Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched/signal.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/set_memory.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/list.h>
25#include <linux/notifier.h>
26#include <linux/rbtree.h>
27#include <linux/xarray.h>
28#include <linux/io.h>
29#include <linux/rcupdate.h>
30#include <linux/pfn.h>
31#include <linux/kmemleak.h>
32#include <linux/atomic.h>
33#include <linux/compiler.h>
34#include <linux/memcontrol.h>
35#include <linux/llist.h>
36#include <linux/uio.h>
37#include <linux/bitops.h>
38#include <linux/rbtree_augmented.h>
39#include <linux/overflow.h>
40#include <linux/pgtable.h>
41#include <linux/hugetlb.h>
42#include <linux/sched/mm.h>
43#include <asm/tlbflush.h>
44#include <asm/shmparam.h>
45#include <linux/page_owner.h>
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/vmalloc.h>
49
50#include "internal.h"
51#include "pgalloc-track.h"
52
53#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55
56static int __init set_nohugeiomap(char *str)
57{
58 ioremap_max_page_shift = PAGE_SHIFT;
59 return 0;
60}
61early_param("nohugeiomap", set_nohugeiomap);
62#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65
66#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67static bool __ro_after_init vmap_allow_huge = true;
68
69static int __init set_nohugevmalloc(char *str)
70{
71 vmap_allow_huge = false;
72 return 0;
73}
74early_param("nohugevmalloc", set_nohugevmalloc);
75#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76static const bool vmap_allow_huge = false;
77#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78
79bool is_vmalloc_addr(const void *x)
80{
81 unsigned long addr = (unsigned long)kasan_reset_tag(x);
82
83 return addr >= VMALLOC_START && addr < VMALLOC_END;
84}
85EXPORT_SYMBOL(is_vmalloc_addr);
86
87struct vfree_deferred {
88 struct llist_head list;
89 struct work_struct wq;
90};
91static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92
93/*** Page table manipulation functions ***/
94static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 phys_addr_t phys_addr, pgprot_t prot,
96 unsigned int max_page_shift, pgtbl_mod_mask *mask)
97{
98 pte_t *pte;
99 u64 pfn;
100 struct page *page;
101 unsigned long size = PAGE_SIZE;
102
103 pfn = phys_addr >> PAGE_SHIFT;
104 pte = pte_alloc_kernel_track(pmd, addr, mask);
105 if (!pte)
106 return -ENOMEM;
107 do {
108 if (!pte_none(ptep_get(pte))) {
109 if (pfn_valid(pfn)) {
110 page = pfn_to_page(pfn);
111 dump_page(page, "remapping already mapped page");
112 }
113 BUG();
114 }
115
116#ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
120
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126#endif
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132}
133
134static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137{
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157}
158
159static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182}
183
184static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187{
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207}
208
209static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212{
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233}
234
235static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238{
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258}
259
260static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263{
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284}
285
286static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289{
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313}
314
315int vmap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
317{
318 int err;
319
320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 ioremap_max_page_shift);
322 flush_cache_vmap(addr, end);
323 if (!err)
324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 ioremap_max_page_shift);
326 return err;
327}
328
329int ioremap_page_range(unsigned long addr, unsigned long end,
330 phys_addr_t phys_addr, pgprot_t prot)
331{
332 struct vm_struct *area;
333
334 area = find_vm_area((void *)addr);
335 if (!area || !(area->flags & VM_IOREMAP)) {
336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 return -EINVAL;
338 }
339 if (addr != (unsigned long)area->addr ||
340 (void *)end != area->addr + get_vm_area_size(area)) {
341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 addr, end, (long)area->addr,
343 (long)area->addr + get_vm_area_size(area));
344 return -ERANGE;
345 }
346 return vmap_page_range(addr, end, phys_addr, prot);
347}
348
349static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 pgtbl_mod_mask *mask)
351{
352 pte_t *pte;
353
354 pte = pte_offset_kernel(pmd, addr);
355 do {
356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 } while (pte++, addr += PAGE_SIZE, addr != end);
359 *mask |= PGTBL_PTE_MODIFIED;
360}
361
362static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 pgtbl_mod_mask *mask)
364{
365 pmd_t *pmd;
366 unsigned long next;
367 int cleared;
368
369 pmd = pmd_offset(pud, addr);
370 do {
371 next = pmd_addr_end(addr, end);
372
373 cleared = pmd_clear_huge(pmd);
374 if (cleared || pmd_bad(*pmd))
375 *mask |= PGTBL_PMD_MODIFIED;
376
377 if (cleared)
378 continue;
379 if (pmd_none_or_clear_bad(pmd))
380 continue;
381 vunmap_pte_range(pmd, addr, next, mask);
382
383 cond_resched();
384 } while (pmd++, addr = next, addr != end);
385}
386
387static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
389{
390 pud_t *pud;
391 unsigned long next;
392 int cleared;
393
394 pud = pud_offset(p4d, addr);
395 do {
396 next = pud_addr_end(addr, end);
397
398 cleared = pud_clear_huge(pud);
399 if (cleared || pud_bad(*pud))
400 *mask |= PGTBL_PUD_MODIFIED;
401
402 if (cleared)
403 continue;
404 if (pud_none_or_clear_bad(pud))
405 continue;
406 vunmap_pmd_range(pud, addr, next, mask);
407 } while (pud++, addr = next, addr != end);
408}
409
410static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 pgtbl_mod_mask *mask)
412{
413 p4d_t *p4d;
414 unsigned long next;
415
416 p4d = p4d_offset(pgd, addr);
417 do {
418 next = p4d_addr_end(addr, end);
419
420 p4d_clear_huge(p4d);
421 if (p4d_bad(*p4d))
422 *mask |= PGTBL_P4D_MODIFIED;
423
424 if (p4d_none_or_clear_bad(p4d))
425 continue;
426 vunmap_pud_range(p4d, addr, next, mask);
427 } while (p4d++, addr = next, addr != end);
428}
429
430/*
431 * vunmap_range_noflush is similar to vunmap_range, but does not
432 * flush caches or TLBs.
433 *
434 * The caller is responsible for calling flush_cache_vmap() before calling
435 * this function, and flush_tlb_kernel_range after it has returned
436 * successfully (and before the addresses are expected to cause a page fault
437 * or be re-mapped for something else, if TLB flushes are being delayed or
438 * coalesced).
439 *
440 * This is an internal function only. Do not use outside mm/.
441 */
442void __vunmap_range_noflush(unsigned long start, unsigned long end)
443{
444 unsigned long next;
445 pgd_t *pgd;
446 unsigned long addr = start;
447 pgtbl_mod_mask mask = 0;
448
449 BUG_ON(addr >= end);
450 pgd = pgd_offset_k(addr);
451 do {
452 next = pgd_addr_end(addr, end);
453 if (pgd_bad(*pgd))
454 mask |= PGTBL_PGD_MODIFIED;
455 if (pgd_none_or_clear_bad(pgd))
456 continue;
457 vunmap_p4d_range(pgd, addr, next, &mask);
458 } while (pgd++, addr = next, addr != end);
459
460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 arch_sync_kernel_mappings(start, end);
462}
463
464void vunmap_range_noflush(unsigned long start, unsigned long end)
465{
466 kmsan_vunmap_range_noflush(start, end);
467 __vunmap_range_noflush(start, end);
468}
469
470/**
471 * vunmap_range - unmap kernel virtual addresses
472 * @addr: start of the VM area to unmap
473 * @end: end of the VM area to unmap (non-inclusive)
474 *
475 * Clears any present PTEs in the virtual address range, flushes TLBs and
476 * caches. Any subsequent access to the address before it has been re-mapped
477 * is a kernel bug.
478 */
479void vunmap_range(unsigned long addr, unsigned long end)
480{
481 flush_cache_vunmap(addr, end);
482 vunmap_range_noflush(addr, end);
483 flush_tlb_kernel_range(addr, end);
484}
485
486static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 pgtbl_mod_mask *mask)
489{
490 pte_t *pte;
491
492 /*
493 * nr is a running index into the array which helps higher level
494 * callers keep track of where we're up to.
495 */
496
497 pte = pte_alloc_kernel_track(pmd, addr, mask);
498 if (!pte)
499 return -ENOMEM;
500 do {
501 struct page *page = pages[*nr];
502
503 if (WARN_ON(!pte_none(ptep_get(pte))))
504 return -EBUSY;
505 if (WARN_ON(!page))
506 return -ENOMEM;
507 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 return -EINVAL;
509
510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 (*nr)++;
512 } while (pte++, addr += PAGE_SIZE, addr != end);
513 *mask |= PGTBL_PTE_MODIFIED;
514 return 0;
515}
516
517static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 pgtbl_mod_mask *mask)
520{
521 pmd_t *pmd;
522 unsigned long next;
523
524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 if (!pmd)
526 return -ENOMEM;
527 do {
528 next = pmd_addr_end(addr, end);
529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 return -ENOMEM;
531 } while (pmd++, addr = next, addr != end);
532 return 0;
533}
534
535static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 pgtbl_mod_mask *mask)
538{
539 pud_t *pud;
540 unsigned long next;
541
542 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 if (!pud)
544 return -ENOMEM;
545 do {
546 next = pud_addr_end(addr, end);
547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 return -ENOMEM;
549 } while (pud++, addr = next, addr != end);
550 return 0;
551}
552
553static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 pgtbl_mod_mask *mask)
556{
557 p4d_t *p4d;
558 unsigned long next;
559
560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 if (!p4d)
562 return -ENOMEM;
563 do {
564 next = p4d_addr_end(addr, end);
565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 return -ENOMEM;
567 } while (p4d++, addr = next, addr != end);
568 return 0;
569}
570
571static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 pgprot_t prot, struct page **pages)
573{
574 unsigned long start = addr;
575 pgd_t *pgd;
576 unsigned long next;
577 int err = 0;
578 int nr = 0;
579 pgtbl_mod_mask mask = 0;
580
581 BUG_ON(addr >= end);
582 pgd = pgd_offset_k(addr);
583 do {
584 next = pgd_addr_end(addr, end);
585 if (pgd_bad(*pgd))
586 mask |= PGTBL_PGD_MODIFIED;
587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 if (err)
589 return err;
590 } while (pgd++, addr = next, addr != end);
591
592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 arch_sync_kernel_mappings(start, end);
594
595 return 0;
596}
597
598/*
599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600 * flush caches.
601 *
602 * The caller is responsible for calling flush_cache_vmap() after this
603 * function returns successfully and before the addresses are accessed.
604 *
605 * This is an internal function only. Do not use outside mm/.
606 */
607int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 pgprot_t prot, struct page **pages, unsigned int page_shift)
609{
610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611
612 WARN_ON(page_shift < PAGE_SHIFT);
613
614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 page_shift == PAGE_SHIFT)
616 return vmap_small_pages_range_noflush(addr, end, prot, pages);
617
618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 int err;
620
621 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 page_to_phys(pages[i]), prot,
623 page_shift);
624 if (err)
625 return err;
626
627 addr += 1UL << page_shift;
628 }
629
630 return 0;
631}
632
633int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 pgprot_t prot, struct page **pages, unsigned int page_shift)
635{
636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 page_shift);
638
639 if (ret)
640 return ret;
641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642}
643
644/**
645 * vmap_pages_range - map pages to a kernel virtual address
646 * @addr: start of the VM area to map
647 * @end: end of the VM area to map (non-inclusive)
648 * @prot: page protection flags to use
649 * @pages: pages to map (always PAGE_SIZE pages)
650 * @page_shift: maximum shift that the pages may be mapped with, @pages must
651 * be aligned and contiguous up to at least this shift.
652 *
653 * RETURNS:
654 * 0 on success, -errno on failure.
655 */
656static int vmap_pages_range(unsigned long addr, unsigned long end,
657 pgprot_t prot, struct page **pages, unsigned int page_shift)
658{
659 int err;
660
661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 flush_cache_vmap(addr, end);
663 return err;
664}
665
666static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 unsigned long end)
668{
669 might_sleep();
670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 return -EINVAL;
672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 return -EINVAL;
674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 return -EINVAL;
676 if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 return -E2BIG;
678 if (start < (unsigned long)area->addr ||
679 (void *)end > area->addr + get_vm_area_size(area))
680 return -ERANGE;
681 return 0;
682}
683
684/**
685 * vm_area_map_pages - map pages inside given sparse vm_area
686 * @area: vm_area
687 * @start: start address inside vm_area
688 * @end: end address inside vm_area
689 * @pages: pages to map (always PAGE_SIZE pages)
690 */
691int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 unsigned long end, struct page **pages)
693{
694 int err;
695
696 err = check_sparse_vm_area(area, start, end);
697 if (err)
698 return err;
699
700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701}
702
703/**
704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705 * @area: vm_area
706 * @start: start address inside vm_area
707 * @end: end address inside vm_area
708 */
709void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 unsigned long end)
711{
712 if (check_sparse_vm_area(area, start, end))
713 return;
714
715 vunmap_range(start, end);
716}
717
718int is_vmalloc_or_module_addr(const void *x)
719{
720 /*
721 * ARM, x86-64 and sparc64 put modules in a special place,
722 * and fall back on vmalloc() if that fails. Others
723 * just put it in the vmalloc space.
724 */
725#if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 if (addr >= MODULES_VADDR && addr < MODULES_END)
728 return 1;
729#endif
730 return is_vmalloc_addr(x);
731}
732EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733
734/*
735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736 * return the tail page that corresponds to the base page address, which
737 * matches small vmap mappings.
738 */
739struct page *vmalloc_to_page(const void *vmalloc_addr)
740{
741 unsigned long addr = (unsigned long) vmalloc_addr;
742 struct page *page = NULL;
743 pgd_t *pgd = pgd_offset_k(addr);
744 p4d_t *p4d;
745 pud_t *pud;
746 pmd_t *pmd;
747 pte_t *ptep, pte;
748
749 /*
750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 * architectures that do not vmalloc module space
752 */
753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754
755 if (pgd_none(*pgd))
756 return NULL;
757 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 return NULL; /* XXX: no allowance for huge pgd */
759 if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 return NULL;
761
762 p4d = p4d_offset(pgd, addr);
763 if (p4d_none(*p4d))
764 return NULL;
765 if (p4d_leaf(*p4d))
766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 return NULL;
769
770 pud = pud_offset(p4d, addr);
771 if (pud_none(*pud))
772 return NULL;
773 if (pud_leaf(*pud))
774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 if (WARN_ON_ONCE(pud_bad(*pud)))
776 return NULL;
777
778 pmd = pmd_offset(pud, addr);
779 if (pmd_none(*pmd))
780 return NULL;
781 if (pmd_leaf(*pmd))
782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 return NULL;
785
786 ptep = pte_offset_kernel(pmd, addr);
787 pte = ptep_get(ptep);
788 if (pte_present(pte))
789 page = pte_page(pte);
790
791 return page;
792}
793EXPORT_SYMBOL(vmalloc_to_page);
794
795/*
796 * Map a vmalloc()-space virtual address to the physical page frame number.
797 */
798unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799{
800 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801}
802EXPORT_SYMBOL(vmalloc_to_pfn);
803
804
805/*** Global kva allocator ***/
806
807#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809
810
811static DEFINE_SPINLOCK(free_vmap_area_lock);
812static bool vmap_initialized __read_mostly;
813
814/*
815 * This kmem_cache is used for vmap_area objects. Instead of
816 * allocating from slab we reuse an object from this cache to
817 * make things faster. Especially in "no edge" splitting of
818 * free block.
819 */
820static struct kmem_cache *vmap_area_cachep;
821
822/*
823 * This linked list is used in pair with free_vmap_area_root.
824 * It gives O(1) access to prev/next to perform fast coalescing.
825 */
826static LIST_HEAD(free_vmap_area_list);
827
828/*
829 * This augment red-black tree represents the free vmap space.
830 * All vmap_area objects in this tree are sorted by va->va_start
831 * address. It is used for allocation and merging when a vmap
832 * object is released.
833 *
834 * Each vmap_area node contains a maximum available free block
835 * of its sub-tree, right or left. Therefore it is possible to
836 * find a lowest match of free area.
837 */
838static struct rb_root free_vmap_area_root = RB_ROOT;
839
840/*
841 * Preload a CPU with one object for "no edge" split case. The
842 * aim is to get rid of allocations from the atomic context, thus
843 * to use more permissive allocation masks.
844 */
845static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846
847/*
848 * This structure defines a single, solid model where a list and
849 * rb-tree are part of one entity protected by the lock. Nodes are
850 * sorted in ascending order, thus for O(1) access to left/right
851 * neighbors a list is used as well as for sequential traversal.
852 */
853struct rb_list {
854 struct rb_root root;
855 struct list_head head;
856 spinlock_t lock;
857};
858
859/*
860 * A fast size storage contains VAs up to 1M size. A pool consists
861 * of linked between each other ready to go VAs of certain sizes.
862 * An index in the pool-array corresponds to number of pages + 1.
863 */
864#define MAX_VA_SIZE_PAGES 256
865
866struct vmap_pool {
867 struct list_head head;
868 unsigned long len;
869};
870
871/*
872 * An effective vmap-node logic. Users make use of nodes instead
873 * of a global heap. It allows to balance an access and mitigate
874 * contention.
875 */
876static struct vmap_node {
877 /* Simple size segregated storage. */
878 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 spinlock_t pool_lock;
880 bool skip_populate;
881
882 /* Bookkeeping data of this node. */
883 struct rb_list busy;
884 struct rb_list lazy;
885
886 /*
887 * Ready-to-free areas.
888 */
889 struct list_head purge_list;
890 struct work_struct purge_work;
891 unsigned long nr_purged;
892} single;
893
894/*
895 * Initial setup consists of one single node, i.e. a balancing
896 * is fully disabled. Later on, after vmap is initialized these
897 * parameters are updated based on a system capacity.
