at v6.1 146 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/hrtimer.h> 31#include <linux/dma-mapping.h> 32#include <linux/netdev_features.h> 33#include <linux/sched.h> 34#include <linux/sched/clock.h> 35#include <net/flow_dissector.h> 36#include <linux/splice.h> 37#include <linux/in6.h> 38#include <linux/if_packet.h> 39#include <linux/llist.h> 40#include <net/flow.h> 41#include <net/page_pool.h> 42#if IS_ENABLED(CONFIG_NF_CONNTRACK) 43#include <linux/netfilter/nf_conntrack_common.h> 44#endif 45#include <net/net_debug.h> 46#include <net/dropreason.h> 47 48/** 49 * DOC: skb checksums 50 * 51 * The interface for checksum offload between the stack and networking drivers 52 * is as follows... 53 * 54 * IP checksum related features 55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 56 * 57 * Drivers advertise checksum offload capabilities in the features of a device. 58 * From the stack's point of view these are capabilities offered by the driver. 59 * A driver typically only advertises features that it is capable of offloading 60 * to its device. 61 * 62 * .. flat-table:: Checksum related device features 63 * :widths: 1 10 64 * 65 * * - %NETIF_F_HW_CSUM 66 * - The driver (or its device) is able to compute one 67 * IP (one's complement) checksum for any combination 68 * of protocols or protocol layering. The checksum is 69 * computed and set in a packet per the CHECKSUM_PARTIAL 70 * interface (see below). 71 * 72 * * - %NETIF_F_IP_CSUM 73 * - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv4. These are specifically 75 * unencapsulated packets of the form IPv4|TCP or 76 * IPv4|UDP where the Protocol field in the IPv4 header 77 * is TCP or UDP. The IPv4 header may contain IP options. 78 * This feature cannot be set in features for a device 79 * with NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * * - %NETIF_F_IPV6_CSUM 83 * - Driver (device) is only able to checksum plain 84 * TCP or UDP packets over IPv6. These are specifically 85 * unencapsulated packets of the form IPv6|TCP or 86 * IPv6|UDP where the Next Header field in the IPv6 87 * header is either TCP or UDP. IPv6 extension headers 88 * are not supported with this feature. This feature 89 * cannot be set in features for a device with 90 * NETIF_F_HW_CSUM also set. This feature is being 91 * DEPRECATED (see below). 92 * 93 * * - %NETIF_F_RXCSUM 94 * - Driver (device) performs receive checksum offload. 95 * This flag is only used to disable the RX checksum 96 * feature for a device. The stack will accept receive 97 * checksum indication in packets received on a device 98 * regardless of whether NETIF_F_RXCSUM is set. 99 * 100 * Checksumming of received packets by device 101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 * 103 * Indication of checksum verification is set in &sk_buff.ip_summed. 104 * Possible values are: 105 * 106 * - %CHECKSUM_NONE 107 * 108 * Device did not checksum this packet e.g. due to lack of capabilities. 109 * The packet contains full (though not verified) checksum in packet but 110 * not in skb->csum. Thus, skb->csum is undefined in this case. 111 * 112 * - %CHECKSUM_UNNECESSARY 113 * 114 * The hardware you're dealing with doesn't calculate the full checksum 115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 117 * if their checksums are okay. &sk_buff.csum is still undefined in this case 118 * though. A driver or device must never modify the checksum field in the 119 * packet even if checksum is verified. 120 * 121 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 122 * 123 * - TCP: IPv6 and IPv4. 124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 125 * zero UDP checksum for either IPv4 or IPv6, the networking stack 126 * may perform further validation in this case. 127 * - GRE: only if the checksum is present in the header. 128 * - SCTP: indicates the CRC in SCTP header has been validated. 129 * - FCOE: indicates the CRC in FC frame has been validated. 130 * 131 * &sk_buff.csum_level indicates the number of consecutive checksums found in 132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 134 * and a device is able to verify the checksums for UDP (possibly zero), 135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 136 * two. If the device were only able to verify the UDP checksum and not 137 * GRE, either because it doesn't support GRE checksum or because GRE 138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 139 * not considered in this case). 140 * 141 * - %CHECKSUM_COMPLETE 142 * 143 * This is the most generic way. The device supplied checksum of the _whole_ 144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 145 * hardware doesn't need to parse L3/L4 headers to implement this. 146 * 147 * Notes: 148 * 149 * - Even if device supports only some protocols, but is able to produce 150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 152 * 153 * - %CHECKSUM_PARTIAL 154 * 155 * A checksum is set up to be offloaded to a device as described in the 156 * output description for CHECKSUM_PARTIAL. This may occur on a packet 157 * received directly from another Linux OS, e.g., a virtualized Linux kernel 158 * on the same host, or it may be set in the input path in GRO or remote 159 * checksum offload. For the purposes of checksum verification, the checksum 160 * referred to by skb->csum_start + skb->csum_offset and any preceding 161 * checksums in the packet are considered verified. Any checksums in the 162 * packet that are after the checksum being offloaded are not considered to 163 * be verified. 164 * 165 * Checksumming on transmit for non-GSO 166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 167 * 168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 169 * Values are: 170 * 171 * - %CHECKSUM_PARTIAL 172 * 173 * The driver is required to checksum the packet as seen by hard_start_xmit() 174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 175 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 176 * A driver may verify that the 177 * csum_start and csum_offset values are valid values given the length and 178 * offset of the packet, but it should not attempt to validate that the 179 * checksum refers to a legitimate transport layer checksum -- it is the 180 * purview of the stack to validate that csum_start and csum_offset are set 181 * correctly. 182 * 183 * When the stack requests checksum offload for a packet, the driver MUST 184 * ensure that the checksum is set correctly. A driver can either offload the 185 * checksum calculation to the device, or call skb_checksum_help (in the case 186 * that the device does not support offload for a particular checksum). 187 * 188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 190 * checksum offload capability. 191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 192 * on network device checksumming capabilities: if a packet does not match 193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 194 * &sk_buff.csum_not_inet, see :ref:`crc`) 195 * is called to resolve the checksum. 196 * 197 * - %CHECKSUM_NONE 198 * 199 * The skb was already checksummed by the protocol, or a checksum is not 200 * required. 201 * 202 * - %CHECKSUM_UNNECESSARY 203 * 204 * This has the same meaning as CHECKSUM_NONE for checksum offload on 205 * output. 206 * 207 * - %CHECKSUM_COMPLETE 208 * 209 * Not used in checksum output. If a driver observes a packet with this value 210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 211 * 212 * .. _crc: 213 * 214 * Non-IP checksum (CRC) offloads 215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216 * 217 * .. flat-table:: 218 * :widths: 1 10 219 * 220 * * - %NETIF_F_SCTP_CRC 221 * - This feature indicates that a device is capable of 222 * offloading the SCTP CRC in a packet. To perform this offload the stack 223 * will set csum_start and csum_offset accordingly, set ip_summed to 224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 226 * A driver that supports both IP checksum offload and SCTP CRC32c offload 227 * must verify which offload is configured for a packet by testing the 228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 230 * 231 * * - %NETIF_F_FCOE_CRC 232 * - This feature indicates that a device is capable of offloading the FCOE 233 * CRC in a packet. To perform this offload the stack will set ip_summed 234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 235 * accordingly. Note that there is no indication in the skbuff that the 236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 237 * both IP checksum offload and FCOE CRC offload must verify which offload 238 * is configured for a packet, presumably by inspecting packet headers. 239 * 240 * Checksumming on output with GSO 241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 242 * 243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 246 * part of the GSO operation is implied. If a checksum is being offloaded 247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 248 * csum_offset are set to refer to the outermost checksum being offloaded 249 * (two offloaded checksums are possible with UDP encapsulation). 250 */ 251 252/* Don't change this without changing skb_csum_unnecessary! */ 253#define CHECKSUM_NONE 0 254#define CHECKSUM_UNNECESSARY 1 255#define CHECKSUM_COMPLETE 2 256#define CHECKSUM_PARTIAL 3 257 258/* Maximum value in skb->csum_level */ 259#define SKB_MAX_CSUM_LEVEL 3 260 261#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 262#define SKB_WITH_OVERHEAD(X) \ 263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264#define SKB_MAX_ORDER(X, ORDER) \ 265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 266#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 267#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 268 269/* return minimum truesize of one skb containing X bytes of data */ 270#define SKB_TRUESIZE(X) ((X) + \ 271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 273 274struct ahash_request; 275struct net_device; 276struct scatterlist; 277struct pipe_inode_info; 278struct iov_iter; 279struct napi_struct; 280struct bpf_prog; 281union bpf_attr; 282struct skb_ext; 283 284#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 285struct nf_bridge_info { 286 enum { 287 BRNF_PROTO_UNCHANGED, 288 BRNF_PROTO_8021Q, 289 BRNF_PROTO_PPPOE 290 } orig_proto:8; 291 u8 pkt_otherhost:1; 292 u8 in_prerouting:1; 293 u8 bridged_dnat:1; 294 __u16 frag_max_size; 295 struct net_device *physindev; 296 297 /* always valid & non-NULL from FORWARD on, for physdev match */ 298 struct net_device *physoutdev; 299 union { 300 /* prerouting: detect dnat in orig/reply direction */ 301 __be32 ipv4_daddr; 302 struct in6_addr ipv6_daddr; 303 304 /* after prerouting + nat detected: store original source 305 * mac since neigh resolution overwrites it, only used while 306 * skb is out in neigh layer. 307 */ 308 char neigh_header[8]; 309 }; 310}; 311#endif 312 313#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 314/* Chain in tc_skb_ext will be used to share the tc chain with 315 * ovs recirc_id. It will be set to the current chain by tc 316 * and read by ovs to recirc_id. 317 */ 318struct tc_skb_ext { 319 __u32 chain; 320 __u16 mru; 321 __u16 zone; 322 u8 post_ct:1; 323 u8 post_ct_snat:1; 324 u8 post_ct_dnat:1; 325}; 326#endif 327 328struct sk_buff_head { 329 /* These two members must be first to match sk_buff. */ 330 struct_group_tagged(sk_buff_list, list, 331 struct sk_buff *next; 332 struct sk_buff *prev; 333 ); 334 335 __u32 qlen; 336 spinlock_t lock; 337}; 338 339struct sk_buff; 340 341/* To allow 64K frame to be packed as single skb without frag_list we 342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 343 * buffers which do not start on a page boundary. 344 * 345 * Since GRO uses frags we allocate at least 16 regardless of page 346 * size. 347 */ 348#if (65536/PAGE_SIZE + 1) < 16 349#define MAX_SKB_FRAGS 16UL 350#else 351#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 352#endif 353extern int sysctl_max_skb_frags; 354 355/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 356 * segment using its current segmentation instead. 357 */ 358#define GSO_BY_FRAGS 0xFFFF 359 360typedef struct bio_vec skb_frag_t; 361 362/** 363 * skb_frag_size() - Returns the size of a skb fragment 364 * @frag: skb fragment 365 */ 366static inline unsigned int skb_frag_size(const skb_frag_t *frag) 367{ 368 return frag->bv_len; 369} 370 371/** 372 * skb_frag_size_set() - Sets the size of a skb fragment 373 * @frag: skb fragment 374 * @size: size of fragment 375 */ 376static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 377{ 378 frag->bv_len = size; 379} 380 381/** 382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 383 * @frag: skb fragment 384 * @delta: value to add 385 */ 386static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 387{ 388 frag->bv_len += delta; 389} 390 391/** 392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 393 * @frag: skb fragment 394 * @delta: value to subtract 395 */ 396static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 397{ 398 frag->bv_len -= delta; 399} 400 401/** 402 * skb_frag_must_loop - Test if %p is a high memory page 403 * @p: fragment's page 404 */ 405static inline bool skb_frag_must_loop(struct page *p) 406{ 407#if defined(CONFIG_HIGHMEM) 408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 409 return true; 410#endif 411 return false; 412} 413 414/** 415 * skb_frag_foreach_page - loop over pages in a fragment 416 * 417 * @f: skb frag to operate on 418 * @f_off: offset from start of f->bv_page 419 * @f_len: length from f_off to loop over 420 * @p: (temp var) current page 421 * @p_off: (temp var) offset from start of current page, 422 * non-zero only on first page. 423 * @p_len: (temp var) length in current page, 424 * < PAGE_SIZE only on first and last page. 425 * @copied: (temp var) length so far, excluding current p_len. 426 * 427 * A fragment can hold a compound page, in which case per-page 428 * operations, notably kmap_atomic, must be called for each 429 * regular page. 430 */ 431#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 433 p_off = (f_off) & (PAGE_SIZE - 1), \ 434 p_len = skb_frag_must_loop(p) ? \ 435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 436 copied = 0; \ 437 copied < f_len; \ 438 copied += p_len, p++, p_off = 0, \ 439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 440 441#define HAVE_HW_TIME_STAMP 442 443/** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464}; 465 466/* Definitions for tx_flags in struct skb_shared_info */ 467enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488}; 489 490#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496/* Definitions for flags in struct skb_shared_info */ 497enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519}; 520 521#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525/* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 refcount_t refcnt; 537 u8 flags; 538}; 539 540struct ubuf_info_msgzc { 541 struct ubuf_info ubuf; 542 543 union { 544 struct { 545 unsigned long desc; 546 void *ctx; 547 }; 548 struct { 549 u32 id; 550 u16 len; 551 u16 zerocopy:1; 552 u32 bytelen; 553 }; 554 }; 555 556 struct mmpin { 557 struct user_struct *user; 558 unsigned int num_pg; 559 } mmp; 560}; 561 562#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 563#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 564 ubuf) 565 566int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 567void mm_unaccount_pinned_pages(struct mmpin *mmp); 568 569/* This data is invariant across clones and lives at 570 * the end of the header data, ie. at skb->end. 571 */ 572struct skb_shared_info { 573 __u8 flags; 574 __u8 meta_len; 575 __u8 nr_frags; 576 __u8 tx_flags; 577 unsigned short gso_size; 578 /* Warning: this field is not always filled in (UFO)! */ 579 unsigned short gso_segs; 580 struct sk_buff *frag_list; 581 struct skb_shared_hwtstamps hwtstamps; 582 unsigned int gso_type; 583 u32 tskey; 584 585 /* 586 * Warning : all fields before dataref are cleared in __alloc_skb() 587 */ 588 atomic_t dataref; 589 unsigned int xdp_frags_size; 590 591 /* Intermediate layers must ensure that destructor_arg 592 * remains valid until skb destructor */ 593 void * destructor_arg; 594 595 /* must be last field, see pskb_expand_head() */ 596 skb_frag_t frags[MAX_SKB_FRAGS]; 597}; 598 599/** 600 * DOC: dataref and headerless skbs 601 * 602 * Transport layers send out clones of payload skbs they hold for 603 * retransmissions. To allow lower layers of the stack to prepend their headers 604 * we split &skb_shared_info.dataref into two halves. 605 * The lower 16 bits count the overall number of references. 606 * The higher 16 bits indicate how many of the references are payload-only. 607 * skb_header_cloned() checks if skb is allowed to add / write the headers. 608 * 609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 610 * (via __skb_header_release()). Any clone created from marked skb will get 611 * &sk_buff.hdr_len populated with the available headroom. 612 * If there's the only clone in existence it's able to modify the headroom 613 * at will. The sequence of calls inside the transport layer is:: 614 * 615 * <alloc skb> 616 * skb_reserve() 617 * __skb_header_release() 618 * skb_clone() 619 * // send the clone down the stack 620 * 621 * This is not a very generic construct and it depends on the transport layers 622 * doing the right thing. In practice there's usually only one payload-only skb. 623 * Having multiple payload-only skbs with different lengths of hdr_len is not 624 * possible. The payload-only skbs should never leave their owner. 625 */ 626#define SKB_DATAREF_SHIFT 16 627#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 628 629 630enum { 631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 634}; 635 636enum { 637 SKB_GSO_TCPV4 = 1 << 0, 638 639 /* This indicates the skb is from an untrusted source. */ 640 SKB_GSO_DODGY = 1 << 1, 641 642 /* This indicates the tcp segment has CWR set. */ 643 SKB_GSO_TCP_ECN = 1 << 2, 644 645 SKB_GSO_TCP_FIXEDID = 1 << 3, 646 647 SKB_GSO_TCPV6 = 1 << 4, 648 649 SKB_GSO_FCOE = 1 << 5, 650 651 SKB_GSO_GRE = 1 << 6, 652 653 SKB_GSO_GRE_CSUM = 1 << 7, 654 655 SKB_GSO_IPXIP4 = 1 << 8, 656 657 SKB_GSO_IPXIP6 = 1 << 9, 658 659 SKB_GSO_UDP_TUNNEL = 1 << 10, 660 661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 662 663 SKB_GSO_PARTIAL = 1 << 12, 664 665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 666 667 SKB_GSO_SCTP = 1 << 14, 668 669 SKB_GSO_ESP = 1 << 15, 670 671 SKB_GSO_UDP = 1 << 16, 672 673 SKB_GSO_UDP_L4 = 1 << 17, 674 675 SKB_GSO_FRAGLIST = 1 << 18, 676}; 677 678#if BITS_PER_LONG > 32 679#define NET_SKBUFF_DATA_USES_OFFSET 1 680#endif 681 682#ifdef NET_SKBUFF_DATA_USES_OFFSET 683typedef unsigned int sk_buff_data_t; 684#else 685typedef unsigned char *sk_buff_data_t; 686#endif 687 688/** 689 * DOC: Basic sk_buff geometry 690 * 691 * struct sk_buff itself is a metadata structure and does not hold any packet 692 * data. All the data is held in associated buffers. 