Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "messages.h"
11#include "misc.h"
12#include "ctree.h"
13#include "transaction.h"
14#include "btrfs_inode.h"
15#include "extent_io.h"
16#include "disk-io.h"
17#include "compression.h"
18#include "delalloc-space.h"
19#include "qgroup.h"
20#include "subpage.h"
21#include "file.h"
22
23static struct kmem_cache *btrfs_ordered_extent_cache;
24
25static u64 entry_end(struct btrfs_ordered_extent *entry)
26{
27 if (entry->file_offset + entry->num_bytes < entry->file_offset)
28 return (u64)-1;
29 return entry->file_offset + entry->num_bytes;
30}
31
32/* returns NULL if the insertion worked, or it returns the node it did find
33 * in the tree
34 */
35static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36 struct rb_node *node)
37{
38 struct rb_node **p = &root->rb_node;
39 struct rb_node *parent = NULL;
40 struct btrfs_ordered_extent *entry;
41
42 while (*p) {
43 parent = *p;
44 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
45
46 if (file_offset < entry->file_offset)
47 p = &(*p)->rb_left;
48 else if (file_offset >= entry_end(entry))
49 p = &(*p)->rb_right;
50 else
51 return parent;
52 }
53
54 rb_link_node(node, parent, p);
55 rb_insert_color(node, root);
56 return NULL;
57}
58
59/*
60 * look for a given offset in the tree, and if it can't be found return the
61 * first lesser offset
62 */
63static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
64 struct rb_node **prev_ret)
65{
66 struct rb_node *n = root->rb_node;
67 struct rb_node *prev = NULL;
68 struct rb_node *test;
69 struct btrfs_ordered_extent *entry;
70 struct btrfs_ordered_extent *prev_entry = NULL;
71
72 while (n) {
73 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
74 prev = n;
75 prev_entry = entry;
76
77 if (file_offset < entry->file_offset)
78 n = n->rb_left;
79 else if (file_offset >= entry_end(entry))
80 n = n->rb_right;
81 else
82 return n;
83 }
84 if (!prev_ret)
85 return NULL;
86
87 while (prev && file_offset >= entry_end(prev_entry)) {
88 test = rb_next(prev);
89 if (!test)
90 break;
91 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
92 rb_node);
93 if (file_offset < entry_end(prev_entry))
94 break;
95
96 prev = test;
97 }
98 if (prev)
99 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
100 rb_node);
101 while (prev && file_offset < entry_end(prev_entry)) {
102 test = rb_prev(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 prev = test;
108 }
109 *prev_ret = prev;
110 return NULL;
111}
112
113static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
114 u64 len)
115{
116 if (file_offset + len <= entry->file_offset ||
117 entry->file_offset + entry->num_bytes <= file_offset)
118 return 0;
119 return 1;
120}
121
122/*
123 * look find the first ordered struct that has this offset, otherwise
124 * the first one less than this offset
125 */
126static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
127 u64 file_offset)
128{
129 struct rb_node *prev = NULL;
130 struct rb_node *ret;
131 struct btrfs_ordered_extent *entry;
132
133 if (inode->ordered_tree_last) {
134 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
135 rb_node);
136 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
137 return inode->ordered_tree_last;
138 }
139 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
140 if (!ret)
141 ret = prev;
142 if (ret)
143 inode->ordered_tree_last = ret;
144 return ret;
145}
146
147static struct btrfs_ordered_extent *alloc_ordered_extent(
148 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
149 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
150 u64 offset, unsigned long flags, int compress_type)
151{
152 struct btrfs_ordered_extent *entry;
153 int ret;
154 u64 qgroup_rsv = 0;
155
156 if (flags &
157 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158 /* For nocow write, we can release the qgroup rsv right now */
159 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
160 if (ret < 0)
161 return ERR_PTR(ret);
162 } else {
163 /*
164 * The ordered extent has reserved qgroup space, release now
165 * and pass the reserved number for qgroup_record to free.
