Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2
3#include "bcachefs.h"
4#include "bkey_buf.h"
5#include "btree_locking.h"
6#include "btree_update.h"
7#include "btree_update_interior.h"
8#include "btree_write_buffer.h"
9#include "error.h"
10#include "extents.h"
11#include "journal.h"
12#include "journal_io.h"
13#include "journal_reclaim.h"
14
15#include <linux/prefetch.h>
16#include <linux/sort.h>
17
18static int bch2_btree_write_buffer_journal_flush(struct journal *,
19 struct journal_entry_pin *, u64);
20
21static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
22
23static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
24{
25 return (cmp_int(l->hi, r->hi) ?:
26 cmp_int(l->mi, r->mi) ?:
27 cmp_int(l->lo, r->lo)) >= 0;
28}
29
30static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
31{
32#ifdef CONFIG_X86_64
33 int cmp;
34
35 asm("mov (%[l]), %%rax;"
36 "sub (%[r]), %%rax;"
37 "mov 8(%[l]), %%rax;"
38 "sbb 8(%[r]), %%rax;"
39 "mov 16(%[l]), %%rax;"
40 "sbb 16(%[r]), %%rax;"
41 : "=@ccae" (cmp)
42 : [l] "r" (l), [r] "r" (r)
43 : "rax", "cc");
44
45 EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
46 return cmp;
47#else
48 return __wb_key_ref_cmp(l, r);
49#endif
50}
51
52static int wb_key_seq_cmp(const void *_l, const void *_r)
53{
54 const struct btree_write_buffered_key *l = _l;
55 const struct btree_write_buffered_key *r = _r;
56
57 return cmp_int(l->journal_seq, r->journal_seq);
58}
59
60/* Compare excluding idx, the low 24 bits: */
61static inline bool wb_key_eq(const void *_l, const void *_r)
62{
63 const struct wb_key_ref *l = _l;
64 const struct wb_key_ref *r = _r;
65
66 return !((l->hi ^ r->hi)|
67 (l->mi ^ r->mi)|
68 ((l->lo >> 24) ^ (r->lo >> 24)));
69}
70
71static noinline void wb_sort(struct wb_key_ref *base, size_t num)
72{
73 size_t n = num, a = num / 2;
74
75 if (!a) /* num < 2 || size == 0 */
76 return;
77
78 for (;;) {
79 size_t b, c, d;
80
81 if (a) /* Building heap: sift down --a */
82 --a;
83 else if (--n) /* Sorting: Extract root to --n */
84 swap(base[0], base[n]);
85 else /* Sort complete */
86 break;
87
88 /*
89 * Sift element at "a" down into heap. This is the
90 * "bottom-up" variant, which significantly reduces
91 * calls to cmp_func(): we find the sift-down path all
92 * the way to the leaves (one compare per level), then
93 * backtrack to find where to insert the target element.
94 *
95 * Because elements tend to sift down close to the leaves,
96 * this uses fewer compares than doing two per level
97 * on the way down. (A bit more than half as many on
98 * average, 3/4 worst-case.)