898 */
899static struct vmap_node *vmap_nodes = &single;
900static __read_mostly unsigned int nr_vmap_nodes = 1;
901static __read_mostly unsigned int vmap_zone_size = 1;
902
903static inline unsigned int
904addr_to_node_id(unsigned long addr)
905{
906 return (addr / vmap_zone_size) % nr_vmap_nodes;
907}
908
909static inline struct vmap_node *
910addr_to_node(unsigned long addr)
911{
912 return &vmap_nodes[addr_to_node_id(addr)];
913}
914
915static inline struct vmap_node *
916id_to_node(unsigned int id)
917{
918 return &vmap_nodes[id % nr_vmap_nodes];
919}
920
921/*
922 * We use the value 0 to represent "no node", that is why
923 * an encoded value will be the node-id incremented by 1.
924 * It is always greater then 0. A valid node_id which can
925 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926 * is not valid 0 is returned.
927 */
928static unsigned int
929encode_vn_id(unsigned int node_id)
930{
931 /* Can store U8_MAX [0:254] nodes. */
932 if (node_id < nr_vmap_nodes)
933 return (node_id + 1) << BITS_PER_BYTE;
934
935 /* Warn and no node encoded. */
936 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
937 return 0;
938}
939
940/*
941 * Returns an encoded node-id, the valid range is within
942 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943 * returned if extracted data is wrong.
944 */
945static unsigned int
946decode_vn_id(unsigned int val)
947{
948 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
949
950 /* Can store U8_MAX [0:254] nodes. */
951 if (node_id < nr_vmap_nodes)
952 return node_id;
953
954 /* If it was _not_ zero, warn. */
955 WARN_ONCE(node_id != UINT_MAX,
956 "Decode wrong node id (%d)\n", node_id);
957
958 return nr_vmap_nodes;
959}
960
961static bool
962is_vn_id_valid(unsigned int node_id)
963{
964 if (node_id < nr_vmap_nodes)
965 return true;
966
967 return false;
968}
969
970static __always_inline unsigned long
971va_size(struct vmap_area *va)
972{
973 return (va->va_end - va->va_start);
974}
975
976static __always_inline unsigned long
977get_subtree_max_size(struct rb_node *node)
978{
979 struct vmap_area *va;
980
981 va = rb_entry_safe(node, struct vmap_area, rb_node);
982 return va ? va->subtree_max_size : 0;
983}
984
985RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
986 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
987
988static void reclaim_and_purge_vmap_areas(void);
989static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
990static void drain_vmap_area_work(struct work_struct *work);
991static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
992
993static atomic_long_t nr_vmalloc_pages;
994
995unsigned long vmalloc_nr_pages(void)
996{
997 return atomic_long_read(&nr_vmalloc_pages);
998}
999
1000static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1001{
1002 struct rb_node *n = root->rb_node;
1003
1004 addr = (unsigned long)kasan_reset_tag((void *)addr);
1005
1006 while (n) {
1007 struct vmap_area *va;
1008
1009 va = rb_entry(n, struct vmap_area, rb_node);
1010 if (addr < va->va_start)
1011 n = n->rb_left;
1012 else if (addr >= va->va_end)
1013 n = n->rb_right;
1014 else
1015 return va;
1016 }
1017
1018 return NULL;
1019}
1020
1021/* Look up the first VA which satisfies addr < va_end, NULL if none. */
1022static struct vmap_area *
1023__find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1024{
1025 struct vmap_area *va = NULL;
1026 struct rb_node *n = root->rb_node;
1027
1028 addr = (unsigned long)kasan_reset_tag((void *)addr);
1029
1030 while (n) {
1031 struct vmap_area *tmp;
1032
1033 tmp = rb_entry(n, struct vmap_area, rb_node);
1034 if (tmp->va_end > addr) {
1035 va = tmp;
1036 if (tmp->va_start <= addr)
1037 break;
1038
1039 n = n->rb_left;
1040 } else
1041 n = n->rb_right;
1042 }
1043
1044 return va;
1045}
1046
1047/*
1048 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049 * If success, a node is locked. A user is responsible to unlock it when a
1050 * VA is no longer needed to be accessed.
1051 *
1052 * Returns NULL if nothing found.
1053 */
1054static struct vmap_node *
1055find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1056{
1057 unsigned long va_start_lowest;
1058 struct vmap_node *vn;
1059 int i;
1060
1061repeat:
1062 for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1063 vn = &vmap_nodes[i];
1064
1065 spin_lock(&vn->busy.lock);
1066 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1067
1068 if (*va)
1069 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1070 va_start_lowest = (*va)->va_start;
1071 spin_unlock(&vn->busy.lock);
1072 }
1073
1074 /*
1075 * Check if found VA exists, it might have gone away. In this case we
1076 * repeat the search because a VA has been removed concurrently and we
1077 * need to proceed to the next one, which is a rare case.
1078 */
1079 if (va_start_lowest) {
1080 vn = addr_to_node(va_start_lowest);
1081
1082 spin_lock(&vn->busy.lock);
1083 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1084
1085 if (*va)
1086 return vn;
1087
1088 spin_unlock(&vn->busy.lock);
1089 goto repeat;
1090 }
1091
1092 return NULL;
1093}
1094
1095/*
1096 * This function returns back addresses of parent node
1097 * and its left or right link for further processing.
1098 *
1099 * Otherwise NULL is returned. In that case all further
1100 * steps regarding inserting of conflicting overlap range
1101 * have to be declined and actually considered as a bug.
1102 */
1103static __always_inline struct rb_node **
1104find_va_links(struct vmap_area *va,
1105 struct rb_root *root, struct rb_node *from,
1106 struct rb_node **parent)
1107{
1108 struct vmap_area *tmp_va;
1109 struct rb_node **link;
1110
1111 if (root) {
1112 link = &root->rb_node;
1113 if (unlikely(!*link)) {
1114 *parent = NULL;
1115 return link;
1116 }
1117 } else {
1118 link = &from;
1119 }
1120
1121 /*
1122 * Go to the bottom of the tree. When we hit the last point
1123 * we end up with parent rb_node and correct direction, i name
1124 * it link, where the new va->rb_node will be attached to.
1125 */
1126 do {
1127 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1128
1129 /*
1130 * During the traversal we also do some sanity check.
1131 * Trigger the BUG() if there are sides(left/right)
1132 * or full overlaps.
1133 */
1134 if (va->va_end <= tmp_va->va_start)
1135 link = &(*link)->rb_left;
1136 else if (va->va_start >= tmp_va->va_end)
1137 link = &(*link)->rb_right;
1138 else {
1139 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1141
1142 return NULL;
1143 }
1144 } while (*link);
1145
1146 *parent = &tmp_va->rb_node;
1147 return link;
1148}
1149
1150static __always_inline struct list_head *
1151get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1152{
1153 struct list_head *list;
1154
1155 if (unlikely(!parent))
1156 /*
1157 * The red-black tree where we try to find VA neighbors
1158 * before merging or inserting is empty, i.e. it means
1159 * there is no free vmap space. Normally it does not
1160 * happen but we handle this case anyway.
1161 */
1162 return NULL;
1163
1164 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1165 return (&parent->rb_right == link ? list->next : list);
1166}
1167
1168static __always_inline void
1169__link_va(struct vmap_area *va, struct rb_root *root,
1170 struct rb_node *parent, struct rb_node **link,
1171 struct list_head *head, bool augment)
1172{
1173 /*
1174 * VA is still not in the list, but we can
1175 * identify its future previous list_head node.
1176 */
1177 if (likely(parent)) {
1178 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1179 if (&parent->rb_right != link)
1180 head = head->prev;
1181 }
1182
1183 /* Insert to the rb-tree */
1184 rb_link_node(&va->rb_node, parent, link);
1185 if (augment) {
1186 /*
1187 * Some explanation here. Just perform simple insertion
1188 * to the tree. We do not set va->subtree_max_size to
1189 * its current size before calling rb_insert_augmented().
1190 * It is because we populate the tree from the bottom
1191 * to parent levels when the node _is_ in the tree.
1192 *
1193 * Therefore we set subtree_max_size to zero after insertion,
1194 * to let __augment_tree_propagate_from() puts everything to
1195 * the correct order later on.
1196 */
1197 rb_insert_augmented(&va->rb_node,
1198 root, &free_vmap_area_rb_augment_cb);
1199 va->subtree_max_size = 0;
1200 } else {
1201 rb_insert_color(&va->rb_node, root);
1202 }
1203
1204 /* Address-sort this list */
1205 list_add(&va->list, head);
1206}
1207
1208static __always_inline void
1209link_va(struct vmap_area *va, struct rb_root *root,
1210 struct rb_node *parent, struct rb_node **link,
1211 struct list_head *head)
1212{
1213 __link_va(va, root, parent, link, head, false);
1214}
1215
1216static __always_inline void
1217link_va_augment(struct vmap_area *va, struct rb_root *root,
1218 struct rb_node *parent, struct rb_node **link,
1219 struct list_head *head)
1220{
1221 __link_va(va, root, parent, link, head, true);
1222}
1223
1224static __always_inline void
1225__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1226{
1227 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1228 return;
1229
1230 if (augment)
1231 rb_erase_augmented(&va->rb_node,
1232 root, &free_vmap_area_rb_augment_cb);
1233 else
1234 rb_erase(&va->rb_node, root);
1235
1236 list_del_init(&va->list);
1237 RB_CLEAR_NODE(&va->rb_node);
1238}
1239
1240static __always_inline void
1241unlink_va(struct vmap_area *va, struct rb_root *root)
1242{
1243 __unlink_va(va, root, false);
1244}
1245
1246static __always_inline void
1247unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1248{
1249 __unlink_va(va, root, true);
1250}
1251
1252#if DEBUG_AUGMENT_PROPAGATE_CHECK
1253/*
1254 * Gets called when remove the node and rotate.
1255 */
1256static __always_inline unsigned long
1257compute_subtree_max_size(struct vmap_area *va)
1258{
1259 return max3(va_size(va),
1260 get_subtree_max_size(va->rb_node.rb_left),
1261 get_subtree_max_size(va->rb_node.rb_right));
1262}
1263
1264static void
1265augment_tree_propagate_check(void)
1266{
1267 struct vmap_area *va;
1268 unsigned long computed_size;
1269
1270 list_for_each_entry(va, &free_vmap_area_list, list) {
1271 computed_size = compute_subtree_max_size(va);
1272 if (computed_size != va->subtree_max_size)
1273 pr_emerg("tree is corrupted: %lu, %lu\n",
1274 va_size(va), va->subtree_max_size);
1275 }
1276}
1277#endif
1278
1279/*
1280 * This function populates subtree_max_size from bottom to upper
1281 * levels starting from VA point. The propagation must be done
1282 * when VA size is modified by changing its va_start/va_end. Or
1283 * in case of newly inserting of VA to the tree.
1284 *
1285 * It means that __augment_tree_propagate_from() must be called:
1286 * - After VA has been inserted to the tree(free path);
1287 * - After VA has been shrunk(allocation path);
1288 * - After VA has been increased(merging path).
1289 *
1290 * Please note that, it does not mean that upper parent nodes
1291 * and their subtree_max_size are recalculated all the time up
1292 * to the root node.
1293 *
1294 * 4--8
1295 * /\
1296 * / \
1297 * / \
1298 * 2--2 8--8
1299 *
1300 * For example if we modify the node 4, shrinking it to 2, then
1301 * no any modification is required. If we shrink the node 2 to 1
1302 * its subtree_max_size is updated only, and set to 1. If we shrink
1303 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304 * node becomes 4--6.
1305 */
1306static __always_inline void
1307augment_tree_propagate_from(struct vmap_area *va)
1308{
1309 /*
1310 * Populate the tree from bottom towards the root until
1311 * the calculated maximum available size of checked node
1312 * is equal to its current one.
1313 */
1314 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1315
1316#if DEBUG_AUGMENT_PROPAGATE_CHECK
1317 augment_tree_propagate_check();
1318#endif
1319}
1320
1321static void
1322insert_vmap_area(struct vmap_area *va,
1323 struct rb_root *root, struct list_head *head)
1324{
1325 struct rb_node **link;
1326 struct rb_node *parent;
1327
1328 link = find_va_links(va, root, NULL, &parent);
1329 if (link)
1330 link_va(va, root, parent, link, head);
1331}
1332
1333static void
1334insert_vmap_area_augment(struct vmap_area *va,
1335 struct rb_node *from, struct rb_root *root,
1336 struct list_head *head)
1337{
1338 struct rb_node **link;
1339 struct rb_node *parent;
1340
1341 if (from)
1342 link = find_va_links(va, NULL, from, &parent);
1343 else
1344 link = find_va_links(va, root, NULL, &parent);
1345
1346 if (link) {
1347 link_va_augment(va, root, parent, link, head);
1348 augment_tree_propagate_from(va);
1349 }
1350}
1351
1352/*
1353 * Merge de-allocated chunk of VA memory with previous
1354 * and next free blocks. If coalesce is not done a new
1355 * free area is inserted. If VA has been merged, it is
1356 * freed.
1357 *
1358 * Please note, it can return NULL in case of overlap
1359 * ranges, followed by WARN() report. Despite it is a
1360 * buggy behaviour, a system can be alive and keep
1361 * ongoing.
1362 */
1363static __always_inline struct vmap_area *
1364__merge_or_add_vmap_area(struct vmap_area *va,
1365 struct rb_root *root, struct list_head *head, bool augment)
1366{
1367 struct vmap_area *sibling;
1368 struct list_head *next;
1369 struct rb_node **link;
1370 struct rb_node *parent;
1371 bool merged = false;
1372
1373 /*
1374 * Find a place in the tree where VA potentially will be
1375 * inserted, unless it is merged with its sibling/siblings.
1376 */
1377 link = find_va_links(va, root, NULL, &parent);
1378 if (!link)
1379 return NULL;
1380
1381 /*
1382 * Get next node of VA to check if merging can be done.
1383 */
1384 next = get_va_next_sibling(parent, link);
1385 if (unlikely(next == NULL))
1386 goto insert;
1387
1388 /*
1389 * start end
1390 * | |
1391 * |<------VA------>|<-----Next----->|
1392 * | |
1393 * start end
1394 */
1395 if (next != head) {
1396 sibling = list_entry(next, struct vmap_area, list);
1397 if (sibling->va_start == va->va_end) {
1398 sibling->va_start = va->va_start;
1399
1400 /* Free vmap_area object. */
1401 kmem_cache_free(vmap_area_cachep, va);
1402
1403 /* Point to the new merged area. */
1404 va = sibling;
1405 merged = true;
1406 }
1407 }
1408
1409 /*
1410 * start end
1411 * | |
1412 * |<-----Prev----->|<------VA------>|
1413 * | |
1414 * start end
1415 */
1416 if (next->prev != head) {
1417 sibling = list_entry(next->prev, struct vmap_area, list);
1418 if (sibling->va_end == va->va_start) {
1419 /*
1420 * If both neighbors are coalesced, it is important
1421 * to unlink the "next" node first, followed by merging
1422 * with "previous" one. Otherwise the tree might not be
1423 * fully populated if a sibling's augmented value is
1424 * "normalized" because of rotation operations.
1425 */
1426 if (merged)
1427 __unlink_va(va, root, augment);
1428
1429 sibling->va_end = va->va_end;
1430
1431 /* Free vmap_area object. */
1432 kmem_cache_free(vmap_area_cachep, va);
1433
1434 /* Point to the new merged area. */
1435 va = sibling;
1436 merged = true;
1437 }
1438 }
1439
1440insert:
1441 if (!merged)
1442 __link_va(va, root, parent, link, head, augment);
1443
1444 return va;
1445}
1446
1447static __always_inline struct vmap_area *
1448merge_or_add_vmap_area(struct vmap_area *va,
1449 struct rb_root *root, struct list_head *head)
1450{
1451 return __merge_or_add_vmap_area(va, root, head, false);
1452}
1453
1454static __always_inline struct vmap_area *
1455merge_or_add_vmap_area_augment(struct vmap_area *va,
1456 struct rb_root *root, struct list_head *head)
1457{
1458 va = __merge_or_add_vmap_area(va, root, head, true);
1459 if (va)
1460 augment_tree_propagate_from(va);
1461
1462 return va;
1463}
1464
1465static __always_inline bool
1466is_within_this_va(struct vmap_area *va, unsigned long size,
1467 unsigned long align, unsigned long vstart)
1468{
1469 unsigned long nva_start_addr;
1470
1471 if (va->va_start > vstart)
1472 nva_start_addr = ALIGN(va->va_start, align);
1473 else
1474 nva_start_addr = ALIGN(vstart, align);
1475
1476 /* Can be overflowed due to big size or alignment. */
1477 if (nva_start_addr + size < nva_start_addr ||
1478 nva_start_addr < vstart)
1479 return false;
1480
1481 return (nva_start_addr + size <= va->va_end);
1482}
1483
1484/*
1485 * Find the first free block(lowest start address) in the tree,
1486 * that will accomplish the request corresponding to passing
1487 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488 * a search length is adjusted to account for worst case alignment
1489 * overhead.
1490 */
1491static __always_inline struct vmap_area *
1492find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1493 unsigned long align, unsigned long vstart, bool adjust_search_size)
1494{
1495 struct vmap_area *va;
1496 struct rb_node *node;
1497 unsigned long length;
1498
1499 /* Start from the root. */
1500 node = root->rb_node;
1501
1502 /* Adjust the search size for alignment overhead. */
1503 length = adjust_search_size ? size + align - 1 : size;
1504
1505 while (node) {
1506 va = rb_entry(node, struct vmap_area, rb_node);
1507
1508 if (get_subtree_max_size(node->rb_left) >= length &&
1509 vstart < va->va_start) {
1510 node = node->rb_left;
1511 } else {
1512 if (is_within_this_va(va, size, align, vstart))
1513 return va;
1514
1515 /*
1516 * Does not make sense to go deeper towards the right
1517 * sub-tree if it does not have a free block that is
1518 * equal or bigger to the requested search length.
