at v6.1 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/overflow.h> 17#include <linux/types.h> 18#include <linux/workqueue.h> 19#include <linux/percpu-refcount.h> 20 21 22/* 23 * Flags to pass to kmem_cache_create(). 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 25 */ 26/* DEBUG: Perform (expensive) checks on alloc/free */ 27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 28/* DEBUG: Red zone objs in a cache */ 29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 30/* DEBUG: Poison objects */ 31#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 32/* Indicate a kmalloc slab */ 33#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U) 34/* Align objs on cache lines */ 35#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 36/* Use GFP_DMA memory */ 37#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 38/* Use GFP_DMA32 memory */ 39#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 40/* DEBUG: Store the last owner for bug hunting */ 41#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 42/* Panic if kmem_cache_create() fails */ 43#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 44/* 45 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 46 * 47 * This delays freeing the SLAB page by a grace period, it does _NOT_ 48 * delay object freeing. This means that if you do kmem_cache_free() 49 * that memory location is free to be reused at any time. Thus it may 50 * be possible to see another object there in the same RCU grace period. 51 * 52 * This feature only ensures the memory location backing the object 53 * stays valid, the trick to using this is relying on an independent 54 * object validation pass. Something like: 55 * 56 * rcu_read_lock() 57 * again: 58 * obj = lockless_lookup(key); 59 * if (obj) { 60 * if (!try_get_ref(obj)) // might fail for free objects 61 * goto again; 62 * 63 * if (obj->key != key) { // not the object we expected 64 * put_ref(obj); 65 * goto again; 66 * } 67 * } 68 * rcu_read_unlock(); 69 * 70 * This is useful if we need to approach a kernel structure obliquely, 71 * from its address obtained without the usual locking. We can lock 72 * the structure to stabilize it and check it's still at the given address, 73 * only if we can be sure that the memory has not been meanwhile reused 74 * for some other kind of object (which our subsystem's lock might corrupt). 75 * 76 * rcu_read_lock before reading the address, then rcu_read_unlock after 77 * taking the spinlock within the structure expected at that address. 78 * 79 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 80 */ 81/* Defer freeing slabs to RCU */ 82#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 83/* Spread some memory over cpuset */ 84#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 85/* Trace allocations and frees */ 86#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 87 88/* Flag to prevent checks on free */ 89#ifdef CONFIG_DEBUG_OBJECTS 90# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 91#else 92# define SLAB_DEBUG_OBJECTS 0 93#endif 94 95/* Avoid kmemleak tracing */ 96#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 97 98/* Fault injection mark */ 99#ifdef CONFIG_FAILSLAB 100# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 101#else 102# define SLAB_FAILSLAB 0 103#endif 104/* Account to memcg */ 105#ifdef CONFIG_MEMCG_KMEM 106# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 107#else 108# define SLAB_ACCOUNT 0 109#endif 110 111#ifdef CONFIG_KASAN_GENERIC 112#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 113#else 114#define SLAB_KASAN 0 115#endif 116 117/* 118 * Ignore user specified debugging flags. 119 * Intended for caches created for self-tests so they have only flags 120 * specified in the code and other flags are ignored. 121 */ 122#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U) 123 124#ifdef CONFIG_KFENCE 125#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U) 126#else 127#define SLAB_SKIP_KFENCE 0 128#endif 129 130/* The following flags affect the page allocator grouping pages by mobility */ 131/* Objects are reclaimable */ 132#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 133#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 134 135/* 136 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 137 * 138 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 139 * 140 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 141 * Both make kfree a no-op. 142 */ 143#define ZERO_SIZE_PTR ((void *)16) 144 145#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 146 (unsigned long)ZERO_SIZE_PTR) 147 148#include <linux/kasan.h> 149 150struct list_lru; 151struct mem_cgroup; 152/* 153 * struct kmem_cache related prototypes 154 */ 155void __init kmem_cache_init(void); 156bool slab_is_available(void); 157 158struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 159 unsigned int align, slab_flags_t flags, 160 void (*ctor)(void *)); 161struct kmem_cache *kmem_cache_create_usercopy(const char *name, 162 unsigned int size, unsigned int align, 163 slab_flags_t flags, 164 unsigned int useroffset, unsigned int usersize, 165 void (*ctor)(void *)); 166void kmem_cache_destroy(struct kmem_cache *s); 167int kmem_cache_shrink(struct kmem_cache *s); 168 169/* 170 * Please use this macro to create slab caches. Simply specify the 171 * name of the structure and maybe some flags that are listed above. 