 int (*reg)(void *kdata); 1734 void (*unreg)(void *kdata); 1735 int (*update)(void *kdata, void *old_kdata); 1736 int (*validate)(void *kdata); 1737 void *cfi_stubs; 1738 struct module *owner; 1739 const char *name; 1740 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1741}; 1742 1743/* Every member of a struct_ops type has an instance even a member is not 1744 * an operator (function pointer). The "info" field will be assigned to 1745 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1746 * argument information required by the verifier to verify the program. 1747 * 1748 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1749 * corresponding entry for an given argument. 1750 */ 1751struct bpf_struct_ops_arg_info { 1752 struct bpf_ctx_arg_aux *info; 1753 u32 cnt; 1754}; 1755 1756struct bpf_struct_ops_desc { 1757 struct bpf_struct_ops *st_ops; 1758 1759 const struct btf_type *type; 1760 const struct btf_type *value_type; 1761 u32 type_id; 1762 u32 value_id; 1763 1764 /* Collection of argument information for each member */ 1765 struct bpf_struct_ops_arg_info *arg_info; 1766}; 1767 1768enum bpf_struct_ops_state { 1769 BPF_STRUCT_OPS_STATE_INIT, 1770 BPF_STRUCT_OPS_STATE_INUSE, 1771 BPF_STRUCT_OPS_STATE_TOBEFREE, 1772 BPF_STRUCT_OPS_STATE_READY, 1773}; 1774 1775struct bpf_struct_ops_common_value { 1776 refcount_t refcnt; 1777 enum bpf_struct_ops_state state; 1778}; 1779 1780#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1781/* This macro helps developer to register a struct_ops type and generate 1782 * type information correctly. Developers should use this macro to register 1783 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1784 */ 1785#define register_bpf_struct_ops(st_ops, type) \ 1786 ({ \ 1787 struct bpf_struct_ops_##type { \ 1788 struct bpf_struct_ops_common_value common; \ 1789 struct type data ____cacheline_aligned_in_smp; \ 1790 }; \ 1791 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1792 __register_bpf_struct_ops(st_ops); \ 1793 }) 1794#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1795bool bpf_struct_ops_get(const void *kdata); 1796void bpf_struct_ops_put(const void *kdata); 1797int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1798 void *value); 1799int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1800 struct bpf_tramp_link *link, 1801 const struct btf_func_model *model, 1802 void *stub_func, 1803 void **image, u32 *image_off, 1804 bool allow_alloc); 1805void bpf_struct_ops_image_free(void *image); 1806static inline bool bpf_try_module_get(const void *data, struct module *owner) 1807{ 1808 if (owner == BPF_MODULE_OWNER) 1809 return bpf_struct_ops_get(data); 1810 else 1811 return try_module_get(owner); 1812} 1813static inline void bpf_module_put(const void *data, struct module *owner) 1814{ 1815 if (owner == BPF_MODULE_OWNER) 1816 bpf_struct_ops_put(data); 1817 else 1818 module_put(owner); 1819} 1820int bpf_struct_ops_link_create(union bpf_attr *attr); 1821 1822#ifdef CONFIG_NET 1823/* Define it here to avoid the use of forward declaration */ 1824struct bpf_dummy_ops_state { 1825 int val; 1826}; 1827 1828struct bpf_dummy_ops { 1829 int (*test_1)(struct bpf_dummy_ops_state *cb); 1830 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1831 char a3, unsigned long a4); 1832 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1833}; 1834 1835int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1836 union bpf_attr __user *uattr); 1837#endif 1838int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1839 struct btf *btf, 1840 struct bpf_verifier_log *log); 1841void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1842void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1843#else 1844#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1845static inline bool bpf_try_module_get(const void *data, struct module *owner) 1846{ 1847 return try_module_get(owner); 1848} 1849static inline void bpf_module_put(const void *data, struct module *owner) 1850{ 1851 module_put(owner); 1852} 1853static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1854 void *key, 1855 void *value) 1856{ 1857 return -EINVAL; 1858} 1859static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1860{ 1861 return -EOPNOTSUPP; 1862} 1863static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1864{ 1865} 1866 1867static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1868{ 1869} 1870 1871#endif 1872 1873#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1874int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1875 int cgroup_atype); 1876void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1877#else 1878static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1879 int cgroup_atype) 1880{ 1881 return -EOPNOTSUPP; 1882} 1883static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1884{ 1885} 1886#endif 1887 1888struct bpf_array { 1889 struct bpf_map map; 1890 u32 elem_size; 1891 u32 index_mask; 1892 struct bpf_array_aux *aux; 1893 union { 1894 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1895 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1896 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1897 }; 1898}; 1899 1900#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1901#define MAX_TAIL_CALL_CNT 33 1902 1903/* Maximum number of loops for bpf_loop and bpf_iter_num. 1904 * It's enum to expose it (and thus make it discoverable) through BTF. 1905 */ 1906enum { 1907 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1908}; 1909 1910#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1911 BPF_F_RDONLY_PROG | \ 1912 BPF_F_WRONLY | \ 1913 BPF_F_WRONLY_PROG) 1914 1915#define BPF_MAP_CAN_READ BIT(0) 1916#define BPF_MAP_CAN_WRITE BIT(1) 1917 1918/* Maximum number of user-producer ring buffer samples that can be drained in 1919 * a call to bpf_user_ringbuf_drain(). 1920 */ 1921#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1922 1923static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1924{ 1925 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1926 1927 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1928 * not possible. 