1519 */
1520 if (get_subtree_max_size(node->rb_right) >= length) {
1521 node = node->rb_right;
1522 continue;
1523 }
1524
1525 /*
1526 * OK. We roll back and find the first right sub-tree,
1527 * that will satisfy the search criteria. It can happen
1528 * due to "vstart" restriction or an alignment overhead
1529 * that is bigger then PAGE_SIZE.
1530 */
1531 while ((node = rb_parent(node))) {
1532 va = rb_entry(node, struct vmap_area, rb_node);
1533 if (is_within_this_va(va, size, align, vstart))
1534 return va;
1535
1536 if (get_subtree_max_size(node->rb_right) >= length &&
1537 vstart <= va->va_start) {
1538 /*
1539 * Shift the vstart forward. Please note, we update it with
1540 * parent's start address adding "1" because we do not want
1541 * to enter same sub-tree after it has already been checked
1542 * and no suitable free block found there.
1543 */
1544 vstart = va->va_start + 1;
1545 node = node->rb_right;
1546 break;
1547 }
1548 }
1549 }
1550 }
1551
1552 return NULL;
1553}
1554
1555#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556#include <linux/random.h>
1557
1558static struct vmap_area *
1559find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1560 unsigned long align, unsigned long vstart)
1561{
1562 struct vmap_area *va;
1563
1564 list_for_each_entry(va, head, list) {
1565 if (!is_within_this_va(va, size, align, vstart))
1566 continue;
1567
1568 return va;
1569 }
1570
1571 return NULL;
1572}
1573
1574static void
1575find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1576 unsigned long size, unsigned long align)
1577{
1578 struct vmap_area *va_1, *va_2;
1579 unsigned long vstart;
1580 unsigned int rnd;
1581
1582 get_random_bytes(&rnd, sizeof(rnd));
1583 vstart = VMALLOC_START + rnd;
1584
1585 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1586 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1587
1588 if (va_1 != va_2)
1589 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590 va_1, va_2, vstart);
1591}
1592#endif
1593
1594enum fit_type {
1595 NOTHING_FIT = 0,
1596 FL_FIT_TYPE = 1, /* full fit */
1597 LE_FIT_TYPE = 2, /* left edge fit */
1598 RE_FIT_TYPE = 3, /* right edge fit */
1599 NE_FIT_TYPE = 4 /* no edge fit */
1600};
1601
1602static __always_inline enum fit_type
1603classify_va_fit_type(struct vmap_area *va,
1604 unsigned long nva_start_addr, unsigned long size)
1605{
1606 enum fit_type type;
1607
1608 /* Check if it is within VA. */
1609 if (nva_start_addr < va->va_start ||
1610 nva_start_addr + size > va->va_end)
1611 return NOTHING_FIT;
1612
1613 /* Now classify. */
1614 if (va->va_start == nva_start_addr) {
1615 if (va->va_end == nva_start_addr + size)
1616 type = FL_FIT_TYPE;
1617 else
1618 type = LE_FIT_TYPE;
1619 } else if (va->va_end == nva_start_addr + size) {
1620 type = RE_FIT_TYPE;
1621 } else {
1622 type = NE_FIT_TYPE;
1623 }
1624
1625 return type;
1626}
1627
1628static __always_inline int
1629va_clip(struct rb_root *root, struct list_head *head,
1630 struct vmap_area *va, unsigned long nva_start_addr,
1631 unsigned long size)
1632{
1633 struct vmap_area *lva = NULL;
1634 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1635
1636 if (type == FL_FIT_TYPE) {
1637 /*
1638 * No need to split VA, it fully fits.
1639 *
1640 * | |
1641 * V NVA V
1642 * |---------------|
1643 */
1644 unlink_va_augment(va, root);
1645 kmem_cache_free(vmap_area_cachep, va);
1646 } else if (type == LE_FIT_TYPE) {
1647 /*
1648 * Split left edge of fit VA.
1649 *
1650 * | |
1651 * V NVA V R
1652 * |-------|-------|
1653 */
1654 va->va_start += size;
1655 } else if (type == RE_FIT_TYPE) {
1656 /*
1657 * Split right edge of fit VA.
1658 *
1659 * | |
1660 * L V NVA V
1661 * |-------|-------|
1662 */
1663 va->va_end = nva_start_addr;
1664 } else if (type == NE_FIT_TYPE) {
1665 /*
1666 * Split no edge of fit VA.
1667 *
1668 * | |
1669 * L V NVA V R
1670 * |---|-------|---|
1671 */
1672 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1673 if (unlikely(!lva)) {
1674 /*
1675 * For percpu allocator we do not do any pre-allocation
1676 * and leave it as it is. The reason is it most likely
1677 * never ends up with NE_FIT_TYPE splitting. In case of
1678 * percpu allocations offsets and sizes are aligned to
1679 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680 * are its main fitting cases.
1681 *
1682 * There are a few exceptions though, as an example it is
1683 * a first allocation (early boot up) when we have "one"
1684 * big free space that has to be split.
1685 *
1686 * Also we can hit this path in case of regular "vmap"
1687 * allocations, if "this" current CPU was not preloaded.
1688 * See the comment in alloc_vmap_area() why. If so, then
1689 * GFP_NOWAIT is used instead to get an extra object for
1690 * split purpose. That is rare and most time does not
1691 * occur.
1692 *
1693 * What happens if an allocation gets failed. Basically,
1694 * an "overflow" path is triggered to purge lazily freed
1695 * areas to free some memory, then, the "retry" path is
1696 * triggered to repeat one more time. See more details
1697 * in alloc_vmap_area() function.
1698 */
1699 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1700 if (!lva)
1701 return -1;
1702 }
1703
1704 /*
1705 * Build the remainder.
1706 */
1707 lva->va_start = va->va_start;
1708 lva->va_end = nva_start_addr;
1709
1710 /*
1711 * Shrink this VA to remaining size.
1712 */
1713 va->va_start = nva_start_addr + size;
1714 } else {
1715 return -1;
1716 }
1717
1718 if (type != FL_FIT_TYPE) {
1719 augment_tree_propagate_from(va);
1720
1721 if (lva) /* type == NE_FIT_TYPE */
1722 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1723 }
1724
1725 return 0;
1726}
1727
1728static unsigned long
1729va_alloc(struct vmap_area *va,
1730 struct rb_root *root, struct list_head *head,
1731 unsigned long size, unsigned long align,
1732 unsigned long vstart, unsigned long vend)
1733{
1734 unsigned long nva_start_addr;
1735 int ret;
1736
1737 if (va->va_start > vstart)
1738 nva_start_addr = ALIGN(va->va_start, align);
1739 else
1740 nva_start_addr = ALIGN(vstart, align);
1741
1742 /* Check the "vend" restriction. */
1743 if (nva_start_addr + size > vend)
1744 return vend;
1745
1746 /* Update the free vmap_area. */
1747 ret = va_clip(root, head, va, nva_start_addr, size);
1748 if (WARN_ON_ONCE(ret))
1749 return vend;
1750
1751 return nva_start_addr;
1752}
1753
1754/*
1755 * Returns a start address of the newly allocated area, if success.
1756 * Otherwise a vend is returned that indicates failure.
1757 */
1758static __always_inline unsigned long
1759__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1760 unsigned long size, unsigned long align,
1761 unsigned long vstart, unsigned long vend)
1762{
1763 bool adjust_search_size = true;
1764 unsigned long nva_start_addr;
1765 struct vmap_area *va;
1766
1767 /*
1768 * Do not adjust when:
1769 * a) align <= PAGE_SIZE, because it does not make any sense.
1770 * All blocks(their start addresses) are at least PAGE_SIZE
1771 * aligned anyway;
1772 * b) a short range where a requested size corresponds to exactly
1773 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774 * With adjusted search length an allocation would not succeed.
1775 */
1776 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1777 adjust_search_size = false;
1778
1779 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1780 if (unlikely(!va))
1781 return vend;
1782
1783 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1784 if (nva_start_addr == vend)
1785 return vend;
1786
1787#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1788 find_vmap_lowest_match_check(root, head, size, align);
1789#endif
1790
1791 return nva_start_addr;
1792}
1793
1794/*
1795 * Free a region of KVA allocated by alloc_vmap_area
1796 */
1797static void free_vmap_area(struct vmap_area *va)
1798{
1799 struct vmap_node *vn = addr_to_node(va->va_start);
1800
1801 /*
1802 * Remove from the busy tree/list.
1803 */
1804 spin_lock(&vn->busy.lock);
1805 unlink_va(va, &vn->busy.root);
1806 spin_unlock(&vn->busy.lock);
1807
1808 /*
1809 * Insert/Merge it back to the free tree/list.
1810 */
1811 spin_lock(&free_vmap_area_lock);
1812 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1813 spin_unlock(&free_vmap_area_lock);
1814}
1815
1816static inline void
1817preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1818{
1819 struct vmap_area *va = NULL;
1820
1821 /*
1822 * Preload this CPU with one extra vmap_area object. It is used
1823 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824 * a CPU that does an allocation is preloaded.
1825 *
1826 * We do it in non-atomic context, thus it allows us to use more
1827 * permissive allocation masks to be more stable under low memory
1828 * condition and high memory pressure.
1829 */
1830 if (!this_cpu_read(ne_fit_preload_node))
1831 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1832
1833 spin_lock(lock);
1834
1835 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1836 kmem_cache_free(vmap_area_cachep, va);
1837}
1838
1839static struct vmap_pool *
1840size_to_va_pool(struct vmap_node *vn, unsigned long size)
1841{
1842 unsigned int idx = (size - 1) / PAGE_SIZE;
1843
1844 if (idx < MAX_VA_SIZE_PAGES)
1845 return &vn->pool[idx];
1846
1847 return NULL;
1848}
1849
1850static bool
1851node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1852{
1853 struct vmap_pool *vp;
1854
1855 vp = size_to_va_pool(n, va_size(va));
1856 if (!vp)
1857 return false;
1858
1859 spin_lock(&n->pool_lock);
1860 list_add(&va->list, &vp->head);
1861 WRITE_ONCE(vp->len, vp->len + 1);
1862 spin_unlock(&n->pool_lock);
1863
1864 return true;
1865}
1866
1867static struct vmap_area *
1868node_pool_del_va(struct vmap_node *vn, unsigned long size,
1869 unsigned long align, unsigned long vstart,
1870 unsigned long vend)
1871{
1872 struct vmap_area *va = NULL;
1873 struct vmap_pool *vp;
1874 int err = 0;
1875
1876 vp = size_to_va_pool(vn, size);
1877 if (!vp || list_empty(&vp->head))
1878 return NULL;
1879
1880 spin_lock(&vn->pool_lock);
1881 if (!list_empty(&vp->head)) {
1882 va = list_first_entry(&vp->head, struct vmap_area, list);
1883
1884 if (IS_ALIGNED(va->va_start, align)) {
1885 /*
1886 * Do some sanity check and emit a warning
1887 * if one of below checks detects an error.
1888 */
1889 err |= (va_size(va) != size);
1890 err |= (va->va_start < vstart);
1891 err |= (va->va_end > vend);
1892
1893 if (!WARN_ON_ONCE(err)) {
1894 list_del_init(&va->list);
1895 WRITE_ONCE(vp->len, vp->len - 1);
1896 } else {
1897 va = NULL;
1898 }
1899 } else {
1900 list_move_tail(&va->list, &vp->head);
1901 va = NULL;
1902 }
1903 }
1904 spin_unlock(&vn->pool_lock);
1905
1906 return va;
1907}
1908
1909static struct vmap_area *
1910node_alloc(unsigned long size, unsigned long align,
1911 unsigned long vstart, unsigned long vend,
1912 unsigned long *addr, unsigned int *vn_id)
1913{
1914 struct vmap_area *va;
1915
1916 *vn_id = 0;
1917 *addr = vend;
1918
1919 /*
1920 * Fallback to a global heap if not vmalloc or there
1921 * is only one node.
1922 */
1923 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1924 nr_vmap_nodes == 1)
1925 return NULL;
1926
1927 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1928 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1929 *vn_id = encode_vn_id(*vn_id);
1930
1931 if (va)
1932 *addr = va->va_start;
1933
1934 return va;
1935}
1936
1937static inline void setup_vmalloc_vm(struct vm_struct *vm,
1938 struct vmap_area *va, unsigned long flags, const void *caller)
1939{
1940 vm->flags = flags;
1941 vm->addr = (void *)va->va_start;
1942 vm->size = va->va_end - va->va_start;
1943 vm->caller = caller;
1944 va->vm = vm;
1945}
1946
1947/*
1948 * Allocate a region of KVA of the specified size and alignment, within the
1949 * vstart and vend. If vm is passed in, the two will also be bound.
1950 */
1951static struct vmap_area *alloc_vmap_area(unsigned long size,
1952 unsigned long align,
1953 unsigned long vstart, unsigned long vend,
1954 int node, gfp_t gfp_mask,
1955 unsigned long va_flags, struct vm_struct *vm)
1956{
1957 struct vmap_node *vn;
1958 struct vmap_area *va;
1959 unsigned long freed;
1960 unsigned long addr;
1961 unsigned int vn_id;
1962 int purged = 0;
1963 int ret;
1964
1965 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1966 return ERR_PTR(-EINVAL);
1967
1968 if (unlikely(!vmap_initialized))
1969 return ERR_PTR(-EBUSY);
1970
1971 might_sleep();
1972
1973 /*
1974 * If a VA is obtained from a global heap(if it fails here)
1975 * it is anyway marked with this "vn_id" so it is returned
1976 * to this pool's node later. Such way gives a possibility
1977 * to populate pools based on users demand.
1978 *
1979 * On success a ready to go VA is returned.
1980 */
1981 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1982 if (!va) {
1983 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1984
1985 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1986 if (unlikely(!va))
1987 return ERR_PTR(-ENOMEM);
1988
1989 /*
1990 * Only scan the relevant parts containing pointers to other objects
1991 * to avoid false negatives.
1992 */
1993 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1994 }
1995
1996retry:
1997 if (addr == vend) {
1998 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1999 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2000 size, align, vstart, vend);
2001 spin_unlock(&free_vmap_area_lock);
2002 }
2003
2004 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2005
2006 /*
2007 * If an allocation fails, the "vend" address is
2008 * returned. Therefore trigger the overflow path.
2009 */
2010 if (unlikely(addr == vend))
2011 goto overflow;
2012
2013 va->va_start = addr;
2014 va->va_end = addr + size;
2015 va->vm = NULL;
2016 va->flags = (va_flags | vn_id);
2017
2018 if (vm) {
2019 vm->addr = (void *)va->va_start;
2020 vm->size = va->va_end - va->va_start;
2021 va->vm = vm;
2022 }
2023
2024 vn = addr_to_node(va->va_start);
2025
2026 spin_lock(&vn->busy.lock);
2027 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2028 spin_unlock(&vn->busy.lock);
2029
2030 BUG_ON(!IS_ALIGNED(va->va_start, align));
2031 BUG_ON(va->va_start < vstart);
2032 BUG_ON(va->va_end > vend);
2033
2034 ret = kasan_populate_vmalloc(addr, size);
2035 if (ret) {
2036 free_vmap_area(va);
2037 return ERR_PTR(ret);
2038 }
2039
2040 return va;
2041
2042overflow:
2043 if (!purged) {
2044 reclaim_and_purge_vmap_areas();
2045 purged = 1;
2046 goto retry;
2047 }
2048
2049 freed = 0;
2050 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2051
2052 if (freed > 0) {
2053 purged = 0;
2054 goto retry;
2055 }
2056
2057 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2058 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
2059 size);
2060
2061 kmem_cache_free(vmap_area_cachep, va);
2062 return ERR_PTR(-EBUSY);
2063}
2064
2065int register_vmap_purge_notifier(struct notifier_block *nb)
2066{
2067 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2068}
2069EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2070
2071int unregister_vmap_purge_notifier(struct notifier_block *nb)
2072{
2073 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2074}
2075EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2076
2077/*
2078 * lazy_max_pages is the maximum amount of virtual address space we gather up
2079 * before attempting to purge with a TLB flush.
2080 *
2081 * There is a tradeoff here: a larger number will cover more kernel page tables
2082 * and take slightly longer to purge, but it will linearly reduce the number of
2083 * global TLB flushes that must be performed. It would seem natural to scale
2084 * this number up linearly with the number of CPUs (because vmapping activity
2085 * could also scale linearly with the number of CPUs), however it is likely
2086 * that in practice, workloads might be constrained in other ways that mean
2087 * vmap activity will not scale linearly with CPUs. Also, I want to be
2088 * conservative and not introduce a big latency on huge systems, so go with
2089 * a less aggressive log scale. It will still be an improvement over the old
2090 * code, and it will be simple to change the scale factor if we find that it
2091 * becomes a problem on bigger systems.
2092 */
2093static unsigned long lazy_max_pages(void)
2094{
2095 unsigned int log;
2096
2097 log = fls(num_online_cpus());
2098
2099 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2100}
2101
2102static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2103
2104/*
2105 * Serialize vmap purging. There is no actual critical section protected
2106 * by this lock, but we want to avoid concurrent calls for performance
2107 * reasons and to make the pcpu_get_vm_areas more deterministic.