693 * 694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 695 * into two parts: 696 * 697 * - data buffer, containing headers and sometimes payload; 698 * this is the part of the skb operated on by the common helpers 699 * such as skb_put() or skb_pull(); 700 * - shared info (struct skb_shared_info) which holds an array of pointers 701 * to read-only data in the (page, offset, length) format. 702 * 703 * Optionally &skb_shared_info.frag_list may point to another skb. 704 * 705 * Basic diagram may look like this:: 706 * 707 * --------------- 708 * | sk_buff | 709 * --------------- 710 * ,--------------------------- + head 711 * / ,----------------- + data 712 * / / ,----------- + tail 713 * | | | , + end 714 * | | | | 715 * v v v v 716 * ----------------------------------------------- 717 * | headroom | data | tailroom | skb_shared_info | 718 * ----------------------------------------------- 719 * + [page frag] 720 * + [page frag] 721 * + [page frag] 722 * + [page frag] --------- 723 * + frag_list --> | sk_buff | 724 * --------- 725 * 726 */ 727 728/** 729 * struct sk_buff - socket buffer 730 * @next: Next buffer in list 731 * @prev: Previous buffer in list 732 * @tstamp: Time we arrived/left 733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 734 * for retransmit timer 735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 736 * @list: queue head 737 * @ll_node: anchor in an llist (eg socket defer_list) 738 * @sk: Socket we are owned by 739 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 740 * fragmentation management 741 * @dev: Device we arrived on/are leaving by 742 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 743 * @cb: Control buffer. Free for use by every layer. Put private vars here 744 * @_skb_refdst: destination entry (with norefcount bit) 745 * @sp: the security path, used for xfrm 746 * @len: Length of actual data 747 * @data_len: Data length 748 * @mac_len: Length of link layer header 749 * @hdr_len: writable header length of cloned skb 750 * @csum: Checksum (must include start/offset pair) 751 * @csum_start: Offset from skb->head where checksumming should start 752 * @csum_offset: Offset from csum_start where checksum should be stored 753 * @priority: Packet queueing priority 754 * @ignore_df: allow local fragmentation 755 * @cloned: Head may be cloned (check refcnt to be sure) 756 * @ip_summed: Driver fed us an IP checksum 757 * @nohdr: Payload reference only, must not modify header 758 * @pkt_type: Packet class 759 * @fclone: skbuff clone status 760 * @ipvs_property: skbuff is owned by ipvs 761 * @inner_protocol_type: whether the inner protocol is 762 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 763 * @remcsum_offload: remote checksum offload is enabled 764 * @offload_fwd_mark: Packet was L2-forwarded in hardware 765 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 766 * @tc_skip_classify: do not classify packet. set by IFB device 767 * @tc_at_ingress: used within tc_classify to distinguish in/egress 768 * @redirected: packet was redirected by packet classifier 769 * @from_ingress: packet was redirected from the ingress path 770 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 771 * @peeked: this packet has been seen already, so stats have been 772 * done for it, don't do them again 773 * @nf_trace: netfilter packet trace flag 774 * @protocol: Packet protocol from driver 775 * @destructor: Destruct function 776 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 777 * @_sk_redir: socket redirection information for skmsg 778 * @_nfct: Associated connection, if any (with nfctinfo bits) 779 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 780 * @skb_iif: ifindex of device we arrived on 781 * @tc_index: Traffic control index 782 * @hash: the packet hash 783 * @queue_mapping: Queue mapping for multiqueue devices 784 * @head_frag: skb was allocated from page fragments, 785 * not allocated by kmalloc() or vmalloc(). 786 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 787 * @pp_recycle: mark the packet for recycling instead of freeing (implies 788 * page_pool support on driver) 789 * @active_extensions: active extensions (skb_ext_id types) 790 * @ndisc_nodetype: router type (from link layer) 791 * @ooo_okay: allow the mapping of a socket to a queue to be changed 792 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 793 * ports. 794 * @sw_hash: indicates hash was computed in software stack 795 * @wifi_acked_valid: wifi_acked was set 796 * @wifi_acked: whether frame was acked on wifi or not 797 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 798 * @encapsulation: indicates the inner headers in the skbuff are valid 799 * @encap_hdr_csum: software checksum is needed 800 * @csum_valid: checksum is already valid 801 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 802 * @csum_complete_sw: checksum was completed by software 803 * @csum_level: indicates the number of consecutive checksums found in 804 * the packet minus one that have been verified as 805 * CHECKSUM_UNNECESSARY (max 3) 806 * @scm_io_uring: SKB holds io_uring registered files 807 * @dst_pending_confirm: need to confirm neighbour 808 * @decrypted: Decrypted SKB 809 * @slow_gro: state present at GRO time, slower prepare step required 810 * @mono_delivery_time: When set, skb->tstamp has the 811 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 812 * skb->tstamp has the (rcv) timestamp at ingress and 813 * delivery_time at egress. 814 * @napi_id: id of the NAPI struct this skb came from 815 * @sender_cpu: (aka @napi_id) source CPU in XPS 816 * @alloc_cpu: CPU which did the skb allocation. 817 * @secmark: security marking 818 * @mark: Generic packet mark 819 * @reserved_tailroom: (aka @mark) number of bytes of free space available 820 * at the tail of an sk_buff 821 * @vlan_present: VLAN tag is present 822 * @vlan_proto: vlan encapsulation protocol 823 * @vlan_tci: vlan tag control information 824 * @inner_protocol: Protocol (encapsulation) 825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 827 * @inner_transport_header: Inner transport layer header (encapsulation) 828 * @inner_network_header: Network layer header (encapsulation) 829 * @inner_mac_header: Link layer header (encapsulation) 830 * @transport_header: Transport layer header 831 * @network_header: Network layer header 832 * @mac_header: Link layer header 833 * @kcov_handle: KCOV remote handle for remote coverage collection 834 * @tail: Tail pointer 835 * @end: End pointer 836 * @head: Head of buffer 837 * @data: Data head pointer 838 * @truesize: Buffer size 839 * @users: User count - see {datagram,tcp}.c 840 * @extensions: allocated extensions, valid if active_extensions is nonzero 841 */ 842 843struct sk_buff { 844 union { 845 struct { 846 /* These two members must be first to match sk_buff_head. */ 847 struct sk_buff *next; 848 struct sk_buff *prev; 849 850 union { 851 struct net_device *dev; 852 /* Some protocols might use this space to store information, 853 * while device pointer would be NULL. 854 * UDP receive path is one user. 855 */ 856 unsigned long dev_scratch; 857 }; 858 }; 859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 860 struct list_head list; 861 struct llist_node ll_node; 862 }; 863 864 union { 865 struct sock *sk; 866 int ip_defrag_offset; 867 }; 868 869 union { 870 ktime_t tstamp; 871 u64 skb_mstamp_ns; /* earliest departure time */ 872 }; 873 /* 874 * This is the control buffer. It is free to use for every 875 * layer. Please put your private variables there. If you 876 * want to keep them across layers you have to do a skb_clone() 877 * first. This is owned by whoever has the skb queued ATM. 878 */ 879 char cb[48] __aligned(8); 880 881 union { 882 struct { 883 unsigned long _skb_refdst; 884 void (*destructor)(struct sk_buff *skb); 885 }; 886 struct list_head tcp_tsorted_anchor; 887#ifdef CONFIG_NET_SOCK_MSG 888 unsigned long _sk_redir; 889#endif 890 }; 891 892#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 893 unsigned long _nfct; 894#endif 895 unsigned int len, 896 data_len; 897 __u16 mac_len, 898 hdr_len; 899 900 /* Following fields are _not_ copied in __copy_skb_header() 901 * Note that queue_mapping is here mostly to fill a hole. 902 */ 903 __u16 queue_mapping; 904 905/* if you move cloned around you also must adapt those constants */ 906#ifdef __BIG_ENDIAN_BITFIELD 907#define CLONED_MASK (1 << 7) 908#else 909#define CLONED_MASK 1 910#endif 911#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 912 913 /* private: */ 914 __u8 __cloned_offset[0]; 915 /* public: */ 916 __u8 cloned:1, 917 nohdr:1, 918 fclone:2, 919 peeked:1, 920 head_frag:1, 921 pfmemalloc:1, 922 pp_recycle:1; /* page_pool recycle indicator */ 923#ifdef CONFIG_SKB_EXTENSIONS 924 __u8 active_extensions; 925#endif 926 927 /* Fields enclosed in headers group are copied 928 * using a single memcpy() in __copy_skb_header() 929 */ 930 struct_group(headers, 931 932 /* private: */ 933 __u8 __pkt_type_offset[0]; 934 /* public: */ 935 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 936 __u8 ignore_df:1; 937 __u8 nf_trace:1; 938 __u8 ip_summed:2; 939 __u8 ooo_okay:1; 940 941 __u8 l4_hash:1; 942 __u8 sw_hash:1; 943 __u8 wifi_acked_valid:1; 944 __u8 wifi_acked:1; 945 __u8 no_fcs:1; 946 /* Indicates the inner headers are valid in the skbuff. */ 947 __u8 encapsulation:1; 948 __u8 encap_hdr_csum:1; 949 __u8 csum_valid:1; 950 951 /* private: */ 952 __u8 __pkt_vlan_present_offset[0]; 953 /* public: */ 954 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 955 __u8 csum_complete_sw:1; 956 __u8 csum_level:2; 957 __u8 dst_pending_confirm:1; 958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 959#ifdef CONFIG_NET_CLS_ACT 960 __u8 tc_skip_classify:1; 961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 962#endif 963#ifdef CONFIG_IPV6_NDISC_NODETYPE 964 __u8 ndisc_nodetype:2; 965#endif 966 967 __u8 ipvs_property:1; 968 __u8 inner_protocol_type:1; 969 __u8 remcsum_offload:1; 970#ifdef CONFIG_NET_SWITCHDEV 971 __u8 offload_fwd_mark:1; 972 __u8 offload_l3_fwd_mark:1; 973#endif 974 __u8 redirected:1; 975#ifdef CONFIG_NET_REDIRECT 976 __u8 from_ingress:1; 977#endif 978#ifdef CONFIG_NETFILTER_SKIP_EGRESS 979 __u8 nf_skip_egress:1; 980#endif 981#ifdef CONFIG_TLS_DEVICE 982 __u8 decrypted:1; 983#endif 984 __u8 slow_gro:1; 985 __u8 csum_not_inet:1; 986 __u8 scm_io_uring:1; 987 988#ifdef CONFIG_NET_SCHED 989 __u16 tc_index; /* traffic control index */ 990#endif 991 992 union { 993 __wsum csum; 994 struct { 995 __u16 csum_start; 996 __u16 csum_offset; 997 }; 998 }; 999 __u32 priority; 1000 int skb_iif; 1001 __u32 hash; 1002 __be16 vlan_proto; 1003 __u16 vlan_tci; 1004#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1005 union { 1006 unsigned int napi_id; 1007 unsigned int sender_cpu; 1008 }; 1009#endif 1010 u16 alloc_cpu; 1011#ifdef CONFIG_NETWORK_SECMARK 1012 __u32 secmark; 1013#endif 1014 1015 union { 1016 __u32 mark; 1017 __u32 reserved_tailroom; 1018 }; 1019 1020 union { 1021 __be16 inner_protocol; 1022 __u8 inner_ipproto; 1023 }; 1024 1025 __u16 inner_transport_header; 1026 __u16 inner_network_header; 1027 __u16 inner_mac_header; 1028 1029 __be16 protocol; 1030 __u16 transport_header; 1031 __u16 network_header; 1032 __u16 mac_header; 1033 1034#ifdef CONFIG_KCOV 1035 u64 kcov_handle; 1036#endif 1037 1038 ); /* end headers group */ 1039 1040 /* These elements must be at the end, see alloc_skb() for details. */ 1041 sk_buff_data_t tail; 1042 sk_buff_data_t end; 1043 unsigned char *head, 1044 *data; 1045 unsigned int truesize; 1046 refcount_t users; 1047 1048#ifdef CONFIG_SKB_EXTENSIONS 1049 /* only useable after checking ->active_extensions != 0 */ 1050 struct skb_ext *extensions; 1051#endif 1052}; 1053 1054/* if you move pkt_type around you also must adapt those constants */ 1055#ifdef __BIG_ENDIAN_BITFIELD 1056#define PKT_TYPE_MAX (7 << 5) 1057#else 1058#define PKT_TYPE_MAX 7 1059#endif 1060#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1061 1062/* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1063 * around, you also must adapt these constants. 1064 */ 1065#ifdef __BIG_ENDIAN_BITFIELD 1066#define PKT_VLAN_PRESENT_BIT 7 1067#define TC_AT_INGRESS_MASK (1 << 0) 1068#define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1069#else 1070#define PKT_VLAN_PRESENT_BIT 0 1071#define TC_AT_INGRESS_MASK (1 << 7) 1072#define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1073#endif 1074#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1075 1076#ifdef __KERNEL__ 1077/* 1078 * Handling routines are only of interest to the kernel 1079 */ 1080 1081#define SKB_ALLOC_FCLONE 0x01 1082#define SKB_ALLOC_RX 0x02 1083#define SKB_ALLOC_NAPI 0x04 1084 1085/** 1086 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1087 * @skb: buffer 1088 */ 1089static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1090{ 1091 return unlikely(skb->pfmemalloc); 1092} 1093 1094/* 1095 * skb might have a dst pointer attached, refcounted or not. 1096 * _skb_refdst low order bit is set if refcount was _not_ taken 1097 */ 1098#define SKB_DST_NOREF 1UL 1099#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1100 1101/** 1102 * skb_dst - returns skb dst_entry 1103 * @skb: buffer 1104 * 1105 * Returns skb dst_entry, regardless of reference taken or not. 1106 */ 1107static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1108{ 1109 /* If refdst was not refcounted, check we still are in a 1110 * rcu_read_lock section 1111 */ 1112 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1113 !rcu_read_lock_held() && 1114 !rcu_read_lock_bh_held()); 1115 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1116} 1117 1118/** 1119 * skb_dst_set - sets skb dst 1120 * @skb: buffer 1121 * @dst: dst entry 1122 * 1123 * Sets skb dst, assuming a reference was taken on dst and should 1124 * be released by skb_dst_drop() 1125 */ 1126static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1127{ 1128 skb->slow_gro |= !!dst; 1129 skb->_skb_refdst = (unsigned long)dst; 1130} 1131 1132/** 1133 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1134 * @skb: buffer 1135 * @dst: dst entry 1136 * 1137 * Sets skb dst, assuming a reference was not taken on dst. 1138 * If dst entry is cached, we do not take reference and dst_release 1139 * will be avoided by refdst_drop. If dst entry is not cached, we take 1140 * reference, so that last dst_release can destroy the dst immediately. 1141 */ 1142static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1143{ 1144 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1145 skb->slow_gro |= !!dst; 1146 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1147} 1148 1149/** 1150 * skb_dst_is_noref - Test if skb dst isn't refcounted 1151 * @skb: buffer 1152 */ 1153static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1154{ 1155 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1156} 1157 1158/** 1159 * skb_rtable - Returns the skb &rtable 1160 * @skb: buffer 1161 */ 1162static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1163{ 1164 return (struct rtable *)skb_dst(skb); 1165} 1166 1167/* For mangling skb->pkt_type from user space side from applications 1168 * such as nft, tc, etc, we only allow a conservative subset of 1169 * possible pkt_types to be set. 1170*/ 1171static inline bool skb_pkt_type_ok(u32 ptype) 1172{ 1173 return ptype <= PACKET_OTHERHOST; 1174} 1175 1176/** 1177 * skb_napi_id - Returns the skb's NAPI id 1178 * @skb: buffer 1179 */ 1180static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1181{ 1182#ifdef CONFIG_NET_RX_BUSY_POLL 1183 return skb->napi_id; 1184#else 1185 return 0; 1186#endif 1187} 1188 1189/** 1190 * skb_unref - decrement the skb's reference count 1191 * @skb: buffer 1192 * 1193 * Returns true if we can free the skb. 1194 */ 1195static inline bool skb_unref(struct sk_buff *skb) 1196{ 1197 if (unlikely(!skb)) 1198 return false; 1199 if (likely(refcount_read(&skb->users) == 1)) 1200 smp_rmb(); 1201 else if (likely(!refcount_dec_and_test(&skb->users))) 1202 return false; 1203 1204 return true; 1205} 1206 1207void __fix_address 1208kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1209 1210/** 1211 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1212 * @skb: buffer to free 1213 */ 1214static inline void kfree_skb(struct sk_buff *skb) 1215{ 1216 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1217} 1218 1219void skb_release_head_state(struct sk_buff *skb); 1220void kfree_skb_list_reason(struct sk_buff *segs, 1221 enum skb_drop_reason reason); 1222void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1223void skb_tx_error(struct sk_buff *skb); 1224 1225static inline void kfree_skb_list(struct sk_buff *segs) 1226{ 1227 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1228} 1229 1230#ifdef CONFIG_TRACEPOINTS 1231void consume_skb(struct sk_buff *skb); 1232#else 1233static inline void consume_skb(struct sk_buff *skb) 1234{ 1235 return kfree_skb(skb); 1236} 1237#endif 1238 1239void __consume_stateless_skb(struct sk_buff *skb); 1240void __kfree_skb(struct sk_buff *skb); 1241extern struct kmem_cache *skbuff_head_cache; 1242 1243void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1244bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1245 bool *fragstolen, int *delta_truesize); 1246 1247struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1248 int node); 1249struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1250struct sk_buff *build_skb(void *data, unsigned int frag_size); 1251struct sk_buff *build_skb_around(struct sk_buff *skb, 1252 void *data, unsigned int frag_size); 1253void skb_attempt_defer_free(struct sk_buff *skb); 1254 1255struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1256 1257/** 1258 * alloc_skb - allocate a network buffer 1259 * @size: size to allocate 1260 * @priority: allocation mask 1261 * 1262 * This function is a convenient wrapper around __alloc_skb(). 1263 */ 1264static inline struct sk_buff *alloc_skb(unsigned int size, 1265 gfp_t priority) 1266{ 1267 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1268} 1269 1270struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1271 unsigned long data_len, 1272 int max_page_order, 1273 int *errcode, 1274 gfp_t gfp_mask); 1275struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1276 1277/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1278struct sk_buff_fclones { 1279 struct sk_buff skb1; 1280 1281 struct sk_buff skb2; 1282 1283 refcount_t fclone_ref; 1284}; 1285 1286/** 1287 * skb_fclone_busy - check if fclone is busy 1288 * @sk: socket 1289 * @skb: buffer 1290 * 1291 * Returns true if skb is a fast clone, and its clone is not freed. 1292 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1293 * so we also check that this didnt happen. 