at v6.1 51 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29#define PERF_GUEST_ACTIVE 0x01 30#define PERF_GUEST_USER 0x02 31 32struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36}; 37 38#ifdef CONFIG_HAVE_HW_BREAKPOINT 39#include <linux/rhashtable-types.h> 40#include <asm/hw_breakpoint.h> 41#endif 42 43#include <linux/list.h> 44#include <linux/mutex.h> 45#include <linux/rculist.h> 46#include <linux/rcupdate.h> 47#include <linux/spinlock.h> 48#include <linux/hrtimer.h> 49#include <linux/fs.h> 50#include <linux/pid_namespace.h> 51#include <linux/workqueue.h> 52#include <linux/ftrace.h> 53#include <linux/cpu.h> 54#include <linux/irq_work.h> 55#include <linux/static_key.h> 56#include <linux/jump_label_ratelimit.h> 57#include <linux/atomic.h> 58#include <linux/sysfs.h> 59#include <linux/perf_regs.h> 60#include <linux/cgroup.h> 61#include <linux/refcount.h> 62#include <linux/security.h> 63#include <linux/static_call.h> 64#include <linux/lockdep.h> 65#include <asm/local.h> 66 67struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70}; 71 72struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78}; 79 80typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91} __packed; 92 93struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96}; 97 98/* 99 * branch stack layout: 100 * nr: number of taken branches stored in entries[] 101 * hw_idx: The low level index of raw branch records 102 * for the most recent branch. 103 * -1ULL means invalid/unknown. 104 * 105 * Note that nr can vary from sample to sample 106 * branches (to, from) are stored from most recent 107 * to least recent, i.e., entries[0] contains the most 108 * recent branch. 109 * The entries[] is an abstraction of raw branch records, 110 * which may not be stored in age order in HW, e.g. Intel LBR. 111 * The hw_idx is to expose the low level index of raw 112 * branch record for the most recent branch aka entries[0]. 113 * The hw_idx index is between -1 (unknown) and max depth, 114 * which can be retrieved in /sys/devices/cpu/caps/branches. 115 * For the architectures whose raw branch records are 116 * already stored in age order, the hw_idx should be 0. 117 */ 118struct perf_branch_stack { 119 __u64 nr; 120 __u64 hw_idx; 121 struct perf_branch_entry entries[]; 122}; 123 124struct task_struct; 125 126/* 127 * extra PMU register associated with an event 128 */ 129struct hw_perf_event_extra { 130 u64 config; /* register value */ 131 unsigned int reg; /* register address or index */ 132 int alloc; /* extra register already allocated */ 133 int idx; /* index in shared_regs->regs[] */ 134}; 135 136/** 137 * hw_perf_event::flag values 138 * 139 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 140 * usage. 141 */ 142#define PERF_EVENT_FLAG_ARCH 0x000fffff 143#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 144 145static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 146 147/** 148 * struct hw_perf_event - performance event hardware details: 149 */ 150struct hw_perf_event { 151#ifdef CONFIG_PERF_EVENTS 152 union { 153 struct { /* hardware */ 154 u64 config; 155 u64 last_tag; 156 unsigned long config_base; 157 unsigned long event_base; 158 int event_base_rdpmc; 159 int idx; 160 int last_cpu; 161 int flags; 162 163 struct hw_perf_event_extra extra_reg; 164 struct hw_perf_event_extra branch_reg; 165 }; 166 struct { /* software */ 167 struct hrtimer hrtimer; 168 }; 169 struct { /* tracepoint */ 170 /* for tp_event->class */ 171 struct list_head tp_list; 172 }; 173 struct { /* amd_power */ 174 u64 pwr_acc; 175 u64 ptsc; 176 }; 177#ifdef CONFIG_HAVE_HW_BREAKPOINT 178 struct { /* breakpoint */ 179 /* 180 * Crufty hack to avoid the chicken and egg 181 * problem hw_breakpoint has with context 182 * creation and event initalization. 183 */ 184 struct arch_hw_breakpoint info; 185 struct rhlist_head bp_list; 186 }; 187#endif 188 struct { /* amd_iommu */ 189 u8 iommu_bank; 190 u8 iommu_cntr; 191 u16 padding; 192 u64 conf; 193 u64 conf1; 194 }; 195 }; 196 /* 197 * If the event is a per task event, this will point to the task in 198 * question. See the comment in perf_event_alloc(). 199 */ 200 struct task_struct *target; 201 202 /* 203 * PMU would store hardware filter configuration 204 * here. 205 */ 206 void *addr_filters; 207 208 /* Last sync'ed generation of filters */ 209 unsigned long addr_filters_gen; 210 211/* 212 * hw_perf_event::state flags; used to track the PERF_EF_* state. 213 */ 214#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 215#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 216#define PERF_HES_ARCH 0x04 217 218 int state; 219 220 /* 221 * The last observed hardware counter value, updated with a 222 * local64_cmpxchg() such that pmu::read() can be called nested. 223 */ 224 local64_t prev_count; 225 226 /* 227 * The period to start the next sample with. 228 */ 229 u64 sample_period; 230 231 union { 232 struct { /* Sampling */ 233 /* 234 * The period we started this sample with. 235 */ 236 u64 last_period; 237 238 /* 239 * However much is left of the current period; 240 * note that this is a full 64bit value and 241 * allows for generation of periods longer 242 * than hardware might allow. 243 */ 244 local64_t period_left; 245 }; 246 struct { /* Topdown events counting for context switch */ 247 u64 saved_metric; 248 u64 saved_slots; 249 }; 250 }; 251 252 /* 253 * State for throttling the event, see __perf_event_overflow() and 254 * perf_adjust_freq_unthr_context(). 255 */ 256 u64 interrupts_seq; 257 u64 interrupts; 258 259 /* 260 * State for freq target events, see __perf_event_overflow() and 261 * perf_adjust_freq_unthr_context(). 