Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15#include <linux/kernel.h>
16#include <linux/math64.h>
17#include <linux/export.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/slab.h>
23#include <linux/pagemap.h>
24#include <linux/writeback.h>
25#include <linux/init.h>
26#include <linux/backing-dev.h>
27#include <linux/task_io_accounting_ops.h>
28#include <linux/blkdev.h>
29#include <linux/mpage.h>
30#include <linux/rmap.h>
31#include <linux/percpu.h>
32#include <linux/smp.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36#include <linux/pagevec.h>
37#include <linux/timer.h>
38#include <linux/sched/rt.h>
39#include <linux/sched/signal.h>
40#include <linux/mm_inline.h>
41#include <trace/events/writeback.h>
42
43#include "internal.h"
44
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61#define RATELIMIT_CALC_SHIFT 10
62
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74static int dirty_background_ratio = 10;
75
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80static unsigned long dirty_background_bytes;
81
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86static int vm_highmem_is_dirtyable;
87
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
91static int vm_dirty_ratio = 20;
92
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97static unsigned long vm_dirty_bytes;
98
99/*
100 * The interval between `kupdate'-style writebacks
101 */
102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106/*
107 * The longest time for which data is allowed to remain dirty
108 */
109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111/*
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
114 */
115int laptop_mode;
116
117EXPORT_SYMBOL(laptop_mode);
118
119/* End of sysctl-exported parameters */
120
121struct wb_domain global_wb_domain;
122
123/* consolidated parameters for balance_dirty_pages() and its subroutines */
124struct dirty_throttle_control {
125#ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
128#endif
129 struct bdi_writeback *wb;
130 struct fprop_local_percpu *wb_completions;
131
132 unsigned long avail; /* dirtyable */
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
139 unsigned long wb_bg_thresh;
140
141 unsigned long pos_ratio;
142};
143
144/*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150
151#ifdef CONFIG_CGROUP_WRITEBACK
152
153#define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
156
157#define GDTC_INIT_NO_WB .dom = &global_wb_domain
158
159#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
162 .gdtc = __gdtc
163
164static bool mdtc_valid(struct dirty_throttle_control *dtc)
165{
166 return dtc->dom;
167}
168
169static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
173
174static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175{
176 return mdtc->gdtc;
177}
178
179static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180{
181 return &wb->memcg_completions;
182}
183
184static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186{
187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
191
192 /*
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
195 */
196 if (this_bw < tot_bw) {
197 if (min) {
198 min *= this_bw;
199 min = div64_ul(min, tot_bw);
200 }
201 if (max < 100 * BDI_RATIO_SCALE) {
202 max *= this_bw;
203 max = div64_ul(max, tot_bw);
204 }
205 }
206
207 *minp = min;
208 *maxp = max;
209}
210
211#else /* CONFIG_CGROUP_WRITEBACK */
212
213#define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
215#define GDTC_INIT_NO_WB
216#define MDTC_INIT(__wb, __gdtc)
217
218static bool mdtc_valid(struct dirty_throttle_control *dtc)
219{
220 return false;
221}
222
223static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224{
225 return &global_wb_domain;
226}
227
228static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229{
230 return NULL;
231}
232
233static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234{
235 return NULL;
236}
237
238static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
240{
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
243}
244
245#endif /* CONFIG_CGROUP_WRITEBACK */
246
247/*
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
253 *
254 * This number of dirtyable pages is the base value of which the
255 * user-configurable dirty ratio is the effective number of pages that
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
258 *
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
263 */
264
265/**
266 * node_dirtyable_memory - number of dirtyable pages in a node
267 * @pgdat: the node
268 *
269 * Return: the node's number of pages potentially available for dirty
270 * page cache. This is the base value for the per-node dirty limits.
271 */
272static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273{
274 unsigned long nr_pages = 0;
275 int z;
276
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
279
280 if (!populated_zone(zone))
281 continue;
282
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 }
285
286 /*
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
290 */
291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295
296 return nr_pages;
297}
298
299static unsigned long highmem_dirtyable_memory(unsigned long total)
300{
301#ifdef CONFIG_HIGHMEM
302 int node;
303 unsigned long x = 0;
304 int i;
305
306 for_each_node_state(node, N_HIGH_MEMORY) {
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 struct zone *z;
309 unsigned long nr_pages;
310
311 if (!is_highmem_idx(i))
312 continue;
313
314 z = &NODE_DATA(node)->node_zones[i];
315 if (!populated_zone(z))
316 continue;
317
318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 /* watch for underflows */
320 nr_pages -= min(nr_pages, high_wmark_pages(z));
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 x += nr_pages;
324 }
325 }
326
327 /*
328 * Make sure that the number of highmem pages is never larger
329 * than the number of the total dirtyable memory. This can only
330 * occur in very strange VM situations but we want to make sure
331 * that this does not occur.
332 */
333 return min(x, total);
334#else
335 return 0;
336#endif
337}
338
339/**
340 * global_dirtyable_memory - number of globally dirtyable pages
341 *
342 * Return: the global number of pages potentially available for dirty
343 * page cache. This is the base value for the global dirty limits.
344 */
345static unsigned long global_dirtyable_memory(void)
346{
347 unsigned long x;
348
349 x = global_zone_page_state(NR_FREE_PAGES);
350 /*
351 * Pages reserved for the kernel should not be considered
352 * dirtyable, to prevent a situation where reclaim has to
353 * clean pages in order to balance the zones.
354 */
355 x -= min(x, totalreserve_pages);
356
357 x += global_node_page_state(NR_INACTIVE_FILE);
358 x += global_node_page_state(NR_ACTIVE_FILE);
359
360 if (!vm_highmem_is_dirtyable)
361 x -= highmem_dirtyable_memory(x);
362
363 return x + 1; /* Ensure that we never return 0 */
364}
365
366/**
367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368 * @dtc: dirty_throttle_control of interest
369 *
370 * Calculate @dtc->thresh and ->bg_thresh considering
371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
372 * must ensure that @dtc->avail is set before calling this function. The
373 * dirty limits will be lifted by 1/4 for real-time tasks.
374 */
375static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376{
377 const unsigned long available_memory = dtc->avail;
378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 unsigned long bytes = vm_dirty_bytes;
380 unsigned long bg_bytes = dirty_background_bytes;
381 /* convert ratios to per-PAGE_SIZE for higher precision */
382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384 unsigned long thresh;
385 unsigned long bg_thresh;
386 struct task_struct *tsk;
387
388 /* gdtc is !NULL iff @dtc is for memcg domain */
389 if (gdtc) {
390 unsigned long global_avail = gdtc->avail;
391
392 /*
393 * The byte settings can't be applied directly to memcg
394 * domains. Convert them to ratios by scaling against
395 * globally available memory. As the ratios are in
396 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 * number of pages.
398 */
399 if (bytes)
400 ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 PAGE_SIZE);
402 if (bg_bytes)
403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 PAGE_SIZE);
405 bytes = bg_bytes = 0;
406 }
407
408 if (bytes)
409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410 else
411 thresh = (ratio * available_memory) / PAGE_SIZE;
412
413 if (bg_bytes)
414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415 else
416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417
418 tsk = current;
419 if (rt_task(tsk)) {
420 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
421 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
422 }
423 /*
424 * Dirty throttling logic assumes the limits in page units fit into
425 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
426 */
427 if (thresh > UINT_MAX)
428 thresh = UINT_MAX;
429 /* This makes sure bg_thresh is within 32-bits as well */
430 if (bg_thresh >= thresh)
431 bg_thresh = thresh / 2;
432 dtc->thresh = thresh;
433 dtc->bg_thresh = bg_thresh;
434
435 /* we should eventually report the domain in the TP */
436 if (!gdtc)
437 trace_global_dirty_state(bg_thresh, thresh);
438}
439
440/**
441 * global_dirty_limits - background-writeback and dirty-throttling thresholds
442 * @pbackground: out parameter for bg_thresh
443 * @pdirty: out parameter for thresh
444 *
445 * Calculate bg_thresh and thresh for global_wb_domain. See
446 * domain_dirty_limits() for details.
447 */
448void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
449{
450 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
451
452 gdtc.avail = global_dirtyable_memory();
453 domain_dirty_limits(&gdtc);
454
455 *pbackground = gdtc.bg_thresh;
456 *pdirty = gdtc.thresh;
457}
458
459/**
460 * node_dirty_limit - maximum number of dirty pages allowed in a node
461 * @pgdat: the node
462 *
463 * Return: the maximum number of dirty pages allowed in a node, based
464 * on the node's dirtyable memory.
465 */
466static unsigned long node_dirty_limit(struct pglist_data *pgdat)
467{
468 unsigned long node_memory = node_dirtyable_memory(pgdat);
469 struct task_struct *tsk = current;
470 unsigned long dirty;
471
472 if (vm_dirty_bytes)
473 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
474 node_memory / global_dirtyable_memory();
475 else
476 dirty = vm_dirty_ratio * node_memory / 100;
477
478 if (rt_task(tsk))
479 dirty += dirty / 4;
480
481 /*
482 * Dirty throttling logic assumes the limits in page units fit into
483 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
484 */
485 return min_t(unsigned long, dirty, UINT_MAX);
486}
487
488/**
489 * node_dirty_ok - tells whether a node is within its dirty limits
490 * @pgdat: the node to check
491 *
492 * Return: %true when the dirty pages in @pgdat are within the node's
493 * dirty limit, %false if the limit is exceeded.
494 */
495bool node_dirty_ok(struct pglist_data *pgdat)
496{
497 unsigned long limit = node_dirty_limit(pgdat);
498 unsigned long nr_pages = 0;
499
500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
501 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
502
503 return nr_pages <= limit;
504}
505
506#ifdef CONFIG_SYSCTL
507static int dirty_background_ratio_handler(struct ctl_table *table, int write,
508 void *buffer, size_t *lenp, loff_t *ppos)
509{
510 int ret;
511
512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 if (ret == 0 && write)
514 dirty_background_bytes = 0;
515 return ret;
516}
517
518static int dirty_background_bytes_handler(struct ctl_table *table, int write,
519 void *buffer, size_t *lenp, loff_t *ppos)
520{
521 int ret;
522 unsigned long old_bytes = dirty_background_bytes;
523
524 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
525 if (ret == 0 && write) {
526 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
527 UINT_MAX) {
528 dirty_background_bytes = old_bytes;
529 return -ERANGE;
530 }
531 dirty_background_ratio = 0;
532 }
533 return ret;
534}
535
536static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
537 size_t *lenp, loff_t *ppos)
538{
539 int old_ratio = vm_dirty_ratio;
540 int ret;
541
542 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
543 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
544 writeback_set_ratelimit();
545 vm_dirty_bytes = 0;
546 }
547 return ret;
548}
549
550static int dirty_bytes_handler(struct ctl_table *table, int write,
551 void *buffer, size_t *lenp, loff_t *ppos)
552{
553 unsigned long old_bytes = vm_dirty_bytes;
554 int ret;
555
556 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
557 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
558 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
559 vm_dirty_bytes = old_bytes;
560 return -ERANGE;
561 }
562 writeback_set_ratelimit();
563 vm_dirty_ratio = 0;
564 }
565 return ret;
566}
567#endif
568
569static unsigned long wp_next_time(unsigned long cur_time)
570{
571 cur_time += VM_COMPLETIONS_PERIOD_LEN;
572 /* 0 has a special meaning... */
573 if (!cur_time)
574 return 1;
575 return cur_time;
576}
577
578static void wb_domain_writeout_add(struct wb_domain *dom,
579 struct fprop_local_percpu *completions,
580 unsigned int max_prop_frac, long nr)
581{
582 __fprop_add_percpu_max(&dom->completions, completions,
583 max_prop_frac, nr);
584 /* First event after period switching was turned off? */
585 if (unlikely(!dom->period_time)) {
586 /*
587 * We can race with other __bdi_writeout_inc calls here but
588 * it does not cause any harm since the resulting time when
589 * timer will fire and what is in writeout_period_time will be
590 * roughly the same.