99 */
100 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
101 b = wb_key_ref_cmp(base + c, base + d) ? c : d;
102 if (d == n) /* Special case last leaf with no sibling */
103 b = c;
104
105 /* Now backtrack from "b" to the correct location for "a" */
106 while (b != a && wb_key_ref_cmp(base + a, base + b))
107 b = (b - 1) / 2;
108 c = b; /* Where "a" belongs */
109 while (b != a) { /* Shift it into place */
110 b = (b - 1) / 2;
111 swap(base[b], base[c]);
112 }
113 }
114}
115
116static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
117 struct btree_iter *iter,
118 struct btree_write_buffered_key *wb)
119{
120 struct btree_path *path = btree_iter_path(trans, iter);
121
122 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
123
124 trans->journal_res.seq = wb->journal_seq;
125
126 return bch2_trans_update(trans, iter, &wb->k,
127 BTREE_UPDATE_internal_snapshot_node) ?:
128 bch2_trans_commit(trans, NULL, NULL,
129 BCH_TRANS_COMMIT_no_enospc|
130 BCH_TRANS_COMMIT_no_check_rw|
131 BCH_TRANS_COMMIT_no_journal_res|
132 BCH_TRANS_COMMIT_journal_reclaim);
133}
134
135static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
136 struct btree_write_buffered_key *wb,
137 bool *write_locked, size_t *fast)
138{
139 struct btree_path *path;
140 int ret;
141
142 EBUG_ON(!wb->journal_seq);
143 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
144 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
145
146 ret = bch2_btree_iter_traverse(iter);
147 if (ret)
148 return ret;
149
150 /*
151 * We can't clone a path that has write locks: unshare it now, before
152 * set_pos and traverse():
153 */
154 if (btree_iter_path(trans, iter)->ref > 1)
155 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
156
157 path = btree_iter_path(trans, iter);
158
159 if (!*write_locked) {
160 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
161 if (ret)
162 return ret;
163
164 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
165 *write_locked = true;
166 }
167
168 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
169 *write_locked = false;
170 return wb_flush_one_slowpath(trans, iter, wb);
171 }
172
173 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
174 (*fast)++;
175 return 0;
176}
177
178/*
179 * Update a btree with a write buffered key using the journal seq of the
180 * original write buffer insert.
181 *
182 * It is not safe to rejournal the key once it has been inserted into the write
183 * buffer because that may break recovery ordering. For example, the key may
184 * have already been modified in the active write buffer in a seq that comes
185 * before the current transaction. If we were to journal this key again and
186 * crash, recovery would process updates in the wrong order.
187 */
188static int
189btree_write_buffered_insert(struct btree_trans *trans,
190 struct btree_write_buffered_key *wb)
191{
192 struct btree_iter iter;
193 int ret;
194
195 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
196 BTREE_ITER_cached|BTREE_ITER_intent);
197
198 trans->journal_res.seq = wb->journal_seq;
199
200 ret = bch2_btree_iter_traverse(&iter) ?:
201 bch2_trans_update(trans, &iter, &wb->k,
202 BTREE_UPDATE_internal_snapshot_node);
203 bch2_trans_iter_exit(trans, &iter);
204 return ret;
205}
206
207static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
208{
209 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
210 struct journal *j = &c->journal;
211
212 if (!wb->inc.keys.nr)
213 return;
214
215 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
216 bch2_btree_write_buffer_journal_flush);
217
218 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
219 darray_resize(&wb->sorted, wb->flushing.keys.size);
220
221 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
222 swap(wb->flushing.keys, wb->inc.keys);
223 goto out;
224 }
225
226 size_t nr = min(darray_room(wb->flushing.keys),
227 wb->sorted.size - wb->flushing.keys.nr);
228 nr = min(nr, wb->inc.keys.nr);
229
230 memcpy(&darray_top(wb->flushing.keys),
231 wb->inc.keys.data,
232 sizeof(wb->inc.keys.data[0]) * nr);
233
234 memmove(wb->inc.keys.data,
235 wb->inc.keys.data + nr,
236 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
237
238 wb->flushing.keys.nr += nr;
239 wb->inc.keys.nr -= nr;
240out:
241 if (!wb->inc.keys.nr)
242 bch2_journal_pin_drop(j, &wb->inc.pin);
243 else
244 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
245 bch2_btree_write_buffer_journal_flush);
246
247 if (j->watermark) {
248 spin_lock(&j->lock);
249 bch2_journal_set_watermark(j);
250 spin_unlock(&j->lock);
251 }
252
253 BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
254}
255
256static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
257{
258 struct bch_fs *c = trans->c;
259 struct journal *j = &c->journal;
260 struct btree_write_buffer *wb = &c->btree_write_buffer;
261 struct btree_iter iter = { NULL };
262 size_t skipped = 0, fast = 0, slowpath = 0;
263 bool write_locked = false;
264 int ret = 0;
265
266 bch2_trans_unlock(trans);
267 bch2_trans_begin(trans);
268
269 mutex_lock(&wb->inc.lock);
270 move_keys_from_inc_to_flushing(wb);
271 mutex_unlock(&wb->inc.lock);
272
273 for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
274 wb->sorted.data[i].idx = i;
275 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
276 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
277 }
278 wb->sorted.nr = wb->flushing.keys.nr;
279
280 /*
281 * We first sort so that we can detect and skip redundant updates, and
282 * then we attempt to flush in sorted btree order, as this is most
283 * efficient.