166 */
167 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
168 if (ret < 0)
169 return ERR_PTR(ret);
170 }
171 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172 if (!entry)
173 return ERR_PTR(-ENOMEM);
174
175 entry->file_offset = file_offset;
176 entry->num_bytes = num_bytes;
177 entry->ram_bytes = ram_bytes;
178 entry->disk_bytenr = disk_bytenr;
179 entry->disk_num_bytes = disk_num_bytes;
180 entry->offset = offset;
181 entry->bytes_left = num_bytes;
182 entry->inode = igrab(&inode->vfs_inode);
183 entry->compress_type = compress_type;
184 entry->truncated_len = (u64)-1;
185 entry->qgroup_rsv = qgroup_rsv;
186 entry->flags = flags;
187 refcount_set(&entry->refs, 1);
188 init_waitqueue_head(&entry->wait);
189 INIT_LIST_HEAD(&entry->list);
190 INIT_LIST_HEAD(&entry->log_list);
191 INIT_LIST_HEAD(&entry->root_extent_list);
192 INIT_LIST_HEAD(&entry->work_list);
193 INIT_LIST_HEAD(&entry->bioc_list);
194 init_completion(&entry->completion);
195
196 /*
197 * We don't need the count_max_extents here, we can assume that all of
198 * that work has been done at higher layers, so this is truly the
199 * smallest the extent is going to get.
200 */
201 spin_lock(&inode->lock);
202 btrfs_mod_outstanding_extents(inode, 1);
203 spin_unlock(&inode->lock);
204
205 return entry;
206}
207
208static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209{
210 struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 struct btrfs_root *root = inode->root;
212 struct btrfs_fs_info *fs_info = root->fs_info;
213 struct rb_node *node;
214
215 trace_btrfs_ordered_extent_add(inode, entry);
216
217 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218 fs_info->delalloc_batch);
219
220 /* One ref for the tree. */
221 refcount_inc(&entry->refs);
222
223 spin_lock_irq(&inode->ordered_tree_lock);
224 node = tree_insert(&inode->ordered_tree, entry->file_offset,
225 &entry->rb_node);
226 if (node)
227 btrfs_panic(fs_info, -EEXIST,
228 "inconsistency in ordered tree at offset %llu",
229 entry->file_offset);
230 spin_unlock_irq(&inode->ordered_tree_lock);
231
232 spin_lock(&root->ordered_extent_lock);
233 list_add_tail(&entry->root_extent_list,
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
237 spin_lock(&fs_info->ordered_root_lock);
238 BUG_ON(!list_empty(&root->ordered_root));
239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 spin_unlock(&fs_info->ordered_root_lock);
241 }
242 spin_unlock(&root->ordered_extent_lock);
243}
244
245/*
246 * Add an ordered extent to the per-inode tree.
247 *
248 * @inode: Inode that this extent is for.
249 * @file_offset: Logical offset in file where the extent starts.
250 * @num_bytes: Logical length of extent in file.
251 * @ram_bytes: Full length of unencoded data.
252 * @disk_bytenr: Offset of extent on disk.
253 * @disk_num_bytes: Size of extent on disk.
254 * @offset: Offset into unencoded data where file data starts.
255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256 * @compress_type: Compression algorithm used for data.
257 *
258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259 * tree is given a single reference on the ordered extent that was inserted, and
260 * the returned pointer is given a second reference.
261 *
262 * Return: the new ordered extent or error pointer.
263 */
264struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 struct btrfs_inode *inode, u64 file_offset,
266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 u64 disk_num_bytes, u64 offset, unsigned long flags,
268 int compress_type)
269{
270 struct btrfs_ordered_extent *entry;
271
272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 disk_bytenr, disk_num_bytes, offset, flags,
276 compress_type);
277 if (!IS_ERR(entry))
278 insert_ordered_extent(entry);
279 return entry;
280}
281
282/*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 struct btrfs_ordered_sum *sum)
289{
290 struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292 spin_lock_irq(&inode->ordered_tree_lock);
293 list_add_tail(&sum->list, &entry->list);
294 spin_unlock_irq(&inode->ordered_tree_lock);
295}
296
297void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
298{
299 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
300 mapping_set_error(ordered->inode->i_mapping, -EIO);
301}
302
303static void finish_ordered_fn(struct btrfs_work *work)
304{
305 struct btrfs_ordered_extent *ordered_extent;
306
307 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
308 btrfs_finish_ordered_io(ordered_extent);
309}
310
311static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
312 struct page *page, u64 file_offset,
313 u64 len, bool uptodate)
314{
315 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
316 struct btrfs_fs_info *fs_info = inode->root->fs_info;
317
318 lockdep_assert_held(&inode->ordered_tree_lock);
319
320 if (page) {
321 ASSERT(page->mapping);
322 ASSERT(page_offset(page) <= file_offset);
323 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
324
325 /*
326 * Ordered (Private2) bit indicates whether we still have
327 * pending io unfinished for the ordered extent.
328 *
329 * If there's no such bit, we need to skip to next range.