591 */
592 dom->period_time = wp_next_time(jiffies);
593 mod_timer(&dom->period_timer, dom->period_time);
594 }
595}
596
597/*
598 * Increment @wb's writeout completion count and the global writeout
599 * completion count. Called from __folio_end_writeback().
600 */
601static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
602{
603 struct wb_domain *cgdom;
604
605 wb_stat_mod(wb, WB_WRITTEN, nr);
606 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
607 wb->bdi->max_prop_frac, nr);
608
609 cgdom = mem_cgroup_wb_domain(wb);
610 if (cgdom)
611 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
612 wb->bdi->max_prop_frac, nr);
613}
614
615void wb_writeout_inc(struct bdi_writeback *wb)
616{
617 unsigned long flags;
618
619 local_irq_save(flags);
620 __wb_writeout_add(wb, 1);
621 local_irq_restore(flags);
622}
623EXPORT_SYMBOL_GPL(wb_writeout_inc);
624
625/*
626 * On idle system, we can be called long after we scheduled because we use
627 * deferred timers so count with missed periods.
628 */
629static void writeout_period(struct timer_list *t)
630{
631 struct wb_domain *dom = from_timer(dom, t, period_timer);
632 int miss_periods = (jiffies - dom->period_time) /
633 VM_COMPLETIONS_PERIOD_LEN;
634
635 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
636 dom->period_time = wp_next_time(dom->period_time +
637 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
638 mod_timer(&dom->period_timer, dom->period_time);
639 } else {
640 /*
641 * Aging has zeroed all fractions. Stop wasting CPU on period
642 * updates.
643 */
644 dom->period_time = 0;
645 }
646}
647
648int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
649{
650 memset(dom, 0, sizeof(*dom));
651
652 spin_lock_init(&dom->lock);
653
654 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
655
656 dom->dirty_limit_tstamp = jiffies;
657
658 return fprop_global_init(&dom->completions, gfp);
659}
660
661#ifdef CONFIG_CGROUP_WRITEBACK
662void wb_domain_exit(struct wb_domain *dom)
663{
664 del_timer_sync(&dom->period_timer);
665 fprop_global_destroy(&dom->completions);
666}
667#endif
668
669/*
670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
671 * registered backing devices, which, for obvious reasons, can not
672 * exceed 100%.
673 */
674static unsigned int bdi_min_ratio;
675
676static int bdi_check_pages_limit(unsigned long pages)
677{
678 unsigned long max_dirty_pages = global_dirtyable_memory();
679
680 if (pages > max_dirty_pages)
681 return -EINVAL;
682
683 return 0;
684}
685
686static unsigned long bdi_ratio_from_pages(unsigned long pages)
687{
688 unsigned long background_thresh;
689 unsigned long dirty_thresh;
690 unsigned long ratio;
691
692 global_dirty_limits(&background_thresh, &dirty_thresh);
693 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
694
695 return ratio;
696}
697
698static u64 bdi_get_bytes(unsigned int ratio)
699{
700 unsigned long background_thresh;
701 unsigned long dirty_thresh;
702 u64 bytes;
703
704 global_dirty_limits(&background_thresh, &dirty_thresh);
705 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
706
707 return bytes;
708}
709
710static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
711{
712 unsigned int delta;
713 int ret = 0;
714
715 if (min_ratio > 100 * BDI_RATIO_SCALE)
716 return -EINVAL;
717
718 spin_lock_bh(&bdi_lock);
719 if (min_ratio > bdi->max_ratio) {
720 ret = -EINVAL;
721 } else {
722 if (min_ratio < bdi->min_ratio) {
723 delta = bdi->min_ratio - min_ratio;
724 bdi_min_ratio -= delta;
725 bdi->min_ratio = min_ratio;
726 } else {
727 delta = min_ratio - bdi->min_ratio;
728 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
729 bdi_min_ratio += delta;
730 bdi->min_ratio = min_ratio;
731 } else {
732 ret = -EINVAL;
733 }
734 }
735 }
736 spin_unlock_bh(&bdi_lock);
737
738 return ret;
739}
740
741static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
742{
743 int ret = 0;
744
745 if (max_ratio > 100 * BDI_RATIO_SCALE)
746 return -EINVAL;
747
748 spin_lock_bh(&bdi_lock);
749 if (bdi->min_ratio > max_ratio) {
750 ret = -EINVAL;
751 } else {
752 bdi->max_ratio = max_ratio;
753 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
754 (100 * BDI_RATIO_SCALE);
755 }
756 spin_unlock_bh(&bdi_lock);
757
758 return ret;
759}
760
761int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
762{
763 return __bdi_set_min_ratio(bdi, min_ratio);
764}
765
766int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
767{
768 return __bdi_set_max_ratio(bdi, max_ratio);
769}
770
771int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
772{
773 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
774}
775
776int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
777{
778 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
779}
780EXPORT_SYMBOL(bdi_set_max_ratio);
781
782u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
783{
784 return bdi_get_bytes(bdi->min_ratio);
785}
786
787int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
788{
789 int ret;
790 unsigned long pages = min_bytes >> PAGE_SHIFT;
791 unsigned long min_ratio;
792
793 ret = bdi_check_pages_limit(pages);
794 if (ret)
795 return ret;
796
797 min_ratio = bdi_ratio_from_pages(pages);
798 return __bdi_set_min_ratio(bdi, min_ratio);
799}
800
801u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
802{
803 return bdi_get_bytes(bdi->max_ratio);
804}
805
806int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
807{
808 int ret;
809 unsigned long pages = max_bytes >> PAGE_SHIFT;
810 unsigned long max_ratio;
811
812 ret = bdi_check_pages_limit(pages);
813 if (ret)
814 return ret;
815
816 max_ratio = bdi_ratio_from_pages(pages);
817 return __bdi_set_max_ratio(bdi, max_ratio);
818}
819
820int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
821{
822 if (strict_limit > 1)
823 return -EINVAL;
824
825 spin_lock_bh(&bdi_lock);
826 if (strict_limit)
827 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
828 else
829 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
830 spin_unlock_bh(&bdi_lock);
831
832 return 0;
833}
834
835static unsigned long dirty_freerun_ceiling(unsigned long thresh,
836 unsigned long bg_thresh)
837{
838 return (thresh + bg_thresh) / 2;
839}
840
841static unsigned long hard_dirty_limit(struct wb_domain *dom,
842 unsigned long thresh)
843{
844 return max(thresh, dom->dirty_limit);
845}
846
847/*
848 * Memory which can be further allocated to a memcg domain is capped by
849 * system-wide clean memory excluding the amount being used in the domain.
850 */
851static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
852 unsigned long filepages, unsigned long headroom)
853{
854 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
855 unsigned long clean = filepages - min(filepages, mdtc->dirty);
856 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
857 unsigned long other_clean = global_clean - min(global_clean, clean);
858
859 mdtc->avail = filepages + min(headroom, other_clean);
860}
861
862/**
863 * __wb_calc_thresh - @wb's share of dirty threshold
864 * @dtc: dirty_throttle_context of interest
865 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
866 *
867 * Note that balance_dirty_pages() will only seriously take dirty throttling
868 * threshold as a hard limit when sleeping max_pause per page is not enough
869 * to keep the dirty pages under control. For example, when the device is
870 * completely stalled due to some error conditions, or when there are 1000
871 * dd tasks writing to a slow 10MB/s USB key.
872 * In the other normal situations, it acts more gently by throttling the tasks
873 * more (rather than completely block them) when the wb dirty pages go high.
874 *
875 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
876 * - starving fast devices
877 * - piling up dirty pages (that will take long time to sync) on slow devices
878 *
879 * The wb's share of dirty limit will be adapting to its throughput and
880 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
881 *
882 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
883 * "dirty" in the context of dirty balancing includes all PG_dirty and
884 * PG_writeback pages.
885 */
886static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
887 unsigned long thresh)
888{
889 struct wb_domain *dom = dtc_dom(dtc);
890 u64 wb_thresh;
891 unsigned long numerator, denominator;
892 unsigned long wb_min_ratio, wb_max_ratio;
893
894 /*
895 * Calculate this wb's share of the thresh ratio.
896 */
897 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
898 &numerator, &denominator);
899
900 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
901 wb_thresh *= numerator;
902 wb_thresh = div64_ul(wb_thresh, denominator);
903
904 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
905
906 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
907 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
908 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
909
910 return wb_thresh;
911}
912
913unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
914{
915 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
916
917 return __wb_calc_thresh(&gdtc, thresh);
918}
919
920unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
921{
922 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
923 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
924 unsigned long filepages = 0, headroom = 0, writeback = 0;
925
926 gdtc.avail = global_dirtyable_memory();
927 gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) +
928 global_node_page_state(NR_WRITEBACK);
929
930 mem_cgroup_wb_stats(wb, &filepages, &headroom,
931 &mdtc.dirty, &writeback);
932 mdtc.dirty += writeback;
933 mdtc_calc_avail(&mdtc, filepages, headroom);
934 domain_dirty_limits(&mdtc);
935
936 return __wb_calc_thresh(&mdtc, mdtc.thresh);
937}
938
939/*
940 * setpoint - dirty 3
941 * f(dirty) := 1.0 + (----------------)
942 * limit - setpoint
943 *
944 * it's a 3rd order polynomial that subjects to
945 *
946 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
947 * (2) f(setpoint) = 1.0 => the balance point
948 * (3) f(limit) = 0 => the hard limit
949 * (4) df/dx <= 0 => negative feedback control
950 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
951 * => fast response on large errors; small oscillation near setpoint
952 */
953static long long pos_ratio_polynom(unsigned long setpoint,
954 unsigned long dirty,
955 unsigned long limit)
956{
957 long long pos_ratio;
958 long x;
959
960 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
961 (limit - setpoint) | 1);
962 pos_ratio = x;
963 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
964 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
965 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
966
967 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
968}
969
970/*
971 * Dirty position control.
972 *
973 * (o) global/bdi setpoints
974 *
975 * We want the dirty pages be balanced around the global/wb setpoints.
976 * When the number of dirty pages is higher/lower than the setpoint, the
977 * dirty position control ratio (and hence task dirty ratelimit) will be
978 * decreased/increased to bring the dirty pages back to the setpoint.
979 *
980 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
981 *
982 * if (dirty < setpoint) scale up pos_ratio
983 * if (dirty > setpoint) scale down pos_ratio
984 *
985 * if (wb_dirty < wb_setpoint) scale up pos_ratio
986 * if (wb_dirty > wb_setpoint) scale down pos_ratio
987 *
988 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
989 *
990 * (o) global control line
991 *
992 * ^ pos_ratio
993 * |
994 * | |<===== global dirty control scope ======>|
995 * 2.0 * * * * * * *
996 * | .*
997 * | . *
998 * | . *
999 * | . *
1000 * | . *
1001 * | . *
1002 * 1.0 ................................*
1003 * | . . *
1004 * | . . *
1005 * | . . *
1006 * | . . *
1007 * | . . *
1008 * 0 +------------.------------------.----------------------*------------->
1009 * freerun^ setpoint^ limit^ dirty pages
1010 *
1011 * (o) wb control line
1012 *
1013 * ^ pos_ratio
1014 * |
1015 * | *
1016 * | *
1017 * | *
1018 * | *
1019 * | * |<=========== span ============>|
1020 * 1.0 .......................*
1021 * | . *
1022 * | . *
1023 * | . *
1024 * | . *
1025 * | . *
1026 * | . *
1027 * | . *
1028 * | . *
1029 * | . *
1030 * | . *
1031 * | . *
1032 * 1/4 ...............................................* * * * * * * * * * * *
1033 * | . .
1034 * | . .
1035 * | . .
1036 * 0 +----------------------.-------------------------------.------------->
1037 * wb_setpoint^ x_intercept^
1038 *
1039 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1040 * be smoothly throttled down to normal if it starts high in situations like
1041 * - start writing to a slow SD card and a fast disk at the same time. The SD
1042 * card's wb_dirty may rush to many times higher than wb_setpoint.
