Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "mem-info.h"
20#include "path.h"
21#include "srcline.h"
22#include "symbol.h"
23#include "sort.h"
24#include "strlist.h"
25#include "target.h"
26#include "thread.h"
27#include "util.h"
28#include "vdso.h"
29#include <stdbool.h>
30#include <sys/types.h>
31#include <sys/stat.h>
32#include <unistd.h>
33#include "unwind.h"
34#include "linux/hash.h"
35#include "asm/bug.h"
36#include "bpf-event.h"
37#include <internal/lib.h> // page_size
38#include "cgroup.h"
39#include "arm64-frame-pointer-unwind-support.h"
40
41#include <linux/ctype.h>
42#include <symbol/kallsyms.h>
43#include <linux/mman.h>
44#include <linux/string.h>
45#include <linux/zalloc.h>
46
47static struct dso *machine__kernel_dso(struct machine *machine)
48{
49 return map__dso(machine->vmlinux_map);
50}
51
52static int machine__set_mmap_name(struct machine *machine)
53{
54 if (machine__is_host(machine))
55 machine->mmap_name = strdup("[kernel.kallsyms]");
56 else if (machine__is_default_guest(machine))
57 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 machine->pid) < 0)
60 machine->mmap_name = NULL;
61
62 return machine->mmap_name ? 0 : -ENOMEM;
63}
64
65static void thread__set_guest_comm(struct thread *thread, pid_t pid)
66{
67 char comm[64];
68
69 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
70 thread__set_comm(thread, comm, 0);
71}
72
73int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
74{
75 int err = -ENOMEM;
76
77 memset(machine, 0, sizeof(*machine));
78 machine->kmaps = maps__new(machine);
79 if (machine->kmaps == NULL)
80 return -ENOMEM;
81
82 RB_CLEAR_NODE(&machine->rb_node);
83 dsos__init(&machine->dsos);
84
85 threads__init(&machine->threads);
86
87 machine->vdso_info = NULL;
88 machine->env = NULL;
89
90 machine->pid = pid;
91
92 machine->id_hdr_size = 0;
93 machine->kptr_restrict_warned = false;
94 machine->comm_exec = false;
95 machine->kernel_start = 0;
96 machine->vmlinux_map = NULL;
97
98 machine->root_dir = strdup(root_dir);
99 if (machine->root_dir == NULL)
100 goto out;
101
102 if (machine__set_mmap_name(machine))
103 goto out;
104
105 if (pid != HOST_KERNEL_ID) {
106 struct thread *thread = machine__findnew_thread(machine, -1,
107 pid);
108
109 if (thread == NULL)
110 goto out;
111
112 thread__set_guest_comm(thread, pid);
113 thread__put(thread);
114 }
115
116 machine->current_tid = NULL;
117 err = 0;
118
119out:
120 if (err) {
121 zfree(&machine->kmaps);
122 zfree(&machine->root_dir);
123 zfree(&machine->mmap_name);
124 }
125 return 0;
126}
127
128struct machine *machine__new_host(void)
129{
130 struct machine *machine = malloc(sizeof(*machine));
131
132 if (machine != NULL) {
133 machine__init(machine, "", HOST_KERNEL_ID);
134
135 if (machine__create_kernel_maps(machine) < 0)
136 goto out_delete;
137 }
138
139 return machine;
140out_delete:
141 free(machine);
142 return NULL;
143}
144
145struct machine *machine__new_kallsyms(void)
146{
147 struct machine *machine = machine__new_host();
148 /*
149 * FIXME:
150 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
151 * ask for not using the kcore parsing code, once this one is fixed
152 * to create a map per module.
153 */
154 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
155 machine__delete(machine);
156 machine = NULL;
157 }
158
159 return machine;
160}
161
162void machine__delete_threads(struct machine *machine)
163{
164 threads__remove_all_threads(&machine->threads);
165}
166
167void machine__exit(struct machine *machine)
168{
169 if (machine == NULL)
170 return;
171
172 machine__destroy_kernel_maps(machine);
173 maps__zput(machine->kmaps);
174 dsos__exit(&machine->dsos);
175 machine__exit_vdso(machine);
176 zfree(&machine->root_dir);
177 zfree(&machine->mmap_name);
178 zfree(&machine->current_tid);
179 zfree(&machine->kallsyms_filename);
180
181 threads__exit(&machine->threads);
182}
183
184void machine__delete(struct machine *machine)
185{
186 if (machine) {
187 machine__exit(machine);
188 free(machine);
189 }
190}
191
192void machines__init(struct machines *machines)
193{
194 machine__init(&machines->host, "", HOST_KERNEL_ID);
195 machines->guests = RB_ROOT_CACHED;
196}
197
198void machines__exit(struct machines *machines)
199{
200 machine__exit(&machines->host);
201 /* XXX exit guest */
202}
203
204struct machine *machines__add(struct machines *machines, pid_t pid,
205 const char *root_dir)
206{
207 struct rb_node **p = &machines->guests.rb_root.rb_node;
208 struct rb_node *parent = NULL;
209 struct machine *pos, *machine = malloc(sizeof(*machine));
210 bool leftmost = true;
211
212 if (machine == NULL)
213 return NULL;
214
215 if (machine__init(machine, root_dir, pid) != 0) {
216 free(machine);
217 return NULL;
218 }
219
220 while (*p != NULL) {
221 parent = *p;
222 pos = rb_entry(parent, struct machine, rb_node);
223 if (pid < pos->pid)
224 p = &(*p)->rb_left;
225 else {
226 p = &(*p)->rb_right;
227 leftmost = false;
228 }
229 }
230
231 rb_link_node(&machine->rb_node, parent, p);
232 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
233
234 machine->machines = machines;
235
236 return machine;
237}
238
239void machines__set_comm_exec(struct machines *machines, bool comm_exec)
240{
241 struct rb_node *nd;
242
243 machines->host.comm_exec = comm_exec;
244
245 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
246 struct machine *machine = rb_entry(nd, struct machine, rb_node);
247
248 machine->comm_exec = comm_exec;
249 }
250}
251
252struct machine *machines__find(struct machines *machines, pid_t pid)
253{
254 struct rb_node **p = &machines->guests.rb_root.rb_node;
255 struct rb_node *parent = NULL;
256 struct machine *machine;
257 struct machine *default_machine = NULL;
258
259 if (pid == HOST_KERNEL_ID)
260 return &machines->host;
261
262 while (*p != NULL) {
263 parent = *p;
264 machine = rb_entry(parent, struct machine, rb_node);
265 if (pid < machine->pid)
266 p = &(*p)->rb_left;
267 else if (pid > machine->pid)
268 p = &(*p)->rb_right;
269 else
270 return machine;
271 if (!machine->pid)
272 default_machine = machine;
273 }
274
275 return default_machine;
276}
277
278struct machine *machines__findnew(struct machines *machines, pid_t pid)
279{
280 char path[PATH_MAX];
281 const char *root_dir = "";
282 struct machine *machine = machines__find(machines, pid);
283
284 if (machine && (machine->pid == pid))
285 goto out;
286
287 if ((pid != HOST_KERNEL_ID) &&
288 (pid != DEFAULT_GUEST_KERNEL_ID) &&
289 (symbol_conf.guestmount)) {
290 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
291 if (access(path, R_OK)) {
292 static struct strlist *seen;
293
294 if (!seen)
295 seen = strlist__new(NULL, NULL);
296
297 if (!strlist__has_entry(seen, path)) {
298 pr_err("Can't access file %s\n", path);
299 strlist__add(seen, path);
300 }
301 machine = NULL;
302 goto out;
303 }
304 root_dir = path;
305 }
306
307 machine = machines__add(machines, pid, root_dir);
308out:
309 return machine;
310}
311
312struct machine *machines__find_guest(struct machines *machines, pid_t pid)
313{
314 struct machine *machine = machines__find(machines, pid);
315
316 if (!machine)
317 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
318 return machine;
319}
320
321/*
322 * A common case for KVM test programs is that the test program acts as the
323 * hypervisor, creating, running and destroying the virtual machine, and
324 * providing the guest object code from its own object code. In this case,
325 * the VM is not running an OS, but only the functions loaded into it by the
326 * hypervisor test program, and conveniently, loaded at the same virtual
327 * addresses.
328 *
329 * Normally to resolve addresses, MMAP events are needed to map addresses
330 * back to the object code and debug symbols for that object code.
331 *
332 * Currently, there is no way to get such mapping information from guests
333 * but, in the scenario described above, the guest has the same mappings
334 * as the hypervisor, so support for that scenario can be achieved.
335 *
336 * To support that, copy the host thread's maps to the guest thread's maps.
337 * Note, we do not discover the guest until we encounter a guest event,
338 * which works well because it is not until then that we know that the host
339 * thread's maps have been set up.
340 *
341 * This function returns the guest thread. Apart from keeping the data
342 * structures sane, using a thread belonging to the guest machine, instead
343 * of the host thread, allows it to have its own comm (refer
344 * thread__set_guest_comm()).
345 */
346static struct thread *findnew_guest_code(struct machine *machine,
347 struct machine *host_machine,
348 pid_t pid)
349{
350 struct thread *host_thread;
351 struct thread *thread;
352 int err;
353
354 if (!machine)
355 return NULL;
356
357 thread = machine__findnew_thread(machine, -1, pid);
358 if (!thread)
359 return NULL;
360
361 /* Assume maps are set up if there are any */
362 if (!maps__empty(thread__maps(thread)))
363 return thread;
364
365 host_thread = machine__find_thread(host_machine, -1, pid);
366 if (!host_thread)
367 goto out_err;
368
369 thread__set_guest_comm(thread, pid);
370
371 /*
372 * Guest code can be found in hypervisor process at the same address
373 * so copy host maps.
374 */
375 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
376 thread__put(host_thread);
377 if (err)
378 goto out_err;
379
380 return thread;
381
382out_err:
383 thread__zput(thread);
384 return NULL;
385}
386
387struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
388{
389 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
390 struct machine *machine = machines__findnew(machines, pid);
391
392 return findnew_guest_code(machine, host_machine, pid);
393}
394
395struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
396{
397 struct machines *machines = machine->machines;
398 struct machine *host_machine;
399
400 if (!machines)
401 return NULL;
402
403 host_machine = machines__find(machines, HOST_KERNEL_ID);
404
405 return findnew_guest_code(machine, host_machine, pid);
406}
407
408void machines__process_guests(struct machines *machines,
409 machine__process_t process, void *data)
410{
411 struct rb_node *nd;
412
413 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
414 struct machine *pos = rb_entry(nd, struct machine, rb_node);
415 process(pos, data);
416 }
417}
418
419void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
420{
421 struct rb_node *node;
422 struct machine *machine;
423
424 machines->host.id_hdr_size = id_hdr_size;
425
426 for (node = rb_first_cached(&machines->guests); node;
427 node = rb_next(node)) {
428 machine = rb_entry(node, struct machine, rb_node);
429 machine->id_hdr_size = id_hdr_size;
430 }
431
432 return;
433}
434
435static void machine__update_thread_pid(struct machine *machine,
436 struct thread *th, pid_t pid)
437{
438 struct thread *leader;
439
440 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
441 return;
442
443 thread__set_pid(th, pid);
444
445 if (thread__pid(th) == thread__tid(th))
446 return;
447
448 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
449 if (!leader)
450 goto out_err;
451
452 if (!thread__maps(leader))
453 thread__set_maps(leader, maps__new(machine));
454
455 if (!thread__maps(leader))
456 goto out_err;
457
458 if (thread__maps(th) == thread__maps(leader))
459 goto out_put;
460
461 if (thread__maps(th)) {
462 /*
463 * Maps are created from MMAP events which provide the pid and
464 * tid. Consequently there never should be any maps on a thread
465 * with an unknown pid. Just print an error if there are.
