at v6.1 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32#include <linux/context_tracking_irq.h> 33 34#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 35#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 36#define ulong2long(a) (*(long *)(&(a))) 37#define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 38#define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 39 40/* Exported common interfaces */ 41void call_rcu(struct rcu_head *head, rcu_callback_t func); 42void rcu_barrier_tasks(void); 43void rcu_barrier_tasks_rude(void); 44void synchronize_rcu(void); 45 46struct rcu_gp_oldstate; 47unsigned long get_completed_synchronize_rcu(void); 48void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 49 50// Maximum number of unsigned long values corresponding to 51// not-yet-completed RCU grace periods. 52#define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 53 54/** 55 * same_state_synchronize_rcu - Are two old-state values identical? 56 * @oldstate1: First old-state value. 57 * @oldstate2: Second old-state value. 58 * 59 * The two old-state values must have been obtained from either 60 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 61 * get_completed_synchronize_rcu(). Returns @true if the two values are 62 * identical and @false otherwise. This allows structures whose lifetimes 63 * are tracked by old-state values to push these values to a list header, 64 * allowing those structures to be slightly smaller. 65 */ 66static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 67{ 68 return oldstate1 == oldstate2; 69} 70 71#ifdef CONFIG_PREEMPT_RCU 72 73void __rcu_read_lock(void); 74void __rcu_read_unlock(void); 75 76/* 77 * Defined as a macro as it is a very low level header included from 78 * areas that don't even know about current. This gives the rcu_read_lock() 79 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 80 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 81 */ 82#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 83 84#else /* #ifdef CONFIG_PREEMPT_RCU */ 85 86#ifdef CONFIG_TINY_RCU 87#define rcu_read_unlock_strict() do { } while (0) 88#else 89void rcu_read_unlock_strict(void); 90#endif 91 92static inline void __rcu_read_lock(void) 93{ 94 preempt_disable(); 95} 96 97static inline void __rcu_read_unlock(void) 98{ 99 preempt_enable(); 100 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 101 rcu_read_unlock_strict(); 102} 103 104static inline int rcu_preempt_depth(void) 105{ 106 return 0; 107} 108 109#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 110 111/* Internal to kernel */ 112void rcu_init(void); 113extern int rcu_scheduler_active; 114void rcu_sched_clock_irq(int user); 115void rcu_report_dead(unsigned int cpu); 116void rcutree_migrate_callbacks(int cpu); 117 118#ifdef CONFIG_TASKS_RCU_GENERIC 119void rcu_init_tasks_generic(void); 120#else 121static inline void rcu_init_tasks_generic(void) { } 122#endif 123 124#ifdef CONFIG_RCU_STALL_COMMON 125void rcu_sysrq_start(void); 126void rcu_sysrq_end(void); 127#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 128static inline void rcu_sysrq_start(void) { } 129static inline void rcu_sysrq_end(void) { } 130#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 131 132#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 133void rcu_irq_work_resched(void); 134#else 135static inline void rcu_irq_work_resched(void) { } 136#endif 137 138#ifdef CONFIG_RCU_NOCB_CPU 139void rcu_init_nohz(void); 140int rcu_nocb_cpu_offload(int cpu); 141int rcu_nocb_cpu_deoffload(int cpu); 142void rcu_nocb_flush_deferred_wakeup(void); 143#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 144static inline void rcu_init_nohz(void) { } 145static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 146static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 147static inline void rcu_nocb_flush_deferred_wakeup(void) { } 148#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 149 150/** 151 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 152 * @a: Code that RCU needs to pay attention to. 153 * 154 * RCU read-side critical sections are forbidden in the inner idle loop, 155 * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU 156 * will happily ignore any such read-side critical sections. However, 157 * things like powertop need tracepoints in the inner idle loop. 158 * 159 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 160 * will tell RCU that it needs to pay attention, invoke its argument 161 * (in this example, calling the do_something_with_RCU() function), 162 * and then tell RCU to go back to ignoring this CPU. It is permissible 163 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 164 * on the order of a million or so, even on 32-bit systems). It is 165 * not legal to block within RCU_NONIDLE(), nor is it permissible to 166 * transfer control either into or out of RCU_NONIDLE()'s statement. 