330 */
331 if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
332 file_offset, len))
333 return false;
334 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
335 }
336
337 /* Now we're fine to update the accounting. */
338 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
339 btrfs_crit(fs_info,
340"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
341 btrfs_root_id(inode->root), btrfs_ino(inode),
342 ordered->file_offset, ordered->num_bytes,
343 len, ordered->bytes_left);
344 ordered->bytes_left = 0;
345 } else {
346 ordered->bytes_left -= len;
347 }
348
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
351
352 if (ordered->bytes_left)
353 return false;
354
355 /*
356 * All the IO of the ordered extent is finished, we need to queue
357 * the finish_func to be executed.
358 */
359 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
360 cond_wake_up(&ordered->wait);
361 refcount_inc(&ordered->refs);
362 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
363 return true;
364}
365
366static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
367{
368 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
369 struct btrfs_fs_info *fs_info = inode->root->fs_info;
370 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
371 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
372
373 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
374 btrfs_queue_work(wq, &ordered->work);
375}
376
377bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
378 struct page *page, u64 file_offset, u64 len,
379 bool uptodate)
380{
381 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
382 unsigned long flags;
383 bool ret;
384
385 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
386
387 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
388 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
389 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
390
391 if (ret)
392 btrfs_queue_ordered_fn(ordered);
393 return ret;
394}
395
396/*
397 * Mark all ordered extents io inside the specified range finished.
398 *
399 * @page: The involved page for the operation.
400 * For uncompressed buffered IO, the page status also needs to be
401 * updated to indicate whether the pending ordered io is finished.
402 * Can be NULL for direct IO and compressed write.
403 * For these cases, callers are ensured they won't execute the
404 * endio function twice.
405 *
406 * This function is called for endio, thus the range must have ordered
407 * extent(s) covering it.
408 */
409void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
410 struct page *page, u64 file_offset,
411 u64 num_bytes, bool uptodate)
412{
413 struct rb_node *node;
414 struct btrfs_ordered_extent *entry = NULL;
415 unsigned long flags;
416 u64 cur = file_offset;
417
418 trace_btrfs_writepage_end_io_hook(inode, file_offset,
419 file_offset + num_bytes - 1,
420 uptodate);
421
422 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
423 while (cur < file_offset + num_bytes) {
424 u64 entry_end;
425 u64 end;
426 u32 len;
427
428 node = ordered_tree_search(inode, cur);
429 /* No ordered extents at all */
430 if (!node)
431 break;
432
433 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
434 entry_end = entry->file_offset + entry->num_bytes;
435 /*
436 * |<-- OE --->| |
437 * cur
438 * Go to next OE.
439 */
440 if (cur >= entry_end) {
441 node = rb_next(node);
442 /* No more ordered extents, exit */
443 if (!node)
444 break;
445 entry = rb_entry(node, struct btrfs_ordered_extent,
446 rb_node);
447
448 /* Go to next ordered extent and continue */
449 cur = entry->file_offset;
450 continue;
451 }
452 /*
453 * | |<--- OE --->|
454 * cur
455 * Go to the start of OE.
456 */
457 if (cur < entry->file_offset) {
458 cur = entry->file_offset;
459 continue;
460 }
461
462 /*
463 * Now we are definitely inside one ordered extent.
464 *
465 * |<--- OE --->|
466 * |
467 * cur
468 */
469 end = min(entry->file_offset + entry->num_bytes,
470 file_offset + num_bytes) - 1;
471 ASSERT(end + 1 - cur < U32_MAX);
472 len = end + 1 - cur;
473
474 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
475 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
476 btrfs_queue_ordered_fn(entry);
477 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
478 }
479 cur += len;
480 }
481 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
482}
483
484/*
485 * Finish IO for one ordered extent across a given range. The range can only
486 * contain one ordered extent.
487 *
488 * @cached: The cached ordered extent. If not NULL, we can skip the tree
489 * search and use the ordered extent directly.
490 * Will be also used to store the finished ordered extent.
491 * @file_offset: File offset for the finished IO
492 * @io_size: Length of the finish IO range
493 *
494 * Return true if the ordered extent is finished in the range, and update
495 * @cached.
496 * Return false otherwise.
497 *
498 * NOTE: The range can NOT cross multiple ordered extents.
499 * Thus caller should ensure the range doesn't cross ordered extents.