1043 * - the wb dirty thresh drops quickly due to change of JBOD workload
1044 */
1045static void wb_position_ratio(struct dirty_throttle_control *dtc)
1046{
1047 struct bdi_writeback *wb = dtc->wb;
1048 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1049 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1050 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1051 unsigned long wb_thresh = dtc->wb_thresh;
1052 unsigned long x_intercept;
1053 unsigned long setpoint; /* dirty pages' target balance point */
1054 unsigned long wb_setpoint;
1055 unsigned long span;
1056 long long pos_ratio; /* for scaling up/down the rate limit */
1057 long x;
1058
1059 dtc->pos_ratio = 0;
1060
1061 if (unlikely(dtc->dirty >= limit))
1062 return;
1063
1064 /*
1065 * global setpoint
1066 *
1067 * See comment for pos_ratio_polynom().
1068 */
1069 setpoint = (freerun + limit) / 2;
1070 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1071
1072 /*
1073 * The strictlimit feature is a tool preventing mistrusted filesystems
1074 * from growing a large number of dirty pages before throttling. For
1075 * such filesystems balance_dirty_pages always checks wb counters
1076 * against wb limits. Even if global "nr_dirty" is under "freerun".
1077 * This is especially important for fuse which sets bdi->max_ratio to
1078 * 1% by default. Without strictlimit feature, fuse writeback may
1079 * consume arbitrary amount of RAM because it is accounted in
1080 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1081 *
1082 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1083 * two values: wb_dirty and wb_thresh. Let's consider an example:
1084 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1085 * limits are set by default to 10% and 20% (background and throttle).
1086 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1087 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1088 * about ~6K pages (as the average of background and throttle wb
1089 * limits). The 3rd order polynomial will provide positive feedback if
1090 * wb_dirty is under wb_setpoint and vice versa.
1091 *
1092 * Note, that we cannot use global counters in these calculations
1093 * because we want to throttle process writing to a strictlimit wb
1094 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1095 * in the example above).
1096 */
1097 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1098 long long wb_pos_ratio;
1099
1100 if (dtc->wb_dirty < 8) {
1101 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1102 2 << RATELIMIT_CALC_SHIFT);
1103 return;
1104 }
1105
1106 if (dtc->wb_dirty >= wb_thresh)
1107 return;
1108
1109 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1110 dtc->wb_bg_thresh);
1111
1112 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1113 return;
1114
1115 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1116 wb_thresh);
1117
1118 /*
1119 * Typically, for strictlimit case, wb_setpoint << setpoint
1120 * and pos_ratio >> wb_pos_ratio. In the other words global
1121 * state ("dirty") is not limiting factor and we have to
1122 * make decision based on wb counters. But there is an
1123 * important case when global pos_ratio should get precedence:
1124 * global limits are exceeded (e.g. due to activities on other
1125 * wb's) while given strictlimit wb is below limit.
1126 *
1127 * "pos_ratio * wb_pos_ratio" would work for the case above,
1128 * but it would look too non-natural for the case of all
1129 * activity in the system coming from a single strictlimit wb
1130 * with bdi->max_ratio == 100%.
1131 *
1132 * Note that min() below somewhat changes the dynamics of the
1133 * control system. Normally, pos_ratio value can be well over 3
1134 * (when globally we are at freerun and wb is well below wb
1135 * setpoint). Now the maximum pos_ratio in the same situation
1136 * is 2. We might want to tweak this if we observe the control
1137 * system is too slow to adapt.
1138 */
1139 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1140 return;
1141 }
1142
1143 /*
1144 * We have computed basic pos_ratio above based on global situation. If
1145 * the wb is over/under its share of dirty pages, we want to scale
1146 * pos_ratio further down/up. That is done by the following mechanism.
1147 */
1148
1149 /*
1150 * wb setpoint
1151 *
1152 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1153 *
1154 * x_intercept - wb_dirty
1155 * := --------------------------
1156 * x_intercept - wb_setpoint
1157 *
1158 * The main wb control line is a linear function that subjects to
1159 *
1160 * (1) f(wb_setpoint) = 1.0
1161 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1162 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1163 *
1164 * For single wb case, the dirty pages are observed to fluctuate
1165 * regularly within range
1166 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1167 * for various filesystems, where (2) can yield in a reasonable 12.5%
1168 * fluctuation range for pos_ratio.
1169 *
1170 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1171 * own size, so move the slope over accordingly and choose a slope that
1172 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1173 */
1174 if (unlikely(wb_thresh > dtc->thresh))
1175 wb_thresh = dtc->thresh;
1176 /*
1177 * It's very possible that wb_thresh is close to 0 not because the
1178 * device is slow, but that it has remained inactive for long time.
1179 * Honour such devices a reasonable good (hopefully IO efficient)
1180 * threshold, so that the occasional writes won't be blocked and active
1181 * writes can rampup the threshold quickly.
1182 */
1183 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1184 /*
1185 * scale global setpoint to wb's:
1186 * wb_setpoint = setpoint * wb_thresh / thresh
1187 */
1188 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1189 wb_setpoint = setpoint * (u64)x >> 16;
1190 /*
1191 * Use span=(8*write_bw) in single wb case as indicated by
1192 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1193 *
1194 * wb_thresh thresh - wb_thresh
1195 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1196 * thresh thresh
1197 */
1198 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1199 x_intercept = wb_setpoint + span;
1200
1201 if (dtc->wb_dirty < x_intercept - span / 4) {
1202 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1203 (x_intercept - wb_setpoint) | 1);
1204 } else
1205 pos_ratio /= 4;
1206
1207 /*
1208 * wb reserve area, safeguard against dirty pool underrun and disk idle
1209 * It may push the desired control point of global dirty pages higher
1210 * than setpoint.
1211 */
1212 x_intercept = wb_thresh / 2;
1213 if (dtc->wb_dirty < x_intercept) {
1214 if (dtc->wb_dirty > x_intercept / 8)
1215 pos_ratio = div_u64(pos_ratio * x_intercept,
1216 dtc->wb_dirty);
1217 else
1218 pos_ratio *= 8;
1219 }
1220
1221 dtc->pos_ratio = pos_ratio;
1222}
1223
1224static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1225 unsigned long elapsed,
1226 unsigned long written)
1227{
1228 const unsigned long period = roundup_pow_of_two(3 * HZ);
1229 unsigned long avg = wb->avg_write_bandwidth;
1230 unsigned long old = wb->write_bandwidth;
1231 u64 bw;
1232
1233 /*
1234 * bw = written * HZ / elapsed
1235 *
1236 * bw * elapsed + write_bandwidth * (period - elapsed)
1237 * write_bandwidth = ---------------------------------------------------
1238 * period
1239 *
1240 * @written may have decreased due to folio_redirty_for_writepage().
1241 * Avoid underflowing @bw calculation.
1242 */
1243 bw = written - min(written, wb->written_stamp);
1244 bw *= HZ;
1245 if (unlikely(elapsed > period)) {
1246 bw = div64_ul(bw, elapsed);
1247 avg = bw;
1248 goto out;
1249 }
1250 bw += (u64)wb->write_bandwidth * (period - elapsed);
1251 bw >>= ilog2(period);
1252
1253 /*
1254 * one more level of smoothing, for filtering out sudden spikes
1255 */
1256 if (avg > old && old >= (unsigned long)bw)
1257 avg -= (avg - old) >> 3;
1258
1259 if (avg < old && old <= (unsigned long)bw)
1260 avg += (old - avg) >> 3;
1261
1262out:
1263 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1264 avg = max(avg, 1LU);
1265 if (wb_has_dirty_io(wb)) {
1266 long delta = avg - wb->avg_write_bandwidth;
1267 WARN_ON_ONCE(atomic_long_add_return(delta,
1268 &wb->bdi->tot_write_bandwidth) <= 0);
1269 }
1270 wb->write_bandwidth = bw;
1271 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1272}
1273
1274static void update_dirty_limit(struct dirty_throttle_control *dtc)
1275{
1276 struct wb_domain *dom = dtc_dom(dtc);
1277 unsigned long thresh = dtc->thresh;
1278 unsigned long limit = dom->dirty_limit;
1279
1280 /*
1281 * Follow up in one step.
1282 */
1283 if (limit < thresh) {
1284 limit = thresh;
1285 goto update;
1286 }
1287
1288 /*
1289 * Follow down slowly. Use the higher one as the target, because thresh
1290 * may drop below dirty. This is exactly the reason to introduce
1291 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1292 */
1293 thresh = max(thresh, dtc->dirty);
1294 if (limit > thresh) {
1295 limit -= (limit - thresh) >> 5;
1296 goto update;
1297 }
1298 return;
1299update:
1300 dom->dirty_limit = limit;
1301}
1302
1303static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1304 unsigned long now)
1305{
1306 struct wb_domain *dom = dtc_dom(dtc);
1307
1308 /*
1309 * check locklessly first to optimize away locking for the most time
1310 */
1311 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1312 return;
1313
1314 spin_lock(&dom->lock);
1315 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1316 update_dirty_limit(dtc);
1317 dom->dirty_limit_tstamp = now;
1318 }
1319 spin_unlock(&dom->lock);
1320}
1321
1322/*
1323 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1324 *
1325 * Normal wb tasks will be curbed at or below it in long term.
1326 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1327 */
1328static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1329 unsigned long dirtied,
1330 unsigned long elapsed)
1331{
1332 struct bdi_writeback *wb = dtc->wb;
1333 unsigned long dirty = dtc->dirty;
1334 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1335 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1336 unsigned long setpoint = (freerun + limit) / 2;
1337 unsigned long write_bw = wb->avg_write_bandwidth;
1338 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1339 unsigned long dirty_rate;
1340 unsigned long task_ratelimit;
1341 unsigned long balanced_dirty_ratelimit;
1342 unsigned long step;
1343 unsigned long x;
1344 unsigned long shift;
1345
1346 /*
1347 * The dirty rate will match the writeout rate in long term, except
1348 * when dirty pages are truncated by userspace or re-dirtied by FS.
1349 */
1350 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1351
1352 /*
1353 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1354 */
1355 task_ratelimit = (u64)dirty_ratelimit *
1356 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1357 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1358
1359 /*
1360 * A linear estimation of the "balanced" throttle rate. The theory is,
1361 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1362 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1363 * formula will yield the balanced rate limit (write_bw / N).
1364 *
1365 * Note that the expanded form is not a pure rate feedback:
1366 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1367 * but also takes pos_ratio into account:
1368 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1369 *
1370 * (1) is not realistic because pos_ratio also takes part in balancing
1371 * the dirty rate. Consider the state
1372 * pos_ratio = 0.5 (3)
1373 * rate = 2 * (write_bw / N) (4)
1374 * If (1) is used, it will stuck in that state! Because each dd will
1375 * be throttled at
1376 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1377 * yielding
1378 * dirty_rate = N * task_ratelimit = write_bw (6)
1379 * put (6) into (1) we get
1380 * rate_(i+1) = rate_(i) (7)
1381 *
1382 * So we end up using (2) to always keep
1383 * rate_(i+1) ~= (write_bw / N) (8)
1384 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1385 * pos_ratio is able to drive itself to 1.0, which is not only where
1386 * the dirty count meet the setpoint, but also where the slope of
1387 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1388 */
1389 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1390 dirty_rate | 1);
1391 /*
1392 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1393 */
1394 if (unlikely(balanced_dirty_ratelimit > write_bw))
1395 balanced_dirty_ratelimit = write_bw;
1396
1397 /*
1398 * We could safely do this and return immediately:
1399 *
1400 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1401 *
1402 * However to get a more stable dirty_ratelimit, the below elaborated
1403 * code makes use of task_ratelimit to filter out singular points and
1404 * limit the step size.
1405 *
1406 * The below code essentially only uses the relative value of
1407 *
1408 * task_ratelimit - dirty_ratelimit
1409 * = (pos_ratio - 1) * dirty_ratelimit
1410 *
1411 * which reflects the direction and size of dirty position error.