2108 */
2109static DEFINE_MUTEX(vmap_purge_lock);
2110
2111/* for per-CPU blocks */
2112static void purge_fragmented_blocks_allcpus(void);
2113static cpumask_t purge_nodes;
2114
2115static void
2116reclaim_list_global(struct list_head *head)
2117{
2118 struct vmap_area *va, *n;
2119
2120 if (list_empty(head))
2121 return;
2122
2123 spin_lock(&free_vmap_area_lock);
2124 list_for_each_entry_safe(va, n, head, list)
2125 merge_or_add_vmap_area_augment(va,
2126 &free_vmap_area_root, &free_vmap_area_list);
2127 spin_unlock(&free_vmap_area_lock);
2128}
2129
2130static void
2131decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2132{
2133 struct vmap_area *va, *nva;
2134 struct list_head decay_list;
2135 struct rb_root decay_root;
2136 unsigned long n_decay;
2137 int i;
2138
2139 decay_root = RB_ROOT;
2140 INIT_LIST_HEAD(&decay_list);
2141
2142 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2143 struct list_head tmp_list;
2144
2145 if (list_empty(&vn->pool[i].head))
2146 continue;
2147
2148 INIT_LIST_HEAD(&tmp_list);
2149
2150 /* Detach the pool, so no-one can access it. */
2151 spin_lock(&vn->pool_lock);
2152 list_replace_init(&vn->pool[i].head, &tmp_list);
2153 spin_unlock(&vn->pool_lock);
2154
2155 if (full_decay)
2156 WRITE_ONCE(vn->pool[i].len, 0);
2157
2158 /* Decay a pool by ~25% out of left objects. */
2159 n_decay = vn->pool[i].len >> 2;
2160
2161 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2162 list_del_init(&va->list);
2163 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2164
2165 if (!full_decay) {
2166 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2167
2168 if (!--n_decay)
2169 break;
2170 }
2171 }
2172
2173 /*
2174 * Attach the pool back if it has been partly decayed.
2175 * Please note, it is supposed that nobody(other contexts)
2176 * can populate the pool therefore a simple list replace
2177 * operation takes place here.
2178 */
2179 if (!full_decay && !list_empty(&tmp_list)) {
2180 spin_lock(&vn->pool_lock);
2181 list_replace_init(&tmp_list, &vn->pool[i].head);
2182 spin_unlock(&vn->pool_lock);
2183 }
2184 }
2185
2186 reclaim_list_global(&decay_list);
2187}
2188
2189static void purge_vmap_node(struct work_struct *work)
2190{
2191 struct vmap_node *vn = container_of(work,
2192 struct vmap_node, purge_work);
2193 struct vmap_area *va, *n_va;
2194 LIST_HEAD(local_list);
2195
2196 vn->nr_purged = 0;
2197
2198 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2199 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
2200 unsigned long orig_start = va->va_start;
2201 unsigned long orig_end = va->va_end;
2202 unsigned int vn_id = decode_vn_id(va->flags);
2203
2204 list_del_init(&va->list);
2205
2206 if (is_vmalloc_or_module_addr((void *)orig_start))
2207 kasan_release_vmalloc(orig_start, orig_end,
2208 va->va_start, va->va_end);
2209
2210 atomic_long_sub(nr, &vmap_lazy_nr);
2211 vn->nr_purged++;
2212
2213 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2214 if (node_pool_add_va(vn, va))
2215 continue;
2216
2217 /* Go back to global. */
2218 list_add(&va->list, &local_list);
2219 }
2220
2221 reclaim_list_global(&local_list);
2222}
2223
2224/*
2225 * Purges all lazily-freed vmap areas.
2226 */
2227static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2228 bool full_pool_decay)
2229{
2230 unsigned long nr_purged_areas = 0;
2231 unsigned int nr_purge_helpers;
2232 unsigned int nr_purge_nodes;
2233 struct vmap_node *vn;
2234 int i;
2235
2236 lockdep_assert_held(&vmap_purge_lock);
2237
2238 /*
2239 * Use cpumask to mark which node has to be processed.
2240 */
2241 purge_nodes = CPU_MASK_NONE;
2242
2243 for (i = 0; i < nr_vmap_nodes; i++) {
2244 vn = &vmap_nodes[i];
2245
2246 INIT_LIST_HEAD(&vn->purge_list);
2247 vn->skip_populate = full_pool_decay;
2248 decay_va_pool_node(vn, full_pool_decay);
2249
2250 if (RB_EMPTY_ROOT(&vn->lazy.root))
2251 continue;
2252
2253 spin_lock(&vn->lazy.lock);
2254 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2255 list_replace_init(&vn->lazy.head, &vn->purge_list);
2256 spin_unlock(&vn->lazy.lock);
2257
2258 start = min(start, list_first_entry(&vn->purge_list,
2259 struct vmap_area, list)->va_start);
2260
2261 end = max(end, list_last_entry(&vn->purge_list,
2262 struct vmap_area, list)->va_end);
2263
2264 cpumask_set_cpu(i, &purge_nodes);
2265 }
2266
2267 nr_purge_nodes = cpumask_weight(&purge_nodes);
2268 if (nr_purge_nodes > 0) {
2269 flush_tlb_kernel_range(start, end);
2270
2271 /* One extra worker is per a lazy_max_pages() full set minus one. */
2272 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2273 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2274
2275 for_each_cpu(i, &purge_nodes) {
2276 vn = &vmap_nodes[i];
2277
2278 if (nr_purge_helpers > 0) {
2279 INIT_WORK(&vn->purge_work, purge_vmap_node);
2280
2281 if (cpumask_test_cpu(i, cpu_online_mask))
2282 schedule_work_on(i, &vn->purge_work);
2283 else
2284 schedule_work(&vn->purge_work);
2285
2286 nr_purge_helpers--;
2287 } else {
2288 vn->purge_work.func = NULL;
2289 purge_vmap_node(&vn->purge_work);
2290 nr_purged_areas += vn->nr_purged;
2291 }
2292 }
2293
2294 for_each_cpu(i, &purge_nodes) {
2295 vn = &vmap_nodes[i];
2296
2297 if (vn->purge_work.func) {
2298 flush_work(&vn->purge_work);
2299 nr_purged_areas += vn->nr_purged;
2300 }
2301 }
2302 }
2303
2304 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2305 return nr_purged_areas > 0;
2306}
2307
2308/*
2309 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2310 */
2311static void reclaim_and_purge_vmap_areas(void)
2312
2313{
2314 mutex_lock(&vmap_purge_lock);
2315 purge_fragmented_blocks_allcpus();
2316 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2317 mutex_unlock(&vmap_purge_lock);
2318}
2319
2320static void drain_vmap_area_work(struct work_struct *work)
2321{
2322 mutex_lock(&vmap_purge_lock);
2323 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2324 mutex_unlock(&vmap_purge_lock);
2325}
2326
2327/*
2328 * Free a vmap area, caller ensuring that the area has been unmapped,
2329 * unlinked and flush_cache_vunmap had been called for the correct
2330 * range previously.
2331 */
2332static void free_vmap_area_noflush(struct vmap_area *va)
2333{
2334 unsigned long nr_lazy_max = lazy_max_pages();
2335 unsigned long va_start = va->va_start;
2336 unsigned int vn_id = decode_vn_id(va->flags);
2337 struct vmap_node *vn;
2338 unsigned long nr_lazy;
2339
2340 if (WARN_ON_ONCE(!list_empty(&va->list)))
2341 return;
2342
2343 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2344 PAGE_SHIFT, &vmap_lazy_nr);
2345
2346 /*
2347 * If it was request by a certain node we would like to
2348 * return it to that node, i.e. its pool for later reuse.
2349 */
2350 vn = is_vn_id_valid(vn_id) ?
2351 id_to_node(vn_id):addr_to_node(va->va_start);
2352
2353 spin_lock(&vn->lazy.lock);
2354 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2355 spin_unlock(&vn->lazy.lock);
2356
2357 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2358
2359 /* After this point, we may free va at any time */
2360 if (unlikely(nr_lazy > nr_lazy_max))
2361 schedule_work(&drain_vmap_work);
2362}
2363
2364/*
2365 * Free and unmap a vmap area
2366 */
2367static void free_unmap_vmap_area(struct vmap_area *va)
2368{
2369 flush_cache_vunmap(va->va_start, va->va_end);
2370 vunmap_range_noflush(va->va_start, va->va_end);
2371 if (debug_pagealloc_enabled_static())
2372 flush_tlb_kernel_range(va->va_start, va->va_end);
2373
2374 free_vmap_area_noflush(va);
2375}
2376
2377struct vmap_area *find_vmap_area(unsigned long addr)
2378{
2379 struct vmap_node *vn;
2380 struct vmap_area *va;
2381 int i, j;
2382
2383 if (unlikely(!vmap_initialized))
2384 return NULL;
2385
2386 /*
2387 * An addr_to_node_id(addr) converts an address to a node index
2388 * where a VA is located. If VA spans several zones and passed
2389 * addr is not the same as va->va_start, what is not common, we
2390 * may need to scan extra nodes. See an example:
2391 *
2392 * <----va---->
2393 * -|-----|-----|-----|-----|-
2394 * 1 2 0 1
2395 *
2396 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2397 * addr is within 2 or 0 nodes we should do extra work.
2398 */
2399 i = j = addr_to_node_id(addr);
2400 do {
2401 vn = &vmap_nodes[i];
2402
2403 spin_lock(&vn->busy.lock);
2404 va = __find_vmap_area(addr, &vn->busy.root);
2405 spin_unlock(&vn->busy.lock);
2406
2407 if (va)
2408 return va;
2409 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2410
2411 return NULL;
2412}
2413
2414static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2415{
2416 struct vmap_node *vn;
2417 struct vmap_area *va;
2418 int i, j;
2419
2420 /*
2421 * Check the comment in the find_vmap_area() about the loop.
2422 */
2423 i = j = addr_to_node_id(addr);
2424 do {
2425 vn = &vmap_nodes[i];
2426
2427 spin_lock(&vn->busy.lock);
2428 va = __find_vmap_area(addr, &vn->busy.root);
2429 if (va)
2430 unlink_va(va, &vn->busy.root);
2431 spin_unlock(&vn->busy.lock);
2432
2433 if (va)
2434 return va;
2435 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2436
2437 return NULL;
2438}
2439
2440/*** Per cpu kva allocator ***/
2441
2442/*
2443 * vmap space is limited especially on 32 bit architectures. Ensure there is
2444 * room for at least 16 percpu vmap blocks per CPU.
2445 */
2446/*
2447 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2448 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2449 * instead (we just need a rough idea)
2450 */
2451#if BITS_PER_LONG == 32
2452#define VMALLOC_SPACE (128UL*1024*1024)
2453#else
2454#define VMALLOC_SPACE (128UL*1024*1024*1024)
2455#endif
2456
2457#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2458#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2459#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2460#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2461#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2462#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2463#define VMAP_BBMAP_BITS \
2464 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2465 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2466 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2467
2468#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2469
2470/*
2471 * Purge threshold to prevent overeager purging of fragmented blocks for
2472 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2473 */
2474#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2475
2476#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2477#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2478#define VMAP_FLAGS_MASK 0x3
2479
2480struct vmap_block_queue {
2481 spinlock_t lock;
2482 struct list_head free;
2483
2484 /*
2485 * An xarray requires an extra memory dynamically to
2486 * be allocated. If it is an issue, we can use rb-tree
2487 * instead.
2488 */
2489 struct xarray vmap_blocks;
2490};
2491
2492struct vmap_block {
2493 spinlock_t lock;
2494 struct vmap_area *va;
2495 unsigned long free, dirty;
2496 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2497 unsigned long dirty_min, dirty_max; /*< dirty range */
2498 struct list_head free_list;
2499 struct rcu_head rcu_head;
2500 struct list_head purge;
2501 unsigned int cpu;
2502};
2503
2504/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2505static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2506
2507/*
2508 * In order to fast access to any "vmap_block" associated with a
2509 * specific address, we use a hash.
2510 *
2511 * A per-cpu vmap_block_queue is used in both ways, to serialize
2512 * an access to free block chains among CPUs(alloc path) and it
2513 * also acts as a vmap_block hash(alloc/free paths). It means we
2514 * overload it, since we already have the per-cpu array which is
2515 * used as a hash table. When used as a hash a 'cpu' passed to
2516 * per_cpu() is not actually a CPU but rather a hash index.
2517 *
2518 * A hash function is addr_to_vb_xa() which hashes any address
2519 * to a specific index(in a hash) it belongs to. This then uses a
2520 * per_cpu() macro to access an array with generated index.
2521 *
2522 * An example:
2523 *
2524 * CPU_1 CPU_2 CPU_0
2525 * | | |
2526 * V V V
2527 * 0 10 20 30 40 50 60
2528 * |------|------|------|------|------|------|...<vmap address space>
2529 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2530 *
2531 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2532 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2533 *
2534 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2535 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2536 *
2537 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2538 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2539 *
2540 * This technique almost always avoids lock contention on insert/remove,
2541 * however xarray spinlocks protect against any contention that remains.
2542 */
2543static struct xarray *
2544addr_to_vb_xa(unsigned long addr)
2545{
2546 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
2547
2548 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2549}
2550
2551/*
2552 * We should probably have a fallback mechanism to allocate virtual memory
2553 * out of partially filled vmap blocks. However vmap block sizing should be
2554 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2555 * big problem.
2556 */
2557
2558static unsigned long addr_to_vb_idx(unsigned long addr)
2559{
2560 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2561 addr /= VMAP_BLOCK_SIZE;
2562 return addr;
2563}
2564
2565static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2566{
2567 unsigned long addr;
2568
2569 addr = va_start + (pages_off << PAGE_SHIFT);
2570 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2571 return (void *)addr;
2572}
2573
2574/**
2575 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2576 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2577 * @order: how many 2^order pages should be occupied in newly allocated block
2578 * @gfp_mask: flags for the page level allocator
2579 *
2580 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2581 */
2582static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2583{
2584 struct vmap_block_queue *vbq;
2585 struct vmap_block *vb;
2586 struct vmap_area *va;
2587 struct xarray *xa;
2588 unsigned long vb_idx;
2589 int node, err;
2590 void *vaddr;
2591
2592 node = numa_node_id();
2593
2594 vb = kmalloc_node(sizeof(struct vmap_block),
2595 gfp_mask & GFP_RECLAIM_MASK, node);
2596 if (unlikely(!vb))
2597 return ERR_PTR(-ENOMEM);
2598
2599 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2600 VMALLOC_START, VMALLOC_END,
2601 node, gfp_mask,
2602 VMAP_RAM|VMAP_BLOCK, NULL);
2603 if (IS_ERR(va)) {
2604 kfree(vb);
2605 return ERR_CAST(va);
2606 }
2607
2608 vaddr = vmap_block_vaddr(va->va_start, 0);
2609 spin_lock_init(&vb->lock);
2610 vb->va = va;
2611 /* At least something should be left free */
2612 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2613 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2614 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2615 vb->dirty = 0;
2616 vb->dirty_min = VMAP_BBMAP_BITS;
2617 vb->dirty_max = 0;
2618 bitmap_set(vb->used_map, 0, (1UL << order));
2619 INIT_LIST_HEAD(&vb->free_list);
2620
2621 xa = addr_to_vb_xa(va->va_start);
2622 vb_idx = addr_to_vb_idx(va->va_start);
2623 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2624 if (err) {
2625 kfree(vb);
2626 free_vmap_area(va);
2627 return ERR_PTR(err);
2628 }
2629 /*
2630 * list_add_tail_rcu could happened in another core
2631 * rather than vb->cpu due to task migration, which
2632 * is safe as list_add_tail_rcu will ensure the list's
2633 * integrity together with list_for_each_rcu from read
2634 * side.
2635 */
2636 vb->cpu = raw_smp_processor_id();
2637 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2638 spin_lock(&vbq->lock);
2639 list_add_tail_rcu(&vb->free_list, &vbq->free);
2640 spin_unlock(&vbq->lock);
2641
2642 return vaddr;
2643}
2644
2645static void free_vmap_block(struct vmap_block *vb)
2646{
2647 struct vmap_node *vn;
2648 struct vmap_block *tmp;
2649 struct xarray *xa;
2650
2651 xa = addr_to_vb_xa(vb->va->va_start);
2652 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2653 BUG_ON(tmp != vb);
2654
2655 vn = addr_to_node(vb->va->va_start);
2656 spin_lock(&vn->busy.lock);
2657 unlink_va(vb->va, &vn->busy.root);
2658 spin_unlock(&vn->busy.lock);
2659
2660 free_vmap_area_noflush(vb->va);
2661 kfree_rcu(vb, rcu_head);
2662}
2663
2664static bool purge_fragmented_block(struct vmap_block *vb,
2665 struct list_head *purge_list, bool force_purge)
2666{
2667 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2668
2669 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2670 vb->dirty == VMAP_BBMAP_BITS)
2671 return false;
2672
2673 /* Don't overeagerly purge usable blocks unless requested */
2674 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2675 return false;
2676
2677 /* prevent further allocs after releasing lock */
2678 WRITE_ONCE(vb->free, 0);
2679 /* prevent purging it again */
2680 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2681 vb->dirty_min = 0;
2682 vb->dirty_max = VMAP_BBMAP_BITS;
2683 spin_lock(&vbq->lock);
2684 list_del_rcu(&vb->free_list);
2685 spin_unlock(&vbq->lock);
2686 list_add_tail(&vb->purge, purge_list);
2687 return true;
2688}
2689
2690static void free_purged_blocks(struct list_head *purge_list)
2691{
2692 struct vmap_block *vb, *n_vb;
2693
2694 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2695 list_del(&vb->purge);
2696 free_vmap_block(vb);
2697 }
2698}
2699
2700static void purge_fragmented_blocks(int cpu)
2701{
2702 LIST_HEAD(purge);
2703 struct vmap_block *vb;
2704 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2705
2706 rcu_read_lock();
2707 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2708 unsigned long free = READ_ONCE(vb->free);
2709 unsigned long dirty = READ_ONCE(vb->dirty);
2710
2711 if (free + dirty != VMAP_BBMAP_BITS ||
2712 dirty == VMAP_BBMAP_BITS)
2713 continue;
2714
2715 spin_lock(&vb->lock);
2716 purge_fragmented_block(vb, &purge, true);
2717 spin_unlock(&vb->lock);
2718 }
2719 rcu_read_unlock();
2720 free_purged_blocks(&purge);
2721}
2722
2723static void purge_fragmented_blocks_allcpus(void)
2724{
2725 int cpu;
2726
2727 for_each_possible_cpu(cpu)
2728 purge_fragmented_blocks(cpu);
2729}
2730
2731static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2732{
2733 struct vmap_block_queue *vbq;
2734 struct vmap_block *vb;
2735 void *vaddr = NULL;
2736 unsigned int order;
2737
2738 BUG_ON(offset_in_page(size));
2739 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2740 if (WARN_ON(size == 0)) {
2741 /*
2742 * Allocating 0 bytes isn't what caller wants since
2743 * get_order(0) returns funny result. Just warn and terminate
2744 * early.