1294 */ 1295static inline bool skb_fclone_busy(const struct sock *sk, 1296 const struct sk_buff *skb) 1297{ 1298 const struct sk_buff_fclones *fclones; 1299 1300 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1301 1302 return skb->fclone == SKB_FCLONE_ORIG && 1303 refcount_read(&fclones->fclone_ref) > 1 && 1304 READ_ONCE(fclones->skb2.sk) == sk; 1305} 1306 1307/** 1308 * alloc_skb_fclone - allocate a network buffer from fclone cache 1309 * @size: size to allocate 1310 * @priority: allocation mask 1311 * 1312 * This function is a convenient wrapper around __alloc_skb(). 1313 */ 1314static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1315 gfp_t priority) 1316{ 1317 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1318} 1319 1320struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1321void skb_headers_offset_update(struct sk_buff *skb, int off); 1322int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1323struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1324void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1325struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1326struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1327 gfp_t gfp_mask, bool fclone); 1328static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1329 gfp_t gfp_mask) 1330{ 1331 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1332} 1333 1334int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1335struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1336 unsigned int headroom); 1337struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1338struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1339 int newtailroom, gfp_t priority); 1340int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1341 int offset, int len); 1342int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1343 int offset, int len); 1344int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1345int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1346 1347/** 1348 * skb_pad - zero pad the tail of an skb 1349 * @skb: buffer to pad 1350 * @pad: space to pad 1351 * 1352 * Ensure that a buffer is followed by a padding area that is zero 1353 * filled. Used by network drivers which may DMA or transfer data 1354 * beyond the buffer end onto the wire. 1355 * 1356 * May return error in out of memory cases. The skb is freed on error. 1357 */ 1358static inline int skb_pad(struct sk_buff *skb, int pad) 1359{ 1360 return __skb_pad(skb, pad, true); 1361} 1362#define dev_kfree_skb(a) consume_skb(a) 1363 1364int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1365 int offset, size_t size); 1366 1367struct skb_seq_state { 1368 __u32 lower_offset; 1369 __u32 upper_offset; 1370 __u32 frag_idx; 1371 __u32 stepped_offset; 1372 struct sk_buff *root_skb; 1373 struct sk_buff *cur_skb; 1374 __u8 *frag_data; 1375 __u32 frag_off; 1376}; 1377 1378void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1379 unsigned int to, struct skb_seq_state *st); 1380unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1381 struct skb_seq_state *st); 1382void skb_abort_seq_read(struct skb_seq_state *st); 1383 1384unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1385 unsigned int to, struct ts_config *config); 1386 1387/* 1388 * Packet hash types specify the type of hash in skb_set_hash. 1389 * 1390 * Hash types refer to the protocol layer addresses which are used to 1391 * construct a packet's hash. The hashes are used to differentiate or identify 1392 * flows of the protocol layer for the hash type. Hash types are either 1393 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1394 * 1395 * Properties of hashes: 1396 * 1397 * 1) Two packets in different flows have different hash values 1398 * 2) Two packets in the same flow should have the same hash value 1399 * 1400 * A hash at a higher layer is considered to be more specific. A driver should 1401 * set the most specific hash possible. 1402 * 1403 * A driver cannot indicate a more specific hash than the layer at which a hash 1404 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1405 * 1406 * A driver may indicate a hash level which is less specific than the 1407 * actual layer the hash was computed on. For instance, a hash computed 1408 * at L4 may be considered an L3 hash. This should only be done if the 1409 * driver can't unambiguously determine that the HW computed the hash at 1410 * the higher layer. Note that the "should" in the second property above 1411 * permits this. 1412 */ 1413enum pkt_hash_types { 1414 PKT_HASH_TYPE_NONE, /* Undefined type */ 1415 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1416 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1417 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1418}; 1419 1420static inline void skb_clear_hash(struct sk_buff *skb) 1421{ 1422 skb->hash = 0; 1423 skb->sw_hash = 0; 1424 skb->l4_hash = 0; 1425} 1426 1427static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1428{ 1429 if (!skb->l4_hash) 1430 skb_clear_hash(skb); 1431} 1432 1433static inline void 1434__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1435{ 1436 skb->l4_hash = is_l4; 1437 skb->sw_hash = is_sw; 1438 skb->hash = hash; 1439} 1440 1441static inline void 1442skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1443{ 1444 /* Used by drivers to set hash from HW */ 1445 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1446} 1447 1448static inline void 1449__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1450{ 1451 __skb_set_hash(skb, hash, true, is_l4); 1452} 1453 1454void __skb_get_hash(struct sk_buff *skb); 1455u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1456u32 skb_get_poff(const struct sk_buff *skb); 1457u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1458 const struct flow_keys_basic *keys, int hlen); 1459__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1460 const void *data, int hlen_proto); 1461 1462static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1463 int thoff, u8 ip_proto) 1464{ 1465 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1466} 1467 1468void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1469 const struct flow_dissector_key *key, 1470 unsigned int key_count); 1471 1472struct bpf_flow_dissector; 1473u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1474 __be16 proto, int nhoff, int hlen, unsigned int flags); 1475 1476bool __skb_flow_dissect(const struct net *net, 1477 const struct sk_buff *skb, 1478 struct flow_dissector *flow_dissector, 1479 void *target_container, const void *data, 1480 __be16 proto, int nhoff, int hlen, unsigned int flags); 1481 1482static inline bool skb_flow_dissect(const struct sk_buff *skb, 1483 struct flow_dissector *flow_dissector, 1484 void *target_container, unsigned int flags) 1485{ 1486 return __skb_flow_dissect(NULL, skb, flow_dissector, 1487 target_container, NULL, 0, 0, 0, flags); 1488} 1489 1490static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1491 struct flow_keys *flow, 1492 unsigned int flags) 1493{ 1494 memset(flow, 0, sizeof(*flow)); 1495 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1496 flow, NULL, 0, 0, 0, flags); 1497} 1498 1499static inline bool 1500skb_flow_dissect_flow_keys_basic(const struct net *net, 1501 const struct sk_buff *skb, 1502 struct flow_keys_basic *flow, 1503 const void *data, __be16 proto, 1504 int nhoff, int hlen, unsigned int flags) 1505{ 1506 memset(flow, 0, sizeof(*flow)); 1507 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1508 data, proto, nhoff, hlen, flags); 1509} 1510 1511void skb_flow_dissect_meta(const struct sk_buff *skb, 1512 struct flow_dissector *flow_dissector, 1513 void *target_container); 1514 1515/* Gets a skb connection tracking info, ctinfo map should be a 1516 * map of mapsize to translate enum ip_conntrack_info states 1517 * to user states. 1518 */ 1519void 1520skb_flow_dissect_ct(const struct sk_buff *skb, 1521 struct flow_dissector *flow_dissector, 1522 void *target_container, 1523 u16 *ctinfo_map, size_t mapsize, 1524 bool post_ct, u16 zone); 1525void 1526skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1527 struct flow_dissector *flow_dissector, 1528 void *target_container); 1529 1530void skb_flow_dissect_hash(const struct sk_buff *skb, 1531 struct flow_dissector *flow_dissector, 1532 void *target_container); 1533 1534static inline __u32 skb_get_hash(struct sk_buff *skb) 1535{ 1536 if (!skb->l4_hash && !skb->sw_hash) 1537 __skb_get_hash(skb); 1538 1539 return skb->hash; 1540} 1541 1542static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1543{ 1544 if (!skb->l4_hash && !skb->sw_hash) { 1545 struct flow_keys keys; 1546 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1547 1548 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1549 } 1550 1551 return skb->hash; 1552} 1553 1554__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1555 const siphash_key_t *perturb); 1556 1557static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1558{ 1559 return skb->hash; 1560} 1561 1562static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1563{ 1564 to->hash = from->hash; 1565 to->sw_hash = from->sw_hash; 1566 to->l4_hash = from->l4_hash; 1567}; 1568 1569static inline void skb_copy_decrypted(struct sk_buff *to, 1570 const struct sk_buff *from) 1571{ 1572#ifdef CONFIG_TLS_DEVICE 1573 to->decrypted = from->decrypted; 1574#endif 1575} 1576 1577#ifdef NET_SKBUFF_DATA_USES_OFFSET 1578static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1579{ 1580 return skb->head + skb->end; 1581} 1582 1583static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1584{ 1585 return skb->end; 1586} 1587 1588static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1589{ 1590 skb->end = offset; 1591} 1592#else 1593static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1594{ 1595 return skb->end; 1596} 1597 1598static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1599{ 1600 return skb->end - skb->head; 1601} 1602 1603static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1604{ 1605 skb->end = skb->head + offset; 1606} 1607#endif 1608 1609struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1610 struct ubuf_info *uarg); 1611 1612void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1613 1614void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1615 bool success); 1616 1617int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1618 struct sk_buff *skb, struct iov_iter *from, 1619 size_t length); 1620 1621static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1622 struct msghdr *msg, int len) 1623{ 1624 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1625} 1626 1627int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1628 struct msghdr *msg, int len, 1629 struct ubuf_info *uarg); 1630 1631/* Internal */ 1632#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1633 1634static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1635{ 1636 return &skb_shinfo(skb)->hwtstamps; 1637} 1638 1639static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1640{ 1641 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1642 1643 return is_zcopy ? skb_uarg(skb) : NULL; 1644} 1645 1646static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1647{ 1648 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1649} 1650 1651static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1652{ 1653 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1654} 1655 1656static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1657 const struct sk_buff *skb2) 1658{ 1659 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1660} 1661 1662static inline void net_zcopy_get(struct ubuf_info *uarg) 1663{ 1664 refcount_inc(&uarg->refcnt); 1665} 1666 1667static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1668{ 1669 skb_shinfo(skb)->destructor_arg = uarg; 1670 skb_shinfo(skb)->flags |= uarg->flags; 1671} 1672 1673static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1674 bool *have_ref) 1675{ 1676 if (skb && uarg && !skb_zcopy(skb)) { 1677 if (unlikely(have_ref && *have_ref)) 1678 *have_ref = false; 1679 else 1680 net_zcopy_get(uarg); 1681 skb_zcopy_init(skb, uarg); 1682 } 1683} 1684 1685static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1686{ 1687 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1688 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1689} 1690 1691static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1692{ 1693 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1694} 1695 1696static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1697{ 1698 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1699} 1700 1701static inline void net_zcopy_put(struct ubuf_info *uarg) 1702{ 1703 if (uarg) 1704 uarg->callback(NULL, uarg, true); 1705} 1706 1707static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1708{ 1709 if (uarg) { 1710 if (uarg->callback == msg_zerocopy_callback) 1711 msg_zerocopy_put_abort(uarg, have_uref); 1712 else if (have_uref) 1713 net_zcopy_put(uarg); 1714 } 1715} 1716 1717/* Release a reference on a zerocopy structure */ 1718static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1719{ 1720 struct ubuf_info *uarg = skb_zcopy(skb); 1721 1722 if (uarg) { 1723 if (!skb_zcopy_is_nouarg(skb)) 1724 uarg->callback(skb, uarg, zerocopy_success); 1725 1726 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1727 } 1728} 1729 1730void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1731 1732static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1733{ 1734 if (unlikely(skb_zcopy_managed(skb))) 1735 __skb_zcopy_downgrade_managed(skb); 1736} 1737 1738static inline void skb_mark_not_on_list(struct sk_buff *skb) 1739{ 1740 skb->next = NULL; 1741} 1742 1743/* Iterate through singly-linked GSO fragments of an skb. */ 1744#define skb_list_walk_safe(first, skb, next_skb) \ 1745 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1746 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1747 1748static inline void skb_list_del_init(struct sk_buff *skb) 1749{ 1750 __list_del_entry(&skb->list); 1751 skb_mark_not_on_list(skb); 1752} 1753 1754/** 1755 * skb_queue_empty - check if a queue is empty 1756 * @list: queue head 1757 * 1758 * Returns true if the queue is empty, false otherwise. 1759 */ 1760static inline int skb_queue_empty(const struct sk_buff_head *list) 1761{ 1762 return list->next == (const struct sk_buff *) list; 1763} 1764 1765/** 1766 * skb_queue_empty_lockless - check if a queue is empty 1767 * @list: queue head 1768 * 1769 * Returns true if the queue is empty, false otherwise. 1770 * This variant can be used in lockless contexts. 1771 */ 1772static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1773{ 1774 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1775} 1776 1777 1778/** 1779 * skb_queue_is_last - check if skb is the last entry in the queue 1780 * @list: queue head 1781 * @skb: buffer 1782 * 1783 * Returns true if @skb is the last buffer on the list. 1784 */ 1785static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1786 const struct sk_buff *skb) 1787{ 1788 return skb->next == (const struct sk_buff *) list; 1789} 1790 1791/** 1792 * skb_queue_is_first - check if skb is the first entry in the queue 1793 * @list: queue head 1794 * @skb: buffer 1795 * 1796 * Returns true if @skb is the first buffer on the list. 1797 */ 1798static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1799 const struct sk_buff *skb) 1800{ 1801 return skb->prev == (const struct sk_buff *) list; 1802} 1803 1804/** 1805 * skb_queue_next - return the next packet in the queue 1806 * @list: queue head 1807 * @skb: current buffer 1808 * 1809 * Return the next packet in @list after @skb. It is only valid to 1810 * call this if skb_queue_is_last() evaluates to false. 1811 */ 1812static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1813 const struct sk_buff *skb) 1814{ 1815 /* This BUG_ON may seem severe, but if we just return then we 1816 * are going to dereference garbage. 1817 */ 1818 BUG_ON(skb_queue_is_last(list, skb)); 1819 return skb->next; 1820} 1821 1822/** 1823 * skb_queue_prev - return the prev packet in the queue 1824 * @list: queue head 1825 * @skb: current buffer 1826 * 1827 * Return the prev packet in @list before @skb. It is only valid to 1828 * call this if skb_queue_is_first() evaluates to false. 1829 */ 1830static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1831 const struct sk_buff *skb) 1832{ 1833 /* This BUG_ON may seem severe, but if we just return then we 1834 * are going to dereference garbage. 1835 */ 1836 BUG_ON(skb_queue_is_first(list, skb)); 1837 return skb->prev; 1838} 1839 1840/** 1841 * skb_get - reference buffer 1842 * @skb: buffer to reference 1843 * 1844 * Makes another reference to a socket buffer and returns a pointer 1845 * to the buffer. 1846 */ 1847static inline struct sk_buff *skb_get(struct sk_buff *skb) 1848{ 1849 refcount_inc(&skb->users); 1850 return skb; 1851} 1852 1853/* 1854 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1855 */ 1856 1857/** 1858 * skb_cloned - is the buffer a clone 1859 * @skb: buffer to check 1860 * 1861 * Returns true if the buffer was generated with skb_clone() and is 1862 * one of multiple shared copies of the buffer. Cloned buffers are 1863 * shared data so must not be written to under normal circumstances. 1864 */ 1865static inline int skb_cloned(const struct sk_buff *skb) 1866{ 1867 return skb->cloned && 1868 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1869} 1870 1871static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1872{ 1873 might_sleep_if(gfpflags_allow_blocking(pri)); 1874 1875 if (skb_cloned(skb)) 1876 return pskb_expand_head(skb, 0, 0, pri); 1877 1878 return 0; 1879} 1880 1881/* This variant of skb_unclone() makes sure skb->truesize 1882 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1883 * 1884 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1885 * when various debugging features are in place. 1886 */ 1887int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1888static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1889{ 1890 might_sleep_if(gfpflags_allow_blocking(pri)); 1891 1892 if (skb_cloned(skb)) 1893 return __skb_unclone_keeptruesize(skb, pri); 1894 return 0; 1895} 1896 1897/** 1898 * skb_header_cloned - is the header a clone 1899 * @skb: buffer to check 1900 * 1901 * Returns true if modifying the header part of the buffer requires 1902 * the data to be copied. 1903 */ 1904static inline int skb_header_cloned(const struct sk_buff *skb) 1905{ 1906 int dataref; 1907 1908 if (!skb->cloned) 1909 return 0; 1910 1911 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1912 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1913 return dataref != 1; 1914} 1915 1916static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1917{ 1918 might_sleep_if(gfpflags_allow_blocking(pri)); 1919 1920 if (skb_header_cloned(skb)) 1921 return pskb_expand_head(skb, 0, 0, pri); 1922 1923 return 0; 1924} 1925 1926/** 1927 * __skb_header_release() - allow clones to use the headroom 1928 * @skb: buffer to operate on 1929 * 1930 * See "DOC: dataref and headerless skbs". 