466 */
467 if (!maps__empty(thread__maps(th)))
468 pr_err("Discarding thread maps for %d:%d\n",
469 thread__pid(th), thread__tid(th));
470 maps__put(thread__maps(th));
471 }
472
473 thread__set_maps(th, maps__get(thread__maps(leader)));
474out_put:
475 thread__put(leader);
476 return;
477out_err:
478 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
479 goto out_put;
480}
481
482/*
483 * Caller must eventually drop thread->refcnt returned with a successful
484 * lookup/new thread inserted.
485 */
486static struct thread *__machine__findnew_thread(struct machine *machine,
487 pid_t pid,
488 pid_t tid,
489 bool create)
490{
491 struct thread *th = threads__find(&machine->threads, tid);
492 bool created;
493
494 if (th) {
495 machine__update_thread_pid(machine, th, pid);
496 return th;
497 }
498 if (!create)
499 return NULL;
500
501 th = threads__findnew(&machine->threads, pid, tid, &created);
502 if (created) {
503 /*
504 * We have to initialize maps separately after rb tree is
505 * updated.
506 *
507 * The reason is that we call machine__findnew_thread within
508 * thread__init_maps to find the thread leader and that would
509 * screwed the rb tree.
510 */
511 if (thread__init_maps(th, machine)) {
512 pr_err("Thread init failed thread %d\n", pid);
513 threads__remove(&machine->threads, th);
514 thread__put(th);
515 return NULL;
516 }
517 } else
518 machine__update_thread_pid(machine, th, pid);
519
520 return th;
521}
522
523struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
524{
525 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
526}
527
528struct thread *machine__find_thread(struct machine *machine, pid_t pid,
529 pid_t tid)
530{
531 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
532}
533
534/*
535 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
536 * So here a single thread is created for that, but actually there is a separate
537 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
538 * is only 1. That causes problems for some tools, requiring workarounds. For
539 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
540 */
541struct thread *machine__idle_thread(struct machine *machine)
542{
543 struct thread *thread = machine__findnew_thread(machine, 0, 0);
544
545 if (!thread || thread__set_comm(thread, "swapper", 0) ||
546 thread__set_namespaces(thread, 0, NULL))
547 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
548
549 return thread;
550}
551
552struct comm *machine__thread_exec_comm(struct machine *machine,
553 struct thread *thread)
554{
555 if (machine->comm_exec)
556 return thread__exec_comm(thread);
557 else
558 return thread__comm(thread);
559}
560
561int machine__process_comm_event(struct machine *machine, union perf_event *event,
562 struct perf_sample *sample)
563{
564 struct thread *thread = machine__findnew_thread(machine,
565 event->comm.pid,
566 event->comm.tid);
567 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
568 int err = 0;
569
570 if (exec)
571 machine->comm_exec = true;
572
573 if (dump_trace)
574 perf_event__fprintf_comm(event, stdout);
575
576 if (thread == NULL ||
577 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
578 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
579 err = -1;
580 }
581
582 thread__put(thread);
583
584 return err;
585}
586
587int machine__process_namespaces_event(struct machine *machine __maybe_unused,
588 union perf_event *event,
589 struct perf_sample *sample __maybe_unused)
590{
591 struct thread *thread = machine__findnew_thread(machine,
592 event->namespaces.pid,
593 event->namespaces.tid);
594 int err = 0;
595
596 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
597 "\nWARNING: kernel seems to support more namespaces than perf"
598 " tool.\nTry updating the perf tool..\n\n");
599
600 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
601 "\nWARNING: perf tool seems to support more namespaces than"
602 " the kernel.\nTry updating the kernel..\n\n");
603
604 if (dump_trace)
605 perf_event__fprintf_namespaces(event, stdout);
606
607 if (thread == NULL ||
608 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
609 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
610 err = -1;
611 }
612
613 thread__put(thread);
614
615 return err;
616}
617
618int machine__process_cgroup_event(struct machine *machine,
619 union perf_event *event,
620 struct perf_sample *sample __maybe_unused)
621{
622 struct cgroup *cgrp;
623
624 if (dump_trace)
625 perf_event__fprintf_cgroup(event, stdout);
626
627 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
628 if (cgrp == NULL)
629 return -ENOMEM;
630
631 return 0;
632}
633
634int machine__process_lost_event(struct machine *machine __maybe_unused,
635 union perf_event *event, struct perf_sample *sample __maybe_unused)
636{
637 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
638 event->lost.id, event->lost.lost);
639 return 0;
640}
641
642int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
643 union perf_event *event, struct perf_sample *sample)
644{
645 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
646 sample->id, event->lost_samples.lost);
647 return 0;
648}
649
650int machine__process_aux_event(struct machine *machine __maybe_unused,
651 union perf_event *event)
652{
653 if (dump_trace)
654 perf_event__fprintf_aux(event, stdout);
655 return 0;
656}
657
658int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
659 union perf_event *event)
660{
661 if (dump_trace)
662 perf_event__fprintf_itrace_start(event, stdout);
663 return 0;
664}
665
666int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
667 union perf_event *event)
668{
669 if (dump_trace)
670 perf_event__fprintf_aux_output_hw_id(event, stdout);
671 return 0;
672}
673
674int machine__process_switch_event(struct machine *machine __maybe_unused,
675 union perf_event *event)
676{
677 if (dump_trace)
678 perf_event__fprintf_switch(event, stdout);
679 return 0;
680}
681
682static int machine__process_ksymbol_register(struct machine *machine,
683 union perf_event *event,
684 struct perf_sample *sample __maybe_unused)
685{
686 struct symbol *sym;
687 struct dso *dso = NULL;
688 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
689 int err = 0;
690
691 if (!map) {
692 dso = dso__new(event->ksymbol.name);
693
694 if (!dso) {
695 err = -ENOMEM;
696 goto out;
697 }
698 dso__set_kernel(dso, DSO_SPACE__KERNEL);
699 map = map__new2(0, dso);
700 if (!map) {
701 err = -ENOMEM;
702 goto out;
703 }
704 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
705 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
706 dso__data(dso)->file_size = event->ksymbol.len;
707 dso__set_loaded(dso);
708 }
709
710 map__set_start(map, event->ksymbol.addr);
711 map__set_end(map, map__start(map) + event->ksymbol.len);
712 err = maps__insert(machine__kernel_maps(machine), map);
713 if (err) {
714 err = -ENOMEM;
715 goto out;
716 }
717
718 dso__set_loaded(dso);
719
720 if (is_bpf_image(event->ksymbol.name)) {
721 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
722 dso__set_long_name(dso, "", false);
723 }
724 } else {
725 dso = dso__get(map__dso(map));
726 }
727
728 sym = symbol__new(map__map_ip(map, map__start(map)),
729 event->ksymbol.len,
730 0, 0, event->ksymbol.name);
731 if (!sym) {
732 err = -ENOMEM;
733 goto out;
734 }
735 dso__insert_symbol(dso, sym);
736out:
737 map__put(map);
738 dso__put(dso);
739 return err;
740}
741
742static int machine__process_ksymbol_unregister(struct machine *machine,
743 union perf_event *event,
744 struct perf_sample *sample __maybe_unused)
745{
746 struct symbol *sym;
747 struct map *map;
748
749 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
750 if (!map)
751 return 0;
752
753 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
754 maps__remove(machine__kernel_maps(machine), map);
755 else {
756 struct dso *dso = map__dso(map);
757
758 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
759 if (sym)
760 dso__delete_symbol(dso, sym);
761 }
762 map__put(map);
763 return 0;
764}
765
766int machine__process_ksymbol(struct machine *machine __maybe_unused,
767 union perf_event *event,
768 struct perf_sample *sample)
769{
770 if (dump_trace)
771 perf_event__fprintf_ksymbol(event, stdout);
772
773 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
774 return machine__process_ksymbol_unregister(machine, event,
775 sample);
776 return machine__process_ksymbol_register(machine, event, sample);
777}
778
779int machine__process_text_poke(struct machine *machine, union perf_event *event,
780 struct perf_sample *sample __maybe_unused)
781{
782 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
783 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
784 struct dso *dso = map ? map__dso(map) : NULL;
785
786 if (dump_trace)
787 perf_event__fprintf_text_poke(event, machine, stdout);
788
789 if (!event->text_poke.new_len)
790 goto out;
791
792 if (cpumode != PERF_RECORD_MISC_KERNEL) {
793 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
794 goto out;
795 }
796
797 if (dso) {
798 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
799 int ret;
800
801 /*
802 * Kernel maps might be changed when loading symbols so loading
803 * must be done prior to using kernel maps.