2745 */
2746 return ERR_PTR(-EINVAL);
2747 }
2748 order = get_order(size);
2749
2750 rcu_read_lock();
2751 vbq = raw_cpu_ptr(&vmap_block_queue);
2752 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2753 unsigned long pages_off;
2754
2755 if (READ_ONCE(vb->free) < (1UL << order))
2756 continue;
2757
2758 spin_lock(&vb->lock);
2759 if (vb->free < (1UL << order)) {
2760 spin_unlock(&vb->lock);
2761 continue;
2762 }
2763
2764 pages_off = VMAP_BBMAP_BITS - vb->free;
2765 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2766 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2767 bitmap_set(vb->used_map, pages_off, (1UL << order));
2768 if (vb->free == 0) {
2769 spin_lock(&vbq->lock);
2770 list_del_rcu(&vb->free_list);
2771 spin_unlock(&vbq->lock);
2772 }
2773
2774 spin_unlock(&vb->lock);
2775 break;
2776 }
2777
2778 rcu_read_unlock();
2779
2780 /* Allocate new block if nothing was found */
2781 if (!vaddr)
2782 vaddr = new_vmap_block(order, gfp_mask);
2783
2784 return vaddr;
2785}
2786
2787static void vb_free(unsigned long addr, unsigned long size)
2788{
2789 unsigned long offset;
2790 unsigned int order;
2791 struct vmap_block *vb;
2792 struct xarray *xa;
2793
2794 BUG_ON(offset_in_page(size));
2795 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2796
2797 flush_cache_vunmap(addr, addr + size);
2798
2799 order = get_order(size);
2800 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2801
2802 xa = addr_to_vb_xa(addr);
2803 vb = xa_load(xa, addr_to_vb_idx(addr));
2804
2805 spin_lock(&vb->lock);
2806 bitmap_clear(vb->used_map, offset, (1UL << order));
2807 spin_unlock(&vb->lock);
2808
2809 vunmap_range_noflush(addr, addr + size);
2810
2811 if (debug_pagealloc_enabled_static())
2812 flush_tlb_kernel_range(addr, addr + size);
2813
2814 spin_lock(&vb->lock);
2815
2816 /* Expand the not yet TLB flushed dirty range */
2817 vb->dirty_min = min(vb->dirty_min, offset);
2818 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2819
2820 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2821 if (vb->dirty == VMAP_BBMAP_BITS) {
2822 BUG_ON(vb->free);
2823 spin_unlock(&vb->lock);
2824 free_vmap_block(vb);
2825 } else
2826 spin_unlock(&vb->lock);
2827}
2828
2829static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2830{
2831 LIST_HEAD(purge_list);
2832 int cpu;
2833
2834 if (unlikely(!vmap_initialized))
2835 return;
2836
2837 mutex_lock(&vmap_purge_lock);
2838
2839 for_each_possible_cpu(cpu) {
2840 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2841 struct vmap_block *vb;
2842 unsigned long idx;
2843
2844 rcu_read_lock();
2845 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2846 spin_lock(&vb->lock);
2847
2848 /*
2849 * Try to purge a fragmented block first. If it's
2850 * not purgeable, check whether there is dirty
2851 * space to be flushed.
2852 */
2853 if (!purge_fragmented_block(vb, &purge_list, false) &&
2854 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2855 unsigned long va_start = vb->va->va_start;
2856 unsigned long s, e;
2857
2858 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2859 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2860
2861 start = min(s, start);
2862 end = max(e, end);
2863
2864 /* Prevent that this is flushed again */
2865 vb->dirty_min = VMAP_BBMAP_BITS;
2866 vb->dirty_max = 0;
2867
2868 flush = 1;
2869 }
2870 spin_unlock(&vb->lock);
2871 }
2872 rcu_read_unlock();
2873 }
2874 free_purged_blocks(&purge_list);
2875
2876 if (!__purge_vmap_area_lazy(start, end, false) && flush)
2877 flush_tlb_kernel_range(start, end);
2878 mutex_unlock(&vmap_purge_lock);
2879}
2880
2881/**
2882 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2883 *
2884 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2885 * to amortize TLB flushing overheads. What this means is that any page you
2886 * have now, may, in a former life, have been mapped into kernel virtual
2887 * address by the vmap layer and so there might be some CPUs with TLB entries
2888 * still referencing that page (additional to the regular 1:1 kernel mapping).
2889 *
2890 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2891 * be sure that none of the pages we have control over will have any aliases
2892 * from the vmap layer.
2893 */
2894void vm_unmap_aliases(void)
2895{
2896 unsigned long start = ULONG_MAX, end = 0;
2897 int flush = 0;
2898
2899 _vm_unmap_aliases(start, end, flush);
2900}
2901EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2902
2903/**
2904 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2905 * @mem: the pointer returned by vm_map_ram
2906 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2907 */
2908void vm_unmap_ram(const void *mem, unsigned int count)
2909{
2910 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2911 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2912 struct vmap_area *va;
2913
2914 might_sleep();
2915 BUG_ON(!addr);
2916 BUG_ON(addr < VMALLOC_START);
2917 BUG_ON(addr > VMALLOC_END);
2918 BUG_ON(!PAGE_ALIGNED(addr));
2919
2920 kasan_poison_vmalloc(mem, size);
2921
2922 if (likely(count <= VMAP_MAX_ALLOC)) {
2923 debug_check_no_locks_freed(mem, size);
2924 vb_free(addr, size);
2925 return;
2926 }
2927
2928 va = find_unlink_vmap_area(addr);
2929 if (WARN_ON_ONCE(!va))
2930 return;
2931
2932 debug_check_no_locks_freed((void *)va->va_start,
2933 (va->va_end - va->va_start));
2934 free_unmap_vmap_area(va);
2935}
2936EXPORT_SYMBOL(vm_unmap_ram);
2937
2938/**
2939 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2940 * @pages: an array of pointers to the pages to be mapped
2941 * @count: number of pages
2942 * @node: prefer to allocate data structures on this node
2943 *
2944 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2945 * faster than vmap so it's good. But if you mix long-life and short-life
2946 * objects with vm_map_ram(), it could consume lots of address space through
2947 * fragmentation (especially on a 32bit machine). You could see failures in
2948 * the end. Please use this function for short-lived objects.
2949 *
2950 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2951 */
2952void *vm_map_ram(struct page **pages, unsigned int count, int node)
2953{
2954 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2955 unsigned long addr;
2956 void *mem;
2957
2958 if (likely(count <= VMAP_MAX_ALLOC)) {
2959 mem = vb_alloc(size, GFP_KERNEL);
2960 if (IS_ERR(mem))
2961 return NULL;
2962 addr = (unsigned long)mem;
2963 } else {
2964 struct vmap_area *va;
2965 va = alloc_vmap_area(size, PAGE_SIZE,
2966 VMALLOC_START, VMALLOC_END,
2967 node, GFP_KERNEL, VMAP_RAM,
2968 NULL);
2969 if (IS_ERR(va))
2970 return NULL;
2971
2972 addr = va->va_start;
2973 mem = (void *)addr;
2974 }
2975
2976 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2977 pages, PAGE_SHIFT) < 0) {
2978 vm_unmap_ram(mem, count);
2979 return NULL;
2980 }
2981
2982 /*
2983 * Mark the pages as accessible, now that they are mapped.
2984 * With hardware tag-based KASAN, marking is skipped for
2985 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2986 */
2987 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2988
2989 return mem;
2990}
2991EXPORT_SYMBOL(vm_map_ram);
2992
2993static struct vm_struct *vmlist __initdata;
2994
2995static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2996{
2997#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2998 return vm->page_order;
2999#else
3000 return 0;
3001#endif
3002}
3003
3004static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3005{
3006#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3007 vm->page_order = order;
3008#else
3009 BUG_ON(order != 0);
3010#endif
3011}
3012
3013/**
3014 * vm_area_add_early - add vmap area early during boot
3015 * @vm: vm_struct to add
3016 *
3017 * This function is used to add fixed kernel vm area to vmlist before
3018 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3019 * should contain proper values and the other fields should be zero.
3020 *
3021 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3022 */
3023void __init vm_area_add_early(struct vm_struct *vm)
3024{
3025 struct vm_struct *tmp, **p;
3026
3027 BUG_ON(vmap_initialized);
3028 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3029 if (tmp->addr >= vm->addr) {
3030 BUG_ON(tmp->addr < vm->addr + vm->size);
3031 break;
3032 } else
3033 BUG_ON(tmp->addr + tmp->size > vm->addr);
3034 }
3035 vm->next = *p;
3036 *p = vm;
3037}
3038
3039/**
3040 * vm_area_register_early - register vmap area early during boot
3041 * @vm: vm_struct to register
3042 * @align: requested alignment
3043 *
3044 * This function is used to register kernel vm area before
3045 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3046 * proper values on entry and other fields should be zero. On return,
3047 * vm->addr contains the allocated address.
3048 *
3049 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3050 */
3051void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3052{
3053 unsigned long addr = ALIGN(VMALLOC_START, align);
3054 struct vm_struct *cur, **p;
3055
3056 BUG_ON(vmap_initialized);
3057
3058 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3059 if ((unsigned long)cur->addr - addr >= vm->size)
3060 break;
3061 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3062 }
3063
3064 BUG_ON(addr > VMALLOC_END - vm->size);
3065 vm->addr = (void *)addr;
3066 vm->next = *p;
3067 *p = vm;
3068 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3069}
3070
3071static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3072{
3073 /*
3074 * Before removing VM_UNINITIALIZED,
3075 * we should make sure that vm has proper values.
3076 * Pair with smp_rmb() in show_numa_info().
3077 */
3078 smp_wmb();
3079 vm->flags &= ~VM_UNINITIALIZED;
3080}
3081
3082static struct vm_struct *__get_vm_area_node(unsigned long size,
3083 unsigned long align, unsigned long shift, unsigned long flags,
3084 unsigned long start, unsigned long end, int node,
3085 gfp_t gfp_mask, const void *caller)
3086{
3087 struct vmap_area *va;
3088 struct vm_struct *area;
3089 unsigned long requested_size = size;
3090
3091 BUG_ON(in_interrupt());
3092 size = ALIGN(size, 1ul << shift);
3093 if (unlikely(!size))
3094 return NULL;
3095
3096 if (flags & VM_IOREMAP)
3097 align = 1ul << clamp_t(int, get_count_order_long(size),
3098 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3099
3100 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3101 if (unlikely(!area))
3102 return NULL;
3103
3104 if (!(flags & VM_NO_GUARD))
3105 size += PAGE_SIZE;
3106
3107 area->flags = flags;
3108 area->caller = caller;
3109
3110 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3111 if (IS_ERR(va)) {
3112 kfree(area);
3113 return NULL;
3114 }
3115
3116 /*
3117 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3118 * best-effort approach, as they can be mapped outside of vmalloc code.
3119 * For VM_ALLOC mappings, the pages are marked as accessible after
3120 * getting mapped in __vmalloc_node_range().
3121 * With hardware tag-based KASAN, marking is skipped for
3122 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3123 */
3124 if (!(flags & VM_ALLOC))
3125 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3126 KASAN_VMALLOC_PROT_NORMAL);
3127
3128 return area;
3129}
3130
3131struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3132 unsigned long start, unsigned long end,
3133 const void *caller)
3134{
3135 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3136 NUMA_NO_NODE, GFP_KERNEL, caller);
3137}
3138
3139/**
3140 * get_vm_area - reserve a contiguous kernel virtual area
3141 * @size: size of the area
3142 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3143 *
3144 * Search an area of @size in the kernel virtual mapping area,
3145 * and reserved it for out purposes. Returns the area descriptor
3146 * on success or %NULL on failure.
3147 *
3148 * Return: the area descriptor on success or %NULL on failure.
3149 */
3150struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3151{
3152 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3153 VMALLOC_START, VMALLOC_END,
3154 NUMA_NO_NODE, GFP_KERNEL,
3155 __builtin_return_address(0));
3156}
3157
3158struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3159 const void *caller)
3160{
3161 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3162 VMALLOC_START, VMALLOC_END,
3163 NUMA_NO_NODE, GFP_KERNEL, caller);
3164}
3165
3166/**
3167 * find_vm_area - find a continuous kernel virtual area
3168 * @addr: base address
3169 *
3170 * Search for the kernel VM area starting at @addr, and return it.
3171 * It is up to the caller to do all required locking to keep the returned
3172 * pointer valid.
3173 *
3174 * Return: the area descriptor on success or %NULL on failure.
3175 */
3176struct vm_struct *find_vm_area(const void *addr)
3177{
3178 struct vmap_area *va;
3179
3180 va = find_vmap_area((unsigned long)addr);
3181 if (!va)
3182 return NULL;
3183
3184 return va->vm;
3185}
3186
3187/**
3188 * remove_vm_area - find and remove a continuous kernel virtual area
3189 * @addr: base address
3190 *
3191 * Search for the kernel VM area starting at @addr, and remove it.
3192 * This function returns the found VM area, but using it is NOT safe
3193 * on SMP machines, except for its size or flags.
3194 *
3195 * Return: the area descriptor on success or %NULL on failure.
3196 */
3197struct vm_struct *remove_vm_area(const void *addr)
3198{
3199 struct vmap_area *va;
3200 struct vm_struct *vm;
3201
3202 might_sleep();
3203
3204 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3205 addr))
3206 return NULL;
3207
3208 va = find_unlink_vmap_area((unsigned long)addr);
3209 if (!va || !va->vm)
3210 return NULL;
3211 vm = va->vm;
3212
3213 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3214 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3215 kasan_free_module_shadow(vm);
3216 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3217
3218 free_unmap_vmap_area(va);
3219 return vm;
3220}
3221
3222static inline void set_area_direct_map(const struct vm_struct *area,
3223 int (*set_direct_map)(struct page *page))
3224{
3225 int i;
3226
3227 /* HUGE_VMALLOC passes small pages to set_direct_map */
3228 for (i = 0; i < area->nr_pages; i++)
3229 if (page_address(area->pages[i]))
3230 set_direct_map(area->pages[i]);
3231}
3232
3233/*
3234 * Flush the vm mapping and reset the direct map.
3235 */
3236static void vm_reset_perms(struct vm_struct *area)
3237{
3238 unsigned long start = ULONG_MAX, end = 0;
3239 unsigned int page_order = vm_area_page_order(area);
3240 int flush_dmap = 0;
3241 int i;
3242
3243 /*
3244 * Find the start and end range of the direct mappings to make sure that
3245 * the vm_unmap_aliases() flush includes the direct map.
3246 */
3247 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3248 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3249
3250 if (addr) {
3251 unsigned long page_size;
3252
3253 page_size = PAGE_SIZE << page_order;
3254 start = min(addr, start);
3255 end = max(addr + page_size, end);
3256 flush_dmap = 1;
3257 }
3258 }
3259
3260 /*
3261 * Set direct map to something invalid so that it won't be cached if
3262 * there are any accesses after the TLB flush, then flush the TLB and
3263 * reset the direct map permissions to the default.
3264 */
3265 set_area_direct_map(area, set_direct_map_invalid_noflush);
3266 _vm_unmap_aliases(start, end, flush_dmap);
3267 set_area_direct_map(area, set_direct_map_default_noflush);
3268}
3269
3270static void delayed_vfree_work(struct work_struct *w)
3271{
3272 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3273 struct llist_node *t, *llnode;
3274
3275 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3276 vfree(llnode);
3277}
3278
3279/**
3280 * vfree_atomic - release memory allocated by vmalloc()
3281 * @addr: memory base address
3282 *
3283 * This one is just like vfree() but can be called in any atomic context
3284 * except NMIs.
3285 */
3286void vfree_atomic(const void *addr)
3287{
3288 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3289
3290 BUG_ON(in_nmi());
3291 kmemleak_free(addr);
3292
3293 /*
3294 * Use raw_cpu_ptr() because this can be called from preemptible
3295 * context. Preemption is absolutely fine here, because the llist_add()
3296 * implementation is lockless, so it works even if we are adding to
3297 * another cpu's list. schedule_work() should be fine with this too.
3298 */
3299 if (addr && llist_add((struct llist_node *)addr, &p->list))
3300 schedule_work(&p->wq);
3301}
3302
3303/**
3304 * vfree - Release memory allocated by vmalloc()
3305 * @addr: Memory base address
3306 *
3307 * Free the virtually continuous memory area starting at @addr, as obtained
3308 * from one of the vmalloc() family of APIs. This will usually also free the
3309 * physical memory underlying the virtual allocation, but that memory is
3310 * reference counted, so it will not be freed until the last user goes away.
3311 *
3312 * If @addr is NULL, no operation is performed.
3313 *
3314 * Context:
3315 * May sleep if called *not* from interrupt context.
3316 * Must not be called in NMI context (strictly speaking, it could be
3317 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3318 * conventions for vfree() arch-dependent would be a really bad idea).