1931 */ 1932static inline void __skb_header_release(struct sk_buff *skb) 1933{ 1934 skb->nohdr = 1; 1935 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1936} 1937 1938 1939/** 1940 * skb_shared - is the buffer shared 1941 * @skb: buffer to check 1942 * 1943 * Returns true if more than one person has a reference to this 1944 * buffer. 1945 */ 1946static inline int skb_shared(const struct sk_buff *skb) 1947{ 1948 return refcount_read(&skb->users) != 1; 1949} 1950 1951/** 1952 * skb_share_check - check if buffer is shared and if so clone it 1953 * @skb: buffer to check 1954 * @pri: priority for memory allocation 1955 * 1956 * If the buffer is shared the buffer is cloned and the old copy 1957 * drops a reference. A new clone with a single reference is returned. 1958 * If the buffer is not shared the original buffer is returned. When 1959 * being called from interrupt status or with spinlocks held pri must 1960 * be GFP_ATOMIC. 1961 * 1962 * NULL is returned on a memory allocation failure. 1963 */ 1964static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1965{ 1966 might_sleep_if(gfpflags_allow_blocking(pri)); 1967 if (skb_shared(skb)) { 1968 struct sk_buff *nskb = skb_clone(skb, pri); 1969 1970 if (likely(nskb)) 1971 consume_skb(skb); 1972 else 1973 kfree_skb(skb); 1974 skb = nskb; 1975 } 1976 return skb; 1977} 1978 1979/* 1980 * Copy shared buffers into a new sk_buff. We effectively do COW on 1981 * packets to handle cases where we have a local reader and forward 1982 * and a couple of other messy ones. The normal one is tcpdumping 1983 * a packet thats being forwarded. 1984 */ 1985 1986/** 1987 * skb_unshare - make a copy of a shared buffer 1988 * @skb: buffer to check 1989 * @pri: priority for memory allocation 1990 * 1991 * If the socket buffer is a clone then this function creates a new 1992 * copy of the data, drops a reference count on the old copy and returns 1993 * the new copy with the reference count at 1. If the buffer is not a clone 1994 * the original buffer is returned. When called with a spinlock held or 1995 * from interrupt state @pri must be %GFP_ATOMIC 1996 * 1997 * %NULL is returned on a memory allocation failure. 1998 */ 1999static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2000 gfp_t pri) 2001{ 2002 might_sleep_if(gfpflags_allow_blocking(pri)); 2003 if (skb_cloned(skb)) { 2004 struct sk_buff *nskb = skb_copy(skb, pri); 2005 2006 /* Free our shared copy */ 2007 if (likely(nskb)) 2008 consume_skb(skb); 2009 else 2010 kfree_skb(skb); 2011 skb = nskb; 2012 } 2013 return skb; 2014} 2015 2016/** 2017 * skb_peek - peek at the head of an &sk_buff_head 2018 * @list_: list to peek at 2019 * 2020 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2021 * be careful with this one. A peek leaves the buffer on the 2022 * list and someone else may run off with it. You must hold 2023 * the appropriate locks or have a private queue to do this. 2024 * 2025 * Returns %NULL for an empty list or a pointer to the head element. 2026 * The reference count is not incremented and the reference is therefore 2027 * volatile. Use with caution. 2028 */ 2029static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2030{ 2031 struct sk_buff *skb = list_->next; 2032 2033 if (skb == (struct sk_buff *)list_) 2034 skb = NULL; 2035 return skb; 2036} 2037 2038/** 2039 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2040 * @list_: list to peek at 2041 * 2042 * Like skb_peek(), but the caller knows that the list is not empty. 2043 */ 2044static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2045{ 2046 return list_->next; 2047} 2048 2049/** 2050 * skb_peek_next - peek skb following the given one from a queue 2051 * @skb: skb to start from 2052 * @list_: list to peek at 2053 * 2054 * Returns %NULL when the end of the list is met or a pointer to the 2055 * next element. The reference count is not incremented and the 2056 * reference is therefore volatile. Use with caution. 2057 */ 2058static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2059 const struct sk_buff_head *list_) 2060{ 2061 struct sk_buff *next = skb->next; 2062 2063 if (next == (struct sk_buff *)list_) 2064 next = NULL; 2065 return next; 2066} 2067 2068/** 2069 * skb_peek_tail - peek at the tail of an &sk_buff_head 2070 * @list_: list to peek at 2071 * 2072 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2073 * be careful with this one. A peek leaves the buffer on the 2074 * list and someone else may run off with it. You must hold 2075 * the appropriate locks or have a private queue to do this. 2076 * 2077 * Returns %NULL for an empty list or a pointer to the tail element. 2078 * The reference count is not incremented and the reference is therefore 2079 * volatile. Use with caution. 2080 */ 2081static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2082{ 2083 struct sk_buff *skb = READ_ONCE(list_->prev); 2084 2085 if (skb == (struct sk_buff *)list_) 2086 skb = NULL; 2087 return skb; 2088 2089} 2090 2091/** 2092 * skb_queue_len - get queue length 2093 * @list_: list to measure 2094 * 2095 * Return the length of an &sk_buff queue. 2096 */ 2097static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2098{ 2099 return list_->qlen; 2100} 2101 2102/** 2103 * skb_queue_len_lockless - get queue length 2104 * @list_: list to measure 2105 * 2106 * Return the length of an &sk_buff queue. 2107 * This variant can be used in lockless contexts. 2108 */ 2109static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2110{ 2111 return READ_ONCE(list_->qlen); 2112} 2113 2114/** 2115 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2116 * @list: queue to initialize 2117 * 2118 * This initializes only the list and queue length aspects of 2119 * an sk_buff_head object. This allows to initialize the list 2120 * aspects of an sk_buff_head without reinitializing things like 2121 * the spinlock. It can also be used for on-stack sk_buff_head 2122 * objects where the spinlock is known to not be used. 2123 */ 2124static inline void __skb_queue_head_init(struct sk_buff_head *list) 2125{ 2126 list->prev = list->next = (struct sk_buff *)list; 2127 list->qlen = 0; 2128} 2129 2130/* 2131 * This function creates a split out lock class for each invocation; 2132 * this is needed for now since a whole lot of users of the skb-queue 2133 * infrastructure in drivers have different locking usage (in hardirq) 2134 * than the networking core (in softirq only). In the long run either the 2135 * network layer or drivers should need annotation to consolidate the 2136 * main types of usage into 3 classes. 2137 */ 2138static inline void skb_queue_head_init(struct sk_buff_head *list) 2139{ 2140 spin_lock_init(&list->lock); 2141 __skb_queue_head_init(list); 2142} 2143 2144static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2145 struct lock_class_key *class) 2146{ 2147 skb_queue_head_init(list); 2148 lockdep_set_class(&list->lock, class); 2149} 2150 2151/* 2152 * Insert an sk_buff on a list. 2153 * 2154 * The "__skb_xxxx()" functions are the non-atomic ones that 2155 * can only be called with interrupts disabled. 2156 */ 2157static inline void __skb_insert(struct sk_buff *newsk, 2158 struct sk_buff *prev, struct sk_buff *next, 2159 struct sk_buff_head *list) 2160{ 2161 /* See skb_queue_empty_lockless() and skb_peek_tail() 2162 * for the opposite READ_ONCE() 2163 */ 2164 WRITE_ONCE(newsk->next, next); 2165 WRITE_ONCE(newsk->prev, prev); 2166 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2167 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2168 WRITE_ONCE(list->qlen, list->qlen + 1); 2169} 2170 2171static inline void __skb_queue_splice(const struct sk_buff_head *list, 2172 struct sk_buff *prev, 2173 struct sk_buff *next) 2174{ 2175 struct sk_buff *first = list->next; 2176 struct sk_buff *last = list->prev; 2177 2178 WRITE_ONCE(first->prev, prev); 2179 WRITE_ONCE(prev->next, first); 2180 2181 WRITE_ONCE(last->next, next); 2182 WRITE_ONCE(next->prev, last); 2183} 2184 2185/** 2186 * skb_queue_splice - join two skb lists, this is designed for stacks 2187 * @list: the new list to add 2188 * @head: the place to add it in the first list 2189 */ 2190static inline void skb_queue_splice(const struct sk_buff_head *list, 2191 struct sk_buff_head *head) 2192{ 2193 if (!skb_queue_empty(list)) { 2194 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2195 head->qlen += list->qlen; 2196 } 2197} 2198 2199/** 2200 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2201 * @list: the new list to add 2202 * @head: the place to add it in the first list 2203 * 2204 * The list at @list is reinitialised 2205 */ 2206static inline void skb_queue_splice_init(struct sk_buff_head *list, 2207 struct sk_buff_head *head) 2208{ 2209 if (!skb_queue_empty(list)) { 2210 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2211 head->qlen += list->qlen; 2212 __skb_queue_head_init(list); 2213 } 2214} 2215 2216/** 2217 * skb_queue_splice_tail - join two skb lists, each list being a queue 2218 * @list: the new list to add 2219 * @head: the place to add it in the first list 2220 */ 2221static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2222 struct sk_buff_head *head) 2223{ 2224 if (!skb_queue_empty(list)) { 2225 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2226 head->qlen += list->qlen; 2227 } 2228} 2229 2230/** 2231 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2232 * @list: the new list to add 2233 * @head: the place to add it in the first list 2234 * 2235 * Each of the lists is a queue. 2236 * The list at @list is reinitialised 2237 */ 2238static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2239 struct sk_buff_head *head) 2240{ 2241 if (!skb_queue_empty(list)) { 2242 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2243 head->qlen += list->qlen; 2244 __skb_queue_head_init(list); 2245 } 2246} 2247 2248/** 2249 * __skb_queue_after - queue a buffer at the list head 2250 * @list: list to use 2251 * @prev: place after this buffer 2252 * @newsk: buffer to queue 2253 * 2254 * Queue a buffer int the middle of a list. This function takes no locks 2255 * and you must therefore hold required locks before calling it. 2256 * 2257 * A buffer cannot be placed on two lists at the same time. 2258 */ 2259static inline void __skb_queue_after(struct sk_buff_head *list, 2260 struct sk_buff *prev, 2261 struct sk_buff *newsk) 2262{ 2263 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2264} 2265 2266void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2267 struct sk_buff_head *list); 2268 2269static inline void __skb_queue_before(struct sk_buff_head *list, 2270 struct sk_buff *next, 2271 struct sk_buff *newsk) 2272{ 2273 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2274} 2275 2276/** 2277 * __skb_queue_head - queue a buffer at the list head 2278 * @list: list to use 2279 * @newsk: buffer to queue 2280 * 2281 * Queue a buffer at the start of a list. This function takes no locks 2282 * and you must therefore hold required locks before calling it. 2283 * 2284 * A buffer cannot be placed on two lists at the same time. 2285 */ 2286static inline void __skb_queue_head(struct sk_buff_head *list, 2287 struct sk_buff *newsk) 2288{ 2289 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2290} 2291void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2292 2293/** 2294 * __skb_queue_tail - queue a buffer at the list tail 2295 * @list: list to use 2296 * @newsk: buffer to queue 2297 * 2298 * Queue a buffer at the end of a list. This function takes no locks 2299 * and you must therefore hold required locks before calling it. 2300 * 2301 * A buffer cannot be placed on two lists at the same time. 2302 */ 2303static inline void __skb_queue_tail(struct sk_buff_head *list, 2304 struct sk_buff *newsk) 2305{ 2306 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2307} 2308void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2309 2310/* 2311 * remove sk_buff from list. _Must_ be called atomically, and with 2312 * the list known.. 2313 */ 2314void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2315static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2316{ 2317 struct sk_buff *next, *prev; 2318 2319 WRITE_ONCE(list->qlen, list->qlen - 1); 2320 next = skb->next; 2321 prev = skb->prev; 2322 skb->next = skb->prev = NULL; 2323 WRITE_ONCE(next->prev, prev); 2324 WRITE_ONCE(prev->next, next); 2325} 2326 2327/** 2328 * __skb_dequeue - remove from the head of the queue 2329 * @list: list to dequeue from 2330 * 2331 * Remove the head of the list. This function does not take any locks 2332 * so must be used with appropriate locks held only. The head item is 2333 * returned or %NULL if the list is empty. 2334 */ 2335static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2336{ 2337 struct sk_buff *skb = skb_peek(list); 2338 if (skb) 2339 __skb_unlink(skb, list); 2340 return skb; 2341} 2342struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2343 2344/** 2345 * __skb_dequeue_tail - remove from the tail of the queue 2346 * @list: list to dequeue from 2347 * 2348 * Remove the tail of the list. This function does not take any locks 2349 * so must be used with appropriate locks held only. The tail item is 2350 * returned or %NULL if the list is empty. 2351 */ 2352static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2353{ 2354 struct sk_buff *skb = skb_peek_tail(list); 2355 if (skb) 2356 __skb_unlink(skb, list); 2357 return skb; 2358} 2359struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2360 2361 2362static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2363{ 2364 return skb->data_len; 2365} 2366 2367static inline unsigned int skb_headlen(const struct sk_buff *skb) 2368{ 2369 return skb->len - skb->data_len; 2370} 2371 2372static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2373{ 2374 unsigned int i, len = 0; 2375 2376 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2377 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2378 return len; 2379} 2380 2381static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2382{ 2383 return skb_headlen(skb) + __skb_pagelen(skb); 2384} 2385 2386static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2387 int i, struct page *page, 2388 int off, int size) 2389{ 2390 skb_frag_t *frag = &shinfo->frags[i]; 2391 2392 /* 2393 * Propagate page pfmemalloc to the skb if we can. The problem is 2394 * that not all callers have unique ownership of the page but rely 2395 * on page_is_pfmemalloc doing the right thing(tm). 2396 */ 2397 frag->bv_page = page; 2398 frag->bv_offset = off; 2399 skb_frag_size_set(frag, size); 2400} 2401 2402/** 2403 * skb_len_add - adds a number to len fields of skb 2404 * @skb: buffer to add len to 2405 * @delta: number of bytes to add 2406 */ 2407static inline void skb_len_add(struct sk_buff *skb, int delta) 2408{ 2409 skb->len += delta; 2410 skb->data_len += delta; 2411 skb->truesize += delta; 2412} 2413 2414/** 2415 * __skb_fill_page_desc - initialise a paged fragment in an skb 2416 * @skb: buffer containing fragment to be initialised 2417 * @i: paged fragment index to initialise 2418 * @page: the page to use for this fragment 2419 * @off: the offset to the data with @page 2420 * @size: the length of the data 2421 * 2422 * Initialises the @i'th fragment of @skb to point to &size bytes at 2423 * offset @off within @page. 2424 * 2425 * Does not take any additional reference on the fragment. 2426 */ 2427static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2428 struct page *page, int off, int size) 2429{ 2430 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2431 page = compound_head(page); 2432 if (page_is_pfmemalloc(page)) 2433 skb->pfmemalloc = true; 2434} 2435 2436/** 2437 * skb_fill_page_desc - initialise a paged fragment in an skb 2438 * @skb: buffer containing fragment to be initialised 2439 * @i: paged fragment index to initialise 2440 * @page: the page to use for this fragment 2441 * @off: the offset to the data with @page 2442 * @size: the length of the data 2443 * 2444 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2445 * @skb to point to @size bytes at offset @off within @page. In 2446 * addition updates @skb such that @i is the last fragment. 2447 * 2448 * Does not take any additional reference on the fragment. 