172 * 173 * The alignment of the struct determines object alignment. If you 174 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 175 * then the objects will be properly aligned in SMP configurations. 176 */ 177#define KMEM_CACHE(__struct, __flags) \ 178 kmem_cache_create(#__struct, sizeof(struct __struct), \ 179 __alignof__(struct __struct), (__flags), NULL) 180 181/* 182 * To whitelist a single field for copying to/from usercopy, use this 183 * macro instead for KMEM_CACHE() above. 184 */ 185#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 186 kmem_cache_create_usercopy(#__struct, \ 187 sizeof(struct __struct), \ 188 __alignof__(struct __struct), (__flags), \ 189 offsetof(struct __struct, __field), \ 190 sizeof_field(struct __struct, __field), NULL) 191 192/* 193 * Common kmalloc functions provided by all allocators 194 */ 195void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2); 196void kfree(const void *objp); 197void kfree_sensitive(const void *objp); 198size_t __ksize(const void *objp); 199 200/** 201 * ksize - Report actual allocation size of associated object 202 * 203 * @objp: Pointer returned from a prior kmalloc()-family allocation. 204 * 205 * This should not be used for writing beyond the originally requested 206 * allocation size. Either use krealloc() or round up the allocation size 207 * with kmalloc_size_roundup() prior to allocation. If this is used to 208 * access beyond the originally requested allocation size, UBSAN_BOUNDS 209 * and/or FORTIFY_SOURCE may trip, since they only know about the 210 * originally allocated size via the __alloc_size attribute. 211 */ 212size_t ksize(const void *objp); 213 214#ifdef CONFIG_PRINTK 215bool kmem_valid_obj(void *object); 216void kmem_dump_obj(void *object); 217#endif 218 219/* 220 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 221 * alignment larger than the alignment of a 64-bit integer. 222 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 223 */ 224#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 225#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 226#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 227#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 228#else 229#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 230#endif 231 232/* 233 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 234 * Intended for arches that get misalignment faults even for 64 bit integer 235 * aligned buffers. 236 */ 237#ifndef ARCH_SLAB_MINALIGN 238#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 239#endif 240 241/* 242 * Arches can define this function if they want to decide the minimum slab 243 * alignment at runtime. The value returned by the function must be a power 244 * of two and >= ARCH_SLAB_MINALIGN. 245 */ 246#ifndef arch_slab_minalign 247static inline unsigned int arch_slab_minalign(void) 248{ 249 return ARCH_SLAB_MINALIGN; 250} 251#endif 252 253/* 254 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 255 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 256 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 257 */ 258#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 259#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 260#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 261 262/* 263 * Kmalloc array related definitions 264 */ 265 266#ifdef CONFIG_SLAB 267/* 268 * SLAB and SLUB directly allocates requests fitting in to an order-1 page 269 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 270 */ 271#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 272#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 273#ifndef KMALLOC_SHIFT_LOW 274#define KMALLOC_SHIFT_LOW 5 275#endif 276#endif 277 278#ifdef CONFIG_SLUB 279#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 280#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 281#ifndef KMALLOC_SHIFT_LOW 282#define KMALLOC_SHIFT_LOW 3 283#endif 284#endif 285 286#ifdef CONFIG_SLOB 287/* 288 * SLOB passes all requests larger than one page to the page allocator. 