1412 */
1413
1414 /*
1415 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1416 * task_ratelimit is on the same side of dirty_ratelimit, too.
1417 * For example, when
1418 * - dirty_ratelimit > balanced_dirty_ratelimit
1419 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1420 * lowering dirty_ratelimit will help meet both the position and rate
1421 * control targets. Otherwise, don't update dirty_ratelimit if it will
1422 * only help meet the rate target. After all, what the users ultimately
1423 * feel and care are stable dirty rate and small position error.
1424 *
1425 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1426 * and filter out the singular points of balanced_dirty_ratelimit. Which
1427 * keeps jumping around randomly and can even leap far away at times
1428 * due to the small 200ms estimation period of dirty_rate (we want to
1429 * keep that period small to reduce time lags).
1430 */
1431 step = 0;
1432
1433 /*
1434 * For strictlimit case, calculations above were based on wb counters
1435 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1436 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1437 * Hence, to calculate "step" properly, we have to use wb_dirty as
1438 * "dirty" and wb_setpoint as "setpoint".
1439 *
1440 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1441 * it's possible that wb_thresh is close to zero due to inactivity
1442 * of backing device.
1443 */
1444 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1445 dirty = dtc->wb_dirty;
1446 if (dtc->wb_dirty < 8)
1447 setpoint = dtc->wb_dirty + 1;
1448 else
1449 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1450 }
1451
1452 if (dirty < setpoint) {
1453 x = min3(wb->balanced_dirty_ratelimit,
1454 balanced_dirty_ratelimit, task_ratelimit);
1455 if (dirty_ratelimit < x)
1456 step = x - dirty_ratelimit;
1457 } else {
1458 x = max3(wb->balanced_dirty_ratelimit,
1459 balanced_dirty_ratelimit, task_ratelimit);
1460 if (dirty_ratelimit > x)
1461 step = dirty_ratelimit - x;
1462 }
1463
1464 /*
1465 * Don't pursue 100% rate matching. It's impossible since the balanced
1466 * rate itself is constantly fluctuating. So decrease the track speed
1467 * when it gets close to the target. Helps eliminate pointless tremors.
1468 */
1469 shift = dirty_ratelimit / (2 * step + 1);
1470 if (shift < BITS_PER_LONG)
1471 step = DIV_ROUND_UP(step >> shift, 8);
1472 else
1473 step = 0;
1474
1475 if (dirty_ratelimit < balanced_dirty_ratelimit)
1476 dirty_ratelimit += step;
1477 else
1478 dirty_ratelimit -= step;
1479
1480 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1481 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1482
1483 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1484}
1485
1486static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1487 struct dirty_throttle_control *mdtc,
1488 bool update_ratelimit)
1489{
1490 struct bdi_writeback *wb = gdtc->wb;
1491 unsigned long now = jiffies;
1492 unsigned long elapsed;
1493 unsigned long dirtied;
1494 unsigned long written;
1495
1496 spin_lock(&wb->list_lock);
1497
1498 /*
1499 * Lockless checks for elapsed time are racy and delayed update after
1500 * IO completion doesn't do it at all (to make sure written pages are
1501 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1502 * division errors.
1503 */
1504 elapsed = max(now - wb->bw_time_stamp, 1UL);
1505 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1506 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1507
1508 if (update_ratelimit) {
1509 domain_update_dirty_limit(gdtc, now);
1510 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1511
1512 /*
1513 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1514 * compiler has no way to figure that out. Help it.
1515 */
1516 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1517 domain_update_dirty_limit(mdtc, now);
1518 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1519 }
1520 }
1521 wb_update_write_bandwidth(wb, elapsed, written);
1522
1523 wb->dirtied_stamp = dirtied;
1524 wb->written_stamp = written;
1525 WRITE_ONCE(wb->bw_time_stamp, now);
1526 spin_unlock(&wb->list_lock);
1527}
1528
1529void wb_update_bandwidth(struct bdi_writeback *wb)
1530{
1531 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1532
1533 __wb_update_bandwidth(&gdtc, NULL, false);
1534}
1535
1536/* Interval after which we consider wb idle and don't estimate bandwidth */
1537#define WB_BANDWIDTH_IDLE_JIF (HZ)
1538
1539static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1540{
1541 unsigned long now = jiffies;
1542 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1543
1544 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1545 !atomic_read(&wb->writeback_inodes)) {
1546 spin_lock(&wb->list_lock);
1547 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1548 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1549 WRITE_ONCE(wb->bw_time_stamp, now);
1550 spin_unlock(&wb->list_lock);
1551 }
1552}
1553
1554/*
1555 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1556 * will look to see if it needs to start dirty throttling.
1557 *
1558 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1559 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1560 * (the number of pages we may dirty without exceeding the dirty limits).
1561 */
1562static unsigned long dirty_poll_interval(unsigned long dirty,
1563 unsigned long thresh)
1564{
1565 if (thresh > dirty)
1566 return 1UL << (ilog2(thresh - dirty) >> 1);
1567
1568 return 1;
1569}
1570
1571static unsigned long wb_max_pause(struct bdi_writeback *wb,
1572 unsigned long wb_dirty)
1573{
1574 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1575 unsigned long t;
1576
1577 /*
1578 * Limit pause time for small memory systems. If sleeping for too long
1579 * time, a small pool of dirty/writeback pages may go empty and disk go
1580 * idle.
1581 *
1582 * 8 serves as the safety ratio.
1583 */
1584 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1585 t++;
1586
1587 return min_t(unsigned long, t, MAX_PAUSE);
1588}
1589
1590static long wb_min_pause(struct bdi_writeback *wb,
1591 long max_pause,
1592 unsigned long task_ratelimit,
1593 unsigned long dirty_ratelimit,
1594 int *nr_dirtied_pause)
1595{
1596 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1597 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1598 long t; /* target pause */
1599 long pause; /* estimated next pause */
1600 int pages; /* target nr_dirtied_pause */
1601
1602 /* target for 10ms pause on 1-dd case */
1603 t = max(1, HZ / 100);
1604
1605 /*
1606 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1607 * overheads.
1608 *
1609 * (N * 10ms) on 2^N concurrent tasks.
1610 */
1611 if (hi > lo)
1612 t += (hi - lo) * (10 * HZ) / 1024;
1613
1614 /*
1615 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1616 * on the much more stable dirty_ratelimit. However the next pause time
1617 * will be computed based on task_ratelimit and the two rate limits may
1618 * depart considerably at some time. Especially if task_ratelimit goes
1619 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1620 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1621 * result task_ratelimit won't be executed faithfully, which could
1622 * eventually bring down dirty_ratelimit.
1623 *
1624 * We apply two rules to fix it up:
1625 * 1) try to estimate the next pause time and if necessary, use a lower
1626 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1627 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1628 * 2) limit the target pause time to max_pause/2, so that the normal
1629 * small fluctuations of task_ratelimit won't trigger rule (1) and
1630 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1631 */
1632 t = min(t, 1 + max_pause / 2);
1633 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1634
1635 /*
1636 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1637 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1638 * When the 16 consecutive reads are often interrupted by some dirty
1639 * throttling pause during the async writes, cfq will go into idles
1640 * (deadline is fine). So push nr_dirtied_pause as high as possible
1641 * until reaches DIRTY_POLL_THRESH=32 pages.
1642 */
1643 if (pages < DIRTY_POLL_THRESH) {
1644 t = max_pause;
1645 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1646 if (pages > DIRTY_POLL_THRESH) {
1647 pages = DIRTY_POLL_THRESH;
1648 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1649 }
1650 }
1651
1652 pause = HZ * pages / (task_ratelimit + 1);
1653 if (pause > max_pause) {
1654 t = max_pause;
1655 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1656 }
1657
1658 *nr_dirtied_pause = pages;
1659 /*
1660 * The minimal pause time will normally be half the target pause time.
1661 */
1662 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1663}
1664
1665static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1666{
1667 struct bdi_writeback *wb = dtc->wb;
1668 unsigned long wb_reclaimable;
1669
1670 /*
1671 * wb_thresh is not treated as some limiting factor as
1672 * dirty_thresh, due to reasons
1673 * - in JBOD setup, wb_thresh can fluctuate a lot
1674 * - in a system with HDD and USB key, the USB key may somehow
1675 * go into state (wb_dirty >> wb_thresh) either because
1676 * wb_dirty starts high, or because wb_thresh drops low.
1677 * In this case we don't want to hard throttle the USB key
1678 * dirtiers for 100 seconds until wb_dirty drops under
1679 * wb_thresh. Instead the auxiliary wb control line in
1680 * wb_position_ratio() will let the dirtier task progress
1681 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1682 */
1683 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1684 dtc->wb_bg_thresh = dtc->thresh ?
1685 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1686
1687 /*
1688 * In order to avoid the stacked BDI deadlock we need
1689 * to ensure we accurately count the 'dirty' pages when
1690 * the threshold is low.
1691 *
1692 * Otherwise it would be possible to get thresh+n pages
1693 * reported dirty, even though there are thresh-m pages
1694 * actually dirty; with m+n sitting in the percpu
1695 * deltas.
1696 */
1697 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1698 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1699 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1700 } else {
1701 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1702 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1703 }
1704}
1705
1706/*
1707 * balance_dirty_pages() must be called by processes which are generating dirty
1708 * data. It looks at the number of dirty pages in the machine and will force
1709 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1710 * If we're over `background_thresh' then the writeback threads are woken to
1711 * perform some writeout.
1712 */
1713static int balance_dirty_pages(struct bdi_writeback *wb,
1714 unsigned long pages_dirtied, unsigned int flags)
1715{
1716 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1717 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1718 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1719 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1720 &mdtc_stor : NULL;
1721 struct dirty_throttle_control *sdtc;
1722 unsigned long nr_dirty;
1723 long period;
1724 long pause;
1725 long max_pause;
1726 long min_pause;
1727 int nr_dirtied_pause;
1728 bool dirty_exceeded = false;
1729 unsigned long task_ratelimit;
1730 unsigned long dirty_ratelimit;
1731 struct backing_dev_info *bdi = wb->bdi;
1732 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1733 unsigned long start_time = jiffies;
1734 int ret = 0;
1735
1736 for (;;) {
1737 unsigned long now = jiffies;
1738 unsigned long dirty, thresh, bg_thresh;
1739 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1740 unsigned long m_thresh = 0;
1741 unsigned long m_bg_thresh = 0;
1742
1743 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1744 gdtc->avail = global_dirtyable_memory();
1745 gdtc->dirty = nr_dirty + global_node_page_state(NR_WRITEBACK);
1746
1747 domain_dirty_limits(gdtc);
1748
1749 if (unlikely(strictlimit)) {
1750 wb_dirty_limits(gdtc);
1751
1752 dirty = gdtc->wb_dirty;
1753 thresh = gdtc->wb_thresh;
1754 bg_thresh = gdtc->wb_bg_thresh;
1755 } else {
1756 dirty = gdtc->dirty;
1757 thresh = gdtc->thresh;
1758 bg_thresh = gdtc->bg_thresh;
1759 }
1760
1761 if (mdtc) {
1762 unsigned long filepages, headroom, writeback;
1763
1764 /*
1765 * If @wb belongs to !root memcg, repeat the same
1766 * basic calculations for the memcg domain.
1767 */
1768 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1769 &mdtc->dirty, &writeback);
1770 mdtc->dirty += writeback;
1771 mdtc_calc_avail(mdtc, filepages, headroom);
1772
1773 domain_dirty_limits(mdtc);
1774
1775 if (unlikely(strictlimit)) {
1776 wb_dirty_limits(mdtc);
1777 m_dirty = mdtc->wb_dirty;
1778 m_thresh = mdtc->wb_thresh;
1779 m_bg_thresh = mdtc->wb_bg_thresh;
1780 } else {
1781 m_dirty = mdtc->dirty;
1782 m_thresh = mdtc->thresh;
1783 m_bg_thresh = mdtc->bg_thresh;
1784 }
1785 }
1786
1787 /*
1788 * In laptop mode, we wait until hitting the higher threshold
1789 * before starting background writeout, and then write out all
1790 * the way down to the lower threshold. So slow writers cause
1791 * minimal disk activity.