167 */ 168#define RCU_NONIDLE(a) \ 169 do { \ 170 ct_irq_enter_irqson(); \ 171 do { a; } while (0); \ 172 ct_irq_exit_irqson(); \ 173 } while (0) 174 175/* 176 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 177 * This is a macro rather than an inline function to avoid #include hell. 178 */ 179#ifdef CONFIG_TASKS_RCU_GENERIC 180 181# ifdef CONFIG_TASKS_RCU 182# define rcu_tasks_classic_qs(t, preempt) \ 183 do { \ 184 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 185 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 186 } while (0) 187void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 188void synchronize_rcu_tasks(void); 189# else 190# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 191# define call_rcu_tasks call_rcu 192# define synchronize_rcu_tasks synchronize_rcu 193# endif 194 195# ifdef CONFIG_TASKS_TRACE_RCU 196// Bits for ->trc_reader_special.b.need_qs field. 197#define TRC_NEED_QS 0x1 // Task needs a quiescent state. 198#define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 199 200u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 201void rcu_tasks_trace_qs_blkd(struct task_struct *t); 202 203# define rcu_tasks_trace_qs(t) \ 204 do { \ 205 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 206 \ 207 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 208 likely(!___rttq_nesting)) { \ 209 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 210 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 211 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 212 rcu_tasks_trace_qs_blkd(t); \ 213 } \ 214 } while (0) 215# else 216# define rcu_tasks_trace_qs(t) do { } while (0) 217# endif 218 219#define rcu_tasks_qs(t, preempt) \ 220do { \ 221 rcu_tasks_classic_qs((t), (preempt)); \ 222 rcu_tasks_trace_qs(t); \ 223} while (0) 224 225# ifdef CONFIG_TASKS_RUDE_RCU 226void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 227void synchronize_rcu_tasks_rude(void); 228# endif 229 230#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 231void exit_tasks_rcu_start(void); 232void exit_tasks_rcu_finish(void); 233#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 234#define rcu_tasks_classic_qs(t, preempt) do { } while (0) 235#define rcu_tasks_qs(t, preempt) do { } while (0) 236#define rcu_note_voluntary_context_switch(t) do { } while (0) 237#define call_rcu_tasks call_rcu 238#define synchronize_rcu_tasks synchronize_rcu 239static inline void exit_tasks_rcu_start(void) { } 240static inline void exit_tasks_rcu_finish(void) { } 241#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 242 243/** 244 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 245 * 246 * This macro resembles cond_resched(), except that it is defined to 247 * report potential quiescent states to RCU-tasks even if the cond_resched() 248 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 249 */ 250#define cond_resched_tasks_rcu_qs() \ 251do { \ 252 rcu_tasks_qs(current, false); \ 253 cond_resched(); \ 254} while (0) 255 256/* 257 * Infrastructure to implement the synchronize_() primitives in 258 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 259 */ 260 261#if defined(CONFIG_TREE_RCU) 262#include <linux/rcutree.h> 263#elif defined(CONFIG_TINY_RCU) 264#include <linux/rcutiny.h> 265#else 266#error "Unknown RCU implementation specified to kernel configuration" 267#endif 268 269/* 270 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 271 * are needed for dynamic initialization and destruction of rcu_head 272 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 273 * dynamic initialization and destruction of statically allocated rcu_head 274 * structures. However, rcu_head structures allocated dynamically in the 275 * heap don't need any initialization. 276 */ 277#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 278void init_rcu_head(struct rcu_head *head); 279void destroy_rcu_head(struct rcu_head *head); 280void init_rcu_head_on_stack(struct rcu_head *head); 281void destroy_rcu_head_on_stack(struct rcu_head *head); 282#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 283static inline void init_rcu_head(struct rcu_head *head) { } 284static inline void destroy_rcu_head(struct rcu_head *head) { } 285static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 286static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 287#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 288 289#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 290bool rcu_lockdep_current_cpu_online(void); 291#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 292static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 293#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 294 295extern struct lockdep_map rcu_lock_map; 296extern struct lockdep_map rcu_bh_lock_map; 297extern struct lockdep_map rcu_sched_lock_map; 298extern struct lockdep_map rcu_callback_map; 299 300#ifdef CONFIG_DEBUG_LOCK_ALLOC 301 302static inline void rcu_lock_acquire(struct lockdep_map *map) 303{ 304 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 305} 306 307static