2449 */ 2450static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2451 struct page *page, int off, int size) 2452{ 2453 __skb_fill_page_desc(skb, i, page, off, size); 2454 skb_shinfo(skb)->nr_frags = i + 1; 2455} 2456 2457/** 2458 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2459 * @skb: buffer containing fragment to be initialised 2460 * @i: paged fragment index to initialise 2461 * @page: the page to use for this fragment 2462 * @off: the offset to the data with @page 2463 * @size: the length of the data 2464 * 2465 * Variant of skb_fill_page_desc() which does not deal with 2466 * pfmemalloc, if page is not owned by us. 2467 */ 2468static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2469 struct page *page, int off, 2470 int size) 2471{ 2472 struct skb_shared_info *shinfo = skb_shinfo(skb); 2473 2474 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2475 shinfo->nr_frags = i + 1; 2476} 2477 2478void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2479 int size, unsigned int truesize); 2480 2481void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2482 unsigned int truesize); 2483 2484#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2485 2486#ifdef NET_SKBUFF_DATA_USES_OFFSET 2487static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2488{ 2489 return skb->head + skb->tail; 2490} 2491 2492static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2493{ 2494 skb->tail = skb->data - skb->head; 2495} 2496 2497static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2498{ 2499 skb_reset_tail_pointer(skb); 2500 skb->tail += offset; 2501} 2502 2503#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2504static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2505{ 2506 return skb->tail; 2507} 2508 2509static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2510{ 2511 skb->tail = skb->data; 2512} 2513 2514static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2515{ 2516 skb->tail = skb->data + offset; 2517} 2518 2519#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2520 2521static inline void skb_assert_len(struct sk_buff *skb) 2522{ 2523#ifdef CONFIG_DEBUG_NET 2524 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2525 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2526#endif /* CONFIG_DEBUG_NET */ 2527} 2528 2529/* 2530 * Add data to an sk_buff 2531 */ 2532void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2533void *skb_put(struct sk_buff *skb, unsigned int len); 2534static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2535{ 2536 void *tmp = skb_tail_pointer(skb); 2537 SKB_LINEAR_ASSERT(skb); 2538 skb->tail += len; 2539 skb->len += len; 2540 return tmp; 2541} 2542 2543static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2544{ 2545 void *tmp = __skb_put(skb, len); 2546 2547 memset(tmp, 0, len); 2548 return tmp; 2549} 2550 2551static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2552 unsigned int len) 2553{ 2554 void *tmp = __skb_put(skb, len); 2555 2556 memcpy(tmp, data, len); 2557 return tmp; 2558} 2559 2560static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2561{ 2562 *(u8 *)__skb_put(skb, 1) = val; 2563} 2564 2565static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2566{ 2567 void *tmp = skb_put(skb, len); 2568 2569 memset(tmp, 0, len); 2570 2571 return tmp; 2572} 2573 2574static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2575 unsigned int len) 2576{ 2577 void *tmp = skb_put(skb, len); 2578 2579 memcpy(tmp, data, len); 2580 2581 return tmp; 2582} 2583 2584static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2585{ 2586 *(u8 *)skb_put(skb, 1) = val; 2587} 2588 2589void *skb_push(struct sk_buff *skb, unsigned int len); 2590static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2591{ 2592 skb->data -= len; 2593 skb->len += len; 2594 return skb->data; 2595} 2596 2597void *skb_pull(struct sk_buff *skb, unsigned int len); 2598static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2599{ 2600 skb->len -= len; 2601 if (unlikely(skb->len < skb->data_len)) { 2602#if defined(CONFIG_DEBUG_NET) 2603 skb->len += len; 2604 pr_err("__skb_pull(len=%u)\n", len); 2605 skb_dump(KERN_ERR, skb, false); 2606#endif 2607 BUG(); 2608 } 2609 return skb->data += len; 2610} 2611 2612static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2613{ 2614 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2615} 2616 2617void *skb_pull_data(struct sk_buff *skb, size_t len); 2618 2619void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2620 2621static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2622{ 2623 if (likely(len <= skb_headlen(skb))) 2624 return true; 2625 if (unlikely(len > skb->len)) 2626 return false; 2627 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2628} 2629 2630static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2631{ 2632 if (!pskb_may_pull(skb, len)) 2633 return NULL; 2634 2635 skb->len -= len; 2636 return skb->data += len; 2637} 2638 2639void skb_condense(struct sk_buff *skb); 2640 2641/** 2642 * skb_headroom - bytes at buffer head 2643 * @skb: buffer to check 2644 * 2645 * Return the number of bytes of free space at the head of an &sk_buff. 2646 */ 2647static inline unsigned int skb_headroom(const struct sk_buff *skb) 2648{ 2649 return skb->data - skb->head; 2650} 2651 2652/** 2653 * skb_tailroom - bytes at buffer end 2654 * @skb: buffer to check 2655 * 2656 * Return the number of bytes of free space at the tail of an sk_buff 2657 */ 2658static inline int skb_tailroom(const struct sk_buff *skb) 2659{ 2660 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2661} 2662 2663/** 2664 * skb_availroom - bytes at buffer end 2665 * @skb: buffer to check 2666 * 2667 * Return the number of bytes of free space at the tail of an sk_buff 2668 * allocated by sk_stream_alloc() 2669 */ 2670static inline int skb_availroom(const struct sk_buff *skb) 2671{ 2672 if (skb_is_nonlinear(skb)) 2673 return 0; 2674 2675 return skb->end - skb->tail - skb->reserved_tailroom; 2676} 2677 2678/** 2679 * skb_reserve - adjust headroom 2680 * @skb: buffer to alter 2681 * @len: bytes to move 2682 * 2683 * Increase the headroom of an empty &sk_buff by reducing the tail 2684 * room. This is only allowed for an empty buffer. 2685 */ 2686static inline void skb_reserve(struct sk_buff *skb, int len) 2687{ 2688 skb->data += len; 2689 skb->tail += len; 2690} 2691 2692/** 2693 * skb_tailroom_reserve - adjust reserved_tailroom 2694 * @skb: buffer to alter 2695 * @mtu: maximum amount of headlen permitted 2696 * @needed_tailroom: minimum amount of reserved_tailroom 2697 * 2698 * Set reserved_tailroom so that headlen can be as large as possible but 2699 * not larger than mtu and tailroom cannot be smaller than 2700 * needed_tailroom. 2701 * The required headroom should already have been reserved before using 2702 * this function. 2703 */ 2704static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2705 unsigned int needed_tailroom) 2706{ 2707 SKB_LINEAR_ASSERT(skb); 2708 if (mtu < skb_tailroom(skb) - needed_tailroom) 2709 /* use at most mtu */ 2710 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2711 else 2712 /* use up to all available space */ 2713 skb->reserved_tailroom = needed_tailroom; 2714} 2715 2716#define ENCAP_TYPE_ETHER 0 2717#define ENCAP_TYPE_IPPROTO 1 2718 2719static inline void skb_set_inner_protocol(struct sk_buff *skb, 2720 __be16 protocol) 2721{ 2722 skb->inner_protocol = protocol; 2723 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2724} 2725 2726static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2727 __u8 ipproto) 2728{ 2729 skb->inner_ipproto = ipproto; 2730 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2731} 2732 2733static inline void skb_reset_inner_headers(struct sk_buff *skb) 2734{ 2735 skb->inner_mac_header = skb->mac_header; 2736 skb->inner_network_header = skb->network_header; 2737 skb->inner_transport_header = skb->transport_header; 2738} 2739 2740static inline void skb_reset_mac_len(struct sk_buff *skb) 2741{ 2742 skb->mac_len = skb->network_header - skb->mac_header; 2743} 2744 2745static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2746 *skb) 2747{ 2748 return skb->head + skb->inner_transport_header; 2749} 2750 2751static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2752{ 2753 return skb_inner_transport_header(skb) - skb->data; 2754} 2755 2756static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2757{ 2758 skb->inner_transport_header = skb->data - skb->head; 2759} 2760 2761static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2762 const int offset) 2763{ 2764 skb_reset_inner_transport_header(skb); 2765 skb->inner_transport_header += offset; 2766} 2767 2768static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2769{ 2770 return skb->head + skb->inner_network_header; 2771} 2772 2773static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2774{ 2775 skb->inner_network_header = skb->data - skb->head; 2776} 2777 2778static inline void skb_set_inner_network_header(struct sk_buff *skb, 2779 const int offset) 2780{ 2781 skb_reset_inner_network_header(skb); 2782 skb->inner_network_header += offset; 2783} 2784 2785static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2786{ 2787 return skb->head + skb->inner_mac_header; 2788} 2789 2790static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2791{ 2792 skb->inner_mac_header = skb->data - skb->head; 2793} 2794 2795static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2796 const int offset) 2797{ 2798 skb_reset_inner_mac_header(skb); 2799 skb->inner_mac_header += offset; 2800} 2801static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2802{ 2803 return skb->transport_header != (typeof(skb->transport_header))~0U; 2804} 2805 2806static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2807{ 2808 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2809 return skb->head + skb->transport_header; 2810} 2811 2812static inline void skb_reset_transport_header(struct sk_buff *skb) 2813{ 2814 skb->transport_header = skb->data - skb->head; 2815} 2816 2817static inline void skb_set_transport_header(struct sk_buff *skb, 2818 const int offset) 2819{ 2820 skb_reset_transport_header(skb); 2821 skb->transport_header += offset; 2822} 2823 2824static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2825{ 2826 return skb->head + skb->network_header; 2827} 2828 2829static inline void skb_reset_network_header(struct sk_buff *skb) 2830{ 2831 skb->network_header = skb->data - skb->head; 2832} 2833 2834static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2835{ 2836 skb_reset_network_header(skb); 2837 skb->network_header += offset; 2838} 2839 2840static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2841{ 2842 return skb->mac_header != (typeof(skb->mac_header))~0U; 2843} 2844 2845static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2846{ 2847 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2848 return skb->head + skb->mac_header; 2849} 2850 2851static inline int skb_mac_offset(const struct sk_buff *skb) 2852{ 2853 return skb_mac_header(skb) - skb->data; 2854} 2855 2856static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2857{ 2858 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2859 return skb->network_header - skb->mac_header; 2860} 2861 2862static inline void skb_unset_mac_header(struct sk_buff *skb) 2863{ 2864 skb->mac_header = (typeof(skb->mac_header))~0U; 2865} 2866 2867static inline void skb_reset_mac_header(struct sk_buff *skb) 2868{ 2869 skb->mac_header = skb->data - skb->head; 2870} 2871 2872static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2873{ 2874 skb_reset_mac_header(skb); 2875 skb->mac_header += offset; 2876} 2877 2878static inline void skb_pop_mac_header(struct sk_buff *skb) 2879{ 2880 skb->mac_header = skb->network_header; 2881} 2882 2883static inline void skb_probe_transport_header(struct sk_buff *skb) 2884{ 2885 struct flow_keys_basic keys; 2886 2887 if (skb_transport_header_was_set(skb)) 2888 return; 2889 2890 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2891 NULL, 0, 0, 0, 0)) 2892 skb_set_transport_header(skb, keys.control.thoff); 2893} 2894 2895static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2896{ 2897 if (skb_mac_header_was_set(skb)) { 2898 const unsigned char *old_mac = skb_mac_header(skb); 2899 2900 skb_set_mac_header(skb, -skb->mac_len); 2901 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2902 } 2903} 2904 2905static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2906{ 2907 return skb->csum_start - skb_headroom(skb); 2908} 2909 2910static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2911{ 2912 return skb->head + skb->csum_start; 2913} 2914 2915static inline int skb_transport_offset(const struct sk_buff *skb) 2916{ 2917 return skb_transport_header(skb) - skb->data; 2918} 2919 2920static inline u32 skb_network_header_len(const struct sk_buff *skb) 2921{ 2922 return skb->transport_header - skb->network_header; 2923} 2924 2925static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2926{ 2927 return skb->inner_transport_header - skb->inner_network_header; 2928} 2929 2930static inline int skb_network_offset(const struct sk_buff *skb) 2931{ 2932 return skb_network_header(skb) - skb->data; 2933} 2934 2935static inline int skb_inner_network_offset(const struct sk_buff *skb) 2936{ 2937 return skb_inner_network_header(skb) - skb->data; 2938} 2939 2940static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2941{ 2942 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2943} 2944 2945/* 2946 * CPUs often take a performance hit when accessing unaligned memory 2947 * locations. The actual performance hit varies, it can be small if the 2948 * hardware handles it or large if we have to take an exception and fix it 2949 * in software. 2950 * 2951 * Since an ethernet header is 14 bytes network drivers often end up with 2952 * the IP header at an unaligned offset. The IP header can be aligned by 2953 * shifting the start of the packet by 2 bytes. Drivers should do this 2954 * with: 2955 * 2956 * skb_reserve(skb, NET_IP_ALIGN); 2957 * 2958 * The downside to this alignment of the IP header is that the DMA is now 2959 * unaligned. On some architectures the cost of an unaligned DMA is high 2960 * and this cost outweighs the gains made by aligning the IP header. 2961 * 2962 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2963 * to be overridden. 2964 */ 2965#ifndef NET_IP_ALIGN 2966#define NET_IP_ALIGN 2 2967#endif 2968 2969/* 2970 * The networking layer reserves some headroom in skb data (via 2971 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2972 * the header has to grow. In the default case, if the header has to grow 2973 * 32 bytes or less we avoid the reallocation. 2974 * 2975 * Unfortunately this headroom changes the DMA alignment of the resulting 2976 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2977 * on some architectures. An architecture can override this value, 2978 * perhaps setting it to a cacheline in size (since that will maintain 2979 * cacheline alignment of the DMA). It must be a power of 2. 2980 * 2981 * Various parts of the networking layer expect at least 32 bytes of 2982 * headroom, you should not reduce this. 2983 * 2984 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2985 * to reduce average number of cache lines per packet. 2986 * get_rps_cpu() for example only access one 64 bytes aligned block : 2987 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2988 */ 2989#ifndef NET_SKB_PAD 2990#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2991#endif 2992 2993int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2994 2995static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2996{ 2997 if (WARN_ON(skb_is_nonlinear(skb))) 2998 return; 2999 skb->len = len; 3000 skb_set_tail_pointer(skb, len); 3001} 3002 3003static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3004{ 3005 __skb_set_length(skb, len); 3006} 3007 3008void skb_trim(struct sk_buff *skb, unsigned int len); 3009 3010static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3011{ 3012 if (skb->data_len) 3013 return ___pskb_trim(skb, len); 3014 __skb_trim(skb, len); 3015 return 0; 3016} 3017 3018static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3019{ 3020 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3021} 3022 3023/** 3024 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3025 * @skb: buffer to alter 3026 * @len: new length 3027 * 3028 * This is identical to pskb_trim except that the caller knows that 3029 * the skb is not cloned so we should never get an error due to out- 3030 * of-memory. 3031 */ 3032static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3033{ 3034 int err = pskb_trim(skb, len); 3035 BUG_ON(err); 3036} 3037 3038static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3039{ 3040 unsigned int diff = len - skb->len; 3041 3042 if (skb_tailroom(skb) < diff) { 3043 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3044 GFP_ATOMIC); 3045 if (ret) 3046 return ret; 3047 } 3048 __skb_set_length(skb, len); 3049 return 0; 3050} 3051 3052/** 3053 * skb_orphan - orphan a buffer 3054 * @skb: buffer to orphan 3055 * 3056 * If a buffer currently has an owner then we call the owner's 3057 * destructor function and make the @skb unowned. The buffer continues 3058 * to exist but is no longer charged to its former owner. 3059 */ 3060static inline void skb_orphan(struct sk_buff *skb) 3061{ 3062 if (skb->destructor) { 3063 skb->destructor(skb); 3064 skb->destructor = NULL; 3065 skb->sk = NULL; 3066 } else { 3067 BUG_ON(skb->sk); 3068 } 3069} 3070 3071/** 3072 * skb_orphan_frags - orphan the frags contained in a buffer 3073 * @skb: buffer to orphan frags from 3074 * @gfp_mask: allocation mask for replacement pages 3075 * 3076 * For each frag in the SKB which needs a destructor (i.e. has an 3077 * owner) create a copy of that frag and release the original 3078 * page by calling the destructor. 3079 */ 3080static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3081{ 3082 if (likely(!skb_zcopy(skb))) 3083 return 0; 3084 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3085 return 0; 3086 return skb_copy_ubufs(skb, gfp_mask); 3087} 3088 3089/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3090static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3091{ 3092 if (likely(!skb_zcopy(skb))) 3093 return 0; 3094 return skb_copy_ubufs(skb, gfp_mask); 3095} 3096 3097/** 3098 * __skb_queue_purge - empty a list 3099 * @list: list to empty 3100 * 3101 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3102 * the list and one reference dropped. This function does not take the 3103 * list lock and the caller must hold the relevant locks to use it. 3104 */ 3105static inline void __skb_queue_purge(struct sk_buff_head *list) 3106{ 3107 struct sk_buff *skb; 3108 while ((skb = __skb_dequeue(list)) != NULL) 3109 kfree_skb(skb); 3110} 3111void skb_queue_purge(struct sk_buff_head *list); 3112 3113unsigned int skb_rbtree_purge(struct rb_root *root); 3114 3115void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3116 3117/** 3118 * netdev_alloc_frag - allocate a page fragment 3119 * @fragsz: fragment size 3120 * 3121 * Allocates a frag from a page for receive buffer. 3122 * Uses GFP_ATOMIC allocations. 3123 */ 3124static inline void *netdev_alloc_frag(unsigned int fragsz) 3125{ 3126 return __netdev_alloc_frag_align(fragsz, ~0u); 3127} 3128 3129static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3130 unsigned int align) 3131{ 3132 WARN_ON_ONCE(!is_power_of_2(align)); 3133 return __netdev_alloc_frag_align(fragsz, -align); 3134} 3135 3136struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3137 gfp_t gfp_mask); 3138 3139/** 3140 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3141 * @dev: network device to receive on 3142 * @length: length to allocate 3143 * 3144 * Allocate a new &sk_buff and assign it a usage count of one. The 3145 * buffer has unspecified headroom built in. Users should allocate 3146 * the headroom they think they need without accounting for the 3147 * built in space. The built in space is used for optimisations. 3148 * 3149 * %NULL is returned if there is no free memory. Although this function 3150 * allocates memory it can be called from an interrupt. 3151 */ 3152static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3153 unsigned int length) 3154{ 3155 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3156} 3157 3158/* legacy helper around __netdev_alloc_skb() */ 3159static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3160 gfp_t gfp_mask) 3161{ 3162 return __netdev_alloc_skb(NULL, length, gfp_mask); 3163} 3164 3165/* legacy helper around netdev_alloc_skb() */ 3166static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3167{ 3168 return netdev_alloc_skb(NULL, length); 3169} 3170 3171 3172static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3173 unsigned int length, gfp_t gfp) 3174{ 3175 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3176 3177 if (NET_IP_ALIGN && skb) 3178 skb_reserve(skb, NET_IP_ALIGN); 3179 return skb; 3180} 3181 3182static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3183 unsigned int length) 3184{ 3185 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3186} 3187 3188static inline void skb_free_frag(void *addr) 3189{ 3190 page_frag_free(addr); 3191} 3192 3193void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3194 3195static inline void *napi_alloc_frag(unsigned int fragsz) 3196{ 3197 return __napi_alloc_frag_align(fragsz, ~0u); 3198} 3199 3200static inline void *napi_alloc_frag_align(unsigned int fragsz, 3201 unsigned int align) 3202{ 3203 WARN_ON_ONCE(!is_power_of_2(align)); 3204 return __napi_alloc_frag_align(fragsz, -align); 3205} 3206 3207struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3208 unsigned int length, gfp_t gfp_mask); 3209static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3210 unsigned int length) 3211{ 3212 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3213} 3214void napi_consume_skb(struct sk_buff *skb, int budget); 3215 3216void napi_skb_free_stolen_head(struct sk_buff *skb); 3217void __kfree_skb_defer(struct sk_buff *skb); 3218 3219/** 3220 * __dev_alloc_pages - allocate page for network Rx 3221 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3222 * @order: size of the allocation 3223 * 3224 * Allocate a new page. 3225 * 3226 * %NULL is returned if there is no free memory. 