1929 */ 1930 if (access_flags & BPF_F_RDONLY_PROG) 1931 return BPF_MAP_CAN_READ; 1932 else if (access_flags & BPF_F_WRONLY_PROG) 1933 return BPF_MAP_CAN_WRITE; 1934 else 1935 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1936} 1937 1938static inline bool bpf_map_flags_access_ok(u32 access_flags) 1939{ 1940 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1941 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1942} 1943 1944struct bpf_event_entry { 1945 struct perf_event *event; 1946 struct file *perf_file; 1947 struct file *map_file; 1948 struct rcu_head rcu; 1949}; 1950 1951static inline bool map_type_contains_progs(struct bpf_map *map) 1952{ 1953 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1954 map->map_type == BPF_MAP_TYPE_DEVMAP || 1955 map->map_type == BPF_MAP_TYPE_CPUMAP; 1956} 1957 1958bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1959int bpf_prog_calc_tag(struct bpf_prog *fp); 1960 1961const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1962const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1963 1964typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1965 unsigned long off, unsigned long len); 1966typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1967 const struct bpf_insn *src, 1968 struct bpf_insn *dst, 1969 struct bpf_prog *prog, 1970 u32 *target_size); 1971 1972u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1973 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1974 1975/* an array of programs to be executed under rcu_lock. 1976 * 1977 * Typical usage: 1978 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1979 * 1980 * the structure returned by bpf_prog_array_alloc() should be populated 1981 * with program pointers and the last pointer must be NULL. 1982 * The user has to keep refcnt on the program and make sure the program 1983 * is removed from the array before bpf_prog_put(). 1984 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1985 * since other cpus are walking the array of pointers in parallel. 1986 */ 1987struct bpf_prog_array_item { 1988 struct bpf_prog *prog; 1989 union { 1990 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1991 u64 bpf_cookie; 1992 }; 1993}; 1994 1995struct bpf_prog_array { 1996 struct rcu_head rcu; 1997 struct bpf_prog_array_item items[]; 1998}; 1999 2000struct bpf_empty_prog_array { 2001 struct bpf_prog_array hdr; 2002 struct bpf_prog *null_prog; 2003}; 2004 2005/* to avoid allocating empty bpf_prog_array for cgroups that 2006 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2007 * It will not be modified the caller of bpf_prog_array_alloc() 2008 * (since caller requested prog_cnt == 0) 2009 * that pointer should be 'freed' by bpf_prog_array_free() 2010 */ 2011extern struct bpf_empty_prog_array bpf_empty_prog_array; 2012 2013struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2014void bpf_prog_array_free(struct bpf_prog_array *progs); 2015/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2016void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2017int bpf_prog_array_length(struct bpf_prog_array *progs); 2018bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2019int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2020 __u32 __user *prog_ids, u32 cnt); 2021 2022void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2023 struct bpf_prog *old_prog); 2024int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2025int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2026 struct bpf_prog *prog); 2027int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2028 u32 *prog_ids, u32 request_cnt, 2029 u32 *prog_cnt); 2030int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2031 struct bpf_prog *exclude_prog, 2032 struct bpf_prog *include_prog, 2033 u64 bpf_cookie, 2034 struct bpf_prog_array **new_array); 2035 2036struct bpf_run_ctx {}; 2037 2038struct bpf_cg_run_ctx { 2039 struct bpf_run_ctx run_ctx; 2040 const struct bpf_prog_array_item *prog_item; 2041 int retval; 2042}; 2043 2044struct bpf_trace_run_ctx { 2045 struct bpf_run_ctx run_ctx; 2046 u64 bpf_cookie; 2047 bool is_uprobe; 2048}; 2049 2050struct bpf_tramp_run_ctx { 2051 struct bpf_run_ctx run_ctx; 2052 u64 bpf_cookie; 2053 struct bpf_run_ctx *saved_run_ctx; 2054}; 2055 2056static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2057{ 2058 struct bpf_run_ctx *old_ctx = NULL; 2059 2060#ifdef CONFIG_BPF_SYSCALL 2061 old_ctx = current->bpf_ctx; 2062 current->bpf_ctx = new_ctx; 2063#endif 2064 return old_ctx; 2065} 2066 2067static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2068{ 2069#ifdef CONFIG_BPF_SYSCALL 2070 current->bpf_ctx = old_ctx; 2071#endif 2072} 2073 2074/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2075#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2076/* BPF program asks to set CN on the packet. */ 2077#define BPF_RET_SET_CN (1 << 0) 2078 2079typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2080 2081static __always_inline u32 2082bpf_prog_run_array(const struct bpf_prog_array *array, 2083 const void *ctx, bpf_prog_run_fn run_prog) 2084{ 2085 const struct bpf_prog_array_item *item; 2086 const struct bpf_prog *prog; 2087 struct bpf_run_ctx *old_run_ctx; 2088 struct bpf_trace_run_ctx run_ctx; 2089 u32 ret = 1; 2090 2091 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2092 2093 if (unlikely(!array)) 2094 return ret; 2095 2096 run_ctx.is_uprobe = false; 2097 2098 migrate_disable(); 2099 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2100 item = &array->items[0]; 2101 while ((prog = READ_ONCE(item->prog))) { 2102 run_ctx.bpf_cookie = item->bpf_cookie; 2103 ret &= run_prog(prog, ctx); 2104 item++; 2105 } 2106 bpf_reset_run_ctx(old_run_ctx); 2107 migrate_enable(); 2108 return ret; 2109} 2110 2111/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2112 * 2113 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2114 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2115 * in order to use the tasks_trace rcu grace period. 2116 * 2117 * When a non-sleepable program is inside the array, we take the rcu read 2118 * section and disable preemption for that program alone, so it can access 2119 * rcu-protected dynamically sized maps. 2120 */ 2121static __always_inline u32 2122bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2123 const void *ctx, bpf_prog_run_fn run_prog) 2124{ 2125 const struct bpf_prog_array_item *item; 2126 const struct bpf_prog *prog; 2127 const struct bpf_prog_array *array; 2128 struct bpf_run_ctx *old_run_ctx; 2129 struct bpf_trace_run_ctx run_ctx; 2130 u32 ret = 1; 2131 2132 might_fault(); 2133 2134 rcu_read_lock_trace(); 2135 migrate_disable(); 2136 2137 run_ctx.is_uprobe = true; 2138 2139 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2140 if (unlikely(!array)) 2141 goto out; 2142 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2143 item = &array->items[0]; 2144 while ((prog = READ_ONCE(item->prog))) { 2145 if (!prog->sleepable) 2146 rcu_read_lock(); 2147 2148 run_ctx.bpf_cookie = item->bpf_cookie; 2149 ret &= run_prog(prog, ctx); 2150 item++; 2151 2152 if (!prog->sleepable) 2153 rcu_read_unlock(); 2154 } 2155 bpf_reset_run_ctx(old_run_ctx); 2156out: 2157 migrate_enable(); 2158 rcu_read_unlock_trace(); 2159 return ret; 2160} 2161 2162#ifdef CONFIG_BPF_SYSCALL 2163DECLARE_PER_CPU(int, bpf_prog_active); 