at v6.1 110 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31#include <linux/memremap.h> 32 33struct mempolicy; 34struct anon_vma; 35struct anon_vma_chain; 36struct user_struct; 37struct pt_regs; 38 39extern int sysctl_page_lock_unfairness; 40 41void init_mm_internals(void); 42 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 44extern unsigned long max_mapnr; 45 46static inline void set_max_mapnr(unsigned long limit) 47{ 48 max_mapnr = limit; 49} 50#else 51static inline void set_max_mapnr(unsigned long limit) { } 52#endif 53 54extern atomic_long_t _totalram_pages; 55static inline unsigned long totalram_pages(void) 56{ 57 return (unsigned long)atomic_long_read(&_totalram_pages); 58} 59 60static inline void totalram_pages_inc(void) 61{ 62 atomic_long_inc(&_totalram_pages); 63} 64 65static inline void totalram_pages_dec(void) 66{ 67 atomic_long_dec(&_totalram_pages); 68} 69 70static inline void totalram_pages_add(long count) 71{ 72 atomic_long_add(count, &_totalram_pages); 73} 74 75extern void * high_memory; 76extern int page_cluster; 77 78#ifdef CONFIG_SYSCTL 79extern int sysctl_legacy_va_layout; 80#else 81#define sysctl_legacy_va_layout 0 82#endif 83 84#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 85extern const int mmap_rnd_bits_min; 86extern const int mmap_rnd_bits_max; 87extern int mmap_rnd_bits __read_mostly; 88#endif 89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 90extern const int mmap_rnd_compat_bits_min; 91extern const int mmap_rnd_compat_bits_max; 92extern int mmap_rnd_compat_bits __read_mostly; 93#endif 94 95#include <asm/page.h> 96#include <asm/processor.h> 97 98/* 99 * Architectures that support memory tagging (assigning tags to memory regions, 100 * embedding these tags into addresses that point to these memory regions, and 101 * checking that the memory and the pointer tags match on memory accesses) 102 * redefine this macro to strip tags from pointers. 103 * It's defined as noop for architectures that don't support memory tagging. 104 */ 105#ifndef untagged_addr 106#define untagged_addr(addr) (addr) 107#endif 108 109#ifndef __pa_symbol 110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 111#endif 112 113#ifndef page_to_virt 114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 115#endif 116 117#ifndef lm_alias 118#define lm_alias(x) __va(__pa_symbol(x)) 119#endif 120 121/* 122 * To prevent common memory management code establishing 123 * a zero page mapping on a read fault. 124 * This macro should be defined within <asm/pgtable.h>. 125 * s390 does this to prevent multiplexing of hardware bits 126 * related to the physical page in case of virtualization. 127 */ 128#ifndef mm_forbids_zeropage 129#define mm_forbids_zeropage(X) (0) 130#endif 131 132/* 133 * On some architectures it is expensive to call memset() for small sizes. 134 * If an architecture decides to implement their own version of 135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 136 * define their own version of this macro in <asm/pgtable.h> 137 */ 138#if BITS_PER_LONG == 64 139/* This function must be updated when the size of struct page grows above 80 140 * or reduces below 56. The idea that compiler optimizes out switch() 141 * statement, and only leaves move/store instructions. Also the compiler can 142 * combine write statements if they are both assignments and can be reordered, 143 * this can result in several of the writes here being dropped. 144 */ 145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 146static inline void __mm_zero_struct_page(struct page *page) 147{ 148 unsigned long *_pp = (void *)page; 149 150 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 151 BUILD_BUG_ON(sizeof(struct page) & 7); 152 BUILD_BUG_ON(sizeof(struct page) < 56); 153 BUILD_BUG_ON(sizeof(struct page) > 80); 154 155 switch (sizeof(struct page)) { 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174} 175#else 176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177#endif 178 179/* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195#define MAPCOUNT_ELF_CORE_MARGIN (5) 196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198extern int sysctl_max_map_count; 199 200extern unsigned long sysctl_user_reserve_kbytes; 201extern unsigned long sysctl_admin_reserve_kbytes; 202 203extern int sysctl_overcommit_memory; 204extern int sysctl_overcommit_ratio; 205extern unsigned long sysctl_overcommit_kbytes; 206 207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217#else 218#define nth_page(page,n) ((page) + (n)) 219#define folio_page_idx(folio, p) ((p) - &(folio)->page) 220#endif 221 222/* to align the pointer to the (next) page boundary */ 223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225/* to align the pointer to the (prev) page boundary */ 226#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 232static inline struct folio *lru_to_folio(struct list_head *head) 233{ 234 return list_entry((head)->prev, struct folio, lru); 235} 236 237void setup_initial_init_mm(void *start_code, void *end_code, 238 void *end_data, void *brk); 239 240/* 241 * Linux kernel virtual memory manager primitives. 242 * The idea being to have a "virtual" mm in the same way 243 * we have a virtual fs - giving a cleaner interface to the 244 * mm details, and allowing different kinds of memory mappings 245 * (from shared memory to executable loading to arbitrary 246 * mmap() functions). 247 */ 248 249struct vm_area_struct *vm_area_alloc(struct mm_struct *); 250struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 251void vm_area_free(struct vm_area_struct *); 252 253#ifndef CONFIG_MMU 254extern struct rb_root nommu_region_tree; 255extern struct rw_semaphore nommu_region_sem; 256 257extern unsigned int kobjsize(const void *objp); 258#endif 259 260/* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264#define VM_NONE 0x00000000 265 266#define VM_READ 0x00000001 /* currently active flags */ 267#define VM_WRITE 0x00000002 268#define VM_EXEC 0x00000004 269#define VM_SHARED 0x00000008 270 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273#define VM_MAYWRITE 0x00000020 274#define VM_MAYEXEC 0x00000040 275#define VM_MAYSHARE 0x00000080 276 277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 279#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 280#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 281 282#define VM_LOCKED 0x00002000 283#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 284 285 /* Used by sys_madvise() */ 286#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 287#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 288 289#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 290#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 291#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 292#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 293#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 294#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 295#define VM_SYNC 0x00800000 /* Synchronous page faults */ 296#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 297#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 298#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 299 300#ifdef CONFIG_MEM_SOFT_DIRTY 301# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 302#else 303# define VM_SOFTDIRTY 0 304#endif 305 306#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 307#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 308#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 309#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 310 311#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 312#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 313#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 314#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 315#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 316#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 317#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 318#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 319#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 320#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 321#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 322#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 323 324#ifdef CONFIG_ARCH_HAS_PKEYS 325# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 326# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 327# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 328# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 329# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 330#ifdef CONFIG_PPC 331# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 332#else 333# define VM_PKEY_BIT4 0 334#endif 335#endif /* CONFIG_ARCH_HAS_PKEYS */ 336 337#if defined(CONFIG_X86) 338# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 339#elif defined(CONFIG_PPC) 340# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 341#elif defined(CONFIG_PARISC) 342# define VM_GROWSUP VM_ARCH_1 343#elif defined(CONFIG_IA64) 344# define VM_GROWSUP VM_ARCH_1 345#elif defined(CONFIG_SPARC64) 346# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 347# define VM_ARCH_CLEAR VM_SPARC_ADI 348#elif defined(CONFIG_ARM64) 349# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 350# define VM_ARCH_CLEAR VM_ARM64_BTI 351#elif !defined(CONFIG_MMU) 352# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 353#endif 354 355#if defined(CONFIG_ARM64_MTE) 356# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 357# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 358#else 359# define VM_MTE VM_NONE 360# define VM_MTE_ALLOWED VM_NONE 361#endif 362 363#ifndef VM_GROWSUP 364# define VM_GROWSUP VM_NONE 365#endif 366 367#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 368# define VM_UFFD_MINOR_BIT 37 369# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 370#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 371# define VM_UFFD_MINOR VM_NONE 372#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 373 374/* Bits set in the VMA until the stack is in its final location */ 375#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 376 377#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 378 379/* Common data flag combinations */ 380#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 382#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 383 VM_MAYWRITE | VM_MAYEXEC) 384#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 386 387#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 388#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 389#endif 390 391#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 392#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 393#endif 394 395#ifdef CONFIG_STACK_GROWSUP 396#define VM_STACK VM_GROWSUP 397#else 398#define VM_STACK VM_GROWSDOWN 399#endif 400 401#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 402 403/* VMA basic access permission flags */ 404#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 405 406 407/* 408 * Special vmas that are non-mergable, non-mlock()able. 409 */ 410#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 411 412/* This mask prevents VMA from being scanned with khugepaged */ 413#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 414 415/* This mask defines which mm->def_flags a process can inherit its parent */ 416#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 417 418/* This mask is used to clear all the VMA flags used by mlock */ 419#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 420 421/* Arch-specific flags to clear when updating VM flags on protection change */ 422#ifndef VM_ARCH_CLEAR 423# define VM_ARCH_CLEAR VM_NONE 424#endif 425#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 426 427/* 428 * mapping from the currently active vm_flags protection bits (the 429 * low four bits) to a page protection mask.. 430 */ 431 432/* 433 * The default fault flags that should be used by most of the 434 * arch-specific page fault handlers. 435 */ 436#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 437 FAULT_FLAG_KILLABLE | \ 438 FAULT_FLAG_INTERRUPTIBLE) 439 440/** 441 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 442 * @flags: Fault flags. 443 * 444 * This is mostly used for places where we want to try to avoid taking 445 * the mmap_lock for too long a time when waiting for another condition 446 * to change, in which case we can try to be polite to release the 447 * mmap_lock in the first round to avoid potential starvation of other 448 * processes that would also want the mmap_lock. 449 * 450 * Return: true if the page fault allows retry and this is the first 451 * attempt of the fault handling; false otherwise. 452 */ 453static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 454{ 455 return (flags & FAULT_FLAG_ALLOW_RETRY) && 456 (!