inline void rcu_lock_release(struct lockdep_map *map) 308{ 309 lock_release(map, _THIS_IP_); 310} 311 312int debug_lockdep_rcu_enabled(void); 313int rcu_read_lock_held(void); 314int rcu_read_lock_bh_held(void); 315int rcu_read_lock_sched_held(void); 316int rcu_read_lock_any_held(void); 317 318#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 319 320# define rcu_lock_acquire(a) do { } while (0) 321# define rcu_lock_release(a) do { } while (0) 322 323static inline int rcu_read_lock_held(void) 324{ 325 return 1; 326} 327 328static inline int rcu_read_lock_bh_held(void) 329{ 330 return 1; 331} 332 333static inline int rcu_read_lock_sched_held(void) 334{ 335 return !preemptible(); 336} 337 338static inline int rcu_read_lock_any_held(void) 339{ 340 return !preemptible(); 341} 342 343#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 344 345#ifdef CONFIG_PROVE_RCU 346 347/** 348 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 349 * @c: condition to check 350 * @s: informative message 351 */ 352#define RCU_LOCKDEP_WARN(c, s) \ 353 do { \ 354 static bool __section(".data.unlikely") __warned; \ 355 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ 356 __warned = true; \ 357 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 358 } \ 359 } while (0) 360 361#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 362static inline void rcu_preempt_sleep_check(void) 363{ 364 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 365 "Illegal context switch in RCU read-side critical section"); 366} 367#else /* #ifdef CONFIG_PROVE_RCU */ 368static inline void rcu_preempt_sleep_check(void) { } 369#endif /* #else #ifdef CONFIG_PROVE_RCU */ 370 371#define rcu_sleep_check() \ 372 do { \ 373 rcu_preempt_sleep_check(); \ 374 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 375 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 376 "Illegal context switch in RCU-bh read-side critical section"); \ 377 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 378 "Illegal context switch in RCU-sched read-side critical section"); \ 379 } while (0) 380 381#else /* #ifdef CONFIG_PROVE_RCU */ 382 383#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 384#define rcu_sleep_check() do { } while (0) 385 386#endif /* #else #ifdef CONFIG_PROVE_RCU */ 387 388/* 389 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 390 * and rcu_assign_pointer(). Some of these could be folded into their 391 * callers, but they are left separate in order to ease introduction of 392 * multiple pointers markings to match different RCU implementations 393 * (e.g., __srcu), should this make sense in the future. 394 */ 395 396#ifdef __CHECKER__ 397#define rcu_check_sparse(p, space) \ 398 ((void)(((typeof(*p) space *)p) == p)) 399#else /* #ifdef __CHECKER__ */ 400#define rcu_check_sparse(p, space) 401#endif /* #else #ifdef __CHECKER__ */ 402 403#define __unrcu_pointer(p, local) \ 404({ \ 405 typeof(*p) *local = (typeof(*p) *__force)(p); \ 406 rcu_check_sparse(p, __rcu); \ 407 ((typeof(*p) __force __kernel *)(local)); \ 408}) 409/** 410 * unrcu_pointer - mark a pointer as not being RCU protected 411 * @p: pointer needing to lose its __rcu property 412 * 413 * Converts @p from an __rcu pointer to a __kernel pointer. 414 * This allows an __rcu pointer to be used with xchg() and friends. 415 */ 416#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 417 418#define __rcu_access_pointer(p, local, space) \ 419({ \ 420 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 421 rcu_check_sparse(p, space); \ 422 ((typeof(*p) __force __kernel *)(local)); \ 423}) 424#define __rcu_dereference_check(p, local, c, space) \ 425({ \ 426 /* Dependency order vs. p above. */ \ 427 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 428 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 429 rcu_check_sparse(p, space); \ 430 ((typeof(*p) __force __kernel *)(local)); \ 431}) 432#define __rcu_dereference_protected(p, local, c, space) \ 433({ \ 434 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 435 rcu_check_sparse(p, space); \ 436 ((typeof(*p) __force __kernel *)(p)); \ 437}) 438#define __rcu_dereference_raw(p, local) \ 439({ \ 440 /* Dependency order vs. p above. */ \ 441 typeof(p) local = READ_ONCE(p); \ 442 ((typeof(*p) __force __kernel *)(local)); \ 443}) 444#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 445 446/** 447 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 448 * @v: The value to statically initialize with. 449 */ 450#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 451 452/** 453 * rcu_assign_pointer() - assign to RCU-protected pointer 454 * @p: pointer to assign to 455 * @v: value to assign (publish) 456 * 457 * Assigns the specified value to the specified RCU-protected 458 * pointer, ensuring that any concurrent RCU readers will see 459 * any prior initialization. 