2164extern struct mutex bpf_stats_enabled_mutex; 2165 2166/* 2167 * Block execution of BPF programs attached to instrumentation (perf, 2168 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2169 * these events can happen inside a region which holds a map bucket lock 2170 * and can deadlock on it. 2171 */ 2172static inline void bpf_disable_instrumentation(void) 2173{ 2174 migrate_disable(); 2175 this_cpu_inc(bpf_prog_active); 2176} 2177 2178static inline void bpf_enable_instrumentation(void) 2179{ 2180 this_cpu_dec(bpf_prog_active); 2181 migrate_enable(); 2182} 2183 2184extern const struct super_operations bpf_super_ops; 2185extern const struct file_operations bpf_map_fops; 2186extern const struct file_operations bpf_prog_fops; 2187extern const struct file_operations bpf_iter_fops; 2188 2189#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2190 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2191 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2192#define BPF_MAP_TYPE(_id, _ops) \ 2193 extern const struct bpf_map_ops _ops; 2194#define BPF_LINK_TYPE(_id, _name) 2195#include <linux/bpf_types.h> 2196#undef BPF_PROG_TYPE 2197#undef BPF_MAP_TYPE 2198#undef BPF_LINK_TYPE 2199 2200extern const struct bpf_prog_ops bpf_offload_prog_ops; 2201extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2202extern const struct bpf_verifier_ops xdp_analyzer_ops; 2203 2204struct bpf_prog *bpf_prog_get(u32 ufd); 2205struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2206 bool attach_drv); 2207void bpf_prog_add(struct bpf_prog *prog, int i); 2208void bpf_prog_sub(struct bpf_prog *prog, int i); 2209void bpf_prog_inc(struct bpf_prog *prog); 2210struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2211void bpf_prog_put(struct bpf_prog *prog); 2212 2213void bpf_prog_free_id(struct bpf_prog *prog); 2214void bpf_map_free_id(struct bpf_map *map); 2215 2216struct btf_field *btf_record_find(const struct btf_record *rec, 2217 u32 offset, u32 field_mask); 2218void btf_record_free(struct btf_record *rec); 2219void bpf_map_free_record(struct bpf_map *map); 2220struct btf_record *btf_record_dup(const struct btf_record *rec); 2221bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2222void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2223void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2224void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2225void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2226 2227struct bpf_map *bpf_map_get(u32 ufd); 2228struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2229struct bpf_map *__bpf_map_get(struct fd f); 2230void bpf_map_inc(struct bpf_map *map); 2231void bpf_map_inc_with_uref(struct bpf_map *map); 2232struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2233struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2234void bpf_map_put_with_uref(struct bpf_map *map); 2235void bpf_map_put(struct bpf_map *map); 2236void *bpf_map_area_alloc(u64 size, int numa_node); 2237void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2238void bpf_map_area_free(void *base); 2239bool bpf_map_write_active(const struct bpf_map *map); 2240void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2241int generic_map_lookup_batch(struct bpf_map *map, 2242 const union bpf_attr *attr, 2243 union bpf_attr __user *uattr); 2244int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2245 const union bpf_attr *attr, 2246 union bpf_attr __user *uattr); 2247int generic_map_delete_batch(struct bpf_map *map, 2248 const union bpf_attr *attr, 2249 union bpf_attr __user *uattr); 2250struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2251struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2252 2253int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2254 unsigned long nr_pages, struct page **page_array); 2255#ifdef CONFIG_MEMCG_KMEM 2256void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2257 int node); 2258void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2259void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2260 gfp_t flags); 2261void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2262 size_t align, gfp_t flags); 2263#else 2264#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2265 kmalloc_node(_size, _flags, _node) 2266#define bpf_map_kzalloc(_map, _size, _flags) \ 2267 kzalloc(_size, _flags) 2268#define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2269 kvcalloc(_n, _size, _flags) 2270#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2271 __alloc_percpu_gfp(_size, _align, _flags) 2272#endif 2273 2274static inline int 2275bpf_map_init_elem_count(struct bpf_map *map) 2276{ 2277 size_t size = sizeof(*map->elem_count), align = size; 2278 gfp_t flags = GFP_USER | __GFP_NOWARN; 2279 2280 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2281 if (!map->elem_count) 2282 return -ENOMEM; 2283 2284 return 0; 2285} 2286 2287static inline void 2288bpf_map_free_elem_count(struct bpf_map *map) 2289{ 2290 free_percpu(map->elem_count); 2291} 2292 2293static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2294{ 2295 this_cpu_inc(*map->elem_count); 2296} 2297 2298static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2299{ 2300 this_cpu_dec(*map->elem_count); 2301} 2302 2303extern int sysctl_unprivileged_bpf_disabled; 2304 2305bool bpf_token_capable(const struct bpf_token *token, int cap); 2306 2307static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2308{ 2309 return bpf_token_capable(token, CAP_PERFMON); 2310} 2311 2312static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2313{ 2314 return bpf_token_capable(token, CAP_PERFMON); 2315} 2316 2317static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2318{ 2319 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2320} 2321 2322static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2323{ 2324 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2325} 2326 2327int bpf_map_new_fd(struct bpf_map *map, int flags); 2328int bpf_prog_new_fd(struct bpf_prog *prog); 2329 2330void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2331 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2332int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2333int bpf_link_settle(struct bpf_link_primer *primer); 2334void bpf_link_cleanup(struct bpf_link_primer *primer); 2335void bpf_link_inc(struct bpf_link *link); 2336void bpf_link_put(struct bpf_link *link); 2337int bpf_link_new_fd(struct bpf_link *link); 2338struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2339struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2340 2341void bpf_token_inc(struct bpf_token *token); 2342void bpf_token_put(struct bpf_token *token); 2343int bpf_token_create(union bpf_attr *attr); 2344struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2345 2346bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2347bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2348bool bpf_token_allow_prog_type(const struct bpf_token *token, 2349 enum bpf_prog_type prog_type, 2350 enum bpf_attach_type attach_type); 2351 2352int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2353int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2354struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2355 umode_t mode); 2356 2357#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2358#define DEFINE_BPF_ITER_FUNC(target, args...) \ 2359 extern int bpf_iter_ ## target(args); \ 2360 int __init bpf_iter_ ## target(args) { return 0; } 2361 2362/* 2363 * The task type of iterators. 