262 */ 263 u64 freq_time_stamp; 264 u64 freq_count_stamp; 265#endif 266}; 267 268struct perf_event; 269 270/* 271 * Common implementation detail of pmu::{start,commit,cancel}_txn 272 */ 273#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 274#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 275 276/** 277 * pmu::capabilities flags 278 */ 279#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 280#define PERF_PMU_CAP_NO_NMI 0x0002 281#define PERF_PMU_CAP_AUX_NO_SG 0x0004 282#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 283#define PERF_PMU_CAP_EXCLUSIVE 0x0010 284#define PERF_PMU_CAP_ITRACE 0x0020 285#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 286#define PERF_PMU_CAP_NO_EXCLUDE 0x0080 287#define PERF_PMU_CAP_AUX_OUTPUT 0x0100 288#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 289 290struct perf_output_handle; 291 292/** 293 * struct pmu - generic performance monitoring unit 294 */ 295struct pmu { 296 struct list_head entry; 297 298 struct module *module; 299 struct device *dev; 300 const struct attribute_group **attr_groups; 301 const struct attribute_group **attr_update; 302 const char *name; 303 int type; 304 305 /* 306 * various common per-pmu feature flags 307 */ 308 int capabilities; 309 310 int __percpu *pmu_disable_count; 311 struct perf_cpu_context __percpu *pmu_cpu_context; 312 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 313 int task_ctx_nr; 314 int hrtimer_interval_ms; 315 316 /* number of address filters this PMU can do */ 317 unsigned int nr_addr_filters; 318 319 /* 320 * Fully disable/enable this PMU, can be used to protect from the PMI 321 * as well as for lazy/batch writing of the MSRs. 322 */ 323 void (*pmu_enable) (struct pmu *pmu); /* optional */ 324 void (*pmu_disable) (struct pmu *pmu); /* optional */ 325 326 /* 327 * Try and initialize the event for this PMU. 328 * 329 * Returns: 330 * -ENOENT -- @event is not for this PMU 331 * 332 * -ENODEV -- @event is for this PMU but PMU not present 333 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 334 * -EINVAL -- @event is for this PMU but @event is not valid 335 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 336 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 337 * 338 * 0 -- @event is for this PMU and valid 339 * 340 * Other error return values are allowed. 341 */ 342 int (*event_init) (struct perf_event *event); 343 344 /* 345 * Notification that the event was mapped or unmapped. Called 346 * in the context of the mapping task. 347 */ 348 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 349 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 350 351 /* 352 * Flags for ->add()/->del()/ ->start()/->stop(). There are 353 * matching hw_perf_event::state flags. 354 */ 355#define PERF_EF_START 0x01 /* start the counter when adding */ 356#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 357#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 358 359 /* 360 * Adds/Removes a counter to/from the PMU, can be done inside a 361 * transaction, see the ->*_txn() methods. 362 * 363 * The add/del callbacks will reserve all hardware resources required 364 * to service the event, this includes any counter constraint 365 * scheduling etc. 366 * 367 * Called with IRQs disabled and the PMU disabled on the CPU the event 368 * is on. 369 * 370 * ->add() called without PERF_EF_START should result in the same state 371 * as ->add() followed by ->stop(). 372 * 373 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 374 * ->stop() that must deal with already being stopped without 375 * PERF_EF_UPDATE. 376 */ 377 int (*add) (struct perf_event *event, int flags); 378 void (*del) (struct perf_event *event, int flags); 379 380 /* 381 * Starts/Stops a counter present on the PMU. 382 * 383 * The PMI handler should stop the counter when perf_event_overflow() 384 * returns !0. ->start() will be used to continue. 385 * 386 * Also used to change the sample period. 387 * 388 * Called with IRQs disabled and the PMU disabled on the CPU the event 389 * is on -- will be called from NMI context with the PMU generates 390 * NMIs. 391 * 392 * ->stop() with PERF_EF_UPDATE will read the counter and update 393 * period/count values like ->read() would. 394 * 395 * ->start() with PERF_EF_RELOAD will reprogram the counter 396 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 397 */ 398 void (*start) (struct perf_event *event, int flags); 399 void (*stop) (struct perf_event *event, int flags); 400 401 /* 402 * Updates the counter value of the event. 403 * 404 * For sampling capable PMUs this will also update the software period 405 * hw_perf_event::period_left field. 406 */ 407 void (*read) (struct perf_event *event); 408 409 /* 410 * Group events scheduling is treated as a transaction, add 411 * group events as a whole and perform one schedulability test. 412 * If the test fails, roll back the whole group 413 * 414 * Start the transaction, after this ->add() doesn't need to 415 * do schedulability tests. 416 * 417 * Optional. 418 */ 419 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 420 /* 421 * If ->start_txn() disabled the ->add() schedulability test 422 * then ->commit_txn() is required to perform one. On success 423 * the transaction is closed. On error the transaction is kept 424 * open until ->cancel_txn() is called. 425 * 426 * Optional. 427 */ 428 int (*commit_txn) (struct pmu *pmu); 429 /* 430 * Will cancel the transaction, assumes ->del() is called 431 * for each successful ->add() during the transaction. 432 * 433 * Optional. 434 */ 435 void (*cancel_txn) (struct pmu *pmu); 436 437 /* 438 * Will return the value for perf_event_mmap_page::index for this event, 439 * if no implementation is provided it will default to: event->hw.idx + 1. 440 */ 441 int (*event_idx) (struct perf_event *event); /*optional */ 442 443 /* 444 * context-switches callback 445 */ 446 void (*sched_task) (struct perf_event_context *ctx, 447 bool sched_in); 448 449 /* 450 * Kmem cache of PMU specific data 451 */ 452 struct kmem_cache *task_ctx_cache; 453 454 /* 455 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 456 * can be synchronized using this function. See Intel LBR callstack support 457 * implementation and Perf core context switch handling callbacks for usage 458 * examples. 459 */ 460 void (*swap_task_ctx) (struct perf_event_context *prev, 461 struct perf_event_context *next); 462 /* optional */ 463 464 /* 465 * Set up pmu-private data structures for an AUX area 466 */ 467 void *(*setup_aux) (struct perf_event *event, void **pages, 468 int nr_pages, bool overwrite); 469 /* optional */ 470 471 /* 472 * Free pmu-private AUX data structures 473 */ 474 void (*free_aux) (void *aux); /* optional */ 475 476 /* 477 * Take a snapshot of the AUX buffer without touching the event 478 * state, so that preempting ->start()/->stop() callbacks does 479 * not interfere with their logic. Called in PMI context. 480 * 481 * Returns the size of AUX data copied to the output handle. 482 * 483 * Optional. 484 */ 485 long (*snapshot_aux) (struct perf_event *event, 486 struct perf_output_handle *handle, 487 unsigned long size); 488 489 /* 490 * Validate address range filters: make sure the HW supports the 491 * requested configuration and number of filters; return 0 if the 492 * supplied filters are valid, -errno otherwise. 493 * 494 * Runs in the context of the ioctl()ing process and is not serialized 495 * with the rest of the PMU callbacks. 