289 * No kmalloc array is necessary since objects of different sizes can 290 * be allocated from the same page. 291 */ 292#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 293#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 294#ifndef KMALLOC_SHIFT_LOW 295#define KMALLOC_SHIFT_LOW 3 296#endif 297#endif 298 299/* Maximum allocatable size */ 300#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 301/* Maximum size for which we actually use a slab cache */ 302#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 303/* Maximum order allocatable via the slab allocator */ 304#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 305 306/* 307 * Kmalloc subsystem. 308 */ 309#ifndef KMALLOC_MIN_SIZE 310#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 311#endif 312 313/* 314 * This restriction comes from byte sized index implementation. 315 * Page size is normally 2^12 bytes and, in this case, if we want to use 316 * byte sized index which can represent 2^8 entries, the size of the object 317 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 318 * If minimum size of kmalloc is less than 16, we use it as minimum object 319 * size and give up to use byte sized index. 320 */ 321#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 322 (KMALLOC_MIN_SIZE) : 16) 323 324/* 325 * Whenever changing this, take care of that kmalloc_type() and 326 * create_kmalloc_caches() still work as intended. 327 * 328 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 329 * is for accounted but unreclaimable and non-dma objects. All the other 330 * kmem caches can have both accounted and unaccounted objects. 331 */ 332enum kmalloc_cache_type { 333 KMALLOC_NORMAL = 0, 334#ifndef CONFIG_ZONE_DMA 335 KMALLOC_DMA = KMALLOC_NORMAL, 336#endif 337#ifndef CONFIG_MEMCG_KMEM 338 KMALLOC_CGROUP = KMALLOC_NORMAL, 339#else 340 KMALLOC_CGROUP, 341#endif 342 KMALLOC_RECLAIM, 343#ifdef CONFIG_ZONE_DMA 344 KMALLOC_DMA, 345#endif 346 NR_KMALLOC_TYPES 347}; 348 349#ifndef CONFIG_SLOB 350extern struct kmem_cache * 351kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 352 353/* 354 * Define gfp bits that should not be set for KMALLOC_NORMAL. 355 */ 356#define KMALLOC_NOT_NORMAL_BITS \ 357 (__GFP_RECLAIMABLE | \ 358 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 359 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 360 361static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 362{ 363 /* 364 * The most common case is KMALLOC_NORMAL, so test for it 365 * with a single branch for all the relevant flags. 366 */ 367 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 368 return KMALLOC_NORMAL; 369 370 /* 371 * At least one of the flags has to be set. Their priorities in 372 * decreasing order are: 373 * 1) __GFP_DMA 374 * 2) __GFP_RECLAIMABLE 375 * 3) __GFP_ACCOUNT 376 */ 377 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 378 return KMALLOC_DMA; 379 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 380 return KMALLOC_RECLAIM; 381 else 382 return KMALLOC_CGROUP; 383} 384 385/* 386 * Figure out which kmalloc slab an allocation of a certain size 387 * belongs to. 388 * 0 = zero alloc 389 * 1 = 65 .. 96 bytes 390 * 2 = 129 .. 192 bytes 391 * n = 2^(n-1)+1 .. 2^n 392 * 393 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 394 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 395 * Callers where !size_is_constant should only be test modules, where runtime 396 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 397 */ 398static __always_inline unsigned int __kmalloc_index(size_t size, 399 bool size_is_constant) 400{ 401 if (!size) 402 return 0; 403 404 if (size <= KMALLOC_MIN_SIZE) 405 return KMALLOC_SHIFT_LOW; 406 407 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 408 return 1; 409 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 410 return 2; 411 if (size <= 8) return 3; 412 if (size <= 16) return 4; 413 if (size <= 32) return 5; 414 if (size <= 64) return 6; 415 if (size <= 128) return 7; 416 if (size <= 256) return 8; 417 if (size <= 512) return 9; 418 if (size <= 1024) return 10; 419 if (size <= 2 * 1024) return 11; 420 if (size <= 4 * 1024) return 12; 421 if (size <= 8 * 1024) return 13; 422 if (size <= 16 * 1024) return 14; 423 if (size <= 32 * 1024) return 15; 424 if (size <= 64 * 1024) return 16; 425 if (size <= 128 * 1024) return 17; 426 if (size <= 256 * 1024) return 18; 427 if (size <= 512 * 1024) return 19; 428 if (size <= 1024 * 1024) return 20; 429 if (size <= 2 * 1024 * 1024) return 21; 430 431 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 432 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 433 else 434 BUG(); 435 436 /* Will never be reached. Needed because the compiler may complain */ 437 return -1; 438} 439static_assert(PAGE_SHIFT <= 20); 440#define kmalloc_index(s) __kmalloc_index(s, true) 441#endif /* !CONFIG_SLOB */ 442 443void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); 444void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc; 445void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 446 gfp_t gfpflags) __assume_slab_alignment __malloc; 447void kmem_cache_free(struct kmem_cache *s, void *objp); 448 449/* 450 * Bulk allocation and freeing operations. These are accelerated in an 451 * allocator specific way to avoid taking locks repeatedly or building 452 * metadata structures unnecessarily. 