(flags & FAULT_FLAG_TRIED)); 457} 458 459#define FAULT_FLAG_TRACE \ 460 { FAULT_FLAG_WRITE, "WRITE" }, \ 461 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 462 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 463 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 464 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 465 { FAULT_FLAG_TRIED, "TRIED" }, \ 466 { FAULT_FLAG_USER, "USER" }, \ 467 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 468 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 469 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 470 471/* 472 * vm_fault is filled by the pagefault handler and passed to the vma's 473 * ->fault function. The vma's ->fault is responsible for returning a bitmask 474 * of VM_FAULT_xxx flags that give details about how the fault was handled. 475 * 476 * MM layer fills up gfp_mask for page allocations but fault handler might 477 * alter it if its implementation requires a different allocation context. 478 * 479 * pgoff should be used in favour of virtual_address, if possible. 480 */ 481struct vm_fault { 482 const struct { 483 struct vm_area_struct *vma; /* Target VMA */ 484 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 485 pgoff_t pgoff; /* Logical page offset based on vma */ 486 unsigned long address; /* Faulting virtual address - masked */ 487 unsigned long real_address; /* Faulting virtual address - unmasked */ 488 }; 489 enum fault_flag flags; /* FAULT_FLAG_xxx flags 490 * XXX: should really be 'const' */ 491 pmd_t *pmd; /* Pointer to pmd entry matching 492 * the 'address' */ 493 pud_t *pud; /* Pointer to pud entry matching 494 * the 'address' 495 */ 496 union { 497 pte_t orig_pte; /* Value of PTE at the time of fault */ 498 pmd_t orig_pmd; /* Value of PMD at the time of fault, 499 * used by PMD fault only. 500 */ 501 }; 502 503 struct page *cow_page; /* Page handler may use for COW fault */ 504 struct page *page; /* ->fault handlers should return a 505 * page here, unless VM_FAULT_NOPAGE 506 * is set (which is also implied by 507 * VM_FAULT_ERROR). 508 */ 509 /* These three entries are valid only while holding ptl lock */ 510 pte_t *pte; /* Pointer to pte entry matching 511 * the 'address'. NULL if the page 512 * table hasn't been allocated. 513 */ 514 spinlock_t *ptl; /* Page table lock. 515 * Protects pte page table if 'pte' 516 * is not NULL, otherwise pmd. 517 */ 518 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 519 * vm_ops->map_pages() sets up a page 520 * table from atomic context. 521 * do_fault_around() pre-allocates 522 * page table to avoid allocation from 523 * atomic context. 524 */ 525}; 526 527/* page entry size for vm->huge_fault() */ 528enum page_entry_size { 529 PE_SIZE_PTE = 0, 530 PE_SIZE_PMD, 531 PE_SIZE_PUD, 532}; 533 534/* 535 * These are the virtual MM functions - opening of an area, closing and 536 * unmapping it (needed to keep files on disk up-to-date etc), pointer 537 * to the functions called when a no-page or a wp-page exception occurs. 538 */ 539struct vm_operations_struct { 540 void (*open)(struct vm_area_struct * area); 541 /** 542 * @close: Called when the VMA is being removed from the MM. 543 * Context: User context. May sleep. Caller holds mmap_lock. 544 */ 545 void (*close)(struct vm_area_struct * area); 546 /* Called any time before splitting to check if it's allowed */ 547 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 548 int (*mremap)(struct vm_area_struct *area); 549 /* 550 * Called by mprotect() to make driver-specific permission 551 * checks before mprotect() is finalised. The VMA must not 552 * be modified. Returns 0 if eprotect() can proceed. 553 */ 554 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 555 unsigned long end, unsigned long newflags); 556 vm_fault_t (*fault)(struct vm_fault *vmf); 557 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 558 enum page_entry_size pe_size); 559 vm_fault_t (*map_pages)(struct vm_fault *vmf, 560 pgoff_t start_pgoff, pgoff_t end_pgoff); 561 unsigned long (*pagesize)(struct vm_area_struct * area); 562 563 /* notification that a previously read-only page is about to become 564 * writable, if an error is returned it will cause a SIGBUS */ 565 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 566 567 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 568 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 569 570 /* called by access_process_vm when get_user_pages() fails, typically 571 * for use by special VMAs. See also generic_access_phys() for a generic 572 * implementation useful for any iomem mapping. 573 */ 574 int (*access)(struct vm_area_struct *vma, unsigned long addr, 575 void *buf, int len, int write); 576 577 /* Called by the /proc/PID/maps code to ask the vma whether it 578 * has a special name. Returning non-NULL will also cause this 579 * vma to be dumped unconditionally. */ 580 const char *(*name)(struct vm_area_struct *vma); 581 582#ifdef CONFIG_NUMA 583 /* 584 * set_policy() op must add a reference to any non-NULL @new mempolicy 585 * to hold the policy upon return. Caller should pass NULL @new to 586 * remove a policy and fall back to surrounding context--i.e. do not 587 * install a MPOL_DEFAULT policy, nor the task or system default 588 * mempolicy. 589 */ 590 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 591 592 /* 593 * get_policy() op must add reference [mpol_get()] to any policy at 594 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 595 * in mm/mempolicy.c will do this automatically. 596 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 597 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 598 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 599 * must return NULL--i.e., do not "fallback" to task or system default 600 * policy. 601 */ 602 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 603 unsigned long addr); 604#endif 605 /* 606 * Called by vm_normal_page() for special PTEs to find the 607 * page for @addr. This is useful if the default behavior 608 * (using pte_page()) would not find the correct page. 609 */ 610 struct page *(*find_special_page)(struct vm_area_struct *vma, 611 unsigned long addr); 612}; 613 614static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 615{ 616 static const struct vm_operations_struct dummy_vm_ops = {}; 617 618 memset(vma, 0, sizeof(*vma)); 619 vma->vm_mm = mm; 620 vma->vm_ops = &dummy_vm_ops; 621 INIT_LIST_HEAD(&vma->anon_vma_chain); 622} 623 624static inline void vma_set_anonymous(struct vm_area_struct *vma) 625{ 626 vma->vm_ops = NULL; 627} 628 629static inline bool vma_is_anonymous(struct vm_area_struct *vma) 630{ 631 return !vma->vm_ops; 632} 633 634static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 635{ 636 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 637 638 if (!maybe_stack) 639 return false; 640 641 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 642 VM_STACK_INCOMPLETE_SETUP) 643 return true; 644 645 return false; 646} 647 648static inline bool vma_is_foreign(struct vm_area_struct *vma) 649{ 650 if (!current->mm) 651 return true; 652 653 if (current->mm != vma->vm_mm) 654 return true; 655 656 return false; 657} 658 659static inline bool vma_is_accessible(struct vm_area_struct *vma) 660{ 661 return vma->vm_flags & VM_ACCESS_FLAGS; 662} 663 664static inline 665struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 666{ 667 return mas_find(&vmi->mas, max); 668} 669 670static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 671{ 672 /* 673 * Uses vma_find() to get the first VMA when the iterator starts. 674 * Calling mas_next() could skip the first entry. 675 */ 676 return vma_find(vmi, ULONG_MAX); 677} 678 679static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 680{ 681 return mas_prev(&vmi->mas, 0); 682} 683 684static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 685{ 686 return vmi->mas.index; 687} 688 689#define for_each_vma(__vmi, __vma) \ 690 while (((__vma) = vma_next(&(__vmi))) != NULL) 691 692/* The MM code likes to work with exclusive end addresses */ 693#define for_each_vma_range(__vmi, __vma, __end) \ 694 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL) 695 696#ifdef CONFIG_SHMEM 697/* 698 * The vma_is_shmem is not inline because it is used only by slow 699 * paths in userfault. 700 */ 701bool vma_is_shmem(struct vm_area_struct *vma); 702#else 703static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 704#endif 705 706int vma_is_stack_for_current(struct vm_area_struct *vma); 707 708/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 709#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 710 711struct mmu_gather; 712struct inode; 713 714static inline unsigned int compound_order(struct page *page) 715{ 716 if (!PageHead(page)) 717 return 0; 718 return page[1].compound_order; 719} 720 721/** 722 * folio_order - The allocation order of a folio. 723 * @folio: The folio. 724 * 725 * A folio is composed of 2^order pages. See get_order() for the definition 726 * of order. 727 * 728 * Return: The order of the folio. 729 */ 730static inline unsigned int folio_order(struct folio *folio) 731{ 732 if (!folio_test_large(folio)) 733 return 0; 734 return folio->_folio_order; 735} 736 737#include <linux/huge_mm.h> 738 739/* 740 * Methods to modify the page usage count. 741 * 742 * What counts for a page usage: 743 * - cache mapping (page->mapping) 744 * - private data (page->private) 745 * - page mapped in a task's page tables, each mapping 746 * is counted separately 747 * 748 * Also, many kernel routines increase the page count before a critical 749 * routine so they can be sure the page doesn't go away from under them. 750 */ 751 752/* 753 * Drop a ref, return true if the refcount fell to zero (the page has no users) 754 */ 755static inline int put_page_testzero(struct page *page) 756{ 757 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 758 return page_ref_dec_and_test(page); 759} 760 761static inline int folio_put_testzero(struct folio *folio) 762{ 763 return put_page_testzero(&folio->page); 764} 765 766/* 767 * Try to grab a ref unless the page has a refcount of zero, return false if 768 * that is the case. 769 * This can be called when MMU is off so it must not access 770 * any of the virtual mappings. 771 */ 772static inline bool get_page_unless_zero(struct page *page) 773{ 774 return page_ref_add_unless(page, 1, 0); 775} 776 777extern int page_is_ram(unsigned long pfn); 778 779enum { 780 REGION_INTERSECTS, 781 REGION_DISJOINT, 782 REGION_MIXED, 783}; 784 785int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 786 unsigned long desc); 787 788/* Support for virtually mapped pages */ 789struct page *vmalloc_to_page(const void *addr); 790unsigned long vmalloc_to_pfn(const void *addr); 791 792/* 793 * Determine if an address is within the vmalloc range 794 * 795 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 796 * is no special casing required. 797 */ 798 799#ifndef is_ioremap_addr 800#define is_ioremap_addr(x) is_vmalloc_addr(x) 801#endif 802 803#ifdef CONFIG_MMU 804extern bool is_vmalloc_addr(const void *x); 805extern int is_vmalloc_or_module_addr(const void *x); 806#else 807static inline bool is_vmalloc_addr(const void *x) 808{ 809 return false; 810} 811static inline int is_vmalloc_or_module_addr(const void *x) 812{ 813 return 0; 814} 815#endif 816 817/* 818 * How many times the entire folio is mapped as a single unit (eg by a 819 * PMD or PUD entry). This is probably not what you want, except for 820 * debugging purposes; look at folio_mapcount() or page_mapcount() 821 * instead. 822 */ 823static inline int folio_entire_mapcount(struct folio *folio) 824{ 825 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 826 return atomic_read(folio_mapcount_ptr(folio)) + 1; 827} 828 829/* 830 * Mapcount of compound page as a whole, does not include mapped sub-pages. 831 * 832 * Must be called only for compound pages. 833 */ 834static inline int compound_mapcount(struct page *page) 835{ 836 return folio_entire_mapcount(page_folio(page)); 837} 838 839/* 840 * The atomic page->_mapcount, starts from -1: so that transitions 841 * both from it and to it can be tracked, using atomic_inc_and_test 842 * and atomic_add_negative(-1). 843 */ 844static inline void page_mapcount_reset(struct page *page) 845{ 846 atomic_set(&(page)->_mapcount, -1); 847} 848 849int __page_mapcount(struct page *page); 850 851/* 852 * Mapcount of 0-order page; when compound sub-page, includes 853 * compound_mapcount(). 854 * 855 * Result is undefined for pages which cannot be mapped into userspace. 856 * For example SLAB or special types of pages. See function page_has_type(). 857 * They use this place in struct page differently. 