Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/interrupt.h>
22#include <linux/jiffies.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/kasan.h>
26#include <linux/kmsan.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/ratelimit.h>
30#include <linux/oom.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/pagevec.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmstat.h>
39#include <linux/fault-inject.h>
40#include <linux/compaction.h>
41#include <trace/events/kmem.h>
42#include <trace/events/oom.h>
43#include <linux/prefetch.h>
44#include <linux/mm_inline.h>
45#include <linux/mmu_notifier.h>
46#include <linux/migrate.h>
47#include <linux/sched/mm.h>
48#include <linux/page_owner.h>
49#include <linux/page_table_check.h>
50#include <linux/memcontrol.h>
51#include <linux/ftrace.h>
52#include <linux/lockdep.h>
53#include <linux/psi.h>
54#include <linux/khugepaged.h>
55#include <linux/delayacct.h>
56#include <linux/cacheinfo.h>
57#include <linux/pgalloc_tag.h>
58#include <asm/div64.h>
59#include "internal.h"
60#include "shuffle.h"
61#include "page_reporting.h"
62
63/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64typedef int __bitwise fpi_t;
65
66/* No special request */
67#define FPI_NONE ((__force fpi_t)0)
68
69/*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79/*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92static DEFINE_MUTEX(pcp_batch_high_lock);
93#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94
95#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96/*
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99 */
100#define pcp_trylock_prepare(flags) do { } while (0)
101#define pcp_trylock_finish(flag) do { } while (0)
102#else
103
104/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105#define pcp_trylock_prepare(flags) local_irq_save(flags)
106#define pcp_trylock_finish(flags) local_irq_restore(flags)
107#endif
108
109/*
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
116 */
117#ifndef CONFIG_PREEMPT_RT
118#define pcpu_task_pin() preempt_disable()
119#define pcpu_task_unpin() preempt_enable()
120#else
121#define pcpu_task_pin() migrate_disable()
122#define pcpu_task_unpin() migrate_enable()
123#endif
124
125/*
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
128 */
129#define pcpu_spin_lock(type, member, ptr) \
130({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
136})
137
138#define pcpu_spin_trylock(type, member, ptr) \
139({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
146 } \
147 _ret; \
148})
149
150#define pcpu_spin_unlock(member, ptr) \
151({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
154})
155
156/* struct per_cpu_pages specific helpers. */
157#define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159
160#define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162
163#define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
165
166#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167DEFINE_PER_CPU(int, numa_node);
168EXPORT_PER_CPU_SYMBOL(numa_node);
169#endif
170
171DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172
173#ifdef CONFIG_HAVE_MEMORYLESS_NODES
174/*
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
179 */
180DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182#endif
183
184static DEFINE_MUTEX(pcpu_drain_mutex);
185
186#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187volatile unsigned long latent_entropy __latent_entropy;
188EXPORT_SYMBOL(latent_entropy);
189#endif
190
191/*
192 * Array of node states.
193 */
194nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197#ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199#ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201#endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204#endif /* NUMA */
205};
206EXPORT_SYMBOL(node_states);
207
208gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209
210#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211unsigned int pageblock_order __read_mostly;
212#endif
213
214static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
216
217/*
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224 *
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
227 */
228static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229#ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231#endif
232#ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234#endif
235 [ZONE_NORMAL] = 32,
236#ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238#endif
239 [ZONE_MOVABLE] = 0,
240};
241
242char * const zone_names[MAX_NR_ZONES] = {
243#ifdef CONFIG_ZONE_DMA
244 "DMA",
245#endif
246#ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248#endif
249 "Normal",
250#ifdef CONFIG_HIGHMEM
251 "HighMem",
252#endif
253 "Movable",
254#ifdef CONFIG_ZONE_DEVICE
255 "Device",
256#endif
257};
258
259const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264#ifdef CONFIG_CMA
265 "CMA",
266#endif
267#ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269#endif
270};
271
272int min_free_kbytes = 1024;
273int user_min_free_kbytes = -1;
274static int watermark_boost_factor __read_mostly = 15000;
275static int watermark_scale_factor = 10;
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280
281#if MAX_NUMNODES > 1
282unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283unsigned int nr_online_nodes __read_mostly = 1;
284EXPORT_SYMBOL(nr_node_ids);
285EXPORT_SYMBOL(nr_online_nodes);
286#endif
287
288static bool page_contains_unaccepted(struct page *page, unsigned int order);
289static void accept_page(struct page *page, unsigned int order);
290static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291static inline bool has_unaccepted_memory(void);
292static bool __free_unaccepted(struct page *page);
293
294int page_group_by_mobility_disabled __read_mostly;
295
296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297/*
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
301 */
302DEFINE_STATIC_KEY_TRUE(deferred_pages);
303
304static inline bool deferred_pages_enabled(void)
305{
306 return static_branch_unlikely(&deferred_pages);
307}
308
309/*
310 * deferred_grow_zone() is __init, but it is called from
311 * get_page_from_freelist() during early boot until deferred_pages permanently
312 * disables this call. This is why we have refdata wrapper to avoid warning,
313 * and to ensure that the function body gets unloaded.
314 */
315static bool __ref
316_deferred_grow_zone(struct zone *zone, unsigned int order)
317{
318 return deferred_grow_zone(zone, order);
319}
320#else
321static inline bool deferred_pages_enabled(void)
322{
323 return false;
324}
325#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326
327/* Return a pointer to the bitmap storing bits affecting a block of pages */
328static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 unsigned long pfn)
330{
331#ifdef CONFIG_SPARSEMEM
332 return section_to_usemap(__pfn_to_section(pfn));
333#else
334 return page_zone(page)->pageblock_flags;
335#endif /* CONFIG_SPARSEMEM */
336}
337
338static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339{
340#ifdef CONFIG_SPARSEMEM
341 pfn &= (PAGES_PER_SECTION-1);
342#else
343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344#endif /* CONFIG_SPARSEMEM */
345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346}
347
348/**
349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350 * @page: The page within the block of interest
351 * @pfn: The target page frame number
352 * @mask: mask of bits that the caller is interested in
353 *
354 * Return: pageblock_bits flags
355 */
356unsigned long get_pfnblock_flags_mask(const struct page *page,
357 unsigned long pfn, unsigned long mask)
358{
359 unsigned long *bitmap;
360 unsigned long bitidx, word_bitidx;
361 unsigned long word;
362
363 bitmap = get_pageblock_bitmap(page, pfn);
364 bitidx = pfn_to_bitidx(page, pfn);
365 word_bitidx = bitidx / BITS_PER_LONG;
366 bitidx &= (BITS_PER_LONG-1);
367 /*
368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 * a consistent read of the memory array, so that results, even though
370 * racy, are not corrupted.
371 */
372 word = READ_ONCE(bitmap[word_bitidx]);
373 return (word >> bitidx) & mask;
374}
375
376static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 unsigned long pfn)
378{
379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380}
381
382/**
383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384 * @page: The page within the block of interest
385 * @flags: The flags to set
386 * @pfn: The target page frame number
387 * @mask: mask of bits that the caller is interested in
388 */
389void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 unsigned long pfn,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399
400 bitmap = get_pageblock_bitmap(page, pfn);
401 bitidx = pfn_to_bitidx(page, pfn);
402 word_bitidx = bitidx / BITS_PER_LONG;
403 bitidx &= (BITS_PER_LONG-1);
404
405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406
407 mask <<= bitidx;
408 flags <<= bitidx;
409
410 word = READ_ONCE(bitmap[word_bitidx]);
411 do {
412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413}
414
415void set_pageblock_migratetype(struct page *page, int migratetype)
416{
417 if (unlikely(page_group_by_mobility_disabled &&
418 migratetype < MIGRATE_PCPTYPES))
419 migratetype = MIGRATE_UNMOVABLE;
420
421 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 page_to_pfn(page), MIGRATETYPE_MASK);
423}
424
425#ifdef CONFIG_DEBUG_VM
426static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427{
428 int ret;
429 unsigned seq;
430 unsigned long pfn = page_to_pfn(page);
431 unsigned long sp, start_pfn;
432
433 do {
434 seq = zone_span_seqbegin(zone);
435 start_pfn = zone->zone_start_pfn;
436 sp = zone->spanned_pages;
437 ret = !zone_spans_pfn(zone, pfn);
438 } while (zone_span_seqretry(zone, seq));
439
440 if (ret)
441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 pfn, zone_to_nid(zone), zone->name,
443 start_pfn, start_pfn + sp);
444
445 return ret;
446}
447
448/*
449 * Temporary debugging check for pages not lying within a given zone.
450 */
451static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452{
453 if (page_outside_zone_boundaries(zone, page))
454 return true;
455 if (zone != page_zone(page))
456 return true;
457
458 return false;
459}
460#else
461static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462{
463 return false;
464}
465#endif
466
467static void bad_page(struct page *page, const char *reason)
468{
469 static unsigned long resume;
470 static unsigned long nr_shown;
471 static unsigned long nr_unshown;
472
473 /*
474 * Allow a burst of 60 reports, then keep quiet for that minute;
475 * or allow a steady drip of one report per second.
476 */
477 if (nr_shown == 60) {
478 if (time_before(jiffies, resume)) {
479 nr_unshown++;
480 goto out;
481 }
482 if (nr_unshown) {
483 pr_alert(
484 "BUG: Bad page state: %lu messages suppressed\n",
485 nr_unshown);
486 nr_unshown = 0;
487 }
488 nr_shown = 0;
489 }
490 if (nr_shown++ == 0)
491 resume = jiffies + 60 * HZ;
492
493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
494 current->comm, page_to_pfn(page));
495 dump_page(page, reason);
496
497 print_modules();
498 dump_stack();
499out:
500 /* Leave bad fields for debug, except PageBuddy could make trouble */
501 page_mapcount_reset(page); /* remove PageBuddy */
502 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
503}
504
505static inline unsigned int order_to_pindex(int migratetype, int order)
506{
507 bool __maybe_unused movable;
508
509#ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 if (order > PAGE_ALLOC_COSTLY_ORDER) {
511 VM_BUG_ON(order != HPAGE_PMD_ORDER);
512
513 movable = migratetype == MIGRATE_MOVABLE;
514
515 return NR_LOWORDER_PCP_LISTS + movable;
516 }
517#else
518 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
519#endif
520
521 return (MIGRATE_PCPTYPES * order) + migratetype;
522}
523
524static inline int pindex_to_order(unsigned int pindex)
525{
526 int order = pindex / MIGRATE_PCPTYPES;
527
528#ifdef CONFIG_TRANSPARENT_HUGEPAGE
529 if (pindex >= NR_LOWORDER_PCP_LISTS)
530 order = HPAGE_PMD_ORDER;
531#else
532 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
533#endif
534
535 return order;
536}
537
538static inline bool pcp_allowed_order(unsigned int order)
539{
540 if (order <= PAGE_ALLOC_COSTLY_ORDER)
541 return true;
542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 if (order == HPAGE_PMD_ORDER)
544 return true;
545#endif
546 return false;
547}
548
549/*
550 * Higher-order pages are called "compound pages". They are structured thusly:
551 *
552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
553 *
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
556 *
557 * The first tail page's ->compound_order holds the order of allocation.
558 * This usage means that zero-order pages may not be compound.
559 */
560
561void prep_compound_page(struct page *page, unsigned int order)
562{
563 int i;
564 int nr_pages = 1 << order;
565
566 __SetPageHead(page);
567 for (i = 1; i < nr_pages; i++)
568 prep_compound_tail(page, i);
569
570 prep_compound_head(page, order);
571}
572
573static inline void set_buddy_order(struct page *page, unsigned int order)
574{
575 set_page_private(page, order);
576 __SetPageBuddy(page);
577}
578
579#ifdef CONFIG_COMPACTION
580static inline struct capture_control *task_capc(struct zone *zone)
581{
582 struct capture_control *capc = current->capture_control;
583
584 return unlikely(capc) &&
585 !(current->flags & PF_KTHREAD) &&
586 !capc->page &&
587 capc->cc->zone == zone ? capc : NULL;
588}
589
590static inline bool
591compaction_capture(struct capture_control *capc, struct page *page,
592 int order, int migratetype)
593{
594 if (!capc || order != capc->cc->order)
595 return false;
596
597 /* Do not accidentally pollute CMA or isolated regions*/
598 if (is_migrate_cma(migratetype) ||
599 is_migrate_isolate(migratetype))
600 return false;
601
602 /*
603 * Do not let lower order allocations pollute a movable pageblock
604 * unless compaction is also requesting movable pages.
605 * This might let an unmovable request use a reclaimable pageblock
606 * and vice-versa but no more than normal fallback logic which can
607 * have trouble finding a high-order free page.
608 */
609 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
610 capc->cc->migratetype != MIGRATE_MOVABLE)
611 return false;
612
613 capc->page = page;
614 return true;
615}
616
617#else
618static inline struct capture_control *task_capc(struct zone *zone)
619{
620 return NULL;
621}
622
623static inline bool
624compaction_capture(struct capture_control *capc, struct page *page,
625 int order, int migratetype)
626{
627 return false;
628}
629#endif /* CONFIG_COMPACTION */
630
631static inline void account_freepages(struct zone *zone, int nr_pages,
632 int migratetype)
633{
634 if (is_migrate_isolate(migratetype))
635 return;
636
637 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
638
639 if (is_migrate_cma(migratetype))
640 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
641}
642
643/* Used for pages not on another list */
644static inline void __add_to_free_list(struct page *page, struct zone *zone,
645 unsigned int order, int migratetype,
646 bool tail)
647{
648 struct free_area *area = &zone->free_area[order];
649
650 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
651 "page type is %lu, passed migratetype is %d (nr=%d)\n",
652 get_pageblock_migratetype(page), migratetype, 1 << order);
653
654 if (tail)
655 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
656 else
657 list_add(&page->buddy_list, &area->free_list[migratetype]);
658 area->nr_free++;
659}
660
661/*
662 * Used for pages which are on another list. Move the pages to the tail
663 * of the list - so the moved pages won't immediately be considered for
664 * allocation again (e.g., optimization for memory onlining).
665 */
666static inline void move_to_free_list(struct page *page, struct zone *zone,
667 unsigned int order, int old_mt, int new_mt)
668{
669 struct free_area *area = &zone->free_area[order];
670
671 /* Free page moving can fail, so it happens before the type update */
672 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
673 "page type is %lu, passed migratetype is %d (nr=%d)\n",
674 get_pageblock_migratetype(page), old_mt, 1 << order);
675
676 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
677
678 account_freepages(zone, -(1 << order), old_mt);
679 account_freepages(zone, 1 << order, new_mt);
680}
681
682static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
683 unsigned int order, int migratetype)
684{
685 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
686 "page type is %lu, passed migratetype is %d (nr=%d)\n",
687 get_pageblock_migratetype(page), migratetype, 1 << order);
688
689 /* clear reported state and update reported page count */
690 if (page_reported(page))
691 __ClearPageReported(page);
692
693 list_del(&page->buddy_list);
694 __ClearPageBuddy(page);
695 set_page_private(page, 0);
696 zone->free_area[order].nr_free--;
697}
698
699static inline void del_page_from_free_list(struct page *page, struct zone *zone,
700 unsigned int order, int migratetype)
701{
702 __del_page_from_free_list(page, zone, order, migratetype);
703 account_freepages(zone, -(1 << order), migratetype);
704}
705
706static inline struct page *get_page_from_free_area(struct free_area *area,
707 int migratetype)
708{
709 return list_first_entry_or_null(&area->free_list[migratetype],
710 struct page, buddy_list);
711}
712
713/*
714 * If this is not the largest possible page, check if the buddy
715 * of the next-highest order is free. If it is, it's possible
716 * that pages are being freed that will coalesce soon. In case,
717 * that is happening, add the free page to the tail of the list
718 * so it's less likely to be used soon and more likely to be merged
719 * as a higher order page
720 */
721static inline bool
722buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
723 struct page *page, unsigned int order)
724{
725 unsigned long higher_page_pfn;
726 struct page *higher_page;
727
728 if (order >= MAX_PAGE_ORDER - 1)
729 return false;
730
731 higher_page_pfn = buddy_pfn & pfn;
732 higher_page = page + (higher_page_pfn - pfn);
733
734 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
735 NULL) != NULL;
736}
737
738/*
739 * Freeing function for a buddy system allocator.
740 *
741 * The concept of a buddy system is to maintain direct-mapped table
742 * (containing bit values) for memory blocks of various "orders".
743 * The bottom level table contains the map for the smallest allocatable
744 * units of memory (here, pages), and each level above it describes
745 * pairs of units from the levels below, hence, "buddies".
746 * At a high level, all that happens here is marking the table entry
747 * at the bottom level available, and propagating the changes upward
748 * as necessary, plus some accounting needed to play nicely with other
749 * parts of the VM system.
750 * At each level, we keep a list of pages, which are heads of continuous
751 * free pages of length of (1 << order) and marked with PageBuddy.
752 * Page's order is recorded in page_private(page) field.
753 * So when we are allocating or freeing one, we can derive the state of the
754 * other. That is, if we allocate a small block, and both were
755 * free, the remainder of the region must be split into blocks.
756 * If a block is freed, and its buddy is also free, then this
757 * triggers coalescing into a block of larger size.
758 *
759 * -- nyc
760 */
761
762static inline void __free_one_page(struct page *page,
763 unsigned long pfn,
764 struct zone *zone, unsigned int order,
765 int migratetype, fpi_t fpi_flags)
766{
767 struct capture_control *capc = task_capc(zone);
768 unsigned long buddy_pfn = 0;
769 unsigned long combined_pfn;
770 struct page *buddy;
771 bool to_tail;
772
773 VM_BUG_ON(!zone_is_initialized(zone));
774 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
775
776 VM_BUG_ON(migratetype == -1);
777 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
778 VM_BUG_ON_PAGE(bad_range(zone, page), page);
779
780 account_freepages(zone, 1 << order, migratetype);
781
782 while (order < MAX_PAGE_ORDER) {
783 int buddy_mt = migratetype;
784
785 if (compaction_capture(capc, page, order, migratetype)) {
786 account_freepages(zone, -(1 << order), migratetype);
787 return;
788 }
789
790 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
791 if (!buddy)
792 goto done_merging;
793
794 if (unlikely(order >= pageblock_order)) {
795 /*
796 * We want to prevent merge between freepages on pageblock
797 * without fallbacks and normal pageblock. Without this,
798 * pageblock isolation could cause incorrect freepage or CMA
799 * accounting or HIGHATOMIC accounting.
800 */
801 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
802
803 if (migratetype != buddy_mt &&
804 (!migratetype_is_mergeable(migratetype) ||
805 !migratetype_is_mergeable(buddy_mt)))
806 goto done_merging;
807 }
808
809 /*
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
812 */
813 if (page_is_guard(buddy))
814 clear_page_guard(zone, buddy, order);
815 else
816 __del_page_from_free_list(buddy, zone, order, buddy_mt);
817
818 if (unlikely(buddy_mt != migratetype)) {
819 /*
820 * Match buddy type. This ensures that an
821 * expand() down the line puts the sub-blocks
822 * on the right freelists.
823 */
824 set_pageblock_migratetype(buddy, migratetype);
825 }
826
827 combined_pfn = buddy_pfn & pfn;
828 page = page + (combined_pfn - pfn);
829 pfn = combined_pfn;
830 order++;
831 }
832
833done_merging:
834 set_buddy_order(page, order);
835
836 if (fpi_flags & FPI_TO_TAIL)
837 to_tail = true;
838 else if (is_shuffle_order(order))
839 to_tail = shuffle_pick_tail();
840 else
841 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
842
843 __add_to_free_list(page, zone, order, migratetype, to_tail);
844
845 /* Notify page reporting subsystem of freed page */
846 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
847 page_reporting_notify_free(order);
848}
849
850/*
851 * A bad page could be due to a number of fields. Instead of multiple branches,
852 * try and check multiple fields with one check. The caller must do a detailed
853 * check if necessary.
854 */
855static inline bool page_expected_state(struct page *page,
856 unsigned long check_flags)
857{
858 if (unlikely(atomic_read(&page->_mapcount) != -1))
859 return false;
860
861 if (unlikely((unsigned long)page->mapping |
862 page_ref_count(page) |
863#ifdef CONFIG_MEMCG
864 page->memcg_data |
865#endif
866#ifdef CONFIG_PAGE_POOL
867 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
868#endif
869 (page->flags & check_flags)))
870 return false;
871
872 return true;
873}
874
875static const char *page_bad_reason(struct page *page, unsigned long flags)
876{
877 const char *bad_reason = NULL;
878
879 if (unlikely(atomic_read(&page->_mapcount) != -1))
880 bad_reason = "nonzero mapcount";
881 if (unlikely(page->mapping != NULL))
882 bad_reason = "non-NULL mapping";
883 if (unlikely(page_ref_count(page) != 0))
884 bad_reason = "nonzero _refcount";
885 if (unlikely(page->flags & flags)) {
886 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
887 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
888 else
889 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
890 }
891#ifdef CONFIG_MEMCG
892 if (unlikely(page->memcg_data))
893 bad_reason = "page still charged to cgroup";
894#endif
895#ifdef CONFIG_PAGE_POOL
896 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
897 bad_reason = "page_pool leak";
898#endif
899 return bad_reason;
900}
901
902static void free_page_is_bad_report(struct page *page)
903{
904 bad_page(page,
905 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
906}
907
908static inline bool free_page_is_bad(struct page *page)
909{
910 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
911 return false;
912
913 /* Something has gone sideways, find it */
914 free_page_is_bad_report(page);
915 return true;
916}
917
918static inline bool is_check_pages_enabled(void)
919{
920 return static_branch_unlikely(&check_pages_enabled);
921}
922
923static int free_tail_page_prepare(struct page *head_page, struct page *page)
924{
925 struct folio *folio = (struct folio *)head_page;
926 int ret = 1;
927
928 /*
929 * We rely page->lru.next never has bit 0 set, unless the page
930 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
931 */
932 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
933
934 if (!is_check_pages_enabled()) {
935 ret = 0;
936 goto out;
937 }
938 switch (page - head_page) {
939 case 1:
940 /* the first tail page: these may be in place of ->mapping */
941 if (unlikely(folio_entire_mapcount(folio))) {
942 bad_page(page, "nonzero entire_mapcount");
943 goto out;
944 }
945 if (unlikely(folio_large_mapcount(folio))) {
946 bad_page(page, "nonzero large_mapcount");
947 goto out;
948 }
949 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
950 bad_page(page, "nonzero nr_pages_mapped");
951 goto out;
952 }
953 if (unlikely(atomic_read(&folio->_pincount))) {
954 bad_page(page, "nonzero pincount");
955 goto out;
956 }
957 break;
958 case 2:
959 /* the second tail page: deferred_list overlaps ->mapping */
960 if (unlikely(!list_empty(&folio->_deferred_list))) {
961 bad_page(page, "on deferred list");
962 goto out;
963 }
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page");
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set");
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent");
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
987/*
988 * Skip KASAN memory poisoning when either:
989 *
990 * 1. For generic KASAN: deferred memory initialization has not yet completed.
991 * Tag-based KASAN modes skip pages freed via deferred memory initialization
992 * using page tags instead (see below).
993 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
994 * that error detection is disabled for accesses via the page address.
995 *
996 * Pages will have match-all tags in the following circumstances:
997 *
998 * 1. Pages are being initialized for the first time, including during deferred
999 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1000 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1001 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1002 * 3. The allocation was excluded from being checked due to sampling,
1003 * see the call to kasan_unpoison_pages.
1004 *
1005 * Poisoning pages during deferred memory init will greatly lengthen the
1006 * process and cause problem in large memory systems as the deferred pages
1007 * initialization is done with interrupt disabled.
1008 *
1009 * Assuming that there will be no reference to those newly initialized
1010 * pages before they are ever allocated, this should have no effect on
1011 * KASAN memory tracking as the poison will be properly inserted at page
1012 * allocation time. The only corner case is when pages are allocated by
1013 * on-demand allocation and then freed again before the deferred pages
1014 * initialization is done, but this is not likely to happen.
1015 */
1016static inline bool should_skip_kasan_poison(struct page *page)
1017{
1018 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1019 return deferred_pages_enabled();
1020
1021 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1022}
1023
1024static void kernel_init_pages(struct page *page, int numpages)
1025{
1026 int i;
1027
1028 /* s390's use of memset() could override KASAN redzones. */
1029 kasan_disable_current();
1030 for (i = 0; i < numpages; i++)
1031 clear_highpage_kasan_tagged(page + i);
1032 kasan_enable_current();
1033}
1034
1035__always_inline bool free_pages_prepare(struct page *page,
1036 unsigned int order)
1037{
1038 int bad = 0;
1039 bool skip_kasan_poison = should_skip_kasan_poison(page);
1040 bool init = want_init_on_free();
1041 bool compound = PageCompound(page);
1042
1043 VM_BUG_ON_PAGE(PageTail(page), page);
1044
1045 trace_mm_page_free(page, order);
1046 kmsan_free_page(page, order);
1047
1048 if (memcg_kmem_online() && PageMemcgKmem(page))
1049 __memcg_kmem_uncharge_page(page, order);
1050
1051 if (unlikely(PageHWPoison(page)) && !order) {
1052 /* Do not let hwpoison pages hit pcplists/buddy */
1053 reset_page_owner(page, order);
1054 page_table_check_free(page, order);
1055 pgalloc_tag_sub(page, 1 << order);
1056 return false;
1057 }
1058
1059 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1060
1061 /*
1062 * Check tail pages before head page information is cleared to
1063 * avoid checking PageCompound for order-0 pages.