2364 * 2365 * For BPF task iterators, they can be parameterized with various 2366 * parameters to visit only some of tasks. 2367 * 2368 * BPF_TASK_ITER_ALL (default) 2369 * Iterate over resources of every task. 2370 * 2371 * BPF_TASK_ITER_TID 2372 * Iterate over resources of a task/tid. 2373 * 2374 * BPF_TASK_ITER_TGID 2375 * Iterate over resources of every task of a process / task group. 2376 */ 2377enum bpf_iter_task_type { 2378 BPF_TASK_ITER_ALL = 0, 2379 BPF_TASK_ITER_TID, 2380 BPF_TASK_ITER_TGID, 2381}; 2382 2383struct bpf_iter_aux_info { 2384 /* for map_elem iter */ 2385 struct bpf_map *map; 2386 2387 /* for cgroup iter */ 2388 struct { 2389 struct cgroup *start; /* starting cgroup */ 2390 enum bpf_cgroup_iter_order order; 2391 } cgroup; 2392 struct { 2393 enum bpf_iter_task_type type; 2394 u32 pid; 2395 } task; 2396}; 2397 2398typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2399 union bpf_iter_link_info *linfo, 2400 struct bpf_iter_aux_info *aux); 2401typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2402typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2403 struct seq_file *seq); 2404typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2405 struct bpf_link_info *info); 2406typedef const struct bpf_func_proto * 2407(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2408 const struct bpf_prog *prog); 2409 2410enum bpf_iter_feature { 2411 BPF_ITER_RESCHED = BIT(0), 2412}; 2413 2414#define BPF_ITER_CTX_ARG_MAX 2 2415struct bpf_iter_reg { 2416 const char *target; 2417 bpf_iter_attach_target_t attach_target; 2418 bpf_iter_detach_target_t detach_target; 2419 bpf_iter_show_fdinfo_t show_fdinfo; 2420 bpf_iter_fill_link_info_t fill_link_info; 2421 bpf_iter_get_func_proto_t get_func_proto; 2422 u32 ctx_arg_info_size; 2423 u32 feature; 2424 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2425 const struct bpf_iter_seq_info *seq_info; 2426}; 2427 2428struct bpf_iter_meta { 2429 __bpf_md_ptr(struct seq_file *, seq); 2430 u64 session_id; 2431 u64 seq_num; 2432}; 2433 2434struct bpf_iter__bpf_map_elem { 2435 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2436 __bpf_md_ptr(struct bpf_map *, map); 2437 __bpf_md_ptr(void *, key); 2438 __bpf_md_ptr(void *, value); 2439}; 2440 2441int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2442void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2443bool bpf_iter_prog_supported(struct bpf_prog *prog); 2444const struct bpf_func_proto * 2445bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2446int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2447int bpf_iter_new_fd(struct bpf_link *link); 2448bool bpf_link_is_iter(struct bpf_link *link); 2449struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2450int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2451void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2452 struct seq_file *seq); 2453int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2454 struct bpf_link_info *info); 2455 2456int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2457 struct bpf_func_state *caller, 2458 struct bpf_func_state *callee); 2459 2460int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2461int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2462int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2463 u64 flags); 2464int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2465 u64 flags); 2466 2467int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2468 2469int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2470 void *key, void *value, u64 map_flags); 2471int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2472int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2473 void *key, void *value, u64 map_flags); 2474int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2475 2476int bpf_get_file_flag(int flags); 2477int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2478 size_t actual_size); 2479 2480/* verify correctness of eBPF program */ 2481int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2482 2483#ifndef CONFIG_BPF_JIT_ALWAYS_ON 2484void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2485#endif 2486 2487struct btf *bpf_get_btf_vmlinux(void); 2488 2489/* Map specifics */ 2490struct xdp_frame; 2491struct sk_buff; 2492struct bpf_dtab_netdev; 2493struct bpf_cpu_map_entry; 2494 2495void __dev_flush(void); 2496int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2497 struct net_device *dev_rx); 2498int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2499 struct net_device *dev_rx); 2500int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2501 struct bpf_map *map, bool exclude_ingress); 2502int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2503 struct bpf_prog *xdp_prog); 2504int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2505 struct bpf_prog *xdp_prog, struct bpf_map *map, 2506 bool exclude_ingress); 2507 2508void __cpu_map_flush(void); 2509int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2510 struct net_device *dev_rx); 2511int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2512 struct sk_buff *skb); 2513 2514/* Return map's numa specified by userspace */ 2515static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2516{ 2517 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2518 attr->numa_node : NUMA_NO_NODE; 2519} 2520 2521struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2522int array_map_alloc_check(union bpf_attr *attr); 2523 2524int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2525 union bpf_attr __user *uattr); 2526int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2527 union bpf_attr __user *uattr); 2528int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2529 const union bpf_attr *kattr, 2530 union bpf_attr __user *uattr); 2531int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2532 const union bpf_attr *kattr, 2533 union bpf_attr __user *uattr); 