500 */
501bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
502 struct btrfs_ordered_extent **cached,
503 u64 file_offset, u64 io_size)
504{
505 struct rb_node *node;
506 struct btrfs_ordered_extent *entry = NULL;
507 unsigned long flags;
508 bool finished = false;
509
510 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
511 if (cached && *cached) {
512 entry = *cached;
513 goto have_entry;
514 }
515
516 node = ordered_tree_search(inode, file_offset);
517 if (!node)
518 goto out;
519
520 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
521have_entry:
522 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
523 goto out;
524
525 if (io_size > entry->bytes_left)
526 btrfs_crit(inode->root->fs_info,
527 "bad ordered accounting left %llu size %llu",
528 entry->bytes_left, io_size);
529
530 entry->bytes_left -= io_size;
531
532 if (entry->bytes_left == 0) {
533 /*
534 * Ensure only one caller can set the flag and finished_ret
535 * accordingly
536 */
537 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
538 /* test_and_set_bit implies a barrier */
539 cond_wake_up_nomb(&entry->wait);
540 }
541out:
542 if (finished && cached && entry) {
543 *cached = entry;
544 refcount_inc(&entry->refs);
545 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
546 }
547 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
548 return finished;
549}
550
551/*
552 * used to drop a reference on an ordered extent. This will free
553 * the extent if the last reference is dropped
554 */
555void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
556{
557 struct list_head *cur;
558 struct btrfs_ordered_sum *sum;
559
560 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
561
562 if (refcount_dec_and_test(&entry->refs)) {
563 ASSERT(list_empty(&entry->root_extent_list));
564 ASSERT(list_empty(&entry->log_list));
565 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
566 if (entry->inode)
567 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
568 while (!list_empty(&entry->list)) {
569 cur = entry->list.next;
570 sum = list_entry(cur, struct btrfs_ordered_sum, list);
571 list_del(&sum->list);
572 kvfree(sum);
573 }
574 kmem_cache_free(btrfs_ordered_extent_cache, entry);
575 }
576}
577
578/*
579 * remove an ordered extent from the tree. No references are dropped
580 * and waiters are woken up.
581 */
582void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
583 struct btrfs_ordered_extent *entry)
584{
585 struct btrfs_root *root = btrfs_inode->root;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587 struct rb_node *node;
588 bool pending;
589 bool freespace_inode;
590
591 /*
592 * If this is a free space inode the thread has not acquired the ordered
593 * extents lockdep map.
594 */
595 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
596
597 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
598 /* This is paired with btrfs_alloc_ordered_extent. */
599 spin_lock(&btrfs_inode->lock);
600 btrfs_mod_outstanding_extents(btrfs_inode, -1);
601 spin_unlock(&btrfs_inode->lock);
602 if (root != fs_info->tree_root) {
603 u64 release;
604
605 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
606 release = entry->disk_num_bytes;
607 else
608 release = entry->num_bytes;
609 btrfs_delalloc_release_metadata(btrfs_inode, release,
610 test_bit(BTRFS_ORDERED_IOERR,
611 &entry->flags));
612 }
613
614 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
615 fs_info->delalloc_batch);
616
617 spin_lock_irq(&btrfs_inode->ordered_tree_lock);
618 node = &entry->rb_node;
619 rb_erase(node, &btrfs_inode->ordered_tree);
620 RB_CLEAR_NODE(node);
621 if (btrfs_inode->ordered_tree_last == node)
622 btrfs_inode->ordered_tree_last = NULL;
623 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
624 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
625 spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
626
627 /*
628 * The current running transaction is waiting on us, we need to let it
629 * know that we're complete and wake it up.
630 */
631 if (pending) {
632 struct btrfs_transaction *trans;
633
634 /*
635 * The checks for trans are just a formality, it should be set,
636 * but if it isn't we don't want to deref/assert under the spin
637 * lock, so be nice and check if trans is set, but ASSERT() so
638 * if it isn't set a developer will notice.
639 */
640 spin_lock(&fs_info->trans_lock);
641 trans = fs_info->running_transaction;
642 if (trans)
643 refcount_inc(&trans->use_count);
644 spin_unlock(&fs_info->trans_lock);
645
646 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
647 if (trans) {
648 if (atomic_dec_and_test(&trans->pending_ordered))
649 wake_up(&trans->pending_wait);
650 btrfs_put_transaction(trans);
651 }
652 }
653
654 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
655
656 spin_lock(&root->ordered_extent_lock);
657 list_del_init(&entry->root_extent_list);
658 root->nr_ordered_extents--;
659
660 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
661
662 if (!root->nr_ordered_extents) {
663 spin_lock(&fs_info->ordered_root_lock);
664 BUG_ON(list_empty(&root->ordered_root));
665 list_del_init(&root->ordered_root);
666 spin_unlock(&fs_info->ordered_root_lock);
667 }
668 spin_unlock(&root->ordered_extent_lock);
669 wake_up(&entry->wait);
670 if (!freespace_inode)
671 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
672}
673
674static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
675{
676 struct btrfs_ordered_extent *ordered;
677
678 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
679 btrfs_start_ordered_extent(ordered);
680 complete(&ordered->completion);
681}
682
683/*
684 * wait for all the ordered extents in a root. This is done when balancing
685 * space between drives.