460 * 461 * Inserts memory barriers on architectures that require them 462 * (which is most of them), and also prevents the compiler from 463 * reordering the code that initializes the structure after the pointer 464 * assignment. More importantly, this call documents which pointers 465 * will be dereferenced by RCU read-side code. 466 * 467 * In some special cases, you may use RCU_INIT_POINTER() instead 468 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 469 * to the fact that it does not constrain either the CPU or the compiler. 470 * That said, using RCU_INIT_POINTER() when you should have used 471 * rcu_assign_pointer() is a very bad thing that results in 472 * impossible-to-diagnose memory corruption. So please be careful. 473 * See the RCU_INIT_POINTER() comment header for details. 474 * 475 * Note that rcu_assign_pointer() evaluates each of its arguments only 476 * once, appearances notwithstanding. One of the "extra" evaluations 477 * is in typeof() and the other visible only to sparse (__CHECKER__), 478 * neither of which actually execute the argument. As with most cpp 479 * macros, this execute-arguments-only-once property is important, so 480 * please be careful when making changes to rcu_assign_pointer() and the 481 * other macros that it invokes. 482 */ 483#define rcu_assign_pointer(p, v) \ 484do { \ 485 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 486 rcu_check_sparse(p, __rcu); \ 487 \ 488 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 489 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 490 else \ 491 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 492} while (0) 493 494/** 495 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 496 * @rcu_ptr: RCU pointer, whose old value is returned 497 * @ptr: regular pointer 498 * @c: the lockdep conditions under which the dereference will take place 499 * 500 * Perform a replacement, where @rcu_ptr is an RCU-annotated 501 * pointer and @c is the lockdep argument that is passed to the 502 * rcu_dereference_protected() call used to read that pointer. The old 503 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 504 */ 505#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 506({ \ 507 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 508 rcu_assign_pointer((rcu_ptr), (ptr)); \ 509 __tmp; \ 510}) 511 512/** 513 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 514 * @p: The pointer to read 515 * 516 * Return the value of the specified RCU-protected pointer, but omit the 517 * lockdep checks for being in an RCU read-side critical section. This is 518 * useful when the value of this pointer is accessed, but the pointer is 519 * not dereferenced, for example, when testing an RCU-protected pointer 520 * against NULL. Although rcu_access_pointer() may also be used in cases 521 * where update-side locks prevent the value of the pointer from changing, 522 * you should instead use rcu_dereference_protected() for this use case. 523 * Within an RCU read-side critical section, there is little reason to 524 * use rcu_access_pointer(). 525 * 526 * It is usually best to test the rcu_access_pointer() return value 527 * directly in order to avoid accidental dereferences being introduced 528 * by later inattentive changes. In other words, assigning the 529 * rcu_access_pointer() return value to a local variable results in an 530 * accident waiting to happen. 531 * 532 * It is also permissible to use rcu_access_pointer() when read-side 533 * access to the pointer was removed at least one grace period ago, as is 534 * the case in the context of the RCU callback that is freeing up the data, 535 * or after a synchronize_rcu() returns. This can be useful when tearing 536 * down multi-linked structures after a grace period has elapsed. However, 537 * rcu_dereference_protected() is normally preferred for this use case. 538 */ 539#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 540 541/** 542 * rcu_dereference_check() - rcu_dereference with debug checking 543 * @p: The pointer to read, prior to dereferencing 544 * @c: The conditions under which the dereference will take place 545 * 546 * Do an rcu_dereference(), but check that the conditions under which the 547 * dereference will take place are correct. Typically the conditions 548 * indicate the various locking conditions that should be held at that 549 * point. The check should return true if the conditions are satisfied. 550 * An implicit check for being in an RCU read-side critical section 551 * (rcu_read_lock()) is included. 