2534int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2535 const union bpf_attr *kattr, 2536 union bpf_attr __user *uattr); 2537int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2538 const union bpf_attr *kattr, 2539 union bpf_attr __user *uattr); 2540int bpf_prog_test_run_nf(struct bpf_prog *prog, 2541 const union bpf_attr *kattr, 2542 union bpf_attr __user *uattr); 2543bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2544 const struct bpf_prog *prog, 2545 struct bpf_insn_access_aux *info); 2546 2547static inline bool bpf_tracing_ctx_access(int off, int size, 2548 enum bpf_access_type type) 2549{ 2550 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2551 return false; 2552 if (type != BPF_READ) 2553 return false; 2554 if (off % size != 0) 2555 return false; 2556 return true; 2557} 2558 2559static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2560 enum bpf_access_type type, 2561 const struct bpf_prog *prog, 2562 struct bpf_insn_access_aux *info) 2563{ 2564 if (!bpf_tracing_ctx_access(off, size, type)) 2565 return false; 2566 return btf_ctx_access(off, size, type, prog, info); 2567} 2568 2569int btf_struct_access(struct bpf_verifier_log *log, 2570 const struct bpf_reg_state *reg, 2571 int off, int size, enum bpf_access_type atype, 2572 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2573bool btf_struct_ids_match(struct bpf_verifier_log *log, 2574 const struct btf *btf, u32 id, int off, 2575 const struct btf *need_btf, u32 need_type_id, 2576 bool strict); 2577 2578int btf_distill_func_proto(struct bpf_verifier_log *log, 2579 struct btf *btf, 2580 const struct btf_type *func_proto, 2581 const char *func_name, 2582 struct btf_func_model *m); 2583 2584struct bpf_reg_state; 2585int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2586int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2587 struct btf *btf, const struct btf_type *t); 2588const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2589 int comp_idx, const char *tag_key); 2590int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2591 int comp_idx, const char *tag_key, int last_id); 2592 2593struct bpf_prog *bpf_prog_by_id(u32 id); 2594struct bpf_link *bpf_link_by_id(u32 id); 2595 2596const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2597 const struct bpf_prog *prog); 2598void bpf_task_storage_free(struct task_struct *task); 2599void bpf_cgrp_storage_free(struct cgroup *cgroup); 2600bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2601const struct btf_func_model * 2602bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2603 const struct bpf_insn *insn); 2604int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2605 u16 btf_fd_idx, u8 **func_addr); 2606 2607struct bpf_core_ctx { 2608 struct bpf_verifier_log *log; 2609 const struct btf *btf; 2610}; 2611 2612bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2613 const struct bpf_reg_state *reg, 2614 const char *field_name, u32 btf_id, const char *suffix); 2615 2616bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2617 const struct btf *reg_btf, u32 reg_id, 2618 const struct btf *arg_btf, u32 arg_id); 2619 2620int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2621 int relo_idx, void *insn); 2622 2623static inline bool unprivileged_ebpf_enabled(void) 2624{ 2625 return !sysctl_unprivileged_bpf_disabled; 2626} 2627 2628/* Not all bpf prog type has the bpf_ctx. 2629 * For the bpf prog type that has initialized the bpf_ctx, 2630 * this function can be used to decide if a kernel function 2631 * is called by a bpf program. 2632 */ 2633static inline bool has_current_bpf_ctx(void) 2634{ 2635 return !!current->bpf_ctx; 2636} 2637 2638void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2639 2640void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2641 enum bpf_dynptr_type type, u32 offset, u32 size); 2642void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2643void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2644 2645bool dev_check_flush(void); 2646bool cpu_map_check_flush(void); 2647#else /* !CONFIG_BPF_SYSCALL */ 2648static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2649{ 2650 return ERR_PTR(-EOPNOTSUPP); 2651} 2652 2653static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2654 enum bpf_prog_type type, 2655 bool attach_drv) 2656{ 2657 return ERR_PTR(-EOPNOTSUPP); 2658} 2659 2660static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2661{ 2662} 2663 2664static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2665{ 2666} 2667 2668static inline void bpf_prog_put(struct bpf_prog *prog) 2669{ 2670} 2671 2672static inline void bpf_prog_inc(struct bpf_prog *prog) 2673{ 2674} 2675 2676static inline struct bpf_prog *__must_check 2677bpf_prog_inc_not_zero(struct bpf_prog *prog) 2678{ 2679 return ERR_PTR(-EOPNOTSUPP); 2680} 2681 2682static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2683 const struct bpf_link_ops *ops, 2684 struct bpf_prog *prog) 2685{ 2686} 2687 2688static inline int bpf_link_prime(struct bpf_link *link, 2689 struct bpf_link_primer *primer) 2690{ 2691 return -EOPNOTSUPP; 2692} 2693 2694static inline int bpf_link_settle(struct bpf_link_primer *primer) 2695{ 2696 return -EOPNOTSUPP; 2697} 2698 2699static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2700{ 2701} 2702 2703static inline void bpf_link_inc(struct bpf_link *link) 2704{ 2705} 2706 2707static inline void bpf_link_put(struct bpf_link *link) 2708{ 2709} 2710 2711static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2712{ 2713 return -EOPNOTSUPP; 2714} 2715 2716static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2717{ 2718 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2719} 2720 2721static inline void bpf_token_inc(struct bpf_token *token) 2722{ 2723} 2724 2725static inline void bpf_token_put(struct bpf_token *token) 2726{ 2727} 2728 2729static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2730{ 2731 return ERR_PTR(-EOPNOTSUPP); 2732} 2733 2734static inline void __dev_flush(void) 2735{ 2736} 2737 2738struct xdp_frame; 2739struct bpf_dtab_netdev; 2740struct bpf_cpu_map_entry; 2741 2742static inline 2743int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2744 struct net_device *dev_rx) 2745{ 2746 return 0; 2747} 2748 2749static inline 2750int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2751 struct net_device *dev_rx) 2752{ 2753 return 0; 2754} 2755 2756static inline 2757int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2758 struct bpf_map *map, bool exclude_ingress) 2759{ 2760 return 0; 2761} 2762 2763struct sk_buff; 2764 2765static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2766 struct sk_buff *skb, 2767 struct bpf_prog *xdp_prog) 2768{ 2769 return 0; 2770} 2771 2772static inline 