1064 */
1065 if (unlikely(order)) {
1066 int i;
1067
1068 if (compound)
1069 page[1].flags &= ~PAGE_FLAGS_SECOND;
1070 for (i = 1; i < (1 << order); i++) {
1071 if (compound)
1072 bad += free_tail_page_prepare(page, page + i);
1073 if (is_check_pages_enabled()) {
1074 if (free_page_is_bad(page + i)) {
1075 bad++;
1076 continue;
1077 }
1078 }
1079 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1080 }
1081 }
1082 if (PageMappingFlags(page))
1083 page->mapping = NULL;
1084 if (is_check_pages_enabled()) {
1085 if (free_page_is_bad(page))
1086 bad++;
1087 if (bad)
1088 return false;
1089 }
1090
1091 page_cpupid_reset_last(page);
1092 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1093 reset_page_owner(page, order);
1094 page_table_check_free(page, order);
1095 pgalloc_tag_sub(page, 1 << order);
1096
1097 if (!PageHighMem(page)) {
1098 debug_check_no_locks_freed(page_address(page),
1099 PAGE_SIZE << order);
1100 debug_check_no_obj_freed(page_address(page),
1101 PAGE_SIZE << order);
1102 }
1103
1104 kernel_poison_pages(page, 1 << order);
1105
1106 /*
1107 * As memory initialization might be integrated into KASAN,
1108 * KASAN poisoning and memory initialization code must be
1109 * kept together to avoid discrepancies in behavior.
1110 *
1111 * With hardware tag-based KASAN, memory tags must be set before the
1112 * page becomes unavailable via debug_pagealloc or arch_free_page.
1113 */
1114 if (!skip_kasan_poison) {
1115 kasan_poison_pages(page, order, init);
1116
1117 /* Memory is already initialized if KASAN did it internally. */
1118 if (kasan_has_integrated_init())
1119 init = false;
1120 }
1121 if (init)
1122 kernel_init_pages(page, 1 << order);
1123
1124 /*
1125 * arch_free_page() can make the page's contents inaccessible. s390
1126 * does this. So nothing which can access the page's contents should
1127 * happen after this.
1128 */
1129 arch_free_page(page, order);
1130
1131 debug_pagealloc_unmap_pages(page, 1 << order);
1132
1133 return true;
1134}
1135
1136/*
1137 * Frees a number of pages from the PCP lists
1138 * Assumes all pages on list are in same zone.
1139 * count is the number of pages to free.
1140 */
1141static void free_pcppages_bulk(struct zone *zone, int count,
1142 struct per_cpu_pages *pcp,
1143 int pindex)
1144{
1145 unsigned long flags;
1146 unsigned int order;
1147 struct page *page;
1148
1149 /*
1150 * Ensure proper count is passed which otherwise would stuck in the
1151 * below while (list_empty(list)) loop.
1152 */
1153 count = min(pcp->count, count);
1154
1155 /* Ensure requested pindex is drained first. */
1156 pindex = pindex - 1;
1157
1158 spin_lock_irqsave(&zone->lock, flags);
1159
1160 while (count > 0) {
1161 struct list_head *list;
1162 int nr_pages;
1163
1164 /* Remove pages from lists in a round-robin fashion. */
1165 do {
1166 if (++pindex > NR_PCP_LISTS - 1)
1167 pindex = 0;
1168 list = &pcp->lists[pindex];
1169 } while (list_empty(list));
1170
1171 order = pindex_to_order(pindex);
1172 nr_pages = 1 << order;
1173 do {
1174 unsigned long pfn;
1175 int mt;
1176
1177 page = list_last_entry(list, struct page, pcp_list);
1178 pfn = page_to_pfn(page);
1179 mt = get_pfnblock_migratetype(page, pfn);
1180
1181 /* must delete to avoid corrupting pcp list */
1182 list_del(&page->pcp_list);
1183 count -= nr_pages;
1184 pcp->count -= nr_pages;
1185
1186 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1187 trace_mm_page_pcpu_drain(page, order, mt);
1188 } while (count > 0 && !list_empty(list));
1189 }
1190
1191 spin_unlock_irqrestore(&zone->lock, flags);
1192}
1193
1194static void free_one_page(struct zone *zone, struct page *page,
1195 unsigned long pfn, unsigned int order,
1196 fpi_t fpi_flags)
1197{
1198 unsigned long flags;
1199 int migratetype;
1200
1201 spin_lock_irqsave(&zone->lock, flags);
1202 migratetype = get_pfnblock_migratetype(page, pfn);
1203 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1204 spin_unlock_irqrestore(&zone->lock, flags);
1205}
1206
1207static void __free_pages_ok(struct page *page, unsigned int order,
1208 fpi_t fpi_flags)
1209{
1210 unsigned long pfn = page_to_pfn(page);
1211 struct zone *zone = page_zone(page);
1212
1213 if (!free_pages_prepare(page, order))
1214 return;
1215
1216 free_one_page(zone, page, pfn, order, fpi_flags);
1217
1218 __count_vm_events(PGFREE, 1 << order);
1219}
1220
1221void __free_pages_core(struct page *page, unsigned int order)
1222{
1223 unsigned int nr_pages = 1 << order;
1224 struct page *p = page;
1225 unsigned int loop;
1226
1227 /*
1228 * When initializing the memmap, __init_single_page() sets the refcount
1229 * of all pages to 1 ("allocated"/"not free"). We have to set the
1230 * refcount of all involved pages to 0.
1231 */
1232 prefetchw(p);
1233 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1234 prefetchw(p + 1);
1235 __ClearPageReserved(p);
1236 set_page_count(p, 0);
1237 }
1238 __ClearPageReserved(p);
1239 set_page_count(p, 0);
1240
1241 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1242
1243 if (page_contains_unaccepted(page, order)) {
1244 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1245 return;
1246
1247 accept_page(page, order);
1248 }
1249
1250 /*
1251 * Bypass PCP and place fresh pages right to the tail, primarily
1252 * relevant for memory onlining.
1253 */
1254 __free_pages_ok(page, order, FPI_TO_TAIL);
1255}
1256
1257/*
1258 * Check that the whole (or subset of) a pageblock given by the interval of
1259 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1260 * with the migration of free compaction scanner.
1261 *
1262 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1263 *
1264 * It's possible on some configurations to have a setup like node0 node1 node0
1265 * i.e. it's possible that all pages within a zones range of pages do not
1266 * belong to a single zone. We assume that a border between node0 and node1
1267 * can occur within a single pageblock, but not a node0 node1 node0
1268 * interleaving within a single pageblock. It is therefore sufficient to check
1269 * the first and last page of a pageblock and avoid checking each individual
1270 * page in a pageblock.
1271 *
1272 * Note: the function may return non-NULL struct page even for a page block
1273 * which contains a memory hole (i.e. there is no physical memory for a subset
1274 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1275 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1276 * even though the start pfn is online and valid. This should be safe most of
1277 * the time because struct pages are still initialized via init_unavailable_range()
1278 * and pfn walkers shouldn't touch any physical memory range for which they do
1279 * not recognize any specific metadata in struct pages.
1280 */
1281struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1282 unsigned long end_pfn, struct zone *zone)
1283{
1284 struct page *start_page;
1285 struct page *end_page;
1286
1287 /* end_pfn is one past the range we are checking */
1288 end_pfn--;
1289
1290 if (!pfn_valid(end_pfn))
1291 return NULL;
1292
1293 start_page = pfn_to_online_page(start_pfn);
1294 if (!start_page)
1295 return NULL;
1296
1297 if (page_zone(start_page) != zone)
1298 return NULL;
1299
1300 end_page = pfn_to_page(end_pfn);
1301
1302 /* This gives a shorter code than deriving page_zone(end_page) */
1303 if (page_zone_id(start_page) != page_zone_id(end_page))
1304 return NULL;
1305
1306 return start_page;
1307}
1308
1309/*
1310 * The order of subdivision here is critical for the IO subsystem.
1311 * Please do not alter this order without good reasons and regression
1312 * testing. Specifically, as large blocks of memory are subdivided,
1313 * the order in which smaller blocks are delivered depends on the order
1314 * they're subdivided in this function. This is the primary factor
1315 * influencing the order in which pages are delivered to the IO
1316 * subsystem according to empirical testing, and this is also justified
1317 * by considering the behavior of a buddy system containing a single
1318 * large block of memory acted on by a series of small allocations.
1319 * This behavior is a critical factor in sglist merging's success.
1320 *
1321 * -- nyc
1322 */
1323static inline void expand(struct zone *zone, struct page *page,
1324 int low, int high, int migratetype)
1325{
1326 unsigned long size = 1 << high;
1327 unsigned long nr_added = 0;
1328
1329 while (high > low) {
1330 high--;
1331 size >>= 1;
1332 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1333
1334 /*
1335 * Mark as guard pages (or page), that will allow to
1336 * merge back to allocator when buddy will be freed.
1337 * Corresponding page table entries will not be touched,
1338 * pages will stay not present in virtual address space
1339 */
1340 if (set_page_guard(zone, &page[size], high))
1341 continue;
1342
1343 __add_to_free_list(&page[size], zone, high, migratetype, false);
1344 set_buddy_order(&page[size], high);
1345 nr_added += size;
1346 }
1347 account_freepages(zone, nr_added, migratetype);
1348}
1349
1350static void check_new_page_bad(struct page *page)
1351{
1352 if (unlikely(page->flags & __PG_HWPOISON)) {
1353 /* Don't complain about hwpoisoned pages */
1354 page_mapcount_reset(page); /* remove PageBuddy */
1355 return;
1356 }
1357
1358 bad_page(page,
1359 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1360}
1361
1362/*
1363 * This page is about to be returned from the page allocator
1364 */
1365static bool check_new_page(struct page *page)
1366{
1367 if (likely(page_expected_state(page,
1368 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1369 return false;
1370
1371 check_new_page_bad(page);
1372 return true;
1373}
1374
1375static inline bool check_new_pages(struct page *page, unsigned int order)
1376{
1377 if (is_check_pages_enabled()) {
1378 for (int i = 0; i < (1 << order); i++) {
1379 struct page *p = page + i;
1380
1381 if (check_new_page(p))
1382 return true;
1383 }
1384 }
1385
1386 return false;
1387}
1388
1389static inline bool should_skip_kasan_unpoison(gfp_t flags)
1390{
1391 /* Don't skip if a software KASAN mode is enabled. */
1392 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1393 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1394 return false;
1395
1396 /* Skip, if hardware tag-based KASAN is not enabled. */
1397 if (!kasan_hw_tags_enabled())
1398 return true;
1399
1400 /*
1401 * With hardware tag-based KASAN enabled, skip if this has been
1402 * requested via __GFP_SKIP_KASAN.
1403 */
1404 return flags & __GFP_SKIP_KASAN;
1405}
1406
1407static inline bool should_skip_init(gfp_t flags)
1408{
1409 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1410 if (!kasan_hw_tags_enabled())
1411 return false;
1412
1413 /* For hardware tag-based KASAN, skip if requested. */
1414 return (flags & __GFP_SKIP_ZERO);
1415}
1416
1417inline void post_alloc_hook(struct page *page, unsigned int order,
1418 gfp_t gfp_flags)
1419{
1420 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1421 !should_skip_init(gfp_flags);
1422 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1423 int i;
1424
1425 set_page_private(page, 0);
1426 set_page_refcounted(page);
1427
1428 arch_alloc_page(page, order);
1429 debug_pagealloc_map_pages(page, 1 << order);
1430
1431 /*
1432 * Page unpoisoning must happen before memory initialization.
1433 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1434 * allocations and the page unpoisoning code will complain.
1435 */
1436 kernel_unpoison_pages(page, 1 << order);
1437
1438 /*
1439 * As memory initialization might be integrated into KASAN,
1440 * KASAN unpoisoning and memory initializion code must be
1441 * kept together to avoid discrepancies in behavior.
1442 */
1443
1444 /*
1445 * If memory tags should be zeroed
1446 * (which happens only when memory should be initialized as well).
1447 */
1448 if (zero_tags) {
1449 /* Initialize both memory and memory tags. */
1450 for (i = 0; i != 1 << order; ++i)
1451 tag_clear_highpage(page + i);
1452
1453 /* Take note that memory was initialized by the loop above. */
1454 init = false;
1455 }
1456 if (!should_skip_kasan_unpoison(gfp_flags) &&
1457 kasan_unpoison_pages(page, order, init)) {
1458 /* Take note that memory was initialized by KASAN. */
1459 if (kasan_has_integrated_init())
1460 init = false;
1461 } else {
1462 /*
1463 * If memory tags have not been set by KASAN, reset the page
1464 * tags to ensure page_address() dereferencing does not fault.
1465 */
1466 for (i = 0; i != 1 << order; ++i)
1467 page_kasan_tag_reset(page + i);
1468 }
1469 /* If memory is still not initialized, initialize it now. */
1470 if (init)
1471 kernel_init_pages(page, 1 << order);
1472
1473 set_page_owner(page, order, gfp_flags);
1474 page_table_check_alloc(page, order);
1475 pgalloc_tag_add(page, current, 1 << order);
1476}
1477
1478static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1479 unsigned int alloc_flags)
1480{
1481 post_alloc_hook(page, order, gfp_flags);
1482
1483 if (order && (gfp_flags & __GFP_COMP))
1484 prep_compound_page(page, order);
1485
1486 /*
1487 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1488 * allocate the page. The expectation is that the caller is taking
1489 * steps that will free more memory. The caller should avoid the page
1490 * being used for !PFMEMALLOC purposes.
1491 */
1492 if (alloc_flags & ALLOC_NO_WATERMARKS)
1493 set_page_pfmemalloc(page);
1494 else
1495 clear_page_pfmemalloc(page);
1496}
1497
1498/*
1499 * Go through the free lists for the given migratetype and remove
1500 * the smallest available page from the freelists
1501 */
1502static __always_inline
1503struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1504 int migratetype)
1505{
1506 unsigned int current_order;
1507 struct free_area *area;
1508 struct page *page;
1509
1510 /* Find a page of the appropriate size in the preferred list */
1511 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1512 area = &(zone->free_area[current_order]);
1513 page = get_page_from_free_area(area, migratetype);
1514 if (!page)
1515 continue;
1516 del_page_from_free_list(page, zone, current_order, migratetype);
1517 expand(zone, page, order, current_order, migratetype);
1518 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1519 pcp_allowed_order(order) &&
1520 migratetype < MIGRATE_PCPTYPES);
1521 return page;
1522 }
1523
1524 return NULL;
1525}
1526
1527
1528/*
1529 * This array describes the order lists are fallen back to when
1530 * the free lists for the desirable migrate type are depleted
1531 *
1532 * The other migratetypes do not have fallbacks.
1533 */
1534static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1535 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1536 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1537 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1538};
1539
1540#ifdef CONFIG_CMA
1541static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1542 unsigned int order)
1543{
1544 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1545}
1546#else
1547static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1548 unsigned int order) { return NULL; }
1549#endif
1550
1551/*
1552 * Change the type of a block and move all its free pages to that
1553 * type's freelist.
1554 */
1555static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1556 int old_mt, int new_mt)
1557{
1558 struct page *page;
1559 unsigned long pfn, end_pfn;
1560 unsigned int order;
1561 int pages_moved = 0;
1562
1563 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1564 end_pfn = pageblock_end_pfn(start_pfn);
1565
1566 for (pfn = start_pfn; pfn < end_pfn;) {
1567 page = pfn_to_page(pfn);
1568 if (!PageBuddy(page)) {
1569 pfn++;
1570 continue;
1571 }
1572
1573 /* Make sure we are not inadvertently changing nodes */
1574 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1575 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1576
1577 order = buddy_order(page);
1578
1579 move_to_free_list(page, zone, order, old_mt, new_mt);
1580
1581 pfn += 1 << order;
1582 pages_moved += 1 << order;
1583 }
1584
1585 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1586
1587 return pages_moved;
1588}
1589
1590static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1591 unsigned long *start_pfn,
1592 int *num_free, int *num_movable)
1593{
1594 unsigned long pfn, start, end;
1595
1596 pfn = page_to_pfn(page);
1597 start = pageblock_start_pfn(pfn);
1598 end = pageblock_end_pfn(pfn);
1599
1600 /*
1601 * The caller only has the lock for @zone, don't touch ranges
1602 * that straddle into other zones. While we could move part of
1603 * the range that's inside the zone, this call is usually
1604 * accompanied by other operations such as migratetype updates
1605 * which also should be locked.
1606 */
1607 if (!zone_spans_pfn(zone, start))
1608 return false;
1609 if (!zone_spans_pfn(zone, end - 1))
1610 return false;
1611
1612 *start_pfn = start;
1613
1614 if (num_free) {
1615 *num_free = 0;
1616 *num_movable = 0;
1617 for (pfn = start; pfn < end;) {
1618 page = pfn_to_page(pfn);
1619 if (PageBuddy(page)) {
1620 int nr = 1 << buddy_order(page);
1621
1622 *num_free += nr;
1623 pfn += nr;
1624 continue;
1625 }
1626 /*
1627 * We assume that pages that could be isolated for
1628 * migration are movable. But we don't actually try
1629 * isolating, as that would be expensive.
1630 */
1631 if (PageLRU(page) || __PageMovable(page))
1632 (*num_movable)++;
1633 pfn++;
1634 }
1635 }
1636
1637 return true;
1638}
1639
1640static int move_freepages_block(struct zone *zone, struct page *page,
1641 int old_mt, int new_mt)
1642{
1643 unsigned long start_pfn;
1644
1645 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1646 return -1;
1647
1648 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1649}
1650
1651#ifdef CONFIG_MEMORY_ISOLATION
1652/* Look for a buddy that straddles start_pfn */
1653static unsigned long find_large_buddy(unsigned long start_pfn)
1654{
1655 int order = 0;
1656 struct page *page;
1657 unsigned long pfn = start_pfn;
1658
1659 while (!PageBuddy(page = pfn_to_page(pfn))) {
1660 /* Nothing found */
1661 if (++order > MAX_PAGE_ORDER)
1662 return start_pfn;
1663 pfn &= ~0UL << order;
1664 }
1665
1666 /*
1667 * Found a preceding buddy, but does it straddle?
1668 */
1669 if (pfn + (1 << buddy_order(page)) > start_pfn)
1670 return pfn;
1671
1672 /* Nothing found */
1673 return start_pfn;
1674}
1675
1676/* Split a multi-block free page into its individual pageblocks */
1677static void split_large_buddy(struct zone *zone, struct page *page,
1678 unsigned long pfn, int order)
1679{
1680 unsigned long end_pfn = pfn + (1 << order);
1681
1682 VM_WARN_ON_ONCE(order <= pageblock_order);
1683 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1684
1685 /* Caller removed page from freelist, buddy info cleared! */
1686 VM_WARN_ON_ONCE(PageBuddy(page));
1687
1688 while (pfn != end_pfn) {
1689 int mt = get_pfnblock_migratetype(page, pfn);
1690
1691 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1692 pfn += pageblock_nr_pages;
1693 page = pfn_to_page(pfn);
1694 }
1695}
1696
1697/**
1698 * move_freepages_block_isolate - move free pages in block for page isolation
1699 * @zone: the zone
1700 * @page: the pageblock page
1701 * @migratetype: migratetype to set on the pageblock
1702 *
1703 * This is similar to move_freepages_block(), but handles the special
1704 * case encountered in page isolation, where the block of interest
1705 * might be part of a larger buddy spanning multiple pageblocks.
1706 *
1707 * Unlike the regular page allocator path, which moves pages while
1708 * stealing buddies off the freelist, page isolation is interested in
1709 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1710 *
1711 * This function handles that. Straddling buddies are split into
1712 * individual pageblocks. Only the block of interest is moved.
1713 *
1714 * Returns %true if pages could be moved, %false otherwise.
1715 */
1716bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1717 int migratetype)
1718{
1719 unsigned long start_pfn, pfn;
1720
1721 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1722 return false;
1723
1724 /* No splits needed if buddies can't span multiple blocks */
1725 if (pageblock_order == MAX_PAGE_ORDER)
1726 goto move;
1727
1728 /* We're a tail block in a larger buddy */
1729 pfn = find_large_buddy(start_pfn);
1730 if (pfn != start_pfn) {
1731 struct page *buddy = pfn_to_page(pfn);
1732 int order = buddy_order(buddy);
1733
1734 del_page_from_free_list(buddy, zone, order,
1735 get_pfnblock_migratetype(buddy, pfn));
1736 set_pageblock_migratetype(page, migratetype);
1737 split_large_buddy(zone, buddy, pfn, order);
1738 return true;
1739 }
1740
1741 /* We're the starting block of a larger buddy */
1742 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1743 int order = buddy_order(page);
1744
1745 del_page_from_free_list(page, zone, order,
1746 get_pfnblock_migratetype(page, pfn));
1747 set_pageblock_migratetype(page, migratetype);
1748 split_large_buddy(zone, page, pfn, order);
1749 return true;
1750 }
1751move:
1752 __move_freepages_block(zone, start_pfn,
1753 get_pfnblock_migratetype(page, start_pfn),
1754 migratetype);
1755 return true;
1756}
1757#endif /* CONFIG_MEMORY_ISOLATION */
1758
1759static void change_pageblock_range(struct page *pageblock_page,
1760 int start_order, int migratetype)
1761{
1762 int nr_pageblocks = 1 << (start_order - pageblock_order);
1763
1764 while (nr_pageblocks--) {
1765 set_pageblock_migratetype(pageblock_page, migratetype);
1766 pageblock_page += pageblock_nr_pages;
1767 }
1768}
1769
1770/*
1771 * When we are falling back to another migratetype during allocation, try to
1772 * steal extra free pages from the same pageblocks to satisfy further
1773 * allocations, instead of polluting multiple pageblocks.
1774 *
1775 * If we are stealing a relatively large buddy page, it is likely there will
1776 * be more free pages in the pageblock, so try to steal them all. For
1777 * reclaimable and unmovable allocations, we steal regardless of page size,
1778 * as fragmentation caused by those allocations polluting movable pageblocks
1779 * is worse than movable allocations stealing from unmovable and reclaimable
1780 * pageblocks.
1781 */
1782static bool can_steal_fallback(unsigned int order, int start_mt)
1783{
1784 /*
1785 * Leaving this order check is intended, although there is
1786 * relaxed order check in next check. The reason is that
1787 * we can actually steal whole pageblock if this condition met,
1788 * but, below check doesn't guarantee it and that is just heuristic
1789 * so could be changed anytime.
1790 */
1791 if (order >= pageblock_order)
1792 return true;
1793
1794 if (order >= pageblock_order / 2 ||
1795 start_mt == MIGRATE_RECLAIMABLE ||
1796 start_mt == MIGRATE_UNMOVABLE ||
1797 page_group_by_mobility_disabled)
1798 return true;
1799
1800 return false;
1801}
1802
1803static inline bool boost_watermark(struct zone *zone)
1804{
1805 unsigned long max_boost;
1806
1807 if (!watermark_boost_factor)
1808 return false;
1809 /*
1810 * Don't bother in zones that are unlikely to produce results.
1811 * On small machines, including kdump capture kernels running
1812 * in a small area, boosting the watermark can cause an out of
1813 * memory situation immediately.
1814 */
1815 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1816 return false;
1817
1818 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1819 watermark_boost_factor, 10000);
1820
1821 /*
1822 * high watermark may be uninitialised if fragmentation occurs
1823 * very early in boot so do not boost. We do not fall
1824 * through and boost by pageblock_nr_pages as failing
1825 * allocations that early means that reclaim is not going
1826 * to help and it may even be impossible to reclaim the
1827 * boosted watermark resulting in a hang.
1828 */
1829 if (!max_boost)
1830 return false;
1831
1832 max_boost = max(pageblock_nr_pages, max_boost);
1833
1834 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1835 max_boost);
1836
1837 return true;
1838}
1839
1840/*
1841 * This function implements actual steal behaviour. If order is large enough, we
1842 * can claim the whole pageblock for the requested migratetype. If not, we check
1843 * the pageblock for constituent pages; if at least half of the pages are free
1844 * or compatible, we can still claim the whole block, so pages freed in the
1845 * future will be put on the correct free list. Otherwise, we isolate exactly
1846 * the order we need from the fallback block and leave its migratetype alone.
1847 */
1848static struct page *
1849steal_suitable_fallback(struct zone *zone, struct page *page,
1850 int current_order, int order, int start_type,
1851 unsigned int alloc_flags, bool whole_block)
1852{
1853 int free_pages, movable_pages, alike_pages;
1854 unsigned long start_pfn;
1855 int block_type;
1856
1857 block_type = get_pageblock_migratetype(page);
1858
1859 /*
1860 * This can happen due to races and we want to prevent broken
1861 * highatomic accounting.
1862 */
1863 if (is_migrate_highatomic(block_type))
1864 goto single_page;
1865
1866 /* Take ownership for orders >= pageblock_order */
1867 if (current_order >= pageblock_order) {
1868 del_page_from_free_list(page, zone, current_order, block_type);
1869 change_pageblock_range(page, current_order, start_type);
1870 expand(zone, page, order, current_order, start_type);
1871 return page;
1872 }
1873
1874 /*
1875 * Boost watermarks to increase reclaim pressure to reduce the
1876 * likelihood of future fallbacks. Wake kswapd now as the node
1877 * may be balanced overall and kswapd will not wake naturally.