496 */ 497 int (*addr_filters_validate) (struct list_head *filters); 498 /* optional */ 499 500 /* 501 * Synchronize address range filter configuration: 502 * translate hw-agnostic filters into hardware configuration in 503 * event::hw::addr_filters. 504 * 505 * Runs as a part of filter sync sequence that is done in ->start() 506 * callback by calling perf_event_addr_filters_sync(). 507 * 508 * May (and should) traverse event::addr_filters::list, for which its 509 * caller provides necessary serialization. 510 */ 511 void (*addr_filters_sync) (struct perf_event *event); 512 /* optional */ 513 514 /* 515 * Check if event can be used for aux_output purposes for 516 * events of this PMU. 517 * 518 * Runs from perf_event_open(). Should return 0 for "no match" 519 * or non-zero for "match". 520 */ 521 int (*aux_output_match) (struct perf_event *event); 522 /* optional */ 523 524 /* 525 * Filter events for PMU-specific reasons. 526 */ 527 int (*filter_match) (struct perf_event *event); /* optional */ 528 529 /* 530 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 531 */ 532 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 533}; 534 535enum perf_addr_filter_action_t { 536 PERF_ADDR_FILTER_ACTION_STOP = 0, 537 PERF_ADDR_FILTER_ACTION_START, 538 PERF_ADDR_FILTER_ACTION_FILTER, 539}; 540 541/** 542 * struct perf_addr_filter - address range filter definition 543 * @entry: event's filter list linkage 544 * @path: object file's path for file-based filters 545 * @offset: filter range offset 546 * @size: filter range size (size==0 means single address trigger) 547 * @action: filter/start/stop 548 * 549 * This is a hardware-agnostic filter configuration as specified by the user. 550 */ 551struct perf_addr_filter { 552 struct list_head entry; 553 struct path path; 554 unsigned long offset; 555 unsigned long size; 556 enum perf_addr_filter_action_t action; 557}; 558 559/** 560 * struct perf_addr_filters_head - container for address range filters 561 * @list: list of filters for this event 562 * @lock: spinlock that serializes accesses to the @list and event's 563 * (and its children's) filter generations. 564 * @nr_file_filters: number of file-based filters 565 * 566 * A child event will use parent's @list (and therefore @lock), so they are 567 * bundled together; see perf_event_addr_filters(). 568 */ 569struct perf_addr_filters_head { 570 struct list_head list; 571 raw_spinlock_t lock; 572 unsigned int nr_file_filters; 573}; 574 575struct perf_addr_filter_range { 576 unsigned long start; 577 unsigned long size; 578}; 579 580/** 581 * enum perf_event_state - the states of an event: 582 */ 583enum perf_event_state { 584 PERF_EVENT_STATE_DEAD = -4, 585 PERF_EVENT_STATE_EXIT = -3, 586 PERF_EVENT_STATE_ERROR = -2, 587 PERF_EVENT_STATE_OFF = -1, 588 PERF_EVENT_STATE_INACTIVE = 0, 589 PERF_EVENT_STATE_ACTIVE = 1, 590}; 591 592struct file; 593struct perf_sample_data; 594 595typedef void (*perf_overflow_handler_t)(struct perf_event *, 596 struct perf_sample_data *, 597 struct pt_regs *regs); 598 599/* 600 * Event capabilities. For event_caps and groups caps. 601 * 602 * PERF_EV_CAP_SOFTWARE: Is a software event. 603 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 604 * from any CPU in the package where it is active. 605 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 606 * cannot be a group leader. If an event with this flag is detached from the 607 * group it is scheduled out and moved into an unrecoverable ERROR state. 608 */ 609#define PERF_EV_CAP_SOFTWARE BIT(0) 610#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 611#define PERF_EV_CAP_SIBLING BIT(2) 612 613#define SWEVENT_HLIST_BITS 8 614#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 615 616struct swevent_hlist { 617 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 618 struct rcu_head rcu_head; 619}; 620 621#define PERF_ATTACH_CONTEXT 0x01 622#define PERF_ATTACH_GROUP 0x02 623#define PERF_ATTACH_TASK 0x04 624#define PERF_ATTACH_TASK_DATA 0x08 625#define PERF_ATTACH_ITRACE 0x10 626#define PERF_ATTACH_SCHED_CB 0x20 627#define PERF_ATTACH_CHILD 0x40 628 629struct bpf_prog; 630struct perf_cgroup; 631struct perf_buffer; 632 633struct pmu_event_list { 634 raw_spinlock_t lock; 635 struct list_head list; 636}; 637 638/* 639 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 640 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 641 * safe lock, and is only held by the CPU doing the modification, having IRQs 642 * disabled is sufficient since it will hold-off the IPIs. 643 */ 644#ifdef CONFIG_PROVE_LOCKING 645#define lockdep_assert_event_ctx(event) \ 646 WARN_ON_ONCE(__lockdep_enabled && \ 647 (this_cpu_read(hardirqs_enabled) && \ 648 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 649#else 650#define lockdep_assert_event_ctx(event) 651#endif 652 653#define for_each_sibling_event(sibling, event) \ 654 lockdep_assert_event_ctx(event); \ 655 if ((event)->group_leader == (event)) \ 656 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 657 658/** 659 * struct perf_event - performance event kernel representation: 660 */ 661struct perf_event { 662#ifdef CONFIG_PERF_EVENTS 663 /* 664 * entry onto perf_event_context::event_list; 665 * modifications require ctx->lock 666 * RCU safe iterations. 667 */ 668 struct list_head event_entry; 669 670 /* 671 * Locked for modification by both ctx->mutex and ctx->lock; holding 672 * either sufficies for read. 673 */ 674 struct list_head sibling_list; 675 struct list_head active_list; 676 /* 677 * Node on the pinned or flexible tree located at the event context; 678 */ 679 struct rb_node group_node; 680 u64 group_index; 681 /* 682 * We need storage to track the entries in perf_pmu_migrate_context; we 683 * cannot use the event_entry because of RCU and we want to keep the 684 * group in tact which avoids us using the other two entries. 685 */ 686 struct list_head migrate_entry; 687 688 struct hlist_node hlist_entry; 689 struct list_head active_entry; 690 int nr_siblings; 691 692 /* Not serialized. Only written during event initialization. */ 693 int event_caps; 694 /* The cumulative AND of all event_caps for events in this group. */ 695 int group_caps; 696 697 struct perf_event *group_leader; 698 struct pmu *pmu; 699 void *pmu_private; 700 701 enum perf_event_state state; 702 unsigned int attach_state; 703 local64_t count; 704 atomic64_t child_count; 705 706 /* 707 * These are the total time in nanoseconds that the event 708 * has been enabled (i.e. eligible to run, and the task has 709 * been scheduled in, if this is a per-task event) 710 * and running (scheduled onto the CPU), respectively. 