453 * 454 * Note that interrupts must be enabled when calling these functions. 455 */ 456void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 457int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 458 459/* 460 * Caller must not use kfree_bulk() on memory not originally allocated 461 * by kmalloc(), because the SLOB allocator cannot handle this. 462 */ 463static __always_inline void kfree_bulk(size_t size, void **p) 464{ 465 kmem_cache_free_bulk(NULL, size, p); 466} 467 468void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment 469 __alloc_size(1); 470void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment 471 __malloc; 472 473void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) 474 __assume_kmalloc_alignment __alloc_size(3); 475 476void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 477 int node, size_t size) __assume_kmalloc_alignment 478 __alloc_size(4); 479void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment 480 __alloc_size(1); 481 482void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment 483 __alloc_size(1); 484 485/** 486 * kmalloc - allocate memory 487 * @size: how many bytes of memory are required. 488 * @flags: the type of memory to allocate. 489 * 490 * kmalloc is the normal method of allocating memory 491 * for objects smaller than page size in the kernel. 492 * 493 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 494 * bytes. For @size of power of two bytes, the alignment is also guaranteed 495 * to be at least to the size. 496 * 497 * The @flags argument may be one of the GFP flags defined at 498 * include/linux/gfp.h and described at 499 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 500 * 501 * The recommended usage of the @flags is described at 502 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 503 * 504 * Below is a brief outline of the most useful GFP flags 505 * 506 * %GFP_KERNEL 507 * Allocate normal kernel ram. May sleep. 508 * 509 * %GFP_NOWAIT 510 * Allocation will not sleep. 511 * 512 * %GFP_ATOMIC 513 * Allocation will not sleep. May use emergency pools. 514 * 515 * %GFP_HIGHUSER 516 * Allocate memory from high memory on behalf of user. 517 * 518 * Also it is possible to set different flags by OR'ing 519 * in one or more of the following additional @flags: 520 * 521 * %__GFP_HIGH 522 * This allocation has high priority and may use emergency pools. 523 * 524 * %__GFP_NOFAIL 525 * Indicate that this allocation is in no way allowed to fail 526 * (think twice before using). 527 * 528 * %__GFP_NORETRY 529 * If memory is not immediately available, 530 * then give up at once. 531 * 532 * %__GFP_NOWARN 533 * If allocation fails, don't issue any warnings. 534 * 535 * %__GFP_RETRY_MAYFAIL 536 * Try really hard to succeed the allocation but fail 537 * eventually. 538 */ 539static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 540{ 541 if (__builtin_constant_p(size)) { 542#ifndef CONFIG_SLOB 543 unsigned int index; 544#endif 545 if (size > KMALLOC_MAX_CACHE_SIZE) 546 return kmalloc_large(size, flags); 547#ifndef CONFIG_SLOB 548 index = kmalloc_index(size); 549 550 if (!index) 551 return ZERO_SIZE_PTR; 552 553 return kmalloc_trace( 554 kmalloc_caches[kmalloc_type(flags)][index], 555 flags, size); 556#endif 557 } 558 return __kmalloc(size, flags); 559} 560 561#ifndef CONFIG_SLOB 562static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 563{ 564 if (__builtin_constant_p(size)) { 565 unsigned int index; 566 567 if (size > KMALLOC_MAX_CACHE_SIZE) 568 return kmalloc_large_node(size, flags, node); 569 570 index = kmalloc_index(size); 571 572 if (!index) 573 return ZERO_SIZE_PTR; 574 575 return kmalloc_node_trace( 576 kmalloc_caches[kmalloc_type(flags)][index], 577 flags, node, size); 578 } 579 return __kmalloc_node(size, flags, node); 580} 581#else 582static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 583{ 584 if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE) 585 return kmalloc_large_node(size, flags, node); 586 587 return __kmalloc_node(size, flags, node); 588} 589#endif 590 591/** 592 * kmalloc_array - allocate memory for an array. 593 * @n: number of elements. 594 * @size: element size. 595 * @flags: the type of memory to allocate (see kmalloc). 596 */ 597static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags) 598{ 599 size_t bytes; 600 601 if (unlikely(check_mul_overflow(n, size, &bytes))) 602 return NULL; 603 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 604 return kmalloc(bytes, flags); 605 return __kmalloc(bytes, flags); 606} 607 608/** 609 * krealloc_array - reallocate memory for an array. 