1792 *
1793 * In normal mode, we start background writeout at the lower
1794 * background_thresh, to keep the amount of dirty memory low.
1795 */
1796 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1797 !writeback_in_progress(wb))
1798 wb_start_background_writeback(wb);
1799
1800 /*
1801 * Throttle it only when the background writeback cannot
1802 * catch-up. This avoids (excessively) small writeouts
1803 * when the wb limits are ramping up in case of !strictlimit.
1804 *
1805 * In strictlimit case make decision based on the wb counters
1806 * and limits. Small writeouts when the wb limits are ramping
1807 * up are the price we consciously pay for strictlimit-ing.
1808 *
1809 * If memcg domain is in effect, @dirty should be under
1810 * both global and memcg freerun ceilings.
1811 */
1812 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1813 (!mdtc ||
1814 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1815 unsigned long intv;
1816 unsigned long m_intv;
1817
1818free_running:
1819 intv = dirty_poll_interval(dirty, thresh);
1820 m_intv = ULONG_MAX;
1821
1822 current->dirty_paused_when = now;
1823 current->nr_dirtied = 0;
1824 if (mdtc)
1825 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1826 current->nr_dirtied_pause = min(intv, m_intv);
1827 break;
1828 }
1829
1830 /* Start writeback even when in laptop mode */
1831 if (unlikely(!writeback_in_progress(wb)))
1832 wb_start_background_writeback(wb);
1833
1834 mem_cgroup_flush_foreign(wb);
1835
1836 /*
1837 * Calculate global domain's pos_ratio and select the
1838 * global dtc by default.
1839 */
1840 if (!strictlimit) {
1841 wb_dirty_limits(gdtc);
1842
1843 if ((current->flags & PF_LOCAL_THROTTLE) &&
1844 gdtc->wb_dirty <
1845 dirty_freerun_ceiling(gdtc->wb_thresh,
1846 gdtc->wb_bg_thresh))
1847 /*
1848 * LOCAL_THROTTLE tasks must not be throttled
1849 * when below the per-wb freerun ceiling.
1850 */
1851 goto free_running;
1852 }
1853
1854 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1855 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1856
1857 wb_position_ratio(gdtc);
1858 sdtc = gdtc;
1859
1860 if (mdtc) {
1861 /*
1862 * If memcg domain is in effect, calculate its
1863 * pos_ratio. @wb should satisfy constraints from
1864 * both global and memcg domains. Choose the one
1865 * w/ lower pos_ratio.
1866 */
1867 if (!strictlimit) {
1868 wb_dirty_limits(mdtc);
1869
1870 if ((current->flags & PF_LOCAL_THROTTLE) &&
1871 mdtc->wb_dirty <
1872 dirty_freerun_ceiling(mdtc->wb_thresh,
1873 mdtc->wb_bg_thresh))
1874 /*
1875 * LOCAL_THROTTLE tasks must not be
1876 * throttled when below the per-wb
1877 * freerun ceiling.
1878 */
1879 goto free_running;
1880 }
1881 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1882 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1883
1884 wb_position_ratio(mdtc);
1885 if (mdtc->pos_ratio < gdtc->pos_ratio)
1886 sdtc = mdtc;
1887 }
1888
1889 if (dirty_exceeded != wb->dirty_exceeded)
1890 wb->dirty_exceeded = dirty_exceeded;
1891
1892 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1893 BANDWIDTH_INTERVAL))
1894 __wb_update_bandwidth(gdtc, mdtc, true);
1895
1896 /* throttle according to the chosen dtc */
1897 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1898 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1899 RATELIMIT_CALC_SHIFT;
1900 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1901 min_pause = wb_min_pause(wb, max_pause,
1902 task_ratelimit, dirty_ratelimit,
1903 &nr_dirtied_pause);
1904
1905 if (unlikely(task_ratelimit == 0)) {
1906 period = max_pause;
1907 pause = max_pause;
1908 goto pause;
1909 }
1910 period = HZ * pages_dirtied / task_ratelimit;
1911 pause = period;
1912 if (current->dirty_paused_when)
1913 pause -= now - current->dirty_paused_when;
1914 /*
1915 * For less than 1s think time (ext3/4 may block the dirtier
1916 * for up to 800ms from time to time on 1-HDD; so does xfs,
1917 * however at much less frequency), try to compensate it in
1918 * future periods by updating the virtual time; otherwise just
1919 * do a reset, as it may be a light dirtier.
1920 */
1921 if (pause < min_pause) {
1922 trace_balance_dirty_pages(wb,
1923 sdtc->thresh,
1924 sdtc->bg_thresh,
1925 sdtc->dirty,
1926 sdtc->wb_thresh,
1927 sdtc->wb_dirty,
1928 dirty_ratelimit,
1929 task_ratelimit,
1930 pages_dirtied,
1931 period,
1932 min(pause, 0L),
1933 start_time);
1934 if (pause < -HZ) {
1935 current->dirty_paused_when = now;
1936 current->nr_dirtied = 0;
1937 } else if (period) {
1938 current->dirty_paused_when += period;
1939 current->nr_dirtied = 0;
1940 } else if (current->nr_dirtied_pause <= pages_dirtied)
1941 current->nr_dirtied_pause += pages_dirtied;
1942 break;
1943 }
1944 if (unlikely(pause > max_pause)) {
1945 /* for occasional dropped task_ratelimit */
1946 now += min(pause - max_pause, max_pause);
1947 pause = max_pause;
1948 }
1949
1950pause:
1951 trace_balance_dirty_pages(wb,
1952 sdtc->thresh,
1953 sdtc->bg_thresh,
1954 sdtc->dirty,
1955 sdtc->wb_thresh,
1956 sdtc->wb_dirty,
1957 dirty_ratelimit,
1958 task_ratelimit,
1959 pages_dirtied,
1960 period,
1961 pause,
1962 start_time);
1963 if (flags & BDP_ASYNC) {
1964 ret = -EAGAIN;
1965 break;
1966 }
1967 __set_current_state(TASK_KILLABLE);
1968 bdi->last_bdp_sleep = jiffies;
1969 io_schedule_timeout(pause);
1970
1971 current->dirty_paused_when = now + pause;
1972 current->nr_dirtied = 0;
1973 current->nr_dirtied_pause = nr_dirtied_pause;
1974
1975 /*
1976 * This is typically equal to (dirty < thresh) and can also
1977 * keep "1000+ dd on a slow USB stick" under control.
1978 */
1979 if (task_ratelimit)
1980 break;
1981
1982 /*
1983 * In the case of an unresponsive NFS server and the NFS dirty
1984 * pages exceeds dirty_thresh, give the other good wb's a pipe
1985 * to go through, so that tasks on them still remain responsive.
1986 *
1987 * In theory 1 page is enough to keep the consumer-producer
1988 * pipe going: the flusher cleans 1 page => the task dirties 1
1989 * more page. However wb_dirty has accounting errors. So use
1990 * the larger and more IO friendly wb_stat_error.
1991 */
1992 if (sdtc->wb_dirty <= wb_stat_error())
1993 break;
1994
1995 if (fatal_signal_pending(current))
1996 break;
1997 }
1998 return ret;
1999}
2000
2001static DEFINE_PER_CPU(int, bdp_ratelimits);
2002
2003/*
2004 * Normal tasks are throttled by
2005 * loop {
2006 * dirty tsk->nr_dirtied_pause pages;
2007 * take a snap in balance_dirty_pages();
2008 * }
2009 * However there is a worst case. If every task exit immediately when dirtied
2010 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2011 * called to throttle the page dirties. The solution is to save the not yet
2012 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2013 * randomly into the running tasks. This works well for the above worst case,
2014 * as the new task will pick up and accumulate the old task's leaked dirty
2015 * count and eventually get throttled.
2016 */
2017DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2018
2019/**
2020 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2021 * @mapping: address_space which was dirtied.
2022 * @flags: BDP flags.
2023 *
2024 * Processes which are dirtying memory should call in here once for each page
2025 * which was newly dirtied. The function will periodically check the system's
2026 * dirty state and will initiate writeback if needed.
2027 *
2028 * See balance_dirty_pages_ratelimited() for details.
2029 *
2030 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2031 * indicate that memory is out of balance and the caller must wait
2032 * for I/O to complete. Otherwise, it will return 0 to indicate
2033 * that either memory was already in balance, or it was able to sleep
2034 * until the amount of dirty memory returned to balance.
2035 */
2036int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2037 unsigned int flags)
2038{
2039 struct inode *inode = mapping->host;
2040 struct backing_dev_info *bdi = inode_to_bdi(inode);
2041 struct bdi_writeback *wb = NULL;
2042 int ratelimit;
2043 int ret = 0;
2044 int *p;
2045
2046 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2047 return ret;
2048
2049 if (inode_cgwb_enabled(inode))
2050 wb = wb_get_create_current(bdi, GFP_KERNEL);
2051 if (!wb)
2052 wb = &bdi->wb;
2053
2054 ratelimit = current->nr_dirtied_pause;
2055 if (wb->dirty_exceeded)
2056 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2057
2058 preempt_disable();
2059 /*
2060 * This prevents one CPU to accumulate too many dirtied pages without
2061 * calling into balance_dirty_pages(), which can happen when there are
2062 * 1000+ tasks, all of them start dirtying pages at exactly the same
2063 * time, hence all honoured too large initial task->nr_dirtied_pause.
2064 */
2065 p = this_cpu_ptr(&bdp_ratelimits);
2066 if (unlikely(current->nr_dirtied >= ratelimit))
2067 *p = 0;
2068 else if (unlikely(*p >= ratelimit_pages)) {
2069 *p = 0;
2070 ratelimit = 0;
2071 }
2072 /*
2073 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2074 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2075 * the dirty throttling and livelock other long-run dirtiers.
2076 */
2077 p = this_cpu_ptr(&dirty_throttle_leaks);
2078 if (*p > 0 && current->nr_dirtied < ratelimit) {
2079 unsigned long nr_pages_dirtied;
2080 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2081 *p -= nr_pages_dirtied;
2082 current->nr_dirtied += nr_pages_dirtied;
2083 }
2084 preempt_enable();
2085
2086 if (unlikely(current->nr_dirtied >= ratelimit))
2087 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2088
2089 wb_put(wb);
2090 return ret;
2091}
2092EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2093
2094/**
2095 * balance_dirty_pages_ratelimited - balance dirty memory state.
2096 * @mapping: address_space which was dirtied.
2097 *
2098 * Processes which are dirtying memory should call in here once for each page
2099 * which was newly dirtied. The function will periodically check the system's
2100 * dirty state and will initiate writeback if needed.
2101 *
2102 * Once we're over the dirty memory limit we decrease the ratelimiting
2103 * by a lot, to prevent individual processes from overshooting the limit
2104 * by (ratelimit_pages) each.
2105 */
2106void balance_dirty_pages_ratelimited(struct address_space *mapping)
2107{
2108 balance_dirty_pages_ratelimited_flags(mapping, 0);
2109}
2110EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2111
2112/**
2113 * wb_over_bg_thresh - does @wb need to be written back?
2114 * @wb: bdi_writeback of interest
2115 *
2116 * Determines whether background writeback should keep writing @wb or it's
2117 * clean enough.
2118 *
2119 * Return: %true if writeback should continue.
2120 */
2121bool wb_over_bg_thresh(struct bdi_writeback *wb)
2122{
2123 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2124 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2125 struct dirty_throttle_control * const gdtc = &gdtc_stor;
2126 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2127 &mdtc_stor : NULL;
2128 unsigned long reclaimable;
2129 unsigned long thresh;
2130
2131 /*
2132 * Similar to balance_dirty_pages() but ignores pages being written
2133 * as we're trying to decide whether to put more under writeback.