2773int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2774 struct bpf_prog *xdp_prog, struct bpf_map *map, 2775 bool exclude_ingress) 2776{ 2777 return 0; 2778} 2779 2780static inline void __cpu_map_flush(void) 2781{ 2782} 2783 2784static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2785 struct xdp_frame *xdpf, 2786 struct net_device *dev_rx) 2787{ 2788 return 0; 2789} 2790 2791static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2792 struct sk_buff *skb) 2793{ 2794 return -EOPNOTSUPP; 2795} 2796 2797static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2798 enum bpf_prog_type type) 2799{ 2800 return ERR_PTR(-EOPNOTSUPP); 2801} 2802 2803static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2804 const union bpf_attr *kattr, 2805 union bpf_attr __user *uattr) 2806{ 2807 return -ENOTSUPP; 2808} 2809 2810static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2811 const union bpf_attr *kattr, 2812 union bpf_attr __user *uattr) 2813{ 2814 return -ENOTSUPP; 2815} 2816 2817static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2818 const union bpf_attr *kattr, 2819 union bpf_attr __user *uattr) 2820{ 2821 return -ENOTSUPP; 2822} 2823 2824static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2825 const union bpf_attr *kattr, 2826 union bpf_attr __user *uattr) 2827{ 2828 return -ENOTSUPP; 2829} 2830 2831static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2832 const union bpf_attr *kattr, 2833 union bpf_attr __user *uattr) 2834{ 2835 return -ENOTSUPP; 2836} 2837 2838static inline void bpf_map_put(struct bpf_map *map) 2839{ 2840} 2841 2842static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2843{ 2844 return ERR_PTR(-ENOTSUPP); 2845} 2846 2847static inline int btf_struct_access(struct bpf_verifier_log *log, 2848 const struct bpf_reg_state *reg, 2849 int off, int size, enum bpf_access_type atype, 2850 u32 *next_btf_id, enum bpf_type_flag *flag, 2851 const char **field_name) 2852{ 2853 return -EACCES; 2854} 2855 2856static inline const struct bpf_func_proto * 2857bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2858{ 2859 return NULL; 2860} 2861 2862static inline void bpf_task_storage_free(struct task_struct *task) 2863{ 2864} 2865 2866static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2867{ 2868 return false; 2869} 2870 2871static inline const struct btf_func_model * 2872bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2873 const struct bpf_insn *insn) 2874{ 2875 return NULL; 2876} 2877 2878static inline int 2879bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2880 u16 btf_fd_idx, u8 **func_addr) 2881{ 2882 return -ENOTSUPP; 2883} 2884 2885static inline bool unprivileged_ebpf_enabled(void) 2886{ 2887 return false; 2888} 2889 2890static inline bool has_current_bpf_ctx(void) 2891{ 2892 return false; 2893} 2894 2895static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2896{ 2897} 2898 2899static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2900{ 2901} 2902 2903static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2904 enum bpf_dynptr_type type, u32 offset, u32 size) 2905{ 2906} 2907 2908static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2909{ 2910} 2911 2912static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2913{ 2914} 2915#endif /* CONFIG_BPF_SYSCALL */ 2916 2917static __always_inline int 2918bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2919{ 2920 int ret = -EFAULT; 2921 2922 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2923 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2924 if (unlikely(ret < 0)) 2925 memset(dst, 0, size); 2926 return ret; 2927} 2928 2929void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2930 struct btf_mod_pair *used_btfs, u32 len); 2931 2932static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2933 enum bpf_prog_type type) 2934{ 2935 return bpf_prog_get_type_dev(ufd, type, false); 2936} 2937 2938void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2939 struct bpf_map **used_maps, u32 len); 2940 2941bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2942 2943int bpf_prog_offload_compile(struct bpf_prog *prog); 2944void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2945int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2946 struct bpf_prog *prog); 2947 2948int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2949 2950int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2951int bpf_map_offload_update_elem(struct bpf_map *map, 2952 void *key, void *value, u64 flags); 2953int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2954int bpf_map_offload_get_next_key(struct bpf_map *map, 2955 void *key, void *next_key); 2956 2957bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2958 2959struct bpf_offload_dev * 2960bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2961void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2962void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2963int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2964 struct net_device *netdev); 2965void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2966 struct net_device *netdev); 2967bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2968 2969void unpriv_ebpf_notify(int new_state); 2970 2971#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2972int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2973 struct bpf_prog_aux *prog_aux); 2974void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2975int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2976int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2977void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2978 2979static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2980{ 2981 return aux->dev_bound; 2982} 2983 2984static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2985{ 2986 return aux->offload_requested; 2987} 2988 2989bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2990 2991static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2992{ 2993 return unlikely(map->ops == &bpf_map_offload_ops); 2994} 2995 2996struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2997void bpf_map_offload_map_free(struct bpf_map *map); 2998u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2999int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3000 const union bpf_attr *kattr, 3001 union bpf_attr __user *uattr); 3002 3003int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3004int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3005int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3006int sock_map_bpf_prog_query(const union bpf_attr *attr, 3007 union bpf_attr __user *uattr); 3008int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3009 