858 */ 859static inline int page_mapcount(struct page *page) 860{ 861 if (unlikely(PageCompound(page))) 862 return __page_mapcount(page); 863 return atomic_read(&page->_mapcount) + 1; 864} 865 866int folio_mapcount(struct folio *folio); 867 868#ifdef CONFIG_TRANSPARENT_HUGEPAGE 869static inline int total_mapcount(struct page *page) 870{ 871 return folio_mapcount(page_folio(page)); 872} 873 874#else 875static inline int total_mapcount(struct page *page) 876{ 877 return page_mapcount(page); 878} 879#endif 880 881static inline struct page *virt_to_head_page(const void *x) 882{ 883 struct page *page = virt_to_page(x); 884 885 return compound_head(page); 886} 887 888static inline struct folio *virt_to_folio(const void *x) 889{ 890 struct page *page = virt_to_page(x); 891 892 return page_folio(page); 893} 894 895void __folio_put(struct folio *folio); 896 897void put_pages_list(struct list_head *pages); 898 899void split_page(struct page *page, unsigned int order); 900void folio_copy(struct folio *dst, struct folio *src); 901 902unsigned long nr_free_buffer_pages(void); 903 904/* 905 * Compound pages have a destructor function. Provide a 906 * prototype for that function and accessor functions. 907 * These are _only_ valid on the head of a compound page. 908 */ 909typedef void compound_page_dtor(struct page *); 910 911/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 912enum compound_dtor_id { 913 NULL_COMPOUND_DTOR, 914 COMPOUND_PAGE_DTOR, 915#ifdef CONFIG_HUGETLB_PAGE 916 HUGETLB_PAGE_DTOR, 917#endif 918#ifdef CONFIG_TRANSPARENT_HUGEPAGE 919 TRANSHUGE_PAGE_DTOR, 920#endif 921 NR_COMPOUND_DTORS, 922}; 923extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 924 925static inline void set_compound_page_dtor(struct page *page, 926 enum compound_dtor_id compound_dtor) 927{ 928 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 929 page[1].compound_dtor = compound_dtor; 930} 931 932void destroy_large_folio(struct folio *folio); 933 934static inline int head_compound_pincount(struct page *head) 935{ 936 return atomic_read(compound_pincount_ptr(head)); 937} 938 939static inline void set_compound_order(struct page *page, unsigned int order) 940{ 941 page[1].compound_order = order; 942#ifdef CONFIG_64BIT 943 page[1].compound_nr = 1U << order; 944#endif 945} 946 947/* Returns the number of pages in this potentially compound page. */ 948static inline unsigned long compound_nr(struct page *page) 949{ 950 if (!PageHead(page)) 951 return 1; 952#ifdef CONFIG_64BIT 953 return page[1].compound_nr; 954#else 955 return 1UL << compound_order(page); 956#endif 957} 958 959/* Returns the number of bytes in this potentially compound page. */ 960static inline unsigned long page_size(struct page *page) 961{ 962 return PAGE_SIZE << compound_order(page); 963} 964 965/* Returns the number of bits needed for the number of bytes in a page */ 966static inline unsigned int page_shift(struct page *page) 967{ 968 return PAGE_SHIFT + compound_order(page); 969} 970 971/** 972 * thp_order - Order of a transparent huge page. 973 * @page: Head page of a transparent huge page. 974 */ 975static inline unsigned int thp_order(struct page *page) 976{ 977 VM_BUG_ON_PGFLAGS(PageTail(page), page); 978 return compound_order(page); 979} 980 981/** 982 * thp_nr_pages - The number of regular pages in this huge page. 983 * @page: The head page of a huge page. 984 */ 985static inline int thp_nr_pages(struct page *page) 986{ 987 VM_BUG_ON_PGFLAGS(PageTail(page), page); 988 return compound_nr(page); 989} 990 991/** 992 * thp_size - Size of a transparent huge page. 993 * @page: Head page of a transparent huge page. 994 * 995 * Return: Number of bytes in this page. 996 */ 997static inline unsigned long thp_size(struct page *page) 998{ 999 return PAGE_SIZE << thp_order(page); 1000} 1001 1002void free_compound_page(struct page *page); 1003 1004#ifdef CONFIG_MMU 1005/* 1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1007 * servicing faults for write access. In the normal case, do always want 1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1009 * that do not have writing enabled, when used by access_process_vm. 1010 */ 1011static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1012{ 1013 if (likely(vma->vm_flags & VM_WRITE)) 1014 pte = pte_mkwrite(pte); 1015 return pte; 1016} 1017 1018vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1019void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1020 1021vm_fault_t finish_fault(struct vm_fault *vmf); 1022vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1023#endif 1024 1025/* 1026 * Multiple processes may "see" the same page. E.g. for untouched 1027 * mappings of /dev/null, all processes see the same page full of 1028 * zeroes, and text pages of executables and shared libraries have 1029 * only one copy in memory, at most, normally. 1030 * 1031 * For the non-reserved pages, page_count(page) denotes a reference count. 1032 * page_count() == 0 means the page is free. page->lru is then used for 1033 * freelist management in the buddy allocator. 1034 * page_count() > 0 means the page has been allocated. 1035 * 1036 * Pages are allocated by the slab allocator in order to provide memory 1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1039 * unless a particular usage is carefully commented. (the responsibility of 1040 * freeing the kmalloc memory is the caller's, of course). 1041 * 1042 * A page may be used by anyone else who does a __get_free_page(). 1043 * In this case, page_count still tracks the references, and should only 1044 * be used through the normal accessor functions. The top bits of page->flags 1045 * and page->virtual store page management information, but all other fields 1046 * are unused and could be used privately, carefully. The management of this 1047 * page is the responsibility of the one who allocated it, and those who have 1048 * subsequently been given references to it. 1049 * 1050 * The other pages (we may call them "pagecache pages") are completely 1051 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1052 * The following discussion applies only to them. 1053 * 1054 * A pagecache page contains an opaque `private' member, which belongs to the 1055 * page's address_space. Usually, this is the address of a circular list of 1056 * the page's disk buffers. PG_private must be set to tell the VM to call 1057 * into the filesystem to release these pages. 1058 * 1059 * A page may belong to an inode's memory mapping. In this case, page->mapping 1060 * is the pointer to the inode, and page->index is the file offset of the page, 1061 * in units of PAGE_SIZE. 1062 * 1063 * If pagecache pages are not associated with an inode, they are said to be 1064 * anonymous pages. These may become associated with the swapcache, and in that 1065 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1066 * 1067 * In either case (swapcache or inode backed), the pagecache itself holds one 1068 * reference to the page. Setting PG_private should also increment the 1069 * refcount. The each user mapping also has a reference to the page. 1070 * 1071 * The pagecache pages are stored in a per-mapping radix tree, which is 1072 * rooted at mapping->i_pages, and indexed by offset. 1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1074 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1075 * 1076 * All pagecache pages may be subject to I/O: 1077 * - inode pages may need to be read from disk, 1078 * - inode pages which have been modified and are MAP_SHARED may need 1079 * to be written back to the inode on disk, 1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1081 * modified may need to be swapped out to swap space and (later) to be read 1082 * back into memory. 1083 */ 1084 1085#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1086DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1087 1088bool __put_devmap_managed_page_refs(struct page *page, int refs); 1089static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1090{ 1091 if (!static_branch_unlikely(&devmap_managed_key)) 1092 return false; 1093 if (!is_zone_device_page(page)) 1094 return false; 1095 return __put_devmap_managed_page_refs(page, refs); 1096} 1097#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1098static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1099{ 1100 return false; 1101} 1102#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1103 1104static inline bool put_devmap_managed_page(struct page *page) 1105{ 1106 return put_devmap_managed_page_refs(page, 1); 1107} 1108 1109/* 127: arbitrary random number, small enough to assemble well */ 1110#define folio_ref_zero_or_close_to_overflow(folio) \ 1111 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1112 1113/** 1114 * folio_get - Increment the reference count on a folio. 1115 * @folio: The folio. 1116 * 1117 * Context: May be called in any context, as long as you know that 1118 * you have a refcount on the folio. If you do not already have one, 1119 * folio_try_get() may be the right interface for you to use. 1120 */ 1121static inline void folio_get(struct folio *folio) 1122{ 1123 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1124 folio_ref_inc(folio); 1125} 1126 1127static inline void get_page(struct page *page) 1128{ 1129 folio_get(page_folio(page)); 1130} 1131 1132bool __must_check try_grab_page(struct page *page, unsigned int flags); 1133 1134static inline __must_check bool try_get_page(struct page *page) 1135{ 1136 page = compound_head(page); 1137 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1138 return false; 1139 page_ref_inc(page); 1140 return true; 1141} 1142 1143/** 1144 * folio_put - Decrement the reference count on a folio. 1145 * @folio: The folio. 1146 * 1147 * If the folio's reference count reaches zero, the memory will be 1148 * released back to the page allocator and may be used by another 1149 * allocation immediately. Do not access the memory or the struct folio 1150 * after calling folio_put() unless you can be sure that it wasn't the 1151 * last reference. 1152 * 1153 * Context: May be called in process or interrupt context, but not in NMI 1154 * context. May be called while holding a spinlock. 1155 */ 1156static inline void folio_put(struct folio *folio) 1157{ 1158 if (folio_put_testzero(folio)) 1159 __folio_put(folio); 1160} 1161 1162/** 1163 * folio_put_refs - Reduce the reference count on a folio. 1164 * @folio: The folio. 1165 * @refs: The amount to subtract from the folio's reference count. 1166 * 1167 * If the folio's reference count reaches zero, the memory will be 1168 * released back to the page allocator and may be used by another 1169 * allocation immediately. Do not access the memory or the struct folio 1170 * after calling folio_put_refs() unless you can be sure that these weren't 1171 * the last references. 1172 * 1173 * Context: May be called in process or interrupt context, but not in NMI 1174 * context. May be called while holding a spinlock. 1175 */ 1176static inline void folio_put_refs(struct folio *folio, int refs) 1177{ 1178 if (folio_ref_sub_and_test(folio, refs)) 1179 __folio_put(folio); 1180} 1181 1182void release_pages(struct page **pages, int nr); 1183 1184/** 1185 * folios_put - Decrement the reference count on an array of folios. 1186 * @folios: The folios. 1187 * @nr: How many folios there are. 1188 * 1189 * Like folio_put(), but for an array of folios. This is more efficient 1190 * than writing the loop yourself as it will optimise the locks which 1191 * need to be taken if the folios are freed. 1192 * 1193 * Context: May be called in process or interrupt context, but not in NMI 1194 * context. May be called while holding a spinlock. 1195 */ 1196static inline void folios_put(struct folio **folios, unsigned int nr) 1197{ 1198 release_pages((struct page **)folios, nr); 1199} 1200 1201static inline void put_page(struct page *page) 1202{ 1203 struct folio *folio = page_folio(page); 1204 1205 /* 1206 * For some devmap managed pages we need to catch refcount transition 1207 * from 2 to 1: 1208 */ 1209 if (put_devmap_managed_page(&folio->page)) 1210 return; 1211 folio_put(folio); 1212} 1213 1214/* 1215 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1216 * the page's refcount so that two separate items are tracked: the original page 1217 * reference count, and also a new count of how many pin_user_pages() calls were 1218 * made against the page. ("gup-pinned" is another term for the latter). 1219 * 1220 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1221 * distinct from normal pages. As such, the unpin_user_page() call (and its 1222 * variants) must be used in order to release gup-pinned pages. 1223 * 1224 * Choice of value: 1225 * 1226 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1227 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1228 * simpler, due to the fact that adding an even power of two to the page 1229 * refcount has the effect of using only the upper N bits, for the code that 1230 * counts up using the bias value. This means that the lower bits are left for 1231 * the exclusive use of the original code that increments and decrements by one 1232 * (or at least, by much smaller values than the bias value). 