284 *
285 * However, since we're not flushing in the order they appear in the
286 * journal we won't be able to drop our journal pin until everything is
287 * flushed - which means this could deadlock the journal if we weren't
288 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
289 * if it would block taking a journal reservation.
290 *
291 * If that happens, simply skip the key so we can optimistically insert
292 * as many keys as possible in the fast path.
293 */
294 wb_sort(wb->sorted.data, wb->sorted.nr);
295
296 darray_for_each(wb->sorted, i) {
297 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
298
299 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
300 prefetch(&wb->flushing.keys.data[n->idx]);
301
302 BUG_ON(!k->journal_seq);
303
304 if (i + 1 < &darray_top(wb->sorted) &&
305 wb_key_eq(i, i + 1)) {
306 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
307
308 skipped++;
309 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
310 k->journal_seq = 0;
311 continue;
312 }
313
314 if (write_locked) {
315 struct btree_path *path = btree_iter_path(trans, &iter);
316
317 if (path->btree_id != i->btree ||
318 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
319 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
320 write_locked = false;
321
322 ret = lockrestart_do(trans,
323 bch2_btree_iter_traverse(&iter) ?:
324 bch2_foreground_maybe_merge(trans, iter.path, 0,
325 BCH_WATERMARK_reclaim|
326 BCH_TRANS_COMMIT_journal_reclaim|
327 BCH_TRANS_COMMIT_no_check_rw|
328 BCH_TRANS_COMMIT_no_enospc));
329 if (ret)
330 goto err;
331 }
332 }
333
334 if (!iter.path || iter.btree_id != k->btree) {
335 bch2_trans_iter_exit(trans, &iter);
336 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
337 BTREE_ITER_intent|BTREE_ITER_all_snapshots);
338 }
339
340 bch2_btree_iter_set_pos(&iter, k->k.k.p);
341 btree_iter_path(trans, &iter)->preserve = false;
342
343 do {
344 if (race_fault()) {
345 ret = -BCH_ERR_journal_reclaim_would_deadlock;
346 break;
347 }
348
349 ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
350 if (!write_locked)
351 bch2_trans_begin(trans);
352 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
353
354 if (!ret) {
355 k->journal_seq = 0;
356 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
357 slowpath++;
358 ret = 0;
359 } else
360 break;
361 }
362
363 if (write_locked) {
364 struct btree_path *path = btree_iter_path(trans, &iter);
365 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
366 }
367 bch2_trans_iter_exit(trans, &iter);
368
369 if (ret)
370 goto err;
371
372 if (slowpath) {
373 /*
374 * Flush in the order they were present in the journal, so that
375 * we can release journal pins:
376 * The fastpath zapped the seq of keys that were successfully flushed so
377 * we can skip those here.