711 */ 712 u64 total_time_enabled; 713 u64 total_time_running; 714 u64 tstamp; 715 716 struct perf_event_attr attr; 717 u16 header_size; 718 u16 id_header_size; 719 u16 read_size; 720 struct hw_perf_event hw; 721 722 struct perf_event_context *ctx; 723 atomic_long_t refcount; 724 725 /* 726 * These accumulate total time (in nanoseconds) that children 727 * events have been enabled and running, respectively. 728 */ 729 atomic64_t child_total_time_enabled; 730 atomic64_t child_total_time_running; 731 732 /* 733 * Protect attach/detach and child_list: 734 */ 735 struct mutex child_mutex; 736 struct list_head child_list; 737 struct perf_event *parent; 738 739 int oncpu; 740 int cpu; 741 742 struct list_head owner_entry; 743 struct task_struct *owner; 744 745 /* mmap bits */ 746 struct mutex mmap_mutex; 747 atomic_t mmap_count; 748 749 struct perf_buffer *rb; 750 struct list_head rb_entry; 751 unsigned long rcu_batches; 752 int rcu_pending; 753 754 /* poll related */ 755 wait_queue_head_t waitq; 756 struct fasync_struct *fasync; 757 758 /* delayed work for NMIs and such */ 759 unsigned int pending_wakeup; 760 unsigned int pending_kill; 761 unsigned int pending_disable; 762 unsigned int pending_sigtrap; 763 unsigned long pending_addr; /* SIGTRAP */ 764 struct irq_work pending_irq; 765 struct callback_head pending_task; 766 unsigned int pending_work; 767 768 atomic_t event_limit; 769 770 /* address range filters */ 771 struct perf_addr_filters_head addr_filters; 772 /* vma address array for file-based filders */ 773 struct perf_addr_filter_range *addr_filter_ranges; 774 unsigned long addr_filters_gen; 775 776 /* for aux_output events */ 777 struct perf_event *aux_event; 778 779 void (*destroy)(struct perf_event *); 780 struct rcu_head rcu_head; 781 782 struct pid_namespace *ns; 783 u64 id; 784 785 atomic64_t lost_samples; 786 787 u64 (*clock)(void); 788 perf_overflow_handler_t overflow_handler; 789 void *overflow_handler_context; 790#ifdef CONFIG_BPF_SYSCALL 791 perf_overflow_handler_t orig_overflow_handler; 792 struct bpf_prog *prog; 793 u64 bpf_cookie; 794#endif 795 796#ifdef CONFIG_EVENT_TRACING 797 struct trace_event_call *tp_event; 798 struct event_filter *filter; 799#ifdef CONFIG_FUNCTION_TRACER 800 struct ftrace_ops ftrace_ops; 801#endif 802#endif 803 804#ifdef CONFIG_CGROUP_PERF 805 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 806#endif 807 808#ifdef CONFIG_SECURITY 809 void *security; 810#endif 811 struct list_head sb_list; 812#endif /* CONFIG_PERF_EVENTS */ 813}; 814 815 816struct perf_event_groups { 817 struct rb_root tree; 818 u64 index; 819}; 820 821/** 822 * struct perf_event_context - event context structure 823 * 824 * Used as a container for task events and CPU events as well: 825 */ 826struct perf_event_context { 827 struct pmu *pmu; 828 /* 829 * Protect the states of the events in the list, 830 * nr_active, and the list: 831 */ 832 raw_spinlock_t lock; 833 /* 834 * Protect the list of events. Locking either mutex or lock 835 * is sufficient to ensure the list doesn't change; to change 836 * the list you need to lock both the mutex and the spinlock. 837 */ 838 struct mutex mutex; 839 840 struct list_head active_ctx_list; 841 struct perf_event_groups pinned_groups; 842 struct perf_event_groups flexible_groups; 843 struct list_head event_list; 844 845 struct list_head pinned_active; 846 struct list_head flexible_active; 847 848 int nr_events; 849 int nr_active; 850 int nr_user; 851 int is_active; 852 int nr_stat; 853 int nr_freq; 854 int rotate_disable; 855 /* 856 * Set when nr_events != nr_active, except tolerant to events not 857 * necessary to be active due to scheduling constraints, such as cgroups. 858 */ 859 int rotate_necessary; 860 refcount_t refcount; 861 struct task_struct *task; 862 863 /* 864 * Context clock, runs when context enabled. 865 */ 866 u64 time; 867 u64 timestamp; 868 u64 timeoffset; 869 870 /* 871 * These fields let us detect when two contexts have both 872 * been cloned (inherited) from a common ancestor. 873 */ 874 struct perf_event_context *parent_ctx; 875 u64 parent_gen; 876 u64 generation; 877 int pin_count; 878#ifdef CONFIG_CGROUP_PERF 879 int nr_cgroups; /* cgroup evts */ 880#endif 881 void *task_ctx_data; /* pmu specific data */ 882 struct rcu_head rcu_head; 883 884 /* 885 * Sum (event->pending_sigtrap + event->pending_work) 886 * 887 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 888 * that until the signal is delivered. 889 */ 890 local_t nr_pending; 891}; 892 893/* 894 * Number of contexts where an event can trigger: 895 * task, softirq, hardirq, nmi. 896 */ 897#define PERF_NR_CONTEXTS 4 898 899/** 900 * struct perf_cpu_context - per cpu event context structure 901 */ 902struct perf_cpu_context { 903 struct perf_event_context ctx; 904 struct perf_event_context *task_ctx; 905 int active_oncpu; 906 int exclusive; 907 908 raw_spinlock_t hrtimer_lock; 909 struct hrtimer hrtimer; 910 ktime_t hrtimer_interval; 911 unsigned int hrtimer_active; 912 913#ifdef CONFIG_CGROUP_PERF 914 struct perf_cgroup *cgrp; 915 struct list_head cgrp_cpuctx_entry; 916#endif 917 918 struct list_head sched_cb_entry; 919 int sched_cb_usage; 920 921 int online; 922 /* 923 * Per-CPU storage for iterators used in visit_groups_merge. The default 924 * storage is of size 2 to hold the CPU and any CPU event iterators. 925 */ 926 int heap_size; 927 struct perf_event **heap; 928 struct perf_event *heap_default[2]; 929}; 930 931struct perf_output_handle { 932 struct perf_event *event; 933 struct perf_buffer *rb; 934 unsigned long wakeup; 935 unsigned long size; 936 u64 aux_flags; 937 union { 938 void *addr; 939 unsigned long head; 940 }; 941 int page; 942}; 943 944struct bpf_perf_event_data_kern { 945 bpf_user_pt_regs_t *regs; 946 struct perf_sample_data *data; 947 struct perf_event *event; 948}; 949 950#ifdef CONFIG_CGROUP_PERF 951 952/* 953 * perf_cgroup_info keeps track of time_enabled for a cgroup. 954 * This is a per-cpu dynamically allocated data structure. 955 */ 956struct perf_cgroup_info { 957 u64 time; 958 u64 timestamp; 959 u64 timeoffset; 960 int active; 961}; 962 963struct perf_cgroup { 964 struct cgroup_subsys_state css; 965 struct perf_cgroup_info __percpu *info; 966}; 967 968/* 969 * Must ensure cgroup is pinned (css_get) before calling 970 * this function. In other words, we cannot call this function 971 * if there is no cgroup event for the current CPU context. 