1233 * 1234 * Of course, once the lower bits overflow into the upper bits (and this is 1235 * OK, because subtraction recovers the original values), then visual inspection 1236 * no longer suffices to directly view the separate counts. However, for normal 1237 * applications that don't have huge page reference counts, this won't be an 1238 * issue. 1239 * 1240 * Locking: the lockless algorithm described in folio_try_get_rcu() 1241 * provides safe operation for get_user_pages(), page_mkclean() and 1242 * other calls that race to set up page table entries. 1243 */ 1244#define GUP_PIN_COUNTING_BIAS (1U << 10) 1245 1246void unpin_user_page(struct page *page); 1247void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1248 bool make_dirty); 1249void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1250 bool make_dirty); 1251void unpin_user_pages(struct page **pages, unsigned long npages); 1252 1253static inline bool is_cow_mapping(vm_flags_t flags) 1254{ 1255 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1256} 1257 1258#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1259#define SECTION_IN_PAGE_FLAGS 1260#endif 1261 1262/* 1263 * The identification function is mainly used by the buddy allocator for 1264 * determining if two pages could be buddies. We are not really identifying 1265 * the zone since we could be using the section number id if we do not have 1266 * node id available in page flags. 1267 * We only guarantee that it will return the same value for two combinable 1268 * pages in a zone. 1269 */ 1270static inline int page_zone_id(struct page *page) 1271{ 1272 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1273} 1274 1275#ifdef NODE_NOT_IN_PAGE_FLAGS 1276extern int page_to_nid(const struct page *page); 1277#else 1278static inline int page_to_nid(const struct page *page) 1279{ 1280 struct page *p = (struct page *)page; 1281 1282 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1283} 1284#endif 1285 1286static inline int folio_nid(const struct folio *folio) 1287{ 1288 return page_to_nid(&folio->page); 1289} 1290 1291#ifdef CONFIG_NUMA_BALANCING 1292/* page access time bits needs to hold at least 4 seconds */ 1293#define PAGE_ACCESS_TIME_MIN_BITS 12 1294#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1295#define PAGE_ACCESS_TIME_BUCKETS \ 1296 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1297#else 1298#define PAGE_ACCESS_TIME_BUCKETS 0 1299#endif 1300 1301#define PAGE_ACCESS_TIME_MASK \ 1302 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1303 1304static inline int cpu_pid_to_cpupid(int cpu, int pid) 1305{ 1306 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1307} 1308 1309static inline int cpupid_to_pid(int cpupid) 1310{ 1311 return cpupid & LAST__PID_MASK; 1312} 1313 1314static inline int cpupid_to_cpu(int cpupid) 1315{ 1316 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1317} 1318 1319static inline int cpupid_to_nid(int cpupid) 1320{ 1321 return cpu_to_node(cpupid_to_cpu(cpupid)); 1322} 1323 1324static inline bool cpupid_pid_unset(int cpupid) 1325{ 1326 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1327} 1328 1329static inline bool cpupid_cpu_unset(int cpupid) 1330{ 1331 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1332} 1333 1334static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1335{ 1336 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1337} 1338 1339#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1340#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1341static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1342{ 1343 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1344} 1345 1346static inline int page_cpupid_last(struct page *page) 1347{ 1348 return page->_last_cpupid; 1349} 1350static inline void page_cpupid_reset_last(struct page *page) 1351{ 1352 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1353} 1354#else 1355static inline int page_cpupid_last(struct page *page) 1356{ 1357 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1358} 1359 1360extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1361 1362static inline void page_cpupid_reset_last(struct page *page) 1363{ 1364 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1365} 1366#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1367 1368static inline int xchg_page_access_time(struct page *page, int time) 1369{ 1370 int last_time; 1371 1372 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1373 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1374} 1375#else /* !CONFIG_NUMA_BALANCING */ 1376static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1377{ 1378 return page_to_nid(page); /* XXX */ 1379} 1380 1381static inline int xchg_page_access_time(struct page *page, int time) 1382{ 1383 return 0; 1384} 1385 1386static inline int page_cpupid_last(struct page *page) 1387{ 1388 return page_to_nid(page); /* XXX */ 1389} 1390 1391static inline int cpupid_to_nid(int cpupid) 1392{ 1393 return -1; 1394} 1395 1396static inline int cpupid_to_pid(int cpupid) 1397{ 1398 return -1; 1399} 1400 1401static inline int cpupid_to_cpu(int cpupid) 1402{ 1403 return -1; 1404} 1405 1406static inline int cpu_pid_to_cpupid(int nid, int pid) 1407{ 1408 return -1; 1409} 1410 1411static inline bool cpupid_pid_unset(int cpupid) 1412{ 1413 return true; 1414} 1415 1416static inline void page_cpupid_reset_last(struct page *page) 1417{ 1418} 1419 1420static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1421{ 1422 return false; 1423} 1424#endif /* CONFIG_NUMA_BALANCING */ 1425 1426#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1427 1428/* 1429 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1430 * setting tags for all pages to native kernel tag value 0xff, as the default 1431 * value 0x00 maps to 0xff. 1432 */ 1433 1434static inline u8 page_kasan_tag(const struct page *page) 1435{ 1436 u8 tag = 0xff; 1437 1438 if (kasan_enabled()) { 1439 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1440 tag ^= 0xff; 1441 } 1442 1443 return tag; 1444} 1445 1446static inline void page_kasan_tag_set(struct page *page, u8 tag) 1447{ 1448 unsigned long old_flags, flags; 1449 1450 if (!kasan_enabled()) 1451 return; 1452 1453 tag ^= 0xff; 1454 old_flags = READ_ONCE(page->flags); 1455 do { 1456 flags = old_flags; 1457 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1458 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1459 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1460} 1461 1462static inline void page_kasan_tag_reset(struct page *page) 1463{ 1464 if (kasan_enabled()) 1465 page_kasan_tag_set(page, 0xff); 1466} 1467 1468#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1469 1470static inline u8 page_kasan_tag(const struct page *page) 1471{ 1472 return 0xff; 1473} 1474 1475static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1476static inline void page_kasan_tag_reset(struct page *page) { } 1477 1478#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1479 1480static inline struct zone *page_zone(const struct page *page) 1481{ 1482 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1483} 1484 1485static inline pg_data_t *page_pgdat(const struct page *page) 1486{ 1487 return NODE_DATA(page_to_nid(page)); 1488} 1489 1490static inline struct zone *folio_zone(const struct folio *folio) 1491{ 1492 return page_zone(&folio->page); 1493} 1494 1495static inline pg_data_t *folio_pgdat(const struct folio *folio) 1496{ 1497 return page_pgdat(&folio->page); 1498} 1499 1500#ifdef SECTION_IN_PAGE_FLAGS 1501static inline void set_page_section(struct page *page, unsigned long section) 1502{ 1503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1505} 1506 1507static inline unsigned long page_to_section(const struct page *page) 1508{ 1509 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1510} 1511#endif 1512 1513/** 1514 * folio_pfn - Return the Page Frame Number of a folio. 1515 * @folio: The folio. 1516 * 1517 * A folio may contain multiple pages. The pages have consecutive 1518 * Page Frame Numbers. 1519 * 1520 * Return: The Page Frame Number of the first page in the folio. 1521 */ 1522static inline unsigned long folio_pfn(struct folio *folio) 1523{ 1524 return page_to_pfn(&folio->page); 1525} 1526 1527static inline struct folio *pfn_folio(unsigned long pfn) 1528{ 1529 return page_folio(pfn_to_page(pfn)); 1530} 1531 1532static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1533{ 1534 return &folio_page(folio, 1)->compound_pincount; 1535} 1536 1537/** 1538 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1539 * @folio: The folio. 1540 * 1541 * This function checks if a folio has been pinned via a call to 1542 * a function in the pin_user_pages() family. 1543 * 1544 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1545 * because it means "definitely not pinned for DMA", but true means "probably 1546 * pinned for DMA, but possibly a false positive due to having at least 1547 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1548 * 1549 * False positives are OK, because: a) it's unlikely for a folio to 1550 * get that many refcounts, and b) all the callers of this routine are 1551 * expected to be able to deal gracefully with a false positive. 1552 * 1553 * For large folios, the result will be exactly correct. That's because 1554 * we have more tracking data available: the compound_pincount is used 1555 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1556 * 1557 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1558 * 1559 * Return: True, if it is likely that the page has been "dma-pinned". 1560 * False, if the page is definitely not dma-pinned. 1561 */ 1562static inline bool folio_maybe_dma_pinned(struct folio *folio) 1563{ 1564 if (folio_test_large(folio)) 1565 return atomic_read(folio_pincount_ptr(folio)) > 0; 1566 1567 /* 1568 * folio_ref_count() is signed. If that refcount overflows, then 1569 * folio_ref_count() returns a negative value, and callers will avoid 1570 * further incrementing the refcount. 1571 * 1572 * Here, for that overflow case, use the sign bit to count a little 1573 * bit higher via unsigned math, and thus still get an accurate result. 1574 */ 1575 return ((unsigned int)folio_ref_count(folio)) >= 1576 GUP_PIN_COUNTING_BIAS; 1577} 1578 1579static inline bool page_maybe_dma_pinned(struct page *page) 1580{ 1581 return folio_maybe_dma_pinned(page_folio(page)); 1582} 1583 1584/* 1585 * This should most likely only be called during fork() to see whether we 1586 * should break the cow immediately for an anon page on the src mm. 1587 * 1588 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1589 */ 1590static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1591 struct page *page) 1592{ 1593 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1594 1595 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1596 return false; 1597 1598 return page_maybe_dma_pinned(page); 1599} 1600 1601/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1602#ifdef CONFIG_MIGRATION 1603static inline bool is_longterm_pinnable_page(struct page *page) 1604{ 1605#ifdef CONFIG_CMA 1606 int mt = get_pageblock_migratetype(page); 1607 1608 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1609 return false; 1610#endif 1611 /* The zero page may always be pinned */ 1612 if (is_zero_pfn(page_to_pfn(page))) 1613 return true; 1614 1615 /* Coherent device memory must always allow eviction. */ 1616 if (is_device_coherent_page(page)) 1617 return false; 1618 1619 /* Otherwise, non-movable zone pages can be pinned. */ 1620 return !is_zone_movable_page(page); 1621} 1622#else 1623static inline bool is_longterm_pinnable_page(struct page *page) 1624{ 1625 return true; 1626} 1627#endif 1628 1629static inline bool folio_is_longterm_pinnable(struct folio *folio) 1630{ 1631 return is_longterm_pinnable_page(&folio->page); 1632} 1633 1634static inline void set_page_zone(struct page *page, enum zone_type zone) 1635{ 1636 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1637 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1638} 1639 1640static inline void set_page_node(struct page *page, unsigned long node) 1641{ 1642 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1643 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1644} 1645 1646static inline void set_page_links(struct page *page, enum zone_type zone, 1647 unsigned long node, unsigned long pfn) 1648{ 1649 set_page_zone(page, zone); 1650 set_page_node(page, node); 1651#ifdef SECTION_IN_PAGE_FLAGS 1652 set_page_section(page, pfn_to_section_nr(pfn)); 1653#endif 1654} 1655 1656/** 1657 * folio_nr_pages - The number of pages in the folio. 1658 * @folio: The folio. 