3227*/ 3228static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3229 unsigned int order) 3230{ 3231 /* This piece of code contains several assumptions. 3232 * 1. This is for device Rx, therefor a cold page is preferred. 3233 * 2. The expectation is the user wants a compound page. 3234 * 3. If requesting a order 0 page it will not be compound 3235 * due to the check to see if order has a value in prep_new_page 3236 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3237 * code in gfp_to_alloc_flags that should be enforcing this. 3238 */ 3239 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3240 3241 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3242} 3243 3244static inline struct page *dev_alloc_pages(unsigned int order) 3245{ 3246 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3247} 3248 3249/** 3250 * __dev_alloc_page - allocate a page for network Rx 3251 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3252 * 3253 * Allocate a new page. 3254 * 3255 * %NULL is returned if there is no free memory. 3256 */ 3257static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3258{ 3259 return __dev_alloc_pages(gfp_mask, 0); 3260} 3261 3262static inline struct page *dev_alloc_page(void) 3263{ 3264 return dev_alloc_pages(0); 3265} 3266 3267/** 3268 * dev_page_is_reusable - check whether a page can be reused for network Rx 3269 * @page: the page to test 3270 * 3271 * A page shouldn't be considered for reusing/recycling if it was allocated 3272 * under memory pressure or at a distant memory node. 3273 * 3274 * Returns false if this page should be returned to page allocator, true 3275 * otherwise. 3276 */ 3277static inline bool dev_page_is_reusable(const struct page *page) 3278{ 3279 return likely(page_to_nid(page) == numa_mem_id() && 3280 !page_is_pfmemalloc(page)); 3281} 3282 3283/** 3284 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3285 * @page: The page that was allocated from skb_alloc_page 3286 * @skb: The skb that may need pfmemalloc set 3287 */ 3288static inline void skb_propagate_pfmemalloc(const struct page *page, 3289 struct sk_buff *skb) 3290{ 3291 if (page_is_pfmemalloc(page)) 3292 skb->pfmemalloc = true; 3293} 3294 3295/** 3296 * skb_frag_off() - Returns the offset of a skb fragment 3297 * @frag: the paged fragment 3298 */ 3299static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3300{ 3301 return frag->bv_offset; 3302} 3303 3304/** 3305 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3306 * @frag: skb fragment 3307 * @delta: value to add 3308 */ 3309static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3310{ 3311 frag->bv_offset += delta; 3312} 3313 3314/** 3315 * skb_frag_off_set() - Sets the offset of a skb fragment 3316 * @frag: skb fragment 3317 * @offset: offset of fragment 3318 */ 3319static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3320{ 3321 frag->bv_offset = offset; 3322} 3323 3324/** 3325 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3326 * @fragto: skb fragment where offset is set 3327 * @fragfrom: skb fragment offset is copied from 3328 */ 3329static inline void skb_frag_off_copy(skb_frag_t *fragto, 3330 const skb_frag_t *fragfrom) 3331{ 3332 fragto->bv_offset = fragfrom->bv_offset; 3333} 3334 3335/** 3336 * skb_frag_page - retrieve the page referred to by a paged fragment 3337 * @frag: the paged fragment 3338 * 3339 * Returns the &struct page associated with @frag. 3340 */ 3341static inline struct page *skb_frag_page(const skb_frag_t *frag) 3342{ 3343 return frag->bv_page; 3344} 3345 3346/** 3347 * __skb_frag_ref - take an addition reference on a paged fragment. 3348 * @frag: the paged fragment 3349 * 3350 * Takes an additional reference on the paged fragment @frag. 3351 */ 3352static inline void __skb_frag_ref(skb_frag_t *frag) 3353{ 3354 get_page(skb_frag_page(frag)); 3355} 3356 3357/** 3358 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3359 * @skb: the buffer 3360 * @f: the fragment offset. 3361 * 3362 * Takes an additional reference on the @f'th paged fragment of @skb. 3363 */ 3364static inline void skb_frag_ref(struct sk_buff *skb, int f) 3365{ 3366 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3367} 3368 3369/** 3370 * __skb_frag_unref - release a reference on a paged fragment. 3371 * @frag: the paged fragment 3372 * @recycle: recycle the page if allocated via page_pool 3373 * 3374 * Releases a reference on the paged fragment @frag 3375 * or recycles the page via the page_pool API. 3376 */ 3377static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3378{ 3379 struct page *page = skb_frag_page(frag); 3380 3381#ifdef CONFIG_PAGE_POOL 3382 if (recycle && page_pool_return_skb_page(page)) 3383 return; 3384#endif 3385 put_page(page); 3386} 3387 3388/** 3389 * skb_frag_unref - release a reference on a paged fragment of an skb. 3390 * @skb: the buffer 3391 * @f: the fragment offset 3392 * 3393 * Releases a reference on the @f'th paged fragment of @skb. 3394 */ 3395static inline void skb_frag_unref(struct sk_buff *skb, int f) 3396{ 3397 struct skb_shared_info *shinfo = skb_shinfo(skb); 3398 3399 if (!skb_zcopy_managed(skb)) 3400 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3401} 3402 3403/** 3404 * skb_frag_address - gets the address of the data contained in a paged fragment 3405 * @frag: the paged fragment buffer 3406 * 3407 * Returns the address of the data within @frag. The page must already 3408 * be mapped. 3409 */ 3410static inline void *skb_frag_address(const skb_frag_t *frag) 3411{ 3412 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3413} 3414 3415/** 3416 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3417 * @frag: the paged fragment buffer 3418 * 3419 * Returns the address of the data within @frag. Checks that the page 3420 * is mapped and returns %NULL otherwise. 3421 */ 3422static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3423{ 3424 void *ptr = page_address(skb_frag_page(frag)); 3425 if (unlikely(!ptr)) 3426 return NULL; 3427 3428 return ptr + skb_frag_off(frag); 3429} 3430 3431/** 3432 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3433 * @fragto: skb fragment where page is set 3434 * @fragfrom: skb fragment page is copied from 3435 */ 3436static inline void skb_frag_page_copy(skb_frag_t *fragto, 3437 const skb_frag_t *fragfrom) 3438{ 3439 fragto->bv_page = fragfrom->bv_page; 3440} 3441 3442/** 3443 * __skb_frag_set_page - sets the page contained in a paged fragment 3444 * @frag: the paged fragment 3445 * @page: the page to set 3446 * 3447 * Sets the fragment @frag to contain @page. 3448 */ 3449static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3450{ 3451 frag->bv_page = page; 3452} 3453 3454/** 3455 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3456 * @skb: the buffer 3457 * @f: the fragment offset 3458 * @page: the page to set 3459 * 3460 * Sets the @f'th fragment of @skb to contain @page. 3461 */ 3462static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3463 struct page *page) 3464{ 3465 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3466} 3467 3468bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3469 3470/** 3471 * skb_frag_dma_map - maps a paged fragment via the DMA API 3472 * @dev: the device to map the fragment to 3473 * @frag: the paged fragment to map 3474 * @offset: the offset within the fragment (starting at the 3475 * fragment's own offset) 3476 * @size: the number of bytes to map 3477 * @dir: the direction of the mapping (``PCI_DMA_*``) 3478 * 3479 * Maps the page associated with @frag to @device. 3480 */ 3481static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3482 const skb_frag_t *frag, 3483 size_t offset, size_t size, 3484 enum dma_data_direction dir) 3485{ 3486 return dma_map_page(dev, skb_frag_page(frag), 3487 skb_frag_off(frag) + offset, size, dir); 3488} 3489 3490static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3491 gfp_t gfp_mask) 3492{ 3493 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3494} 3495 3496 3497static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3498 gfp_t gfp_mask) 3499{ 3500 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3501} 3502 3503 3504/** 3505 * skb_clone_writable - is the header of a clone writable 3506 * @skb: buffer to check 3507 * @len: length up to which to write 3508 * 3509 * Returns true if modifying the header part of the cloned buffer 3510 * does not requires the data to be copied. 3511 */ 3512static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3513{ 3514 return !skb_header_cloned(skb) && 3515 skb_headroom(skb) + len <= skb->hdr_len; 3516} 3517 3518static inline int skb_try_make_writable(struct sk_buff *skb, 3519 unsigned int write_len) 3520{ 3521 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3522 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3523} 3524 3525static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3526 int cloned) 3527{ 3528 int delta = 0; 3529 3530 if (headroom > skb_headroom(skb)) 3531 delta = headroom - skb_headroom(skb); 3532 3533 if (delta || cloned) 3534 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3535 GFP_ATOMIC); 3536 return 0; 3537} 3538 3539/** 3540 * skb_cow - copy header of skb when it is required 3541 * @skb: buffer to cow 3542 * @headroom: needed headroom 3543 * 3544 * If the skb passed lacks sufficient headroom or its data part 3545 * is shared, data is reallocated. If reallocation fails, an error 3546 * is returned and original skb is not changed. 3547 * 3548 * The result is skb with writable area skb->head...skb->tail 3549 * and at least @headroom of space at head. 3550 */ 3551static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3552{ 3553 return __skb_cow(skb, headroom, skb_cloned(skb)); 3554} 3555 3556/** 3557 * skb_cow_head - skb_cow but only making the head writable 3558 * @skb: buffer to cow 3559 * @headroom: needed headroom 3560 * 3561 * This function is identical to skb_cow except that we replace the 3562 * skb_cloned check by skb_header_cloned. It should be used when 3563 * you only need to push on some header and do not need to modify 3564 * the data. 3565 */ 3566static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3567{ 3568 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3569} 3570 3571/** 3572 * skb_padto - pad an skbuff up to a minimal size 3573 * @skb: buffer to pad 3574 * @len: minimal length 3575 * 3576 * Pads up a buffer to ensure the trailing bytes exist and are 3577 * blanked. If the buffer already contains sufficient data it 3578 * is untouched. Otherwise it is extended. Returns zero on 3579 * success. The skb is freed on error. 3580 */ 3581static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3582{ 3583 unsigned int size = skb->len; 3584 if (likely(size >= len)) 3585 return 0; 3586 return skb_pad(skb, len - size); 3587} 3588 3589/** 3590 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3591 * @skb: buffer to pad 3592 * @len: minimal length 3593 * @free_on_error: free buffer on error 3594 * 3595 * Pads up a buffer to ensure the trailing bytes exist and are 3596 * blanked. If the buffer already contains sufficient data it 3597 * is untouched. Otherwise it is extended. Returns zero on 3598 * success. The skb is freed on error if @free_on_error is true. 3599 */ 3600static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3601 unsigned int len, 3602 bool free_on_error) 3603{ 3604 unsigned int size = skb->len; 3605 3606 if (unlikely(size < len)) { 3607 len -= size; 3608 if (__skb_pad(skb, len, free_on_error)) 3609 return -ENOMEM; 3610 __skb_put(skb, len); 3611 } 3612 return 0; 3613} 3614 3615/** 3616 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3617 * @skb: buffer to pad 3618 * @len: minimal length 3619 * 3620 * Pads up a buffer to ensure the trailing bytes exist and are 3621 * blanked. If the buffer already contains sufficient data it 3622 * is untouched. Otherwise it is extended. Returns zero on 3623 * success. The skb is freed on error. 3624 */ 3625static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3626{ 3627 return __skb_put_padto(skb, len, true); 3628} 3629 3630static inline int skb_add_data(struct sk_buff *skb, 3631 struct iov_iter *from, int copy) 3632{ 3633 const int off = skb->len; 3634 3635 if (skb->ip_summed == CHECKSUM_NONE) { 3636 __wsum csum = 0; 3637 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3638 &csum, from)) { 3639 skb->csum = csum_block_add(skb->csum, csum, off); 3640 return 0; 3641 } 3642 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3643 return 0; 3644 3645 __skb_trim(skb, off); 3646 return -EFAULT; 3647} 3648 3649static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3650 const struct page *page, int off) 3651{ 3652 if (skb_zcopy(skb)) 3653 return false; 3654 if (i) { 3655 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3656 3657 return page == skb_frag_page(frag) && 3658 off == skb_frag_off(frag) + skb_frag_size(frag); 3659 } 3660 return false; 3661} 3662 3663static inline int __skb_linearize(struct sk_buff *skb) 3664{ 3665 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3666} 3667 3668/** 3669 * skb_linearize - convert paged skb to linear one 3670 * @skb: buffer to linarize 3671 * 3672 * If there is no free memory -ENOMEM is returned, otherwise zero 3673 * is returned and the old skb data released. 3674 */ 3675static inline int skb_linearize(struct sk_buff *skb) 3676{ 3677 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3678} 3679 3680/** 3681 * skb_has_shared_frag - can any frag be overwritten 3682 * @skb: buffer to test 3683 * 3684 * Return true if the skb has at least one frag that might be modified 3685 * by an external entity (as in vmsplice()/sendfile()) 3686 */ 3687static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3688{ 3689 return skb_is_nonlinear(skb) && 3690 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3691} 3692 3693/** 3694 * skb_linearize_cow - make sure skb is linear and writable 3695 * @skb: buffer to process 3696 * 3697 * If there is no free memory -ENOMEM is returned, otherwise zero 3698 * is returned and the old skb data released. 3699 */ 3700static inline int skb_linearize_cow(struct sk_buff *skb) 3701{ 3702 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3703 __skb_linearize(skb) : 0; 3704} 3705 3706static __always_inline void 3707__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3708 unsigned int off) 3709{ 3710 if (skb->ip_summed == CHECKSUM_COMPLETE) 3711 skb->csum = csum_block_sub(skb->csum, 3712 csum_partial(start, len, 0), off); 3713 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3714 skb_checksum_start_offset(skb) < 0) 3715 skb->ip_summed = CHECKSUM_NONE; 3716} 3717 3718/** 3719 * skb_postpull_rcsum - update checksum for received skb after pull 3720 * @skb: buffer to update 3721 * @start: start of data before pull 3722 * @len: length of data pulled 3723 * 3724 * After doing a pull on a received packet, you need to call this to 3725 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3726 * CHECKSUM_NONE so that it can be recomputed from scratch. 3727 */ 3728static inline void skb_postpull_rcsum(struct sk_buff *skb, 3729 const void *start, unsigned int len) 3730{ 3731 if (skb->ip_summed == CHECKSUM_COMPLETE) 3732 skb->csum = wsum_negate(csum_partial(start, len, 3733 wsum_negate(skb->csum))); 3734 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3735 skb_checksum_start_offset(skb) < 0) 3736 skb->ip_summed = CHECKSUM_NONE; 3737} 3738 3739static __always_inline void 3740__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3741 unsigned int off) 3742{ 3743 if (skb->ip_summed == CHECKSUM_COMPLETE) 3744 skb->csum = csum_block_add(skb->csum, 3745 csum_partial(start, len, 0), off); 3746} 3747 3748/** 3749 * skb_postpush_rcsum - update checksum for received skb after push 3750 * @skb: buffer to update 3751 * @start: start of data after push 3752 * @len: length of data pushed 3753 * 3754 * After doing a push on a received packet, you need to call this to 3755 * update the CHECKSUM_COMPLETE checksum. 3756 */ 3757static inline void skb_postpush_rcsum(struct sk_buff *skb, 3758 const void *start, unsigned int len) 3759{ 3760 __skb_postpush_rcsum(skb, start, len, 0); 3761} 3762 3763void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3764 3765/** 3766 * skb_push_rcsum - push skb and update receive checksum 3767 * @skb: buffer to update 3768 * @len: length of data pulled 3769 * 3770 * This function performs an skb_push on the packet and updates 3771 * the CHECKSUM_COMPLETE checksum. It should be used on 3772 * receive path processing instead of skb_push unless you know 3773 * that the checksum difference is zero (e.g., a valid IP header) 3774 * or you are setting ip_summed to CHECKSUM_NONE. 3775 */ 3776static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3777{ 3778 skb_push(skb, len); 3779 skb_postpush_rcsum(skb, skb->data, len); 3780 return skb->data; 3781} 3782 3783int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3784/** 3785 * pskb_trim_rcsum - trim received skb and update checksum 3786 * @skb: buffer to trim 3787 * @len: new length 3788 * 3789 * This is exactly the same as pskb_trim except that it ensures the 3790 * checksum of received packets are still valid after the operation. 3791 * It can change skb pointers. 