610 * @p: pointer to the memory chunk to reallocate 611 * @new_n: new number of elements to alloc 612 * @new_size: new size of a single member of the array 613 * @flags: the type of memory to allocate (see kmalloc) 614 */ 615static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p, 616 size_t new_n, 617 size_t new_size, 618 gfp_t flags) 619{ 620 size_t bytes; 621 622 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 623 return NULL; 624 625 return krealloc(p, bytes, flags); 626} 627 628/** 629 * kcalloc - allocate memory for an array. The memory is set to zero. 630 * @n: number of elements. 631 * @size: element size. 632 * @flags: the type of memory to allocate (see kmalloc). 633 */ 634static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags) 635{ 636 return kmalloc_array(n, size, flags | __GFP_ZERO); 637} 638 639void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node, 640 unsigned long caller) __alloc_size(1); 641#define kmalloc_node_track_caller(size, flags, node) \ 642 __kmalloc_node_track_caller(size, flags, node, \ 643 _RET_IP_) 644 645/* 646 * kmalloc_track_caller is a special version of kmalloc that records the 647 * calling function of the routine calling it for slab leak tracking instead 648 * of just the calling function (confusing, eh?). 649 * It's useful when the call to kmalloc comes from a widely-used standard 650 * allocator where we care about the real place the memory allocation 651 * request comes from. 652 */ 653#define kmalloc_track_caller(size, flags) \ 654 __kmalloc_node_track_caller(size, flags, \ 655 NUMA_NO_NODE, _RET_IP_) 656 657static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 658 int node) 659{ 660 size_t bytes; 661 662 if (unlikely(check_mul_overflow(n, size, &bytes))) 663 return NULL; 664 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 665 return kmalloc_node(bytes, flags, node); 666 return __kmalloc_node(bytes, flags, node); 667} 668 669static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 670{ 671 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 672} 673 674/* 675 * Shortcuts 676 */ 677static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 678{ 679 return kmem_cache_alloc(k, flags | __GFP_ZERO); 680} 681 682/** 683 * kzalloc - allocate memory. The memory is set to zero. 684 * @size: how many bytes of memory are required. 685 * @flags: the type of memory to allocate (see kmalloc). 686 */ 687static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags) 688{ 689 return kmalloc(size, flags | __GFP_ZERO); 690} 691 692/** 693 * kzalloc_node - allocate zeroed memory from a particular memory node. 694 * @size: how many bytes of memory are required. 695 * @flags: the type of memory to allocate (see kmalloc). 696 * @node: memory node from which to allocate 697 */ 698static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node) 699{ 700 return kmalloc_node(size, flags | __GFP_ZERO, node); 701} 702 703extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1); 704static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags) 705{ 706 return kvmalloc_node(size, flags, NUMA_NO_NODE); 707} 708static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node) 709{ 710 return kvmalloc_node(size, flags | __GFP_ZERO, node); 711} 712static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags) 713{ 714 return kvmalloc(size, flags | __GFP_ZERO); 715} 716 717static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 718{ 719 size_t bytes; 720 721 if (unlikely(check_mul_overflow(n, size, &bytes))) 722 return NULL; 723 724 return kvmalloc(bytes, flags); 725} 726 727static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags) 728{ 729 return kvmalloc_array(n, size, flags | __GFP_ZERO); 730} 731 732extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 733 __realloc_size(3); 734extern void kvfree(const void *addr); 735extern void kvfree_sensitive(const void *addr, size_t len); 736 737unsigned int kmem_cache_size(struct kmem_cache *s); 738 739/** 740 * kmalloc_size_roundup - Report allocation bucket size for the given size 741 * 742 * @size: Number of bytes to round up from. 743 * 744 * This returns the number of bytes that would be available in a kmalloc() 745 * allocation of @size bytes. For example, a 126 byte request would be 746 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 747 * for the general-purpose kmalloc()-based allocations, and is not for the 748 * pre-sized kmem_cache_alloc()-based allocations.) 749 * 750 * Use this to kmalloc() the full bucket size ahead of time instead of using 751 * ksize() to query the size after an allocation. 752 */ 753size_t kmalloc_size_roundup(size_t size); 754 755void __init kmem_cache_init_late(void); 756 757#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 758int slab_prepare_cpu(unsigned int cpu); 759int slab_dead_cpu(unsigned int cpu); 760#else 761#define slab_prepare_cpu NULL 762#define slab_dead_cpu NULL 763#endif 764 765#endif /* _LINUX_SLAB_H */