1878 */
1879 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1880 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1881
1882 /* We are not allowed to try stealing from the whole block */
1883 if (!whole_block)
1884 goto single_page;
1885
1886 /* moving whole block can fail due to zone boundary conditions */
1887 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1888 &movable_pages))
1889 goto single_page;
1890
1891 /*
1892 * Determine how many pages are compatible with our allocation.
1893 * For movable allocation, it's the number of movable pages which
1894 * we just obtained. For other types it's a bit more tricky.
1895 */
1896 if (start_type == MIGRATE_MOVABLE) {
1897 alike_pages = movable_pages;
1898 } else {
1899 /*
1900 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1901 * to MOVABLE pageblock, consider all non-movable pages as
1902 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1903 * vice versa, be conservative since we can't distinguish the
1904 * exact migratetype of non-movable pages.
1905 */
1906 if (block_type == MIGRATE_MOVABLE)
1907 alike_pages = pageblock_nr_pages
1908 - (free_pages + movable_pages);
1909 else
1910 alike_pages = 0;
1911 }
1912 /*
1913 * If a sufficient number of pages in the block are either free or of
1914 * compatible migratability as our allocation, claim the whole block.
1915 */
1916 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1917 page_group_by_mobility_disabled) {
1918 __move_freepages_block(zone, start_pfn, block_type, start_type);
1919 return __rmqueue_smallest(zone, order, start_type);
1920 }
1921
1922single_page:
1923 del_page_from_free_list(page, zone, current_order, block_type);
1924 expand(zone, page, order, current_order, block_type);
1925 return page;
1926}
1927
1928/*
1929 * Check whether there is a suitable fallback freepage with requested order.
1930 * If only_stealable is true, this function returns fallback_mt only if
1931 * we can steal other freepages all together. This would help to reduce
1932 * fragmentation due to mixed migratetype pages in one pageblock.
1933 */
1934int find_suitable_fallback(struct free_area *area, unsigned int order,
1935 int migratetype, bool only_stealable, bool *can_steal)
1936{
1937 int i;
1938 int fallback_mt;
1939
1940 if (area->nr_free == 0)
1941 return -1;
1942
1943 *can_steal = false;
1944 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1945 fallback_mt = fallbacks[migratetype][i];
1946 if (free_area_empty(area, fallback_mt))
1947 continue;
1948
1949 if (can_steal_fallback(order, migratetype))
1950 *can_steal = true;
1951
1952 if (!only_stealable)
1953 return fallback_mt;
1954
1955 if (*can_steal)
1956 return fallback_mt;
1957 }
1958
1959 return -1;
1960}
1961
1962/*
1963 * Reserve the pageblock(s) surrounding an allocation request for
1964 * exclusive use of high-order atomic allocations if there are no
1965 * empty page blocks that contain a page with a suitable order
1966 */
1967static void reserve_highatomic_pageblock(struct page *page, int order,
1968 struct zone *zone)
1969{
1970 int mt;
1971 unsigned long max_managed, flags;
1972
1973 /*
1974 * The number reserved as: minimum is 1 pageblock, maximum is
1975 * roughly 1% of a zone. But if 1% of a zone falls below a
1976 * pageblock size, then don't reserve any pageblocks.
1977 * Check is race-prone but harmless.
1978 */
1979 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1980 return;
1981 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1982 if (zone->nr_reserved_highatomic >= max_managed)
1983 return;
1984
1985 spin_lock_irqsave(&zone->lock, flags);
1986
1987 /* Recheck the nr_reserved_highatomic limit under the lock */
1988 if (zone->nr_reserved_highatomic >= max_managed)
1989 goto out_unlock;
1990
1991 /* Yoink! */
1992 mt = get_pageblock_migratetype(page);
1993 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1994 if (!migratetype_is_mergeable(mt))
1995 goto out_unlock;
1996
1997 if (order < pageblock_order) {
1998 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
1999 goto out_unlock;
2000 zone->nr_reserved_highatomic += pageblock_nr_pages;
2001 } else {
2002 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2003 zone->nr_reserved_highatomic += 1 << order;
2004 }
2005
2006out_unlock:
2007 spin_unlock_irqrestore(&zone->lock, flags);
2008}
2009
2010/*
2011 * Used when an allocation is about to fail under memory pressure. This
2012 * potentially hurts the reliability of high-order allocations when under
2013 * intense memory pressure but failed atomic allocations should be easier
2014 * to recover from than an OOM.
2015 *
2016 * If @force is true, try to unreserve pageblocks even though highatomic
2017 * pageblock is exhausted.
2018 */
2019static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2020 bool force)
2021{
2022 struct zonelist *zonelist = ac->zonelist;
2023 unsigned long flags;
2024 struct zoneref *z;
2025 struct zone *zone;
2026 struct page *page;
2027 int order;
2028 int ret;
2029
2030 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2031 ac->nodemask) {
2032 /*
2033 * Preserve at least one pageblock unless memory pressure
2034 * is really high.
2035 */
2036 if (!force && zone->nr_reserved_highatomic <=
2037 pageblock_nr_pages)
2038 continue;
2039
2040 spin_lock_irqsave(&zone->lock, flags);
2041 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2042 struct free_area *area = &(zone->free_area[order]);
2043 int mt;
2044
2045 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2046 if (!page)
2047 continue;
2048
2049 mt = get_pageblock_migratetype(page);
2050 /*
2051 * In page freeing path, migratetype change is racy so
2052 * we can counter several free pages in a pageblock
2053 * in this loop although we changed the pageblock type
2054 * from highatomic to ac->migratetype. So we should
2055 * adjust the count once.
2056 */
2057 if (is_migrate_highatomic(mt)) {
2058 unsigned long size;
2059 /*
2060 * It should never happen but changes to
2061 * locking could inadvertently allow a per-cpu
2062 * drain to add pages to MIGRATE_HIGHATOMIC
2063 * while unreserving so be safe and watch for
2064 * underflows.
2065 */
2066 size = max(pageblock_nr_pages, 1UL << order);
2067 size = min(size, zone->nr_reserved_highatomic);
2068 zone->nr_reserved_highatomic -= size;
2069 }
2070
2071 /*
2072 * Convert to ac->migratetype and avoid the normal
2073 * pageblock stealing heuristics. Minimally, the caller
2074 * is doing the work and needs the pages. More
2075 * importantly, if the block was always converted to
2076 * MIGRATE_UNMOVABLE or another type then the number
2077 * of pageblocks that cannot be completely freed
2078 * may increase.
2079 */
2080 if (order < pageblock_order)
2081 ret = move_freepages_block(zone, page, mt,
2082 ac->migratetype);
2083 else {
2084 move_to_free_list(page, zone, order, mt,
2085 ac->migratetype);
2086 change_pageblock_range(page, order,
2087 ac->migratetype);
2088 ret = 1;
2089 }
2090 /*
2091 * Reserving the block(s) already succeeded,
2092 * so this should not fail on zone boundaries.
2093 */
2094 WARN_ON_ONCE(ret == -1);
2095 if (ret > 0) {
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 return ret;
2098 }
2099 }
2100 spin_unlock_irqrestore(&zone->lock, flags);
2101 }
2102
2103 return false;
2104}
2105
2106/*
2107 * Try finding a free buddy page on the fallback list and put it on the free
2108 * list of requested migratetype, possibly along with other pages from the same
2109 * block, depending on fragmentation avoidance heuristics. Returns true if
2110 * fallback was found so that __rmqueue_smallest() can grab it.
2111 *
2112 * The use of signed ints for order and current_order is a deliberate
2113 * deviation from the rest of this file, to make the for loop
2114 * condition simpler.
2115 */
2116static __always_inline struct page *
2117__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2118 unsigned int alloc_flags)
2119{
2120 struct free_area *area;
2121 int current_order;
2122 int min_order = order;
2123 struct page *page;
2124 int fallback_mt;
2125 bool can_steal;
2126
2127 /*
2128 * Do not steal pages from freelists belonging to other pageblocks
2129 * i.e. orders < pageblock_order. If there are no local zones free,
2130 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2131 */
2132 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2133 min_order = pageblock_order;
2134
2135 /*
2136 * Find the largest available free page in the other list. This roughly
2137 * approximates finding the pageblock with the most free pages, which
2138 * would be too costly to do exactly.
2139 */
2140 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2141 --current_order) {
2142 area = &(zone->free_area[current_order]);
2143 fallback_mt = find_suitable_fallback(area, current_order,
2144 start_migratetype, false, &can_steal);
2145 if (fallback_mt == -1)
2146 continue;
2147
2148 /*
2149 * We cannot steal all free pages from the pageblock and the
2150 * requested migratetype is movable. In that case it's better to
2151 * steal and split the smallest available page instead of the
2152 * largest available page, because even if the next movable
2153 * allocation falls back into a different pageblock than this
2154 * one, it won't cause permanent fragmentation.
2155 */
2156 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2157 && current_order > order)
2158 goto find_smallest;
2159
2160 goto do_steal;
2161 }
2162
2163 return NULL;
2164
2165find_smallest:
2166 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2167 area = &(zone->free_area[current_order]);
2168 fallback_mt = find_suitable_fallback(area, current_order,
2169 start_migratetype, false, &can_steal);
2170 if (fallback_mt != -1)
2171 break;
2172 }
2173
2174 /*
2175 * This should not happen - we already found a suitable fallback
2176 * when looking for the largest page.
2177 */
2178 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2179
2180do_steal:
2181 page = get_page_from_free_area(area, fallback_mt);
2182
2183 /* take off list, maybe claim block, expand remainder */
2184 page = steal_suitable_fallback(zone, page, current_order, order,
2185 start_migratetype, alloc_flags, can_steal);
2186
2187 trace_mm_page_alloc_extfrag(page, order, current_order,
2188 start_migratetype, fallback_mt);
2189
2190 return page;
2191}
2192
2193/*
2194 * Do the hard work of removing an element from the buddy allocator.
2195 * Call me with the zone->lock already held.
2196 */
2197static __always_inline struct page *
2198__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2199 unsigned int alloc_flags)
2200{
2201 struct page *page;
2202
2203 if (IS_ENABLED(CONFIG_CMA)) {
2204 /*
2205 * Balance movable allocations between regular and CMA areas by
2206 * allocating from CMA when over half of the zone's free memory
2207 * is in the CMA area.
2208 */
2209 if (alloc_flags & ALLOC_CMA &&
2210 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2211 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2212 page = __rmqueue_cma_fallback(zone, order);
2213 if (page)
2214 return page;
2215 }
2216 }
2217
2218 page = __rmqueue_smallest(zone, order, migratetype);
2219 if (unlikely(!page)) {
2220 if (alloc_flags & ALLOC_CMA)
2221 page = __rmqueue_cma_fallback(zone, order);
2222
2223 if (!page)
2224 page = __rmqueue_fallback(zone, order, migratetype,
2225 alloc_flags);
2226 }
2227 return page;
2228}
2229
2230/*
2231 * Obtain a specified number of elements from the buddy allocator, all under
2232 * a single hold of the lock, for efficiency. Add them to the supplied list.
2233 * Returns the number of new pages which were placed at *list.
2234 */
2235static int rmqueue_bulk(struct zone *zone, unsigned int order,
2236 unsigned long count, struct list_head *list,
2237 int migratetype, unsigned int alloc_flags)
2238{
2239 unsigned long flags;
2240 int i;
2241
2242 spin_lock_irqsave(&zone->lock, flags);
2243 for (i = 0; i < count; ++i) {
2244 struct page *page = __rmqueue(zone, order, migratetype,
2245 alloc_flags);
2246 if (unlikely(page == NULL))
2247 break;
2248
2249 /*
2250 * Split buddy pages returned by expand() are received here in
2251 * physical page order. The page is added to the tail of
2252 * caller's list. From the callers perspective, the linked list
2253 * is ordered by page number under some conditions. This is
2254 * useful for IO devices that can forward direction from the
2255 * head, thus also in the physical page order. This is useful
2256 * for IO devices that can merge IO requests if the physical
2257 * pages are ordered properly.
2258 */
2259 list_add_tail(&page->pcp_list, list);
2260 }
2261 spin_unlock_irqrestore(&zone->lock, flags);
2262
2263 return i;
2264}
2265
2266/*
2267 * Called from the vmstat counter updater to decay the PCP high.
2268 * Return whether there are addition works to do.
2269 */
2270int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2271{
2272 int high_min, to_drain, batch;
2273 int todo = 0;
2274
2275 high_min = READ_ONCE(pcp->high_min);
2276 batch = READ_ONCE(pcp->batch);
2277 /*
2278 * Decrease pcp->high periodically to try to free possible
2279 * idle PCP pages. And, avoid to free too many pages to
2280 * control latency. This caps pcp->high decrement too.
2281 */
2282 if (pcp->high > high_min) {
2283 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2284 pcp->high - (pcp->high >> 3), high_min);
2285 if (pcp->high > high_min)
2286 todo++;
2287 }
2288
2289 to_drain = pcp->count - pcp->high;
2290 if (to_drain > 0) {
2291 spin_lock(&pcp->lock);
2292 free_pcppages_bulk(zone, to_drain, pcp, 0);
2293 spin_unlock(&pcp->lock);
2294 todo++;
2295 }
2296
2297 return todo;
2298}
2299
2300#ifdef CONFIG_NUMA
2301/*
2302 * Called from the vmstat counter updater to drain pagesets of this
2303 * currently executing processor on remote nodes after they have
2304 * expired.
2305 */
2306void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2307{
2308 int to_drain, batch;
2309
2310 batch = READ_ONCE(pcp->batch);
2311 to_drain = min(pcp->count, batch);
2312 if (to_drain > 0) {
2313 spin_lock(&pcp->lock);
2314 free_pcppages_bulk(zone, to_drain, pcp, 0);
2315 spin_unlock(&pcp->lock);
2316 }
2317}
2318#endif
2319
2320/*
2321 * Drain pcplists of the indicated processor and zone.
2322 */
2323static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2324{
2325 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2326 int count = READ_ONCE(pcp->count);
2327
2328 while (count) {
2329 int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2330 count -= to_drain;
2331
2332 spin_lock(&pcp->lock);
2333 free_pcppages_bulk(zone, to_drain, pcp, 0);
2334 spin_unlock(&pcp->lock);
2335 }
2336}
2337
2338/*
2339 * Drain pcplists of all zones on the indicated processor.
2340 */
2341static void drain_pages(unsigned int cpu)
2342{
2343 struct zone *zone;
2344
2345 for_each_populated_zone(zone) {
2346 drain_pages_zone(cpu, zone);
2347 }
2348}
2349
2350/*
2351 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2352 */
2353void drain_local_pages(struct zone *zone)
2354{
2355 int cpu = smp_processor_id();
2356
2357 if (zone)
2358 drain_pages_zone(cpu, zone);
2359 else
2360 drain_pages(cpu);
2361}
2362
2363/*
2364 * The implementation of drain_all_pages(), exposing an extra parameter to
2365 * drain on all cpus.
2366 *
2367 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2368 * not empty. The check for non-emptiness can however race with a free to
2369 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2370 * that need the guarantee that every CPU has drained can disable the
2371 * optimizing racy check.
2372 */
2373static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2374{
2375 int cpu;
2376
2377 /*
2378 * Allocate in the BSS so we won't require allocation in
2379 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2380 */
2381 static cpumask_t cpus_with_pcps;
2382
2383 /*
2384 * Do not drain if one is already in progress unless it's specific to
2385 * a zone. Such callers are primarily CMA and memory hotplug and need
2386 * the drain to be complete when the call returns.
2387 */
2388 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2389 if (!zone)
2390 return;
2391 mutex_lock(&pcpu_drain_mutex);
2392 }
2393
2394 /*
2395 * We don't care about racing with CPU hotplug event
2396 * as offline notification will cause the notified
2397 * cpu to drain that CPU pcps and on_each_cpu_mask
2398 * disables preemption as part of its processing
2399 */
2400 for_each_online_cpu(cpu) {
2401 struct per_cpu_pages *pcp;
2402 struct zone *z;
2403 bool has_pcps = false;
2404
2405 if (force_all_cpus) {
2406 /*
2407 * The pcp.count check is racy, some callers need a
2408 * guarantee that no cpu is missed.
2409 */
2410 has_pcps = true;
2411 } else if (zone) {
2412 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2413 if (pcp->count)
2414 has_pcps = true;
2415 } else {
2416 for_each_populated_zone(z) {
2417 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2418 if (pcp->count) {
2419 has_pcps = true;
2420 break;
2421 }
2422 }
2423 }
2424
2425 if (has_pcps)
2426 cpumask_set_cpu(cpu, &cpus_with_pcps);
2427 else
2428 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2429 }
2430
2431 for_each_cpu(cpu, &cpus_with_pcps) {
2432 if (zone)
2433 drain_pages_zone(cpu, zone);
2434 else
2435 drain_pages(cpu);
2436 }
2437
2438 mutex_unlock(&pcpu_drain_mutex);
2439}
2440
2441/*
2442 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2443 *
2444 * When zone parameter is non-NULL, spill just the single zone's pages.
2445 */
2446void drain_all_pages(struct zone *zone)
2447{
2448 __drain_all_pages(zone, false);
2449}
2450
2451static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2452{
2453 int min_nr_free, max_nr_free;
2454
2455 /* Free as much as possible if batch freeing high-order pages. */
2456 if (unlikely(free_high))
2457 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2458
2459 /* Check for PCP disabled or boot pageset */
2460 if (unlikely(high < batch))
2461 return 1;
2462
2463 /* Leave at least pcp->batch pages on the list */
2464 min_nr_free = batch;
2465 max_nr_free = high - batch;
2466
2467 /*
2468 * Increase the batch number to the number of the consecutive
2469 * freed pages to reduce zone lock contention.
2470 */
2471 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2472
2473 return batch;
2474}
2475
2476static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2477 int batch, bool free_high)
2478{
2479 int high, high_min, high_max;
2480
2481 high_min = READ_ONCE(pcp->high_min);
2482 high_max = READ_ONCE(pcp->high_max);
2483 high = pcp->high = clamp(pcp->high, high_min, high_max);
2484
2485 if (unlikely(!high))
2486 return 0;
2487
2488 if (unlikely(free_high)) {
2489 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2490 high_min);
2491 return 0;
2492 }
2493
2494 /*
2495 * If reclaim is active, limit the number of pages that can be
2496 * stored on pcp lists
2497 */
2498 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2499 int free_count = max_t(int, pcp->free_count, batch);
2500
2501 pcp->high = max(high - free_count, high_min);
2502 return min(batch << 2, pcp->high);
2503 }
2504
2505 if (high_min == high_max)
2506 return high;
2507
2508 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2509 int free_count = max_t(int, pcp->free_count, batch);
2510
2511 pcp->high = max(high - free_count, high_min);
2512 high = max(pcp->count, high_min);
2513 } else if (pcp->count >= high) {
2514 int need_high = pcp->free_count + batch;
2515
2516 /* pcp->high should be large enough to hold batch freed pages */
2517 if (pcp->high < need_high)
2518 pcp->high = clamp(need_high, high_min, high_max);
2519 }
2520
2521 return high;
2522}
2523
2524static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2525 struct page *page, int migratetype,
2526 unsigned int order)
2527{
2528 int high, batch;
2529 int pindex;
2530 bool free_high = false;
2531
2532 /*
2533 * On freeing, reduce the number of pages that are batch allocated.
2534 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2535 * allocations.
2536 */
2537 pcp->alloc_factor >>= 1;
2538 __count_vm_events(PGFREE, 1 << order);
2539 pindex = order_to_pindex(migratetype, order);
2540 list_add(&page->pcp_list, &pcp->lists[pindex]);
2541 pcp->count += 1 << order;
2542
2543 batch = READ_ONCE(pcp->batch);
2544 /*
2545 * As high-order pages other than THP's stored on PCP can contribute
2546 * to fragmentation, limit the number stored when PCP is heavily
2547 * freeing without allocation. The remainder after bulk freeing
2548 * stops will be drained from vmstat refresh context.
2549 */
2550 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2551 free_high = (pcp->free_count >= batch &&
2552 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2553 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2554 pcp->count >= READ_ONCE(batch)));
2555 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2556 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2557 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2558 }
2559 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2560 pcp->free_count += (1 << order);
2561 high = nr_pcp_high(pcp, zone, batch, free_high);
2562 if (pcp->count >= high) {
2563 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2564 pcp, pindex);
2565 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2566 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2567 ZONE_MOVABLE, 0))
2568 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2569 }
2570}
2571
2572/*
2573 * Free a pcp page
2574 */
2575void free_unref_page(struct page *page, unsigned int order)
2576{
2577 unsigned long __maybe_unused UP_flags;
2578 struct per_cpu_pages *pcp;
2579 struct zone *zone;
2580 unsigned long pfn = page_to_pfn(page);
2581 int migratetype;
2582
2583 if (!pcp_allowed_order(order)) {
2584 __free_pages_ok(page, order, FPI_NONE);
2585 return;
2586 }
2587
2588 if (!free_pages_prepare(page, order))
2589 return;
2590
2591 /*
2592 * We only track unmovable, reclaimable and movable on pcp lists.
2593 * Place ISOLATE pages on the isolated list because they are being
2594 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2595 * get those areas back if necessary. Otherwise, we may have to free
2596 * excessively into the page allocator
2597 */
2598 migratetype = get_pfnblock_migratetype(page, pfn);
2599 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2600 if (unlikely(is_migrate_isolate(migratetype))) {
2601 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2602 return;
2603 }
2604 migratetype = MIGRATE_MOVABLE;
2605 }
2606
2607 zone = page_zone(page);
2608 pcp_trylock_prepare(UP_flags);
2609 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2610 if (pcp) {
2611 free_unref_page_commit(zone, pcp, page, migratetype, order);
2612 pcp_spin_unlock(pcp);
2613 } else {
2614 free_one_page(zone, page, pfn, order, FPI_NONE);
2615 }
2616 pcp_trylock_finish(UP_flags);
2617}
2618
2619/*
2620 * Free a batch of folios
2621 */
2622void free_unref_folios(struct folio_batch *folios)
2623{
2624 unsigned long __maybe_unused UP_flags;
2625 struct per_cpu_pages *pcp = NULL;
2626 struct zone *locked_zone = NULL;
2627 int i, j;
2628
2629 /* Prepare folios for freeing */
2630 for (i = 0, j = 0; i < folios->nr; i++) {
2631 struct folio *folio = folios->folios[i];
2632 unsigned long pfn = folio_pfn(folio);
2633 unsigned int order = folio_order(folio);
2634
2635 if (order > 0 && folio_test_large_rmappable(folio))
2636 folio_undo_large_rmappable(folio);
2637 if (!free_pages_prepare(&folio->page, order))
2638 continue;
2639 /*
2640 * Free orders not handled on the PCP directly to the
2641 * allocator.
2642 */
2643 if (!pcp_allowed_order(order)) {
2644 free_one_page(folio_zone(folio), &folio->page,
2645 pfn, order, FPI_NONE);
2646 continue;
2647 }
2648 folio->private = (void *)(unsigned long)order;
2649 if (j != i)
2650 folios->folios[j] = folio;
2651 j++;
2652 }
2653 folios->nr = j;
2654
2655 for (i = 0; i < folios->nr; i++) {
2656 struct folio *folio = folios->folios[i];
2657 struct zone *zone = folio_zone(folio);
2658 unsigned long pfn = folio_pfn(folio);
2659 unsigned int order = (unsigned long)folio->private;
2660 int migratetype;
2661
2662 folio->private = NULL;
2663 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2664
2665 /* Different zone requires a different pcp lock */
2666 if (zone != locked_zone ||
2667 is_migrate_isolate(migratetype)) {
2668 if (pcp) {
2669 pcp_spin_unlock(pcp);
2670 pcp_trylock_finish(UP_flags);
2671 locked_zone = NULL;
2672 pcp = NULL;
2673 }
2674
2675 /*
2676 * Free isolated pages directly to the
2677 * allocator, see comment in free_unref_page.
2678 */
2679 if (is_migrate_isolate(migratetype)) {
2680 free_one_page(zone, &folio->page, pfn,
2681 order, FPI_NONE);
2682 continue;
2683 }
2684
2685 /*
2686 * trylock is necessary as folios may be getting freed
2687 * from IRQ or SoftIRQ context after an IO completion.
2688 */
2689 pcp_trylock_prepare(UP_flags);
2690 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2691 if (unlikely(!pcp)) {
2692 pcp_trylock_finish(UP_flags);
2693 free_one_page(zone, &folio->page, pfn,
2694 order, FPI_NONE);
2695 continue;
2696 }
2697 locked_zone = zone;
2698 }
2699
2700 /*
2701 * Non-isolated types over MIGRATE_PCPTYPES get added
2702 * to the MIGRATE_MOVABLE pcp list.
2703 */
2704 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2705 migratetype = MIGRATE_MOVABLE;
2706
2707 trace_mm_page_free_batched(&folio->page);
2708 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2709 order);
2710 }
2711
2712 if (pcp) {
2713 pcp_spin_unlock(pcp);
2714 pcp_trylock_finish(UP_flags);
2715 }
2716 folio_batch_reinit(folios);
2717}
2718
2719/*
2720 * split_page takes a non-compound higher-order page, and splits it into
2721 * n (1<<order) sub-pages: page[0..n]
2722 * Each sub-page must be freed individually.
2723 *
2724 * Note: this is probably too low level an operation for use in drivers.