3792 */ 3793 3794static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3795{ 3796 if (likely(len >= skb->len)) 3797 return 0; 3798 return pskb_trim_rcsum_slow(skb, len); 3799} 3800 3801static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3802{ 3803 if (skb->ip_summed == CHECKSUM_COMPLETE) 3804 skb->ip_summed = CHECKSUM_NONE; 3805 __skb_trim(skb, len); 3806 return 0; 3807} 3808 3809static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3810{ 3811 if (skb->ip_summed == CHECKSUM_COMPLETE) 3812 skb->ip_summed = CHECKSUM_NONE; 3813 return __skb_grow(skb, len); 3814} 3815 3816#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3817#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3818#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3819#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3820#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3821 3822#define skb_queue_walk(queue, skb) \ 3823 for (skb = (queue)->next; \ 3824 skb != (struct sk_buff *)(queue); \ 3825 skb = skb->next) 3826 3827#define skb_queue_walk_safe(queue, skb, tmp) \ 3828 for (skb = (queue)->next, tmp = skb->next; \ 3829 skb != (struct sk_buff *)(queue); \ 3830 skb = tmp, tmp = skb->next) 3831 3832#define skb_queue_walk_from(queue, skb) \ 3833 for (; skb != (struct sk_buff *)(queue); \ 3834 skb = skb->next) 3835 3836#define skb_rbtree_walk(skb, root) \ 3837 for (skb = skb_rb_first(root); skb != NULL; \ 3838 skb = skb_rb_next(skb)) 3839 3840#define skb_rbtree_walk_from(skb) \ 3841 for (; skb != NULL; \ 3842 skb = skb_rb_next(skb)) 3843 3844#define skb_rbtree_walk_from_safe(skb, tmp) \ 3845 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3846 skb = tmp) 3847 3848#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3849 for (tmp = skb->next; \ 3850 skb != (struct sk_buff *)(queue); \ 3851 skb = tmp, tmp = skb->next) 3852 3853#define skb_queue_reverse_walk(queue, skb) \ 3854 for (skb = (queue)->prev; \ 3855 skb != (struct sk_buff *)(queue); \ 3856 skb = skb->prev) 3857 3858#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3859 for (skb = (queue)->prev, tmp = skb->prev; \ 3860 skb != (struct sk_buff *)(queue); \ 3861 skb = tmp, tmp = skb->prev) 3862 3863#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3864 for (tmp = skb->prev; \ 3865 skb != (struct sk_buff *)(queue); \ 3866 skb = tmp, tmp = skb->prev) 3867 3868static inline bool skb_has_frag_list(const struct sk_buff *skb) 3869{ 3870 return skb_shinfo(skb)->frag_list != NULL; 3871} 3872 3873static inline void skb_frag_list_init(struct sk_buff *skb) 3874{ 3875 skb_shinfo(skb)->frag_list = NULL; 3876} 3877 3878#define skb_walk_frags(skb, iter) \ 3879 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3880 3881 3882int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3883 int *err, long *timeo_p, 3884 const struct sk_buff *skb); 3885struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3886 struct sk_buff_head *queue, 3887 unsigned int flags, 3888 int *off, int *err, 3889 struct sk_buff **last); 3890struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3891 struct sk_buff_head *queue, 3892 unsigned int flags, int *off, int *err, 3893 struct sk_buff **last); 3894struct sk_buff *__skb_recv_datagram(struct sock *sk, 3895 struct sk_buff_head *sk_queue, 3896 unsigned int flags, int *off, int *err); 3897struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3898__poll_t datagram_poll(struct file *file, struct socket *sock, 3899 struct poll_table_struct *wait); 3900int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3901 struct iov_iter *to, int size); 3902static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3903 struct msghdr *msg, int size) 3904{ 3905 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3906} 3907int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3908 struct msghdr *msg); 3909int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3910 struct iov_iter *to, int len, 3911 struct ahash_request *hash); 3912int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3913 struct iov_iter *from, int len); 3914int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3915void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3916void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3917static inline void skb_free_datagram_locked(struct sock *sk, 3918 struct sk_buff *skb) 3919{ 3920 __skb_free_datagram_locked(sk, skb, 0); 3921} 3922int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3923int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3924int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3925__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3926 int len); 3927int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3928 struct pipe_inode_info *pipe, unsigned int len, 3929 unsigned int flags); 3930int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3931 int len); 3932int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3933void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3934unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3935int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3936 int len, int hlen); 3937void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3938int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3939void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3940bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3941bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3942struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3943struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3944 unsigned int offset); 3945struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3946int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3947int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3948int skb_vlan_pop(struct sk_buff *skb); 3949int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3950int skb_eth_pop(struct sk_buff *skb); 3951int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3952 const unsigned char *src); 3953int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3954 int mac_len, bool ethernet); 3955int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3956 bool ethernet); 3957int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3958int skb_mpls_dec_ttl(struct sk_buff *skb); 3959struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3960 gfp_t gfp); 3961 3962static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3963{ 3964 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3965} 3966 3967static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3968{ 3969 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3970} 3971 3972struct skb_checksum_ops { 3973 __wsum (*update)(const void *mem, int len, __wsum wsum); 3974 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3975}; 3976 3977extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3978 3979__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3980 __wsum csum, const struct skb_checksum_ops *ops); 3981__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3982 __wsum csum); 3983 3984static inline void * __must_check 3985__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3986 const void *data, int hlen, void *buffer) 3987{ 3988 if (likely(hlen - offset >= len)) 3989 return (void *)data + offset; 3990 3991 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3992 return NULL; 3993 3994 return buffer; 3995} 3996 3997static inline void * __must_check 3998skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3999{ 4000 return __skb_header_pointer(skb, offset, len, skb->data, 4001 skb_headlen(skb), buffer); 4002} 4003 4004/** 4005 * skb_needs_linearize - check if we need to linearize a given skb 4006 * depending on the given device features. 4007 * @skb: socket buffer to check 4008 * @features: net device features 4009 * 4010 * Returns true if either: 4011 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4012 * 2. skb is fragmented and the device does not support SG. 4013 */ 4014static inline bool skb_needs_linearize(struct sk_buff *skb, 4015 netdev_features_t features) 4016{ 4017 return skb_is_nonlinear(skb) && 4018 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4019 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4020} 4021 4022static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4023 void *to, 4024 const unsigned int len) 4025{ 4026 memcpy(to, skb->data, len); 4027} 4028 4029static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4030 const int offset, void *to, 4031 const unsigned int len) 4032{ 4033 memcpy(to, skb->data + offset, len); 4034} 4035 4036static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4037 const void *from, 4038 const unsigned int len) 4039{ 4040 memcpy(skb->data, from, len); 4041} 4042 4043static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4044 const int offset, 4045 const void *from, 4046 const unsigned int len) 4047{ 4048 memcpy(skb->data + offset, from, len); 4049} 4050 4051void skb_init(void); 4052 4053static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4054{ 4055 return skb->tstamp; 4056} 4057 4058/** 4059 * skb_get_timestamp - get timestamp from a skb 4060 * @skb: skb to get stamp from 4061 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4062 * 4063 * Timestamps are stored in the skb as offsets to a base timestamp. 4064 * This function converts the offset back to a struct timeval and stores 4065 * it in stamp. 4066 */ 4067static inline void skb_get_timestamp(const struct sk_buff *skb, 4068 struct __kernel_old_timeval *stamp) 4069{ 4070 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4071} 4072 4073static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4074 struct __kernel_sock_timeval *stamp) 4075{ 4076 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4077 4078 stamp->tv_sec = ts.tv_sec; 4079 stamp->tv_usec = ts.tv_nsec / 1000; 4080} 4081 4082static inline void skb_get_timestampns(const struct sk_buff *skb, 4083 struct __kernel_old_timespec *stamp) 4084{ 4085 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4086 4087 stamp->tv_sec = ts.tv_sec; 4088 stamp->tv_nsec = ts.tv_nsec; 4089} 4090 4091static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4092 struct __kernel_timespec *stamp) 4093{ 4094 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4095 4096 stamp->tv_sec = ts.tv_sec; 4097 stamp->tv_nsec = ts.tv_nsec; 4098} 4099 4100static inline void __net_timestamp(struct sk_buff *skb) 4101{ 4102 skb->tstamp = ktime_get_real(); 4103 skb->mono_delivery_time = 0; 4104} 4105 4106static inline ktime_t net_timedelta(ktime_t t) 4107{ 4108 return ktime_sub(ktime_get_real(), t); 4109} 4110 4111static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4112 bool mono) 4113{ 4114 skb->tstamp = kt; 4115 skb->mono_delivery_time = kt && mono; 4116} 4117 4118DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4119 4120/* It is used in the ingress path to clear the delivery_time. 4121 * If needed, set the skb->tstamp to the (rcv) timestamp. 4122 */ 4123static inline void skb_clear_delivery_time(struct sk_buff *skb) 4124{ 4125 if (skb->mono_delivery_time) { 4126 skb->mono_delivery_time = 0; 4127 if (static_branch_unlikely(&netstamp_needed_key)) 4128 skb->tstamp = ktime_get_real(); 4129 else 4130 skb->tstamp = 0; 4131 } 4132} 4133 4134static inline void skb_clear_tstamp(struct sk_buff *skb) 4135{ 4136 if (skb->mono_delivery_time) 4137 return; 4138 4139 skb->tstamp = 0; 4140} 4141 4142static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4143{ 4144 if (skb->mono_delivery_time) 4145 return 0; 4146 4147 return skb->tstamp; 4148} 4149 4150static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4151{ 4152 if (!skb->mono_delivery_time && skb->tstamp) 4153 return skb->tstamp; 4154 4155 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4156 return ktime_get_real(); 4157 4158 return 0; 4159} 4160 4161static inline u8 skb_metadata_len(const struct sk_buff *skb) 4162{ 4163 return skb_shinfo(skb)->meta_len; 4164} 4165 4166static inline void *skb_metadata_end(const struct sk_buff *skb) 4167{ 4168 return skb_mac_header(skb); 4169} 4170 4171static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4172 const struct sk_buff *skb_b, 4173 u8 meta_len) 4174{ 4175 const void *a = skb_metadata_end(skb_a); 4176 const void *b = skb_metadata_end(skb_b); 4177 /* Using more efficient varaiant than plain call to memcmp(). */ 4178#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4179 u64 diffs = 0; 4180 4181 switch (meta_len) { 4182#define __it(x, op) (x -= sizeof(u##op)) 4183#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4184 case 32: diffs |= __it_diff(a, b, 64); 4185 fallthrough; 4186 case 24: diffs |= __it_diff(a, b, 64); 4187 fallthrough; 4188 case 16: diffs |= __it_diff(a, b, 64); 4189 fallthrough; 4190 case 8: diffs |= __it_diff(a, b, 64); 4191 break; 4192 case 28: diffs |= __it_diff(a, b, 64); 4193 fallthrough; 4194 case 20: diffs |= __it_diff(a, b, 64); 4195 fallthrough; 4196 case 12: diffs |= __it_diff(a, b, 64); 4197 fallthrough; 4198 case 4: diffs |= __it_diff(a, b, 32); 4199 break; 4200 } 4201 return diffs; 4202#else 4203 return memcmp(a - meta_len, b - meta_len, meta_len); 4204#endif 4205} 4206 4207static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4208 const struct sk_buff *skb_b) 4209{ 4210 u8 len_a = skb_metadata_len(skb_a); 4211 u8 len_b = skb_metadata_len(skb_b); 4212 4213 if (!(len_a | len_b)) 4214 return false; 4215 4216 return len_a != len_b ? 4217 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4218} 4219 4220static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4221{ 4222 skb_shinfo(skb)->meta_len = meta_len; 4223} 4224 4225static inline void skb_metadata_clear(struct sk_buff *skb) 4226{ 4227 skb_metadata_set(skb, 0); 4228} 4229 4230struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4231 4232#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4233 4234void skb_clone_tx_timestamp(struct sk_buff *skb); 4235bool skb_defer_rx_timestamp(struct sk_buff *skb); 4236 4237#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4238 4239static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4240{ 4241} 4242 4243static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4244{ 4245 return false; 4246} 4247 4248#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4249 4250/** 4251 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4252 * 4253 * PHY drivers may accept clones of transmitted packets for 4254 * timestamping via their phy_driver.txtstamp method. These drivers 4255 * must call this function to return the skb back to the stack with a 4256 * timestamp. 4257 * 4258 * @skb: clone of the original outgoing packet 4259 * @hwtstamps: hardware time stamps 4260 * 4261 */ 4262void skb_complete_tx_timestamp(struct sk_buff *skb, 4263 struct skb_shared_hwtstamps *hwtstamps); 4264 4265void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4266 struct skb_shared_hwtstamps *hwtstamps, 4267 struct sock *sk, int tstype); 4268 4269/** 4270 * skb_tstamp_tx - queue clone of skb with send time stamps 4271 * @orig_skb: the original outgoing packet 4272 * @hwtstamps: hardware time stamps, may be NULL if not available 4273 * 4274 * If the skb has a socket associated, then this function clones the 4275 * skb (thus sharing the actual data and optional structures), stores 4276 * the optional hardware time stamping information (if non NULL) or 4277 * generates a software time stamp (otherwise), then queues the clone 4278 * to the error queue of the socket. Errors are silently ignored. 4279 */ 4280void skb_tstamp_tx(struct sk_buff *orig_skb, 4281 struct skb_shared_hwtstamps *hwtstamps); 4282 4283/** 4284 * skb_tx_timestamp() - Driver hook for transmit timestamping 4285 * 4286 * Ethernet MAC Drivers should call this function in their hard_xmit() 4287 * function immediately before giving the sk_buff to the MAC hardware. 4288 * 4289 * Specifically, one should make absolutely sure that this function is 4290 * called before TX completion of this packet can trigger. Otherwise 4291 * the packet could potentially already be freed. 4292 * 4293 * @skb: A socket buffer. 4294 */ 4295static inline void skb_tx_timestamp(struct sk_buff *skb) 4296{ 4297 skb_clone_tx_timestamp(skb); 4298 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4299 skb_tstamp_tx(skb, NULL); 4300} 4301 4302/** 4303 * skb_complete_wifi_ack - deliver skb with wifi status 4304 * 4305 * @skb: the original outgoing packet 4306 * @acked: ack status 4307 * 4308 */ 4309void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4310 4311__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4312__sum16 __skb_checksum_complete(struct sk_buff *skb); 4313 4314static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4315{ 4316 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4317 skb->csum_valid || 4318 (skb->ip_summed == CHECKSUM_PARTIAL && 4319 skb_checksum_start_offset(skb) >= 0)); 4320} 4321 4322/** 4323 * skb_checksum_complete - Calculate checksum of an entire packet 4324 * @skb: packet to process 4325 * 4326 * This function calculates the checksum over the entire packet plus 4327 * the value of skb->csum. The latter can be used to supply the 4328 * checksum of a pseudo header as used by TCP/UDP. It returns the 4329 * checksum. 4330 * 4331 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4332 * this function can be used to verify that checksum on received 4333 * packets. In that case the function should return zero if the 4334 * checksum is correct. In particular, this function will return zero 4335 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4336 * hardware has already verified the correctness of the checksum. 4337 */ 4338static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4339{ 4340 return skb_csum_unnecessary(skb) ? 4341 0 : __skb_checksum_complete(skb); 4342} 4343 4344static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4345{ 4346 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4347 if (skb->csum_level == 0) 4348 skb->ip_summed = CHECKSUM_NONE; 4349 else 4350 skb->csum_level--; 4351 } 4352} 4353 4354static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4355{ 4356 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4357 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4358 skb->csum_level++; 4359 } else if (skb->ip_summed == CHECKSUM_NONE) { 4360 skb->ip_summed = CHECKSUM_UNNECESSARY; 4361 skb->csum_level = 0; 4362 } 4363} 4364 4365static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4366{ 4367 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4368 skb->ip_summed = CHECKSUM_NONE; 4369 skb->csum_level = 0; 4370 } 4371} 4372 4373/* Check if we need to perform checksum complete validation. 4374 * 4375 * Returns true if checksum complete is needed, false otherwise 4376 * (either checksum is unnecessary or zero checksum is allowed). 4377 */ 4378static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4379 bool zero_okay, 4380 __sum16 check) 4381{ 4382 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4383 skb->csum_valid = 1; 4384 __skb_decr_checksum_unnecessary(skb); 4385 return false; 4386 } 4387 4388 return true; 4389} 4390 4391/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4392 * in checksum_init. 4393 */ 4394#define CHECKSUM_BREAK 76 4395 4396/* Unset checksum-complete 4397 * 4398 * Unset checksum complete can be done when packet is being modified 4399 * (uncompressed for instance) and checksum-complete value is 4400 * invalidated. 4401 */ 4402static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4403{ 4404 if (skb->ip_summed == CHECKSUM_COMPLETE) 4405 skb->ip_summed = CHECKSUM_NONE; 4406} 4407 4408/* Validate (init) checksum based on checksum complete. 