552 * 553 * For example: 554 * 555 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 556 * 557 * could be used to indicate to lockdep that foo->bar may only be dereferenced 558 * if either rcu_read_lock() is held, or that the lock required to replace 559 * the bar struct at foo->bar is held. 560 * 561 * Note that the list of conditions may also include indications of when a lock 562 * need not be held, for example during initialisation or destruction of the 563 * target struct: 564 * 565 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 566 * atomic_read(&foo->usage) == 0); 567 * 568 * Inserts memory barriers on architectures that require them 569 * (currently only the Alpha), prevents the compiler from refetching 570 * (and from merging fetches), and, more importantly, documents exactly 571 * which pointers are protected by RCU and checks that the pointer is 572 * annotated as __rcu. 573 */ 574#define rcu_dereference_check(p, c) \ 575 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 576 (c) || rcu_read_lock_held(), __rcu) 577 578/** 579 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 580 * @p: The pointer to read, prior to dereferencing 581 * @c: The conditions under which the dereference will take place 582 * 583 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 584 * please note that starting in v5.0 kernels, vanilla RCU grace periods 585 * wait for local_bh_disable() regions of code in addition to regions of 586 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 587 * that synchronize_rcu(), call_rcu, and friends all take not only 588 * rcu_read_lock() but also rcu_read_lock_bh() into account. 589 */ 590#define rcu_dereference_bh_check(p, c) \ 591 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 592 (c) || rcu_read_lock_bh_held(), __rcu) 593 594/** 595 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 596 * @p: The pointer to read, prior to dereferencing 597 * @c: The conditions under which the dereference will take place 598 * 599 * This is the RCU-sched counterpart to rcu_dereference_check(). 600 * However, please note that starting in v5.0 kernels, vanilla RCU grace 601 * periods wait for preempt_disable() regions of code in addition to 602 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 603 * This means that synchronize_rcu(), call_rcu, and friends all take not 604 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 605 */ 606#define rcu_dereference_sched_check(p, c) \ 607 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 608 (c) || rcu_read_lock_sched_held(), \ 609 __rcu) 610 611/* 612 * The tracing infrastructure traces RCU (we want that), but unfortunately 613 * some of the RCU checks causes tracing to lock up the system. 614 * 615 * The no-tracing version of rcu_dereference_raw() must not call 616 * rcu_read_lock_held(). 617 */ 618#define rcu_dereference_raw_check(p) \ 619 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 620 621/** 622 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 623 * @p: The pointer to read, prior to dereferencing 624 * @c: The conditions under which the dereference will take place 625 * 626 * Return the value of the specified RCU-protected pointer, but omit 627 * the READ_ONCE(). This is useful in cases where update-side locks 628 * prevent the value of the pointer from changing. Please note that this 629 * primitive does *not* prevent the compiler from repeating this reference 630 * or combining it with other references, so it should not be used without 631 * protection of appropriate locks. 632 * 633 * This function is only for update-side use. Using this function 634 * when protected only by rcu_read_lock() will result in infrequent 635 * but very ugly failures. 636 */ 637#define rcu_dereference_protected(p, c) \ 638 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 639 640 641/** 642 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 643 * @p: The pointer to read, prior to dereferencing 644 * 645 * This is a simple wrapper around rcu_dereference_check(). 646 */ 647#define rcu_dereference(p) rcu_dereference_check(p, 0) 648 649/** 650 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 651 * @p: The pointer to read, prior to dereferencing 652 * 653 * Makes rcu_dereference_check() do the dirty work. 654 */ 655#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 656 657/** 658 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 659 * @p: The pointer to read, prior to dereferencing 660 * 661 * Makes rcu_dereference_check() do the dirty work. 662 */ 663#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 664 665/** 666 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 667 * @p: The pointer to hand off 668 * 669 * This is simply an identity function, but it documents where a pointer 670 * is handed off from RCU to some other synchronization mechanism, for 671 * example, reference counting or locking. In C11, it would map to 672 * kill_dependency(). It could be used as follows:: 673 * 674 * rcu_read_lock(); 675 * p = rcu_dereference(gp); 676 * long_lived = is_long_lived(p); 677 * if (long_lived) { 678 * if (!atomic_inc_not_zero(p->refcnt)) 679 * long_lived = false; 680 * else 681 * p = rcu_pointer_handoff(p); 682 * } 683 * rcu_read_unlock(); 684 */ 685#define rcu_pointer_handoff(p) (p) 686 687/** 688 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 689 * 690 * When synchronize_rcu() is invoked on one CPU while other CPUs 691 * are within RCU read-side critical sections, then the 692 * synchronize_rcu() is guaranteed to block until after all the other 693 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 694 * on one CPU while other CPUs are within RCU read-side critical 695 * sections, invocation of the corresponding RCU callback is deferred 696 * until after the all the other CPUs exit their critical sections. 