972 */ 973static inline struct perf_cgroup * 974perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 975{ 976 return container_of(task_css_check(task, perf_event_cgrp_id, 977 ctx ? lockdep_is_held(&ctx->lock) 978 : true), 979 struct perf_cgroup, css); 980} 981#endif /* CONFIG_CGROUP_PERF */ 982 983#ifdef CONFIG_PERF_EVENTS 984 985extern void *perf_aux_output_begin(struct perf_output_handle *handle, 986 struct perf_event *event); 987extern void perf_aux_output_end(struct perf_output_handle *handle, 988 unsigned long size); 989extern int perf_aux_output_skip(struct perf_output_handle *handle, 990 unsigned long size); 991extern void *perf_get_aux(struct perf_output_handle *handle); 992extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 993extern void perf_event_itrace_started(struct perf_event *event); 994 995extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 996extern void perf_pmu_unregister(struct pmu *pmu); 997 998extern void __perf_event_task_sched_in(struct task_struct *prev, 999 struct task_struct *task); 1000extern void __perf_event_task_sched_out(struct task_struct *prev, 1001 struct task_struct *next); 1002extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1003extern void perf_event_exit_task(struct task_struct *child); 1004extern void perf_event_free_task(struct task_struct *task); 1005extern void perf_event_delayed_put(struct task_struct *task); 1006extern struct file *perf_event_get(unsigned int fd); 1007extern const struct perf_event *perf_get_event(struct file *file); 1008extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1009extern void perf_event_print_debug(void); 1010extern void perf_pmu_disable(struct pmu *pmu); 1011extern void perf_pmu_enable(struct pmu *pmu); 1012extern void perf_sched_cb_dec(struct pmu *pmu); 1013extern void perf_sched_cb_inc(struct pmu *pmu); 1014extern int perf_event_task_disable(void); 1015extern int perf_event_task_enable(void); 1016 1017extern void perf_pmu_resched(struct pmu *pmu); 1018 1019extern int perf_event_refresh(struct perf_event *event, int refresh); 1020extern void perf_event_update_userpage(struct perf_event *event); 1021extern int perf_event_release_kernel(struct perf_event *event); 1022extern struct perf_event * 1023perf_event_create_kernel_counter(struct perf_event_attr *attr, 1024 int cpu, 1025 struct task_struct *task, 1026 perf_overflow_handler_t callback, 1027 void *context); 1028extern void perf_pmu_migrate_context(struct pmu *pmu, 1029 int src_cpu, int dst_cpu); 1030int perf_event_read_local(struct perf_event *event, u64 *value, 1031 u64 *enabled, u64 *running); 1032extern u64 perf_event_read_value(struct perf_event *event, 1033 u64 *enabled, u64 *running); 1034 1035 1036struct perf_sample_data { 1037 /* 1038 * Fields set by perf_sample_data_init(), group so as to 1039 * minimize the cachelines touched. 1040 */ 1041 u64 sample_flags; 1042 u64 period; 1043 1044 /* 1045 * The other fields, optionally {set,used} by 1046 * perf_{prepare,output}_sample(). 1047 */ 1048 struct perf_branch_stack *br_stack; 1049 union perf_sample_weight weight; 1050 union perf_mem_data_src data_src; 1051 u64 txn; 1052 u64 addr; 1053 struct perf_raw_record *raw; 1054 1055 u64 type; 1056 u64 ip; 1057 struct { 1058 u32 pid; 1059 u32 tid; 1060 } tid_entry; 1061 u64 time; 1062 u64 id; 1063 u64 stream_id; 1064 struct { 1065 u32 cpu; 1066 u32 reserved; 1067 } cpu_entry; 1068 struct perf_callchain_entry *callchain; 1069 u64 aux_size; 1070 1071 struct perf_regs regs_user; 1072 struct perf_regs regs_intr; 1073 u64 stack_user_size; 1074 1075 u64 phys_addr; 1076 u64 cgroup; 1077 u64 data_page_size; 1078 u64 code_page_size; 1079} ____cacheline_aligned; 1080 1081/* default value for data source */ 1082#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1083 PERF_MEM_S(LVL, NA) |\ 1084 PERF_MEM_S(SNOOP, NA) |\ 1085 PERF_MEM_S(LOCK, NA) |\ 1086 PERF_MEM_S(TLB, NA)) 1087 1088static inline void perf_sample_data_init(struct perf_sample_data *data, 1089 u64 addr, u64 period) 1090{ 1091 /* remaining struct members initialized in perf_prepare_sample() */ 1092 data->sample_flags = PERF_SAMPLE_PERIOD; 1093 data->period = period; 1094 1095 if (addr) { 1096 data->addr = addr; 1097 data->sample_flags |= PERF_SAMPLE_ADDR; 1098 } 1099} 1100 1101/* 1102 * Clear all bitfields in the perf_branch_entry. 1103 * The to and from fields are not cleared because they are 1104 * systematically modified by caller. 1105 */ 1106static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1107{ 1108 br->mispred = 0; 1109 br->predicted = 0; 1110 br->in_tx = 0; 1111 br->abort = 0; 1112 br->cycles = 0; 1113 br->type = 0; 1114 br->spec = PERF_BR_SPEC_NA; 1115 br->reserved = 0; 1116} 1117 1118extern void perf_output_sample(struct perf_output_handle *handle, 1119 struct perf_event_header *header, 1120 struct perf_sample_data *data, 1121 struct perf_event *event); 1122extern void perf_prepare_sample(struct perf_event_header *header, 1123 struct perf_sample_data *data, 1124 struct perf_event *event, 1125 struct pt_regs *regs); 1126 1127extern int perf_event_overflow(struct perf_event *event, 1128 struct perf_sample_data *data, 1129 struct pt_regs *regs); 1130 1131extern void perf_event_output_forward(struct perf_event *event, 1132 struct perf_sample_data *data, 1133 struct pt_regs *regs); 1134extern void perf_event_output_backward(struct perf_event *event, 1135 struct perf_sample_data *data, 1136 struct pt_regs *regs); 1137extern int perf_event_output(struct perf_event *event, 1138 struct perf_sample_data *data, 1139 struct pt_regs *regs); 1140 1141static inline bool 1142is_default_overflow_handler(struct perf_event *event) 1143{ 1144 if (likely(event->overflow_handler == perf_event_output_forward)) 1145 return true; 1146 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1147 return true; 1148 return false; 1149} 1150 1151extern void 1152perf_event_header__init_id(struct perf_event_header *header, 1153 struct perf_sample_data *data, 1154 struct perf_event *event); 1155extern void 1156perf_event__output_id_sample(struct perf_event *event, 1157 struct perf_output_handle *handle, 1158 struct perf_sample_data *sample); 1159 1160extern void 1161perf_log_lost_samples(struct perf_event *event, u64 lost); 1162 1163static inline bool event_has_any_exclude_flag(struct perf_event *event) 1164{ 1165 struct perf_event_attr *attr = &event->attr; 1166 1167 return attr->exclude_idle || attr->exclude_user || 1168 attr->exclude_kernel || attr->exclude_hv || 1169 attr->exclude_guest || attr->exclude_host; 1170} 1171 1172static inline bool is_sampling_event(struct perf_event *event) 1173{ 1174 return event->attr.sample_period != 0; 1175} 1176 1177/* 1178 * Return 1 for a software event, 0 for a hardware event 1179 */ 1180static inline int is_software_event(struct perf_event *event) 1181{ 1182 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1183} 1184 1185/* 1186 * Return 1 for event in sw context, 0 for event in hw context 1187 */ 1188static inline int in_software_context(struct perf_event *event) 1189{ 1190 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1191} 1192 1193static inline int is_exclusive_pmu(struct pmu *pmu) 1194{ 1195 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1196} 1197 1198extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1199 1200extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1201extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1202 1203#ifndef perf_arch_fetch_caller_regs 1204static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1205#endif 1206 1207/* 1208 * When generating a perf sample in-line, instead of from an interrupt / 1209 * exception, we lack a pt_regs. This is typically used from software events 1210 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1211 * 1212 * We typically don't need a full set, but (for x86) do require: 1213 * - ip for PERF_SAMPLE_IP 1214 * - cs for user_mode() tests 1215 * - sp for PERF_SAMPLE_CALLCHAIN 1216 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1217 * 1218 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1219 * things like PERF_SAMPLE_REGS_INTR. 1220 */ 1221static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1222{ 1223 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1224} 1225 1226static __always_inline void 1227perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1228{ 1229 if (static_key_false(&perf_swevent_enabled[event_id])) 1230 __perf_sw_event(event_id, nr, regs, addr); 1231} 1232 1233DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1234 1235/* 1236 * 'Special' version for the scheduler, it hard assumes no recursion, 1237 * which is guaranteed by us not actually scheduling inside other swevents 1238 * because those disable preemption. 1239 */ 1240static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1241{ 1242 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1243 1244 perf_fetch_caller_regs(regs); 1245 ___perf_sw_event(event_id, nr, regs, addr); 1246} 1247 1248extern struct static_key_false perf_sched_events; 1249 1250static __always_inline bool __perf_sw_enabled(int swevt) 1251{ 1252 return static_key_false(&perf_swevent_enabled[swevt]); 1253} 1254 1255static inline void perf_event_task_migrate(struct task_struct *task) 1256{ 1257 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1258 task->sched_migrated = 1; 1259} 1260 1261static inline void perf_event_task_sched_in(struct task_struct *prev, 1262 struct task_struct *task) 1263{ 1264 if (static_branch_unlikely(&perf_sched_events)) 1265 __perf_event_task_sched_in(prev, task); 1266 1267 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1268 task->sched_migrated) { 1269 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1270 task->sched_migrated = 0; 1271 } 1272} 1273 1274static inline void perf_event_task_sched_out(struct task_struct *prev, 1275 struct task_struct *next) 1276{ 1277 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1278 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1279 1280#ifdef CONFIG_CGROUP_PERF 1281 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1282 perf_cgroup_from_task(prev, NULL) != 1283 perf_cgroup_from_task(next, NULL)) 1284 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1285#endif 1286 1287 if (static_branch_unlikely(&perf_sched_events)) 1288 __perf_event_task_sched_out(prev, next); 1289} 1290 1291extern void perf_event_mmap(struct vm_area_struct *vma); 1292 1293extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1294 bool unregister, const char *sym); 1295extern void perf_event_bpf_event(struct bpf_prog *prog, 1296 enum perf_bpf_event_type type, 1297 u16 flags); 1298 1299#ifdef CONFIG_GUEST_PERF_EVENTS 1300extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1301 1302DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1303DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1304DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1305 1306static inline unsigned int perf_guest_state(void) 1307{ 1308 return static_call(__perf_guest_state)(); 1309} 1310static inline unsigned long perf_guest_get_ip(void) 1311{ 1312 return static_call(__perf_guest_get_ip)(); 1313} 1314static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1315{ 1316 return static_call(__perf_guest_handle_intel_pt_intr)(); 1317} 1318extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1319extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1320#else 1321static inline unsigned int perf_guest_state(void) { return 0; } 1322static inline unsigned long perf_guest_get_ip(void) { return 0; } 1323static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1324#endif /* CONFIG_GUEST_PERF_EVENTS */ 1325 1326extern void perf_event_exec(void); 1327extern void perf_event_comm(struct task_struct *tsk, bool exec); 1328extern void perf_event_namespaces(struct task_struct *tsk); 1329extern void perf_event_fork(struct task_struct *tsk); 1330extern void perf_event_text_poke(const void *addr, 1331 const void *old_bytes, size_t old_len, 1332 const void *new_bytes, size_t new_len); 1333 1334/* Callchains */ 1335DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1336 1337extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1338extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1339extern struct perf_callchain_entry * 1340get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1341 u32 max_stack, bool crosstask, bool add_mark); 1342extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1343extern int get_callchain_buffers(int max_stack); 1344extern void put_callchain_buffers(void); 1345extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1346extern void put_callchain_entry(int rctx); 1347 1348extern int sysctl_perf_event_max_stack; 1349extern int sysctl_perf_event_max_contexts_per_stack; 1350 1351static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1352{ 1353 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1354 struct perf_callchain_entry *entry = ctx->entry; 1355 entry->ip[entry->nr++] = ip; 1356 ++ctx->contexts; 1357 return 0; 1358 } else { 1359 ctx->contexts_maxed = true; 1360 return -1; /* no more room, stop walking the stack */ 1361 } 1362} 1363 1364static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1365{ 1366 