3319 */
3320void vfree(const void *addr)
3321{
3322 struct vm_struct *vm;
3323 int i;
3324
3325 if (unlikely(in_interrupt())) {
3326 vfree_atomic(addr);
3327 return;
3328 }
3329
3330 BUG_ON(in_nmi());
3331 kmemleak_free(addr);
3332 might_sleep();
3333
3334 if (!addr)
3335 return;
3336
3337 vm = remove_vm_area(addr);
3338 if (unlikely(!vm)) {
3339 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3340 addr);
3341 return;
3342 }
3343
3344 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3345 vm_reset_perms(vm);
3346 for (i = 0; i < vm->nr_pages; i++) {
3347 struct page *page = vm->pages[i];
3348
3349 BUG_ON(!page);
3350 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3351 /*
3352 * High-order allocs for huge vmallocs are split, so
3353 * can be freed as an array of order-0 allocations
3354 */
3355 __free_page(page);
3356 cond_resched();
3357 }
3358 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3359 kvfree(vm->pages);
3360 kfree(vm);
3361}
3362EXPORT_SYMBOL(vfree);
3363
3364/**
3365 * vunmap - release virtual mapping obtained by vmap()
3366 * @addr: memory base address
3367 *
3368 * Free the virtually contiguous memory area starting at @addr,
3369 * which was created from the page array passed to vmap().
3370 *
3371 * Must not be called in interrupt context.
3372 */
3373void vunmap(const void *addr)
3374{
3375 struct vm_struct *vm;
3376
3377 BUG_ON(in_interrupt());
3378 might_sleep();
3379
3380 if (!addr)
3381 return;
3382 vm = remove_vm_area(addr);
3383 if (unlikely(!vm)) {
3384 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3385 addr);
3386 return;
3387 }
3388 kfree(vm);
3389}
3390EXPORT_SYMBOL(vunmap);
3391
3392/**
3393 * vmap - map an array of pages into virtually contiguous space
3394 * @pages: array of page pointers
3395 * @count: number of pages to map
3396 * @flags: vm_area->flags
3397 * @prot: page protection for the mapping
3398 *
3399 * Maps @count pages from @pages into contiguous kernel virtual space.
3400 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3401 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3402 * are transferred from the caller to vmap(), and will be freed / dropped when
3403 * vfree() is called on the return value.
3404 *
3405 * Return: the address of the area or %NULL on failure
3406 */
3407void *vmap(struct page **pages, unsigned int count,
3408 unsigned long flags, pgprot_t prot)
3409{
3410 struct vm_struct *area;
3411 unsigned long addr;
3412 unsigned long size; /* In bytes */
3413
3414 might_sleep();
3415
3416 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3417 return NULL;
3418
3419 /*
3420 * Your top guard is someone else's bottom guard. Not having a top
3421 * guard compromises someone else's mappings too.
3422 */
3423 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3424 flags &= ~VM_NO_GUARD;
3425
3426 if (count > totalram_pages())
3427 return NULL;
3428
3429 size = (unsigned long)count << PAGE_SHIFT;
3430 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3431 if (!area)
3432 return NULL;
3433
3434 addr = (unsigned long)area->addr;
3435 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3436 pages, PAGE_SHIFT) < 0) {
3437 vunmap(area->addr);
3438 return NULL;
3439 }
3440
3441 if (flags & VM_MAP_PUT_PAGES) {
3442 area->pages = pages;
3443 area->nr_pages = count;
3444 }
3445 return area->addr;
3446}
3447EXPORT_SYMBOL(vmap);
3448
3449#ifdef CONFIG_VMAP_PFN
3450struct vmap_pfn_data {
3451 unsigned long *pfns;
3452 pgprot_t prot;
3453 unsigned int idx;
3454};
3455
3456static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3457{
3458 struct vmap_pfn_data *data = private;
3459 unsigned long pfn = data->pfns[data->idx];
3460 pte_t ptent;
3461
3462 if (WARN_ON_ONCE(pfn_valid(pfn)))
3463 return -EINVAL;
3464
3465 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3466 set_pte_at(&init_mm, addr, pte, ptent);
3467
3468 data->idx++;
3469 return 0;
3470}
3471
3472/**
3473 * vmap_pfn - map an array of PFNs into virtually contiguous space
3474 * @pfns: array of PFNs
3475 * @count: number of pages to map
3476 * @prot: page protection for the mapping
3477 *
3478 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3479 * the start address of the mapping.
3480 */
3481void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3482{
3483 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3484 struct vm_struct *area;
3485
3486 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3487 __builtin_return_address(0));
3488 if (!area)
3489 return NULL;
3490 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3491 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3492 free_vm_area(area);
3493 return NULL;
3494 }
3495
3496 flush_cache_vmap((unsigned long)area->addr,
3497 (unsigned long)area->addr + count * PAGE_SIZE);
3498
3499 return area->addr;
3500}
3501EXPORT_SYMBOL_GPL(vmap_pfn);
3502#endif /* CONFIG_VMAP_PFN */
3503
3504static inline unsigned int
3505vm_area_alloc_pages(gfp_t gfp, int nid,
3506 unsigned int order, unsigned int nr_pages, struct page **pages)
3507{
3508 unsigned int nr_allocated = 0;
3509 gfp_t alloc_gfp = gfp;
3510 bool nofail = gfp & __GFP_NOFAIL;
3511 struct page *page;
3512 int i;
3513
3514 /*
3515 * For order-0 pages we make use of bulk allocator, if
3516 * the page array is partly or not at all populated due
3517 * to fails, fallback to a single page allocator that is
3518 * more permissive.
3519 */
3520 if (!order) {
3521 /* bulk allocator doesn't support nofail req. officially */
3522 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3523
3524 while (nr_allocated < nr_pages) {
3525 unsigned int nr, nr_pages_request;
3526
3527 /*
3528 * A maximum allowed request is hard-coded and is 100
3529 * pages per call. That is done in order to prevent a
3530 * long preemption off scenario in the bulk-allocator
3531 * so the range is [1:100].
3532 */
3533 nr_pages_request = min(100U, nr_pages - nr_allocated);
3534
3535 /* memory allocation should consider mempolicy, we can't
3536 * wrongly use nearest node when nid == NUMA_NO_NODE,
3537 * otherwise memory may be allocated in only one node,
3538 * but mempolicy wants to alloc memory by interleaving.
3539 */
3540 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3541 nr = alloc_pages_bulk_array_mempolicy_noprof(bulk_gfp,
3542 nr_pages_request,
3543 pages + nr_allocated);
3544
3545 else
3546 nr = alloc_pages_bulk_array_node_noprof(bulk_gfp, nid,
3547 nr_pages_request,
3548 pages + nr_allocated);
3549
3550 nr_allocated += nr;
3551 cond_resched();
3552
3553 /*
3554 * If zero or pages were obtained partly,
3555 * fallback to a single page allocator.
3556 */
3557 if (nr != nr_pages_request)
3558 break;
3559 }
3560 } else if (gfp & __GFP_NOFAIL) {
3561 /*
3562 * Higher order nofail allocations are really expensive and
3563 * potentially dangerous (pre-mature OOM, disruptive reclaim
3564 * and compaction etc.
3565 */
3566 alloc_gfp &= ~__GFP_NOFAIL;
3567 }
3568
3569 /* High-order pages or fallback path if "bulk" fails. */
3570 while (nr_allocated < nr_pages) {
3571 if (!nofail && fatal_signal_pending(current))
3572 break;
3573
3574 if (nid == NUMA_NO_NODE)
3575 page = alloc_pages_noprof(alloc_gfp, order);
3576 else
3577 page = alloc_pages_node_noprof(nid, alloc_gfp, order);
3578 if (unlikely(!page)) {
3579 if (!nofail)
3580 break;
3581
3582 /* fall back to the zero order allocations */
3583 alloc_gfp |= __GFP_NOFAIL;
3584 order = 0;
3585 continue;
3586 }
3587
3588 /*
3589 * Higher order allocations must be able to be treated as
3590 * indepdenent small pages by callers (as they can with
3591 * small-page vmallocs). Some drivers do their own refcounting
3592 * on vmalloc_to_page() pages, some use page->mapping,
3593 * page->lru, etc.
3594 */
3595 if (order)
3596 split_page(page, order);
3597
3598 /*
3599 * Careful, we allocate and map page-order pages, but
3600 * tracking is done per PAGE_SIZE page so as to keep the
3601 * vm_struct APIs independent of the physical/mapped size.
3602 */
3603 for (i = 0; i < (1U << order); i++)
3604 pages[nr_allocated + i] = page + i;
3605
3606 cond_resched();
3607 nr_allocated += 1U << order;
3608 }
3609
3610 return nr_allocated;
3611}
3612
3613static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3614 pgprot_t prot, unsigned int page_shift,
3615 int node)
3616{
3617 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3618 bool nofail = gfp_mask & __GFP_NOFAIL;
3619 unsigned long addr = (unsigned long)area->addr;
3620 unsigned long size = get_vm_area_size(area);
3621 unsigned long array_size;
3622 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3623 unsigned int page_order;
3624 unsigned int flags;
3625 int ret;
3626
3627 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3628
3629 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3630 gfp_mask |= __GFP_HIGHMEM;
3631
3632 /* Please note that the recursion is strictly bounded. */
3633 if (array_size > PAGE_SIZE) {
3634 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3635 area->caller);
3636 } else {
3637 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3638 }
3639
3640 if (!area->pages) {
3641 warn_alloc(gfp_mask, NULL,
3642 "vmalloc error: size %lu, failed to allocated page array size %lu",
3643 nr_small_pages * PAGE_SIZE, array_size);
3644 free_vm_area(area);
3645 return NULL;
3646 }
3647
3648 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3649 page_order = vm_area_page_order(area);
3650
3651 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3652 node, page_order, nr_small_pages, area->pages);
3653
3654 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3655 if (gfp_mask & __GFP_ACCOUNT) {
3656 int i;
3657
3658 for (i = 0; i < area->nr_pages; i++)
3659 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3660 }
3661
3662 /*
3663 * If not enough pages were obtained to accomplish an
3664 * allocation request, free them via vfree() if any.
3665 */
3666 if (area->nr_pages != nr_small_pages) {
3667 /*
3668 * vm_area_alloc_pages() can fail due to insufficient memory but
3669 * also:-
3670 *
3671 * - a pending fatal signal
3672 * - insufficient huge page-order pages
3673 *
3674 * Since we always retry allocations at order-0 in the huge page
3675 * case a warning for either is spurious.
3676 */
3677 if (!fatal_signal_pending(current) && page_order == 0)
3678 warn_alloc(gfp_mask, NULL,
3679 "vmalloc error: size %lu, failed to allocate pages",
3680 area->nr_pages * PAGE_SIZE);
3681 goto fail;
3682 }
3683
3684 /*
3685 * page tables allocations ignore external gfp mask, enforce it
3686 * by the scope API
3687 */
3688 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3689 flags = memalloc_nofs_save();
3690 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3691 flags = memalloc_noio_save();
3692
3693 do {
3694 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3695 page_shift);
3696 if (nofail && (ret < 0))
3697 schedule_timeout_uninterruptible(1);
3698 } while (nofail && (ret < 0));
3699
3700 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3701 memalloc_nofs_restore(flags);
3702 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3703 memalloc_noio_restore(flags);
3704
3705 if (ret < 0) {
3706 warn_alloc(gfp_mask, NULL,
3707 "vmalloc error: size %lu, failed to map pages",
3708 area->nr_pages * PAGE_SIZE);
3709 goto fail;
3710 }
3711
3712 return area->addr;
3713
3714fail:
3715 vfree(area->addr);
3716 return NULL;
3717}
3718
3719/**
3720 * __vmalloc_node_range - allocate virtually contiguous memory
3721 * @size: allocation size
3722 * @align: desired alignment
3723 * @start: vm area range start
3724 * @end: vm area range end
3725 * @gfp_mask: flags for the page level allocator
3726 * @prot: protection mask for the allocated pages
3727 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3728 * @node: node to use for allocation or NUMA_NO_NODE
3729 * @caller: caller's return address
3730 *
3731 * Allocate enough pages to cover @size from the page level
3732 * allocator with @gfp_mask flags. Please note that the full set of gfp
3733 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3734 * supported.
3735 * Zone modifiers are not supported. From the reclaim modifiers
3736 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3737 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3738 * __GFP_RETRY_MAYFAIL are not supported).
3739 *
3740 * __GFP_NOWARN can be used to suppress failures messages.
3741 *
3742 * Map them into contiguous kernel virtual space, using a pagetable
3743 * protection of @prot.
3744 *
3745 * Return: the address of the area or %NULL on failure
3746 */
3747void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3748 unsigned long start, unsigned long end, gfp_t gfp_mask,
3749 pgprot_t prot, unsigned long vm_flags, int node,
3750 const void *caller)
3751{
3752 struct vm_struct *area;
3753 void *ret;
3754 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3755 unsigned long real_size = size;
3756 unsigned long real_align = align;
3757 unsigned int shift = PAGE_SHIFT;
3758
3759 if (WARN_ON_ONCE(!size))
3760 return NULL;
3761
3762 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3763 warn_alloc(gfp_mask, NULL,
3764 "vmalloc error: size %lu, exceeds total pages",
3765 real_size);
3766 return NULL;
3767 }
3768
3769 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3770 unsigned long size_per_node;
3771
3772 /*
3773 * Try huge pages. Only try for PAGE_KERNEL allocations,
3774 * others like modules don't yet expect huge pages in
3775 * their allocations due to apply_to_page_range not
3776 * supporting them.
3777 */
3778
3779 size_per_node = size;
3780 if (node == NUMA_NO_NODE)
3781 size_per_node /= num_online_nodes();
3782 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3783 shift = PMD_SHIFT;
3784 else
3785 shift = arch_vmap_pte_supported_shift(size_per_node);
3786
3787 align = max(real_align, 1UL << shift);
3788 size = ALIGN(real_size, 1UL << shift);
3789 }
3790
3791again:
3792 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3793 VM_UNINITIALIZED | vm_flags, start, end, node,
3794 gfp_mask, caller);
3795 if (!area) {
3796 bool nofail = gfp_mask & __GFP_NOFAIL;
3797 warn_alloc(gfp_mask, NULL,
3798 "vmalloc error: size %lu, vm_struct allocation failed%s",
3799 real_size, (nofail) ? ". Retrying." : "");
3800 if (nofail) {
3801 schedule_timeout_uninterruptible(1);
3802 goto again;
3803 }
3804 goto fail;
3805 }
3806
3807 /*
3808 * Prepare arguments for __vmalloc_area_node() and
3809 * kasan_unpoison_vmalloc().
3810 */
3811 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3812 if (kasan_hw_tags_enabled()) {
3813 /*
3814 * Modify protection bits to allow tagging.
3815 * This must be done before mapping.
3816 */
3817 prot = arch_vmap_pgprot_tagged(prot);
3818
3819 /*
3820 * Skip page_alloc poisoning and zeroing for physical
3821 * pages backing VM_ALLOC mapping. Memory is instead
3822 * poisoned and zeroed by kasan_unpoison_vmalloc().
3823 */
3824 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3825 }
3826
3827 /* Take note that the mapping is PAGE_KERNEL. */
3828 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3829 }
3830
3831 /* Allocate physical pages and map them into vmalloc space. */
3832 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3833 if (!ret)
3834 goto fail;
3835
3836 /*
3837 * Mark the pages as accessible, now that they are mapped.
3838 * The condition for setting KASAN_VMALLOC_INIT should complement the
3839 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3840 * to make sure that memory is initialized under the same conditions.
3841 * Tag-based KASAN modes only assign tags to normal non-executable
3842 * allocations, see __kasan_unpoison_vmalloc().
3843 */
3844 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3845 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3846 (gfp_mask & __GFP_SKIP_ZERO))
3847 kasan_flags |= KASAN_VMALLOC_INIT;
3848 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3849 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3850
3851 /*
3852 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3853 * flag. It means that vm_struct is not fully initialized.
3854 * Now, it is fully initialized, so remove this flag here.
3855 */
3856 clear_vm_uninitialized_flag(area);
3857
3858 size = PAGE_ALIGN(size);
3859 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3860 kmemleak_vmalloc(area, size, gfp_mask);
3861
3862 return area->addr;
3863
3864fail:
3865 if (shift > PAGE_SHIFT) {
3866 shift = PAGE_SHIFT;
3867 align = real_align;
3868 size = real_size;
3869 goto again;
3870 }
3871
3872 return NULL;
3873}
3874
3875/**
3876 * __vmalloc_node - allocate virtually contiguous memory
3877 * @size: allocation size
3878 * @align: desired alignment
3879 * @gfp_mask: flags for the page level allocator
3880 * @node: node to use for allocation or NUMA_NO_NODE
3881 * @caller: caller's return address
3882 *
3883 * Allocate enough pages to cover @size from the page level allocator with
3884 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3885 *
3886 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3887 * and __GFP_NOFAIL are not supported
3888 *
3889 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3890 * with mm people.
3891 *
3892 * Return: pointer to the allocated memory or %NULL on error
3893 */
3894void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3895 gfp_t gfp_mask, int node, const void *caller)
3896{
3897 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3898 gfp_mask, PAGE_KERNEL, 0, node, caller);
3899}
3900/*
3901 * This is only for performance analysis of vmalloc and stress purpose.
3902 * It is required by vmalloc test module, therefore do not use it other
3903 * than that.
3904 */
3905#ifdef CONFIG_TEST_VMALLOC_MODULE
3906EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3907#endif
3908
3909void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3910{
3911 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3912 __builtin_return_address(0));
3913}
3914EXPORT_SYMBOL(__vmalloc_noprof);
3915
3916/**
3917 * vmalloc - allocate virtually contiguous memory
3918 * @size: allocation size
3919 *
3920 * Allocate enough pages to cover @size from the page level
3921 * allocator and map them into contiguous kernel virtual space.
3922 *
3923 * For tight control over page level allocator and protection flags
3924 * use __vmalloc() instead.
3925 *
3926 * Return: pointer to the allocated memory or %NULL on error
3927 */
3928void *vmalloc_noprof(unsigned long size)
3929{
3930 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3931 __builtin_return_address(0));
3932}
3933EXPORT_SYMBOL(vmalloc_noprof);
3934
3935/**
3936 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3937 * @size: allocation size
3938 * @gfp_mask: flags for the page level allocator
3939 *
3940 * Allocate enough pages to cover @size from the page level
3941 * allocator and map them into contiguous kernel virtual space.