686 */
687u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
688 const u64 range_start, const u64 range_len)
689{
690 struct btrfs_fs_info *fs_info = root->fs_info;
691 LIST_HEAD(splice);
692 LIST_HEAD(skipped);
693 LIST_HEAD(works);
694 struct btrfs_ordered_extent *ordered, *next;
695 u64 count = 0;
696 const u64 range_end = range_start + range_len;
697
698 mutex_lock(&root->ordered_extent_mutex);
699 spin_lock(&root->ordered_extent_lock);
700 list_splice_init(&root->ordered_extents, &splice);
701 while (!list_empty(&splice) && nr) {
702 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
703 root_extent_list);
704
705 if (range_end <= ordered->disk_bytenr ||
706 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
707 list_move_tail(&ordered->root_extent_list, &skipped);
708 cond_resched_lock(&root->ordered_extent_lock);
709 continue;
710 }
711
712 list_move_tail(&ordered->root_extent_list,
713 &root->ordered_extents);
714 refcount_inc(&ordered->refs);
715 spin_unlock(&root->ordered_extent_lock);
716
717 btrfs_init_work(&ordered->flush_work,
718 btrfs_run_ordered_extent_work, NULL);
719 list_add_tail(&ordered->work_list, &works);
720 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
721
722 cond_resched();
723 spin_lock(&root->ordered_extent_lock);
724 if (nr != U64_MAX)
725 nr--;
726 count++;
727 }
728 list_splice_tail(&skipped, &root->ordered_extents);
729 list_splice_tail(&splice, &root->ordered_extents);
730 spin_unlock(&root->ordered_extent_lock);
731
732 list_for_each_entry_safe(ordered, next, &works, work_list) {
733 list_del_init(&ordered->work_list);
734 wait_for_completion(&ordered->completion);
735 btrfs_put_ordered_extent(ordered);
736 cond_resched();
737 }
738 mutex_unlock(&root->ordered_extent_mutex);
739
740 return count;
741}
742
743void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
744 const u64 range_start, const u64 range_len)
745{
746 struct btrfs_root *root;
747 LIST_HEAD(splice);
748 u64 done;
749
750 mutex_lock(&fs_info->ordered_operations_mutex);
751 spin_lock(&fs_info->ordered_root_lock);
752 list_splice_init(&fs_info->ordered_roots, &splice);
753 while (!list_empty(&splice) && nr) {
754 root = list_first_entry(&splice, struct btrfs_root,
755 ordered_root);
756 root = btrfs_grab_root(root);
757 BUG_ON(!root);
758 list_move_tail(&root->ordered_root,
759 &fs_info->ordered_roots);
760 spin_unlock(&fs_info->ordered_root_lock);
761
762 done = btrfs_wait_ordered_extents(root, nr,
763 range_start, range_len);
764 btrfs_put_root(root);
765
766 spin_lock(&fs_info->ordered_root_lock);
767 if (nr != U64_MAX) {
768 nr -= done;
769 }
770 }
771 list_splice_tail(&splice, &fs_info->ordered_roots);
772 spin_unlock(&fs_info->ordered_root_lock);
773 mutex_unlock(&fs_info->ordered_operations_mutex);
774}
775
776/*
777 * Start IO and wait for a given ordered extent to finish.
778 *
779 * Wait on page writeback for all the pages in the extent and the IO completion
780 * code to insert metadata into the btree corresponding to the extent.
781 */
782void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
783{
784 u64 start = entry->file_offset;
785 u64 end = start + entry->num_bytes - 1;
786 struct btrfs_inode *inode = BTRFS_I(entry->inode);
787 bool freespace_inode;
788
789 trace_btrfs_ordered_extent_start(inode, entry);
790
791 /*
792 * If this is a free space inode do not take the ordered extents lockdep
793 * map.