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1367 struct perf_callchain_entry *entry = ctx->entry; 1368 entry->ip[entry->nr++] = ip; 1369 ++ctx->nr; 1370 return 0; 1371 } else { 1372 return -1; /* no more room, stop walking the stack */ 1373 } 1374} 1375 1376extern int sysctl_perf_event_paranoid; 1377extern int sysctl_perf_event_mlock; 1378extern int sysctl_perf_event_sample_rate; 1379extern int sysctl_perf_cpu_time_max_percent; 1380 1381extern void perf_sample_event_took(u64 sample_len_ns); 1382 1383int perf_proc_update_handler(struct ctl_table *table, int write, 1384 void *buffer, size_t *lenp, loff_t *ppos); 1385int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1386 void *buffer, size_t *lenp, loff_t *ppos); 1387int perf_event_max_stack_handler(struct ctl_table *table, int write, 1388 void *buffer, size_t *lenp, loff_t *ppos); 1389 1390/* Access to perf_event_open(2) syscall. */ 1391#define PERF_SECURITY_OPEN 0 1392 1393/* Finer grained perf_event_open(2) access control. */ 1394#define PERF_SECURITY_CPU 1 1395#define PERF_SECURITY_KERNEL 2 1396#define PERF_SECURITY_TRACEPOINT 3 1397 1398static inline int perf_is_paranoid(void) 1399{ 1400 return sysctl_perf_event_paranoid > -1; 1401} 1402 1403static inline int perf_allow_kernel(struct perf_event_attr *attr) 1404{ 1405 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1406 return -EACCES; 1407 1408 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1409} 1410 1411static inline int perf_allow_cpu(struct perf_event_attr *attr) 1412{ 1413 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1414 return -EACCES; 1415 1416 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1417} 1418 1419static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1420{ 1421 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1422 return -EPERM; 1423 1424 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1425} 1426 1427extern void perf_event_init(void); 1428extern void perf_tp_event(u16 event_type, u64 count, void *record, 1429 int entry_size, struct pt_regs *regs, 1430 struct hlist_head *head, int rctx, 1431 struct task_struct *task); 1432extern void perf_bp_event(struct perf_event *event, void *data); 1433 1434#ifndef perf_misc_flags 1435# define perf_misc_flags(regs) \ 1436 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1437# define perf_instruction_pointer(regs) instruction_pointer(regs) 1438#endif 1439#ifndef perf_arch_bpf_user_pt_regs 1440# define perf_arch_bpf_user_pt_regs(regs) regs 1441#endif 1442 1443static inline bool has_branch_stack(struct perf_event *event) 1444{ 1445 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1446} 1447 1448static inline bool needs_branch_stack(struct perf_event *event) 1449{ 1450 return event->attr.branch_sample_type != 0; 1451} 1452 1453static inline bool has_aux(struct perf_event *event) 1454{ 1455 return event->pmu->setup_aux; 1456} 1457 1458static inline bool is_write_backward(struct perf_event *event) 1459{ 1460 return !!event->attr.write_backward; 1461} 1462 1463static inline bool has_addr_filter(struct perf_event *event) 1464{ 1465 return event->pmu->nr_addr_filters; 1466} 1467 1468/* 1469 * An inherited event uses parent's filters 1470 */ 1471static inline struct perf_addr_filters_head * 1472perf_event_addr_filters(struct perf_event *event) 1473{ 1474 struct perf_addr_filters_head *ifh = &event->addr_filters; 1475 1476 if (event->parent) 1477 ifh = &event->parent->addr_filters; 1478 1479 return ifh; 1480} 1481 1482extern void perf_event_addr_filters_sync(struct perf_event *event); 1483extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1484 1485extern int perf_output_begin(struct perf_output_handle *handle, 1486 struct perf_sample_data *data, 1487 struct perf_event *event, unsigned int size); 1488extern int perf_output_begin_forward(struct perf_output_handle *handle, 1489 struct perf_sample_data *data, 1490 struct perf_event *event, 1491 unsigned int size); 1492extern int perf_output_begin_backward(struct perf_output_handle *handle, 1493 struct perf_sample_data *data, 1494 struct perf_event *event, 1495 unsigned int size); 1496 1497extern void perf_output_end(struct perf_output_handle *handle); 1498extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1499 const void *buf, unsigned int len); 1500extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1501 unsigned int len); 1502extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1503 struct perf_output_handle *handle, 1504 unsigned long from, unsigned long to); 1505extern int perf_swevent_get_recursion_context(void); 1506extern void perf_swevent_put_recursion_context(int rctx); 1507extern u64 perf_swevent_set_period(struct perf_event *event); 1508extern void perf_event_enable(struct perf_event *event); 1509extern void perf_event_disable(struct perf_event *event); 1510extern void perf_event_disable_local(struct perf_event *event); 1511extern void perf_event_disable_inatomic(struct perf_event *event); 1512extern void perf_event_task_tick(void); 1513extern int perf_event_account_interrupt(struct perf_event *event); 1514extern int perf_event_period(struct perf_event *event, u64 value); 1515extern u64 perf_event_pause(struct perf_event *event, bool reset); 1516#else /* !CONFIG_PERF_EVENTS: */ 1517static inline void * 1518perf_aux_output_begin(struct perf_output_handle *handle, 1519 struct perf_event *event) { return NULL; } 1520static inline void 1521perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1522 { } 1523static inline int 1524perf_aux_output_skip(struct perf_output_handle *handle, 1525 unsigned long size) { return -EINVAL; } 1526static inline void * 1527perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1528static inline void 1529perf_event_task_migrate(struct task_struct *task) { } 1530static inline void 1531perf_event_task_sched_in(struct task_struct *prev, 1532 struct task_struct *task) { } 1533static inline void 1534perf_event_task_sched_out(struct task_struct *prev, 1535 struct task_struct *next) { } 1536static inline int perf_event_init_task(struct task_struct *child, 1537 u64 clone_flags) { return 0; } 1538static inline void perf_event_exit_task(struct task_struct *child) { } 1539static inline void perf_event_free_task(struct task_struct *task) { } 1540static inline void perf_event_delayed_put(struct task_struct *task) { } 1541static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1542static inline const struct perf_event *perf_get_event(struct file *file) 1543{ 1544 return ERR_PTR(-EINVAL); 1545} 1546static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1547{ 1548 