2134 */
2135 gdtc->avail = global_dirtyable_memory();
2136 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2137 domain_dirty_limits(gdtc);
2138
2139 if (gdtc->dirty > gdtc->bg_thresh)
2140 return true;
2141
2142 thresh = __wb_calc_thresh(gdtc, gdtc->bg_thresh);
2143 if (thresh < 2 * wb_stat_error())
2144 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2145 else
2146 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2147
2148 if (reclaimable > thresh)
2149 return true;
2150
2151 if (mdtc) {
2152 unsigned long filepages, headroom, writeback;
2153
2154 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2155 &writeback);
2156 mdtc_calc_avail(mdtc, filepages, headroom);
2157 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2158
2159 if (mdtc->dirty > mdtc->bg_thresh)
2160 return true;
2161
2162 thresh = __wb_calc_thresh(mdtc, mdtc->bg_thresh);
2163 if (thresh < 2 * wb_stat_error())
2164 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2165 else
2166 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2167
2168 if (reclaimable > thresh)
2169 return true;
2170 }
2171
2172 return false;
2173}
2174
2175#ifdef CONFIG_SYSCTL
2176/*
2177 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2178 */
2179static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2180 void *buffer, size_t *length, loff_t *ppos)
2181{
2182 unsigned int old_interval = dirty_writeback_interval;
2183 int ret;
2184
2185 ret = proc_dointvec(table, write, buffer, length, ppos);
2186
2187 /*
2188 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2189 * and a different non-zero value will wakeup the writeback threads.
2190 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2191 * iterate over all bdis and wbs.
2192 * The reason we do this is to make the change take effect immediately.
2193 */
2194 if (!ret && write && dirty_writeback_interval &&
2195 dirty_writeback_interval != old_interval)
2196 wakeup_flusher_threads(WB_REASON_PERIODIC);
2197
2198 return ret;
2199}
2200#endif
2201
2202void laptop_mode_timer_fn(struct timer_list *t)
2203{
2204 struct backing_dev_info *backing_dev_info =
2205 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2206
2207 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2208}
2209
2210/*
2211 * We've spun up the disk and we're in laptop mode: schedule writeback
2212 * of all dirty data a few seconds from now. If the flush is already scheduled
2213 * then push it back - the user is still using the disk.
2214 */
2215void laptop_io_completion(struct backing_dev_info *info)
2216{
2217 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2218}
2219
2220/*
2221 * We're in laptop mode and we've just synced. The sync's writes will have
2222 * caused another writeback to be scheduled by laptop_io_completion.
2223 * Nothing needs to be written back anymore, so we unschedule the writeback.
2224 */
2225void laptop_sync_completion(void)
2226{
2227 struct backing_dev_info *bdi;
2228
2229 rcu_read_lock();
2230
2231 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2232 del_timer(&bdi->laptop_mode_wb_timer);
2233
2234 rcu_read_unlock();
2235}
2236
2237/*
2238 * If ratelimit_pages is too high then we can get into dirty-data overload
2239 * if a large number of processes all perform writes at the same time.
2240 *
2241 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2242 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2243 * thresholds.
2244 */
2245
2246void writeback_set_ratelimit(void)
2247{
2248 struct wb_domain *dom = &global_wb_domain;
2249 unsigned long background_thresh;
2250 unsigned long dirty_thresh;
2251
2252 global_dirty_limits(&background_thresh, &dirty_thresh);
2253 dom->dirty_limit = dirty_thresh;
2254 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2255 if (ratelimit_pages < 16)
2256 ratelimit_pages = 16;
2257}
2258
2259static int page_writeback_cpu_online(unsigned int cpu)
2260{
2261 writeback_set_ratelimit();
2262 return 0;
2263}
2264
2265#ifdef CONFIG_SYSCTL
2266
2267/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2268static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2269
2270static struct ctl_table vm_page_writeback_sysctls[] = {
2271 {
2272 .procname = "dirty_background_ratio",
2273 .data = &dirty_background_ratio,
2274 .maxlen = sizeof(dirty_background_ratio),
2275 .mode = 0644,
2276 .proc_handler = dirty_background_ratio_handler,
2277 .extra1 = SYSCTL_ZERO,
2278 .extra2 = SYSCTL_ONE_HUNDRED,
2279 },
2280 {
2281 .procname = "dirty_background_bytes",
2282 .data = &dirty_background_bytes,
2283 .maxlen = sizeof(dirty_background_bytes),
2284 .mode = 0644,
2285 .proc_handler = dirty_background_bytes_handler,
2286 .extra1 = SYSCTL_LONG_ONE,
2287 },
2288 {
2289 .procname = "dirty_ratio",
2290 .data = &vm_dirty_ratio,
2291 .maxlen = sizeof(vm_dirty_ratio),
2292 .mode = 0644,
2293 .proc_handler = dirty_ratio_handler,
2294 .extra1 = SYSCTL_ZERO,
2295 .extra2 = SYSCTL_ONE_HUNDRED,
2296 },
2297 {
2298 .procname = "dirty_bytes",
2299 .data = &vm_dirty_bytes,
2300 .maxlen = sizeof(vm_dirty_bytes),
2301 .mode = 0644,
2302 .proc_handler = dirty_bytes_handler,
2303 .extra1 = (void *)&dirty_bytes_min,
2304 },
2305 {
2306 .procname = "dirty_writeback_centisecs",
2307 .data = &dirty_writeback_interval,
2308 .maxlen = sizeof(dirty_writeback_interval),
2309 .mode = 0644,
2310 .proc_handler = dirty_writeback_centisecs_handler,
2311 },
2312 {
2313 .procname = "dirty_expire_centisecs",
2314 .data = &dirty_expire_interval,
2315 .maxlen = sizeof(dirty_expire_interval),
2316 .mode = 0644,
2317 .proc_handler = proc_dointvec_minmax,
2318 .extra1 = SYSCTL_ZERO,
2319 },
2320#ifdef CONFIG_HIGHMEM
2321 {
2322 .procname = "highmem_is_dirtyable",
2323 .data = &vm_highmem_is_dirtyable,
2324 .maxlen = sizeof(vm_highmem_is_dirtyable),
2325 .mode = 0644,
2326 .proc_handler = proc_dointvec_minmax,
2327 .extra1 = SYSCTL_ZERO,
2328 .extra2 = SYSCTL_ONE,
2329 },
2330#endif
2331 {
2332 .procname = "laptop_mode",
2333 .data = &laptop_mode,
2334 .maxlen = sizeof(laptop_mode),
2335 .mode = 0644,
2336 .proc_handler = proc_dointvec_jiffies,
2337 },
2338};
2339#endif
2340
2341/*
2342 * Called early on to tune the page writeback dirty limits.
2343 *
2344 * We used to scale dirty pages according to how total memory
2345 * related to pages that could be allocated for buffers.
2346 *
2347 * However, that was when we used "dirty_ratio" to scale with
2348 * all memory, and we don't do that any more. "dirty_ratio"
2349 * is now applied to total non-HIGHPAGE memory, and as such we can't
2350 * get into the old insane situation any more where we had
2351 * large amounts of dirty pages compared to a small amount of
2352 * non-HIGHMEM memory.
2353 *
2354 * But we might still want to scale the dirty_ratio by how
2355 * much memory the box has..
2356 */
2357void __init page_writeback_init(void)
2358{
2359 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2360
2361 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2362 page_writeback_cpu_online, NULL);
2363 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2364 page_writeback_cpu_online);
2365#ifdef CONFIG_SYSCTL
2366 register_sysctl_init("vm", vm_page_writeback_sysctls);
2367#endif
2368}
2369
2370/**
2371 * tag_pages_for_writeback - tag pages to be written by writeback
2372 * @mapping: address space structure to write
2373 * @start: starting page index
2374 * @end: ending page index (inclusive)
2375 *
2376 * This function scans the page range from @start to @end (inclusive) and tags
2377 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2378 * can then use the TOWRITE tag to identify pages eligible for writeback.
2379 * This mechanism is used to avoid livelocking of writeback by a process
2380 * steadily creating new dirty pages in the file (thus it is important for this
2381 * function to be quick so that it can tag pages faster than a dirtying process
2382 * can create them).
2383 */
2384void tag_pages_for_writeback(struct address_space *mapping,
2385 pgoff_t start, pgoff_t end)
2386{
2387 XA_STATE(xas, &mapping->i_pages, start);
2388 unsigned int tagged = 0;
2389 void *page;
2390
2391 xas_lock_irq(&xas);
2392 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2393 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2394 if (++tagged % XA_CHECK_SCHED)
2395 continue;
2396
2397 xas_pause(&xas);
2398 xas_unlock_irq(&xas);
2399 cond_resched();
2400 xas_lock_irq(&xas);
2401 }
2402 xas_unlock_irq(&xas);
2403}
2404EXPORT_SYMBOL(tag_pages_for_writeback);
2405
2406static bool folio_prepare_writeback(struct address_space *mapping,
2407 struct writeback_control *wbc, struct folio *folio)
2408{
2409 /*
2410 * Folio truncated or invalidated. We can freely skip it then,
2411 * even for data integrity operations: the folio has disappeared
2412 * concurrently, so there could be no real expectation of this
2413 * data integrity operation even if there is now a new, dirty
2414 * folio at the same pagecache index.
2415 */
2416 if (unlikely(folio->mapping != mapping))
2417 return false;
2418
2419 /*
2420 * Did somebody else write it for us?
2421 */
2422 if (!folio_test_dirty(folio))
2423 return false;
2424
2425 if (folio_test_writeback(folio)) {
2426 if (wbc->sync_mode == WB_SYNC_NONE)
2427 return false;
2428 folio_wait_writeback(folio);
2429 }
2430 BUG_ON(folio_test_writeback(folio));
2431
2432 if (!folio_clear_dirty_for_io(folio))
2433 return false;
2434
2435 return true;
2436}
2437
2438static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2439{
2440 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2441 return PAGECACHE_TAG_TOWRITE;
2442 return PAGECACHE_TAG_DIRTY;
2443}
2444
2445static pgoff_t wbc_end(struct writeback_control *wbc)
2446{
2447 if (wbc->range_cyclic)
2448 return -1;
2449 return wbc->range_end >> PAGE_SHIFT;
2450}
2451
2452static struct folio *writeback_get_folio(struct address_space *mapping,
2453 struct writeback_control *wbc)
2454{
2455 struct folio *folio;
2456
2457retry:
2458 folio = folio_batch_next(&wbc->fbatch);
2459 if (!folio) {
2460 folio_batch_release(&wbc->fbatch);
2461 cond_resched();
2462 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2463 wbc_to_tag(wbc), &wbc->fbatch);
2464 folio = folio_batch_next(&wbc->fbatch);
2465 if (!folio)
2466 return NULL;
2467 }
2468
2469 folio_lock(folio);
2470 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2471 folio_unlock(folio);
2472 goto retry;
2473 }
2474
2475 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2476 return folio;
2477}
2478
2479/**
2480 * writeback_iter - iterate folio of a mapping for writeback
2481 * @mapping: address space structure to write
2482 * @wbc: writeback context
2483 * @folio: previously iterated folio (%NULL to start)
2484 * @error: in-out pointer for writeback errors (see below)
2485 *
2486 * This function returns the next folio for the writeback operation described by
2487 * @wbc on @mapping and should be called in a while loop in the ->writepages
2488 * implementation.
2489 *
2490 * To start the writeback operation, %NULL is passed in the @folio argument, and
2491 * for every subsequent iteration the folio returned previously should be passed
2492 * back in.
2493 *
2494 * If there was an error in the per-folio writeback inside the writeback_iter()
2495 * loop, @error should be set to the error value.
2496 *
2497 * Once the writeback described in @wbc has finished, this function will return
2498 * %NULL and if there was an error in any iteration restore it to @error.
2499 *
2500 * Note: callers should not manually break out of the loop using break or goto
2501 * but must keep calling writeback_iter() until it returns %NULL.
2502 *
2503 * Return: the folio to write or %NULL if the loop is done.