3010void sock_map_unhash(struct sock *sk); 3011void sock_map_destroy(struct sock *sk); 3012void sock_map_close(struct sock *sk, long timeout); 3013#else 3014static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3015 struct bpf_prog_aux *prog_aux) 3016{ 3017 return -EOPNOTSUPP; 3018} 3019 3020static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3021 u32 func_id) 3022{ 3023 return NULL; 3024} 3025 3026static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3027 union bpf_attr *attr) 3028{ 3029 return -EOPNOTSUPP; 3030} 3031 3032static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3033 struct bpf_prog *old_prog) 3034{ 3035 return -EOPNOTSUPP; 3036} 3037 3038static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3039{ 3040} 3041 3042static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3043{ 3044 return false; 3045} 3046 3047static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3048{ 3049 return false; 3050} 3051 3052static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3053{ 3054 return false; 3055} 3056 3057static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3058{ 3059 return false; 3060} 3061 3062static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3063{ 3064 return ERR_PTR(-EOPNOTSUPP); 3065} 3066 3067static inline void bpf_map_offload_map_free(struct bpf_map *map) 3068{ 3069} 3070 3071static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3072{ 3073 return 0; 3074} 3075 3076static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3077 const union bpf_attr *kattr, 3078 union bpf_attr __user *uattr) 3079{ 3080 return -ENOTSUPP; 3081} 3082 3083#ifdef CONFIG_BPF_SYSCALL 3084static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3085 struct bpf_prog *prog) 3086{ 3087 return -EINVAL; 3088} 3089 3090static inline int sock_map_prog_detach(const union bpf_attr *attr, 3091 enum bpf_prog_type ptype) 3092{ 3093 return -EOPNOTSUPP; 3094} 3095 3096static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3097 u64 flags) 3098{ 3099 return -EOPNOTSUPP; 3100} 3101 3102static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3103 union bpf_attr __user *uattr) 3104{ 3105 return -EINVAL; 3106} 3107 3108static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3109{ 3110 return -EOPNOTSUPP; 3111} 3112#endif /* CONFIG_BPF_SYSCALL */ 3113#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3114 3115static __always_inline void 3116bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3117{ 3118 const struct bpf_prog_array_item *item; 3119 struct bpf_prog *prog; 3120 3121 if (unlikely(!array)) 3122 return; 3123 3124 item = &array->items[0]; 3125 while ((prog = READ_ONCE(item->prog))) { 3126 bpf_prog_inc_misses_counter(prog); 3127 item++; 3128 } 3129} 3130 3131#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3132void bpf_sk_reuseport_detach(struct sock *sk); 3133int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3134 void *value); 3135int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3136 void *value, u64 map_flags); 3137#else 3138static inline void bpf_sk_reuseport_detach(struct sock *sk) 3139{ 3140} 3141 3142#ifdef CONFIG_BPF_SYSCALL 3143static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3144 void *key, void *value) 3145{ 3146 return -EOPNOTSUPP; 3147} 3148 3149static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3150 void *key, void *value, 3151 u64 map_flags) 3152{ 3153 return -EOPNOTSUPP; 3154} 3155#endif /* CONFIG_BPF_SYSCALL */ 3156#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3157 3158/* verifier prototypes for helper functions called from eBPF programs */ 3159extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3160extern const struct bpf_func_proto bpf_map_update_elem_proto; 3161extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3162extern const struct bpf_func_proto bpf_map_push_elem_proto; 3163extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3164extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3165extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3166 3167extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3168extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3169extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3170extern const struct bpf_func_proto bpf_tail_call_proto; 3171extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3172extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3173extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3174extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3175extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3176extern const struct bpf_func_proto bpf_get_current_comm_proto; 3177extern const struct bpf_func_proto bpf_get_stackid_proto; 3178extern const struct bpf_func_proto bpf_get_stack_proto; 3179extern const struct bpf_func_proto bpf_get_task_stack_proto; 3180extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3181extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3182extern const struct bpf_func_proto bpf_sock_map_update_proto; 3183extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3184extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3185extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3186extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3187extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3188extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3189extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3190extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3191extern const struct bpf_func_proto bpf_spin_lock_proto; 3192extern const struct bpf_func_proto bpf_spin_unlock_proto; 3193extern const struct bpf_func_proto bpf_get_local_storage_proto; 3194extern const struct bpf_func_proto bpf_strtol_proto; 3195extern const struct bpf_func_proto bpf_strtoul_proto; 3196extern const struct bpf_func_proto bpf_tcp_sock_proto; 3197extern const struct bpf_func_proto bpf_jiffies64_proto; 3198extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3199extern const struct bpf_func_proto bpf_event_output_data_proto; 3200extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3201extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3202extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3203extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3204extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3205extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3206extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3207extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3208extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3209extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3210extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3211extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3212extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3213extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3214extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3215extern