return ERR_PTR(-EINVAL); 1549} 1550static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1551 u64 *enabled, u64 *running) 1552{ 1553 return -EINVAL; 1554} 1555static inline void perf_event_print_debug(void) { } 1556static inline int perf_event_task_disable(void) { return -EINVAL; } 1557static inline int perf_event_task_enable(void) { return -EINVAL; } 1558static inline int perf_event_refresh(struct perf_event *event, int refresh) 1559{ 1560 return -EINVAL; 1561} 1562 1563static inline void 1564perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1565static inline void 1566perf_bp_event(struct perf_event *event, void *data) { } 1567 1568static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1569 1570typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1571static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1572 bool unregister, const char *sym) { } 1573static inline void perf_event_bpf_event(struct bpf_prog *prog, 1574 enum perf_bpf_event_type type, 1575 u16 flags) { } 1576static inline void perf_event_exec(void) { } 1577static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1578static inline void perf_event_namespaces(struct task_struct *tsk) { } 1579static inline void perf_event_fork(struct task_struct *tsk) { } 1580static inline void perf_event_text_poke(const void *addr, 1581 const void *old_bytes, 1582 size_t old_len, 1583 const void *new_bytes, 1584 size_t new_len) { } 1585static inline void perf_event_init(void) { } 1586static inline int perf_swevent_get_recursion_context(void) { return -1; } 1587static inline void perf_swevent_put_recursion_context(int rctx) { } 1588static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1589static inline void perf_event_enable(struct perf_event *event) { } 1590static inline void perf_event_disable(struct perf_event *event) { } 1591static inline int __perf_event_disable(void *info) { return -1; } 1592static inline void perf_event_task_tick(void) { } 1593static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1594static inline int perf_event_period(struct perf_event *event, u64 value) 1595{ 1596 return -EINVAL; 1597} 1598static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1599{ 1600 return 0; 1601} 1602#endif 1603 1604#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1605extern void perf_restore_debug_store(void); 1606#else 1607static inline void perf_restore_debug_store(void) { } 1608#endif 1609 1610static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1611{ 1612 return frag->pad < sizeof(u64); 1613} 1614 1615#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1616 1617struct perf_pmu_events_attr { 1618 struct device_attribute attr; 1619 u64 id; 1620 const char *event_str; 1621}; 1622 1623struct perf_pmu_events_ht_attr { 1624 struct device_attribute attr; 1625 u64 id; 1626 const char *event_str_ht; 1627 const char *event_str_noht; 1628}; 1629 1630struct perf_pmu_events_hybrid_attr { 1631 struct device_attribute attr; 1632 u64 id; 1633 const char *event_str; 1634 u64 pmu_type; 1635}; 1636 1637struct perf_pmu_format_hybrid_attr { 1638 struct device_attribute attr; 1639 u64 pmu_type; 1640}; 1641 1642ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1643 char *page); 1644 1645#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1646static struct perf_pmu_events_attr _var = { \ 1647 .attr = __ATTR(_name, 0444, _show, NULL), \ 1648 .id = _id, \ 1649}; 1650 1651#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1652static struct perf_pmu_events_attr _var = { \ 1653 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1654 .id = 0, \ 1655 .event_str = _str, \ 1656}; 1657 1658#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1659 (&((struct perf_pmu_events_attr[]) { \ 1660 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1661 .id = _id, } \ 1662 })[0].attr.attr) 1663 1664#define PMU_FORMAT_ATTR(_name, _format) \ 1665static ssize_t \ 1666_name##_show(struct device *dev, \ 1667 struct device_attribute *attr, \ 1668 char *page) \ 1669{ \ 1670 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1671 return sprintf(page, _format "\n"); \ 1672} \ 1673 \ 1674static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1675 1676/* Performance counter hotplug functions */ 1677#ifdef CONFIG_PERF_EVENTS 1678int perf_event_init_cpu(unsigned int cpu); 1679int perf_event_exit_cpu(unsigned int cpu); 1680#else 1681#define perf_event_init_cpu NULL 1682#define perf_event_exit_cpu NULL 1683#endif 1684 1685extern void __weak arch_perf_update_userpage(struct perf_event *event, 1686 struct perf_event_mmap_page *userpg, 1687 u64 now); 1688 1689#ifdef CONFIG_MMU 1690extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1691#endif 1692 1693/* 1694 * Snapshot branch stack on software events. 1695 * 1696 * Branch stack can be very useful in understanding software events. For 1697 * example, when a long function, e.g. sys_perf_event_open, returns an 1698 * errno, it is not obvious why the function failed. Branch stack could 1699 * provide very helpful information in this type of scenarios. 1700 * 1701 * On software event, it is necessary to stop the hardware branch recorder 1702 * fast. Otherwise, the hardware register/buffer will be flushed with 1703 * entries of the triggering event. Therefore, static call is used to 1704 * stop the hardware recorder. 1705 */ 1706 1707/* 1708 * cnt is the number of entries allocated for entries. 1709 * Return number of entries copied to . 1710 */ 1711typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1712 unsigned int cnt); 1713DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1714 1715#ifndef PERF_NEEDS_LOPWR_CB 1716static inline void perf_lopwr_cb(bool mode) 1717{ 1718} 1719#endif 1720 1721#ifdef CONFIG_PERF_EVENTS 1722static inline bool branch_sample_no_flags(const struct perf_event *event) 1723{ 1724 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1725} 1726 1727static inline bool branch_sample_no_cycles(const struct perf_event *event) 1728{ 1729 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1730} 1731 1732static inline bool branch_sample_type(const struct perf_event *event) 1733{ 1734 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1735} 1736 1737static inline bool branch_sample_hw_index(const struct perf_event *event) 1738{ 1739 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1740} 1741 1742static inline bool branch_sample_priv(const struct perf_event *event) 1743{ 1744 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1745} 1746#endif /* CONFIG_PERF_EVENTS */ 1747#endif /* _LINUX_PERF_EVENT_H */