1659 * 1660 * Return: A positive power of two. 1661 */ 1662static inline long folio_nr_pages(struct folio *folio) 1663{ 1664 if (!folio_test_large(folio)) 1665 return 1; 1666#ifdef CONFIG_64BIT 1667 return folio->_folio_nr_pages; 1668#else 1669 return 1L << folio->_folio_order; 1670#endif 1671} 1672 1673/** 1674 * folio_next - Move to the next physical folio. 1675 * @folio: The folio we're currently operating on. 1676 * 1677 * If you have physically contiguous memory which may span more than 1678 * one folio (eg a &struct bio_vec), use this function to move from one 1679 * folio to the next. Do not use it if the memory is only virtually 1680 * contiguous as the folios are almost certainly not adjacent to each 1681 * other. This is the folio equivalent to writing ``page++``. 1682 * 1683 * Context: We assume that the folios are refcounted and/or locked at a 1684 * higher level and do not adjust the reference counts. 1685 * Return: The next struct folio. 1686 */ 1687static inline struct folio *folio_next(struct folio *folio) 1688{ 1689 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1690} 1691 1692/** 1693 * folio_shift - The size of the memory described by this folio. 1694 * @folio: The folio. 1695 * 1696 * A folio represents a number of bytes which is a power-of-two in size. 1697 * This function tells you which power-of-two the folio is. See also 1698 * folio_size() and folio_order(). 1699 * 1700 * Context: The caller should have a reference on the folio to prevent 1701 * it from being split. It is not necessary for the folio to be locked. 1702 * Return: The base-2 logarithm of the size of this folio. 1703 */ 1704static inline unsigned int folio_shift(struct folio *folio) 1705{ 1706 return PAGE_SHIFT + folio_order(folio); 1707} 1708 1709/** 1710 * folio_size - The number of bytes in a folio. 1711 * @folio: The folio. 1712 * 1713 * Context: The caller should have a reference on the folio to prevent 1714 * it from being split. It is not necessary for the folio to be locked. 1715 * Return: The number of bytes in this folio. 1716 */ 1717static inline size_t folio_size(struct folio *folio) 1718{ 1719 return PAGE_SIZE << folio_order(folio); 1720} 1721 1722#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1723static inline int arch_make_page_accessible(struct page *page) 1724{ 1725 return 0; 1726} 1727#endif 1728 1729#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1730static inline int arch_make_folio_accessible(struct folio *folio) 1731{ 1732 int ret; 1733 long i, nr = folio_nr_pages(folio); 1734 1735 for (i = 0; i < nr; i++) { 1736 ret = arch_make_page_accessible(folio_page(folio, i)); 1737 if (ret) 1738 break; 1739 } 1740 1741 return ret; 1742} 1743#endif 1744 1745/* 1746 * Some inline functions in vmstat.h depend on page_zone() 1747 */ 1748#include <linux/vmstat.h> 1749 1750static __always_inline void *lowmem_page_address(const struct page *page) 1751{ 1752 return page_to_virt(page); 1753} 1754 1755#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1756#define HASHED_PAGE_VIRTUAL 1757#endif 1758 1759#if defined(WANT_PAGE_VIRTUAL) 1760static inline void *page_address(const struct page *page) 1761{ 1762 return page->virtual; 1763} 1764static inline void set_page_address(struct page *page, void *address) 1765{ 1766 page->virtual = address; 1767} 1768#define page_address_init() do { } while(0) 1769#endif 1770 1771#if defined(HASHED_PAGE_VIRTUAL) 1772void *page_address(const struct page *page); 1773void set_page_address(struct page *page, void *virtual); 1774void page_address_init(void); 1775#endif 1776 1777#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1778#define page_address(page) lowmem_page_address(page) 1779#define set_page_address(page, address) do { } while(0) 1780#define page_address_init() do { } while(0) 1781#endif 1782 1783static inline void *folio_address(const struct folio *folio) 1784{ 1785 return page_address(&folio->page); 1786} 1787 1788extern void *page_rmapping(struct page *page); 1789extern pgoff_t __page_file_index(struct page *page); 1790 1791/* 1792 * Return the pagecache index of the passed page. Regular pagecache pages 1793 * use ->index whereas swapcache pages use swp_offset(->private) 1794 */ 1795static inline pgoff_t page_index(struct page *page) 1796{ 1797 if (unlikely(PageSwapCache(page))) 1798 return __page_file_index(page); 1799 return page->index; 1800} 1801 1802bool page_mapped(struct page *page); 1803bool folio_mapped(struct folio *folio); 1804 1805/* 1806 * Return true only if the page has been allocated with 1807 * ALLOC_NO_WATERMARKS and the low watermark was not 1808 * met implying that the system is under some pressure. 1809 */ 1810static inline bool page_is_pfmemalloc(const struct page *page) 1811{ 1812 /* 1813 * lru.next has bit 1 set if the page is allocated from the 1814 * pfmemalloc reserves. Callers may simply overwrite it if 1815 * they do not need to preserve that information. 1816 */ 1817 return (uintptr_t)page->lru.next & BIT(1); 1818} 1819 1820/* 1821 * Only to be called by the page allocator on a freshly allocated 1822 * page. 1823 */ 1824static inline void set_page_pfmemalloc(struct page *page) 1825{ 1826 page->lru.next = (void *)BIT(1); 1827} 1828 1829static inline void clear_page_pfmemalloc(struct page *page) 1830{ 1831 page->lru.next = NULL; 1832} 1833 1834/* 1835 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1836 */ 1837extern void pagefault_out_of_memory(void); 1838 1839#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1840#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1841#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1842 1843/* 1844 * Flags passed to show_mem() and show_free_areas() to suppress output in 1845 * various contexts. 1846 */ 1847#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1848 1849extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 1850static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 1851{ 1852 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 1853} 1854 1855/* 1856 * Parameter block passed down to zap_pte_range in exceptional cases. 1857 */ 1858struct zap_details { 1859 struct folio *single_folio; /* Locked folio to be unmapped */ 1860 bool even_cows; /* Zap COWed private pages too? */ 1861 zap_flags_t zap_flags; /* Extra flags for zapping */ 1862}; 1863 1864/* 1865 * Whether to drop the pte markers, for example, the uffd-wp information for 1866 * file-backed memory. This should only be specified when we will completely 1867 * drop the page in the mm, either by truncation or unmapping of the vma. By 1868 * default, the flag is not set. 1869 */ 1870#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 1871/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 1872#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 1873 1874#ifdef CONFIG_MMU 1875extern bool can_do_mlock(void); 1876#else 1877static inline bool can_do_mlock(void) { return false; } 1878#endif 1879extern int user_shm_lock(size_t, struct ucounts *); 1880extern void user_shm_unlock(size_t, struct ucounts *); 1881 1882struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1883 pte_t pte); 1884struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1885 pmd_t pmd); 1886 1887void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1888 unsigned long size); 1889void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1890 unsigned long size); 1891void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1892 unsigned long size, struct zap_details *details); 1893void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1894 struct vm_area_struct *start_vma, unsigned long start, 1895 unsigned long end); 1896 1897struct mmu_notifier_range; 1898 1899void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1900 unsigned long end, unsigned long floor, unsigned long ceiling); 1901int 1902copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1903int follow_pte(struct mm_struct *mm, unsigned long address, 1904 pte_t **ptepp, spinlock_t **ptlp); 1905int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1906 unsigned long *pfn); 1907int follow_phys(struct vm_area_struct *vma, unsigned long address, 1908 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1909int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1910 void *buf, int len, int write); 1911 1912extern void truncate_pagecache(struct inode *inode, loff_t new); 1913extern void truncate_setsize(struct inode *inode, loff_t newsize); 1914void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1915void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1916int generic_error_remove_page(struct address_space *mapping, struct page *page); 1917 1918#ifdef CONFIG_MMU 1919extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1920 unsigned long address, unsigned int flags, 1921 struct pt_regs *regs); 1922extern int fixup_user_fault(struct mm_struct *mm, 1923 unsigned long address, unsigned int fault_flags, 1924 bool *unlocked); 1925void unmap_mapping_pages(struct address_space *mapping, 1926 pgoff_t start, pgoff_t nr, bool even_cows); 1927void unmap_mapping_range(struct address_space *mapping, 1928 loff_t const holebegin, loff_t const holelen, int even_cows); 1929#else 1930static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1931 unsigned long address, unsigned int flags, 1932 struct pt_regs *regs) 1933{ 1934 /* should never happen if there's no MMU */ 1935 BUG(); 1936 return VM_FAULT_SIGBUS; 1937} 1938static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1939 unsigned int fault_flags, bool *unlocked) 1940{ 1941 /* should never happen if there's no MMU */ 1942 BUG(); 1943 return -EFAULT; 1944} 1945static inline void unmap_mapping_pages(struct address_space *mapping, 1946 pgoff_t start, pgoff_t nr, bool even_cows) { } 1947static inline void unmap_mapping_range(struct address_space *mapping, 1948 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1949#endif 1950 1951static inline void unmap_shared_mapping_range(struct address_space *mapping, 1952 loff_t const holebegin, loff_t const holelen) 1953{ 1954 unmap_mapping_range(mapping, holebegin, holelen, 0); 1955} 1956 1957extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1958 void *buf, int len, unsigned int gup_flags); 1959extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1960 void *buf, int len, unsigned int gup_flags); 1961extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1962 void *buf, int len, unsigned int gup_flags); 1963 1964long get_user_pages_remote(struct mm_struct *mm, 1965 unsigned long start, unsigned long nr_pages, 1966 unsigned int gup_flags, struct page **pages, 1967 struct vm_area_struct **vmas, int *locked); 1968long pin_user_pages_remote(struct mm_struct *mm, 1969 unsigned long start, unsigned long nr_pages, 1970 unsigned int gup_flags, struct page **pages, 1971 struct vm_area_struct **vmas, int *locked); 1972long get_user_pages(unsigned long start, unsigned long nr_pages, 1973 unsigned int gup_flags, struct page **pages, 1974 struct vm_area_struct **vmas); 1975long pin_user_pages(unsigned long start, unsigned long nr_pages, 1976 unsigned int gup_flags, struct page **pages, 1977 struct vm_area_struct **vmas); 1978long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1979 struct page **pages, unsigned int gup_flags); 1980long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1981 struct page **pages, unsigned int gup_flags); 1982 1983int get_user_pages_fast(unsigned long start, int nr_pages, 1984 unsigned int gup_flags, struct page **pages); 1985int pin_user_pages_fast(unsigned long start, int nr_pages, 1986 unsigned int gup_flags, struct page **pages); 1987 1988int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1989int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1990 struct task_struct *task, bool bypass_rlim); 1991 1992struct kvec; 1993int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1994 struct page **pages); 1995struct page *get_dump_page(unsigned long addr); 1996 1997bool folio_mark_dirty(struct folio *folio); 1998bool set_page_dirty(struct page *page); 1999int set_page_dirty_lock(struct page *page); 2000 2001int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2002 2003extern unsigned long move_page_tables(struct vm_area_struct *vma, 2004 unsigned long old_addr, struct vm_area_struct *new_vma, 2005 unsigned long new_addr, unsigned long len, 2006 bool need_rmap_locks); 2007 2008/* 2009 * Flags used by change_protection(). For now we make it a bitmap so 2010 * that we can pass in multiple flags just like parameters. However 2011 * for now all the callers are only use one of the flags at the same 2012 * time. 2013 */ 2014/* 2015 * Whether we should manually check if we can map individual PTEs writable, 2016 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2017 * PTEs automatically in a writable mapping. 