697 * 698 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 699 * wait for regions of code with preemption disabled, including regions of 700 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 701 * define synchronize_sched(), only code enclosed within rcu_read_lock() 702 * and rcu_read_unlock() are guaranteed to be waited for. 703 * 704 * Note, however, that RCU callbacks are permitted to run concurrently 705 * with new RCU read-side critical sections. One way that this can happen 706 * is via the following sequence of events: (1) CPU 0 enters an RCU 707 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 708 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 709 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 710 * callback is invoked. This is legal, because the RCU read-side critical 711 * section that was running concurrently with the call_rcu() (and which 712 * therefore might be referencing something that the corresponding RCU 713 * callback would free up) has completed before the corresponding 714 * RCU callback is invoked. 715 * 716 * RCU read-side critical sections may be nested. Any deferred actions 717 * will be deferred until the outermost RCU read-side critical section 718 * completes. 719 * 720 * You can avoid reading and understanding the next paragraph by 721 * following this rule: don't put anything in an rcu_read_lock() RCU 722 * read-side critical section that would block in a !PREEMPTION kernel. 723 * But if you want the full story, read on! 724 * 725 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 726 * it is illegal to block while in an RCU read-side critical section. 727 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 728 * kernel builds, RCU read-side critical sections may be preempted, 729 * but explicit blocking is illegal. Finally, in preemptible RCU 730 * implementations in real-time (with -rt patchset) kernel builds, RCU 731 * read-side critical sections may be preempted and they may also block, but 732 * only when acquiring spinlocks that are subject to priority inheritance. 733 */ 734static __always_inline void rcu_read_lock(void) 735{ 736 __rcu_read_lock(); 737 __acquire(RCU); 738 rcu_lock_acquire(&rcu_lock_map); 739 RCU_LOCKDEP_WARN(!rcu_is_watching(), 740 "rcu_read_lock() used illegally while idle"); 741} 742 743/* 744 * So where is rcu_write_lock()? It does not exist, as there is no 745 * way for writers to lock out RCU readers. This is a feature, not 746 * a bug -- this property is what provides RCU's performance benefits. 747 * Of course, writers must coordinate with each other. The normal 748 * spinlock primitives work well for this, but any other technique may be 749 * used as well. RCU does not care how the writers keep out of each 750 * others' way, as long as they do so. 751 */ 752 753/** 754 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 755 * 756 * In almost all situations, rcu_read_unlock() is immune from deadlock. 757 * In recent kernels that have consolidated synchronize_sched() and 758 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 759 * also extends to the scheduler's runqueue and priority-inheritance 760 * spinlocks, courtesy of the quiescent-state deferral that is carried 761 * out when rcu_read_unlock() is invoked with interrupts disabled. 762 * 763 * See rcu_read_lock() for more information. 764 */ 765static inline void rcu_read_unlock(void) 766{ 767 RCU_LOCKDEP_WARN(!rcu_is_watching(), 768 "rcu_read_unlock() used illegally while idle"); 769 __release(RCU); 770 __rcu_read_unlock(); 771 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 772} 773 774/** 775 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 776 * 777 * This is equivalent to rcu_read_lock(), but also disables softirqs. 778 * Note that anything else that disables softirqs can also serve as an RCU 779 * read-side critical section. However, please note that this equivalence 780 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 781 * rcu_read_lock_bh() were unrelated. 782 * 783 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 784 * must occur in the same context, for example, it is illegal to invoke 785 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 786 * was invoked from some other task. 787 */ 788static inline void rcu_read_lock_bh(void) 789{ 790 local_bh_disable(); 791 __acquire(RCU_BH); 792 rcu_lock_acquire(&rcu_bh_lock_map); 793 RCU_LOCKDEP_WARN(!rcu_is_watching(), 794 "rcu_read_lock_bh() used illegally while idle"); 795} 796 797/** 798 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 799 * 800 * See rcu_read_lock_bh() for more information. 