804 */
805 map__load(map);
806 ret = dso__data_write_cache_addr(dso, map, machine,
807 event->text_poke.addr,
808 new_bytes,
809 event->text_poke.new_len);
810 if (ret != event->text_poke.new_len)
811 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
812 event->text_poke.addr);
813 } else {
814 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
815 event->text_poke.addr);
816 }
817out:
818 map__put(map);
819 return 0;
820}
821
822static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
823 const char *filename)
824{
825 struct map *map = NULL;
826 struct kmod_path m;
827 struct dso *dso;
828 int err;
829
830 if (kmod_path__parse_name(&m, filename))
831 return NULL;
832
833 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
834 if (dso == NULL)
835 goto out;
836
837 map = map__new2(start, dso);
838 if (map == NULL)
839 goto out;
840
841 err = maps__insert(machine__kernel_maps(machine), map);
842 /* If maps__insert failed, return NULL. */
843 if (err) {
844 map__put(map);
845 map = NULL;
846 }
847out:
848 /* put the dso here, corresponding to machine__findnew_module_dso */
849 dso__put(dso);
850 zfree(&m.name);
851 return map;
852}
853
854size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
855{
856 struct rb_node *nd;
857 size_t ret = dsos__fprintf(&machines->host.dsos, fp);
858
859 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
860 struct machine *pos = rb_entry(nd, struct machine, rb_node);
861 ret += dsos__fprintf(&pos->dsos, fp);
862 }
863
864 return ret;
865}
866
867size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
868 bool (skip)(struct dso *dso, int parm), int parm)
869{
870 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
871}
872
873size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
874 bool (skip)(struct dso *dso, int parm), int parm)
875{
876 struct rb_node *nd;
877 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
878
879 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
880 struct machine *pos = rb_entry(nd, struct machine, rb_node);
881 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
882 }
883 return ret;
884}
885
886size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
887{
888 int i;
889 size_t printed = 0;
890 struct dso *kdso = machine__kernel_dso(machine);
891
892 if (dso__has_build_id(kdso)) {
893 char filename[PATH_MAX];
894
895 if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
896 printed += fprintf(fp, "[0] %s\n", filename);
897 }
898
899 for (i = 0; i < vmlinux_path__nr_entries; ++i) {
900 printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
901 vmlinux_path[i]);
902 }
903 return printed;
904}
905
906struct machine_fprintf_cb_args {
907 FILE *fp;
908 size_t printed;
909};
910
911static int machine_fprintf_cb(struct thread *thread, void *data)
912{
913 struct machine_fprintf_cb_args *args = data;
914
915 /* TODO: handle fprintf errors. */
916 args->printed += thread__fprintf(thread, args->fp);
917 return 0;
918}
919
920size_t machine__fprintf(struct machine *machine, FILE *fp)
921{
922 struct machine_fprintf_cb_args args = {
923 .fp = fp,
924 .printed = 0,
925 };
926 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
927
928 machine__for_each_thread(machine, machine_fprintf_cb, &args);
929 return ret + args.printed;
930}
931
932static struct dso *machine__get_kernel(struct machine *machine)
933{
934 const char *vmlinux_name = machine->mmap_name;
935 struct dso *kernel;
936
937 if (machine__is_host(machine)) {
938 if (symbol_conf.vmlinux_name)
939 vmlinux_name = symbol_conf.vmlinux_name;
940
941 kernel = machine__findnew_kernel(machine, vmlinux_name,
942 "[kernel]", DSO_SPACE__KERNEL);
943 } else {
944 if (symbol_conf.default_guest_vmlinux_name)
945 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
946
947 kernel = machine__findnew_kernel(machine, vmlinux_name,
948 "[guest.kernel]",
949 DSO_SPACE__KERNEL_GUEST);
950 }
951
952 if (kernel != NULL && (!dso__has_build_id(kernel)))
953 dso__read_running_kernel_build_id(kernel, machine);
954
955 return kernel;
956}
957
958void machine__get_kallsyms_filename(struct machine *machine, char *buf,
959 size_t bufsz)
960{
961 if (machine__is_default_guest(machine))
962 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
963 else
964 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
965}
966
967const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
968
969/* Figure out the start address of kernel map from /proc/kallsyms.
970 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
971 * symbol_name if it's not that important.
972 */
973static int machine__get_running_kernel_start(struct machine *machine,
974 const char **symbol_name,
975 u64 *start, u64 *end)
976{
977 char filename[PATH_MAX];
978 int i, err = -1;
979 const char *name;
980 u64 addr = 0;
981
982 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
983
984 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
985 return 0;
986
987 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
988 err = kallsyms__get_function_start(filename, name, &addr);
989 if (!err)
990 break;
991 }
992
993 if (err)
994 return -1;
995
996 if (symbol_name)
997 *symbol_name = name;
998
999 *start = addr;
1000
1001 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1002 if (err)
1003 err = kallsyms__get_function_start(filename, "_etext", &addr);
1004 if (!err)
1005 *end = addr;
1006
1007 return 0;
1008}
1009
1010int machine__create_extra_kernel_map(struct machine *machine,
1011 struct dso *kernel,
1012 struct extra_kernel_map *xm)
1013{
1014 struct kmap *kmap;
1015 struct map *map;
1016 int err;
1017
1018 map = map__new2(xm->start, kernel);
1019 if (!map)
1020 return -ENOMEM;
1021
1022 map__set_end(map, xm->end);
1023 map__set_pgoff(map, xm->pgoff);
1024
1025 kmap = map__kmap(map);
1026
1027 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1028
1029 err = maps__insert(machine__kernel_maps(machine), map);
1030
1031 if (!err) {
1032 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1033 kmap->name, map__start(map), map__end(map));
1034 }
1035
1036 map__put(map);
1037
1038 return err;
1039}
1040
1041static u64 find_entry_trampoline(struct dso *dso)
1042{
1043 /* Duplicates are removed so lookup all aliases */
1044 const char *syms[] = {
1045 "_entry_trampoline",
1046 "__entry_trampoline_start",
1047 "entry_SYSCALL_64_trampoline",
1048 };
1049 struct symbol *sym = dso__first_symbol(dso);
1050 unsigned int i;
1051
1052 for (; sym; sym = dso__next_symbol(sym)) {
1053 if (sym->binding != STB_GLOBAL)
1054 continue;
1055 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1056 if (!strcmp(sym->name, syms[i]))
1057 return sym->start;
1058 }
1059 }
1060
1061 return 0;
1062}
1063
1064/*
1065 * These values can be used for kernels that do not have symbols for the entry
1066 * trampolines in kallsyms.
1067 */
1068#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1069#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1070#define X86_64_ENTRY_TRAMPOLINE 0x6000
1071
1072struct machine__map_x86_64_entry_trampolines_args {
1073 struct maps *kmaps;
1074 bool found;
1075};
1076
1077static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1078{
1079 struct machine__map_x86_64_entry_trampolines_args *args = data;
1080 struct map *dest_map;
1081 struct kmap *kmap = __map__kmap(map);
1082
1083 if (!kmap || !is_entry_trampoline(kmap->name))
1084 return 0;
1085
1086 dest_map = maps__find(args->kmaps, map__pgoff(map));
1087 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1088 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1089
1090 map__put(dest_map);
1091 args->found = true;
1092 return 0;
1093}
1094
1095/* Map x86_64 PTI entry trampolines */
1096int machine__map_x86_64_entry_trampolines(struct machine *machine,
1097 struct dso *kernel)
1098{
1099 struct machine__map_x86_64_entry_trampolines_args args = {
1100 .kmaps = machine__kernel_maps(machine),
1101 .found = false,
1102 };
1103 int nr_cpus_avail, cpu;
1104 u64 pgoff;
1105
1106 /*
1107 * In the vmlinux case, pgoff is a virtual address which must now be
1108 * mapped to a vmlinux offset.
1109 */
1110 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1111
1112 if (args.found || machine->trampolines_mapped)
1113 return 0;
1114
1115 pgoff = find_entry_trampoline(kernel);
1116 if (!pgoff)
1117 return 0;
1118
1119 nr_cpus_avail = machine__nr_cpus_avail(machine);
1120
1121 /* Add a 1 page map for each CPU's entry trampoline */
1122 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1123 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1124 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1125 X86_64_ENTRY_TRAMPOLINE;
1126 struct extra_kernel_map xm = {
1127 .start = va,
1128 .end = va + page_size,
1129 .pgoff = pgoff,
1130 };
1131
1132 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1133
1134 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1135 return -1;
1136 }
1137
1138 machine->trampolines_mapped = nr_cpus_avail;
1139
1140 return 0;
1141}
1142
1143int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1144 struct dso *kernel __maybe_unused)
1145{
1146 return 0;
1147}
1148
1149static int
1150__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1151{
1152 /* In case of renewal the kernel map, destroy previous one */
1153 machine__destroy_kernel_maps(machine);
1154
1155 map__put(machine->vmlinux_map);
1156 machine->vmlinux_map = map__new2(0, kernel);
1157 if (machine->vmlinux_map == NULL)
1158 return -ENOMEM;
1159
1160 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1161 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1162}
1163
1164void machine__destroy_kernel_maps(struct machine *machine)
1165{
1166 struct kmap *kmap;
1167 struct map *map = machine__kernel_map(machine);
1168
1169 if (map == NULL)
1170 return;
1171
1172 kmap = map__kmap(map);
1173 maps__remove(machine__kernel_maps(machine), map);
1174 if (kmap && kmap->ref_reloc_sym) {
1175 zfree((char **)&kmap->ref_reloc_sym->name);
1176 zfree(&kmap->ref_reloc_sym);
1177 }
1178
1179 map__zput(machine->vmlinux_map);
1180}
1181
1182int machines__create_guest_kernel_maps(struct machines *machines)
1183{
1184 int ret = 0;
1185 struct dirent **namelist = NULL;
1186 int i, items = 0;
1187 char path[PATH_MAX];
1188 pid_t pid;
1189 char *endp;
1190
1191 if (symbol_conf.default_guest_vmlinux_name ||
1192 symbol_conf.default_guest_modules ||
1193 symbol_conf.default_guest_kallsyms) {
1194 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1195 }
1196
1197 if (symbol_conf.guestmount) {
1198 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1199 if (items <= 0)
1200 return -ENOENT;
1201 for (i = 0; i < items; i++) {
1202 if (!isdigit(namelist[i]->d_name[0])) {
1203 /* Filter out . and .. */
1204 continue;
1205 }
1206 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1207 if ((*endp != '\0') ||
1208 (endp == namelist[i]->d_name) ||
1209 (errno == ERANGE)) {
1210 pr_debug("invalid directory (%s). Skipping.\n",
1211 namelist[i]->d_name);
1212 continue;
1213 }
1214 sprintf(path, "%s/%s/proc/kallsyms",
1215 symbol_conf.guestmount,
1216 namelist[i]->d_name);
1217 ret = access(path, R_OK);
1218 if (ret) {
1219 pr_debug("Can't access file %s\n", path);
1220 goto failure;
1221 }
1222 machines__create_kernel_maps(machines, pid);
1223 }
1224failure:
1225 free(namelist);
1226 }
1227
1228 return ret;
1229}
1230
1231void machines__destroy_kernel_maps(struct machines *machines)
1232{
1233 struct rb_node *next = rb_first_cached(&machines->guests);
1234
1235 machine__destroy_kernel_maps(&machines->host);
1236
1237 while (next) {
1238 struct machine *pos = rb_entry(next, struct machine, rb_node);
1239
1240 next = rb_next(&pos->rb_node);
1241 rb_erase_cached(&pos->rb_node, &machines->guests);
1242 machine__delete(pos);
1243 }
1244}
1245
1246int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1247{
1248 struct machine *machine = machines__findnew(machines, pid);
1249
1250 if (machine == NULL)
1251 return -1;
1252
1253 return machine__create_kernel_maps(machine);
1254}
1255
1256int machine__load_kallsyms(struct machine *machine, const char *filename)
1257{
1258 struct map *map = machine__kernel_map(machine);
1259 struct dso *dso = map__dso(map);
1260 int ret = __dso__load_kallsyms(dso, filename, map, true);
1261
1262 if (ret > 0) {
1263 dso__set_loaded(dso);
1264 /*
1265 * Since /proc/kallsyms will have multiple sessions for the
1266 * kernel, with modules between them, fixup the end of all
1267 * sections.