const struct bpf_func_proto bpf_copy_from_user_proto; 3216extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3217extern const struct bpf_func_proto bpf_snprintf_proto; 3218extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3219extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3220extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3221extern const struct bpf_func_proto bpf_sock_from_file_proto; 3222extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3223extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3224extern const struct bpf_func_proto bpf_task_storage_get_proto; 3225extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3226extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3227extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3228extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3229extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3230extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3231extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3232extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3233extern const struct bpf_func_proto bpf_find_vma_proto; 3234extern const struct bpf_func_proto bpf_loop_proto; 3235extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3236extern const struct bpf_func_proto bpf_set_retval_proto; 3237extern const struct bpf_func_proto bpf_get_retval_proto; 3238extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3239extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3240extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3241 3242const struct bpf_func_proto *tracing_prog_func_proto( 3243 enum bpf_func_id func_id, const struct bpf_prog *prog); 3244 3245/* Shared helpers among cBPF and eBPF. */ 3246void bpf_user_rnd_init_once(void); 3247u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3248u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3249 3250#if defined(CONFIG_NET) 3251bool bpf_sock_common_is_valid_access(int off, int size, 3252 enum bpf_access_type type, 3253 struct bpf_insn_access_aux *info); 3254bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3255 struct bpf_insn_access_aux *info); 3256u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3257 const struct bpf_insn *si, 3258 struct bpf_insn *insn_buf, 3259 struct bpf_prog *prog, 3260 u32 *target_size); 3261int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3262 struct bpf_dynptr_kern *ptr); 3263#else 3264static inline bool bpf_sock_common_is_valid_access(int off, int size, 3265 enum bpf_access_type type, 3266 struct bpf_insn_access_aux *info) 3267{ 3268 return false; 3269} 3270static inline bool bpf_sock_is_valid_access(int off, int size, 3271 enum bpf_access_type type, 3272 struct bpf_insn_access_aux *info) 3273{ 3274 return false; 3275} 3276static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3277 const struct bpf_insn *si, 3278 struct bpf_insn *insn_buf, 3279 struct bpf_prog *prog, 3280 u32 *target_size) 3281{ 3282 return 0; 3283} 3284static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3285 struct bpf_dynptr_kern *ptr) 3286{ 3287 return -EOPNOTSUPP; 3288} 3289#endif 3290 3291#ifdef CONFIG_INET 3292struct sk_reuseport_kern { 3293 struct sk_buff *skb; 3294 struct sock *sk; 3295 struct sock *selected_sk; 3296 struct sock *migrating_sk; 3297 void *data_end; 3298 u32 hash; 3299 u32 reuseport_id; 3300 bool bind_inany; 3301}; 3302bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3303 struct bpf_insn_access_aux *info); 3304 3305u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3306 const struct bpf_insn *si, 3307 struct bpf_insn *insn_buf, 3308 struct bpf_prog *prog, 3309 u32 *target_size); 3310 3311bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3312 struct bpf_insn_access_aux *info); 3313 3314u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3315 const struct bpf_insn *si, 3316 struct bpf_insn *insn_buf, 3317 struct bpf_prog *prog, 3318 u32 *target_size); 3319#else 3320static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3321 enum bpf_access_type type, 3322 struct bpf_insn_access_aux *info) 3323{ 3324 return false; 3325} 3326 3327static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3328 const struct bpf_insn *si, 3329 struct bpf_insn *insn_buf, 3330 struct bpf_prog *prog, 3331 u32 *target_size) 3332{ 3333 return 0; 3334} 3335static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3336 enum bpf_access_type type, 3337 struct bpf_insn_access_aux *info) 3338{ 3339 return false; 3340} 3341 3342static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3343 const struct bpf_insn *si, 3344 struct bpf_insn *insn_buf, 3345 struct bpf_prog *prog, 3346 u32 *target_size) 3347{ 3348 return 0; 3349} 3350#endif /* CONFIG_INET */ 3351 3352enum bpf_text_poke_type { 3353 BPF_MOD_CALL, 3354 BPF_MOD_JUMP, 3355}; 3356 3357int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3358 void *addr1, void *addr2); 3359 3360void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3361 struct bpf_prog *new, struct bpf_prog *old); 3362 3363void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3364int bpf_arch_text_invalidate(void *dst, size_t len); 3365 3366struct btf_id_set; 3367bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3368 3369#define MAX_BPRINTF_VARARGS 12 3370#define MAX_BPRINTF_BUF 1024 3371 3372struct bpf_bprintf_data { 3373 u32 *bin_args; 3374 char *buf; 3375 bool get_bin_args; 3376 bool get_buf; 3377}; 3378 3379int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3380 u32 num_args, struct bpf_bprintf_data *data); 3381void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3382 3383#ifdef CONFIG_BPF_LSM 3384void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3385void bpf_cgroup_atype_put(int cgroup_atype); 3386#else 3387static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3388static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3389#endif /* CONFIG_BPF_LSM */ 3390 3391struct key; 3392 3393#ifdef CONFIG_KEYS 3394struct bpf_key { 3395 struct key *key; 3396 bool has_ref; 3397}; 3398#endif /* CONFIG_KEYS */ 3399 3400static inline bool type_is_alloc(u32 type) 3401{ 3402 return type & MEM_ALLOC; 3403} 3404 3405static inline gfp_t bpf_memcg_flags(gfp_t flags) 3406{ 3407 if (memcg_bpf_enabled()) 3408 return flags | __GFP_ACCOUNT; 3409 return flags; 3410} 3411 3412static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3413{ 3414 return prog->aux->func_idx != 0; 3415} 3416 3417#endif /* _LINUX_BPF_H */