801 */ 802static inline void rcu_read_unlock_bh(void) 803{ 804 RCU_LOCKDEP_WARN(!rcu_is_watching(), 805 "rcu_read_unlock_bh() used illegally while idle"); 806 rcu_lock_release(&rcu_bh_lock_map); 807 __release(RCU_BH); 808 local_bh_enable(); 809} 810 811/** 812 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 813 * 814 * This is equivalent to rcu_read_lock(), but also disables preemption. 815 * Read-side critical sections can also be introduced by anything else that 816 * disables preemption, including local_irq_disable() and friends. However, 817 * please note that the equivalence to rcu_read_lock() applies only to 818 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 819 * were unrelated. 820 * 821 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 822 * must occur in the same context, for example, it is illegal to invoke 823 * rcu_read_unlock_sched() from process context if the matching 824 * rcu_read_lock_sched() was invoked from an NMI handler. 825 */ 826static inline void rcu_read_lock_sched(void) 827{ 828 preempt_disable(); 829 __acquire(RCU_SCHED); 830 rcu_lock_acquire(&rcu_sched_lock_map); 831 RCU_LOCKDEP_WARN(!rcu_is_watching(), 832 "rcu_read_lock_sched() used illegally while idle"); 833} 834 835/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 836static inline notrace void rcu_read_lock_sched_notrace(void) 837{ 838 preempt_disable_notrace(); 839 __acquire(RCU_SCHED); 840} 841 842/** 843 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 844 * 845 * See rcu_read_lock_sched() for more information. 846 */ 847static inline void rcu_read_unlock_sched(void) 848{ 849 RCU_LOCKDEP_WARN(!rcu_is_watching(), 850 "rcu_read_unlock_sched() used illegally while idle"); 851 rcu_lock_release(&rcu_sched_lock_map); 852 __release(RCU_SCHED); 853 preempt_enable(); 854} 855 856/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 857static inline notrace void rcu_read_unlock_sched_notrace(void) 858{ 859 __release(RCU_SCHED); 860 preempt_enable_notrace(); 861} 862 863/** 864 * RCU_INIT_POINTER() - initialize an RCU protected pointer 865 * @p: The pointer to be initialized. 866 * @v: The value to initialized the pointer to. 867 * 868 * Initialize an RCU-protected pointer in special cases where readers 869 * do not need ordering constraints on the CPU or the compiler. These 870 * special cases are: 871 * 872 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 873 * 2. The caller has taken whatever steps are required to prevent 874 * RCU readers from concurrently accessing this pointer *or* 875 * 3. The referenced data structure has already been exposed to 876 * readers either at compile time or via rcu_assign_pointer() *and* 877 * 878 * a. You have not made *any* reader-visible changes to 879 * this structure since then *or* 880 * b. It is OK for readers accessing this structure from its 881 * new location to see the old state of the structure. (For 882 * example, the changes were to statistical counters or to 883 * other state where exact synchronization is not required.) 884 * 885 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 886 * result in impossible-to-diagnose memory corruption. As in the structures 887 * will look OK in crash dumps, but any concurrent RCU readers might 888 * see pre-initialized values of the referenced data structure. So 889 * please be very careful how you use RCU_INIT_POINTER()!!! 890 * 891 * If you are creating an RCU-protected linked structure that is accessed 892 * by a single external-to-structure RCU-protected pointer, then you may 893 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 894 * pointers, but you must use rcu_assign_pointer() to initialize the 895 * external-to-structure pointer *after* you have completely initialized 896 * the reader-accessible portions of the linked structure. 897 * 898 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 899 * ordering guarantees for either the CPU or the compiler. 900 */ 901#define RCU_INIT_POINTER(p, v) \ 902 do { \ 903 rcu_check_sparse(p, __rcu); \ 904 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 905 } while (0) 906 907/** 908 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 909 * @p: The pointer to be initialized. 910 * @v: The value to initialized the pointer to. 911 * 912 * GCC-style initialization for an RCU-protected pointer in a structure field. 913 */ 914#define RCU_POINTER_INITIALIZER(p, v) \ 915 .p = RCU_INITIALIZER(v) 916 917/* 918 * Does the specified offset indicate that the corresponding rcu_head 919 * structure can be handled by kvfree_rcu()? 920 */ 921#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 922 923/** 924 * kfree_rcu() - kfree an object after a grace period. 925 * @ptr: pointer to kfree for both single- and double-argument invocations. 926 * @rhf: the name of the struct rcu_head within the type of @ptr, 927 * but only for double-argument invocations. 928 * 929 * Many rcu callbacks functions just call kfree() on the base structure. 