3942 * If @size is greater than or equal to PMD_SIZE, allow using
3943 * huge pages for the memory
3944 *
3945 * Return: pointer to the allocated memory or %NULL on error
3946 */
3947void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3948{
3949 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3950 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3951 NUMA_NO_NODE, __builtin_return_address(0));
3952}
3953EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3954
3955/**
3956 * vzalloc - allocate virtually contiguous memory with zero fill
3957 * @size: allocation size
3958 *
3959 * Allocate enough pages to cover @size from the page level
3960 * allocator and map them into contiguous kernel virtual space.
3961 * The memory allocated is set to zero.
3962 *
3963 * For tight control over page level allocator and protection flags
3964 * use __vmalloc() instead.
3965 *
3966 * Return: pointer to the allocated memory or %NULL on error
3967 */
3968void *vzalloc_noprof(unsigned long size)
3969{
3970 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3971 __builtin_return_address(0));
3972}
3973EXPORT_SYMBOL(vzalloc_noprof);
3974
3975/**
3976 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3977 * @size: allocation size
3978 *
3979 * The resulting memory area is zeroed so it can be mapped to userspace
3980 * without leaking data.
3981 *
3982 * Return: pointer to the allocated memory or %NULL on error
3983 */
3984void *vmalloc_user_noprof(unsigned long size)
3985{
3986 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3987 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3988 VM_USERMAP, NUMA_NO_NODE,
3989 __builtin_return_address(0));
3990}
3991EXPORT_SYMBOL(vmalloc_user_noprof);
3992
3993/**
3994 * vmalloc_node - allocate memory on a specific node
3995 * @size: allocation size
3996 * @node: numa node
3997 *
3998 * Allocate enough pages to cover @size from the page level
3999 * allocator and map them into contiguous kernel virtual space.
4000 *
4001 * For tight control over page level allocator and protection flags
4002 * use __vmalloc() instead.
4003 *
4004 * Return: pointer to the allocated memory or %NULL on error
4005 */
4006void *vmalloc_node_noprof(unsigned long size, int node)
4007{
4008 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4009 __builtin_return_address(0));
4010}
4011EXPORT_SYMBOL(vmalloc_node_noprof);
4012
4013/**
4014 * vzalloc_node - allocate memory on a specific node with zero fill
4015 * @size: allocation size
4016 * @node: numa node
4017 *
4018 * Allocate enough pages to cover @size from the page level
4019 * allocator and map them into contiguous kernel virtual space.
4020 * The memory allocated is set to zero.
4021 *
4022 * Return: pointer to the allocated memory or %NULL on error
4023 */
4024void *vzalloc_node_noprof(unsigned long size, int node)
4025{
4026 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4027 __builtin_return_address(0));
4028}
4029EXPORT_SYMBOL(vzalloc_node_noprof);
4030
4031#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4032#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4033#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4034#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4035#else
4036/*
4037 * 64b systems should always have either DMA or DMA32 zones. For others
4038 * GFP_DMA32 should do the right thing and use the normal zone.
4039 */
4040#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4041#endif
4042
4043/**
4044 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4045 * @size: allocation size
4046 *
4047 * Allocate enough 32bit PA addressable pages to cover @size from the
4048 * page level allocator and map them into contiguous kernel virtual space.
4049 *
4050 * Return: pointer to the allocated memory or %NULL on error
4051 */
4052void *vmalloc_32_noprof(unsigned long size)
4053{
4054 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4055 __builtin_return_address(0));
4056}
4057EXPORT_SYMBOL(vmalloc_32_noprof);
4058
4059/**
4060 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4061 * @size: allocation size
4062 *
4063 * The resulting memory area is 32bit addressable and zeroed so it can be
4064 * mapped to userspace without leaking data.
4065 *
4066 * Return: pointer to the allocated memory or %NULL on error
4067 */
4068void *vmalloc_32_user_noprof(unsigned long size)
4069{
4070 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4071 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4072 VM_USERMAP, NUMA_NO_NODE,
4073 __builtin_return_address(0));
4074}
4075EXPORT_SYMBOL(vmalloc_32_user_noprof);
4076
4077/*
4078 * Atomically zero bytes in the iterator.
4079 *
4080 * Returns the number of zeroed bytes.
4081 */
4082static size_t zero_iter(struct iov_iter *iter, size_t count)
4083{
4084 size_t remains = count;
4085
4086 while (remains > 0) {
4087 size_t num, copied;
4088
4089 num = min_t(size_t, remains, PAGE_SIZE);
4090 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4091 remains -= copied;
4092
4093 if (copied < num)
4094 break;
4095 }
4096
4097 return count - remains;
4098}
4099
4100/*
4101 * small helper routine, copy contents to iter from addr.
4102 * If the page is not present, fill zero.
4103 *
4104 * Returns the number of copied bytes.
4105 */
4106static size_t aligned_vread_iter(struct iov_iter *iter,
4107 const char *addr, size_t count)
4108{
4109 size_t remains = count;
4110 struct page *page;
4111
4112 while (remains > 0) {
4113 unsigned long offset, length;
4114 size_t copied = 0;
4115
4116 offset = offset_in_page(addr);
4117 length = PAGE_SIZE - offset;
4118 if (length > remains)
4119 length = remains;
4120 page = vmalloc_to_page(addr);
4121 /*
4122 * To do safe access to this _mapped_ area, we need lock. But
4123 * adding lock here means that we need to add overhead of
4124 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4125 * used. Instead of that, we'll use an local mapping via
4126 * copy_page_to_iter_nofault() and accept a small overhead in
4127 * this access function.
4128 */
4129 if (page)
4130 copied = copy_page_to_iter_nofault(page, offset,
4131 length, iter);
4132 else
4133 copied = zero_iter(iter, length);
4134
4135 addr += copied;
4136 remains -= copied;
4137
4138 if (copied != length)
4139 break;
4140 }
4141
4142 return count - remains;
4143}
4144
4145/*
4146 * Read from a vm_map_ram region of memory.
4147 *
4148 * Returns the number of copied bytes.
4149 */
4150static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4151 size_t count, unsigned long flags)
4152{
4153 char *start;
4154 struct vmap_block *vb;
4155 struct xarray *xa;
4156 unsigned long offset;
4157 unsigned int rs, re;
4158 size_t remains, n;
4159
4160 /*
4161 * If it's area created by vm_map_ram() interface directly, but
4162 * not further subdividing and delegating management to vmap_block,
4163 * handle it here.
4164 */
4165 if (!(flags & VMAP_BLOCK))
4166 return aligned_vread_iter(iter, addr, count);
4167
4168 remains = count;
4169
4170 /*
4171 * Area is split into regions and tracked with vmap_block, read out
4172 * each region and zero fill the hole between regions.
4173 */
4174 xa = addr_to_vb_xa((unsigned long) addr);
4175 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4176 if (!vb)
4177 goto finished_zero;
4178
4179 spin_lock(&vb->lock);
4180 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4181 spin_unlock(&vb->lock);
4182 goto finished_zero;
4183 }
4184
4185 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4186 size_t copied;
4187
4188 if (remains == 0)
4189 goto finished;
4190
4191 start = vmap_block_vaddr(vb->va->va_start, rs);
4192
4193 if (addr < start) {
4194 size_t to_zero = min_t(size_t, start - addr, remains);
4195 size_t zeroed = zero_iter(iter, to_zero);
4196
4197 addr += zeroed;
4198 remains -= zeroed;
4199
4200 if (remains == 0 || zeroed != to_zero)
4201 goto finished;
4202 }
4203
4204 /*it could start reading from the middle of used region*/
4205 offset = offset_in_page(addr);
4206 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4207 if (n > remains)
4208 n = remains;
4209
4210 copied = aligned_vread_iter(iter, start + offset, n);
4211
4212 addr += copied;
4213 remains -= copied;
4214
4215 if (copied != n)
4216 goto finished;
4217 }
4218
4219 spin_unlock(&vb->lock);
4220
4221finished_zero:
4222 /* zero-fill the left dirty or free regions */
4223 return count - remains + zero_iter(iter, remains);
4224finished:
4225 /* We couldn't copy/zero everything */
4226 spin_unlock(&vb->lock);
4227 return count - remains;
4228}
4229
4230/**
4231 * vread_iter() - read vmalloc area in a safe way to an iterator.
4232 * @iter: the iterator to which data should be written.
4233 * @addr: vm address.
4234 * @count: number of bytes to be read.
4235 *
4236 * This function checks that addr is a valid vmalloc'ed area, and
4237 * copy data from that area to a given buffer. If the given memory range
4238 * of [addr...addr+count) includes some valid address, data is copied to
4239 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4240 * IOREMAP area is treated as memory hole and no copy is done.
4241 *
4242 * If [addr...addr+count) doesn't includes any intersects with alive
4243 * vm_struct area, returns 0. @buf should be kernel's buffer.
4244 *
4245 * Note: In usual ops, vread() is never necessary because the caller
4246 * should know vmalloc() area is valid and can use memcpy().
4247 * This is for routines which have to access vmalloc area without
4248 * any information, as /proc/kcore.
4249 *
4250 * Return: number of bytes for which addr and buf should be increased
4251 * (same number as @count) or %0 if [addr...addr+count) doesn't
4252 * include any intersection with valid vmalloc area
4253 */
4254long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4255{
4256 struct vmap_node *vn;
4257 struct vmap_area *va;
4258 struct vm_struct *vm;
4259 char *vaddr;
4260 size_t n, size, flags, remains;
4261 unsigned long next;
4262
4263 addr = kasan_reset_tag(addr);
4264
4265 /* Don't allow overflow */
4266 if ((unsigned long) addr + count < count)
4267 count = -(unsigned long) addr;
4268
4269 remains = count;
4270
4271 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4272 if (!vn)
4273 goto finished_zero;
4274
4275 /* no intersects with alive vmap_area */
4276 if ((unsigned long)addr + remains <= va->va_start)
4277 goto finished_zero;
4278
4279 do {
4280 size_t copied;
4281
4282 if (remains == 0)
4283 goto finished;
4284
4285 vm = va->vm;
4286 flags = va->flags & VMAP_FLAGS_MASK;
4287 /*
4288 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4289 * be set together with VMAP_RAM.
4290 */
4291 WARN_ON(flags == VMAP_BLOCK);
4292
4293 if (!vm && !flags)
4294 goto next_va;
4295
4296 if (vm && (vm->flags & VM_UNINITIALIZED))
4297 goto next_va;
4298
4299 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4300 smp_rmb();
4301
4302 vaddr = (char *) va->va_start;
4303 size = vm ? get_vm_area_size(vm) : va_size(va);
4304
4305 if (addr >= vaddr + size)
4306 goto next_va;
4307
4308 if (addr < vaddr) {
4309 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4310 size_t zeroed = zero_iter(iter, to_zero);
4311
4312 addr += zeroed;
4313 remains -= zeroed;
4314
4315 if (remains == 0 || zeroed != to_zero)
4316 goto finished;
4317 }
4318
4319 n = vaddr + size - addr;
4320 if (n > remains)
4321 n = remains;
4322
4323 if (flags & VMAP_RAM)
4324 copied = vmap_ram_vread_iter(iter, addr, n, flags);
4325 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4326 copied = aligned_vread_iter(iter, addr, n);
4327 else /* IOREMAP | SPARSE area is treated as memory hole */
4328 copied = zero_iter(iter, n);
4329
4330 addr += copied;
4331 remains -= copied;
4332
4333 if (copied != n)
4334 goto finished;
4335
4336 next_va:
4337 next = va->va_end;
4338 spin_unlock(&vn->busy.lock);
4339 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4340
4341finished_zero:
4342 if (vn)
4343 spin_unlock(&vn->busy.lock);
4344
4345 /* zero-fill memory holes */
4346 return count - remains + zero_iter(iter, remains);
4347finished:
4348 /* Nothing remains, or We couldn't copy/zero everything. */
4349 if (vn)
4350 spin_unlock(&vn->busy.lock);
4351
4352 return count - remains;
4353}
4354
4355/**
4356 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4357 * @vma: vma to cover
4358 * @uaddr: target user address to start at
4359 * @kaddr: virtual address of vmalloc kernel memory
4360 * @pgoff: offset from @kaddr to start at
4361 * @size: size of map area
4362 *
4363 * Returns: 0 for success, -Exxx on failure
4364 *
4365 * This function checks that @kaddr is a valid vmalloc'ed area,
4366 * and that it is big enough to cover the range starting at
4367 * @uaddr in @vma. Will return failure if that criteria isn't
4368 * met.
4369 *
4370 * Similar to remap_pfn_range() (see mm/memory.c)
4371 */
4372int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4373 void *kaddr, unsigned long pgoff,
4374 unsigned long size)
4375{
4376 struct vm_struct *area;
4377 unsigned long off;
4378 unsigned long end_index;
4379
4380 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4381 return -EINVAL;
4382
4383 size = PAGE_ALIGN(size);
4384
4385 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4386 return -EINVAL;
4387
4388 area = find_vm_area(kaddr);
4389 if (!area)
4390 return -EINVAL;
4391
4392 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4393 return -EINVAL;
4394
4395 if (check_add_overflow(size, off, &end_index) ||
4396 end_index > get_vm_area_size(area))
4397 return -EINVAL;
4398 kaddr += off;
4399
4400 do {
4401 struct page *page = vmalloc_to_page(kaddr);
4402 int ret;
4403
4404 ret = vm_insert_page(vma, uaddr, page);
4405 if (ret)
4406 return ret;
4407
4408 uaddr += PAGE_SIZE;
4409 kaddr += PAGE_SIZE;
4410 size -= PAGE_SIZE;
4411 } while (size > 0);
4412
4413 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4414
4415 return 0;
4416}
4417
4418/**
4419 * remap_vmalloc_range - map vmalloc pages to userspace
4420 * @vma: vma to cover (map full range of vma)
4421 * @addr: vmalloc memory
4422 * @pgoff: number of pages into addr before first page to map
4423 *
4424 * Returns: 0 for success, -Exxx on failure
4425 *
4426 * This function checks that addr is a valid vmalloc'ed area, and
4427 * that it is big enough to cover the vma. Will return failure if
4428 * that criteria isn't met.
4429 *
4430 * Similar to remap_pfn_range() (see mm/memory.c)
4431 */
4432int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4433 unsigned long pgoff)
4434{
4435 return remap_vmalloc_range_partial(vma, vma->vm_start,
4436 addr, pgoff,
4437 vma->vm_end - vma->vm_start);
4438}
4439EXPORT_SYMBOL(remap_vmalloc_range);
4440
4441void free_vm_area(struct vm_struct *area)
4442{
4443 struct vm_struct *ret;
4444 ret = remove_vm_area(area->addr);
4445 BUG_ON(ret != area);
4446 kfree(area);
4447}
4448EXPORT_SYMBOL_GPL(free_vm_area);
4449
4450#ifdef CONFIG_SMP
4451static struct vmap_area *node_to_va(struct rb_node *n)
4452{
4453 return rb_entry_safe(n, struct vmap_area, rb_node);
4454}
4455
4456/**
4457 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4458 * @addr: target address
4459 *
4460 * Returns: vmap_area if it is found. If there is no such area
4461 * the first highest(reverse order) vmap_area is returned
4462 * i.e. va->va_start < addr && va->va_end < addr or NULL
4463 * if there are no any areas before @addr.
4464 */
4465static struct vmap_area *
4466pvm_find_va_enclose_addr(unsigned long addr)
4467{
4468 struct vmap_area *va, *tmp;
4469 struct rb_node *n;
4470
4471 n = free_vmap_area_root.rb_node;
4472 va = NULL;
4473
4474 while (n) {
4475 tmp = rb_entry(n, struct vmap_area, rb_node);
4476 if (tmp->va_start <= addr) {
4477 va = tmp;
4478 if (tmp->va_end >= addr)
4479 break;
4480
4481 n = n->rb_right;
4482 } else {
4483 n = n->rb_left;
4484 }
4485 }
4486
4487 return va;
4488}
4489
4490/**
4491 * pvm_determine_end_from_reverse - find the highest aligned address
4492 * of free block below VMALLOC_END
4493 * @va:
4494 * in - the VA we start the search(reverse order);
4495 * out - the VA with the highest aligned end address.
4496 * @align: alignment for required highest address
4497 *
4498 * Returns: determined end address within vmap_area
4499 */
4500static unsigned long
4501pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4502{
4503 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4504 unsigned long addr;
4505
4506 if (likely(*va)) {
4507 list_for_each_entry_from_reverse((*va),
4508 &free_vmap_area_list, list) {
4509 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4510 if ((*va)->va_start < addr)
4511 return addr;
4512 }
4513 }
4514
4515 return 0;
4516}
4517
4518/**
4519 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4520 * @offsets: array containing offset of each area
4521 * @sizes: array containing size of each area
4522 * @nr_vms: the number of areas to allocate
4523 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4524 *
4525 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4526 * vm_structs on success, %NULL on failure
4527 *
4528 * Percpu allocator wants to use congruent vm areas so that it can
4529 * maintain the offsets among percpu areas. This function allocates
4530 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4531 * be scattered pretty far, distance between two areas easily going up
4532 * to gigabytes. To avoid interacting with regular vmallocs, these
4533 * areas are allocated from top.
4534 *
4535 * Despite its complicated look, this allocator is rather simple. It
4536 * does everything top-down and scans free blocks from the end looking
4537 * for matching base. While scanning, if any of the areas do not fit the
4538 * base address is pulled down to fit the area. Scanning is repeated till
4539 * all the areas fit and then all necessary data structures are inserted
4540 * and the result is returned.