1268 */
1269 maps__fixup_end(machine__kernel_maps(machine));
1270 }
1271
1272 return ret;
1273}
1274
1275int machine__load_vmlinux_path(struct machine *machine)
1276{
1277 struct map *map = machine__kernel_map(machine);
1278 struct dso *dso = map__dso(map);
1279 int ret = dso__load_vmlinux_path(dso, map);
1280
1281 if (ret > 0)
1282 dso__set_loaded(dso);
1283
1284 return ret;
1285}
1286
1287static char *get_kernel_version(const char *root_dir)
1288{
1289 char version[PATH_MAX];
1290 FILE *file;
1291 char *name, *tmp;
1292 const char *prefix = "Linux version ";
1293
1294 sprintf(version, "%s/proc/version", root_dir);
1295 file = fopen(version, "r");
1296 if (!file)
1297 return NULL;
1298
1299 tmp = fgets(version, sizeof(version), file);
1300 fclose(file);
1301 if (!tmp)
1302 return NULL;
1303
1304 name = strstr(version, prefix);
1305 if (!name)
1306 return NULL;
1307 name += strlen(prefix);
1308 tmp = strchr(name, ' ');
1309 if (tmp)
1310 *tmp = '\0';
1311
1312 return strdup(name);
1313}
1314
1315static bool is_kmod_dso(struct dso *dso)
1316{
1317 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1318 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1319}
1320
1321static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1322{
1323 char *long_name;
1324 struct dso *dso;
1325 struct map *map = maps__find_by_name(maps, m->name);
1326
1327 if (map == NULL)
1328 return 0;
1329
1330 long_name = strdup(path);
1331 if (long_name == NULL) {
1332 map__put(map);
1333 return -ENOMEM;
1334 }
1335
1336 dso = map__dso(map);
1337 dso__set_long_name(dso, long_name, true);
1338 dso__kernel_module_get_build_id(dso, "");
1339
1340 /*
1341 * Full name could reveal us kmod compression, so
1342 * we need to update the symtab_type if needed.
1343 */
1344 if (m->comp && is_kmod_dso(dso)) {
1345 dso__set_symtab_type(dso, dso__symtab_type(dso));
1346 dso__set_comp(dso, m->comp);
1347 }
1348 map__put(map);
1349 return 0;
1350}
1351
1352static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1353{
1354 struct dirent *dent;
1355 DIR *dir = opendir(dir_name);
1356 int ret = 0;
1357
1358 if (!dir) {
1359 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1360 return -1;
1361 }
1362
1363 while ((dent = readdir(dir)) != NULL) {
1364 char path[PATH_MAX];
1365 struct stat st;
1366
1367 /*sshfs might return bad dent->d_type, so we have to stat*/
1368 path__join(path, sizeof(path), dir_name, dent->d_name);
1369 if (stat(path, &st))
1370 continue;
1371
1372 if (S_ISDIR(st.st_mode)) {
1373 if (!strcmp(dent->d_name, ".") ||
1374 !strcmp(dent->d_name, ".."))
1375 continue;
1376
1377 /* Do not follow top-level source and build symlinks */
1378 if (depth == 0) {
1379 if (!strcmp(dent->d_name, "source") ||
1380 !strcmp(dent->d_name, "build"))
1381 continue;
1382 }
1383
1384 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1385 if (ret < 0)
1386 goto out;
1387 } else {
1388 struct kmod_path m;
1389
1390 ret = kmod_path__parse_name(&m, dent->d_name);
1391 if (ret)
1392 goto out;
1393
1394 if (m.kmod)
1395 ret = maps__set_module_path(maps, path, &m);
1396
1397 zfree(&m.name);
1398
1399 if (ret)
1400 goto out;
1401 }
1402 }
1403
1404out:
1405 closedir(dir);
1406 return ret;
1407}
1408
1409static int machine__set_modules_path(struct machine *machine)
1410{
1411 char *version;
1412 char modules_path[PATH_MAX];
1413
1414 version = get_kernel_version(machine->root_dir);
1415 if (!version)
1416 return -1;
1417
1418 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1419 machine->root_dir, version);
1420 free(version);
1421
1422 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1423}
1424int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1425 u64 *size __maybe_unused,
1426 const char *name __maybe_unused)
1427{
1428 return 0;
1429}
1430
1431static int machine__create_module(void *arg, const char *name, u64 start,
1432 u64 size)
1433{
1434 struct machine *machine = arg;
1435 struct map *map;
1436
1437 if (arch__fix_module_text_start(&start, &size, name) < 0)
1438 return -1;
1439
1440 map = machine__addnew_module_map(machine, start, name);
1441 if (map == NULL)
1442 return -1;
1443 map__set_end(map, start + size);
1444
1445 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1446 map__put(map);
1447 return 0;
1448}
1449
1450static int machine__create_modules(struct machine *machine)
1451{
1452 const char *modules;
1453 char path[PATH_MAX];
1454
1455 if (machine__is_default_guest(machine)) {
1456 modules = symbol_conf.default_guest_modules;
1457 } else {
1458 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1459 modules = path;
1460 }
1461
1462 if (symbol__restricted_filename(modules, "/proc/modules"))
1463 return -1;
1464
1465 if (modules__parse(modules, machine, machine__create_module))
1466 return -1;
1467
1468 if (!machine__set_modules_path(machine))
1469 return 0;
1470
1471 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1472
1473 return 0;
1474}
1475
1476static void machine__set_kernel_mmap(struct machine *machine,
1477 u64 start, u64 end)
1478{
1479 map__set_start(machine->vmlinux_map, start);
1480 map__set_end(machine->vmlinux_map, end);
1481 /*
1482 * Be a bit paranoid here, some perf.data file came with
1483 * a zero sized synthesized MMAP event for the kernel.
1484 */
1485 if (start == 0 && end == 0)
1486 map__set_end(machine->vmlinux_map, ~0ULL);
1487}
1488
1489static int machine__update_kernel_mmap(struct machine *machine,
1490 u64 start, u64 end)
1491{
1492 struct map *orig, *updated;
1493 int err;
1494
1495 orig = machine->vmlinux_map;
1496 updated = map__get(orig);
1497
1498 machine->vmlinux_map = updated;
1499 maps__remove(machine__kernel_maps(machine), orig);
1500 machine__set_kernel_mmap(machine, start, end);
1501 err = maps__insert(machine__kernel_maps(machine), updated);
1502 map__put(orig);
1503
1504 return err;
1505}
1506
1507int machine__create_kernel_maps(struct machine *machine)
1508{
1509 struct dso *kernel = machine__get_kernel(machine);
1510 const char *name = NULL;
1511 u64 start = 0, end = ~0ULL;
1512 int ret;
1513
1514 if (kernel == NULL)
1515 return -1;
1516
1517 ret = __machine__create_kernel_maps(machine, kernel);
1518 if (ret < 0)
1519 goto out_put;
1520
1521 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1522 if (machine__is_host(machine))
1523 pr_debug("Problems creating module maps, "
1524 "continuing anyway...\n");
1525 else
1526 pr_debug("Problems creating module maps for guest %d, "
1527 "continuing anyway...\n", machine->pid);
1528 }
1529
1530 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1531 if (name &&
1532 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1533 machine__destroy_kernel_maps(machine);
1534 ret = -1;
1535 goto out_put;
1536 }
1537
1538 /*
1539 * we have a real start address now, so re-order the kmaps
1540 * assume it's the last in the kmaps
1541 */
1542 ret = machine__update_kernel_mmap(machine, start, end);
1543 if (ret < 0)
1544 goto out_put;
1545 }
1546
1547 if (machine__create_extra_kernel_maps(machine, kernel))
1548 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1549
1550 if (end == ~0ULL) {
1551 /* update end address of the kernel map using adjacent module address */
1552 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1553 machine__kernel_map(machine));
1554
1555 if (next) {
1556 machine__set_kernel_mmap(machine, start, map__start(next));
1557 map__put(next);
1558 }
1559 }
1560
1561out_put:
1562 dso__put(kernel);
1563 return ret;
1564}
1565
1566static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1567{
1568 return dso__is_kcore(dso) ? 1 : 0;
1569}
1570
1571static bool machine__uses_kcore(struct machine *machine)
1572{
1573 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1574}
1575
1576static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1577 struct extra_kernel_map *xm)
1578{
1579 return machine__is(machine, "x86_64") &&
1580 is_entry_trampoline(xm->name);
1581}
1582
1583static int machine__process_extra_kernel_map(struct machine *machine,
1584 struct extra_kernel_map *xm)
1585{
1586 struct dso *kernel = machine__kernel_dso(machine);
1587
1588 if (kernel == NULL)
1589 return -1;
1590
1591 return machine__create_extra_kernel_map(machine, kernel, xm);
1592}
1593
1594static int machine__process_kernel_mmap_event(struct machine *machine,
1595 struct extra_kernel_map *xm,
1596 struct build_id *bid)
1597{
1598 enum dso_space_type dso_space;
1599 bool is_kernel_mmap;
1600 const char *mmap_name = machine->mmap_name;
1601
1602 /* If we have maps from kcore then we do not need or want any others */
1603 if (machine__uses_kcore(machine))
1604 return 0;
1605
1606 if (machine__is_host(machine))
1607 dso_space = DSO_SPACE__KERNEL;
1608 else
1609 dso_space = DSO_SPACE__KERNEL_GUEST;
1610
1611 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1612 if (!is_kernel_mmap && !machine__is_host(machine)) {
1613 /*
1614 * If the event was recorded inside the guest and injected into
1615 * the host perf.data file, then it will match a host mmap_name,
1616 * so try that - see machine__set_mmap_name().
1617 */
1618 mmap_name = "[kernel.kallsyms]";
1619 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1620 }
1621 if (xm->name[0] == '/' ||
1622 (!is_kernel_mmap && xm->name[0] == '[')) {
1623 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1624
1625 if (map == NULL)
1626 goto out_problem;
1627
1628 map__set_end(map, map__start(map) + xm->end - xm->start);
1629
1630 if (build_id__is_defined(bid))
1631 dso__set_build_id(map__dso(map), bid);
1632
1633 map__put(map);
1634 } else if (is_kernel_mmap) {
1635 const char *symbol_name = xm->name + strlen(mmap_name);
1636 /*
1637 * Should be there already, from the build-id table in
1638 * the header.
1639 */
1640 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1641
1642 if (kernel == NULL)
1643 kernel = machine__findnew_dso(machine, machine->mmap_name);
1644 if (kernel == NULL)
1645 goto out_problem;
1646
1647 dso__set_kernel(kernel, dso_space);
1648 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1649 dso__put(kernel);
1650 goto out_problem;
1651 }
1652
1653 if (strstr(dso__long_name(kernel), "vmlinux"))
1654 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1655
1656 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1657 dso__put(kernel);
1658 goto out_problem;
1659 }
1660
1661 if (build_id__is_defined(bid))
1662 dso__set_build_id(kernel, bid);
1663
1664 /*
1665 * Avoid using a zero address (kptr_restrict) for the ref reloc
1666 * symbol. Effectively having zero here means that at record
1667 * time /proc/sys/kernel/kptr_restrict was non zero.