2504 */
2505struct folio *writeback_iter(struct address_space *mapping,
2506 struct writeback_control *wbc, struct folio *folio, int *error)
2507{
2508 if (!folio) {
2509 folio_batch_init(&wbc->fbatch);
2510 wbc->saved_err = *error = 0;
2511
2512 /*
2513 * For range cyclic writeback we remember where we stopped so
2514 * that we can continue where we stopped.
2515 *
2516 * For non-cyclic writeback we always start at the beginning of
2517 * the passed in range.
2518 */
2519 if (wbc->range_cyclic)
2520 wbc->index = mapping->writeback_index;
2521 else
2522 wbc->index = wbc->range_start >> PAGE_SHIFT;
2523
2524 /*
2525 * To avoid livelocks when other processes dirty new pages, we
2526 * first tag pages which should be written back and only then
2527 * start writing them.
2528 *
2529 * For data-integrity writeback we have to be careful so that we
2530 * do not miss some pages (e.g., because some other process has
2531 * cleared the TOWRITE tag we set). The rule we follow is that
2532 * TOWRITE tag can be cleared only by the process clearing the
2533 * DIRTY tag (and submitting the page for I/O).
2534 */
2535 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2536 tag_pages_for_writeback(mapping, wbc->index,
2537 wbc_end(wbc));
2538 } else {
2539 wbc->nr_to_write -= folio_nr_pages(folio);
2540
2541 WARN_ON_ONCE(*error > 0);
2542
2543 /*
2544 * For integrity writeback we have to keep going until we have
2545 * written all the folios we tagged for writeback above, even if
2546 * we run past wbc->nr_to_write or encounter errors.
2547 * We stash away the first error we encounter in wbc->saved_err
2548 * so that it can be retrieved when we're done. This is because
2549 * the file system may still have state to clear for each folio.
2550 *
2551 * For background writeback we exit as soon as we run past
2552 * wbc->nr_to_write or encounter the first error.
2553 */
2554 if (wbc->sync_mode == WB_SYNC_ALL) {
2555 if (*error && !wbc->saved_err)
2556 wbc->saved_err = *error;
2557 } else {
2558 if (*error || wbc->nr_to_write <= 0)
2559 goto done;
2560 }
2561 }
2562
2563 folio = writeback_get_folio(mapping, wbc);
2564 if (!folio) {
2565 /*
2566 * To avoid deadlocks between range_cyclic writeback and callers
2567 * that hold pages in PageWriteback to aggregate I/O until
2568 * the writeback iteration finishes, we do not loop back to the
2569 * start of the file. Doing so causes a page lock/page
2570 * writeback access order inversion - we should only ever lock
2571 * multiple pages in ascending page->index order, and looping
2572 * back to the start of the file violates that rule and causes
2573 * deadlocks.
2574 */
2575 if (wbc->range_cyclic)
2576 mapping->writeback_index = 0;
2577
2578 /*
2579 * Return the first error we encountered (if there was any) to
2580 * the caller.
2581 */
2582 *error = wbc->saved_err;
2583 }
2584 return folio;
2585
2586done:
2587 if (wbc->range_cyclic)
2588 mapping->writeback_index = folio->index + folio_nr_pages(folio);
2589 folio_batch_release(&wbc->fbatch);
2590 return NULL;
2591}
2592EXPORT_SYMBOL_GPL(writeback_iter);
2593
2594/**
2595 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2596 * @mapping: address space structure to write
2597 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2598 * @writepage: function called for each page
2599 * @data: data passed to writepage function
2600 *
2601 * Return: %0 on success, negative error code otherwise
2602 *
2603 * Note: please use writeback_iter() instead.
2604 */
2605int write_cache_pages(struct address_space *mapping,
2606 struct writeback_control *wbc, writepage_t writepage,
2607 void *data)
2608{
2609 struct folio *folio = NULL;
2610 int error;
2611
2612 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2613 error = writepage(folio, wbc, data);
2614 if (error == AOP_WRITEPAGE_ACTIVATE) {
2615 folio_unlock(folio);
2616 error = 0;
2617 }
2618 }
2619
2620 return error;
2621}
2622EXPORT_SYMBOL(write_cache_pages);
2623
2624static int writeback_use_writepage(struct address_space *mapping,
2625 struct writeback_control *wbc)
2626{
2627 struct folio *folio = NULL;
2628 struct blk_plug plug;
2629 int err;
2630
2631 blk_start_plug(&plug);
2632 while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2633 err = mapping->a_ops->writepage(&folio->page, wbc);
2634 if (err == AOP_WRITEPAGE_ACTIVATE) {
2635 folio_unlock(folio);
2636 err = 0;
2637 }
2638 mapping_set_error(mapping, err);
2639 }
2640 blk_finish_plug(&plug);
2641
2642 return err;
2643}
2644
2645int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2646{
2647 int ret;
2648 struct bdi_writeback *wb;
2649
2650 if (wbc->nr_to_write <= 0)
2651 return 0;
2652 wb = inode_to_wb_wbc(mapping->host, wbc);
2653 wb_bandwidth_estimate_start(wb);
2654 while (1) {
2655 if (mapping->a_ops->writepages) {
2656 ret = mapping->a_ops->writepages(mapping, wbc);
2657 } else if (mapping->a_ops->writepage) {
2658 ret = writeback_use_writepage(mapping, wbc);
2659 } else {
2660 /* deal with chardevs and other special files */
2661 ret = 0;
2662 }
2663 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2664 break;
2665
2666 /*
2667 * Lacking an allocation context or the locality or writeback
2668 * state of any of the inode's pages, throttle based on
2669 * writeback activity on the local node. It's as good a
2670 * guess as any.
2671 */
2672 reclaim_throttle(NODE_DATA(numa_node_id()),
2673 VMSCAN_THROTTLE_WRITEBACK);
2674 }
2675 /*
2676 * Usually few pages are written by now from those we've just submitted
2677 * but if there's constant writeback being submitted, this makes sure
2678 * writeback bandwidth is updated once in a while.
2679 */
2680 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2681 BANDWIDTH_INTERVAL))
2682 wb_update_bandwidth(wb);
2683 return ret;
2684}
2685
2686/*
2687 * For address_spaces which do not use buffers nor write back.
2688 */
2689bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2690{
2691 if (!folio_test_dirty(folio))
2692 return !folio_test_set_dirty(folio);
2693 return false;
2694}
2695EXPORT_SYMBOL(noop_dirty_folio);
2696
2697/*
2698 * Helper function for set_page_dirty family.
2699 *
2700 * Caller must hold folio_memcg_lock().
2701 *
2702 * NOTE: This relies on being atomic wrt interrupts.
2703 */
2704static void folio_account_dirtied(struct folio *folio,
2705 struct address_space *mapping)
2706{
2707 struct inode *inode = mapping->host;
2708
2709 trace_writeback_dirty_folio(folio, mapping);
2710
2711 if (mapping_can_writeback(mapping)) {
2712 struct bdi_writeback *wb;
2713 long nr = folio_nr_pages(folio);
2714
2715 inode_attach_wb(inode, folio);
2716 wb = inode_to_wb(inode);
2717
2718 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2719 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2720 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2721 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2722 wb_stat_mod(wb, WB_DIRTIED, nr);
2723 task_io_account_write(nr * PAGE_SIZE);
2724 current->nr_dirtied += nr;
2725 __this_cpu_add(bdp_ratelimits, nr);
2726
2727 mem_cgroup_track_foreign_dirty(folio, wb);
2728 }
2729}
2730
2731/*
2732 * Helper function for deaccounting dirty page without writeback.
2733 *
2734 * Caller must hold folio_memcg_lock().
2735 */
2736void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2737{
2738 long nr = folio_nr_pages(folio);
2739
2740 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2741 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2742 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2743 task_io_account_cancelled_write(nr * PAGE_SIZE);
2744}
2745
2746/*
2747 * Mark the folio dirty, and set it dirty in the page cache.
2748 *
2749 * If warn is true, then emit a warning if the folio is not uptodate and has
2750 * not been truncated.
2751 *
2752 * The caller must hold folio_memcg_lock(). It is the caller's
2753 * responsibility to prevent the folio from being truncated while
2754 * this function is in progress, although it may have been truncated
2755 * before this function is called. Most callers have the folio locked.
2756 * A few have the folio blocked from truncation through other means (e.g.
2757 * zap_vma_pages() has it mapped and is holding the page table lock).
2758 * When called from mark_buffer_dirty(), the filesystem should hold a
2759 * reference to the buffer_head that is being marked dirty, which causes
2760 * try_to_free_buffers() to fail.
2761 */
2762void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2763 int warn)
2764{
2765 unsigned long flags;
2766
2767 xa_lock_irqsave(&mapping->i_pages, flags);
2768 if (folio->mapping) { /* Race with truncate? */
2769 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2770 folio_account_dirtied(folio, mapping);
2771 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2772 PAGECACHE_TAG_DIRTY);
2773 }
2774 xa_unlock_irqrestore(&mapping->i_pages, flags);
2775}
2776
2777/**
2778 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2779 * @mapping: Address space this folio belongs to.
2780 * @folio: Folio to be marked as dirty.
2781 *
2782 * Filesystems which do not use buffer heads should call this function
2783 * from their dirty_folio address space operation. It ignores the
2784 * contents of folio_get_private(), so if the filesystem marks individual
2785 * blocks as dirty, the filesystem should handle that itself.
2786 *
2787 * This is also sometimes used by filesystems which use buffer_heads when
2788 * a single buffer is being dirtied: we want to set the folio dirty in
2789 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2790 * whereas block_dirty_folio() is a "top-down" dirtying.
2791 *
2792 * The caller must ensure this doesn't race with truncation. Most will
2793 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2794 * folio mapped and the pte lock held, which also locks out truncation.
2795 */
2796bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2797{
2798 folio_memcg_lock(folio);
2799 if (folio_test_set_dirty(folio)) {
2800 folio_memcg_unlock(folio);
2801 return false;
2802 }
2803
2804 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2805 folio_memcg_unlock(folio);
2806
2807 if (mapping->host) {
2808 /* !PageAnon && !swapper_space */
2809 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2810 }
2811 return true;
2812}
2813EXPORT_SYMBOL(filemap_dirty_folio);
2814
2815/**
2816 * folio_redirty_for_writepage - Decline to write a dirty folio.
2817 * @wbc: The writeback control.
2818 * @folio: The folio.
2819 *
2820 * When a writepage implementation decides that it doesn't want to write
2821 * @folio for some reason, it should call this function, unlock @folio and
2822 * return 0.
2823 *
2824 * Return: True if we redirtied the folio. False if someone else dirtied
2825 * it first.
2826 */
2827bool folio_redirty_for_writepage(struct writeback_control *wbc,
2828 struct folio *folio)
2829{
2830 struct address_space *mapping = folio->mapping;
2831 long nr = folio_nr_pages(folio);
2832 bool ret;
2833
2834 wbc->pages_skipped += nr;
2835 ret = filemap_dirty_folio(mapping, folio);
2836 if (mapping && mapping_can_writeback(mapping)) {
2837 struct inode *inode = mapping->host;
2838 struct bdi_writeback *wb;
2839 struct wb_lock_cookie cookie = {};
2840
2841 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2842 current->nr_dirtied -= nr;
2843 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2844 wb_stat_mod(wb, WB_DIRTIED, -nr);
2845 unlocked_inode_to_wb_end(inode, &cookie);
2846 }
2847 return ret;
2848}
2849EXPORT_SYMBOL(folio_redirty_for_writepage);
2850
2851/**
2852 * folio_mark_dirty - Mark a folio as being modified.
2853 * @folio: The folio.
2854 *
2855 * The folio may not be truncated while this function is running.
2856 * Holding the folio lock is sufficient to prevent truncation, but some
2857 * callers cannot acquire a sleeping lock. These callers instead hold
2858 * the page table lock for a page table which contains at least one page
2859 * in this folio. Truncation will block on the page table lock as it
2860 * unmaps pages before removing the folio from its mapping.