2018 */ 2019#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2020/* Whether this protection change is for NUMA hints */ 2021#define MM_CP_PROT_NUMA (1UL << 1) 2022/* Whether this change is for write protecting */ 2023#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2024#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2025#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2026 MM_CP_UFFD_WP_RESOLVE) 2027 2028extern unsigned long change_protection(struct mmu_gather *tlb, 2029 struct vm_area_struct *vma, unsigned long start, 2030 unsigned long end, pgprot_t newprot, 2031 unsigned long cp_flags); 2032extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 2033 struct vm_area_struct **pprev, unsigned long start, 2034 unsigned long end, unsigned long newflags); 2035 2036/* 2037 * doesn't attempt to fault and will return short. 2038 */ 2039int get_user_pages_fast_only(unsigned long start, int nr_pages, 2040 unsigned int gup_flags, struct page **pages); 2041int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2042 unsigned int gup_flags, struct page **pages); 2043 2044static inline bool get_user_page_fast_only(unsigned long addr, 2045 unsigned int gup_flags, struct page **pagep) 2046{ 2047 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2048} 2049/* 2050 * per-process(per-mm_struct) statistics. 2051 */ 2052static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2053{ 2054 long val = atomic_long_read(&mm->rss_stat.count[member]); 2055 2056#ifdef SPLIT_RSS_COUNTING 2057 /* 2058 * counter is updated in asynchronous manner and may go to minus. 2059 * But it's never be expected number for users. 2060 */ 2061 if (val < 0) 2062 val = 0; 2063#endif 2064 return (unsigned long)val; 2065} 2066 2067void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2068 2069static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2070{ 2071 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2072 2073 mm_trace_rss_stat(mm, member, count); 2074} 2075 2076static inline void inc_mm_counter(struct mm_struct *mm, int member) 2077{ 2078 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2079 2080 mm_trace_rss_stat(mm, member, count); 2081} 2082 2083static inline void dec_mm_counter(struct mm_struct *mm, int member) 2084{ 2085 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2086 2087 mm_trace_rss_stat(mm, member, count); 2088} 2089 2090/* Optimized variant when page is already known not to be PageAnon */ 2091static inline int mm_counter_file(struct page *page) 2092{ 2093 if (PageSwapBacked(page)) 2094 return MM_SHMEMPAGES; 2095 return MM_FILEPAGES; 2096} 2097 2098static inline int mm_counter(struct page *page) 2099{ 2100 if (PageAnon(page)) 2101 return MM_ANONPAGES; 2102 return mm_counter_file(page); 2103} 2104 2105static inline unsigned long get_mm_rss(struct mm_struct *mm) 2106{ 2107 return get_mm_counter(mm, MM_FILEPAGES) + 2108 get_mm_counter(mm, MM_ANONPAGES) + 2109 get_mm_counter(mm, MM_SHMEMPAGES); 2110} 2111 2112static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2113{ 2114 return max(mm->hiwater_rss, get_mm_rss(mm)); 2115} 2116 2117static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2118{ 2119 return max(mm->hiwater_vm, mm->total_vm); 2120} 2121 2122static inline void update_hiwater_rss(struct mm_struct *mm) 2123{ 2124 unsigned long _rss = get_mm_rss(mm); 2125 2126 if ((mm)->hiwater_rss < _rss) 2127 (mm)->hiwater_rss = _rss; 2128} 2129 2130static inline void update_hiwater_vm(struct mm_struct *mm) 2131{ 2132 if (mm->hiwater_vm < mm->total_vm) 2133 mm->hiwater_vm = mm->total_vm; 2134} 2135 2136static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2137{ 2138 mm->hiwater_rss = get_mm_rss(mm); 2139} 2140 2141static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2142 struct mm_struct *mm) 2143{ 2144 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2145 2146 if (*maxrss < hiwater_rss) 2147 *maxrss = hiwater_rss; 2148} 2149 2150#if defined(SPLIT_RSS_COUNTING) 2151void sync_mm_rss(struct mm_struct *mm); 2152#else 2153static inline void sync_mm_rss(struct mm_struct *mm) 2154{ 2155} 2156#endif 2157 2158#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2159static inline int pte_special(pte_t pte) 2160{ 2161 return 0; 2162} 2163 2164static inline pte_t pte_mkspecial(pte_t pte) 2165{ 2166 return pte; 2167} 2168#endif 2169 2170#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2171static inline int pte_devmap(pte_t pte) 2172{ 2173 return 0; 2174} 2175#endif 2176 2177int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2178 2179extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2180 spinlock_t **ptl); 2181static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2182 spinlock_t **ptl) 2183{ 2184 pte_t *ptep; 2185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2186 return ptep; 2187} 2188 2189#ifdef __PAGETABLE_P4D_FOLDED 2190static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2191 unsigned long address) 2192{ 2193 return 0; 2194} 2195#else 2196int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2197#endif 2198 2199#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2200static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2201 unsigned long address) 2202{ 2203 return 0; 2204} 2205static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2206static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2207 2208#else 2209int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2210 2211static inline void mm_inc_nr_puds(struct mm_struct *mm) 2212{ 2213 if (mm_pud_folded(mm)) 2214 return; 2215 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2216} 2217 2218static inline void mm_dec_nr_puds(struct mm_struct *mm) 2219{ 2220 if (mm_pud_folded(mm)) 2221 return; 2222 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2223} 2224#endif 2225 2226#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2227static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2228 unsigned long address) 2229{ 2230 return 0; 2231} 2232 2233static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2234static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2235 2236#else 2237int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2238 2239static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2240{ 2241 if (mm_pmd_folded(mm)) 2242 return; 2243 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2244} 2245 2246static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2247{ 2248 if (mm_pmd_folded(mm)) 2249 return; 2250 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2251} 2252#endif 2253 2254#ifdef CONFIG_MMU 2255static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2256{ 2257 atomic_long_set(&mm->pgtables_bytes, 0); 2258} 2259 2260static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2261{ 2262 return atomic_long_read(&mm->pgtables_bytes); 2263} 2264 2265static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2266{ 2267 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2268} 2269 2270static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2271{ 2272 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2273} 2274#else 2275 2276static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2277static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2278{ 2279 return 0; 2280} 2281 2282static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2283static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2284#endif 2285 2286int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2287int __pte_alloc_kernel(pmd_t *pmd); 2288 2289#if defined(CONFIG_MMU) 2290 2291static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2292 unsigned long address) 2293{ 2294 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2295 NULL : p4d_offset(pgd, address); 2296} 2297 2298static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2299 unsigned long address) 2300{ 2301 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2302 NULL : pud_offset(p4d, address); 2303} 2304 2305static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2306{ 2307 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2308 NULL: pmd_offset(pud, address); 2309} 2310#endif /* CONFIG_MMU */ 2311 2312#if USE_SPLIT_PTE_PTLOCKS 2313#if ALLOC_SPLIT_PTLOCKS 2314void __init ptlock_cache_init(void); 2315extern bool ptlock_alloc(struct page *page); 2316extern void ptlock_free(struct page *page); 2317 2318static inline spinlock_t *ptlock_ptr(struct page *page) 2319{ 2320 return page->ptl; 2321} 2322#else /* ALLOC_SPLIT_PTLOCKS */ 2323static inline void ptlock_cache_init(void) 2324{ 2325} 2326 2327static inline bool ptlock_alloc(struct page *page) 2328{ 2329 return true; 2330} 2331 2332static inline void ptlock_free(struct page *page) 2333{ 2334} 2335 2336static inline spinlock_t *ptlock_ptr(struct page *page) 2337{ 2338 return &page->ptl; 2339} 2340#endif /* ALLOC_SPLIT_PTLOCKS */ 2341 2342static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2343{ 2344 return ptlock_ptr(pmd_page(*pmd)); 2345} 2346 2347static inline bool ptlock_init(struct page *page) 2348{ 2349 /* 2350 * prep_new_page() initialize page->private (and therefore page->ptl) 2351 * with 0. Make sure nobody took it in use in between. 2352 * 2353 * It can happen if arch try to use slab for page table allocation: 2354 * slab code uses page->slab_cache, which share storage with page->ptl. 2355 */ 2356 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2357 if (!ptlock_alloc(page)) 2358 return false; 2359 spin_lock_init(ptlock_ptr(page)); 2360 return true; 2361} 2362 2363#else /* !USE_SPLIT_PTE_PTLOCKS */ 2364/* 2365 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2366 */ 2367static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2368{ 2369 return &mm->page_table_lock; 2370} 2371static inline void ptlock_cache_init(void) {} 2372static inline bool ptlock_init(struct page *page) { return true; } 2373static inline void ptlock_free(struct page *page) {} 2374#endif /* USE_SPLIT_PTE_PTLOCKS */ 2375 2376static inline void pgtable_init(void) 2377{ 2378 ptlock_cache_init(); 2379 pgtable_cache_init(); 2380} 2381 2382static inline bool pgtable_pte_page_ctor(struct page *page) 2383{ 2384 if (!ptlock_init(page)) 2385 return false; 2386 __SetPageTable(page); 2387 inc_lruvec_page_state(page, NR_PAGETABLE); 2388 return true; 2389} 2390 2391static inline void pgtable_pte_page_dtor(struct page *page) 2392{ 2393 ptlock_free(page); 2394 __ClearPageTable(page); 2395 dec_lruvec_page_state(page, NR_PAGETABLE); 2396} 2397 2398#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2399({ \ 2400 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2401 pte_t *__pte = pte_offset_map(pmd, address); \ 2402 *(ptlp) = __ptl; \ 2403 spin_lock(__ptl); \ 2404 __pte; \ 2405}) 2406 2407#define pte_unmap_unlock(pte, ptl) do { \ 2408 spin_unlock(ptl); \ 2409 pte_unmap(pte); \ 2410} while (0) 2411 2412#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2413 2414#define pte_alloc_map(mm, pmd, address) \ 2415 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2416 2417#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2418 (pte_alloc(mm, pmd) ? \ 2419 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2420 2421#define pte_alloc_kernel(pmd, address) \ 2422 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2423 NULL: pte_offset_kernel(pmd, address)) 2424 2425#if USE_SPLIT_PMD_PTLOCKS 2426 2427static struct page *pmd_to_page(pmd_t *pmd) 2428{ 2429 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2430 return virt_to_page((void *)((unsigned long) pmd & mask)); 2431} 2432 2433static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2434{ 2435 return ptlock_ptr(pmd_to_page(pmd)); 2436} 2437 2438static inline bool pmd_ptlock_init(struct page *page) 2439{ 2440#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2441 page->pmd_huge_pte = NULL; 2442#endif 2443 return ptlock_init(page); 2444} 2445 2446static inline void pmd_ptlock_free(struct page *page) 2447{ 2448#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2449 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2450#endif 2451 ptlock_free(page); 2452} 2453 2454#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2455 2456#else 2457 2458static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2459{ 2460 return &mm->page_table_lock; 2461} 2462 2463static inline bool pmd_ptlock_init(struct page *page) { return true; } 2464static inline void pmd_ptlock_free(struct page *page) {} 2465 2466#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2467 2468#endif 2469 2470static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2471{ 2472 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2473 spin_lock(ptl); 2474 return ptl; 2475} 2476 2477static inline bool pgtable_pmd_page_ctor(struct page *page) 2478{ 2479 if (!pmd_ptlock_init(page)) 2480 return false; 2481 __SetPageTable(page); 2482 inc_lruvec_page_state(page, NR_PAGETABLE); 2483 return true; 2484} 2485 2486static inline void pgtable_pmd_page_dtor(struct page *page) 2487{ 2488 pmd_ptlock_free(page); 2489 __ClearPageTable(page); 2490 dec_lruvec_page_state(page, NR_PAGETABLE); 2491} 2492 2493/* 2494 * No scalability reason to split PUD locks yet, but follow the same pattern 2495 * as the PMD locks to make it easier if we decide to. The VM should not be 2496 * considered ready to switch to split PUD locks yet; there may be places 2497 * which need to be converted from page_table_lock. 2498 */ 2499static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2500{ 2501 return &mm->page_table_lock; 2502} 2503 2504static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2505{ 2506 spinlock_t *ptl = pud_lockptr(mm, pud); 2507 2508 spin_lock(ptl); 2509 return ptl; 2510} 2511 2512extern void __init pagecache_init(void); 2513extern void free_initmem(void); 2514 2515/* 2516 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2517 * into the buddy system. The freed pages will be poisoned with pattern 2518 * "poison" if it's within range [0, UCHAR_MAX]. 