1668 */
1669 if (xm->pgoff != 0) {
1670 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1671 symbol_name,
1672 xm->pgoff);
1673 }
1674
1675 if (machine__is_default_guest(machine)) {
1676 /*
1677 * preload dso of guest kernel and modules
1678 */
1679 dso__load(kernel, machine__kernel_map(machine));
1680 }
1681 dso__put(kernel);
1682 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1683 return machine__process_extra_kernel_map(machine, xm);
1684 }
1685 return 0;
1686out_problem:
1687 return -1;
1688}
1689
1690int machine__process_mmap2_event(struct machine *machine,
1691 union perf_event *event,
1692 struct perf_sample *sample)
1693{
1694 struct thread *thread;
1695 struct map *map;
1696 struct dso_id dso_id = {
1697 .maj = event->mmap2.maj,
1698 .min = event->mmap2.min,
1699 .ino = event->mmap2.ino,
1700 .ino_generation = event->mmap2.ino_generation,
1701 };
1702 struct build_id __bid, *bid = NULL;
1703 int ret = 0;
1704
1705 if (dump_trace)
1706 perf_event__fprintf_mmap2(event, stdout);
1707
1708 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1709 bid = &__bid;
1710 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1711 }
1712
1713 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1714 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1715 struct extra_kernel_map xm = {
1716 .start = event->mmap2.start,
1717 .end = event->mmap2.start + event->mmap2.len,
1718 .pgoff = event->mmap2.pgoff,
1719 };
1720
1721 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1722 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1723 if (ret < 0)
1724 goto out_problem;
1725 return 0;
1726 }
1727
1728 thread = machine__findnew_thread(machine, event->mmap2.pid,
1729 event->mmap2.tid);
1730 if (thread == NULL)
1731 goto out_problem;
1732
1733 map = map__new(machine, event->mmap2.start,
1734 event->mmap2.len, event->mmap2.pgoff,
1735 &dso_id, event->mmap2.prot,
1736 event->mmap2.flags, bid,
1737 event->mmap2.filename, thread);
1738
1739 if (map == NULL)
1740 goto out_problem_map;
1741
1742 ret = thread__insert_map(thread, map);
1743 if (ret)
1744 goto out_problem_insert;
1745
1746 thread__put(thread);
1747 map__put(map);
1748 return 0;
1749
1750out_problem_insert:
1751 map__put(map);
1752out_problem_map:
1753 thread__put(thread);
1754out_problem:
1755 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1756 return 0;
1757}
1758
1759int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1760 struct perf_sample *sample)
1761{
1762 struct thread *thread;
1763 struct map *map;
1764 u32 prot = 0;
1765 int ret = 0;
1766
1767 if (dump_trace)
1768 perf_event__fprintf_mmap(event, stdout);
1769
1770 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1771 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1772 struct extra_kernel_map xm = {
1773 .start = event->mmap.start,
1774 .end = event->mmap.start + event->mmap.len,
1775 .pgoff = event->mmap.pgoff,
1776 };
1777
1778 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1779 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1780 if (ret < 0)
1781 goto out_problem;
1782 return 0;
1783 }
1784
1785 thread = machine__findnew_thread(machine, event->mmap.pid,
1786 event->mmap.tid);
1787 if (thread == NULL)
1788 goto out_problem;
1789
1790 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1791 prot = PROT_EXEC;
1792
1793 map = map__new(machine, event->mmap.start,
1794 event->mmap.len, event->mmap.pgoff,
1795 NULL, prot, 0, NULL, event->mmap.filename, thread);
1796
1797 if (map == NULL)
1798 goto out_problem_map;
1799
1800 ret = thread__insert_map(thread, map);
1801 if (ret)
1802 goto out_problem_insert;
1803
1804 thread__put(thread);
1805 map__put(map);
1806 return 0;
1807
1808out_problem_insert:
1809 map__put(map);
1810out_problem_map:
1811 thread__put(thread);
1812out_problem:
1813 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1814 return 0;
1815}
1816
1817void machine__remove_thread(struct machine *machine, struct thread *th)
1818{
1819 return threads__remove(&machine->threads, th);
1820}
1821
1822int machine__process_fork_event(struct machine *machine, union perf_event *event,
1823 struct perf_sample *sample)
1824{
1825 struct thread *thread = machine__find_thread(machine,
1826 event->fork.pid,
1827 event->fork.tid);
1828 struct thread *parent = machine__findnew_thread(machine,
1829 event->fork.ppid,
1830 event->fork.ptid);
1831 bool do_maps_clone = true;
1832 int err = 0;
1833
1834 if (dump_trace)
1835 perf_event__fprintf_task(event, stdout);
1836
1837 /*
1838 * There may be an existing thread that is not actually the parent,
1839 * either because we are processing events out of order, or because the
1840 * (fork) event that would have removed the thread was lost. Assume the
1841 * latter case and continue on as best we can.
1842 */
1843 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1844 dump_printf("removing erroneous parent thread %d/%d\n",
1845 thread__pid(parent), thread__tid(parent));
1846 machine__remove_thread(machine, parent);
1847 thread__put(parent);
1848 parent = machine__findnew_thread(machine, event->fork.ppid,
1849 event->fork.ptid);
1850 }
1851
1852 /* if a thread currently exists for the thread id remove it */
1853 if (thread != NULL) {
1854 machine__remove_thread(machine, thread);
1855 thread__put(thread);
1856 }
1857
1858 thread = machine__findnew_thread(machine, event->fork.pid,
1859 event->fork.tid);
1860 /*
1861 * When synthesizing FORK events, we are trying to create thread
1862 * objects for the already running tasks on the machine.
1863 *
1864 * Normally, for a kernel FORK event, we want to clone the parent's
1865 * maps because that is what the kernel just did.
1866 *
1867 * But when synthesizing, this should not be done. If we do, we end up
1868 * with overlapping maps as we process the synthesized MMAP2 events that
1869 * get delivered shortly thereafter.
1870 *
1871 * Use the FORK event misc flags in an internal way to signal this
1872 * situation, so we can elide the map clone when appropriate.
1873 */
1874 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1875 do_maps_clone = false;
1876
1877 if (thread == NULL || parent == NULL ||
1878 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1879 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1880 err = -1;
1881 }
1882 thread__put(thread);
1883 thread__put(parent);
1884
1885 return err;
1886}
1887
1888int machine__process_exit_event(struct machine *machine, union perf_event *event,
1889 struct perf_sample *sample __maybe_unused)
1890{
1891 struct thread *thread = machine__find_thread(machine,
1892 event->fork.pid,
1893 event->fork.tid);
1894
1895 if (dump_trace)
1896 perf_event__fprintf_task(event, stdout);
1897
1898 if (thread != NULL) {
1899 if (symbol_conf.keep_exited_threads)
1900 thread__set_exited(thread, /*exited=*/true);
1901 else
1902 machine__remove_thread(machine, thread);
1903 }
1904 thread__put(thread);
1905 return 0;
1906}
1907
1908int machine__process_event(struct machine *machine, union perf_event *event,
1909 struct perf_sample *sample)
1910{
1911 int ret;
1912
1913 switch (event->header.type) {
1914 case PERF_RECORD_COMM:
1915 ret = machine__process_comm_event(machine, event, sample); break;
1916 case PERF_RECORD_MMAP:
1917 ret = machine__process_mmap_event(machine, event, sample); break;
1918 case PERF_RECORD_NAMESPACES:
1919 ret = machine__process_namespaces_event(machine, event, sample); break;
1920 case PERF_RECORD_CGROUP:
1921 ret = machine__process_cgroup_event(machine, event, sample); break;
1922 case PERF_RECORD_MMAP2:
1923 ret = machine__process_mmap2_event(machine, event, sample); break;
1924 case PERF_RECORD_FORK:
1925 ret = machine__process_fork_event(machine, event, sample); break;
1926 case PERF_RECORD_EXIT:
1927 ret = machine__process_exit_event(machine, event, sample); break;
1928 case PERF_RECORD_LOST:
1929 ret = machine__process_lost_event(machine, event, sample); break;
1930 case PERF_RECORD_AUX:
1931 ret = machine__process_aux_event(machine, event); break;
1932 case PERF_RECORD_ITRACE_START:
1933 ret = machine__process_itrace_start_event(machine, event); break;
1934 case PERF_RECORD_LOST_SAMPLES:
1935 ret = machine__process_lost_samples_event(machine, event, sample); break;
1936 case PERF_RECORD_SWITCH:
1937 case PERF_RECORD_SWITCH_CPU_WIDE:
1938 ret = machine__process_switch_event(machine, event); break;
1939 case PERF_RECORD_KSYMBOL:
1940 ret = machine__process_ksymbol(machine, event, sample); break;
1941 case PERF_RECORD_BPF_EVENT:
1942 ret = machine__process_bpf(machine, event, sample); break;
1943 case PERF_RECORD_TEXT_POKE:
1944 ret = machine__process_text_poke(machine, event, sample); break;
1945 case PERF_RECORD_AUX_OUTPUT_HW_ID:
1946 ret = machine__process_aux_output_hw_id_event(machine, event); break;
1947 default:
1948 ret = -1;
1949 break;
1950 }
1951
1952 return ret;
1953}
1954
1955static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1956{
1957 return regexec(regex, sym->name, 0, NULL, 0) == 0;
1958}
1959
1960static void ip__resolve_ams(struct thread *thread,
1961 struct addr_map_symbol *ams,
1962 u64 ip)
1963{
1964 struct addr_location al;
1965
1966 addr_location__init(&al);
1967 /*
1968 * We cannot use the header.misc hint to determine whether a
1969 * branch stack address is user, kernel, guest, hypervisor.
1970 * Branches may straddle the kernel/user/hypervisor boundaries.
1971 * Thus, we have to try consecutively until we find a match
1972 * or else, the symbol is unknown
1973 */
1974 thread__find_cpumode_addr_location(thread, ip, &al);
1975
1976 ams->addr = ip;
1977 ams->al_addr = al.addr;
1978 ams->al_level = al.level;
1979 ams->ms.maps = maps__get(al.maps);
1980 ams->ms.sym = al.sym;
1981 ams->ms.map = map__get(al.map);
1982 ams->phys_addr = 0;
1983 ams->data_page_size = 0;
1984 addr_location__exit(&al);
1985}
1986
1987static void ip__resolve_data(struct thread *thread,
1988 u8 m, struct addr_map_symbol *ams,
1989 u64 addr, u64 phys_addr, u64 daddr_page_size)
1990{
1991 struct addr_location al;
1992
1993 addr_location__init(&al);
1994
1995 thread__find_symbol(thread, m, addr, &al);
1996
1997 ams->addr = addr;
1998 ams->al_addr = al.addr;
1999 ams->al_level = al.level;
2000 ams->ms.maps = maps__get(al.maps);
2001 ams->ms.sym = al.sym;
2002 ams->ms.map = map__get(al.map);
2003 ams->phys_addr = phys_addr;
2004 ams->data_page_size = daddr_page_size;
2005 addr_location__exit(&al);
2006}
2007
2008struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2009 struct addr_location *al)
2010{
2011 struct mem_info *mi = mem_info__new();
2012
2013 if (!mi)
2014 return NULL;
2015
2016 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2017 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2018 sample->addr, sample->phys_addr,
2019 sample->data_page_size);
2020 mem_info__data_src(mi)->val = sample->data_src;
2021
2022 return mi;
2023}
2024
2025static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2026{
2027 struct map *map = ms->map;
2028 char *srcline = NULL;
2029 struct dso *dso;
2030
2031 if (!map || callchain_param.key == CCKEY_FUNCTION)
2032 return srcline;
2033
2034 dso = map__dso(map);
2035 srcline = srcline__tree_find(dso__srclines(dso), ip);
2036 if (!srcline) {
2037 bool show_sym = false;
2038 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2039
2040 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2041 ms->sym, show_sym, show_addr, ip);
2042 srcline__tree_insert(dso__srclines(dso), ip, srcline);
2043 }
2044
2045 return srcline;
2046}
2047
2048struct iterations {
2049 int nr_loop_iter;
2050 u64 cycles;
2051};
2052
2053static int add_callchain_ip(struct thread *thread,
2054 struct callchain_cursor *cursor,
2055 struct symbol **parent,
2056 struct addr_location *root_al,
2057 u8 *cpumode,
2058 u64 ip,
2059 bool branch,
2060 struct branch_flags *flags,
2061 struct iterations *iter,
2062 u64 branch_from)
2063{
2064 struct map_symbol ms = {};
2065 struct addr_location al;
2066 int nr_loop_iter = 0, err = 0;
2067 u64 iter_cycles = 0;
2068 const char *srcline = NULL;
2069
2070 addr_location__init(&al);
2071 al.filtered = 0;
2072 al.sym = NULL;
2073 al.srcline = NULL;
2074 if (!cpumode) {
2075 thread__find_cpumode_addr_location(thread, ip, &al);
2076 } else {
2077 if (ip >= PERF_CONTEXT_MAX) {
2078 switch (ip) {
2079 case PERF_CONTEXT_HV:
2080 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2081 break;
2082 case PERF_CONTEXT_KERNEL:
2083 *cpumode = PERF_RECORD_MISC_KERNEL;
2084 break;
2085 case PERF_CONTEXT_USER:
2086 *cpumode = PERF_RECORD_MISC_USER;
2087 break;
2088 default:
2089 pr_debug("invalid callchain context: "
2090 "%"PRId64"\n", (s64) ip);
2091 /*
2092 * It seems the callchain is corrupted.