2725 * Please consult with lkml before using this in your driver.
2726 */
2727void split_page(struct page *page, unsigned int order)
2728{
2729 int i;
2730
2731 VM_BUG_ON_PAGE(PageCompound(page), page);
2732 VM_BUG_ON_PAGE(!page_count(page), page);
2733
2734 for (i = 1; i < (1 << order); i++)
2735 set_page_refcounted(page + i);
2736 split_page_owner(page, order, 0);
2737 pgalloc_tag_split(page, 1 << order);
2738 split_page_memcg(page, order, 0);
2739}
2740EXPORT_SYMBOL_GPL(split_page);
2741
2742int __isolate_free_page(struct page *page, unsigned int order)
2743{
2744 struct zone *zone = page_zone(page);
2745 int mt = get_pageblock_migratetype(page);
2746
2747 if (!is_migrate_isolate(mt)) {
2748 unsigned long watermark;
2749 /*
2750 * Obey watermarks as if the page was being allocated. We can
2751 * emulate a high-order watermark check with a raised order-0
2752 * watermark, because we already know our high-order page
2753 * exists.
2754 */
2755 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2756 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2757 return 0;
2758 }
2759
2760 del_page_from_free_list(page, zone, order, mt);
2761
2762 /*
2763 * Set the pageblock if the isolated page is at least half of a
2764 * pageblock
2765 */
2766 if (order >= pageblock_order - 1) {
2767 struct page *endpage = page + (1 << order) - 1;
2768 for (; page < endpage; page += pageblock_nr_pages) {
2769 int mt = get_pageblock_migratetype(page);
2770 /*
2771 * Only change normal pageblocks (i.e., they can merge
2772 * with others)
2773 */
2774 if (migratetype_is_mergeable(mt))
2775 move_freepages_block(zone, page, mt,
2776 MIGRATE_MOVABLE);
2777 }
2778 }
2779
2780 return 1UL << order;
2781}
2782
2783/**
2784 * __putback_isolated_page - Return a now-isolated page back where we got it
2785 * @page: Page that was isolated
2786 * @order: Order of the isolated page
2787 * @mt: The page's pageblock's migratetype
2788 *
2789 * This function is meant to return a page pulled from the free lists via
2790 * __isolate_free_page back to the free lists they were pulled from.
2791 */
2792void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2793{
2794 struct zone *zone = page_zone(page);
2795
2796 /* zone lock should be held when this function is called */
2797 lockdep_assert_held(&zone->lock);
2798
2799 /* Return isolated page to tail of freelist. */
2800 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2801 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2802}
2803
2804/*
2805 * Update NUMA hit/miss statistics
2806 */
2807static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2808 long nr_account)
2809{
2810#ifdef CONFIG_NUMA
2811 enum numa_stat_item local_stat = NUMA_LOCAL;
2812
2813 /* skip numa counters update if numa stats is disabled */
2814 if (!static_branch_likely(&vm_numa_stat_key))
2815 return;
2816
2817 if (zone_to_nid(z) != numa_node_id())
2818 local_stat = NUMA_OTHER;
2819
2820 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2821 __count_numa_events(z, NUMA_HIT, nr_account);
2822 else {
2823 __count_numa_events(z, NUMA_MISS, nr_account);
2824 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2825 }
2826 __count_numa_events(z, local_stat, nr_account);
2827#endif
2828}
2829
2830static __always_inline
2831struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2832 unsigned int order, unsigned int alloc_flags,
2833 int migratetype)
2834{
2835 struct page *page;
2836 unsigned long flags;
2837
2838 do {
2839 page = NULL;
2840 spin_lock_irqsave(&zone->lock, flags);
2841 if (alloc_flags & ALLOC_HIGHATOMIC)
2842 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2843 if (!page) {
2844 page = __rmqueue(zone, order, migratetype, alloc_flags);
2845
2846 /*
2847 * If the allocation fails, allow OOM handling access
2848 * to HIGHATOMIC reserves as failing now is worse than
2849 * failing a high-order atomic allocation in the
2850 * future.
2851 */
2852 if (!page && (alloc_flags & ALLOC_OOM))
2853 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2854
2855 if (!page) {
2856 spin_unlock_irqrestore(&zone->lock, flags);
2857 return NULL;
2858 }
2859 }
2860 spin_unlock_irqrestore(&zone->lock, flags);
2861 } while (check_new_pages(page, order));
2862
2863 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2864 zone_statistics(preferred_zone, zone, 1);
2865
2866 return page;
2867}
2868
2869static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2870{
2871 int high, base_batch, batch, max_nr_alloc;
2872 int high_max, high_min;
2873
2874 base_batch = READ_ONCE(pcp->batch);
2875 high_min = READ_ONCE(pcp->high_min);
2876 high_max = READ_ONCE(pcp->high_max);
2877 high = pcp->high = clamp(pcp->high, high_min, high_max);
2878
2879 /* Check for PCP disabled or boot pageset */
2880 if (unlikely(high < base_batch))
2881 return 1;
2882
2883 if (order)
2884 batch = base_batch;
2885 else
2886 batch = (base_batch << pcp->alloc_factor);
2887
2888 /*
2889 * If we had larger pcp->high, we could avoid to allocate from
2890 * zone.
2891 */
2892 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2893 high = pcp->high = min(high + batch, high_max);
2894
2895 if (!order) {
2896 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2897 /*
2898 * Double the number of pages allocated each time there is
2899 * subsequent allocation of order-0 pages without any freeing.
2900 */
2901 if (batch <= max_nr_alloc &&
2902 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2903 pcp->alloc_factor++;
2904 batch = min(batch, max_nr_alloc);
2905 }
2906
2907 /*
2908 * Scale batch relative to order if batch implies free pages
2909 * can be stored on the PCP. Batch can be 1 for small zones or
2910 * for boot pagesets which should never store free pages as
2911 * the pages may belong to arbitrary zones.
2912 */
2913 if (batch > 1)
2914 batch = max(batch >> order, 2);
2915
2916 return batch;
2917}
2918
2919/* Remove page from the per-cpu list, caller must protect the list */
2920static inline
2921struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2922 int migratetype,
2923 unsigned int alloc_flags,
2924 struct per_cpu_pages *pcp,
2925 struct list_head *list)
2926{
2927 struct page *page;
2928
2929 do {
2930 if (list_empty(list)) {
2931 int batch = nr_pcp_alloc(pcp, zone, order);
2932 int alloced;
2933
2934 alloced = rmqueue_bulk(zone, order,
2935 batch, list,
2936 migratetype, alloc_flags);
2937
2938 pcp->count += alloced << order;
2939 if (unlikely(list_empty(list)))
2940 return NULL;
2941 }
2942
2943 page = list_first_entry(list, struct page, pcp_list);
2944 list_del(&page->pcp_list);
2945 pcp->count -= 1 << order;
2946 } while (check_new_pages(page, order));
2947
2948 return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953 struct zone *zone, unsigned int order,
2954 int migratetype, unsigned int alloc_flags)
2955{
2956 struct per_cpu_pages *pcp;
2957 struct list_head *list;
2958 struct page *page;
2959 unsigned long __maybe_unused UP_flags;
2960
2961 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2962 pcp_trylock_prepare(UP_flags);
2963 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2964 if (!pcp) {
2965 pcp_trylock_finish(UP_flags);
2966 return NULL;
2967 }
2968
2969 /*
2970 * On allocation, reduce the number of pages that are batch freed.
2971 * See nr_pcp_free() where free_factor is increased for subsequent
2972 * frees.
2973 */
2974 pcp->free_count >>= 1;
2975 list = &pcp->lists[order_to_pindex(migratetype, order)];
2976 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2977 pcp_spin_unlock(pcp);
2978 pcp_trylock_finish(UP_flags);
2979 if (page) {
2980 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2981 zone_statistics(preferred_zone, zone, 1);
2982 }
2983 return page;
2984}
2985
2986/*
2987 * Allocate a page from the given zone.
2988 * Use pcplists for THP or "cheap" high-order allocations.
2989 */
2990
2991/*
2992 * Do not instrument rmqueue() with KMSAN. This function may call
2993 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2994 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2995 * may call rmqueue() again, which will result in a deadlock.
2996 */
2997__no_sanitize_memory
2998static inline
2999struct page *rmqueue(struct zone *preferred_zone,
3000 struct zone *zone, unsigned int order,
3001 gfp_t gfp_flags, unsigned int alloc_flags,
3002 int migratetype)
3003{
3004 struct page *page;
3005
3006 /*
3007 * We most definitely don't want callers attempting to
3008 * allocate greater than order-1 page units with __GFP_NOFAIL.
3009 */
3010 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3011
3012 if (likely(pcp_allowed_order(order))) {
3013 page = rmqueue_pcplist(preferred_zone, zone, order,
3014 migratetype, alloc_flags);
3015 if (likely(page))
3016 goto out;
3017 }
3018
3019 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3020 migratetype);
3021
3022out:
3023 /* Separate test+clear to avoid unnecessary atomics */
3024 if ((alloc_flags & ALLOC_KSWAPD) &&
3025 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3026 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3027 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3028 }
3029
3030 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3031 return page;
3032}
3033
3034noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3035{
3036 return __should_fail_alloc_page(gfp_mask, order);
3037}
3038ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3039
3040static inline long __zone_watermark_unusable_free(struct zone *z,
3041 unsigned int order, unsigned int alloc_flags)
3042{
3043 long unusable_free = (1 << order) - 1;
3044
3045 /*
3046 * If the caller does not have rights to reserves below the min
3047 * watermark then subtract the high-atomic reserves. This will
3048 * over-estimate the size of the atomic reserve but it avoids a search.
3049 */
3050 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3051 unusable_free += z->nr_reserved_highatomic;
3052
3053#ifdef CONFIG_CMA
3054 /* If allocation can't use CMA areas don't use free CMA pages */
3055 if (!(alloc_flags & ALLOC_CMA))
3056 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3057#endif
3058#ifdef CONFIG_UNACCEPTED_MEMORY
3059 unusable_free += zone_page_state(z, NR_UNACCEPTED);
3060#endif
3061
3062 return unusable_free;
3063}
3064
3065/*
3066 * Return true if free base pages are above 'mark'. For high-order checks it
3067 * will return true of the order-0 watermark is reached and there is at least
3068 * one free page of a suitable size. Checking now avoids taking the zone lock
3069 * to check in the allocation paths if no pages are free.
3070 */
3071bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3072 int highest_zoneidx, unsigned int alloc_flags,
3073 long free_pages)
3074{
3075 long min = mark;
3076 int o;
3077
3078 /* free_pages may go negative - that's OK */
3079 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3080
3081 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3082 /*
3083 * __GFP_HIGH allows access to 50% of the min reserve as well
3084 * as OOM.
3085 */
3086 if (alloc_flags & ALLOC_MIN_RESERVE) {
3087 min -= min / 2;
3088
3089 /*
3090 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3091 * access more reserves than just __GFP_HIGH. Other
3092 * non-blocking allocations requests such as GFP_NOWAIT
3093 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3094 * access to the min reserve.
3095 */
3096 if (alloc_flags & ALLOC_NON_BLOCK)
3097 min -= min / 4;
3098 }
3099
3100 /*
3101 * OOM victims can try even harder than the normal reserve
3102 * users on the grounds that it's definitely going to be in
3103 * the exit path shortly and free memory. Any allocation it
3104 * makes during the free path will be small and short-lived.
3105 */
3106 if (alloc_flags & ALLOC_OOM)
3107 min -= min / 2;
3108 }
3109
3110 /*
3111 * Check watermarks for an order-0 allocation request. If these
3112 * are not met, then a high-order request also cannot go ahead
3113 * even if a suitable page happened to be free.
3114 */
3115 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3116 return false;
3117
3118 /* If this is an order-0 request then the watermark is fine */
3119 if (!order)
3120 return true;
3121
3122 /* For a high-order request, check at least one suitable page is free */
3123 for (o = order; o < NR_PAGE_ORDERS; o++) {
3124 struct free_area *area = &z->free_area[o];
3125 int mt;
3126
3127 if (!area->nr_free)
3128 continue;
3129
3130 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3131 if (!free_area_empty(area, mt))
3132 return true;
3133 }
3134
3135#ifdef CONFIG_CMA
3136 if ((alloc_flags & ALLOC_CMA) &&
3137 !free_area_empty(area, MIGRATE_CMA)) {
3138 return true;
3139 }
3140#endif
3141 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3142 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3143 return true;
3144 }
3145 }
3146 return false;
3147}
3148
3149bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3150 int highest_zoneidx, unsigned int alloc_flags)
3151{
3152 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3153 zone_page_state(z, NR_FREE_PAGES));
3154}
3155
3156static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3157 unsigned long mark, int highest_zoneidx,
3158 unsigned int alloc_flags, gfp_t gfp_mask)
3159{
3160 long free_pages;
3161
3162 free_pages = zone_page_state(z, NR_FREE_PAGES);
3163
3164 /*
3165 * Fast check for order-0 only. If this fails then the reserves
3166 * need to be calculated.
3167 */
3168 if (!order) {
3169 long usable_free;
3170 long reserved;
3171
3172 usable_free = free_pages;
3173 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3174
3175 /* reserved may over estimate high-atomic reserves. */
3176 usable_free -= min(usable_free, reserved);
3177 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3178 return true;
3179 }
3180
3181 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3182 free_pages))
3183 return true;
3184
3185 /*
3186 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3187 * when checking the min watermark. The min watermark is the
3188 * point where boosting is ignored so that kswapd is woken up
3189 * when below the low watermark.
3190 */
3191 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3192 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3193 mark = z->_watermark[WMARK_MIN];
3194 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3195 alloc_flags, free_pages);
3196 }
3197
3198 return false;
3199}
3200
3201bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3202 unsigned long mark, int highest_zoneidx)
3203{
3204 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3205
3206 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3207 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3208
3209 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3210 free_pages);
3211}
3212
3213#ifdef CONFIG_NUMA
3214int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3215
3216static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3217{
3218 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3219 node_reclaim_distance;
3220}
3221#else /* CONFIG_NUMA */
3222static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3223{
3224 return true;
3225}
3226#endif /* CONFIG_NUMA */
3227
3228/*
3229 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3230 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3231 * premature use of a lower zone may cause lowmem pressure problems that
3232 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3233 * probably too small. It only makes sense to spread allocations to avoid
3234 * fragmentation between the Normal and DMA32 zones.
3235 */
3236static inline unsigned int
3237alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3238{
3239 unsigned int alloc_flags;
3240
3241 /*
3242 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3243 * to save a branch.
3244 */
3245 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3246
3247#ifdef CONFIG_ZONE_DMA32
3248 if (!zone)
3249 return alloc_flags;
3250
3251 if (zone_idx(zone) != ZONE_NORMAL)
3252 return alloc_flags;
3253
3254 /*
3255 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3256 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3257 * on UMA that if Normal is populated then so is DMA32.
3258 */
3259 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3260 if (nr_online_nodes > 1 && !populated_zone(--zone))
3261 return alloc_flags;
3262
3263 alloc_flags |= ALLOC_NOFRAGMENT;
3264#endif /* CONFIG_ZONE_DMA32 */
3265 return alloc_flags;
3266}
3267
3268/* Must be called after current_gfp_context() which can change gfp_mask */
3269static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3270 unsigned int alloc_flags)
3271{
3272#ifdef CONFIG_CMA
3273 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3274 alloc_flags |= ALLOC_CMA;
3275#endif
3276 return alloc_flags;
3277}
3278
3279/*
3280 * get_page_from_freelist goes through the zonelist trying to allocate
3281 * a page.
3282 */
3283static struct page *
3284get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3285 const struct alloc_context *ac)
3286{
3287 struct zoneref *z;
3288 struct zone *zone;
3289 struct pglist_data *last_pgdat = NULL;
3290 bool last_pgdat_dirty_ok = false;
3291 bool no_fallback;
3292
3293retry:
3294 /*
3295 * Scan zonelist, looking for a zone with enough free.
3296 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3297 */
3298 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3299 z = ac->preferred_zoneref;
3300 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3301 ac->nodemask) {
3302 struct page *page;
3303 unsigned long mark;
3304
3305 if (cpusets_enabled() &&
3306 (alloc_flags & ALLOC_CPUSET) &&
3307 !__cpuset_zone_allowed(zone, gfp_mask))
3308 continue;
3309 /*
3310 * When allocating a page cache page for writing, we
3311 * want to get it from a node that is within its dirty
3312 * limit, such that no single node holds more than its
3313 * proportional share of globally allowed dirty pages.
3314 * The dirty limits take into account the node's
3315 * lowmem reserves and high watermark so that kswapd
3316 * should be able to balance it without having to
3317 * write pages from its LRU list.
3318 *
3319 * XXX: For now, allow allocations to potentially
3320 * exceed the per-node dirty limit in the slowpath
3321 * (spread_dirty_pages unset) before going into reclaim,
3322 * which is important when on a NUMA setup the allowed
3323 * nodes are together not big enough to reach the
3324 * global limit. The proper fix for these situations
3325 * will require awareness of nodes in the
3326 * dirty-throttling and the flusher threads.
3327 */
3328 if (ac->spread_dirty_pages) {
3329 if (last_pgdat != zone->zone_pgdat) {
3330 last_pgdat = zone->zone_pgdat;
3331 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3332 }
3333
3334 if (!last_pgdat_dirty_ok)
3335 continue;
3336 }
3337
3338 if (no_fallback && nr_online_nodes > 1 &&
3339 zone != ac->preferred_zoneref->zone) {
3340 int local_nid;
3341
3342 /*
3343 * If moving to a remote node, retry but allow
3344 * fragmenting fallbacks. Locality is more important
3345 * than fragmentation avoidance.
3346 */
3347 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3348 if (zone_to_nid(zone) != local_nid) {
3349 alloc_flags &= ~ALLOC_NOFRAGMENT;
3350 goto retry;
3351 }
3352 }
3353
3354 /*
3355 * Detect whether the number of free pages is below high
3356 * watermark. If so, we will decrease pcp->high and free
3357 * PCP pages in free path to reduce the possibility of
3358 * premature page reclaiming. Detection is done here to
3359 * avoid to do that in hotter free path.
3360 */
3361 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3362 goto check_alloc_wmark;
3363
3364 mark = high_wmark_pages(zone);
3365 if (zone_watermark_fast(zone, order, mark,
3366 ac->highest_zoneidx, alloc_flags,
3367 gfp_mask))
3368 goto try_this_zone;
3369 else
3370 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3371
3372check_alloc_wmark:
3373 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3374 if (!zone_watermark_fast(zone, order, mark,
3375 ac->highest_zoneidx, alloc_flags,
3376 gfp_mask)) {
3377 int ret;
3378
3379 if (has_unaccepted_memory()) {
3380 if (try_to_accept_memory(zone, order))
3381 goto try_this_zone;
3382 }
3383
3384#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3385 /*
3386 * Watermark failed for this zone, but see if we can
3387 * grow this zone if it contains deferred pages.
3388 */
3389 if (deferred_pages_enabled()) {
3390 if (_deferred_grow_zone(zone, order))
3391 goto try_this_zone;
3392 }
3393#endif
3394 /* Checked here to keep the fast path fast */
3395 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3396 if (alloc_flags & ALLOC_NO_WATERMARKS)
3397 goto try_this_zone;
3398
3399 if (!node_reclaim_enabled() ||
3400 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3401 continue;
3402
3403 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3404 switch (ret) {
3405 case NODE_RECLAIM_NOSCAN:
3406 /* did not scan */
3407 continue;
3408 case NODE_RECLAIM_FULL:
3409 /* scanned but unreclaimable */
3410 continue;
3411 default:
3412 /* did we reclaim enough */
3413 if (zone_watermark_ok(zone, order, mark,
3414 ac->highest_zoneidx, alloc_flags))
3415 goto try_this_zone;
3416
3417 continue;
3418 }
3419 }
3420
3421try_this_zone:
3422 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3423 gfp_mask, alloc_flags, ac->migratetype);
3424 if (page) {
3425 prep_new_page(page, order, gfp_mask, alloc_flags);
3426
3427 /*
3428 * If this is a high-order atomic allocation then check
3429 * if the pageblock should be reserved for the future
3430 */
3431 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3432 reserve_highatomic_pageblock(page, order, zone);
3433
3434 return page;
3435 } else {
3436 if (has_unaccepted_memory()) {
3437 if (try_to_accept_memory(zone, order))
3438 goto try_this_zone;
3439 }
3440
3441#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3442 /* Try again if zone has deferred pages */
3443 if (deferred_pages_enabled()) {
3444 if (_deferred_grow_zone(zone, order))
3445 goto try_this_zone;
3446 }
3447#endif
3448 }
3449 }
3450
3451 /*
3452 * It's possible on a UMA machine to get through all zones that are
3453 * fragmented. If avoiding fragmentation, reset and try again.
3454 */
3455 if (no_fallback) {
3456 alloc_flags &= ~ALLOC_NOFRAGMENT;
3457 goto retry;
3458 }
3459
3460 return NULL;
3461}
3462
3463static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3464{
3465 unsigned int filter = SHOW_MEM_FILTER_NODES;
3466
3467 /*
3468 * This documents exceptions given to allocations in certain
3469 * contexts that are allowed to allocate outside current's set
3470 * of allowed nodes.
3471 */
3472 if (!(gfp_mask & __GFP_NOMEMALLOC))
3473 if (tsk_is_oom_victim(current) ||
3474 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3475 filter &= ~SHOW_MEM_FILTER_NODES;
3476 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3477 filter &= ~SHOW_MEM_FILTER_NODES;
3478
3479 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3480}
3481
3482void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3483{
3484 struct va_format vaf;
3485 va_list args;
3486 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3487
3488 if ((gfp_mask & __GFP_NOWARN) ||
3489 !__ratelimit(&nopage_rs) ||
3490 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3491 return;
3492
3493 va_start(args, fmt);
3494 vaf.fmt = fmt;
3495 vaf.va = &args;
3496 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3497 current->comm, &vaf, gfp_mask, &gfp_mask,
3498 nodemask_pr_args(nodemask));
3499 va_end(args);
3500
3501 cpuset_print_current_mems_allowed();
3502 pr_cont("\n");
3503 dump_stack();
3504 warn_alloc_show_mem(gfp_mask, nodemask);
3505}
3506
3507static inline struct page *
3508__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3509 unsigned int alloc_flags,
3510 const struct alloc_context *ac)
3511{
3512 struct page *page;
3513
3514 page = get_page_from_freelist(gfp_mask, order,
3515 alloc_flags|ALLOC_CPUSET, ac);
3516 /*
3517 * fallback to ignore cpuset restriction if our nodes
3518 * are depleted
3519 */
3520 if (!page)
3521 page = get_page_from_freelist(gfp_mask, order,
3522 alloc_flags, ac);
3523
3524 return page;
3525}
3526
3527static inline struct page *
3528__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3529 const struct alloc_context *ac, unsigned long *did_some_progress)
3530{
3531 struct oom_control oc = {
3532 .zonelist = ac->zonelist,
3533 .nodemask = ac->nodemask,
3534 .memcg = NULL,
3535 .gfp_mask = gfp_mask,
3536 .order = order,
3537 };
3538 struct page *page;
3539
3540 *did_some_progress = 0;
3541
3542 /*
3543 * Acquire the oom lock. If that fails, somebody else is
3544 * making progress for us.
3545 */
3546 if (!mutex_trylock(&oom_lock)) {
3547 *did_some_progress = 1;
3548 schedule_timeout_uninterruptible(1);
3549 return NULL;
3550 }
3551
3552 /*
3553 * Go through the zonelist yet one more time, keep very high watermark
3554 * here, this is only to catch a parallel oom killing, we must fail if
3555 * we're still under heavy pressure. But make sure that this reclaim
3556 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3557 * allocation which will never fail due to oom_lock already held.
3558 */
3559 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3560 ~__GFP_DIRECT_RECLAIM, order,
3561 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3562 if (page)
3563 goto out;
3564
3565 /* Coredumps can quickly deplete all memory reserves */
3566 if (current->flags & PF_DUMPCORE)
3567 goto out;
3568 /* The OOM killer will not help higher order allocs */
3569 if (order > PAGE_ALLOC_COSTLY_ORDER)
3570 goto out;
3571 /*
3572 * We have already exhausted all our reclaim opportunities without any
3573 * success so it is time to admit defeat. We will skip the OOM killer
3574 * because it is very likely that the caller has a more reasonable
3575 * fallback than shooting a random task.
3576 *
3577 * The OOM killer may not free memory on a specific node.
3578 */
3579 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3580 goto out;
3581 /* The OOM killer does not needlessly kill tasks for lowmem */
3582 if (ac->highest_zoneidx < ZONE_NORMAL)
3583 goto out;
3584 if (pm_suspended_storage())
3585 goto out;
3586 /*
3587 * XXX: GFP_NOFS allocations should rather fail than rely on
3588 * other request to make a forward progress.
3589 * We are in an unfortunate situation where out_of_memory cannot
3590 * do much for this context but let's try it to at least get
3591 * access to memory reserved if the current task is killed (see
3592 * out_of_memory). Once filesystems are ready to handle allocation
3593 * failures more gracefully we should just bail out here.