2519 * Return pages freed into the buddy system. 2520 */ 2521extern unsigned long free_reserved_area(void *start, void *end, 2522 int poison, const char *s); 2523 2524extern void adjust_managed_page_count(struct page *page, long count); 2525extern void mem_init_print_info(void); 2526 2527extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2528 2529/* Free the reserved page into the buddy system, so it gets managed. */ 2530static inline void free_reserved_page(struct page *page) 2531{ 2532 ClearPageReserved(page); 2533 init_page_count(page); 2534 __free_page(page); 2535 adjust_managed_page_count(page, 1); 2536} 2537#define free_highmem_page(page) free_reserved_page(page) 2538 2539static inline void mark_page_reserved(struct page *page) 2540{ 2541 SetPageReserved(page); 2542 adjust_managed_page_count(page, -1); 2543} 2544 2545/* 2546 * Default method to free all the __init memory into the buddy system. 2547 * The freed pages will be poisoned with pattern "poison" if it's within 2548 * range [0, UCHAR_MAX]. 2549 * Return pages freed into the buddy system. 2550 */ 2551static inline unsigned long free_initmem_default(int poison) 2552{ 2553 extern char __init_begin[], __init_end[]; 2554 2555 return free_reserved_area(&__init_begin, &__init_end, 2556 poison, "unused kernel image (initmem)"); 2557} 2558 2559static inline unsigned long get_num_physpages(void) 2560{ 2561 int nid; 2562 unsigned long phys_pages = 0; 2563 2564 for_each_online_node(nid) 2565 phys_pages += node_present_pages(nid); 2566 2567 return phys_pages; 2568} 2569 2570/* 2571 * Using memblock node mappings, an architecture may initialise its 2572 * zones, allocate the backing mem_map and account for memory holes in an 2573 * architecture independent manner. 2574 * 2575 * An architecture is expected to register range of page frames backed by 2576 * physical memory with memblock_add[_node]() before calling 2577 * free_area_init() passing in the PFN each zone ends at. At a basic 2578 * usage, an architecture is expected to do something like 2579 * 2580 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2581 * max_highmem_pfn}; 2582 * for_each_valid_physical_page_range() 2583 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2584 * free_area_init(max_zone_pfns); 2585 */ 2586void free_area_init(unsigned long *max_zone_pfn); 2587unsigned long node_map_pfn_alignment(void); 2588unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2589 unsigned long end_pfn); 2590extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2591 unsigned long end_pfn); 2592extern void get_pfn_range_for_nid(unsigned int nid, 2593 unsigned long *start_pfn, unsigned long *end_pfn); 2594 2595#ifndef CONFIG_NUMA 2596static inline int early_pfn_to_nid(unsigned long pfn) 2597{ 2598 return 0; 2599} 2600#else 2601/* please see mm/page_alloc.c */ 2602extern int __meminit early_pfn_to_nid(unsigned long pfn); 2603#endif 2604 2605extern void set_dma_reserve(unsigned long new_dma_reserve); 2606extern void memmap_init_range(unsigned long, int, unsigned long, 2607 unsigned long, unsigned long, enum meminit_context, 2608 struct vmem_altmap *, int migratetype); 2609extern void setup_per_zone_wmarks(void); 2610extern void calculate_min_free_kbytes(void); 2611extern int __meminit init_per_zone_wmark_min(void); 2612extern void mem_init(void); 2613extern void __init mmap_init(void); 2614 2615extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2616static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 2617{ 2618 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 2619} 2620extern long si_mem_available(void); 2621extern void si_meminfo(struct sysinfo * val); 2622extern void si_meminfo_node(struct sysinfo *val, int nid); 2623#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2624extern unsigned long arch_reserved_kernel_pages(void); 2625#endif 2626 2627extern __printf(3, 4) 2628void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2629 2630extern void setup_per_cpu_pageset(void); 2631 2632/* page_alloc.c */ 2633extern int min_free_kbytes; 2634extern int watermark_boost_factor; 2635extern int watermark_scale_factor; 2636extern bool arch_has_descending_max_zone_pfns(void); 2637 2638/* nommu.c */ 2639extern atomic_long_t mmap_pages_allocated; 2640extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2641 2642/* interval_tree.c */ 2643void vma_interval_tree_insert(struct vm_area_struct *node, 2644 struct rb_root_cached *root); 2645void vma_interval_tree_insert_after(struct vm_area_struct *node, 2646 struct vm_area_struct *prev, 2647 struct rb_root_cached *root); 2648void vma_interval_tree_remove(struct vm_area_struct *node, 2649 struct rb_root_cached *root); 2650struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2651 unsigned long start, unsigned long last); 2652struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2653 unsigned long start, unsigned long last); 2654 2655#define vma_interval_tree_foreach(vma, root, start, last) \ 2656 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2657 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2658 2659void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2660 struct rb_root_cached *root); 2661void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2662 struct rb_root_cached *root); 2663struct anon_vma_chain * 2664anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2665 unsigned long start, unsigned long last); 2666struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2667 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2668#ifdef CONFIG_DEBUG_VM_RB 2669void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2670#endif 2671 2672#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2673 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2674 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2675 2676/* mmap.c */ 2677extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2678extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2679 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2680 struct vm_area_struct *expand); 2681static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2682 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2683{ 2684 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2685} 2686extern struct vm_area_struct *vma_merge(struct mm_struct *, 2687 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2688 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2689 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2690extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2691extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2692 unsigned long addr, int new_below); 2693extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2694 unsigned long addr, int new_below); 2695extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2696extern void unlink_file_vma(struct vm_area_struct *); 2697extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2698 unsigned long addr, unsigned long len, pgoff_t pgoff, 2699 bool *need_rmap_locks); 2700extern void exit_mmap(struct mm_struct *); 2701 2702void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas); 2703void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas); 2704 2705static inline int check_data_rlimit(unsigned long rlim, 2706 unsigned long new, 2707 unsigned long start, 2708 unsigned long end_data, 2709 unsigned long start_data) 2710{ 2711 if (rlim < RLIM_INFINITY) { 2712 if (((new - start) + (end_data - start_data)) > rlim) 2713 return -ENOSPC; 2714 } 2715 2716 return 0; 2717} 2718 2719extern int mm_take_all_locks(struct mm_struct *mm); 2720extern void mm_drop_all_locks(struct mm_struct *mm); 2721 2722extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2723extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2724extern struct file *get_mm_exe_file(struct mm_struct *mm); 2725extern struct file *get_task_exe_file(struct task_struct *task); 2726 2727extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2728extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2729 2730extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2731 const struct vm_special_mapping *sm); 2732extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2733 unsigned long addr, unsigned long len, 2734 unsigned long flags, 2735 const struct vm_special_mapping *spec); 2736/* This is an obsolete alternative to _install_special_mapping. */ 2737extern int install_special_mapping(struct mm_struct *mm, 2738 unsigned long addr, unsigned long len, 2739 unsigned long flags, struct page **pages); 2740 2741unsigned long randomize_stack_top(unsigned long stack_top); 2742unsigned long randomize_page(unsigned long start, unsigned long range); 2743 2744extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2745 2746extern unsigned long mmap_region(struct file *file, unsigned long addr, 2747 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2748 struct list_head *uf); 2749extern unsigned long do_mmap(struct file *file, unsigned long addr, 2750 unsigned long len, unsigned long prot, unsigned long flags, 2751 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2752extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, 2753 unsigned long start, size_t len, struct list_head *uf, 2754 bool downgrade); 2755extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2756 struct list_head *uf); 2757extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2758 2759#ifdef CONFIG_MMU 2760extern int __mm_populate(unsigned long addr, unsigned long len, 2761 int ignore_errors); 2762static inline void mm_populate(unsigned long addr, unsigned long len) 2763{ 2764 /* Ignore errors */ 2765 (void) __mm_populate(addr, len, 1); 2766} 2767#else 2768static inline void mm_populate(unsigned long addr, unsigned long len) {} 2769#endif 2770 2771/* These take the mm semaphore themselves */ 2772extern int __must_check vm_brk(unsigned long, unsigned long); 2773extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2774extern int vm_munmap(unsigned long, size_t); 2775extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2776 unsigned long, unsigned long, 2777 unsigned long, unsigned long); 2778 2779struct vm_unmapped_area_info { 2780#define VM_UNMAPPED_AREA_TOPDOWN 1 2781 unsigned long flags; 2782 unsigned long length; 2783 unsigned long low_limit; 2784 unsigned long high_limit; 2785 unsigned long align_mask; 2786 unsigned long align_offset; 2787}; 2788 2789extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2790 2791/* truncate.c */ 2792extern void truncate_inode_pages(struct address_space *, loff_t); 2793extern void truncate_inode_pages_range(struct address_space *, 2794 loff_t lstart, loff_t lend); 2795extern void truncate_inode_pages_final(struct address_space *); 2796 2797/* generic vm_area_ops exported for stackable file systems */ 2798extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2799extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2800 pgoff_t start_pgoff, pgoff_t end_pgoff); 2801extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2802 2803extern unsigned long stack_guard_gap; 2804/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2805extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2806 2807/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2808extern int expand_downwards(struct vm_area_struct *vma, 2809 unsigned long address); 2810#if VM_GROWSUP 2811extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2812#else 2813 #define expand_upwards(vma, address) (0) 2814#endif 2815 2816/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2817extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2818extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2819 struct vm_area_struct **pprev); 2820 2821/* 2822 * Look up the first VMA which intersects the interval [start_addr, end_addr) 2823 * NULL if none. Assume start_addr < end_addr. 2824 */ 2825struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2826 unsigned long start_addr, unsigned long end_addr); 2827 2828/** 2829 * vma_lookup() - Find a VMA at a specific address 2830 * @mm: The process address space. 