378 */
379 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
380
381 sort(wb->flushing.keys.data,
382 wb->flushing.keys.nr,
383 sizeof(wb->flushing.keys.data[0]),
384 wb_key_seq_cmp, NULL);
385
386 darray_for_each(wb->flushing.keys, i) {
387 if (!i->journal_seq)
388 continue;
389
390 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
391 bch2_btree_write_buffer_journal_flush);
392
393 bch2_trans_begin(trans);
394
395 ret = commit_do(trans, NULL, NULL,
396 BCH_WATERMARK_reclaim|
397 BCH_TRANS_COMMIT_journal_reclaim|
398 BCH_TRANS_COMMIT_no_check_rw|
399 BCH_TRANS_COMMIT_no_enospc|
400 BCH_TRANS_COMMIT_no_journal_res ,
401 btree_write_buffered_insert(trans, i));
402 if (ret)
403 goto err;
404 }
405 }
406err:
407 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
408 trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
409 bch2_journal_pin_drop(j, &wb->flushing.pin);
410 wb->flushing.keys.nr = 0;
411 return ret;
412}
413
414static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
415{
416 struct journal *j = &c->journal;
417 struct journal_buf *buf;
418 int ret = 0;
419
420 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
421 ret = bch2_journal_keys_to_write_buffer(c, buf);
422 mutex_unlock(&j->buf_lock);
423 }
424
425 return ret;
426}
427
428static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
429{
430 struct bch_fs *c = trans->c;
431 struct btree_write_buffer *wb = &c->btree_write_buffer;
432 int ret = 0, fetch_from_journal_err;
433
434 do {
435 bch2_trans_unlock(trans);
436
437 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
438
439 /*
440 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
441 * is not guaranteed to empty wb->inc:
442 */
443 mutex_lock(&wb->flushing.lock);
444 ret = bch2_btree_write_buffer_flush_locked(trans);
445 mutex_unlock(&wb->flushing.lock);
446 } while (!ret &&
447 (fetch_from_journal_err ||
448 (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
449 (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
450
451 return ret;
452}
453
454static int bch2_btree_write_buffer_journal_flush(struct journal *j,
455 struct journal_entry_pin *_pin, u64 seq)
456{
457 struct bch_fs *c = container_of(j, struct bch_fs, journal);
458
459 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
460}
461
462int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
463{
464 struct bch_fs *c = trans->c;
465
466 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
467
468 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
469}
470
471int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
472{
473 struct bch_fs *c = trans->c;
474 struct btree_write_buffer *wb = &c->btree_write_buffer;
475 int ret = 0;
476
477 if (mutex_trylock(&wb->flushing.lock)) {
478 ret = bch2_btree_write_buffer_flush_locked(trans);
479 mutex_unlock(&wb->flushing.lock);
480 }
481
482 return ret;
483}
484
485int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
486{
487 struct bch_fs *c = trans->c;
488
489 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
490 return -BCH_ERR_erofs_no_writes;
491
492 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
493 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
494 return ret;
495}
496
497/**
498 * In check and repair code, when checking references to write buffer btrees we
499 * need to issue a flush before we have a definitive error: this issues a flush
500 * if this is a key we haven't yet checked.
501 */
502int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans,
503 struct bkey_s_c referring_k,
504 struct bkey_buf *last_flushed)
505{
506 struct bch_fs *c = trans->c;
507 struct bkey_buf tmp;
508 int ret = 0;
509
510 bch2_bkey_buf_init(&tmp);
511
512 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) {
513 bch2_bkey_buf_reassemble(&tmp, c, referring_k);
514
515 if (bkey_is_btree_ptr(referring_k.k)) {
516 bch2_trans_unlock(trans);
517 bch2_btree_interior_updates_flush(c);
518 }
519
520 ret = bch2_btree_write_buffer_flush_sync(trans);
521 if (ret)
522 goto err;
523
524 bch2_bkey_buf_copy(last_flushed, c, tmp.k);
525 ret = -BCH_ERR_transaction_restart_write_buffer_flush;
526 }
527err:
528 bch2_bkey_buf_exit(&tmp, c);
529 return ret;
530}
531
532static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
533{
534 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
535 struct btree_write_buffer *wb = &c->btree_write_buffer;
536 int ret;
537
538 mutex_lock(&wb->flushing.lock);
539 do {
540 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
541 } while (!ret && bch2_btree_write_buffer_should_flush(c));
542 mutex_unlock(&wb->flushing.lock);