3594 */
3595
3596 /* Exhausted what can be done so it's blame time */
3597 if (out_of_memory(&oc) ||
3598 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3599 *did_some_progress = 1;
3600
3601 /*
3602 * Help non-failing allocations by giving them access to memory
3603 * reserves
3604 */
3605 if (gfp_mask & __GFP_NOFAIL)
3606 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3607 ALLOC_NO_WATERMARKS, ac);
3608 }
3609out:
3610 mutex_unlock(&oom_lock);
3611 return page;
3612}
3613
3614/*
3615 * Maximum number of compaction retries with a progress before OOM
3616 * killer is consider as the only way to move forward.
3617 */
3618#define MAX_COMPACT_RETRIES 16
3619
3620#ifdef CONFIG_COMPACTION
3621/* Try memory compaction for high-order allocations before reclaim */
3622static struct page *
3623__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3624 unsigned int alloc_flags, const struct alloc_context *ac,
3625 enum compact_priority prio, enum compact_result *compact_result)
3626{
3627 struct page *page = NULL;
3628 unsigned long pflags;
3629 unsigned int noreclaim_flag;
3630
3631 if (!order)
3632 return NULL;
3633
3634 psi_memstall_enter(&pflags);
3635 delayacct_compact_start();
3636 noreclaim_flag = memalloc_noreclaim_save();
3637
3638 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3639 prio, &page);
3640
3641 memalloc_noreclaim_restore(noreclaim_flag);
3642 psi_memstall_leave(&pflags);
3643 delayacct_compact_end();
3644
3645 if (*compact_result == COMPACT_SKIPPED)
3646 return NULL;
3647 /*
3648 * At least in one zone compaction wasn't deferred or skipped, so let's
3649 * count a compaction stall
3650 */
3651 count_vm_event(COMPACTSTALL);
3652
3653 /* Prep a captured page if available */
3654 if (page)
3655 prep_new_page(page, order, gfp_mask, alloc_flags);
3656
3657 /* Try get a page from the freelist if available */
3658 if (!page)
3659 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3660
3661 if (page) {
3662 struct zone *zone = page_zone(page);
3663
3664 zone->compact_blockskip_flush = false;
3665 compaction_defer_reset(zone, order, true);
3666 count_vm_event(COMPACTSUCCESS);
3667 return page;
3668 }
3669
3670 /*
3671 * It's bad if compaction run occurs and fails. The most likely reason
3672 * is that pages exist, but not enough to satisfy watermarks.
3673 */
3674 count_vm_event(COMPACTFAIL);
3675
3676 cond_resched();
3677
3678 return NULL;
3679}
3680
3681static inline bool
3682should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3683 enum compact_result compact_result,
3684 enum compact_priority *compact_priority,
3685 int *compaction_retries)
3686{
3687 int max_retries = MAX_COMPACT_RETRIES;
3688 int min_priority;
3689 bool ret = false;
3690 int retries = *compaction_retries;
3691 enum compact_priority priority = *compact_priority;
3692
3693 if (!order)
3694 return false;
3695
3696 if (fatal_signal_pending(current))
3697 return false;
3698
3699 /*
3700 * Compaction was skipped due to a lack of free order-0
3701 * migration targets. Continue if reclaim can help.
3702 */
3703 if (compact_result == COMPACT_SKIPPED) {
3704 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3705 goto out;
3706 }
3707
3708 /*
3709 * Compaction managed to coalesce some page blocks, but the
3710 * allocation failed presumably due to a race. Retry some.
3711 */
3712 if (compact_result == COMPACT_SUCCESS) {
3713 /*
3714 * !costly requests are much more important than
3715 * __GFP_RETRY_MAYFAIL costly ones because they are de
3716 * facto nofail and invoke OOM killer to move on while
3717 * costly can fail and users are ready to cope with
3718 * that. 1/4 retries is rather arbitrary but we would
3719 * need much more detailed feedback from compaction to
3720 * make a better decision.
3721 */
3722 if (order > PAGE_ALLOC_COSTLY_ORDER)
3723 max_retries /= 4;
3724
3725 if (++(*compaction_retries) <= max_retries) {
3726 ret = true;
3727 goto out;
3728 }
3729 }
3730
3731 /*
3732 * Compaction failed. Retry with increasing priority.
3733 */
3734 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3735 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3736
3737 if (*compact_priority > min_priority) {
3738 (*compact_priority)--;
3739 *compaction_retries = 0;
3740 ret = true;
3741 }
3742out:
3743 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3744 return ret;
3745}
3746#else
3747static inline struct page *
3748__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3749 unsigned int alloc_flags, const struct alloc_context *ac,
3750 enum compact_priority prio, enum compact_result *compact_result)
3751{
3752 *compact_result = COMPACT_SKIPPED;
3753 return NULL;
3754}
3755
3756static inline bool
3757should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3758 enum compact_result compact_result,
3759 enum compact_priority *compact_priority,
3760 int *compaction_retries)
3761{
3762 struct zone *zone;
3763 struct zoneref *z;
3764
3765 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3766 return false;
3767
3768 /*
3769 * There are setups with compaction disabled which would prefer to loop
3770 * inside the allocator rather than hit the oom killer prematurely.
3771 * Let's give them a good hope and keep retrying while the order-0
3772 * watermarks are OK.
3773 */
3774 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3775 ac->highest_zoneidx, ac->nodemask) {
3776 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3777 ac->highest_zoneidx, alloc_flags))
3778 return true;
3779 }
3780 return false;
3781}
3782#endif /* CONFIG_COMPACTION */
3783
3784#ifdef CONFIG_LOCKDEP
3785static struct lockdep_map __fs_reclaim_map =
3786 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3787
3788static bool __need_reclaim(gfp_t gfp_mask)
3789{
3790 /* no reclaim without waiting on it */
3791 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3792 return false;
3793
3794 /* this guy won't enter reclaim */
3795 if (current->flags & PF_MEMALLOC)
3796 return false;
3797
3798 if (gfp_mask & __GFP_NOLOCKDEP)
3799 return false;
3800
3801 return true;
3802}
3803
3804void __fs_reclaim_acquire(unsigned long ip)
3805{
3806 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3807}
3808
3809void __fs_reclaim_release(unsigned long ip)
3810{
3811 lock_release(&__fs_reclaim_map, ip);
3812}
3813
3814void fs_reclaim_acquire(gfp_t gfp_mask)
3815{
3816 gfp_mask = current_gfp_context(gfp_mask);
3817
3818 if (__need_reclaim(gfp_mask)) {
3819 if (gfp_mask & __GFP_FS)
3820 __fs_reclaim_acquire(_RET_IP_);
3821
3822#ifdef CONFIG_MMU_NOTIFIER
3823 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3824 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3825#endif
3826
3827 }
3828}
3829EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3830
3831void fs_reclaim_release(gfp_t gfp_mask)
3832{
3833 gfp_mask = current_gfp_context(gfp_mask);
3834
3835 if (__need_reclaim(gfp_mask)) {
3836 if (gfp_mask & __GFP_FS)
3837 __fs_reclaim_release(_RET_IP_);
3838 }
3839}
3840EXPORT_SYMBOL_GPL(fs_reclaim_release);
3841#endif
3842
3843/*
3844 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3845 * have been rebuilt so allocation retries. Reader side does not lock and
3846 * retries the allocation if zonelist changes. Writer side is protected by the
3847 * embedded spin_lock.
3848 */
3849static DEFINE_SEQLOCK(zonelist_update_seq);
3850
3851static unsigned int zonelist_iter_begin(void)
3852{
3853 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3854 return read_seqbegin(&zonelist_update_seq);
3855
3856 return 0;
3857}
3858
3859static unsigned int check_retry_zonelist(unsigned int seq)
3860{
3861 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3862 return read_seqretry(&zonelist_update_seq, seq);
3863
3864 return seq;
3865}
3866
3867/* Perform direct synchronous page reclaim */
3868static unsigned long
3869__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3870 const struct alloc_context *ac)
3871{
3872 unsigned int noreclaim_flag;
3873 unsigned long progress;
3874
3875 cond_resched();
3876
3877 /* We now go into synchronous reclaim */
3878 cpuset_memory_pressure_bump();
3879 fs_reclaim_acquire(gfp_mask);
3880 noreclaim_flag = memalloc_noreclaim_save();
3881
3882 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3883 ac->nodemask);
3884
3885 memalloc_noreclaim_restore(noreclaim_flag);
3886 fs_reclaim_release(gfp_mask);
3887
3888 cond_resched();
3889
3890 return progress;
3891}
3892
3893/* The really slow allocator path where we enter direct reclaim */
3894static inline struct page *
3895__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3896 unsigned int alloc_flags, const struct alloc_context *ac,
3897 unsigned long *did_some_progress)
3898{
3899 struct page *page = NULL;
3900 unsigned long pflags;
3901 bool drained = false;
3902
3903 psi_memstall_enter(&pflags);
3904 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3905 if (unlikely(!(*did_some_progress)))
3906 goto out;
3907
3908retry:
3909 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3910
3911 /*
3912 * If an allocation failed after direct reclaim, it could be because
3913 * pages are pinned on the per-cpu lists or in high alloc reserves.
3914 * Shrink them and try again
3915 */
3916 if (!page && !drained) {
3917 unreserve_highatomic_pageblock(ac, false);
3918 drain_all_pages(NULL);
3919 drained = true;
3920 goto retry;
3921 }
3922out:
3923 psi_memstall_leave(&pflags);
3924
3925 return page;
3926}
3927
3928static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3929 const struct alloc_context *ac)
3930{
3931 struct zoneref *z;
3932 struct zone *zone;
3933 pg_data_t *last_pgdat = NULL;
3934 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3935
3936 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3937 ac->nodemask) {
3938 if (!managed_zone(zone))
3939 continue;
3940 if (last_pgdat != zone->zone_pgdat) {
3941 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3942 last_pgdat = zone->zone_pgdat;
3943 }
3944 }
3945}
3946
3947static inline unsigned int
3948gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3949{
3950 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3951
3952 /*
3953 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3954 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3955 * to save two branches.
3956 */
3957 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3958 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3959
3960 /*
3961 * The caller may dip into page reserves a bit more if the caller
3962 * cannot run direct reclaim, or if the caller has realtime scheduling
3963 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3964 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3965 */
3966 alloc_flags |= (__force int)
3967 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3968
3969 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3970 /*
3971 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3972 * if it can't schedule.
3973 */
3974 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3975 alloc_flags |= ALLOC_NON_BLOCK;
3976
3977 if (order > 0)
3978 alloc_flags |= ALLOC_HIGHATOMIC;
3979 }
3980
3981 /*
3982 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3983 * GFP_ATOMIC) rather than fail, see the comment for
3984 * cpuset_node_allowed().
3985 */
3986 if (alloc_flags & ALLOC_MIN_RESERVE)
3987 alloc_flags &= ~ALLOC_CPUSET;
3988 } else if (unlikely(rt_task(current)) && in_task())
3989 alloc_flags |= ALLOC_MIN_RESERVE;
3990
3991 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3992
3993 return alloc_flags;
3994}
3995
3996static bool oom_reserves_allowed(struct task_struct *tsk)
3997{
3998 if (!tsk_is_oom_victim(tsk))
3999 return false;
4000
4001 /*
4002 * !MMU doesn't have oom reaper so give access to memory reserves
4003 * only to the thread with TIF_MEMDIE set
4004 */
4005 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4006 return false;
4007
4008 return true;
4009}
4010
4011/*
4012 * Distinguish requests which really need access to full memory
4013 * reserves from oom victims which can live with a portion of it
4014 */
4015static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4016{
4017 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4018 return 0;
4019 if (gfp_mask & __GFP_MEMALLOC)
4020 return ALLOC_NO_WATERMARKS;
4021 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4022 return ALLOC_NO_WATERMARKS;
4023 if (!in_interrupt()) {
4024 if (current->flags & PF_MEMALLOC)
4025 return ALLOC_NO_WATERMARKS;
4026 else if (oom_reserves_allowed(current))
4027 return ALLOC_OOM;
4028 }
4029
4030 return 0;
4031}
4032
4033bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4034{
4035 return !!__gfp_pfmemalloc_flags(gfp_mask);
4036}
4037
4038/*
4039 * Checks whether it makes sense to retry the reclaim to make a forward progress
4040 * for the given allocation request.
4041 *
4042 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4043 * without success, or when we couldn't even meet the watermark if we
4044 * reclaimed all remaining pages on the LRU lists.
4045 *
4046 * Returns true if a retry is viable or false to enter the oom path.
4047 */
4048static inline bool
4049should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4050 struct alloc_context *ac, int alloc_flags,
4051 bool did_some_progress, int *no_progress_loops)
4052{
4053 struct zone *zone;
4054 struct zoneref *z;
4055 bool ret = false;
4056
4057 /*
4058 * Costly allocations might have made a progress but this doesn't mean
4059 * their order will become available due to high fragmentation so
4060 * always increment the no progress counter for them
4061 */
4062 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4063 *no_progress_loops = 0;
4064 else
4065 (*no_progress_loops)++;
4066
4067 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4068 goto out;
4069
4070
4071 /*
4072 * Keep reclaiming pages while there is a chance this will lead
4073 * somewhere. If none of the target zones can satisfy our allocation
4074 * request even if all reclaimable pages are considered then we are
4075 * screwed and have to go OOM.
4076 */
4077 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4078 ac->highest_zoneidx, ac->nodemask) {
4079 unsigned long available;
4080 unsigned long reclaimable;
4081 unsigned long min_wmark = min_wmark_pages(zone);
4082 bool wmark;
4083
4084 available = reclaimable = zone_reclaimable_pages(zone);
4085 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4086
4087 /*
4088 * Would the allocation succeed if we reclaimed all
4089 * reclaimable pages?
4090 */
4091 wmark = __zone_watermark_ok(zone, order, min_wmark,
4092 ac->highest_zoneidx, alloc_flags, available);
4093 trace_reclaim_retry_zone(z, order, reclaimable,
4094 available, min_wmark, *no_progress_loops, wmark);
4095 if (wmark) {
4096 ret = true;
4097 break;
4098 }
4099 }
4100
4101 /*
4102 * Memory allocation/reclaim might be called from a WQ context and the
4103 * current implementation of the WQ concurrency control doesn't
4104 * recognize that a particular WQ is congested if the worker thread is
4105 * looping without ever sleeping. Therefore we have to do a short sleep
4106 * here rather than calling cond_resched().
4107 */
4108 if (current->flags & PF_WQ_WORKER)
4109 schedule_timeout_uninterruptible(1);
4110 else
4111 cond_resched();
4112out:
4113 /* Before OOM, exhaust highatomic_reserve */
4114 if (!ret)
4115 return unreserve_highatomic_pageblock(ac, true);
4116
4117 return ret;
4118}
4119
4120static inline bool
4121check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4122{
4123 /*
4124 * It's possible that cpuset's mems_allowed and the nodemask from
4125 * mempolicy don't intersect. This should be normally dealt with by
4126 * policy_nodemask(), but it's possible to race with cpuset update in
4127 * such a way the check therein was true, and then it became false
4128 * before we got our cpuset_mems_cookie here.
4129 * This assumes that for all allocations, ac->nodemask can come only
4130 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4131 * when it does not intersect with the cpuset restrictions) or the
4132 * caller can deal with a violated nodemask.
4133 */
4134 if (cpusets_enabled() && ac->nodemask &&
4135 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4136 ac->nodemask = NULL;
4137 return true;
4138 }
4139
4140 /*
4141 * When updating a task's mems_allowed or mempolicy nodemask, it is
4142 * possible to race with parallel threads in such a way that our
4143 * allocation can fail while the mask is being updated. If we are about
4144 * to fail, check if the cpuset changed during allocation and if so,
4145 * retry.
4146 */
4147 if (read_mems_allowed_retry(cpuset_mems_cookie))
4148 return true;
4149
4150 return false;
4151}
4152
4153static inline struct page *
4154__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4155 struct alloc_context *ac)
4156{
4157 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4158 bool can_compact = gfp_compaction_allowed(gfp_mask);
4159 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4160 struct page *page = NULL;
4161 unsigned int alloc_flags;
4162 unsigned long did_some_progress;
4163 enum compact_priority compact_priority;
4164 enum compact_result compact_result;
4165 int compaction_retries;
4166 int no_progress_loops;
4167 unsigned int cpuset_mems_cookie;
4168 unsigned int zonelist_iter_cookie;
4169 int reserve_flags;
4170
4171restart:
4172 compaction_retries = 0;
4173 no_progress_loops = 0;
4174 compact_priority = DEF_COMPACT_PRIORITY;
4175 cpuset_mems_cookie = read_mems_allowed_begin();
4176 zonelist_iter_cookie = zonelist_iter_begin();
4177
4178 /*
4179 * The fast path uses conservative alloc_flags to succeed only until
4180 * kswapd needs to be woken up, and to avoid the cost of setting up
4181 * alloc_flags precisely. So we do that now.
4182 */
4183 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4184
4185 /*
4186 * We need to recalculate the starting point for the zonelist iterator
4187 * because we might have used different nodemask in the fast path, or
4188 * there was a cpuset modification and we are retrying - otherwise we
4189 * could end up iterating over non-eligible zones endlessly.
4190 */
4191 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4192 ac->highest_zoneidx, ac->nodemask);
4193 if (!ac->preferred_zoneref->zone)
4194 goto nopage;
4195
4196 /*
4197 * Check for insane configurations where the cpuset doesn't contain
4198 * any suitable zone to satisfy the request - e.g. non-movable
4199 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4200 */
4201 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4202 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4203 ac->highest_zoneidx,
4204 &cpuset_current_mems_allowed);
4205 if (!z->zone)
4206 goto nopage;
4207 }
4208
4209 if (alloc_flags & ALLOC_KSWAPD)
4210 wake_all_kswapds(order, gfp_mask, ac);
4211
4212 /*
4213 * The adjusted alloc_flags might result in immediate success, so try
4214 * that first
4215 */
4216 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4217 if (page)
4218 goto got_pg;
4219
4220 /*
4221 * For costly allocations, try direct compaction first, as it's likely
4222 * that we have enough base pages and don't need to reclaim. For non-
4223 * movable high-order allocations, do that as well, as compaction will
4224 * try prevent permanent fragmentation by migrating from blocks of the
4225 * same migratetype.
4226 * Don't try this for allocations that are allowed to ignore
4227 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4228 */
4229 if (can_direct_reclaim && can_compact &&
4230 (costly_order ||
4231 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4232 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4233 page = __alloc_pages_direct_compact(gfp_mask, order,
4234 alloc_flags, ac,
4235 INIT_COMPACT_PRIORITY,
4236 &compact_result);
4237 if (page)
4238 goto got_pg;
4239
4240 /*
4241 * Checks for costly allocations with __GFP_NORETRY, which
4242 * includes some THP page fault allocations
4243 */
4244 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4245 /*
4246 * If allocating entire pageblock(s) and compaction
4247 * failed because all zones are below low watermarks
4248 * or is prohibited because it recently failed at this
4249 * order, fail immediately unless the allocator has
4250 * requested compaction and reclaim retry.
4251 *
4252 * Reclaim is
4253 * - potentially very expensive because zones are far
4254 * below their low watermarks or this is part of very
4255 * bursty high order allocations,
4256 * - not guaranteed to help because isolate_freepages()
4257 * may not iterate over freed pages as part of its
4258 * linear scan, and
4259 * - unlikely to make entire pageblocks free on its
4260 * own.
4261 */
4262 if (compact_result == COMPACT_SKIPPED ||
4263 compact_result == COMPACT_DEFERRED)
4264 goto nopage;
4265
4266 /*
4267 * Looks like reclaim/compaction is worth trying, but
4268 * sync compaction could be very expensive, so keep
4269 * using async compaction.
4270 */
4271 compact_priority = INIT_COMPACT_PRIORITY;
4272 }
4273 }
4274
4275retry:
4276 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4277 if (alloc_flags & ALLOC_KSWAPD)
4278 wake_all_kswapds(order, gfp_mask, ac);
4279
4280 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4281 if (reserve_flags)
4282 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4283 (alloc_flags & ALLOC_KSWAPD);
4284
4285 /*
4286 * Reset the nodemask and zonelist iterators if memory policies can be
4287 * ignored. These allocations are high priority and system rather than
4288 * user oriented.
4289 */
4290 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4291 ac->nodemask = NULL;
4292 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4293 ac->highest_zoneidx, ac->nodemask);
4294 }
4295
4296 /* Attempt with potentially adjusted zonelist and alloc_flags */
4297 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4298 if (page)
4299 goto got_pg;
4300
4301 /* Caller is not willing to reclaim, we can't balance anything */
4302 if (!can_direct_reclaim)
4303 goto nopage;
4304
4305 /* Avoid recursion of direct reclaim */
4306 if (current->flags & PF_MEMALLOC)
4307 goto nopage;
4308
4309 /* Try direct reclaim and then allocating */
4310 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4311 &did_some_progress);
4312 if (page)
4313 goto got_pg;
4314
4315 /* Try direct compaction and then allocating */
4316 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4317 compact_priority, &compact_result);
4318 if (page)
4319 goto got_pg;
4320
4321 /* Do not loop if specifically requested */
4322 if (gfp_mask & __GFP_NORETRY)
4323 goto nopage;
4324
4325 /*
4326 * Do not retry costly high order allocations unless they are
4327 * __GFP_RETRY_MAYFAIL and we can compact
4328 */
4329 if (costly_order && (!can_compact ||
4330 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4331 goto nopage;
4332
4333 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4334 did_some_progress > 0, &no_progress_loops))
4335 goto retry;
4336
4337 /*
4338 * It doesn't make any sense to retry for the compaction if the order-0
4339 * reclaim is not able to make any progress because the current
4340 * implementation of the compaction depends on the sufficient amount
4341 * of free memory (see __compaction_suitable)
4342 */
4343 if (did_some_progress > 0 && can_compact &&
4344 should_compact_retry(ac, order, alloc_flags,
4345 compact_result, &compact_priority,
4346 &compaction_retries))
4347 goto retry;
4348
4349
4350 /*
4351 * Deal with possible cpuset update races or zonelist updates to avoid
4352 * a unnecessary OOM kill.
4353 */
4354 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4355 check_retry_zonelist(zonelist_iter_cookie))
4356 goto restart;
4357
4358 /* Reclaim has failed us, start killing things */
4359 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4360 if (page)
4361 goto got_pg;
4362
4363 /* Avoid allocations with no watermarks from looping endlessly */
4364 if (tsk_is_oom_victim(current) &&
4365 (alloc_flags & ALLOC_OOM ||
4366 (gfp_mask & __GFP_NOMEMALLOC)))
4367 goto nopage;
4368
4369 /* Retry as long as the OOM killer is making progress */
4370 if (did_some_progress) {
4371 no_progress_loops = 0;
4372 goto retry;
4373 }
4374
4375nopage:
4376 /*
4377 * Deal with possible cpuset update races or zonelist updates to avoid
4378 * a unnecessary OOM kill.
4379 */
4380 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4381 check_retry_zonelist(zonelist_iter_cookie))
4382 goto restart;
4383
4384 /*
4385 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4386 * we always retry
4387 */
4388 if (gfp_mask & __GFP_NOFAIL) {
4389 /*
4390 * All existing users of the __GFP_NOFAIL are blockable, so warn
4391 * of any new users that actually require GFP_NOWAIT
4392 */
4393 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4394 goto fail;
4395
4396 /*
4397 * PF_MEMALLOC request from this context is rather bizarre
4398 * because we cannot reclaim anything and only can loop waiting
4399 * for somebody to do a work for us
4400 */
4401 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4402
4403 /*
4404 * non failing costly orders are a hard requirement which we
4405 * are not prepared for much so let's warn about these users
4406 * so that we can identify them and convert them to something
4407 * else.
4408 */
4409 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4410
4411 /*
4412 * Help non-failing allocations by giving some access to memory
4413 * reserves normally used for high priority non-blocking
4414 * allocations but do not use ALLOC_NO_WATERMARKS because this
4415 * could deplete whole memory reserves which would just make
4416 * the situation worse.
4417 */
4418 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4419 if (page)
4420 goto got_pg;
4421
4422 cond_resched();
4423 goto retry;
4424 }
4425fail:
4426 warn_alloc(gfp_mask, ac->nodemask,
4427 "page allocation failure: order:%u", order);
4428got_pg:
4429 return page;
4430}
4431
4432static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4433 int preferred_nid, nodemask_t *nodemask,
4434 struct alloc_context *ac, gfp_t *alloc_gfp,
4435 unsigned int *alloc_flags)
4436{
4437 ac->highest_zoneidx = gfp_zone(gfp_mask);
4438 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4439 ac->nodemask = nodemask;
4440 ac->migratetype = gfp_migratetype(gfp_mask);
4441
4442 if (cpusets_enabled()) {
4443 *alloc_gfp |= __GFP_HARDWALL;
4444 /*
4445 * When we are in the interrupt context, it is irrelevant
4446 * to the current task context. It means that any node ok.
4447 */
4448 if (in_task() && !ac->nodemask)
4449 ac->nodemask = &cpuset_current_mems_allowed;
4450 else
4451 *alloc_flags |= ALLOC_CPUSET;
4452 }
4453
4454 might_alloc(gfp_mask);
4455
4456 if (should_fail_alloc_page(gfp_mask, order))
4457 return false;
4458
4459 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4460
4461 /* Dirty zone balancing only done in the fast path */
4462 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4463
4464 /*
4465 * The preferred zone is used for statistics but crucially it is
4466 * also used as the starting point for the zonelist iterator. It
4467 * may get reset for allocations that ignore memory policies.