794 */
795 freespace_inode = btrfs_is_free_space_inode(inode);
796
797 /*
798 * pages in the range can be dirty, clean or writeback. We
799 * start IO on any dirty ones so the wait doesn't stall waiting
800 * for the flusher thread to find them
801 */
802 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
803 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
804
805 if (!freespace_inode)
806 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
807 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
808}
809
810/*
811 * Used to wait on ordered extents across a large range of bytes.
812 */
813int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
814{
815 int ret = 0;
816 int ret_wb = 0;
817 u64 end;
818 u64 orig_end;
819 struct btrfs_ordered_extent *ordered;
820
821 if (start + len < start) {
822 orig_end = OFFSET_MAX;
823 } else {
824 orig_end = start + len - 1;
825 if (orig_end > OFFSET_MAX)
826 orig_end = OFFSET_MAX;
827 }
828
829 /* start IO across the range first to instantiate any delalloc
830 * extents
831 */
832 ret = btrfs_fdatawrite_range(inode, start, orig_end);
833 if (ret)
834 return ret;
835
836 /*
837 * If we have a writeback error don't return immediately. Wait first
838 * for any ordered extents that haven't completed yet. This is to make
839 * sure no one can dirty the same page ranges and call writepages()
840 * before the ordered extents complete - to avoid failures (-EEXIST)
841 * when adding the new ordered extents to the ordered tree.
842 */
843 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
844
845 end = orig_end;
846 while (1) {
847 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
848 if (!ordered)
849 break;
850 if (ordered->file_offset > orig_end) {
851 btrfs_put_ordered_extent(ordered);
852 break;
853 }
854 if (ordered->file_offset + ordered->num_bytes <= start) {
855 btrfs_put_ordered_extent(ordered);
856 break;
857 }
858 btrfs_start_ordered_extent(ordered);
859 end = ordered->file_offset;
860 /*
861 * If the ordered extent had an error save the error but don't
862 * exit without waiting first for all other ordered extents in
863 * the range to complete.
864 */
865 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
866 ret = -EIO;
867 btrfs_put_ordered_extent(ordered);
868 if (end == 0 || end == start)
869 break;
870 end--;
871 }
872 return ret_wb ? ret_wb : ret;
873}
874
875/*
876 * find an ordered extent corresponding to file_offset. return NULL if
877 * nothing is found, otherwise take a reference on the extent and return it
878 */
879struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
880 u64 file_offset)
881{
882 struct rb_node *node;
883 struct btrfs_ordered_extent *entry = NULL;
884 unsigned long flags;
885
886 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
887 node = ordered_tree_search(inode, file_offset);
888 if (!node)
889 goto out;
890
891 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
892 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
893 entry = NULL;
894 if (entry) {
895 refcount_inc(&entry->refs);
896 trace_btrfs_ordered_extent_lookup(inode, entry);
897 }
898out:
899 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
900 return entry;
901}
902
903/* Since the DIO code tries to lock a wide area we need to look for any ordered
904 * extents that exist in the range, rather than just the start of the range.
905 */
906struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
907 struct btrfs_inode *inode, u64 file_offset, u64 len)
908{
909 struct rb_node *node;
910 struct btrfs_ordered_extent *entry = NULL;
911
912 spin_lock_irq(&inode->ordered_tree_lock);
913 node = ordered_tree_search(inode, file_offset);
914 if (!node) {
915 node = ordered_tree_search(inode, file_offset + len);
916 if (!node)
917 goto out;
918 }
919
920 while (1) {
921 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
922 if (range_overlaps(entry, file_offset, len))
923 break;
924
925 if (entry->file_offset >= file_offset + len) {
926 entry = NULL;
927 break;
928 }
929 entry = NULL;
930 node = rb_next(node);
931 if (!node)
932 break;
933 }
934out:
935 if (entry) {
936 refcount_inc(&entry->refs);
937 trace_btrfs_ordered_extent_lookup_range(inode, entry);
938 }
939 spin_unlock_irq(&inode->ordered_tree_lock);
940 return entry;
941}
942
943/*
944 * Adds all ordered extents to the given list. The list ends up sorted by the
945 * file_offset of the ordered extents.