2861 *
2862 * Return: True if the folio was newly dirtied, false if it was already dirty.
2863 */
2864bool folio_mark_dirty(struct folio *folio)
2865{
2866 struct address_space *mapping = folio_mapping(folio);
2867
2868 if (likely(mapping)) {
2869 /*
2870 * readahead/folio_deactivate could remain
2871 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2872 * About readahead, if the folio is written, the flags would be
2873 * reset. So no problem.
2874 * About folio_deactivate, if the folio is redirtied,
2875 * the flag will be reset. So no problem. but if the
2876 * folio is used by readahead it will confuse readahead
2877 * and make it restart the size rampup process. But it's
2878 * a trivial problem.
2879 */
2880 if (folio_test_reclaim(folio))
2881 folio_clear_reclaim(folio);
2882 return mapping->a_ops->dirty_folio(mapping, folio);
2883 }
2884
2885 return noop_dirty_folio(mapping, folio);
2886}
2887EXPORT_SYMBOL(folio_mark_dirty);
2888
2889/*
2890 * set_page_dirty() is racy if the caller has no reference against
2891 * page->mapping->host, and if the page is unlocked. This is because another
2892 * CPU could truncate the page off the mapping and then free the mapping.
2893 *
2894 * Usually, the page _is_ locked, or the caller is a user-space process which
2895 * holds a reference on the inode by having an open file.
2896 *
2897 * In other cases, the page should be locked before running set_page_dirty().
2898 */
2899int set_page_dirty_lock(struct page *page)
2900{
2901 int ret;
2902
2903 lock_page(page);
2904 ret = set_page_dirty(page);
2905 unlock_page(page);
2906 return ret;
2907}
2908EXPORT_SYMBOL(set_page_dirty_lock);
2909
2910/*
2911 * This cancels just the dirty bit on the kernel page itself, it does NOT
2912 * actually remove dirty bits on any mmap's that may be around. It also
2913 * leaves the page tagged dirty, so any sync activity will still find it on
2914 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2915 * look at the dirty bits in the VM.
2916 *
2917 * Doing this should *normally* only ever be done when a page is truncated,
2918 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2919 * this when it notices that somebody has cleaned out all the buffers on a
2920 * page without actually doing it through the VM. Can you say "ext3 is
2921 * horribly ugly"? Thought you could.
2922 */
2923void __folio_cancel_dirty(struct folio *folio)
2924{
2925 struct address_space *mapping = folio_mapping(folio);
2926
2927 if (mapping_can_writeback(mapping)) {
2928 struct inode *inode = mapping->host;
2929 struct bdi_writeback *wb;
2930 struct wb_lock_cookie cookie = {};
2931
2932 folio_memcg_lock(folio);
2933 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2934
2935 if (folio_test_clear_dirty(folio))
2936 folio_account_cleaned(folio, wb);
2937
2938 unlocked_inode_to_wb_end(inode, &cookie);
2939 folio_memcg_unlock(folio);
2940 } else {
2941 folio_clear_dirty(folio);
2942 }
2943}
2944EXPORT_SYMBOL(__folio_cancel_dirty);
2945
2946/*
2947 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2948 * Returns true if the folio was previously dirty.
2949 *
2950 * This is for preparing to put the folio under writeout. We leave
2951 * the folio tagged as dirty in the xarray so that a concurrent
2952 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2953 * The ->writepage implementation will run either folio_start_writeback()
2954 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2955 * and xarray dirty tag back into sync.
2956 *
2957 * This incoherency between the folio's dirty flag and xarray tag is
2958 * unfortunate, but it only exists while the folio is locked.
2959 */
2960bool folio_clear_dirty_for_io(struct folio *folio)
2961{
2962 struct address_space *mapping = folio_mapping(folio);
2963 bool ret = false;
2964
2965 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2966
2967 if (mapping && mapping_can_writeback(mapping)) {
2968 struct inode *inode = mapping->host;
2969 struct bdi_writeback *wb;
2970 struct wb_lock_cookie cookie = {};
2971
2972 /*
2973 * Yes, Virginia, this is indeed insane.
2974 *
2975 * We use this sequence to make sure that
2976 * (a) we account for dirty stats properly
2977 * (b) we tell the low-level filesystem to
2978 * mark the whole folio dirty if it was
2979 * dirty in a pagetable. Only to then
2980 * (c) clean the folio again and return 1 to
2981 * cause the writeback.
2982 *
2983 * This way we avoid all nasty races with the
2984 * dirty bit in multiple places and clearing
2985 * them concurrently from different threads.
2986 *
2987 * Note! Normally the "folio_mark_dirty(folio)"
2988 * has no effect on the actual dirty bit - since
2989 * that will already usually be set. But we
2990 * need the side effects, and it can help us
2991 * avoid races.
2992 *
2993 * We basically use the folio "master dirty bit"
2994 * as a serialization point for all the different
2995 * threads doing their things.
2996 */
2997 if (folio_mkclean(folio))
2998 folio_mark_dirty(folio);
2999 /*
3000 * We carefully synchronise fault handlers against
3001 * installing a dirty pte and marking the folio dirty
3002 * at this point. We do this by having them hold the
3003 * page lock while dirtying the folio, and folios are
3004 * always locked coming in here, so we get the desired
3005 * exclusion.
3006 */
3007 wb = unlocked_inode_to_wb_begin(inode, &cookie);
3008 if (folio_test_clear_dirty(folio)) {
3009 long nr = folio_nr_pages(folio);
3010 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3011 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3012 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3013 ret = true;
3014 }
3015 unlocked_inode_to_wb_end(inode, &cookie);
3016 return ret;
3017 }
3018 return folio_test_clear_dirty(folio);
3019}
3020EXPORT_SYMBOL(folio_clear_dirty_for_io);
3021
3022static void wb_inode_writeback_start(struct bdi_writeback *wb)
3023{
3024 atomic_inc(&wb->writeback_inodes);
3025}
3026
3027static void wb_inode_writeback_end(struct bdi_writeback *wb)
3028{
3029 unsigned long flags;
3030 atomic_dec(&wb->writeback_inodes);
3031 /*
3032 * Make sure estimate of writeback throughput gets updated after
3033 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3034 * (which is the interval other bandwidth updates use for batching) so
3035 * that if multiple inodes end writeback at a similar time, they get
3036 * batched into one bandwidth update.
3037 */
3038 spin_lock_irqsave(&wb->work_lock, flags);
3039 if (test_bit(WB_registered, &wb->state))
3040 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3041 spin_unlock_irqrestore(&wb->work_lock, flags);
3042}
3043
3044bool __folio_end_writeback(struct folio *folio)
3045{
3046 long nr = folio_nr_pages(folio);
3047 struct address_space *mapping = folio_mapping(folio);
3048 bool ret;
3049
3050 folio_memcg_lock(folio);
3051 if (mapping && mapping_use_writeback_tags(mapping)) {
3052 struct inode *inode = mapping->host;
3053 struct backing_dev_info *bdi = inode_to_bdi(inode);
3054 unsigned long flags;
3055
3056 xa_lock_irqsave(&mapping->i_pages, flags);
3057 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3058 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3059 PAGECACHE_TAG_WRITEBACK);
3060 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3061 struct bdi_writeback *wb = inode_to_wb(inode);
3062
3063 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3064 __wb_writeout_add(wb, nr);
3065 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3066 wb_inode_writeback_end(wb);
3067 }
3068
3069 if (mapping->host && !mapping_tagged(mapping,
3070 PAGECACHE_TAG_WRITEBACK))
3071 sb_clear_inode_writeback(mapping->host);
3072
3073 xa_unlock_irqrestore(&mapping->i_pages, flags);
3074 } else {
3075 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3076 }
3077
3078 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3079 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3080 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3081 folio_memcg_unlock(folio);
3082
3083 return ret;
3084}
3085
3086void __folio_start_writeback(struct folio *folio, bool keep_write)
3087{
3088 long nr = folio_nr_pages(folio);
3089 struct address_space *mapping = folio_mapping(folio);
3090 int access_ret;
3091
3092 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3093
3094 folio_memcg_lock(folio);
3095 if (mapping && mapping_use_writeback_tags(mapping)) {
3096 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3097 struct inode *inode = mapping->host;
3098 struct backing_dev_info *bdi = inode_to_bdi(inode);
3099 unsigned long flags;
3100 bool on_wblist;
3101
3102 xas_lock_irqsave(&xas, flags);
3103 xas_load(&xas);
3104 folio_test_set_writeback(folio);
3105
3106 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3107
3108 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3109 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3110 struct bdi_writeback *wb = inode_to_wb(inode);
3111
3112 wb_stat_mod(wb, WB_WRITEBACK, nr);
3113 if (!on_wblist)
3114 wb_inode_writeback_start(wb);
3115 }
3116
3117 /*
3118 * We can come through here when swapping anonymous
3119 * folios, so we don't necessarily have an inode to
3120 * track for sync.
3121 */
3122 if (mapping->host && !on_wblist)
3123 sb_mark_inode_writeback(mapping->host);
3124 if (!folio_test_dirty(folio))
3125 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3126 if (!keep_write)
3127 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3128 xas_unlock_irqrestore(&xas, flags);
3129 } else {
3130 folio_test_set_writeback(folio);
3131 }
3132
3133 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3134 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3135 folio_memcg_unlock(folio);
3136
3137 access_ret = arch_make_folio_accessible(folio);
3138 /*
3139 * If writeback has been triggered on a page that cannot be made
3140 * accessible, it is too late to recover here.
3141 */
3142 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3143}
3144EXPORT_SYMBOL(__folio_start_writeback);
3145
3146/**
3147 * folio_wait_writeback - Wait for a folio to finish writeback.
3148 * @folio: The folio to wait for.
3149 *
3150 * If the folio is currently being written back to storage, wait for the
3151 * I/O to complete.
3152 *
3153 * Context: Sleeps. Must be called in process context and with
3154 * no spinlocks held. Caller should hold a reference on the folio.
3155 * If the folio is not locked, writeback may start again after writeback
3156 * has finished.
3157 */
3158void folio_wait_writeback(struct folio *folio)
3159{
3160 while (folio_test_writeback(folio)) {
3161 trace_folio_wait_writeback(folio, folio_mapping(folio));
3162 folio_wait_bit(folio, PG_writeback);
3163 }
3164}
3165EXPORT_SYMBOL_GPL(folio_wait_writeback);
3166
3167/**
3168 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3169 * @folio: The folio to wait for.
3170 *
3171 * If the folio is currently being written back to storage, wait for the
3172 * I/O to complete or a fatal signal to arrive.
3173 *
3174 * Context: Sleeps. Must be called in process context and with
3175 * no spinlocks held. Caller should hold a reference on the folio.
3176 * If the folio is not locked, writeback may start again after writeback
3177 * has finished.
3178 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3179 */
3180int folio_wait_writeback_killable(struct folio *folio)
3181{
3182 while (folio_test_writeback(folio)) {
3183 trace_folio_wait_writeback(folio, folio_mapping(folio));
3184 if (folio_wait_bit_killable(folio, PG_writeback))
3185 return -EINTR;
3186 }
3187
3188 return 0;
3189}
3190EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3191
3192/**
3193 * folio_wait_stable() - wait for writeback to finish, if necessary.
3194 * @folio: The folio to wait on.
3195 *
3196 * This function determines if the given folio is related to a backing
3197 * device that requires folio contents to be held stable during writeback.
3198 * If so, then it will wait for any pending writeback to complete.
3199 *
3200 * Context: Sleeps. Must be called in process context and with
3201 * no spinlocks held. Caller should hold a reference on the folio.
3202 * If the folio is not locked, writeback may start again after writeback
3203 * has finished.
3204 */
3205void folio_wait_stable(struct folio *folio)
3206{
3207 if (mapping_stable_writes(folio_mapping(folio)))
3208 folio_wait_writeback(folio);
3209}
3210EXPORT_SYMBOL_GPL(folio_wait_stable);