4468 */
4469 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4470 ac->highest_zoneidx, ac->nodemask);
4471
4472 return true;
4473}
4474
4475/*
4476 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4477 * @gfp: GFP flags for the allocation
4478 * @preferred_nid: The preferred NUMA node ID to allocate from
4479 * @nodemask: Set of nodes to allocate from, may be NULL
4480 * @nr_pages: The number of pages desired on the list or array
4481 * @page_list: Optional list to store the allocated pages
4482 * @page_array: Optional array to store the pages
4483 *
4484 * This is a batched version of the page allocator that attempts to
4485 * allocate nr_pages quickly. Pages are added to page_list if page_list
4486 * is not NULL, otherwise it is assumed that the page_array is valid.
4487 *
4488 * For lists, nr_pages is the number of pages that should be allocated.
4489 *
4490 * For arrays, only NULL elements are populated with pages and nr_pages
4491 * is the maximum number of pages that will be stored in the array.
4492 *
4493 * Returns the number of pages on the list or array.
4494 */
4495unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4496 nodemask_t *nodemask, int nr_pages,
4497 struct list_head *page_list,
4498 struct page **page_array)
4499{
4500 struct page *page;
4501 unsigned long __maybe_unused UP_flags;
4502 struct zone *zone;
4503 struct zoneref *z;
4504 struct per_cpu_pages *pcp;
4505 struct list_head *pcp_list;
4506 struct alloc_context ac;
4507 gfp_t alloc_gfp;
4508 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4509 int nr_populated = 0, nr_account = 0;
4510
4511 /*
4512 * Skip populated array elements to determine if any pages need
4513 * to be allocated before disabling IRQs.
4514 */
4515 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4516 nr_populated++;
4517
4518 /* No pages requested? */
4519 if (unlikely(nr_pages <= 0))
4520 goto out;
4521
4522 /* Already populated array? */
4523 if (unlikely(page_array && nr_pages - nr_populated == 0))
4524 goto out;
4525
4526 /* Bulk allocator does not support memcg accounting. */
4527 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4528 goto failed;
4529
4530 /* Use the single page allocator for one page. */
4531 if (nr_pages - nr_populated == 1)
4532 goto failed;
4533
4534#ifdef CONFIG_PAGE_OWNER
4535 /*
4536 * PAGE_OWNER may recurse into the allocator to allocate space to
4537 * save the stack with pagesets.lock held. Releasing/reacquiring
4538 * removes much of the performance benefit of bulk allocation so
4539 * force the caller to allocate one page at a time as it'll have
4540 * similar performance to added complexity to the bulk allocator.
4541 */
4542 if (static_branch_unlikely(&page_owner_inited))
4543 goto failed;
4544#endif
4545
4546 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4547 gfp &= gfp_allowed_mask;
4548 alloc_gfp = gfp;
4549 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4550 goto out;
4551 gfp = alloc_gfp;
4552
4553 /* Find an allowed local zone that meets the low watermark. */
4554 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4555 unsigned long mark;
4556
4557 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4558 !__cpuset_zone_allowed(zone, gfp)) {
4559 continue;
4560 }
4561
4562 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4563 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4564 goto failed;
4565 }
4566
4567 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4568 if (zone_watermark_fast(zone, 0, mark,
4569 zonelist_zone_idx(ac.preferred_zoneref),
4570 alloc_flags, gfp)) {
4571 break;
4572 }
4573 }
4574
4575 /*
4576 * If there are no allowed local zones that meets the watermarks then
4577 * try to allocate a single page and reclaim if necessary.
4578 */
4579 if (unlikely(!zone))
4580 goto failed;
4581
4582 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4583 pcp_trylock_prepare(UP_flags);
4584 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4585 if (!pcp)
4586 goto failed_irq;
4587
4588 /* Attempt the batch allocation */
4589 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4590 while (nr_populated < nr_pages) {
4591
4592 /* Skip existing pages */
4593 if (page_array && page_array[nr_populated]) {
4594 nr_populated++;
4595 continue;
4596 }
4597
4598 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4599 pcp, pcp_list);
4600 if (unlikely(!page)) {
4601 /* Try and allocate at least one page */
4602 if (!nr_account) {
4603 pcp_spin_unlock(pcp);
4604 goto failed_irq;
4605 }
4606 break;
4607 }
4608 nr_account++;
4609
4610 prep_new_page(page, 0, gfp, 0);
4611 if (page_list)
4612 list_add(&page->lru, page_list);
4613 else
4614 page_array[nr_populated] = page;
4615 nr_populated++;
4616 }
4617
4618 pcp_spin_unlock(pcp);
4619 pcp_trylock_finish(UP_flags);
4620
4621 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4622 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4623
4624out:
4625 return nr_populated;
4626
4627failed_irq:
4628 pcp_trylock_finish(UP_flags);
4629
4630failed:
4631 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4632 if (page) {
4633 if (page_list)
4634 list_add(&page->lru, page_list);
4635 else
4636 page_array[nr_populated] = page;
4637 nr_populated++;
4638 }
4639
4640 goto out;
4641}
4642EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4643
4644/*
4645 * This is the 'heart' of the zoned buddy allocator.
4646 */
4647struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4648 int preferred_nid, nodemask_t *nodemask)
4649{
4650 struct page *page;
4651 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4652 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4653 struct alloc_context ac = { };
4654
4655 /*
4656 * There are several places where we assume that the order value is sane
4657 * so bail out early if the request is out of bound.
4658 */
4659 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4660 return NULL;
4661
4662 gfp &= gfp_allowed_mask;
4663 /*
4664 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4665 * resp. GFP_NOIO which has to be inherited for all allocation requests
4666 * from a particular context which has been marked by
4667 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4668 * movable zones are not used during allocation.
4669 */
4670 gfp = current_gfp_context(gfp);
4671 alloc_gfp = gfp;
4672 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4673 &alloc_gfp, &alloc_flags))
4674 return NULL;
4675
4676 /*
4677 * Forbid the first pass from falling back to types that fragment
4678 * memory until all local zones are considered.
4679 */
4680 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4681
4682 /* First allocation attempt */
4683 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4684 if (likely(page))
4685 goto out;
4686
4687 alloc_gfp = gfp;
4688 ac.spread_dirty_pages = false;
4689
4690 /*
4691 * Restore the original nodemask if it was potentially replaced with
4692 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4693 */
4694 ac.nodemask = nodemask;
4695
4696 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4697
4698out:
4699 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4700 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4701 __free_pages(page, order);
4702 page = NULL;
4703 }
4704
4705 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4706 kmsan_alloc_page(page, order, alloc_gfp);
4707
4708 return page;
4709}
4710EXPORT_SYMBOL(__alloc_pages_noprof);
4711
4712struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4713 nodemask_t *nodemask)
4714{
4715 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4716 preferred_nid, nodemask);
4717 return page_rmappable_folio(page);
4718}
4719EXPORT_SYMBOL(__folio_alloc_noprof);
4720
4721/*
4722 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4723 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4724 * you need to access high mem.
4725 */
4726unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4727{
4728 struct page *page;
4729
4730 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4731 if (!page)
4732 return 0;
4733 return (unsigned long) page_address(page);
4734}
4735EXPORT_SYMBOL(get_free_pages_noprof);
4736
4737unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4738{
4739 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4740}
4741EXPORT_SYMBOL(get_zeroed_page_noprof);
4742
4743/**
4744 * __free_pages - Free pages allocated with alloc_pages().
4745 * @page: The page pointer returned from alloc_pages().
4746 * @order: The order of the allocation.
4747 *
4748 * This function can free multi-page allocations that are not compound
4749 * pages. It does not check that the @order passed in matches that of
4750 * the allocation, so it is easy to leak memory. Freeing more memory
4751 * than was allocated will probably emit a warning.
4752 *
4753 * If the last reference to this page is speculative, it will be released
4754 * by put_page() which only frees the first page of a non-compound
4755 * allocation. To prevent the remaining pages from being leaked, we free
4756 * the subsequent pages here. If you want to use the page's reference
4757 * count to decide when to free the allocation, you should allocate a
4758 * compound page, and use put_page() instead of __free_pages().
4759 *
4760 * Context: May be called in interrupt context or while holding a normal
4761 * spinlock, but not in NMI context or while holding a raw spinlock.
4762 */
4763void __free_pages(struct page *page, unsigned int order)
4764{
4765 /* get PageHead before we drop reference */
4766 int head = PageHead(page);
4767 struct alloc_tag *tag = pgalloc_tag_get(page);
4768
4769 if (put_page_testzero(page))
4770 free_unref_page(page, order);
4771 else if (!head) {
4772 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4773 while (order-- > 0)
4774 free_unref_page(page + (1 << order), order);
4775 }
4776}
4777EXPORT_SYMBOL(__free_pages);
4778
4779void free_pages(unsigned long addr, unsigned int order)
4780{
4781 if (addr != 0) {
4782 VM_BUG_ON(!virt_addr_valid((void *)addr));
4783 __free_pages(virt_to_page((void *)addr), order);
4784 }
4785}
4786
4787EXPORT_SYMBOL(free_pages);
4788
4789/*
4790 * Page Fragment:
4791 * An arbitrary-length arbitrary-offset area of memory which resides
4792 * within a 0 or higher order page. Multiple fragments within that page
4793 * are individually refcounted, in the page's reference counter.
4794 *
4795 * The page_frag functions below provide a simple allocation framework for
4796 * page fragments. This is used by the network stack and network device
4797 * drivers to provide a backing region of memory for use as either an
4798 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4799 */
4800static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4801 gfp_t gfp_mask)
4802{
4803 struct page *page = NULL;
4804 gfp_t gfp = gfp_mask;
4805
4806#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4807 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4808 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4809 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4810 PAGE_FRAG_CACHE_MAX_ORDER);
4811 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4812#endif
4813 if (unlikely(!page))
4814 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4815
4816 nc->va = page ? page_address(page) : NULL;
4817
4818 return page;
4819}
4820
4821void page_frag_cache_drain(struct page_frag_cache *nc)
4822{
4823 if (!nc->va)
4824 return;
4825
4826 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4827 nc->va = NULL;
4828}
4829EXPORT_SYMBOL(page_frag_cache_drain);
4830
4831void __page_frag_cache_drain(struct page *page, unsigned int count)
4832{
4833 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4834
4835 if (page_ref_sub_and_test(page, count))
4836 free_unref_page(page, compound_order(page));
4837}
4838EXPORT_SYMBOL(__page_frag_cache_drain);
4839
4840void *__page_frag_alloc_align(struct page_frag_cache *nc,
4841 unsigned int fragsz, gfp_t gfp_mask,
4842 unsigned int align_mask)
4843{
4844 unsigned int size = PAGE_SIZE;
4845 struct page *page;
4846 int offset;
4847
4848 if (unlikely(!nc->va)) {
4849refill:
4850 page = __page_frag_cache_refill(nc, gfp_mask);
4851 if (!page)
4852 return NULL;
4853
4854#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4855 /* if size can vary use size else just use PAGE_SIZE */
4856 size = nc->size;
4857#endif
4858 /* Even if we own the page, we do not use atomic_set().
4859 * This would break get_page_unless_zero() users.
4860 */
4861 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4862
4863 /* reset page count bias and offset to start of new frag */
4864 nc->pfmemalloc = page_is_pfmemalloc(page);
4865 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4866 nc->offset = size;
4867 }
4868
4869 offset = nc->offset - fragsz;
4870 if (unlikely(offset < 0)) {
4871 page = virt_to_page(nc->va);
4872
4873 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4874 goto refill;
4875
4876 if (unlikely(nc->pfmemalloc)) {
4877 free_unref_page(page, compound_order(page));
4878 goto refill;
4879 }
4880
4881#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4882 /* if size can vary use size else just use PAGE_SIZE */
4883 size = nc->size;
4884#endif
4885 /* OK, page count is 0, we can safely set it */
4886 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4887
4888 /* reset page count bias and offset to start of new frag */
4889 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4890 offset = size - fragsz;
4891 if (unlikely(offset < 0)) {
4892 /*
4893 * The caller is trying to allocate a fragment
4894 * with fragsz > PAGE_SIZE but the cache isn't big
4895 * enough to satisfy the request, this may
4896 * happen in low memory conditions.
4897 * We don't release the cache page because
4898 * it could make memory pressure worse
4899 * so we simply return NULL here.
4900 */
4901 return NULL;
4902 }
4903 }
4904
4905 nc->pagecnt_bias--;
4906 offset &= align_mask;
4907 nc->offset = offset;
4908
4909 return nc->va + offset;
4910}
4911EXPORT_SYMBOL(__page_frag_alloc_align);
4912
4913/*
4914 * Frees a page fragment allocated out of either a compound or order 0 page.
4915 */
4916void page_frag_free(void *addr)
4917{
4918 struct page *page = virt_to_head_page(addr);
4919
4920 if (unlikely(put_page_testzero(page)))
4921 free_unref_page(page, compound_order(page));
4922}
4923EXPORT_SYMBOL(page_frag_free);
4924
4925static void *make_alloc_exact(unsigned long addr, unsigned int order,
4926 size_t size)
4927{
4928 if (addr) {
4929 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4930 struct page *page = virt_to_page((void *)addr);
4931 struct page *last = page + nr;
4932
4933 split_page_owner(page, order, 0);
4934 pgalloc_tag_split(page, 1 << order);
4935 split_page_memcg(page, order, 0);
4936 while (page < --last)
4937 set_page_refcounted(last);
4938
4939 last = page + (1UL << order);
4940 for (page += nr; page < last; page++)
4941 __free_pages_ok(page, 0, FPI_TO_TAIL);
4942 }
4943 return (void *)addr;
4944}
4945
4946/**
4947 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4948 * @size: the number of bytes to allocate
4949 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4950 *
4951 * This function is similar to alloc_pages(), except that it allocates the
4952 * minimum number of pages to satisfy the request. alloc_pages() can only
4953 * allocate memory in power-of-two pages.
4954 *
4955 * This function is also limited by MAX_PAGE_ORDER.
4956 *
4957 * Memory allocated by this function must be released by free_pages_exact().
4958 *
4959 * Return: pointer to the allocated area or %NULL in case of error.
4960 */
4961void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4962{
4963 unsigned int order = get_order(size);
4964 unsigned long addr;
4965
4966 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4967 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4968
4969 addr = get_free_pages_noprof(gfp_mask, order);
4970 return make_alloc_exact(addr, order, size);
4971}
4972EXPORT_SYMBOL(alloc_pages_exact_noprof);
4973
4974/**
4975 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4976 * pages on a node.
4977 * @nid: the preferred node ID where memory should be allocated
4978 * @size: the number of bytes to allocate
4979 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4980 *
4981 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4982 * back.
4983 *
4984 * Return: pointer to the allocated area or %NULL in case of error.
4985 */
4986void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4987{
4988 unsigned int order = get_order(size);
4989 struct page *p;
4990
4991 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4992 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4993
4994 p = alloc_pages_node_noprof(nid, gfp_mask, order);
4995 if (!p)
4996 return NULL;
4997 return make_alloc_exact((unsigned long)page_address(p), order, size);
4998}
4999
5000/**
5001 * free_pages_exact - release memory allocated via alloc_pages_exact()
5002 * @virt: the value returned by alloc_pages_exact.
5003 * @size: size of allocation, same value as passed to alloc_pages_exact().
5004 *
5005 * Release the memory allocated by a previous call to alloc_pages_exact.
5006 */
5007void free_pages_exact(void *virt, size_t size)
5008{
5009 unsigned long addr = (unsigned long)virt;
5010 unsigned long end = addr + PAGE_ALIGN(size);
5011
5012 while (addr < end) {
5013 free_page(addr);
5014 addr += PAGE_SIZE;
5015 }
5016}
5017EXPORT_SYMBOL(free_pages_exact);
5018
5019/**
5020 * nr_free_zone_pages - count number of pages beyond high watermark
5021 * @offset: The zone index of the highest zone
5022 *
5023 * nr_free_zone_pages() counts the number of pages which are beyond the
5024 * high watermark within all zones at or below a given zone index. For each
5025 * zone, the number of pages is calculated as:
5026 *
5027 * nr_free_zone_pages = managed_pages - high_pages
5028 *
5029 * Return: number of pages beyond high watermark.
5030 */
5031static unsigned long nr_free_zone_pages(int offset)
5032{
5033 struct zoneref *z;
5034 struct zone *zone;
5035
5036 /* Just pick one node, since fallback list is circular */
5037 unsigned long sum = 0;
5038
5039 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5040
5041 for_each_zone_zonelist(zone, z, zonelist, offset) {
5042 unsigned long size = zone_managed_pages(zone);
5043 unsigned long high = high_wmark_pages(zone);
5044 if (size > high)
5045 sum += size - high;
5046 }
5047
5048 return sum;
5049}
5050
5051/**
5052 * nr_free_buffer_pages - count number of pages beyond high watermark
5053 *
5054 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5055 * watermark within ZONE_DMA and ZONE_NORMAL.
5056 *
5057 * Return: number of pages beyond high watermark within ZONE_DMA and
5058 * ZONE_NORMAL.
5059 */
5060unsigned long nr_free_buffer_pages(void)
5061{
5062 return nr_free_zone_pages(gfp_zone(GFP_USER));
5063}
5064EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5065
5066static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5067{
5068 zoneref->zone = zone;
5069 zoneref->zone_idx = zone_idx(zone);
5070}
5071
5072/*
5073 * Builds allocation fallback zone lists.
5074 *
5075 * Add all populated zones of a node to the zonelist.
5076 */
5077static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5078{
5079 struct zone *zone;
5080 enum zone_type zone_type = MAX_NR_ZONES;
5081 int nr_zones = 0;
5082
5083 do {
5084 zone_type--;
5085 zone = pgdat->node_zones + zone_type;
5086 if (populated_zone(zone)) {
5087 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5088 check_highest_zone(zone_type);
5089 }
5090 } while (zone_type);
5091
5092 return nr_zones;
5093}
5094
5095#ifdef CONFIG_NUMA
5096
5097static int __parse_numa_zonelist_order(char *s)
5098{
5099 /*
5100 * We used to support different zonelists modes but they turned
5101 * out to be just not useful. Let's keep the warning in place
5102 * if somebody still use the cmd line parameter so that we do
5103 * not fail it silently
5104 */
5105 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5106 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5107 return -EINVAL;
5108 }
5109 return 0;
5110}
5111
5112static char numa_zonelist_order[] = "Node";
5113#define NUMA_ZONELIST_ORDER_LEN 16
5114/*
5115 * sysctl handler for numa_zonelist_order
5116 */
5117static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5118 void *buffer, size_t *length, loff_t *ppos)
5119{
5120 if (write)
5121 return __parse_numa_zonelist_order(buffer);
5122 return proc_dostring(table, write, buffer, length, ppos);
5123}
5124
5125static int node_load[MAX_NUMNODES];
5126
5127/**
5128 * find_next_best_node - find the next node that should appear in a given node's fallback list
5129 * @node: node whose fallback list we're appending
5130 * @used_node_mask: nodemask_t of already used nodes
5131 *
5132 * We use a number of factors to determine which is the next node that should
5133 * appear on a given node's fallback list. The node should not have appeared
5134 * already in @node's fallback list, and it should be the next closest node
5135 * according to the distance array (which contains arbitrary distance values
5136 * from each node to each node in the system), and should also prefer nodes
5137 * with no CPUs, since presumably they'll have very little allocation pressure
5138 * on them otherwise.
5139 *
5140 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5141 */
5142int find_next_best_node(int node, nodemask_t *used_node_mask)
5143{
5144 int n, val;
5145 int min_val = INT_MAX;
5146 int best_node = NUMA_NO_NODE;
5147
5148 /*
5149 * Use the local node if we haven't already, but for memoryless local
5150 * node, we should skip it and fall back to other nodes.
5151 */
5152 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5153 node_set(node, *used_node_mask);
5154 return node;
5155 }
5156
5157 for_each_node_state(n, N_MEMORY) {
5158
5159 /* Don't want a node to appear more than once */
5160 if (node_isset(n, *used_node_mask))
5161 continue;
5162
5163 /* Use the distance array to find the distance */
5164 val = node_distance(node, n);
5165
5166 /* Penalize nodes under us ("prefer the next node") */
5167 val += (n < node);
5168
5169 /* Give preference to headless and unused nodes */
5170 if (!cpumask_empty(cpumask_of_node(n)))
5171 val += PENALTY_FOR_NODE_WITH_CPUS;
5172
5173 /* Slight preference for less loaded node */
5174 val *= MAX_NUMNODES;
5175 val += node_load[n];
5176
5177 if (val < min_val) {
5178 min_val = val;
5179 best_node = n;
5180 }
5181 }
5182
5183 if (best_node >= 0)
5184 node_set(best_node, *used_node_mask);
5185
5186 return best_node;
5187}
5188
5189
5190/*
5191 * Build zonelists ordered by node and zones within node.
5192 * This results in maximum locality--normal zone overflows into local
5193 * DMA zone, if any--but risks exhausting DMA zone.
5194 */
5195static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5196 unsigned nr_nodes)
5197{
5198 struct zoneref *zonerefs;
5199 int i;
5200
5201 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5202
5203 for (i = 0; i < nr_nodes; i++) {
5204 int nr_zones;
5205
5206 pg_data_t *node = NODE_DATA(node_order[i]);
5207
5208 nr_zones = build_zonerefs_node(node, zonerefs);
5209 zonerefs += nr_zones;
5210 }
5211 zonerefs->zone = NULL;
5212 zonerefs->zone_idx = 0;
5213}
5214
5215/*
5216 * Build gfp_thisnode zonelists
5217 */
5218static void build_thisnode_zonelists(pg_data_t *pgdat)
5219{
5220 struct zoneref *zonerefs;
5221 int nr_zones;
5222
5223 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5224 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5225 zonerefs += nr_zones;
5226 zonerefs->zone = NULL;
5227 zonerefs->zone_idx = 0;
5228}
5229
5230/*
5231 * Build zonelists ordered by zone and nodes within zones.
5232 * This results in conserving DMA zone[s] until all Normal memory is
5233 * exhausted, but results in overflowing to remote node while memory
5234 * may still exist in local DMA zone.
5235 */
5236
5237static void build_zonelists(pg_data_t *pgdat)
5238{
5239 static int node_order[MAX_NUMNODES];
5240 int node, nr_nodes = 0;
5241 nodemask_t used_mask = NODE_MASK_NONE;
5242 int local_node, prev_node;
5243
5244 /* NUMA-aware ordering of nodes */
5245 local_node = pgdat->node_id;
5246 prev_node = local_node;
5247
5248 memset(node_order, 0, sizeof(node_order));
5249 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5250 /*
5251 * We don't want to pressure a particular node.
5252 * So adding penalty to the first node in same
5253 * distance group to make it round-robin.
5254 */
5255 if (node_distance(local_node, node) !=
5256 node_distance(local_node, prev_node))
5257 node_load[node] += 1;
5258
5259 node_order[nr_nodes++] = node;
5260 prev_node = node;
5261 }
5262
5263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264 build_thisnode_zonelists(pgdat);
5265 pr_info("Fallback order for Node %d: ", local_node);
5266 for (node = 0; node < nr_nodes; node++)
5267 pr_cont("%d ", node_order[node]);
5268 pr_cont("\n");
5269}
5270
5271#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5272/*
5273 * Return node id of node used for "local" allocations.
5274 * I.e., first node id of first zone in arg node's generic zonelist.
5275 * Used for initializing percpu 'numa_mem', which is used primarily
5276 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5277 */
5278int local_memory_node(int node)
5279{
5280 struct zoneref *z;
5281
5282 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5283 gfp_zone(GFP_KERNEL),
5284 NULL);
5285 return zone_to_nid(z->zone);
5286}
5287#endif
5288
5289static void setup_min_unmapped_ratio(void);
5290static void setup_min_slab_ratio(void);
5291#else /* CONFIG_NUMA */
5292
5293static void build_zonelists(pg_data_t *pgdat)
5294{
5295 struct zoneref *zonerefs;
5296 int nr_zones;
5297
5298 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5299 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5300 zonerefs += nr_zones;
5301
5302 zonerefs->zone = NULL;
5303 zonerefs->zone_idx = 0;
5304}
5305
5306#endif /* CONFIG_NUMA */
5307
5308/*
5309 * Boot pageset table. One per cpu which is going to be used for all
5310 * zones and all nodes. The parameters will be set in such a way
5311 * that an item put on a list will immediately be handed over to
5312 * the buddy list. This is safe since pageset manipulation is done
5313 * with interrupts disabled.
5314 *
5315 * The boot_pagesets must be kept even after bootup is complete for
5316 * unused processors and/or zones. They do play a role for bootstrapping
5317 * hotplugged processors.
5318 *
5319 * zoneinfo_show() and maybe other functions do
5320 * not check if the processor is online before following the pageset pointer.
5321 * Other parts of the kernel may not check if the zone is available.
5322 */
5323static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5324/* These effectively disable the pcplists in the boot pageset completely */
5325#define BOOT_PAGESET_HIGH 0
5326#define BOOT_PAGESET_BATCH 1
5327static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5328static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5329
5330static void __build_all_zonelists(void *data)
5331{
5332 int nid;
5333 int __maybe_unused cpu;
5334 pg_data_t *self = data;
5335 unsigned long flags;
5336
5337 /*
5338 * The zonelist_update_seq must be acquired with irqsave because the
5339 * reader can be invoked from IRQ with GFP_ATOMIC.