946 */
947void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
948 struct list_head *list)
949{
950 struct rb_node *n;
951
952 ASSERT(inode_is_locked(&inode->vfs_inode));
953
954 spin_lock_irq(&inode->ordered_tree_lock);
955 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
956 struct btrfs_ordered_extent *ordered;
957
958 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
959
960 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
961 continue;
962
963 ASSERT(list_empty(&ordered->log_list));
964 list_add_tail(&ordered->log_list, list);
965 refcount_inc(&ordered->refs);
966 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
967 }
968 spin_unlock_irq(&inode->ordered_tree_lock);
969}
970
971/*
972 * lookup and return any extent before 'file_offset'. NULL is returned
973 * if none is found
974 */
975struct btrfs_ordered_extent *
976btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
977{
978 struct rb_node *node;
979 struct btrfs_ordered_extent *entry = NULL;
980
981 spin_lock_irq(&inode->ordered_tree_lock);
982 node = ordered_tree_search(inode, file_offset);
983 if (!node)
984 goto out;
985
986 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
987 refcount_inc(&entry->refs);
988 trace_btrfs_ordered_extent_lookup_first(inode, entry);
989out:
990 spin_unlock_irq(&inode->ordered_tree_lock);
991 return entry;
992}
993
994/*
995 * Lookup the first ordered extent that overlaps the range
996 * [@file_offset, @file_offset + @len).
997 *
998 * The difference between this and btrfs_lookup_first_ordered_extent() is
999 * that this one won't return any ordered extent that does not overlap the range.
1000 * And the difference against btrfs_lookup_ordered_extent() is, this function
1001 * ensures the first ordered extent gets returned.
1002 */
1003struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1004 struct btrfs_inode *inode, u64 file_offset, u64 len)
1005{
1006 struct rb_node *node;
1007 struct rb_node *cur;
1008 struct rb_node *prev;
1009 struct rb_node *next;
1010 struct btrfs_ordered_extent *entry = NULL;
1011
1012 spin_lock_irq(&inode->ordered_tree_lock);
1013 node = inode->ordered_tree.rb_node;
1014 /*
1015 * Here we don't want to use tree_search() which will use tree->last
1016 * and screw up the search order.
1017 * And __tree_search() can't return the adjacent ordered extents
1018 * either, thus here we do our own search.
1019 */
1020 while (node) {
1021 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1022
1023 if (file_offset < entry->file_offset) {
1024 node = node->rb_left;
1025 } else if (file_offset >= entry_end(entry)) {
1026 node = node->rb_right;
1027 } else {
1028 /*
1029 * Direct hit, got an ordered extent that starts at
1030 * @file_offset
1031 */
1032 goto out;
1033 }
1034 }
1035 if (!entry) {
1036 /* Empty tree */
1037 goto out;
1038 }
1039
1040 cur = &entry->rb_node;
1041 /* We got an entry around @file_offset, check adjacent entries */
1042 if (entry->file_offset < file_offset) {
1043 prev = cur;
1044 next = rb_next(cur);
1045 } else {
1046 prev = rb_prev(cur);
1047 next = cur;
1048 }
1049 if (prev) {
1050 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1051 if (range_overlaps(entry, file_offset, len))
1052 goto out;
1053 }
1054 if (next) {
1055 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1056 if (range_overlaps(entry, file_offset, len))
1057 goto out;
1058 }
1059 /* No ordered extent in the range */
1060 entry = NULL;
1061out:
1062 if (entry) {
1063 refcount_inc(&entry->refs);
1064 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1065 }
1066
1067 spin_unlock_irq(&inode->ordered_tree_lock);
1068 return entry;
1069}
1070
1071/*
1072 * Lock the passed range and ensures all pending ordered extents in it are run
1073 * to completion.
1074 *
1075 * @inode: Inode whose ordered tree is to be searched
1076 * @start: Beginning of range to flush
1077 * @end: Last byte of range to lock
1078 * @cached_state: If passed, will return the extent state responsible for the
1079 * locked range. It's the caller's responsibility to free the
1080 * cached state.
1081 *
1082 * Always return with the given range locked, ensuring after it's called no
1083 * order extent can be pending.
1084 */
1085void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1086 u64 end,
1087 struct extent_state **cached_state)
1088{
1089 struct btrfs_ordered_extent *ordered;
1090 struct extent_state *cache = NULL;
1091 struct extent_state **cachedp = &cache;
1092
1093 if (cached_state)
1094 cachedp = cached_state;
1095
1096 while (1) {
1097 lock_extent(&inode->io_tree, start, end, cachedp);
1098 ordered = btrfs_lookup_ordered_range(inode, start,
1099 end - start + 1);
1100 if (!ordered) {
1101 /*
1102 * If no external cached_state has been passed then
1103 * decrement the extra ref taken for cachedp since we
1104 * aren't exposing it outside of this function
1105 */
1106 if (!cached_state)
1107 refcount_dec(&cache->refs);
1108 break;
1109 }
1110 unlock_extent(&inode->io_tree, start, end, cachedp);
1111 btrfs_start_ordered_extent(ordered);
1112 btrfs_put_ordered_extent(ordered);
1113 }
1114}
1115
1116/*
1117 * Lock the passed range and ensure all pending ordered extents in it are run
1118 * to completion in nowait mode.