4409 * 4410 * Return values: 4411 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4412 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4413 * checksum is stored in skb->csum for use in __skb_checksum_complete 4414 * non-zero: value of invalid checksum 4415 * 4416 */ 4417static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4418 bool complete, 4419 __wsum psum) 4420{ 4421 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4422 if (!csum_fold(csum_add(psum, skb->csum))) { 4423 skb->csum_valid = 1; 4424 return 0; 4425 } 4426 } 4427 4428 skb->csum = psum; 4429 4430 if (complete || skb->len <= CHECKSUM_BREAK) { 4431 __sum16 csum; 4432 4433 csum = __skb_checksum_complete(skb); 4434 skb->csum_valid = !csum; 4435 return csum; 4436 } 4437 4438 return 0; 4439} 4440 4441static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4442{ 4443 return 0; 4444} 4445 4446/* Perform checksum validate (init). Note that this is a macro since we only 4447 * want to calculate the pseudo header which is an input function if necessary. 4448 * First we try to validate without any computation (checksum unnecessary) and 4449 * then calculate based on checksum complete calling the function to compute 4450 * pseudo header. 4451 * 4452 * Return values: 4453 * 0: checksum is validated or try to in skb_checksum_complete 4454 * non-zero: value of invalid checksum 4455 */ 4456#define __skb_checksum_validate(skb, proto, complete, \ 4457 zero_okay, check, compute_pseudo) \ 4458({ \ 4459 __sum16 __ret = 0; \ 4460 skb->csum_valid = 0; \ 4461 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4462 __ret = __skb_checksum_validate_complete(skb, \ 4463 complete, compute_pseudo(skb, proto)); \ 4464 __ret; \ 4465}) 4466 4467#define skb_checksum_init(skb, proto, compute_pseudo) \ 4468 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4469 4470#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4471 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4472 4473#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4474 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4475 4476#define skb_checksum_validate_zero_check(skb, proto, check, \ 4477 compute_pseudo) \ 4478 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4479 4480#define skb_checksum_simple_validate(skb) \ 4481 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4482 4483static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4484{ 4485 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4486} 4487 4488static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4489{ 4490 skb->csum = ~pseudo; 4491 skb->ip_summed = CHECKSUM_COMPLETE; 4492} 4493 4494#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4495do { \ 4496 if (__skb_checksum_convert_check(skb)) \ 4497 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4498} while (0) 4499 4500static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4501 u16 start, u16 offset) 4502{ 4503 skb->ip_summed = CHECKSUM_PARTIAL; 4504 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4505 skb->csum_offset = offset - start; 4506} 4507 4508/* Update skbuf and packet to reflect the remote checksum offload operation. 4509 * When called, ptr indicates the starting point for skb->csum when 4510 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4511 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4512 */ 4513static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4514 int start, int offset, bool nopartial) 4515{ 4516 __wsum delta; 4517 4518 if (!nopartial) { 4519 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4520 return; 4521 } 4522 4523 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4524 __skb_checksum_complete(skb); 4525 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4526 } 4527 4528 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4529 4530 /* Adjust skb->csum since we changed the packet */ 4531 skb->csum = csum_add(skb->csum, delta); 4532} 4533 4534static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4535{ 4536#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4537 return (void *)(skb->_nfct & NFCT_PTRMASK); 4538#else 4539 return NULL; 4540#endif 4541} 4542 4543static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4544{ 4545#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4546 return skb->_nfct; 4547#else 4548 return 0UL; 4549#endif 4550} 4551 4552static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4553{ 4554#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4555 skb->slow_gro |= !!nfct; 4556 skb->_nfct = nfct; 4557#endif 4558} 4559 4560#ifdef CONFIG_SKB_EXTENSIONS 4561enum skb_ext_id { 4562#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4563 SKB_EXT_BRIDGE_NF, 4564#endif 4565#ifdef CONFIG_XFRM 4566 SKB_EXT_SEC_PATH, 4567#endif 4568#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4569 TC_SKB_EXT, 4570#endif 4571#if IS_ENABLED(CONFIG_MPTCP) 4572 SKB_EXT_MPTCP, 4573#endif 4574#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4575 SKB_EXT_MCTP, 4576#endif 4577 SKB_EXT_NUM, /* must be last */ 4578}; 4579 4580/** 4581 * struct skb_ext - sk_buff extensions 4582 * @refcnt: 1 on allocation, deallocated on 0 4583 * @offset: offset to add to @data to obtain extension address 4584 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4585 * @data: start of extension data, variable sized 4586 * 4587 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4588 * to use 'u8' types while allowing up to 2kb worth of extension data. 4589 */ 4590struct skb_ext { 4591 refcount_t refcnt; 4592 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4593 u8 chunks; /* same */ 4594 char data[] __aligned(8); 4595}; 4596 4597struct skb_ext *__skb_ext_alloc(gfp_t flags); 4598void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4599 struct skb_ext *ext); 4600void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4601void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4602void __skb_ext_put(struct skb_ext *ext); 4603 4604static inline void skb_ext_put(struct sk_buff *skb) 4605{ 4606 if (skb->active_extensions) 4607 __skb_ext_put(skb->extensions); 4608} 4609 4610static inline void __skb_ext_copy(struct sk_buff *dst, 4611 const struct sk_buff *src) 4612{ 4613 dst->active_extensions = src->active_extensions; 4614 4615 if (src->active_extensions) { 4616 struct skb_ext *ext = src->extensions; 4617 4618 refcount_inc(&ext->refcnt); 4619 dst->extensions = ext; 4620 } 4621} 4622 4623static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4624{ 4625 skb_ext_put(dst); 4626 __skb_ext_copy(dst, src); 4627} 4628 4629static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4630{ 4631 return !!ext->offset[i]; 4632} 4633 4634static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4635{ 4636 return skb->active_extensions & (1 << id); 4637} 4638 4639static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4640{ 4641 if (skb_ext_exist(skb, id)) 4642 __skb_ext_del(skb, id); 4643} 4644 4645static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4646{ 4647 if (skb_ext_exist(skb, id)) { 4648 struct skb_ext *ext = skb->extensions; 4649 4650 return (void *)ext + (ext->offset[id] << 3); 4651 } 4652 4653 return NULL; 4654} 4655 4656static inline void skb_ext_reset(struct sk_buff *skb) 4657{ 4658 if (unlikely(skb->active_extensions)) { 4659 __skb_ext_put(skb->extensions); 4660 skb->active_extensions = 0; 4661 } 4662} 4663 4664static inline bool skb_has_extensions(struct sk_buff *skb) 4665{ 4666 return unlikely(skb->active_extensions); 4667} 4668#else 4669static inline void skb_ext_put(struct sk_buff *skb) {} 4670static inline void skb_ext_reset(struct sk_buff *skb) {} 4671static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4672static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4673static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4674static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4675#endif /* CONFIG_SKB_EXTENSIONS */ 4676 4677static inline void nf_reset_ct(struct sk_buff *skb) 4678{ 4679#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4680 nf_conntrack_put(skb_nfct(skb)); 4681 skb->_nfct = 0; 4682#endif 4683} 4684 4685static inline void nf_reset_trace(struct sk_buff *skb) 4686{ 4687#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4688 skb->nf_trace = 0; 4689#endif 4690} 4691 4692static inline void ipvs_reset(struct sk_buff *skb) 4693{ 4694#if IS_ENABLED(CONFIG_IP_VS) 4695 skb->ipvs_property = 0; 4696#endif 4697} 4698 4699/* Note: This doesn't put any conntrack info in dst. */ 4700static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4701 bool copy) 4702{ 4703#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4704 dst->_nfct = src->_nfct; 4705 nf_conntrack_get(skb_nfct(src)); 4706#endif 4707#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4708 if (copy) 4709 dst->nf_trace = src->nf_trace; 4710#endif 4711} 4712 4713static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4714{ 4715#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4716 nf_conntrack_put(skb_nfct(dst)); 4717#endif 4718 dst->slow_gro = src->slow_gro; 4719 __nf_copy(dst, src, true); 4720} 4721 4722#ifdef CONFIG_NETWORK_SECMARK 4723static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4724{ 4725 to->secmark = from->secmark; 4726} 4727 4728static inline void skb_init_secmark(struct sk_buff *skb) 4729{ 4730 skb->secmark = 0; 4731} 4732#else 4733static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4734{ } 4735 4736static inline void skb_init_secmark(struct sk_buff *skb) 4737{ } 4738#endif 4739 4740static inline int secpath_exists(const struct sk_buff *skb) 4741{ 4742#ifdef CONFIG_XFRM 4743 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4744#else 4745 return 0; 4746#endif 4747} 4748 4749static inline bool skb_irq_freeable(const struct sk_buff *skb) 4750{ 4751 return !skb->destructor && 4752 !secpath_exists(skb) && 4753 !skb_nfct(skb) && 4754 !skb->_skb_refdst && 4755 !skb_has_frag_list(skb); 4756} 4757 4758static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4759{ 4760 skb->queue_mapping = queue_mapping; 4761} 4762 4763static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4764{ 4765 return skb->queue_mapping; 4766} 4767 4768static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4769{ 4770 to->queue_mapping = from->queue_mapping; 4771} 4772 4773static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4774{ 4775 skb->queue_mapping = rx_queue + 1; 4776} 4777 4778static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4779{ 4780 return skb->queue_mapping - 1; 4781} 4782 4783static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4784{ 4785 return skb->queue_mapping != 0; 4786} 4787 4788static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4789{ 4790 skb->dst_pending_confirm = val; 4791} 4792 4793static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4794{ 4795 return skb->dst_pending_confirm != 0; 4796} 4797 4798static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4799{ 4800#ifdef CONFIG_XFRM 4801 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4802#else 4803 return NULL; 4804#endif 4805} 4806 4807/* Keeps track of mac header offset relative to skb->head. 4808 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4809 * For non-tunnel skb it points to skb_mac_header() and for 4810 * tunnel skb it points to outer mac header. 4811 * Keeps track of level of encapsulation of network headers. 4812 */ 4813struct skb_gso_cb { 4814 union { 4815 int mac_offset; 4816 int data_offset; 4817 }; 4818 int encap_level; 4819 __wsum csum; 4820 __u16 csum_start; 4821}; 4822#define SKB_GSO_CB_OFFSET 32 4823#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4824 4825static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4826{ 4827 return (skb_mac_header(inner_skb) - inner_skb->head) - 4828 SKB_GSO_CB(inner_skb)->mac_offset; 4829} 4830 4831static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4832{ 4833 int new_headroom, headroom; 4834 int ret; 4835 4836 headroom = skb_headroom(skb); 4837 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4838 if (ret) 4839 return ret; 4840 4841 new_headroom = skb_headroom(skb); 4842 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4843 return 0; 4844} 4845 4846static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4847{ 4848 /* Do not update partial checksums if remote checksum is enabled. */ 4849 if (skb->remcsum_offload) 4850 return; 4851 4852 SKB_GSO_CB(skb)->csum = res; 4853 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4854} 4855 4856/* Compute the checksum for a gso segment. First compute the checksum value 4857 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4858 * then add in skb->csum (checksum from csum_start to end of packet). 4859 * skb->csum and csum_start are then updated to reflect the checksum of the 4860 * resultant packet starting from the transport header-- the resultant checksum 4861 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4862 * header. 4863 */ 4864static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4865{ 4866 unsigned char *csum_start = skb_transport_header(skb); 4867 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4868 __wsum partial = SKB_GSO_CB(skb)->csum; 4869 4870 SKB_GSO_CB(skb)->csum = res; 4871 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4872 4873 return csum_fold(csum_partial(csum_start, plen, partial)); 4874} 4875 4876static inline bool skb_is_gso(const struct sk_buff *skb) 4877{ 4878 return skb_shinfo(skb)->gso_size; 4879} 4880 4881/* Note: Should be called only if skb_is_gso(skb) is true */ 4882static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4883{ 4884 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4885} 4886 4887/* Note: Should be called only if skb_is_gso(skb) is true */ 4888static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4889{ 4890 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4891} 4892 4893/* Note: Should be called only if skb_is_gso(skb) is true */ 4894static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4895{ 4896 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4897} 4898 4899static inline void skb_gso_reset(struct sk_buff *skb) 4900{ 4901 skb_shinfo(skb)->gso_size = 0; 4902 skb_shinfo(skb)->gso_segs = 0; 4903 skb_shinfo(skb)->gso_type = 0; 4904} 4905 4906static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4907 u16 increment) 4908{ 4909 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4910 return; 4911 shinfo->gso_size += increment; 4912} 4913 4914static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4915 u16 decrement) 4916{ 4917 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4918 return; 4919 shinfo->gso_size -= decrement; 4920} 4921 4922void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4923 4924static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4925{ 4926 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4927 * wanted then gso_type will be set. */ 4928 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4929 4930 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4931 unlikely(shinfo->gso_type == 0)) { 4932 __skb_warn_lro_forwarding(skb); 4933 return true; 4934 } 4935 return false; 4936} 4937 4938static inline void skb_forward_csum(struct sk_buff *skb) 4939{ 4940 /* Unfortunately we don't support this one. Any brave souls? */ 4941 if (skb->ip_summed == CHECKSUM_COMPLETE) 4942 skb->ip_summed = CHECKSUM_NONE; 4943} 4944 4945/** 4946 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4947 * @skb: skb to check 4948 * 4949 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4950 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4951 * use this helper, to document places where we make this assertion. 4952 */ 4953static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4954{ 4955 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4956} 4957 4958bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4959 4960int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4961struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4962 unsigned int transport_len, 4963 __sum16(*skb_chkf)(struct sk_buff *skb)); 4964 4965/** 4966 * skb_head_is_locked - Determine if the skb->head is locked down 4967 * @skb: skb to check 4968 * 4969 * The head on skbs build around a head frag can be removed if they are 4970 * not cloned. This function returns true if the skb head is locked down 4971 * due to either being allocated via kmalloc, or by being a clone with 4972 * multiple references to the head. 4973 */ 4974static inline bool skb_head_is_locked(const struct sk_buff *skb) 4975{ 4976 return !skb->head_frag || skb_cloned(skb); 4977} 4978 4979/* Local Checksum Offload. 4980 * Compute outer checksum based on the assumption that the 4981 * inner checksum will be offloaded later. 4982 * See Documentation/networking/checksum-offloads.rst for 4983 * explanation of how this works. 4984 * Fill in outer checksum adjustment (e.g. with sum of outer 4985 * pseudo-header) before calling. 4986 * Also ensure that inner checksum is in linear data area. 4987 */ 4988static inline __wsum lco_csum(struct sk_buff *skb) 4989{ 4990 unsigned char *csum_start = skb_checksum_start(skb); 4991 unsigned char *l4_hdr = skb_transport_header(skb); 4992 __wsum partial; 4993 4994 /* Start with complement of inner checksum adjustment */ 4995 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4996 skb->csum_offset)); 4997 4998 /* Add in checksum of our headers (incl. outer checksum 4999 * adjustment filled in by caller) and return result. 5000 */ 5001 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5002} 5003 5004static inline bool skb_is_redirected(const struct sk_buff *skb) 5005{ 5006 return skb->redirected; 5007} 5008 5009static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5010{ 5011 skb->redirected = 1; 5012#ifdef CONFIG_NET_REDIRECT 5013 skb->from_ingress = from_ingress; 5014 if (skb->from_ingress) 5015 skb_clear_tstamp(skb); 5016#endif 5017} 5018 5019static inline void skb_reset_redirect(struct sk_buff *skb) 5020{ 5021 skb->redirected = 0; 5022} 5023 5024static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5025{ 5026 return skb->csum_not_inet; 5027} 5028 5029static inline void skb_set_kcov_handle(struct sk_buff *skb, 5030 const u64 kcov_handle) 5031{ 5032#ifdef CONFIG_KCOV 5033 skb->kcov_handle = kcov_handle; 5034#endif 5035} 5036 5037static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5038{ 5039#ifdef CONFIG_KCOV 5040 return skb->kcov_handle; 5041#else 5042 return 0; 5043#endif 5044} 5045 5046#ifdef CONFIG_PAGE_POOL 5047static inline void skb_mark_for_recycle(struct sk_buff *skb) 5048{ 5049 skb->pp_recycle = 1; 5050} 5051#endif 5052 5053static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 5054{ 5055 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 5056 return false; 5057 return page_pool_return_skb_page(virt_to_page(data)); 5058} 5059 5060#endif /* __KERNEL__ */ 5061#endif /* _LINUX_SKBUFF_H */