4541 */
4542struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4543 const size_t *sizes, int nr_vms,
4544 size_t align)
4545{
4546 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4547 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4548 struct vmap_area **vas, *va;
4549 struct vm_struct **vms;
4550 int area, area2, last_area, term_area;
4551 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4552 bool purged = false;
4553
4554 /* verify parameters and allocate data structures */
4555 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4556 for (last_area = 0, area = 0; area < nr_vms; area++) {
4557 start = offsets[area];
4558 end = start + sizes[area];
4559
4560 /* is everything aligned properly? */
4561 BUG_ON(!IS_ALIGNED(offsets[area], align));
4562 BUG_ON(!IS_ALIGNED(sizes[area], align));
4563
4564 /* detect the area with the highest address */
4565 if (start > offsets[last_area])
4566 last_area = area;
4567
4568 for (area2 = area + 1; area2 < nr_vms; area2++) {
4569 unsigned long start2 = offsets[area2];
4570 unsigned long end2 = start2 + sizes[area2];
4571
4572 BUG_ON(start2 < end && start < end2);
4573 }
4574 }
4575 last_end = offsets[last_area] + sizes[last_area];
4576
4577 if (vmalloc_end - vmalloc_start < last_end) {
4578 WARN_ON(true);
4579 return NULL;
4580 }
4581
4582 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4583 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4584 if (!vas || !vms)
4585 goto err_free2;
4586
4587 for (area = 0; area < nr_vms; area++) {
4588 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4589 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4590 if (!vas[area] || !vms[area])
4591 goto err_free;
4592 }
4593retry:
4594 spin_lock(&free_vmap_area_lock);
4595
4596 /* start scanning - we scan from the top, begin with the last area */
4597 area = term_area = last_area;
4598 start = offsets[area];
4599 end = start + sizes[area];
4600
4601 va = pvm_find_va_enclose_addr(vmalloc_end);
4602 base = pvm_determine_end_from_reverse(&va, align) - end;
4603
4604 while (true) {
4605 /*
4606 * base might have underflowed, add last_end before
4607 * comparing.
4608 */
4609 if (base + last_end < vmalloc_start + last_end)
4610 goto overflow;
4611
4612 /*
4613 * Fitting base has not been found.
4614 */
4615 if (va == NULL)
4616 goto overflow;
4617
4618 /*
4619 * If required width exceeds current VA block, move
4620 * base downwards and then recheck.
4621 */
4622 if (base + end > va->va_end) {
4623 base = pvm_determine_end_from_reverse(&va, align) - end;
4624 term_area = area;
4625 continue;
4626 }
4627
4628 /*
4629 * If this VA does not fit, move base downwards and recheck.
4630 */
4631 if (base + start < va->va_start) {
4632 va = node_to_va(rb_prev(&va->rb_node));
4633 base = pvm_determine_end_from_reverse(&va, align) - end;
4634 term_area = area;
4635 continue;
4636 }
4637
4638 /*
4639 * This area fits, move on to the previous one. If
4640 * the previous one is the terminal one, we're done.
4641 */
4642 area = (area + nr_vms - 1) % nr_vms;
4643 if (area == term_area)
4644 break;
4645
4646 start = offsets[area];
4647 end = start + sizes[area];
4648 va = pvm_find_va_enclose_addr(base + end);
4649 }
4650
4651 /* we've found a fitting base, insert all va's */
4652 for (area = 0; area < nr_vms; area++) {
4653 int ret;
4654
4655 start = base + offsets[area];
4656 size = sizes[area];
4657
4658 va = pvm_find_va_enclose_addr(start);
4659 if (WARN_ON_ONCE(va == NULL))
4660 /* It is a BUG(), but trigger recovery instead. */
4661 goto recovery;
4662
4663 ret = va_clip(&free_vmap_area_root,
4664 &free_vmap_area_list, va, start, size);
4665 if (WARN_ON_ONCE(unlikely(ret)))
4666 /* It is a BUG(), but trigger recovery instead. */
4667 goto recovery;
4668
4669 /* Allocated area. */
4670 va = vas[area];
4671 va->va_start = start;
4672 va->va_end = start + size;
4673 }
4674
4675 spin_unlock(&free_vmap_area_lock);
4676
4677 /* populate the kasan shadow space */
4678 for (area = 0; area < nr_vms; area++) {
4679 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4680 goto err_free_shadow;
4681 }
4682
4683 /* insert all vm's */
4684 for (area = 0; area < nr_vms; area++) {
4685 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4686
4687 spin_lock(&vn->busy.lock);
4688 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4689 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4690 pcpu_get_vm_areas);
4691 spin_unlock(&vn->busy.lock);
4692 }
4693
4694 /*
4695 * Mark allocated areas as accessible. Do it now as a best-effort
4696 * approach, as they can be mapped outside of vmalloc code.
4697 * With hardware tag-based KASAN, marking is skipped for
4698 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4699 */
4700 for (area = 0; area < nr_vms; area++)
4701 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4702 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4703
4704 kfree(vas);
4705 return vms;
4706
4707recovery:
4708 /*
4709 * Remove previously allocated areas. There is no
4710 * need in removing these areas from the busy tree,
4711 * because they are inserted only on the final step
4712 * and when pcpu_get_vm_areas() is success.
4713 */
4714 while (area--) {
4715 orig_start = vas[area]->va_start;
4716 orig_end = vas[area]->va_end;
4717 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4718 &free_vmap_area_list);
4719 if (va)
4720 kasan_release_vmalloc(orig_start, orig_end,
4721 va->va_start, va->va_end);
4722 vas[area] = NULL;
4723 }
4724
4725overflow:
4726 spin_unlock(&free_vmap_area_lock);
4727 if (!purged) {
4728 reclaim_and_purge_vmap_areas();
4729 purged = true;
4730
4731 /* Before "retry", check if we recover. */
4732 for (area = 0; area < nr_vms; area++) {
4733 if (vas[area])
4734 continue;
4735
4736 vas[area] = kmem_cache_zalloc(
4737 vmap_area_cachep, GFP_KERNEL);
4738 if (!vas[area])
4739 goto err_free;
4740 }
4741
4742 goto retry;
4743 }
4744
4745err_free:
4746 for (area = 0; area < nr_vms; area++) {
4747 if (vas[area])
4748 kmem_cache_free(vmap_area_cachep, vas[area]);
4749
4750 kfree(vms[area]);
4751 }
4752err_free2:
4753 kfree(vas);
4754 kfree(vms);
4755 return NULL;
4756
4757err_free_shadow:
4758 spin_lock(&free_vmap_area_lock);
4759 /*
4760 * We release all the vmalloc shadows, even the ones for regions that
4761 * hadn't been successfully added. This relies on kasan_release_vmalloc
4762 * being able to tolerate this case.
4763 */
4764 for (area = 0; area < nr_vms; area++) {
4765 orig_start = vas[area]->va_start;
4766 orig_end = vas[area]->va_end;
4767 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4768 &free_vmap_area_list);
4769 if (va)
4770 kasan_release_vmalloc(orig_start, orig_end,
4771 va->va_start, va->va_end);
4772 vas[area] = NULL;
4773 kfree(vms[area]);
4774 }
4775 spin_unlock(&free_vmap_area_lock);
4776 kfree(vas);
4777 kfree(vms);
4778 return NULL;
4779}
4780
4781/**
4782 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4783 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4784 * @nr_vms: the number of allocated areas
4785 *
4786 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4787 */
4788void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4789{
4790 int i;
4791
4792 for (i = 0; i < nr_vms; i++)
4793 free_vm_area(vms[i]);
4794 kfree(vms);
4795}
4796#endif /* CONFIG_SMP */
4797
4798#ifdef CONFIG_PRINTK
4799bool vmalloc_dump_obj(void *object)
4800{
4801 const void *caller;
4802 struct vm_struct *vm;
4803 struct vmap_area *va;
4804 struct vmap_node *vn;
4805 unsigned long addr;
4806 unsigned int nr_pages;
4807
4808 addr = PAGE_ALIGN((unsigned long) object);
4809 vn = addr_to_node(addr);
4810
4811 if (!spin_trylock(&vn->busy.lock))
4812 return false;
4813
4814 va = __find_vmap_area(addr, &vn->busy.root);
4815 if (!va || !va->vm) {
4816 spin_unlock(&vn->busy.lock);
4817 return false;
4818 }
4819
4820 vm = va->vm;
4821 addr = (unsigned long) vm->addr;
4822 caller = vm->caller;
4823 nr_pages = vm->nr_pages;
4824 spin_unlock(&vn->busy.lock);
4825
4826 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4827 nr_pages, addr, caller);
4828
4829 return true;
4830}
4831#endif
4832
4833#ifdef CONFIG_PROC_FS
4834static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4835{
4836 if (IS_ENABLED(CONFIG_NUMA)) {
4837 unsigned int nr, *counters = m->private;
4838 unsigned int step = 1U << vm_area_page_order(v);
4839
4840 if (!counters)
4841 return;
4842
4843 if (v->flags & VM_UNINITIALIZED)
4844 return;
4845 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4846 smp_rmb();
4847
4848 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4849
4850 for (nr = 0; nr < v->nr_pages; nr += step)
4851 counters[page_to_nid(v->pages[nr])] += step;
4852 for_each_node_state(nr, N_HIGH_MEMORY)
4853 if (counters[nr])
4854 seq_printf(m, " N%u=%u", nr, counters[nr]);
4855 }
4856}
4857
4858static void show_purge_info(struct seq_file *m)
4859{
4860 struct vmap_node *vn;
4861 struct vmap_area *va;
4862 int i;
4863
4864 for (i = 0; i < nr_vmap_nodes; i++) {
4865 vn = &vmap_nodes[i];
4866
4867 spin_lock(&vn->lazy.lock);
4868 list_for_each_entry(va, &vn->lazy.head, list) {
4869 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4870 (void *)va->va_start, (void *)va->va_end,
4871 va->va_end - va->va_start);
4872 }
4873 spin_unlock(&vn->lazy.lock);
4874 }
4875}
4876
4877static int vmalloc_info_show(struct seq_file *m, void *p)
4878{
4879 struct vmap_node *vn;
4880 struct vmap_area *va;
4881 struct vm_struct *v;
4882 int i;
4883
4884 for (i = 0; i < nr_vmap_nodes; i++) {
4885 vn = &vmap_nodes[i];
4886
4887 spin_lock(&vn->busy.lock);
4888 list_for_each_entry(va, &vn->busy.head, list) {
4889 if (!va->vm) {
4890 if (va->flags & VMAP_RAM)
4891 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4892 (void *)va->va_start, (void *)va->va_end,
4893 va->va_end - va->va_start);
4894
4895 continue;
4896 }
4897
4898 v = va->vm;
4899
4900 seq_printf(m, "0x%pK-0x%pK %7ld",
4901 v->addr, v->addr + v->size, v->size);
4902
4903 if (v->caller)
4904 seq_printf(m, " %pS", v->caller);
4905
4906 if (v->nr_pages)
4907 seq_printf(m, " pages=%d", v->nr_pages);
4908
4909 if (v->phys_addr)
4910 seq_printf(m, " phys=%pa", &v->phys_addr);
4911
4912 if (v->flags & VM_IOREMAP)
4913 seq_puts(m, " ioremap");
4914
4915 if (v->flags & VM_SPARSE)
4916 seq_puts(m, " sparse");
4917
4918 if (v->flags & VM_ALLOC)
4919 seq_puts(m, " vmalloc");
4920
4921 if (v->flags & VM_MAP)
4922 seq_puts(m, " vmap");
4923
4924 if (v->flags & VM_USERMAP)
4925 seq_puts(m, " user");
4926
4927 if (v->flags & VM_DMA_COHERENT)
4928 seq_puts(m, " dma-coherent");
4929
4930 if (is_vmalloc_addr(v->pages))
4931 seq_puts(m, " vpages");
4932
4933 show_numa_info(m, v);
4934 seq_putc(m, '\n');
4935 }
4936 spin_unlock(&vn->busy.lock);
4937 }
4938
4939 /*
4940 * As a final step, dump "unpurged" areas.
4941 */
4942 show_purge_info(m);
4943 return 0;
4944}
4945
4946static int __init proc_vmalloc_init(void)
4947{
4948 void *priv_data = NULL;
4949
4950 if (IS_ENABLED(CONFIG_NUMA))
4951 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4952
4953 proc_create_single_data("vmallocinfo",
4954 0400, NULL, vmalloc_info_show, priv_data);
4955
4956 return 0;
4957}
4958module_init(proc_vmalloc_init);
4959
4960#endif
4961
4962static void __init vmap_init_free_space(void)
4963{
4964 unsigned long vmap_start = 1;
4965 const unsigned long vmap_end = ULONG_MAX;
4966 struct vmap_area *free;
4967 struct vm_struct *busy;
4968
4969 /*
4970 * B F B B B F
4971 * -|-----|.....|-----|-----|-----|.....|-
4972 * | The KVA space |
4973 * |<--------------------------------->|
4974 */
4975 for (busy = vmlist; busy; busy = busy->next) {
4976 if ((unsigned long) busy->addr - vmap_start > 0) {
4977 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4978 if (!WARN_ON_ONCE(!free)) {
4979 free->va_start = vmap_start;
4980 free->va_end = (unsigned long) busy->addr;
4981
4982 insert_vmap_area_augment(free, NULL,
4983 &free_vmap_area_root,
4984 &free_vmap_area_list);
4985 }
4986 }
4987
4988 vmap_start = (unsigned long) busy->addr + busy->size;
4989 }
4990
4991 if (vmap_end - vmap_start > 0) {
4992 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4993 if (!WARN_ON_ONCE(!free)) {
4994 free->va_start = vmap_start;
4995 free->va_end = vmap_end;
4996
4997 insert_vmap_area_augment(free, NULL,
4998 &free_vmap_area_root,
4999 &free_vmap_area_list);
5000 }
5001 }
5002}
5003
5004static void vmap_init_nodes(void)
5005{
5006 struct vmap_node *vn;
5007 int i, n;
5008
5009#if BITS_PER_LONG == 64
5010 /*
5011 * A high threshold of max nodes is fixed and bound to 128,
5012 * thus a scale factor is 1 for systems where number of cores
5013 * are less or equal to specified threshold.
5014 *
5015 * As for NUMA-aware notes. For bigger systems, for example
5016 * NUMA with multi-sockets, where we can end-up with thousands
5017 * of cores in total, a "sub-numa-clustering" should be added.
5018 *
5019 * In this case a NUMA domain is considered as a single entity
5020 * with dedicated sub-nodes in it which describe one group or
5021 * set of cores. Therefore a per-domain purging is supposed to
5022 * be added as well as a per-domain balancing.
5023 */
5024 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5025
5026 if (n > 1) {
5027 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5028 if (vn) {
5029 /* Node partition is 16 pages. */
5030 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5031 nr_vmap_nodes = n;
5032 vmap_nodes = vn;
5033 } else {
5034 pr_err("Failed to allocate an array. Disable a node layer\n");
5035 }
5036 }
5037#endif
5038
5039 for (n = 0; n < nr_vmap_nodes; n++) {
5040 vn = &vmap_nodes[n];
5041 vn->busy.root = RB_ROOT;
5042 INIT_LIST_HEAD(&vn->busy.head);
5043 spin_lock_init(&vn->busy.lock);
5044
5045 vn->lazy.root = RB_ROOT;
5046 INIT_LIST_HEAD(&vn->lazy.head);
5047 spin_lock_init(&vn->lazy.lock);
5048
5049 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5050 INIT_LIST_HEAD(&vn->pool[i].head);
5051 WRITE_ONCE(vn->pool[i].len, 0);
5052 }
5053
5054 spin_lock_init(&vn->pool_lock);
5055 }
5056}
5057
5058static unsigned long
5059vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5060{
5061 unsigned long count;
5062 struct vmap_node *vn;
5063 int i, j;
5064
5065 for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5066 vn = &vmap_nodes[i];
5067
5068 for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5069 count += READ_ONCE(vn->pool[j].len);
5070 }
5071
5072 return count ? count : SHRINK_EMPTY;
5073}
5074
5075static unsigned long
5076vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5077{
5078 int i;
5079
5080 for (i = 0; i < nr_vmap_nodes; i++)
5081 decay_va_pool_node(&vmap_nodes[i], true);
5082
5083 return SHRINK_STOP;
5084}
5085
5086void __init vmalloc_init(void)
5087{
5088 struct shrinker *vmap_node_shrinker;
5089 struct vmap_area *va;
5090 struct vmap_node *vn;
5091 struct vm_struct *tmp;
5092 int i;
5093
5094 /*
5095 * Create the cache for vmap_area objects.
5096 */
5097 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5098
5099 for_each_possible_cpu(i) {
5100 struct vmap_block_queue *vbq;
5101 struct vfree_deferred *p;
5102
5103 vbq = &per_cpu(vmap_block_queue, i);
5104 spin_lock_init(&vbq->lock);
5105 INIT_LIST_HEAD(&vbq->free);
5106 p = &per_cpu(vfree_deferred, i);
5107 init_llist_head(&p->list);
5108 INIT_WORK(&p->wq, delayed_vfree_work);
5109 xa_init(&vbq->vmap_blocks);
5110 }
5111
5112 /*
5113 * Setup nodes before importing vmlist.
5114 */
5115 vmap_init_nodes();
5116
5117 /* Import existing vmlist entries. */
5118 for (tmp = vmlist; tmp; tmp = tmp->next) {
5119 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5120 if (WARN_ON_ONCE(!va))
5121 continue;
5122
5123 va->va_start = (unsigned long)tmp->addr;
5124 va->va_end = va->va_start + tmp->size;
5125 va->vm = tmp;
5126
5127 vn = addr_to_node(va->va_start);
5128 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5129 }
5130
5131 /*
5132 * Now we can initialize a free vmap space.
5133 */
5134 vmap_init_free_space();
5135 vmap_initialized = true;
5136
5137 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5138 if (!vmap_node_shrinker) {
5139 pr_err("Failed to allocate vmap-node shrinker!\n");
5140 return;
5141 }
5142
5143 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5144 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5145 shrinker_register(vmap_node_shrinker);
5146}