1119 *
1120 * Return true if btrfs_lock_ordered_range does not return any extents,
1121 * otherwise false.
1122 */
1123bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1124 struct extent_state **cached_state)
1125{
1126 struct btrfs_ordered_extent *ordered;
1127
1128 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1129 return false;
1130
1131 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1132 if (!ordered)
1133 return true;
1134
1135 btrfs_put_ordered_extent(ordered);
1136 unlock_extent(&inode->io_tree, start, end, cached_state);
1137
1138 return false;
1139}
1140
1141/* Split out a new ordered extent for this first @len bytes of @ordered. */
1142struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1143 struct btrfs_ordered_extent *ordered, u64 len)
1144{
1145 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1146 struct btrfs_root *root = inode->root;
1147 struct btrfs_fs_info *fs_info = root->fs_info;
1148 u64 file_offset = ordered->file_offset;
1149 u64 disk_bytenr = ordered->disk_bytenr;
1150 unsigned long flags = ordered->flags;
1151 struct btrfs_ordered_sum *sum, *tmpsum;
1152 struct btrfs_ordered_extent *new;
1153 struct rb_node *node;
1154 u64 offset = 0;
1155
1156 trace_btrfs_ordered_extent_split(inode, ordered);
1157
1158 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1159
1160 /*
1161 * The entire bio must be covered by the ordered extent, but we can't
1162 * reduce the original extent to a zero length either.
1163 */
1164 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1165 return ERR_PTR(-EINVAL);
1166 /* We cannot split partially completed ordered extents. */
1167 if (ordered->bytes_left) {
1168 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1169 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1170 return ERR_PTR(-EINVAL);
1171 }
1172 /* We cannot split a compressed ordered extent. */
1173 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1174 return ERR_PTR(-EINVAL);
1175
1176 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1177 len, 0, flags, ordered->compress_type);
1178 if (IS_ERR(new))
1179 return new;
1180
1181 /* One ref for the tree. */
1182 refcount_inc(&new->refs);
1183
1184 spin_lock_irq(&root->ordered_extent_lock);
1185 spin_lock(&inode->ordered_tree_lock);
1186 /* Remove from tree once */
1187 node = &ordered->rb_node;
1188 rb_erase(node, &inode->ordered_tree);
1189 RB_CLEAR_NODE(node);
1190 if (inode->ordered_tree_last == node)
1191 inode->ordered_tree_last = NULL;
1192
1193 ordered->file_offset += len;
1194 ordered->disk_bytenr += len;
1195 ordered->num_bytes -= len;
1196 ordered->disk_num_bytes -= len;
1197 ordered->ram_bytes -= len;
1198
1199 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1200 ASSERT(ordered->bytes_left == 0);
1201 new->bytes_left = 0;
1202 } else {
1203 ordered->bytes_left -= len;
1204 }
1205
1206 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1207 if (ordered->truncated_len > len) {
1208 ordered->truncated_len -= len;
1209 } else {
1210 new->truncated_len = ordered->truncated_len;
1211 ordered->truncated_len = 0;
1212 }
1213 }
1214
1215 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1216 if (offset == len)
1217 break;
1218 list_move_tail(&sum->list, &new->list);
1219 offset += sum->len;
1220 }
1221
1222 /* Re-insert the node */
1223 node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1224 &ordered->rb_node);
1225 if (node)
1226 btrfs_panic(fs_info, -EEXIST,
1227 "zoned: inconsistency in ordered tree at offset %llu",
1228 ordered->file_offset);
1229
1230 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1231 if (node)
1232 btrfs_panic(fs_info, -EEXIST,
1233 "zoned: inconsistency in ordered tree at offset %llu",
1234 new->file_offset);
1235 spin_unlock(&inode->ordered_tree_lock);
1236
1237 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1238 root->nr_ordered_extents++;
1239 spin_unlock_irq(&root->ordered_extent_lock);
1240 return new;
1241}
1242
1243int __init ordered_data_init(void)
1244{
1245 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1246 if (!btrfs_ordered_extent_cache)
1247 return -ENOMEM;
1248
1249 return 0;
1250}
1251
1252void __cold ordered_data_exit(void)
1253{
1254 kmem_cache_destroy(btrfs_ordered_extent_cache);
1255}