2093 * Discard all.
2094 */
2095 callchain_cursor_reset(cursor);
2096 err = 1;
2097 goto out;
2098 }
2099 goto out;
2100 }
2101 thread__find_symbol(thread, *cpumode, ip, &al);
2102 }
2103
2104 if (al.sym != NULL) {
2105 if (perf_hpp_list.parent && !*parent &&
2106 symbol__match_regex(al.sym, &parent_regex))
2107 *parent = al.sym;
2108 else if (have_ignore_callees && root_al &&
2109 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2110 /* Treat this symbol as the root,
2111 forgetting its callees. */
2112 addr_location__copy(root_al, &al);
2113 callchain_cursor_reset(cursor);
2114 }
2115 }
2116
2117 if (symbol_conf.hide_unresolved && al.sym == NULL)
2118 goto out;
2119
2120 if (iter) {
2121 nr_loop_iter = iter->nr_loop_iter;
2122 iter_cycles = iter->cycles;
2123 }
2124
2125 ms.maps = maps__get(al.maps);
2126 ms.map = map__get(al.map);
2127 ms.sym = al.sym;
2128 srcline = callchain_srcline(&ms, al.addr);
2129 err = callchain_cursor_append(cursor, ip, &ms,
2130 branch, flags, nr_loop_iter,
2131 iter_cycles, branch_from, srcline);
2132out:
2133 addr_location__exit(&al);
2134 map_symbol__exit(&ms);
2135 return err;
2136}
2137
2138struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2139 struct addr_location *al)
2140{
2141 unsigned int i;
2142 const struct branch_stack *bs = sample->branch_stack;
2143 struct branch_entry *entries = perf_sample__branch_entries(sample);
2144 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2145
2146 if (!bi)
2147 return NULL;
2148
2149 for (i = 0; i < bs->nr; i++) {
2150 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2151 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2152 bi[i].flags = entries[i].flags;
2153 }
2154 return bi;
2155}
2156
2157static void save_iterations(struct iterations *iter,
2158 struct branch_entry *be, int nr)
2159{
2160 int i;
2161
2162 iter->nr_loop_iter++;
2163 iter->cycles = 0;
2164
2165 for (i = 0; i < nr; i++)
2166 iter->cycles += be[i].flags.cycles;
2167}
2168
2169#define CHASHSZ 127
2170#define CHASHBITS 7
2171#define NO_ENTRY 0xff
2172
2173#define PERF_MAX_BRANCH_DEPTH 127
2174
2175/* Remove loops. */
2176static int remove_loops(struct branch_entry *l, int nr,
2177 struct iterations *iter)
2178{
2179 int i, j, off;
2180 unsigned char chash[CHASHSZ];
2181
2182 memset(chash, NO_ENTRY, sizeof(chash));
2183
2184 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2185
2186 for (i = 0; i < nr; i++) {
2187 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2188
2189 /* no collision handling for now */
2190 if (chash[h] == NO_ENTRY) {
2191 chash[h] = i;
2192 } else if (l[chash[h]].from == l[i].from) {
2193 bool is_loop = true;
2194 /* check if it is a real loop */
2195 off = 0;
2196 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2197 if (l[j].from != l[i + off].from) {
2198 is_loop = false;
2199 break;
2200 }
2201 if (is_loop) {
2202 j = nr - (i + off);
2203 if (j > 0) {
2204 save_iterations(iter + i + off,
2205 l + i, off);
2206
2207 memmove(iter + i, iter + i + off,
2208 j * sizeof(*iter));
2209
2210 memmove(l + i, l + i + off,
2211 j * sizeof(*l));
2212 }
2213
2214 nr -= off;
2215 }
2216 }
2217 }
2218 return nr;
2219}
2220
2221static int lbr_callchain_add_kernel_ip(struct thread *thread,
2222 struct callchain_cursor *cursor,
2223 struct perf_sample *sample,
2224 struct symbol **parent,
2225 struct addr_location *root_al,
2226 u64 branch_from,
2227 bool callee, int end)
2228{
2229 struct ip_callchain *chain = sample->callchain;
2230 u8 cpumode = PERF_RECORD_MISC_USER;
2231 int err, i;
2232
2233 if (callee) {
2234 for (i = 0; i < end + 1; i++) {
2235 err = add_callchain_ip(thread, cursor, parent,
2236 root_al, &cpumode, chain->ips[i],
2237 false, NULL, NULL, branch_from);
2238 if (err)
2239 return err;
2240 }
2241 return 0;
2242 }
2243
2244 for (i = end; i >= 0; i--) {
2245 err = add_callchain_ip(thread, cursor, parent,
2246 root_al, &cpumode, chain->ips[i],
2247 false, NULL, NULL, branch_from);
2248 if (err)
2249 return err;
2250 }
2251
2252 return 0;
2253}
2254
2255static void save_lbr_cursor_node(struct thread *thread,
2256 struct callchain_cursor *cursor,
2257 int idx)
2258{
2259 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2260
2261 if (!lbr_stitch)
2262 return;
2263
2264 if (cursor->pos == cursor->nr) {
2265 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2266 return;
2267 }
2268
2269 if (!cursor->curr)
2270 cursor->curr = cursor->first;
2271 else
2272 cursor->curr = cursor->curr->next;
2273 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2274 sizeof(struct callchain_cursor_node));
2275
2276 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2277 cursor->pos++;
2278}
2279
2280static int lbr_callchain_add_lbr_ip(struct thread *thread,
2281 struct callchain_cursor *cursor,
2282 struct perf_sample *sample,
2283 struct symbol **parent,
2284 struct addr_location *root_al,
2285 u64 *branch_from,
2286 bool callee)
2287{
2288 struct branch_stack *lbr_stack = sample->branch_stack;
2289 struct branch_entry *entries = perf_sample__branch_entries(sample);
2290 u8 cpumode = PERF_RECORD_MISC_USER;
2291 int lbr_nr = lbr_stack->nr;
2292 struct branch_flags *flags;
2293 int err, i;
2294 u64 ip;
2295
2296 /*
2297 * The curr and pos are not used in writing session. They are cleared
2298 * in callchain_cursor_commit() when the writing session is closed.
2299 * Using curr and pos to track the current cursor node.
2300 */
2301 if (thread__lbr_stitch(thread)) {
2302 cursor->curr = NULL;
2303 cursor->pos = cursor->nr;
2304 if (cursor->nr) {
2305 cursor->curr = cursor->first;
2306 for (i = 0; i < (int)(cursor->nr - 1); i++)
2307 cursor->curr = cursor->curr->next;
2308 }
2309 }
2310
2311 if (callee) {
2312 /* Add LBR ip from first entries.to */
2313 ip = entries[0].to;
2314 flags = &entries[0].flags;
2315 *branch_from = entries[0].from;
2316 err = add_callchain_ip(thread, cursor, parent,
2317 root_al, &cpumode, ip,
2318 true, flags, NULL,
2319 *branch_from);
2320 if (err)
2321 return err;
2322
2323 /*
2324 * The number of cursor node increases.
2325 * Move the current cursor node.
2326 * But does not need to save current cursor node for entry 0.
2327 * It's impossible to stitch the whole LBRs of previous sample.
2328 */
2329 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2330 if (!cursor->curr)
2331 cursor->curr = cursor->first;
2332 else
2333 cursor->curr = cursor->curr->next;
2334 cursor->pos++;
2335 }
2336
2337 /* Add LBR ip from entries.from one by one. */
2338 for (i = 0; i < lbr_nr; i++) {
2339 ip = entries[i].from;
2340 flags = &entries[i].flags;
2341 err = add_callchain_ip(thread, cursor, parent,
2342 root_al, &cpumode, ip,
2343 true, flags, NULL,
2344 *branch_from);
2345 if (err)
2346 return err;
2347 save_lbr_cursor_node(thread, cursor, i);
2348 }
2349 return 0;
2350 }
2351
2352 /* Add LBR ip from entries.from one by one. */
2353 for (i = lbr_nr - 1; i >= 0; i--) {
2354 ip = entries[i].from;
2355 flags = &entries[i].flags;
2356 err = add_callchain_ip(thread, cursor, parent,
2357 root_al, &cpumode, ip,
2358 true, flags, NULL,
2359 *branch_from);
2360 if (err)
2361 return err;
2362 save_lbr_cursor_node(thread, cursor, i);
2363 }
2364
2365 if (lbr_nr > 0) {
2366 /* Add LBR ip from first entries.to */
2367 ip = entries[0].to;
2368 flags = &entries[0].flags;
2369 *branch_from = entries[0].from;
2370 err = add_callchain_ip(thread, cursor, parent,
2371 root_al, &cpumode, ip,
2372 true, flags, NULL,
2373 *branch_from);
2374 if (err)
2375 return err;
2376 }
2377
2378 return 0;
2379}
2380
2381static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2382 struct callchain_cursor *cursor)
2383{
2384 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2385 struct callchain_cursor_node *cnode;
2386 struct stitch_list *stitch_node;
2387 int err;
2388
2389 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2390 cnode = &stitch_node->cursor;
2391
2392 err = callchain_cursor_append(cursor, cnode->ip,
2393 &cnode->ms,
2394 cnode->branch,
2395 &cnode->branch_flags,
2396 cnode->nr_loop_iter,
2397 cnode->iter_cycles,
2398 cnode->branch_from,
2399 cnode->srcline);
2400 if (err)
2401 return err;
2402 }
2403 return 0;
2404}
2405
2406static struct stitch_list *get_stitch_node(struct thread *thread)
2407{
2408 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2409 struct stitch_list *stitch_node;
2410
2411 if (!list_empty(&lbr_stitch->free_lists)) {
2412 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2413 struct stitch_list, node);
2414 list_del(&stitch_node->node);
2415
2416 return stitch_node;
2417 }
2418
2419 return malloc(sizeof(struct stitch_list));
2420}
2421
2422static bool has_stitched_lbr(struct thread *thread,
2423 struct perf_sample *cur,
2424 struct perf_sample *prev,
2425 unsigned int max_lbr,
2426 bool callee)
2427{
2428 struct branch_stack *cur_stack = cur->branch_stack;
2429 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2430 struct branch_stack *prev_stack = prev->branch_stack;
2431 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2432 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2433 int i, j, nr_identical_branches = 0;
2434 struct stitch_list *stitch_node;
2435 u64 cur_base, distance;
2436
2437 if (!cur_stack || !prev_stack)
2438 return false;
2439
2440 /* Find the physical index of the base-of-stack for current sample. */
2441 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2442
2443 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2444 (max_lbr + prev_stack->hw_idx - cur_base);
2445 /* Previous sample has shorter stack. Nothing can be stitched. */
2446 if (distance + 1 > prev_stack->nr)
2447 return false;
2448
2449 /*
2450 * Check if there are identical LBRs between two samples.