5340 */
5341 write_seqlock_irqsave(&zonelist_update_seq, flags);
5342 /*
5343 * Also disable synchronous printk() to prevent any printk() from
5344 * trying to hold port->lock, for
5345 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5346 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5347 */
5348 printk_deferred_enter();
5349
5350#ifdef CONFIG_NUMA
5351 memset(node_load, 0, sizeof(node_load));
5352#endif
5353
5354 /*
5355 * This node is hotadded and no memory is yet present. So just
5356 * building zonelists is fine - no need to touch other nodes.
5357 */
5358 if (self && !node_online(self->node_id)) {
5359 build_zonelists(self);
5360 } else {
5361 /*
5362 * All possible nodes have pgdat preallocated
5363 * in free_area_init
5364 */
5365 for_each_node(nid) {
5366 pg_data_t *pgdat = NODE_DATA(nid);
5367
5368 build_zonelists(pgdat);
5369 }
5370
5371#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5372 /*
5373 * We now know the "local memory node" for each node--
5374 * i.e., the node of the first zone in the generic zonelist.
5375 * Set up numa_mem percpu variable for on-line cpus. During
5376 * boot, only the boot cpu should be on-line; we'll init the
5377 * secondary cpus' numa_mem as they come on-line. During
5378 * node/memory hotplug, we'll fixup all on-line cpus.
5379 */
5380 for_each_online_cpu(cpu)
5381 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5382#endif
5383 }
5384
5385 printk_deferred_exit();
5386 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5387}
5388
5389static noinline void __init
5390build_all_zonelists_init(void)
5391{
5392 int cpu;
5393
5394 __build_all_zonelists(NULL);
5395
5396 /*
5397 * Initialize the boot_pagesets that are going to be used
5398 * for bootstrapping processors. The real pagesets for
5399 * each zone will be allocated later when the per cpu
5400 * allocator is available.
5401 *
5402 * boot_pagesets are used also for bootstrapping offline
5403 * cpus if the system is already booted because the pagesets
5404 * are needed to initialize allocators on a specific cpu too.
5405 * F.e. the percpu allocator needs the page allocator which
5406 * needs the percpu allocator in order to allocate its pagesets
5407 * (a chicken-egg dilemma).
5408 */
5409 for_each_possible_cpu(cpu)
5410 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5411
5412 mminit_verify_zonelist();
5413 cpuset_init_current_mems_allowed();
5414}
5415
5416/*
5417 * unless system_state == SYSTEM_BOOTING.
5418 *
5419 * __ref due to call of __init annotated helper build_all_zonelists_init
5420 * [protected by SYSTEM_BOOTING].
5421 */
5422void __ref build_all_zonelists(pg_data_t *pgdat)
5423{
5424 unsigned long vm_total_pages;
5425
5426 if (system_state == SYSTEM_BOOTING) {
5427 build_all_zonelists_init();
5428 } else {
5429 __build_all_zonelists(pgdat);
5430 /* cpuset refresh routine should be here */
5431 }
5432 /* Get the number of free pages beyond high watermark in all zones. */
5433 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5434 /*
5435 * Disable grouping by mobility if the number of pages in the
5436 * system is too low to allow the mechanism to work. It would be
5437 * more accurate, but expensive to check per-zone. This check is
5438 * made on memory-hotadd so a system can start with mobility
5439 * disabled and enable it later
5440 */
5441 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5442 page_group_by_mobility_disabled = 1;
5443 else
5444 page_group_by_mobility_disabled = 0;
5445
5446 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5447 nr_online_nodes,
5448 page_group_by_mobility_disabled ? "off" : "on",
5449 vm_total_pages);
5450#ifdef CONFIG_NUMA
5451 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5452#endif
5453}
5454
5455static int zone_batchsize(struct zone *zone)
5456{
5457#ifdef CONFIG_MMU
5458 int batch;
5459
5460 /*
5461 * The number of pages to batch allocate is either ~0.1%
5462 * of the zone or 1MB, whichever is smaller. The batch
5463 * size is striking a balance between allocation latency
5464 * and zone lock contention.
5465 */
5466 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5467 batch /= 4; /* We effectively *= 4 below */
5468 if (batch < 1)
5469 batch = 1;
5470
5471 /*
5472 * Clamp the batch to a 2^n - 1 value. Having a power
5473 * of 2 value was found to be more likely to have
5474 * suboptimal cache aliasing properties in some cases.
5475 *
5476 * For example if 2 tasks are alternately allocating
5477 * batches of pages, one task can end up with a lot
5478 * of pages of one half of the possible page colors
5479 * and the other with pages of the other colors.
5480 */
5481 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5482
5483 return batch;
5484
5485#else
5486 /* The deferral and batching of frees should be suppressed under NOMMU
5487 * conditions.
5488 *
5489 * The problem is that NOMMU needs to be able to allocate large chunks
5490 * of contiguous memory as there's no hardware page translation to
5491 * assemble apparent contiguous memory from discontiguous pages.
5492 *
5493 * Queueing large contiguous runs of pages for batching, however,
5494 * causes the pages to actually be freed in smaller chunks. As there
5495 * can be a significant delay between the individual batches being
5496 * recycled, this leads to the once large chunks of space being
5497 * fragmented and becoming unavailable for high-order allocations.
5498 */
5499 return 0;
5500#endif
5501}
5502
5503static int percpu_pagelist_high_fraction;
5504static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5505 int high_fraction)
5506{
5507#ifdef CONFIG_MMU
5508 int high;
5509 int nr_split_cpus;
5510 unsigned long total_pages;
5511
5512 if (!high_fraction) {
5513 /*
5514 * By default, the high value of the pcp is based on the zone
5515 * low watermark so that if they are full then background
5516 * reclaim will not be started prematurely.
5517 */
5518 total_pages = low_wmark_pages(zone);
5519 } else {
5520 /*
5521 * If percpu_pagelist_high_fraction is configured, the high
5522 * value is based on a fraction of the managed pages in the
5523 * zone.
5524 */
5525 total_pages = zone_managed_pages(zone) / high_fraction;
5526 }
5527
5528 /*
5529 * Split the high value across all online CPUs local to the zone. Note
5530 * that early in boot that CPUs may not be online yet and that during
5531 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5532 * onlined. For memory nodes that have no CPUs, split the high value
5533 * across all online CPUs to mitigate the risk that reclaim is triggered
5534 * prematurely due to pages stored on pcp lists.
5535 */
5536 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5537 if (!nr_split_cpus)
5538 nr_split_cpus = num_online_cpus();
5539 high = total_pages / nr_split_cpus;
5540
5541 /*
5542 * Ensure high is at least batch*4. The multiple is based on the
5543 * historical relationship between high and batch.
5544 */
5545 high = max(high, batch << 2);
5546
5547 return high;
5548#else
5549 return 0;
5550#endif
5551}
5552
5553/*
5554 * pcp->high and pcp->batch values are related and generally batch is lower
5555 * than high. They are also related to pcp->count such that count is lower
5556 * than high, and as soon as it reaches high, the pcplist is flushed.
5557 *
5558 * However, guaranteeing these relations at all times would require e.g. write
5559 * barriers here but also careful usage of read barriers at the read side, and
5560 * thus be prone to error and bad for performance. Thus the update only prevents
5561 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5562 * should ensure they can cope with those fields changing asynchronously, and
5563 * fully trust only the pcp->count field on the local CPU with interrupts
5564 * disabled.
5565 *
5566 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5567 * outside of boot time (or some other assurance that no concurrent updaters
5568 * exist).
5569 */
5570static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5571 unsigned long high_max, unsigned long batch)
5572{
5573 WRITE_ONCE(pcp->batch, batch);
5574 WRITE_ONCE(pcp->high_min, high_min);
5575 WRITE_ONCE(pcp->high_max, high_max);
5576}
5577
5578static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5579{
5580 int pindex;
5581
5582 memset(pcp, 0, sizeof(*pcp));
5583 memset(pzstats, 0, sizeof(*pzstats));
5584
5585 spin_lock_init(&pcp->lock);
5586 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5587 INIT_LIST_HEAD(&pcp->lists[pindex]);
5588
5589 /*
5590 * Set batch and high values safe for a boot pageset. A true percpu
5591 * pageset's initialization will update them subsequently. Here we don't
5592 * need to be as careful as pageset_update() as nobody can access the
5593 * pageset yet.
5594 */
5595 pcp->high_min = BOOT_PAGESET_HIGH;
5596 pcp->high_max = BOOT_PAGESET_HIGH;
5597 pcp->batch = BOOT_PAGESET_BATCH;
5598 pcp->free_count = 0;
5599}
5600
5601static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5602 unsigned long high_max, unsigned long batch)
5603{
5604 struct per_cpu_pages *pcp;
5605 int cpu;
5606
5607 for_each_possible_cpu(cpu) {
5608 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5609 pageset_update(pcp, high_min, high_max, batch);
5610 }
5611}
5612
5613/*
5614 * Calculate and set new high and batch values for all per-cpu pagesets of a
5615 * zone based on the zone's size.
5616 */
5617static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5618{
5619 int new_high_min, new_high_max, new_batch;
5620
5621 new_batch = max(1, zone_batchsize(zone));
5622 if (percpu_pagelist_high_fraction) {
5623 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5624 percpu_pagelist_high_fraction);
5625 /*
5626 * PCP high is tuned manually, disable auto-tuning via
5627 * setting high_min and high_max to the manual value.
5628 */
5629 new_high_max = new_high_min;
5630 } else {
5631 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5632 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5633 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5634 }
5635
5636 if (zone->pageset_high_min == new_high_min &&
5637 zone->pageset_high_max == new_high_max &&
5638 zone->pageset_batch == new_batch)
5639 return;
5640
5641 zone->pageset_high_min = new_high_min;
5642 zone->pageset_high_max = new_high_max;
5643 zone->pageset_batch = new_batch;
5644
5645 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5646 new_batch);
5647}
5648
5649void __meminit setup_zone_pageset(struct zone *zone)
5650{
5651 int cpu;
5652
5653 /* Size may be 0 on !SMP && !NUMA */
5654 if (sizeof(struct per_cpu_zonestat) > 0)
5655 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5656
5657 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5658 for_each_possible_cpu(cpu) {
5659 struct per_cpu_pages *pcp;
5660 struct per_cpu_zonestat *pzstats;
5661
5662 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5663 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5664 per_cpu_pages_init(pcp, pzstats);
5665 }
5666
5667 zone_set_pageset_high_and_batch(zone, 0);
5668}
5669
5670/*
5671 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5672 * page high values need to be recalculated.
5673 */
5674static void zone_pcp_update(struct zone *zone, int cpu_online)
5675{
5676 mutex_lock(&pcp_batch_high_lock);
5677 zone_set_pageset_high_and_batch(zone, cpu_online);
5678 mutex_unlock(&pcp_batch_high_lock);
5679}
5680
5681static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5682{
5683 struct per_cpu_pages *pcp;
5684 struct cpu_cacheinfo *cci;
5685
5686 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5687 cci = get_cpu_cacheinfo(cpu);
5688 /*
5689 * If data cache slice of CPU is large enough, "pcp->batch"
5690 * pages can be preserved in PCP before draining PCP for
5691 * consecutive high-order pages freeing without allocation.
5692 * This can reduce zone lock contention without hurting
5693 * cache-hot pages sharing.
5694 */
5695 spin_lock(&pcp->lock);
5696 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5697 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5698 else
5699 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5700 spin_unlock(&pcp->lock);
5701}
5702
5703void setup_pcp_cacheinfo(unsigned int cpu)
5704{
5705 struct zone *zone;
5706
5707 for_each_populated_zone(zone)
5708 zone_pcp_update_cacheinfo(zone, cpu);
5709}
5710
5711/*
5712 * Allocate per cpu pagesets and initialize them.
5713 * Before this call only boot pagesets were available.
5714 */
5715void __init setup_per_cpu_pageset(void)
5716{
5717 struct pglist_data *pgdat;
5718 struct zone *zone;
5719 int __maybe_unused cpu;
5720
5721 for_each_populated_zone(zone)
5722 setup_zone_pageset(zone);
5723
5724#ifdef CONFIG_NUMA
5725 /*
5726 * Unpopulated zones continue using the boot pagesets.
5727 * The numa stats for these pagesets need to be reset.
5728 * Otherwise, they will end up skewing the stats of
5729 * the nodes these zones are associated with.
5730 */
5731 for_each_possible_cpu(cpu) {
5732 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5733 memset(pzstats->vm_numa_event, 0,
5734 sizeof(pzstats->vm_numa_event));
5735 }
5736#endif
5737
5738 for_each_online_pgdat(pgdat)
5739 pgdat->per_cpu_nodestats =
5740 alloc_percpu(struct per_cpu_nodestat);
5741}
5742
5743__meminit void zone_pcp_init(struct zone *zone)
5744{
5745 /*
5746 * per cpu subsystem is not up at this point. The following code
5747 * relies on the ability of the linker to provide the
5748 * offset of a (static) per cpu variable into the per cpu area.
5749 */
5750 zone->per_cpu_pageset = &boot_pageset;
5751 zone->per_cpu_zonestats = &boot_zonestats;
5752 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5753 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5754 zone->pageset_batch = BOOT_PAGESET_BATCH;
5755
5756 if (populated_zone(zone))
5757 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5758 zone->present_pages, zone_batchsize(zone));
5759}
5760
5761void adjust_managed_page_count(struct page *page, long count)
5762{
5763 atomic_long_add(count, &page_zone(page)->managed_pages);
5764 totalram_pages_add(count);
5765#ifdef CONFIG_HIGHMEM
5766 if (PageHighMem(page))
5767 totalhigh_pages_add(count);
5768#endif
5769}
5770EXPORT_SYMBOL(adjust_managed_page_count);
5771
5772unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5773{
5774 void *pos;
5775 unsigned long pages = 0;
5776
5777 start = (void *)PAGE_ALIGN((unsigned long)start);
5778 end = (void *)((unsigned long)end & PAGE_MASK);
5779 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5780 struct page *page = virt_to_page(pos);
5781 void *direct_map_addr;
5782
5783 /*
5784 * 'direct_map_addr' might be different from 'pos'
5785 * because some architectures' virt_to_page()
5786 * work with aliases. Getting the direct map
5787 * address ensures that we get a _writeable_
5788 * alias for the memset().
5789 */
5790 direct_map_addr = page_address(page);
5791 /*
5792 * Perform a kasan-unchecked memset() since this memory
5793 * has not been initialized.
5794 */
5795 direct_map_addr = kasan_reset_tag(direct_map_addr);
5796 if ((unsigned int)poison <= 0xFF)
5797 memset(direct_map_addr, poison, PAGE_SIZE);
5798
5799 free_reserved_page(page);
5800 }
5801
5802 if (pages && s)
5803 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5804
5805 return pages;
5806}
5807
5808static int page_alloc_cpu_dead(unsigned int cpu)
5809{
5810 struct zone *zone;
5811
5812 lru_add_drain_cpu(cpu);
5813 mlock_drain_remote(cpu);
5814 drain_pages(cpu);
5815
5816 /*
5817 * Spill the event counters of the dead processor
5818 * into the current processors event counters.
5819 * This artificially elevates the count of the current
5820 * processor.
5821 */
5822 vm_events_fold_cpu(cpu);
5823
5824 /*
5825 * Zero the differential counters of the dead processor
5826 * so that the vm statistics are consistent.
5827 *
5828 * This is only okay since the processor is dead and cannot
5829 * race with what we are doing.
5830 */
5831 cpu_vm_stats_fold(cpu);
5832
5833 for_each_populated_zone(zone)
5834 zone_pcp_update(zone, 0);
5835
5836 return 0;
5837}
5838
5839static int page_alloc_cpu_online(unsigned int cpu)
5840{
5841 struct zone *zone;
5842
5843 for_each_populated_zone(zone)
5844 zone_pcp_update(zone, 1);
5845 return 0;
5846}
5847
5848void __init page_alloc_init_cpuhp(void)
5849{
5850 int ret;
5851
5852 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5853 "mm/page_alloc:pcp",
5854 page_alloc_cpu_online,
5855 page_alloc_cpu_dead);
5856 WARN_ON(ret < 0);
5857}
5858
5859/*
5860 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5861 * or min_free_kbytes changes.
5862 */
5863static void calculate_totalreserve_pages(void)
5864{
5865 struct pglist_data *pgdat;
5866 unsigned long reserve_pages = 0;
5867 enum zone_type i, j;
5868
5869 for_each_online_pgdat(pgdat) {
5870
5871 pgdat->totalreserve_pages = 0;
5872
5873 for (i = 0; i < MAX_NR_ZONES; i++) {
5874 struct zone *zone = pgdat->node_zones + i;
5875 long max = 0;
5876 unsigned long managed_pages = zone_managed_pages(zone);
5877
5878 /* Find valid and maximum lowmem_reserve in the zone */
5879 for (j = i; j < MAX_NR_ZONES; j++) {
5880 if (zone->lowmem_reserve[j] > max)
5881 max = zone->lowmem_reserve[j];
5882 }
5883
5884 /* we treat the high watermark as reserved pages. */
5885 max += high_wmark_pages(zone);
5886
5887 if (max > managed_pages)
5888 max = managed_pages;
5889
5890 pgdat->totalreserve_pages += max;
5891
5892 reserve_pages += max;
5893 }
5894 }
5895 totalreserve_pages = reserve_pages;
5896}
5897
5898/*
5899 * setup_per_zone_lowmem_reserve - called whenever
5900 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5901 * has a correct pages reserved value, so an adequate number of
5902 * pages are left in the zone after a successful __alloc_pages().
5903 */
5904static void setup_per_zone_lowmem_reserve(void)
5905{
5906 struct pglist_data *pgdat;
5907 enum zone_type i, j;
5908
5909 for_each_online_pgdat(pgdat) {
5910 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5911 struct zone *zone = &pgdat->node_zones[i];
5912 int ratio = sysctl_lowmem_reserve_ratio[i];
5913 bool clear = !ratio || !zone_managed_pages(zone);
5914 unsigned long managed_pages = 0;
5915
5916 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5917 struct zone *upper_zone = &pgdat->node_zones[j];
5918 bool empty = !zone_managed_pages(upper_zone);
5919
5920 managed_pages += zone_managed_pages(upper_zone);
5921
5922 if (clear || empty)
5923 zone->lowmem_reserve[j] = 0;
5924 else
5925 zone->lowmem_reserve[j] = managed_pages / ratio;
5926 }
5927 }
5928 }
5929
5930 /* update totalreserve_pages */
5931 calculate_totalreserve_pages();
5932}
5933
5934static void __setup_per_zone_wmarks(void)
5935{
5936 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5937 unsigned long lowmem_pages = 0;
5938 struct zone *zone;
5939 unsigned long flags;
5940
5941 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5942 for_each_zone(zone) {
5943 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5944 lowmem_pages += zone_managed_pages(zone);
5945 }
5946
5947 for_each_zone(zone) {
5948 u64 tmp;
5949
5950 spin_lock_irqsave(&zone->lock, flags);
5951 tmp = (u64)pages_min * zone_managed_pages(zone);
5952 tmp = div64_ul(tmp, lowmem_pages);
5953 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5954 /*
5955 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5956 * need highmem and movable zones pages, so cap pages_min
5957 * to a small value here.
5958 *
5959 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5960 * deltas control async page reclaim, and so should
5961 * not be capped for highmem and movable zones.
5962 */
5963 unsigned long min_pages;
5964
5965 min_pages = zone_managed_pages(zone) / 1024;
5966 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5967 zone->_watermark[WMARK_MIN] = min_pages;
5968 } else {
5969 /*
5970 * If it's a lowmem zone, reserve a number of pages
5971 * proportionate to the zone's size.
5972 */
5973 zone->_watermark[WMARK_MIN] = tmp;
5974 }
5975
5976 /*
5977 * Set the kswapd watermarks distance according to the
5978 * scale factor in proportion to available memory, but
5979 * ensure a minimum size on small systems.
5980 */
5981 tmp = max_t(u64, tmp >> 2,
5982 mult_frac(zone_managed_pages(zone),
5983 watermark_scale_factor, 10000));
5984
5985 zone->watermark_boost = 0;
5986 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5987 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5988 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5989
5990 spin_unlock_irqrestore(&zone->lock, flags);
5991 }
5992
5993 /* update totalreserve_pages */
5994 calculate_totalreserve_pages();
5995}
5996
5997/**
5998 * setup_per_zone_wmarks - called when min_free_kbytes changes
5999 * or when memory is hot-{added|removed}
6000 *
6001 * Ensures that the watermark[min,low,high] values for each zone are set
6002 * correctly with respect to min_free_kbytes.
6003 */
6004void setup_per_zone_wmarks(void)
6005{
6006 struct zone *zone;
6007 static DEFINE_SPINLOCK(lock);
6008
6009 spin_lock(&lock);
6010 __setup_per_zone_wmarks();
6011 spin_unlock(&lock);
6012
6013 /*
6014 * The watermark size have changed so update the pcpu batch
6015 * and high limits or the limits may be inappropriate.
6016 */
6017 for_each_zone(zone)
6018 zone_pcp_update(zone, 0);
6019}
6020
6021/*
6022 * Initialise min_free_kbytes.
6023 *
6024 * For small machines we want it small (128k min). For large machines
6025 * we want it large (256MB max). But it is not linear, because network
6026 * bandwidth does not increase linearly with machine size. We use
6027 *
6028 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6029 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6030 *
6031 * which yields
6032 *
6033 * 16MB: 512k
6034 * 32MB: 724k
6035 * 64MB: 1024k
6036 * 128MB: 1448k
6037 * 256MB: 2048k
6038 * 512MB: 2896k
6039 * 1024MB: 4096k
6040 * 2048MB: 5792k
6041 * 4096MB: 8192k
6042 * 8192MB: 11584k
6043 * 16384MB: 16384k
6044 */
6045void calculate_min_free_kbytes(void)
6046{
6047 unsigned long lowmem_kbytes;
6048 int new_min_free_kbytes;
6049
6050 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6051 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6052
6053 if (new_min_free_kbytes > user_min_free_kbytes)
6054 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6055 else
6056 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6057 new_min_free_kbytes, user_min_free_kbytes);
6058
6059}
6060
6061int __meminit init_per_zone_wmark_min(void)
6062{
6063 calculate_min_free_kbytes();
6064 setup_per_zone_wmarks();
6065 refresh_zone_stat_thresholds();
6066 setup_per_zone_lowmem_reserve();
6067
6068#ifdef CONFIG_NUMA
6069 setup_min_unmapped_ratio();
6070 setup_min_slab_ratio();
6071#endif
6072
6073 khugepaged_min_free_kbytes_update();
6074
6075 return 0;
6076}
6077postcore_initcall(init_per_zone_wmark_min)
6078
6079/*
6080 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6081 * that we can call two helper functions whenever min_free_kbytes
6082 * changes.
6083 */
6084static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6085 void *buffer, size_t *length, loff_t *ppos)
6086{
6087 int rc;
6088
6089 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6090 if (rc)
6091 return rc;
6092
6093 if (write) {
6094 user_min_free_kbytes = min_free_kbytes;
6095 setup_per_zone_wmarks();
6096 }
6097 return 0;
6098}
6099
6100static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6101 void *buffer, size_t *length, loff_t *ppos)
6102{
6103 int rc;
6104
6105 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6106 if (rc)
6107 return rc;
6108
6109 if (write)
6110 setup_per_zone_wmarks();
6111
6112 return 0;
6113}
6114
6115#ifdef CONFIG_NUMA
6116static void setup_min_unmapped_ratio(void)
6117{
6118 pg_data_t *pgdat;
6119 struct zone *zone;
6120
6121 for_each_online_pgdat(pgdat)
6122 pgdat->min_unmapped_pages = 0;
6123
6124 for_each_zone(zone)
6125 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6126 sysctl_min_unmapped_ratio) / 100;
6127}
6128
6129
6130static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6131 void *buffer, size_t *length, loff_t *ppos)
6132{
6133 int rc;
6134
6135 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6136 if (rc)
6137 return rc;
6138
6139 setup_min_unmapped_ratio();
6140
6141 return 0;
6142}
6143
6144static void setup_min_slab_ratio(void)
6145{
6146 pg_data_t *pgdat;
6147 struct zone *zone;
6148
6149 for_each_online_pgdat(pgdat)
6150 pgdat->min_slab_pages = 0;
6151
6152 for_each_zone(zone)
6153 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6154 sysctl_min_slab_ratio) / 100;
6155}
6156
6157static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6158 void *buffer, size_t *length, loff_t *ppos)
6159{
6160 int rc;
6161
6162 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6163 if (rc)
6164 return rc;
6165
6166 setup_min_slab_ratio();
6167
6168 return 0;
6169}
6170#endif
6171
6172/*
6173 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6174 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6175 * whenever sysctl_lowmem_reserve_ratio changes.
6176 *
6177 * The reserve ratio obviously has absolutely no relation with the
6178 * minimum watermarks. The lowmem reserve ratio can only make sense
6179 * if in function of the boot time zone sizes.
6180 */
6181static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6182 int write, void *buffer, size_t *length, loff_t *ppos)
6183{
6184 int i;
6185
6186 proc_dointvec_minmax(table, write, buffer, length, ppos);
6187
6188 for (i = 0; i < MAX_NR_ZONES; i++) {
6189 if (sysctl_lowmem_reserve_ratio[i] < 1)
6190 sysctl_lowmem_reserve_ratio[i] = 0;
6191 }
6192
6193 setup_per_zone_lowmem_reserve();
6194 return 0;
6195}
6196
6197/*
6198 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6199 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6200 * pagelist can have before it gets flushed back to buddy allocator.