930 * These functions are trivial, but their size adds up, and furthermore 931 * when they are used in a kernel module, that module must invoke the 932 * high-latency rcu_barrier() function at module-unload time. 933 * 934 * The kfree_rcu() function handles this issue. Rather than encoding a 935 * function address in the embedded rcu_head structure, kfree_rcu() instead 936 * encodes the offset of the rcu_head structure within the base structure. 937 * Because the functions are not allowed in the low-order 4096 bytes of 938 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 939 * If the offset is larger than 4095 bytes, a compile-time error will 940 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 941 * either fall back to use of call_rcu() or rearrange the structure to 942 * position the rcu_head structure into the first 4096 bytes. 943 * 944 * Note that the allowable offset might decrease in the future, for example, 945 * to allow something like kmem_cache_free_rcu(). 946 * 947 * The BUILD_BUG_ON check must not involve any function calls, hence the 948 * checks are done in macros here. 949 */ 950#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) 951 952/** 953 * kvfree_rcu() - kvfree an object after a grace period. 954 * 955 * This macro consists of one or two arguments and it is 956 * based on whether an object is head-less or not. If it 957 * has a head then a semantic stays the same as it used 958 * to be before: 959 * 960 * kvfree_rcu(ptr, rhf); 961 * 962 * where @ptr is a pointer to kvfree(), @rhf is the name 963 * of the rcu_head structure within the type of @ptr. 964 * 965 * When it comes to head-less variant, only one argument 966 * is passed and that is just a pointer which has to be 967 * freed after a grace period. Therefore the semantic is 968 * 969 * kvfree_rcu(ptr); 970 * 971 * where @ptr is the pointer to be freed by kvfree(). 972 * 973 * Please note, head-less way of freeing is permitted to 974 * use from a context that has to follow might_sleep() 975 * annotation. Otherwise, please switch and embed the 976 * rcu_head structure within the type of @ptr. 977 */ 978#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 979 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 980 981#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 982#define kvfree_rcu_arg_2(ptr, rhf) \ 983do { \ 984 typeof (ptr) ___p = (ptr); \ 985 \ 986 if (___p) { \ 987 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 988 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ 989 (offsetof(typeof(*(ptr)), rhf))); \ 990 } \ 991} while (0) 992 993#define kvfree_rcu_arg_1(ptr) \ 994do { \ 995 typeof(ptr) ___p = (ptr); \ 996 \ 997 if (___p) \ 998 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 999} while (0) 1000 1001/* 1002 * Place this after a lock-acquisition primitive to guarantee that 1003 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1004 * if the UNLOCK and LOCK are executed by the same CPU or if the 1005 * UNLOCK and LOCK operate on the same lock variable. 1006 */ 1007#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1008#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1009#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1010#define smp_mb__after_unlock_lock() do { } while (0) 1011#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1012 1013 1014/* Has the specified rcu_head structure been handed to call_rcu()? */ 1015 1016/** 1017 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1018 * @rhp: The rcu_head structure to initialize. 1019 * 1020 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1021 * given rcu_head structure has already been passed to call_rcu(), then 1022 * you must also invoke this rcu_head_init() function on it just after 1023 * allocating that structure. Calls to this function must not race with 1024 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1025 */ 1026static inline void rcu_head_init(struct rcu_head *rhp) 1027{ 1028 rhp->func = (rcu_callback_t)~0L; 1029} 1030 1031/** 1032 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1033 * @rhp: The rcu_head structure to test. 1034 * @f: The function passed to call_rcu() along with @rhp. 1035 * 1036 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1037 * and @false otherwise. Emits a warning in any other case, including 1038 * the case where @rhp has already been invoked after a grace period. 1039 * Calls to this function must not race with callback invocation. One way 1040 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1041 * in an RCU read-side critical section that includes a read-side fetch 1042 * of the pointer to the structure containing @rhp. 1043 */ 1044static inline bool 1045rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1046{ 1047 rcu_callback_t func = READ_ONCE(rhp->func); 1048 1049 if (func == f) 1050 return true; 1051 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1052 return false; 1053} 1054 1055/* kernel/ksysfs.c definitions */ 1056extern int rcu_expedited; 1057extern int rcu_normal; 1058 1059#endif /* __LINUX_RCUPDATE_H */