2451 * Identical LBRs must have same from, to and flags values. Also,
2452 * they have to be saved in the same LBR registers (same physical
2453 * index).
2454 *
2455 * Starts from the base-of-stack of current sample.
2456 */
2457 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2458 if ((prev_entries[i].from != cur_entries[j].from) ||
2459 (prev_entries[i].to != cur_entries[j].to) ||
2460 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2461 break;
2462 nr_identical_branches++;
2463 }
2464
2465 if (!nr_identical_branches)
2466 return false;
2467
2468 /*
2469 * Save the LBRs between the base-of-stack of previous sample
2470 * and the base-of-stack of current sample into lbr_stitch->lists.
2471 * These LBRs will be stitched later.
2472 */
2473 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2474
2475 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2476 continue;
2477
2478 stitch_node = get_stitch_node(thread);
2479 if (!stitch_node)
2480 return false;
2481
2482 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2483 sizeof(struct callchain_cursor_node));
2484
2485 if (callee)
2486 list_add(&stitch_node->node, &lbr_stitch->lists);
2487 else
2488 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2489 }
2490
2491 return true;
2492}
2493
2494static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2495{
2496 if (thread__lbr_stitch(thread))
2497 return true;
2498
2499 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2500 if (!thread__lbr_stitch(thread))
2501 goto err;
2502
2503 thread__lbr_stitch(thread)->prev_lbr_cursor =
2504 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2505 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2506 goto free_lbr_stitch;
2507
2508 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2509 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2510
2511 return true;
2512
2513free_lbr_stitch:
2514 free(thread__lbr_stitch(thread));
2515 thread__set_lbr_stitch(thread, NULL);
2516err:
2517 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2518 thread__set_lbr_stitch_enable(thread, false);
2519 return false;
2520}
2521
2522/*
2523 * Resolve LBR callstack chain sample
2524 * Return:
2525 * 1 on success get LBR callchain information
2526 * 0 no available LBR callchain information, should try fp
2527 * negative error code on other errors.
2528 */
2529static int resolve_lbr_callchain_sample(struct thread *thread,
2530 struct callchain_cursor *cursor,
2531 struct perf_sample *sample,
2532 struct symbol **parent,
2533 struct addr_location *root_al,
2534 int max_stack,
2535 unsigned int max_lbr)
2536{
2537 bool callee = (callchain_param.order == ORDER_CALLEE);
2538 struct ip_callchain *chain = sample->callchain;
2539 int chain_nr = min(max_stack, (int)chain->nr), i;
2540 struct lbr_stitch *lbr_stitch;
2541 bool stitched_lbr = false;
2542 u64 branch_from = 0;
2543 int err;
2544
2545 for (i = 0; i < chain_nr; i++) {
2546 if (chain->ips[i] == PERF_CONTEXT_USER)
2547 break;
2548 }
2549
2550 /* LBR only affects the user callchain */
2551 if (i == chain_nr)
2552 return 0;
2553
2554 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2555 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2556 lbr_stitch = thread__lbr_stitch(thread);
2557
2558 stitched_lbr = has_stitched_lbr(thread, sample,
2559 &lbr_stitch->prev_sample,
2560 max_lbr, callee);
2561
2562 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2563 list_replace_init(&lbr_stitch->lists,
2564 &lbr_stitch->free_lists);
2565 }
2566 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2567 }
2568
2569 if (callee) {
2570 /* Add kernel ip */
2571 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2572 parent, root_al, branch_from,
2573 true, i);
2574 if (err)
2575 goto error;
2576
2577 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2578 root_al, &branch_from, true);
2579 if (err)
2580 goto error;
2581
2582 if (stitched_lbr) {
2583 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2584 if (err)
2585 goto error;
2586 }
2587
2588 } else {
2589 if (stitched_lbr) {
2590 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2591 if (err)
2592 goto error;
2593 }
2594 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2595 root_al, &branch_from, false);
2596 if (err)
2597 goto error;
2598
2599 /* Add kernel ip */
2600 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2601 parent, root_al, branch_from,
2602 false, i);
2603 if (err)
2604 goto error;
2605 }
2606 return 1;
2607
2608error:
2609 return (err < 0) ? err : 0;
2610}
2611
2612static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2613 struct callchain_cursor *cursor,
2614 struct symbol **parent,
2615 struct addr_location *root_al,
2616 u8 *cpumode, int ent)
2617{
2618 int err = 0;
2619
2620 while (--ent >= 0) {
2621 u64 ip = chain->ips[ent];
2622
2623 if (ip >= PERF_CONTEXT_MAX) {
2624 err = add_callchain_ip(thread, cursor, parent,
2625 root_al, cpumode, ip,
2626 false, NULL, NULL, 0);
2627 break;
2628 }
2629 }
2630 return err;
2631}
2632
2633static u64 get_leaf_frame_caller(struct perf_sample *sample,
2634 struct thread *thread, int usr_idx)
2635{
2636 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2637 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2638 else
2639 return 0;
2640}
2641
2642static int thread__resolve_callchain_sample(struct thread *thread,
2643 struct callchain_cursor *cursor,
2644 struct evsel *evsel,
2645 struct perf_sample *sample,
2646 struct symbol **parent,
2647 struct addr_location *root_al,
2648 int max_stack)
2649{
2650 struct branch_stack *branch = sample->branch_stack;
2651 struct branch_entry *entries = perf_sample__branch_entries(sample);
2652 struct ip_callchain *chain = sample->callchain;
2653 int chain_nr = 0;
2654 u8 cpumode = PERF_RECORD_MISC_USER;
2655 int i, j, err, nr_entries, usr_idx;
2656 int skip_idx = -1;
2657 int first_call = 0;
2658 u64 leaf_frame_caller;
2659
2660 if (chain)
2661 chain_nr = chain->nr;
2662
2663 if (evsel__has_branch_callstack(evsel)) {
2664 struct perf_env *env = evsel__env(evsel);
2665
2666 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2667 root_al, max_stack,
2668 !env ? 0 : env->max_branches);
2669 if (err)
2670 return (err < 0) ? err : 0;
2671 }
2672
2673 /*
2674 * Based on DWARF debug information, some architectures skip
2675 * a callchain entry saved by the kernel.
2676 */
2677 skip_idx = arch_skip_callchain_idx(thread, chain);
2678
2679 /*
2680 * Add branches to call stack for easier browsing. This gives
2681 * more context for a sample than just the callers.
2682 *
2683 * This uses individual histograms of paths compared to the
2684 * aggregated histograms the normal LBR mode uses.
2685 *
2686 * Limitations for now:
2687 * - No extra filters
2688 * - No annotations (should annotate somehow)
2689 */
2690
2691 if (branch && callchain_param.branch_callstack) {
2692 int nr = min(max_stack, (int)branch->nr);
2693 struct branch_entry be[nr];
2694 struct iterations iter[nr];
2695
2696 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2697 pr_warning("corrupted branch chain. skipping...\n");
2698 goto check_calls;
2699 }
2700
2701 for (i = 0; i < nr; i++) {
2702 if (callchain_param.order == ORDER_CALLEE) {
2703 be[i] = entries[i];
2704
2705 if (chain == NULL)
2706 continue;
2707
2708 /*
2709 * Check for overlap into the callchain.
2710 * The return address is one off compared to
2711 * the branch entry. To adjust for this
2712 * assume the calling instruction is not longer
2713 * than 8 bytes.
2714 */
2715 if (i == skip_idx ||
2716 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2717 first_call++;
2718 else if (be[i].from < chain->ips[first_call] &&
2719 be[i].from >= chain->ips[first_call] - 8)
2720 first_call++;
2721 } else
2722 be[i] = entries[branch->nr - i - 1];
2723 }
2724
2725 memset(iter, 0, sizeof(struct iterations) * nr);
2726 nr = remove_loops(be, nr, iter);
2727
2728 for (i = 0; i < nr; i++) {
2729 err = add_callchain_ip(thread, cursor, parent,
2730 root_al,
2731 NULL, be[i].to,
2732 true, &be[i].flags,
2733 NULL, be[i].from);
2734
2735 if (!err)
2736 err = add_callchain_ip(thread, cursor, parent, root_al,
2737 NULL, be[i].from,
2738 true, &be[i].flags,
2739 &iter[i], 0);
2740 if (err == -EINVAL)
2741 break;
2742 if (err)
2743 return err;
2744 }
2745
2746 if (chain_nr == 0)
2747 return 0;
2748
2749 chain_nr -= nr;
2750 }
2751
2752check_calls:
2753 if (chain && callchain_param.order != ORDER_CALLEE) {
2754 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2755 &cpumode, chain->nr - first_call);
2756 if (err)
2757 return (err < 0) ? err : 0;
2758 }
2759 for (i = first_call, nr_entries = 0;
2760 i < chain_nr && nr_entries < max_stack; i++) {
2761 u64 ip;
2762
2763 if (callchain_param.order == ORDER_CALLEE)
2764 j = i;
2765 else
2766 j = chain->nr - i - 1;
2767
2768#ifdef HAVE_SKIP_CALLCHAIN_IDX
2769 if (j == skip_idx)
2770 continue;
2771#endif
2772 ip = chain->ips[j];
2773 if (ip < PERF_CONTEXT_MAX)
2774 ++nr_entries;
2775 else if (callchain_param.order != ORDER_CALLEE) {
2776 err = find_prev_cpumode(chain, thread, cursor, parent,
2777 root_al, &cpumode, j);
2778 if (err)
2779 return (err < 0) ? err : 0;
2780 continue;
2781 }
2782
2783 /*
2784 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2785 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2786 * the index will be different in order to add the missing frame
2787 * at the right place.
2788 */
2789
2790 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2791
2792 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2793
2794 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2795
2796 /*
2797 * check if leaf_frame_Caller != ip to not add the same
2798 * value twice.