543
544 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
545}
546
547int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
548 struct journal_keys_to_wb *dst,
549 enum btree_id btree, struct bkey_i *k)
550{
551 struct btree_write_buffer *wb = &c->btree_write_buffer;
552 int ret;
553retry:
554 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
555 if (!ret && dst->wb == &wb->flushing)
556 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
557
558 if (unlikely(ret)) {
559 if (dst->wb == &c->btree_write_buffer.flushing) {
560 mutex_unlock(&dst->wb->lock);
561 dst->wb = &c->btree_write_buffer.inc;
562 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
563 bch2_btree_write_buffer_journal_flush);
564 goto retry;
565 }
566
567 return ret;
568 }
569
570 dst->room = darray_room(dst->wb->keys);
571 if (dst->wb == &wb->flushing)
572 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
573 BUG_ON(!dst->room);
574 BUG_ON(!dst->seq);
575
576 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
577 wb_k->journal_seq = dst->seq;
578 wb_k->btree = btree;
579 bkey_copy(&wb_k->k, k);
580 dst->wb->keys.nr++;
581 dst->room--;
582 return 0;
583}
584
585void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
586{
587 struct btree_write_buffer *wb = &c->btree_write_buffer;
588
589 if (mutex_trylock(&wb->flushing.lock)) {
590 mutex_lock(&wb->inc.lock);
591 move_keys_from_inc_to_flushing(wb);
592
593 /*
594 * Attempt to skip wb->inc, and add keys directly to
595 * wb->flushing, saving us a copy later:
596 */
597
598 if (!wb->inc.keys.nr) {
599 dst->wb = &wb->flushing;
600 } else {
601 mutex_unlock(&wb->flushing.lock);
602 dst->wb = &wb->inc;
603 }
604 } else {
605 mutex_lock(&wb->inc.lock);
606 dst->wb = &wb->inc;
607 }
608
609 dst->room = darray_room(dst->wb->keys);
610 if (dst->wb == &wb->flushing)
611 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
612 dst->seq = seq;
613
614 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
615 bch2_btree_write_buffer_journal_flush);
616}
617
618void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
619{
620 struct btree_write_buffer *wb = &c->btree_write_buffer;
621
622 if (!dst->wb->keys.nr)
623 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
624
625 if (bch2_btree_write_buffer_should_flush(c) &&
626 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
627 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
628 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
629
630 if (dst->wb == &wb->flushing)
631 mutex_unlock(&wb->flushing.lock);
632 mutex_unlock(&wb->inc.lock);
633}
634
635static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
636{
637 struct journal_keys_to_wb dst;
638 int ret = 0;
639
640 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
641
642 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
643 jset_entry_for_each_key(entry, k) {
644 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
645 if (ret)
646 goto out;
647 }
648
649 entry->type = BCH_JSET_ENTRY_btree_keys;
650 }
651
652 spin_lock(&c->journal.lock);
653 buf->need_flush_to_write_buffer = false;
654 spin_unlock(&c->journal.lock);
655out:
656 bch2_journal_keys_to_write_buffer_end(c, &dst);
657 return ret;
658}
659
660static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
661{
662 if (wb->keys.size >= new_size)
663 return 0;
664
665 if (!mutex_trylock(&wb->lock))
666 return -EINTR;
667
668 int ret = darray_resize(&wb->keys, new_size);
669 mutex_unlock(&wb->lock);
670 return ret;
671}
672
673int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
674{
675 struct btree_write_buffer *wb = &c->btree_write_buffer;
676
677 return wb_keys_resize(&wb->flushing, new_size) ?:
678 wb_keys_resize(&wb->inc, new_size);
679}
680
681void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
682{
683 struct btree_write_buffer *wb = &c->btree_write_buffer;
684
685 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
686 !bch2_journal_error(&c->journal));
687
688 darray_exit(&wb->sorted);
689 darray_exit(&wb->flushing.keys);
690 darray_exit(&wb->inc.keys);
691}
692
693int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
694{
695 struct btree_write_buffer *wb = &c->btree_write_buffer;
696
697 mutex_init(&wb->inc.lock);
698 mutex_init(&wb->flushing.lock);
699 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
700
701 /* Will be resized by journal as needed: */
702 unsigned initial_size = 1 << 16;
703
704 return darray_make_room(&wb->inc.keys, initial_size) ?:
705 darray_make_room(&wb->flushing.keys, initial_size) ?:
706 darray_make_room(&wb->sorted, initial_size);
707}