6201 */
6202static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6203 int write, void *buffer, size_t *length, loff_t *ppos)
6204{
6205 struct zone *zone;
6206 int old_percpu_pagelist_high_fraction;
6207 int ret;
6208
6209 mutex_lock(&pcp_batch_high_lock);
6210 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6211
6212 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6213 if (!write || ret < 0)
6214 goto out;
6215
6216 /* Sanity checking to avoid pcp imbalance */
6217 if (percpu_pagelist_high_fraction &&
6218 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6219 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6220 ret = -EINVAL;
6221 goto out;
6222 }
6223
6224 /* No change? */
6225 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6226 goto out;
6227
6228 for_each_populated_zone(zone)
6229 zone_set_pageset_high_and_batch(zone, 0);
6230out:
6231 mutex_unlock(&pcp_batch_high_lock);
6232 return ret;
6233}
6234
6235static struct ctl_table page_alloc_sysctl_table[] = {
6236 {
6237 .procname = "min_free_kbytes",
6238 .data = &min_free_kbytes,
6239 .maxlen = sizeof(min_free_kbytes),
6240 .mode = 0644,
6241 .proc_handler = min_free_kbytes_sysctl_handler,
6242 .extra1 = SYSCTL_ZERO,
6243 },
6244 {
6245 .procname = "watermark_boost_factor",
6246 .data = &watermark_boost_factor,
6247 .maxlen = sizeof(watermark_boost_factor),
6248 .mode = 0644,
6249 .proc_handler = proc_dointvec_minmax,
6250 .extra1 = SYSCTL_ZERO,
6251 },
6252 {
6253 .procname = "watermark_scale_factor",
6254 .data = &watermark_scale_factor,
6255 .maxlen = sizeof(watermark_scale_factor),
6256 .mode = 0644,
6257 .proc_handler = watermark_scale_factor_sysctl_handler,
6258 .extra1 = SYSCTL_ONE,
6259 .extra2 = SYSCTL_THREE_THOUSAND,
6260 },
6261 {
6262 .procname = "percpu_pagelist_high_fraction",
6263 .data = &percpu_pagelist_high_fraction,
6264 .maxlen = sizeof(percpu_pagelist_high_fraction),
6265 .mode = 0644,
6266 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6267 .extra1 = SYSCTL_ZERO,
6268 },
6269 {
6270 .procname = "lowmem_reserve_ratio",
6271 .data = &sysctl_lowmem_reserve_ratio,
6272 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6273 .mode = 0644,
6274 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6275 },
6276#ifdef CONFIG_NUMA
6277 {
6278 .procname = "numa_zonelist_order",
6279 .data = &numa_zonelist_order,
6280 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6281 .mode = 0644,
6282 .proc_handler = numa_zonelist_order_handler,
6283 },
6284 {
6285 .procname = "min_unmapped_ratio",
6286 .data = &sysctl_min_unmapped_ratio,
6287 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6288 .mode = 0644,
6289 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6290 .extra1 = SYSCTL_ZERO,
6291 .extra2 = SYSCTL_ONE_HUNDRED,
6292 },
6293 {
6294 .procname = "min_slab_ratio",
6295 .data = &sysctl_min_slab_ratio,
6296 .maxlen = sizeof(sysctl_min_slab_ratio),
6297 .mode = 0644,
6298 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6299 .extra1 = SYSCTL_ZERO,
6300 .extra2 = SYSCTL_ONE_HUNDRED,
6301 },
6302#endif
6303};
6304
6305void __init page_alloc_sysctl_init(void)
6306{
6307 register_sysctl_init("vm", page_alloc_sysctl_table);
6308}
6309
6310#ifdef CONFIG_CONTIG_ALLOC
6311/* Usage: See admin-guide/dynamic-debug-howto.rst */
6312static void alloc_contig_dump_pages(struct list_head *page_list)
6313{
6314 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6315
6316 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6317 struct page *page;
6318
6319 dump_stack();
6320 list_for_each_entry(page, page_list, lru)
6321 dump_page(page, "migration failure");
6322 }
6323}
6324
6325/*
6326 * [start, end) must belong to a single zone.
6327 * @migratetype: using migratetype to filter the type of migration in
6328 * trace_mm_alloc_contig_migrate_range_info.
6329 */
6330int __alloc_contig_migrate_range(struct compact_control *cc,
6331 unsigned long start, unsigned long end,
6332 int migratetype)
6333{
6334 /* This function is based on compact_zone() from compaction.c. */
6335 unsigned int nr_reclaimed;
6336 unsigned long pfn = start;
6337 unsigned int tries = 0;
6338 int ret = 0;
6339 struct migration_target_control mtc = {
6340 .nid = zone_to_nid(cc->zone),
6341 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6342 .reason = MR_CONTIG_RANGE,
6343 };
6344 struct page *page;
6345 unsigned long total_mapped = 0;
6346 unsigned long total_migrated = 0;
6347 unsigned long total_reclaimed = 0;
6348
6349 lru_cache_disable();
6350
6351 while (pfn < end || !list_empty(&cc->migratepages)) {
6352 if (fatal_signal_pending(current)) {
6353 ret = -EINTR;
6354 break;
6355 }
6356
6357 if (list_empty(&cc->migratepages)) {
6358 cc->nr_migratepages = 0;
6359 ret = isolate_migratepages_range(cc, pfn, end);
6360 if (ret && ret != -EAGAIN)
6361 break;
6362 pfn = cc->migrate_pfn;
6363 tries = 0;
6364 } else if (++tries == 5) {
6365 ret = -EBUSY;
6366 break;
6367 }
6368
6369 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6370 &cc->migratepages);
6371 cc->nr_migratepages -= nr_reclaimed;
6372
6373 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6374 total_reclaimed += nr_reclaimed;
6375 list_for_each_entry(page, &cc->migratepages, lru) {
6376 struct folio *folio = page_folio(page);
6377
6378 total_mapped += folio_mapped(folio) *
6379 folio_nr_pages(folio);
6380 }
6381 }
6382
6383 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6384 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6385
6386 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6387 total_migrated += cc->nr_migratepages;
6388
6389 /*
6390 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6391 * to retry again over this error, so do the same here.
6392 */
6393 if (ret == -ENOMEM)
6394 break;
6395 }
6396
6397 lru_cache_enable();
6398 if (ret < 0) {
6399 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6400 alloc_contig_dump_pages(&cc->migratepages);
6401 putback_movable_pages(&cc->migratepages);
6402 }
6403
6404 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6405 total_migrated,
6406 total_reclaimed,
6407 total_mapped);
6408 return (ret < 0) ? ret : 0;
6409}
6410
6411/**
6412 * alloc_contig_range() -- tries to allocate given range of pages
6413 * @start: start PFN to allocate
6414 * @end: one-past-the-last PFN to allocate
6415 * @migratetype: migratetype of the underlying pageblocks (either
6416 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6417 * in range must have the same migratetype and it must
6418 * be either of the two.
6419 * @gfp_mask: GFP mask to use during compaction
6420 *
6421 * The PFN range does not have to be pageblock aligned. The PFN range must
6422 * belong to a single zone.
6423 *
6424 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6425 * pageblocks in the range. Once isolated, the pageblocks should not
6426 * be modified by others.
6427 *
6428 * Return: zero on success or negative error code. On success all
6429 * pages which PFN is in [start, end) are allocated for the caller and
6430 * need to be freed with free_contig_range().
6431 */
6432int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6433 unsigned migratetype, gfp_t gfp_mask)
6434{
6435 unsigned long outer_start, outer_end;
6436 int ret = 0;
6437
6438 struct compact_control cc = {
6439 .nr_migratepages = 0,
6440 .order = -1,
6441 .zone = page_zone(pfn_to_page(start)),
6442 .mode = MIGRATE_SYNC,
6443 .ignore_skip_hint = true,
6444 .no_set_skip_hint = true,
6445 .gfp_mask = current_gfp_context(gfp_mask),
6446 .alloc_contig = true,
6447 };
6448 INIT_LIST_HEAD(&cc.migratepages);
6449
6450 /*
6451 * What we do here is we mark all pageblocks in range as
6452 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6453 * have different sizes, and due to the way page allocator
6454 * work, start_isolate_page_range() has special handlings for this.
6455 *
6456 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6457 * migrate the pages from an unaligned range (ie. pages that
6458 * we are interested in). This will put all the pages in
6459 * range back to page allocator as MIGRATE_ISOLATE.
6460 *
6461 * When this is done, we take the pages in range from page
6462 * allocator removing them from the buddy system. This way
6463 * page allocator will never consider using them.
6464 *
6465 * This lets us mark the pageblocks back as
6466 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6467 * aligned range but not in the unaligned, original range are
6468 * put back to page allocator so that buddy can use them.
6469 */
6470
6471 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6472 if (ret)
6473 goto done;
6474
6475 drain_all_pages(cc.zone);
6476
6477 /*
6478 * In case of -EBUSY, we'd like to know which page causes problem.
6479 * So, just fall through. test_pages_isolated() has a tracepoint
6480 * which will report the busy page.
6481 *
6482 * It is possible that busy pages could become available before
6483 * the call to test_pages_isolated, and the range will actually be
6484 * allocated. So, if we fall through be sure to clear ret so that
6485 * -EBUSY is not accidentally used or returned to caller.
6486 */
6487 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6488 if (ret && ret != -EBUSY)
6489 goto done;
6490 ret = 0;
6491
6492 /*
6493 * Pages from [start, end) are within a pageblock_nr_pages
6494 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6495 * more, all pages in [start, end) are free in page allocator.
6496 * What we are going to do is to allocate all pages from
6497 * [start, end) (that is remove them from page allocator).
6498 *
6499 * The only problem is that pages at the beginning and at the
6500 * end of interesting range may be not aligned with pages that
6501 * page allocator holds, ie. they can be part of higher order
6502 * pages. Because of this, we reserve the bigger range and
6503 * once this is done free the pages we are not interested in.
6504 *
6505 * We don't have to hold zone->lock here because the pages are
6506 * isolated thus they won't get removed from buddy.
6507 */
6508 outer_start = find_large_buddy(start);
6509
6510 /* Make sure the range is really isolated. */
6511 if (test_pages_isolated(outer_start, end, 0)) {
6512 ret = -EBUSY;
6513 goto done;
6514 }
6515
6516 /* Grab isolated pages from freelists. */
6517 outer_end = isolate_freepages_range(&cc, outer_start, end);
6518 if (!outer_end) {
6519 ret = -EBUSY;
6520 goto done;
6521 }
6522
6523 /* Free head and tail (if any) */
6524 if (start != outer_start)
6525 free_contig_range(outer_start, start - outer_start);
6526 if (end != outer_end)
6527 free_contig_range(end, outer_end - end);
6528
6529done:
6530 undo_isolate_page_range(start, end, migratetype);
6531 return ret;
6532}
6533EXPORT_SYMBOL(alloc_contig_range_noprof);
6534
6535static int __alloc_contig_pages(unsigned long start_pfn,
6536 unsigned long nr_pages, gfp_t gfp_mask)
6537{
6538 unsigned long end_pfn = start_pfn + nr_pages;
6539
6540 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6541 gfp_mask);
6542}
6543
6544static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6545 unsigned long nr_pages)
6546{
6547 unsigned long i, end_pfn = start_pfn + nr_pages;
6548 struct page *page;
6549
6550 for (i = start_pfn; i < end_pfn; i++) {
6551 page = pfn_to_online_page(i);
6552 if (!page)
6553 return false;
6554
6555 if (page_zone(page) != z)
6556 return false;
6557
6558 if (PageReserved(page))
6559 return false;
6560
6561 if (PageHuge(page))
6562 return false;
6563 }
6564 return true;
6565}
6566
6567static bool zone_spans_last_pfn(const struct zone *zone,
6568 unsigned long start_pfn, unsigned long nr_pages)
6569{
6570 unsigned long last_pfn = start_pfn + nr_pages - 1;
6571
6572 return zone_spans_pfn(zone, last_pfn);
6573}
6574
6575/**
6576 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6577 * @nr_pages: Number of contiguous pages to allocate
6578 * @gfp_mask: GFP mask to limit search and used during compaction
6579 * @nid: Target node
6580 * @nodemask: Mask for other possible nodes
6581 *
6582 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6583 * on an applicable zonelist to find a contiguous pfn range which can then be
6584 * tried for allocation with alloc_contig_range(). This routine is intended
6585 * for allocation requests which can not be fulfilled with the buddy allocator.
6586 *
6587 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6588 * power of two, then allocated range is also guaranteed to be aligned to same
6589 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6590 *
6591 * Allocated pages can be freed with free_contig_range() or by manually calling
6592 * __free_page() on each allocated page.
6593 *
6594 * Return: pointer to contiguous pages on success, or NULL if not successful.
6595 */
6596struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6597 int nid, nodemask_t *nodemask)
6598{
6599 unsigned long ret, pfn, flags;
6600 struct zonelist *zonelist;
6601 struct zone *zone;
6602 struct zoneref *z;
6603
6604 zonelist = node_zonelist(nid, gfp_mask);
6605 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6606 gfp_zone(gfp_mask), nodemask) {
6607 spin_lock_irqsave(&zone->lock, flags);
6608
6609 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6610 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6611 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6612 /*
6613 * We release the zone lock here because
6614 * alloc_contig_range() will also lock the zone
6615 * at some point. If there's an allocation
6616 * spinning on this lock, it may win the race
6617 * and cause alloc_contig_range() to fail...
6618 */
6619 spin_unlock_irqrestore(&zone->lock, flags);
6620 ret = __alloc_contig_pages(pfn, nr_pages,
6621 gfp_mask);
6622 if (!ret)
6623 return pfn_to_page(pfn);
6624 spin_lock_irqsave(&zone->lock, flags);
6625 }
6626 pfn += nr_pages;
6627 }
6628 spin_unlock_irqrestore(&zone->lock, flags);
6629 }
6630 return NULL;
6631}
6632#endif /* CONFIG_CONTIG_ALLOC */
6633
6634void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6635{
6636 unsigned long count = 0;
6637
6638 for (; nr_pages--; pfn++) {
6639 struct page *page = pfn_to_page(pfn);
6640
6641 count += page_count(page) != 1;
6642 __free_page(page);
6643 }
6644 WARN(count != 0, "%lu pages are still in use!\n", count);
6645}
6646EXPORT_SYMBOL(free_contig_range);
6647
6648/*
6649 * Effectively disable pcplists for the zone by setting the high limit to 0
6650 * and draining all cpus. A concurrent page freeing on another CPU that's about
6651 * to put the page on pcplist will either finish before the drain and the page
6652 * will be drained, or observe the new high limit and skip the pcplist.
6653 *
6654 * Must be paired with a call to zone_pcp_enable().
6655 */
6656void zone_pcp_disable(struct zone *zone)
6657{
6658 mutex_lock(&pcp_batch_high_lock);
6659 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6660 __drain_all_pages(zone, true);
6661}
6662
6663void zone_pcp_enable(struct zone *zone)
6664{
6665 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6666 zone->pageset_high_max, zone->pageset_batch);
6667 mutex_unlock(&pcp_batch_high_lock);
6668}
6669
6670void zone_pcp_reset(struct zone *zone)
6671{
6672 int cpu;
6673 struct per_cpu_zonestat *pzstats;
6674
6675 if (zone->per_cpu_pageset != &boot_pageset) {
6676 for_each_online_cpu(cpu) {
6677 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6678 drain_zonestat(zone, pzstats);
6679 }
6680 free_percpu(zone->per_cpu_pageset);
6681 zone->per_cpu_pageset = &boot_pageset;
6682 if (zone->per_cpu_zonestats != &boot_zonestats) {
6683 free_percpu(zone->per_cpu_zonestats);
6684 zone->per_cpu_zonestats = &boot_zonestats;
6685 }
6686 }
6687}
6688
6689#ifdef CONFIG_MEMORY_HOTREMOVE
6690/*
6691 * All pages in the range must be in a single zone, must not contain holes,
6692 * must span full sections, and must be isolated before calling this function.
6693 */
6694void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6695{
6696 unsigned long pfn = start_pfn;
6697 struct page *page;
6698 struct zone *zone;
6699 unsigned int order;
6700 unsigned long flags;
6701
6702 offline_mem_sections(pfn, end_pfn);
6703 zone = page_zone(pfn_to_page(pfn));
6704 spin_lock_irqsave(&zone->lock, flags);
6705 while (pfn < end_pfn) {
6706 page = pfn_to_page(pfn);
6707 /*
6708 * The HWPoisoned page may be not in buddy system, and
6709 * page_count() is not 0.
6710 */
6711 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6712 pfn++;
6713 continue;
6714 }
6715 /*
6716 * At this point all remaining PageOffline() pages have a
6717 * reference count of 0 and can simply be skipped.
6718 */
6719 if (PageOffline(page)) {
6720 BUG_ON(page_count(page));
6721 BUG_ON(PageBuddy(page));
6722 pfn++;
6723 continue;
6724 }
6725
6726 BUG_ON(page_count(page));
6727 BUG_ON(!PageBuddy(page));
6728 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6729 order = buddy_order(page);
6730 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6731 pfn += (1 << order);
6732 }
6733 spin_unlock_irqrestore(&zone->lock, flags);
6734}
6735#endif
6736
6737/*
6738 * This function returns a stable result only if called under zone lock.
6739 */
6740bool is_free_buddy_page(const struct page *page)
6741{
6742 unsigned long pfn = page_to_pfn(page);
6743 unsigned int order;
6744
6745 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6746 const struct page *head = page - (pfn & ((1 << order) - 1));
6747
6748 if (PageBuddy(head) &&
6749 buddy_order_unsafe(head) >= order)
6750 break;
6751 }
6752
6753 return order <= MAX_PAGE_ORDER;
6754}
6755EXPORT_SYMBOL(is_free_buddy_page);
6756
6757#ifdef CONFIG_MEMORY_FAILURE
6758static inline void add_to_free_list(struct page *page, struct zone *zone,
6759 unsigned int order, int migratetype,
6760 bool tail)
6761{
6762 __add_to_free_list(page, zone, order, migratetype, tail);
6763 account_freepages(zone, 1 << order, migratetype);
6764}
6765
6766/*
6767 * Break down a higher-order page in sub-pages, and keep our target out of
6768 * buddy allocator.
6769 */
6770static void break_down_buddy_pages(struct zone *zone, struct page *page,
6771 struct page *target, int low, int high,
6772 int migratetype)
6773{
6774 unsigned long size = 1 << high;
6775 struct page *current_buddy;
6776
6777 while (high > low) {
6778 high--;
6779 size >>= 1;
6780
6781 if (target >= &page[size]) {
6782 current_buddy = page;
6783 page = page + size;
6784 } else {
6785 current_buddy = page + size;
6786 }
6787
6788 if (set_page_guard(zone, current_buddy, high))
6789 continue;
6790
6791 add_to_free_list(current_buddy, zone, high, migratetype, false);
6792 set_buddy_order(current_buddy, high);
6793 }
6794}
6795
6796/*
6797 * Take a page that will be marked as poisoned off the buddy allocator.
6798 */
6799bool take_page_off_buddy(struct page *page)
6800{
6801 struct zone *zone = page_zone(page);
6802 unsigned long pfn = page_to_pfn(page);
6803 unsigned long flags;
6804 unsigned int order;
6805 bool ret = false;
6806
6807 spin_lock_irqsave(&zone->lock, flags);
6808 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6809 struct page *page_head = page - (pfn & ((1 << order) - 1));
6810 int page_order = buddy_order(page_head);
6811
6812 if (PageBuddy(page_head) && page_order >= order) {
6813 unsigned long pfn_head = page_to_pfn(page_head);
6814 int migratetype = get_pfnblock_migratetype(page_head,
6815 pfn_head);
6816
6817 del_page_from_free_list(page_head, zone, page_order,
6818 migratetype);
6819 break_down_buddy_pages(zone, page_head, page, 0,
6820 page_order, migratetype);
6821 SetPageHWPoisonTakenOff(page);
6822 ret = true;
6823 break;
6824 }
6825 if (page_count(page_head) > 0)
6826 break;
6827 }
6828 spin_unlock_irqrestore(&zone->lock, flags);
6829 return ret;
6830}
6831
6832/*
6833 * Cancel takeoff done by take_page_off_buddy().
6834 */
6835bool put_page_back_buddy(struct page *page)
6836{
6837 struct zone *zone = page_zone(page);
6838 unsigned long flags;
6839 bool ret = false;
6840
6841 spin_lock_irqsave(&zone->lock, flags);
6842 if (put_page_testzero(page)) {
6843 unsigned long pfn = page_to_pfn(page);
6844 int migratetype = get_pfnblock_migratetype(page, pfn);
6845
6846 ClearPageHWPoisonTakenOff(page);
6847 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6848 if (TestClearPageHWPoison(page)) {
6849 ret = true;
6850 }
6851 }
6852 spin_unlock_irqrestore(&zone->lock, flags);
6853
6854 return ret;
6855}
6856#endif
6857
6858#ifdef CONFIG_ZONE_DMA
6859bool has_managed_dma(void)
6860{
6861 struct pglist_data *pgdat;
6862
6863 for_each_online_pgdat(pgdat) {
6864 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6865
6866 if (managed_zone(zone))
6867 return true;
6868 }
6869 return false;
6870}
6871#endif /* CONFIG_ZONE_DMA */
6872
6873#ifdef CONFIG_UNACCEPTED_MEMORY
6874
6875/* Counts number of zones with unaccepted pages. */
6876static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6877
6878static bool lazy_accept = true;
6879
6880static int __init accept_memory_parse(char *p)
6881{
6882 if (!strcmp(p, "lazy")) {
6883 lazy_accept = true;
6884 return 0;
6885 } else if (!strcmp(p, "eager")) {
6886 lazy_accept = false;
6887 return 0;
6888 } else {
6889 return -EINVAL;
6890 }
6891}
6892early_param("accept_memory", accept_memory_parse);
6893
6894static bool page_contains_unaccepted(struct page *page, unsigned int order)
6895{
6896 phys_addr_t start = page_to_phys(page);
6897 phys_addr_t end = start + (PAGE_SIZE << order);
6898
6899 return range_contains_unaccepted_memory(start, end);
6900}
6901
6902static void accept_page(struct page *page, unsigned int order)
6903{
6904 phys_addr_t start = page_to_phys(page);
6905
6906 accept_memory(start, start + (PAGE_SIZE << order));
6907}
6908
6909static bool try_to_accept_memory_one(struct zone *zone)
6910{
6911 unsigned long flags;
6912 struct page *page;
6913 bool last;
6914
6915 if (list_empty(&zone->unaccepted_pages))
6916 return false;
6917
6918 spin_lock_irqsave(&zone->lock, flags);
6919 page = list_first_entry_or_null(&zone->unaccepted_pages,
6920 struct page, lru);
6921 if (!page) {
6922 spin_unlock_irqrestore(&zone->lock, flags);
6923 return false;
6924 }
6925
6926 list_del(&page->lru);
6927 last = list_empty(&zone->unaccepted_pages);
6928
6929 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6930 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6931 spin_unlock_irqrestore(&zone->lock, flags);
6932
6933 accept_page(page, MAX_PAGE_ORDER);
6934
6935 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6936
6937 if (last)
6938 static_branch_dec(&zones_with_unaccepted_pages);
6939
6940 return true;
6941}
6942
6943static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6944{
6945 long to_accept;
6946 int ret = false;
6947
6948 /* How much to accept to get to high watermark? */
6949 to_accept = high_wmark_pages(zone) -
6950 (zone_page_state(zone, NR_FREE_PAGES) -
6951 __zone_watermark_unusable_free(zone, order, 0));
6952
6953 /* Accept at least one page */
6954 do {
6955 if (!try_to_accept_memory_one(zone))
6956 break;
6957 ret = true;
6958 to_accept -= MAX_ORDER_NR_PAGES;
6959 } while (to_accept > 0);
6960
6961 return ret;
6962}
6963
6964static inline bool has_unaccepted_memory(void)
6965{
6966 return static_branch_unlikely(&zones_with_unaccepted_pages);
6967}
6968
6969static bool __free_unaccepted(struct page *page)
6970{
6971 struct zone *zone = page_zone(page);
6972 unsigned long flags;
6973 bool first = false;
6974
6975 if (!lazy_accept)
6976 return false;
6977
6978 spin_lock_irqsave(&zone->lock, flags);
6979 first = list_empty(&zone->unaccepted_pages);
6980 list_add_tail(&page->lru, &zone->unaccepted_pages);
6981 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6982 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6983 spin_unlock_irqrestore(&zone->lock, flags);
6984
6985 if (first)
6986 static_branch_inc(&zones_with_unaccepted_pages);
6987
6988 return true;
6989}
6990
6991#else
6992
6993static bool page_contains_unaccepted(struct page *page, unsigned int order)
6994{
6995 return false;
6996}
6997
6998static void accept_page(struct page *page, unsigned int order)
6999{
7000}
7001
7002static bool try_to_accept_memory(struct zone *zone, unsigned int order)
7003{
7004 return false;
7005}
7006
7007static inline bool has_unaccepted_memory(void)
7008{
7009 return false;
7010}
7011
7012static bool __free_unaccepted(struct page *page)
7013{
7014 BUILD_BUG();
7015 return false;
7016}
7017
7018#endif /* CONFIG_UNACCEPTED_MEMORY */