2799 */
2800
2801 if (leaf_frame_caller && leaf_frame_caller != ip) {
2802
2803 err = add_callchain_ip(thread, cursor, parent,
2804 root_al, &cpumode, leaf_frame_caller,
2805 false, NULL, NULL, 0);
2806 if (err)
2807 return (err < 0) ? err : 0;
2808 }
2809 }
2810
2811 err = add_callchain_ip(thread, cursor, parent,
2812 root_al, &cpumode, ip,
2813 false, NULL, NULL, 0);
2814
2815 if (err)
2816 return (err < 0) ? err : 0;
2817 }
2818
2819 return 0;
2820}
2821
2822static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2823{
2824 struct symbol *sym = ms->sym;
2825 struct map *map = ms->map;
2826 struct inline_node *inline_node;
2827 struct inline_list *ilist;
2828 struct dso *dso;
2829 u64 addr;
2830 int ret = 1;
2831 struct map_symbol ilist_ms;
2832
2833 if (!symbol_conf.inline_name || !map || !sym)
2834 return ret;
2835
2836 addr = map__dso_map_ip(map, ip);
2837 addr = map__rip_2objdump(map, addr);
2838 dso = map__dso(map);
2839
2840 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2841 if (!inline_node) {
2842 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2843 if (!inline_node)
2844 return ret;
2845 inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2846 }
2847
2848 ilist_ms = (struct map_symbol) {
2849 .maps = maps__get(ms->maps),
2850 .map = map__get(map),
2851 };
2852 list_for_each_entry(ilist, &inline_node->val, list) {
2853 ilist_ms.sym = ilist->symbol;
2854 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2855 NULL, 0, 0, 0, ilist->srcline);
2856
2857 if (ret != 0)
2858 return ret;
2859 }
2860 map_symbol__exit(&ilist_ms);
2861
2862 return ret;
2863}
2864
2865static int unwind_entry(struct unwind_entry *entry, void *arg)
2866{
2867 struct callchain_cursor *cursor = arg;
2868 const char *srcline = NULL;
2869 u64 addr = entry->ip;
2870
2871 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2872 return 0;
2873
2874 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2875 return 0;
2876
2877 /*
2878 * Convert entry->ip from a virtual address to an offset in
2879 * its corresponding binary.
2880 */
2881 if (entry->ms.map)
2882 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2883
2884 srcline = callchain_srcline(&entry->ms, addr);
2885 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2886 false, NULL, 0, 0, 0, srcline);
2887}
2888
2889static int thread__resolve_callchain_unwind(struct thread *thread,
2890 struct callchain_cursor *cursor,
2891 struct evsel *evsel,
2892 struct perf_sample *sample,
2893 int max_stack)
2894{
2895 /* Can we do dwarf post unwind? */
2896 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2897 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2898 return 0;
2899
2900 /* Bail out if nothing was captured. */
2901 if ((!sample->user_regs.regs) ||
2902 (!sample->user_stack.size))
2903 return 0;
2904
2905 return unwind__get_entries(unwind_entry, cursor,
2906 thread, sample, max_stack, false);
2907}
2908
2909int thread__resolve_callchain(struct thread *thread,
2910 struct callchain_cursor *cursor,
2911 struct evsel *evsel,
2912 struct perf_sample *sample,
2913 struct symbol **parent,
2914 struct addr_location *root_al,
2915 int max_stack)
2916{
2917 int ret = 0;
2918
2919 if (cursor == NULL)
2920 return -ENOMEM;
2921
2922 callchain_cursor_reset(cursor);
2923
2924 if (callchain_param.order == ORDER_CALLEE) {
2925 ret = thread__resolve_callchain_sample(thread, cursor,
2926 evsel, sample,
2927 parent, root_al,
2928 max_stack);
2929 if (ret)
2930 return ret;
2931 ret = thread__resolve_callchain_unwind(thread, cursor,
2932 evsel, sample,
2933 max_stack);
2934 } else {
2935 ret = thread__resolve_callchain_unwind(thread, cursor,
2936 evsel, sample,
2937 max_stack);
2938 if (ret)
2939 return ret;
2940 ret = thread__resolve_callchain_sample(thread, cursor,
2941 evsel, sample,
2942 parent, root_al,
2943 max_stack);
2944 }
2945
2946 return ret;
2947}
2948
2949int machine__for_each_thread(struct machine *machine,
2950 int (*fn)(struct thread *thread, void *p),
2951 void *priv)
2952{
2953 return threads__for_each_thread(&machine->threads, fn, priv);
2954}
2955
2956int machines__for_each_thread(struct machines *machines,
2957 int (*fn)(struct thread *thread, void *p),
2958 void *priv)
2959{
2960 struct rb_node *nd;
2961 int rc = 0;
2962
2963 rc = machine__for_each_thread(&machines->host, fn, priv);
2964 if (rc != 0)
2965 return rc;
2966
2967 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2968 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2969
2970 rc = machine__for_each_thread(machine, fn, priv);
2971 if (rc != 0)
2972 return rc;
2973 }
2974 return rc;
2975}
2976
2977
2978static int thread_list_cb(struct thread *thread, void *data)
2979{
2980 struct list_head *list = data;
2981 struct thread_list *entry = malloc(sizeof(*entry));
2982
2983 if (!entry)
2984 return -ENOMEM;
2985
2986 entry->thread = thread__get(thread);
2987 list_add_tail(&entry->list, list);
2988 return 0;
2989}
2990
2991int machine__thread_list(struct machine *machine, struct list_head *list)
2992{
2993 return machine__for_each_thread(machine, thread_list_cb, list);
2994}
2995
2996void thread_list__delete(struct list_head *list)
2997{
2998 struct thread_list *pos, *next;
2999
3000 list_for_each_entry_safe(pos, next, list, list) {
3001 thread__zput(pos->thread);
3002 list_del(&pos->list);
3003 free(pos);
3004 }
3005}
3006
3007pid_t machine__get_current_tid(struct machine *machine, int cpu)
3008{
3009 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3010 return -1;
3011
3012 return machine->current_tid[cpu];
3013}
3014
3015int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3016 pid_t tid)
3017{
3018 struct thread *thread;
3019 const pid_t init_val = -1;
3020
3021 if (cpu < 0)
3022 return -EINVAL;
3023
3024 if (realloc_array_as_needed(machine->current_tid,
3025 machine->current_tid_sz,
3026 (unsigned int)cpu,
3027 &init_val))
3028 return -ENOMEM;
3029
3030 machine->current_tid[cpu] = tid;
3031
3032 thread = machine__findnew_thread(machine, pid, tid);
3033 if (!thread)
3034 return -ENOMEM;
3035
3036 thread__set_cpu(thread, cpu);
3037 thread__put(thread);
3038
3039 return 0;
3040}
3041
3042/*
3043 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3044 * machine__normalized_is() if a normalized arch is needed.
3045 */
3046bool machine__is(struct machine *machine, const char *arch)
3047{
3048 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3049}
3050
3051bool machine__normalized_is(struct machine *machine, const char *arch)
3052{
3053 return machine && !strcmp(perf_env__arch(machine->env), arch);
3054}
3055
3056int machine__nr_cpus_avail(struct machine *machine)
3057{
3058 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3059}
3060
3061int machine__get_kernel_start(struct machine *machine)
3062{
3063 struct map *map = machine__kernel_map(machine);
3064 int err = 0;
3065
3066 /*
3067 * The only addresses above 2^63 are kernel addresses of a 64-bit
3068 * kernel. Note that addresses are unsigned so that on a 32-bit system
3069 * all addresses including kernel addresses are less than 2^32. In
3070 * that case (32-bit system), if the kernel mapping is unknown, all
3071 * addresses will be assumed to be in user space - see
3072 * machine__kernel_ip().
3073 */
3074 machine->kernel_start = 1ULL << 63;
3075 if (map) {
3076 err = map__load(map);
3077 /*
3078 * On x86_64, PTI entry trampolines are less than the
3079 * start of kernel text, but still above 2^63. So leave
3080 * kernel_start = 1ULL << 63 for x86_64.
3081 */
3082 if (!err && !machine__is(machine, "x86_64"))
3083 machine->kernel_start = map__start(map);
3084 }
3085 return err;
3086}
3087
3088u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3089{
3090 u8 addr_cpumode = cpumode;
3091 bool kernel_ip;
3092
3093 if (!machine->single_address_space)
3094 goto out;
3095
3096 kernel_ip = machine__kernel_ip(machine, addr);
3097 switch (cpumode) {
3098 case PERF_RECORD_MISC_KERNEL:
3099 case PERF_RECORD_MISC_USER:
3100 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3101 PERF_RECORD_MISC_USER;
3102 break;
3103 case PERF_RECORD_MISC_GUEST_KERNEL:
3104 case PERF_RECORD_MISC_GUEST_USER:
3105 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3106 PERF_RECORD_MISC_GUEST_USER;
3107 break;
3108 default:
3109 break;
3110 }
3111out:
3112 return addr_cpumode;
3113}
3114
3115struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3116{
3117 return dsos__findnew_id(&machine->dsos, filename, id);
3118}
3119
3120struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3121{
3122 return machine__findnew_dso_id(machine, filename, NULL);
3123}
3124
3125char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3126{
3127 struct machine *machine = vmachine;
3128 struct map *map;
3129 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3130
3131 if (sym == NULL)
3132 return NULL;
3133
3134 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3135 *addrp = map__unmap_ip(map, sym->start);
3136 return sym->name;
3137}
3138
3139struct machine__for_each_dso_cb_args {
3140 struct machine *machine;
3141 machine__dso_t fn;
3142 void *priv;
3143};
3144
3145static int machine__for_each_dso_cb(struct dso *dso, void *data)
3146{
3147 struct machine__for_each_dso_cb_args *args = data;
3148
3149 return args->fn(dso, args->machine, args->priv);
3150}
3151
3152int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3153{
3154 struct machine__for_each_dso_cb_args args = {
3155 .machine = machine,
3156 .fn = fn,
3157 .priv = priv,
3158 };
3159
3160 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3161}
3162
3163int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3164{
3165 struct maps *maps = machine__kernel_maps(machine);
3166
3167 return maps__for_each_map(maps, fn, priv);
3168}
3169
3170bool machine__is_lock_function(struct machine *machine, u64 addr)
3171{
3172 if (!machine->sched.text_start) {
3173 struct map *kmap;
3174 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3175
3176 if (!sym) {
3177 /* to avoid retry */
3178 machine->sched.text_start = 1;
3179 return false;
3180 }
3181
3182 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3183
3184 /* should not fail from here */
3185 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3186 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3187
3188 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3189 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3190
3191 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3192 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3193
3194 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3195 if (sym) {
3196 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3197 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3198 }
3199 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3200 if (sym) {
3201 machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3202 machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3203 }
3204 }
3205
3206 /* failed to get kernel symbols */
3207 if (machine->sched.text_start == 1)
3208 return false;
3209
3210 /* mutex and rwsem functions are in sched text section */
3211 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3212 return true;
3213
3214 /* spinlock functions are in lock text section */
3215 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3216 return true;
3217
3218 /* traceiter functions currently don't have their own section
3219 * but we consider them lock functions
3220 */
3221 if (machine->traceiter.text_start != 0) {
3222 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3223 return true;
3224 }
3225
3226 if (machine->trace.text_start != 0) {
3227 if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3228 return true;
3229 }
3230
3231 return false;
3232}
3233
3234int machine__hit_all_dsos(struct machine *machine)
3235{
3236 return dsos__hit_all(&machine->dsos);
3237}