2831 * @addr: The user address. 2832 * 2833 * Return: The vm_area_struct at the given address, %NULL otherwise. 2834 */ 2835static inline 2836struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2837{ 2838 return mtree_load(&mm->mm_mt, addr); 2839} 2840 2841static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2842{ 2843 unsigned long vm_start = vma->vm_start; 2844 2845 if (vma->vm_flags & VM_GROWSDOWN) { 2846 vm_start -= stack_guard_gap; 2847 if (vm_start > vma->vm_start) 2848 vm_start = 0; 2849 } 2850 return vm_start; 2851} 2852 2853static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2854{ 2855 unsigned long vm_end = vma->vm_end; 2856 2857 if (vma->vm_flags & VM_GROWSUP) { 2858 vm_end += stack_guard_gap; 2859 if (vm_end < vma->vm_end) 2860 vm_end = -PAGE_SIZE; 2861 } 2862 return vm_end; 2863} 2864 2865static inline unsigned long vma_pages(struct vm_area_struct *vma) 2866{ 2867 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2868} 2869 2870/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2871static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2872 unsigned long vm_start, unsigned long vm_end) 2873{ 2874 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 2875 2876 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2877 vma = NULL; 2878 2879 return vma; 2880} 2881 2882static inline bool range_in_vma(struct vm_area_struct *vma, 2883 unsigned long start, unsigned long end) 2884{ 2885 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2886} 2887 2888#ifdef CONFIG_MMU 2889pgprot_t vm_get_page_prot(unsigned long vm_flags); 2890void vma_set_page_prot(struct vm_area_struct *vma); 2891#else 2892static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2893{ 2894 return __pgprot(0); 2895} 2896static inline void vma_set_page_prot(struct vm_area_struct *vma) 2897{ 2898 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2899} 2900#endif 2901 2902void vma_set_file(struct vm_area_struct *vma, struct file *file); 2903 2904#ifdef CONFIG_NUMA_BALANCING 2905unsigned long change_prot_numa(struct vm_area_struct *vma, 2906 unsigned long start, unsigned long end); 2907#endif 2908 2909struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2910int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2911 unsigned long pfn, unsigned long size, pgprot_t); 2912int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2913 unsigned long pfn, unsigned long size, pgprot_t prot); 2914int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2915int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2916 struct page **pages, unsigned long *num); 2917int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2918 unsigned long num); 2919int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2920 unsigned long num); 2921vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2922 unsigned long pfn); 2923vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2924 unsigned long pfn, pgprot_t pgprot); 2925vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2926 pfn_t pfn); 2927vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2928 pfn_t pfn, pgprot_t pgprot); 2929vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2930 unsigned long addr, pfn_t pfn); 2931int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2932 2933static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2934 unsigned long addr, struct page *page) 2935{ 2936 int err = vm_insert_page(vma, addr, page); 2937 2938 if (err == -ENOMEM) 2939 return VM_FAULT_OOM; 2940 if (err < 0 && err != -EBUSY) 2941 return VM_FAULT_SIGBUS; 2942 2943 return VM_FAULT_NOPAGE; 2944} 2945 2946#ifndef io_remap_pfn_range 2947static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2948 unsigned long addr, unsigned long pfn, 2949 unsigned long size, pgprot_t prot) 2950{ 2951 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2952} 2953#endif 2954 2955static inline vm_fault_t vmf_error(int err) 2956{ 2957 if (err == -ENOMEM) 2958 return VM_FAULT_OOM; 2959 return VM_FAULT_SIGBUS; 2960} 2961 2962struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2963 unsigned int foll_flags); 2964 2965#define FOLL_WRITE 0x01 /* check pte is writable */ 2966#define FOLL_TOUCH 0x02 /* mark page accessed */ 2967#define FOLL_GET 0x04 /* do get_page on page */ 2968#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2969#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2970#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2971 * and return without waiting upon it */ 2972#define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2973#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2974#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2975#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2976#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2977#define FOLL_ANON 0x8000 /* don't do file mappings */ 2978#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2979#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2980#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2981#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2982 2983/* 2984 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2985 * other. Here is what they mean, and how to use them: 2986 * 2987 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2988 * period _often_ under userspace control. This is in contrast to 2989 * iov_iter_get_pages(), whose usages are transient. 2990 * 2991 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2992 * lifetime enforced by the filesystem and we need guarantees that longterm 2993 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2994 * the filesystem. Ideas for this coordination include revoking the longterm 2995 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2996 * added after the problem with filesystems was found FS DAX VMAs are 2997 * specifically failed. Filesystem pages are still subject to bugs and use of 2998 * FOLL_LONGTERM should be avoided on those pages. 2999 * 3000 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 3001 * Currently only get_user_pages() and get_user_pages_fast() support this flag 3002 * and calls to get_user_pages_[un]locked are specifically not allowed. This 3003 * is due to an incompatibility with the FS DAX check and 3004 * FAULT_FLAG_ALLOW_RETRY. 3005 * 3006 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 3007 * that region. And so, CMA attempts to migrate the page before pinning, when 3008 * FOLL_LONGTERM is specified. 3009 * 3010 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 3011 * but an additional pin counting system) will be invoked. This is intended for 3012 * anything that gets a page reference and then touches page data (for example, 3013 * Direct IO). This lets the filesystem know that some non-file-system entity is 3014 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 3015 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 3016 * a call to unpin_user_page(). 3017 * 3018 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 3019 * and separate refcounting mechanisms, however, and that means that each has 3020 * its own acquire and release mechanisms: 3021 * 3022 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 3023 * 3024 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 3025 * 3026 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 3027 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 3028 * calls applied to them, and that's perfectly OK. This is a constraint on the 3029 * callers, not on the pages.) 3030 * 3031 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 3032 * directly by the caller. That's in order to help avoid mismatches when 3033 * releasing pages: get_user_pages*() pages must be released via put_page(), 3034 * while pin_user_pages*() pages must be released via unpin_user_page(). 3035 * 3036 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3037 */ 3038 3039static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3040{ 3041 if (vm_fault & VM_FAULT_OOM) 3042 return -ENOMEM; 3043 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3044 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3045 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3046 return -EFAULT; 3047 return 0; 3048} 3049 3050/* 3051 * Indicates for which pages that are write-protected in the page table, 3052 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 3053 * GUP pin will remain consistent with the pages mapped into the page tables 3054 * of the MM. 3055 * 3056 * Temporary unmapping of PageAnonExclusive() pages or clearing of 3057 * PageAnonExclusive() has to protect against concurrent GUP: 3058 * * Ordinary GUP: Using the PT lock 3059 * * GUP-fast and fork(): mm->write_protect_seq 3060 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 3061 * page_try_share_anon_rmap() 3062 * 3063 * Must be called with the (sub)page that's actually referenced via the 3064 * page table entry, which might not necessarily be the head page for a 3065 * PTE-mapped THP. 3066 */ 3067static inline bool gup_must_unshare(unsigned int flags, struct page *page) 3068{ 3069 /* 3070 * FOLL_WRITE is implicitly handled correctly as the page table entry 3071 * has to be writable -- and if it references (part of) an anonymous 3072 * folio, that part is required to be marked exclusive. 3073 */ 3074 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 3075 return false; 3076 /* 3077 * Note: PageAnon(page) is stable until the page is actually getting 3078 * freed. 3079 */ 3080 if (!PageAnon(page)) 3081 return false; 3082 3083 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 3084 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 3085 smp_rmb(); 3086 3087 /* 3088 * Note that PageKsm() pages cannot be exclusive, and consequently, 3089 * cannot get pinned. 3090 */ 3091 return !PageAnonExclusive(page); 3092} 3093 3094/* 3095 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3096 * a (NUMA hinting) fault is required. 3097 */ 3098static inline bool gup_can_follow_protnone(unsigned int flags) 3099{ 3100 /* 3101 * FOLL_FORCE has to be able to make progress even if the VMA is 3102 * inaccessible. Further, FOLL_FORCE access usually does not represent 3103 * application behaviour and we should avoid triggering NUMA hinting 3104 * faults. 3105 */ 3106 return flags & FOLL_FORCE; 3107} 3108 3109typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3110extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3111 unsigned long size, pte_fn_t fn, void *data); 3112extern int apply_to_existing_page_range(struct mm_struct *mm, 3113 unsigned long address, unsigned long size, 3114 pte_fn_t fn, void *data); 3115 3116extern void __init init_mem_debugging_and_hardening(void); 3117#ifdef CONFIG_PAGE_POISONING 3118extern void __kernel_poison_pages(struct page *page, int numpages); 3119extern void __kernel_unpoison_pages(struct page *page, int numpages); 3120extern bool _page_poisoning_enabled_early; 3121DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3122static inline bool page_poisoning_enabled(void) 3123{ 3124 return _page_poisoning_enabled_early; 3125} 3126/* 3127 * For use in fast paths after init_mem_debugging() has run, or when a 3128 * false negative result is not harmful when called too early. 3129 */ 3130static inline bool page_poisoning_enabled_static(void) 3131{ 3132 return static_branch_unlikely(&_page_poisoning_enabled); 3133} 3134static inline void kernel_poison_pages(struct page *page, int numpages) 3135{ 3136 if (page_poisoning_enabled_static()) 3137 __kernel_poison_pages(page, numpages); 3138} 3139static inline void kernel_unpoison_pages(struct page *page, int numpages) 3140{ 3141 if (page_poisoning_enabled_static()) 3142 __kernel_unpoison_pages(page, numpages); 3143} 3144#else 3145static inline bool page_poisoning_enabled(void) { return false; } 3146static inline bool page_poisoning_enabled_static(void) { return false; } 3147static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3148static inline void kernel_poison_pages(struct page *page, int numpages) { } 3149static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3150#endif 3151 3152DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3153static inline bool want_init_on_alloc(gfp_t flags) 3154{ 3155 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3156 &init_on_alloc)) 3157 return true; 3158 return flags & __GFP_ZERO; 3159} 3160 3161DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3162static inline bool want_init_on_free(void) 3163{ 3164 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3165 &init_on_free); 3166} 3167 3168extern bool _debug_pagealloc_enabled_early; 3169DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3170 3171static inline bool debug_pagealloc_enabled(void) 3172{ 3173 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3174 _debug_pagealloc_enabled_early; 3175} 3176 3177/* 3178 * For use in fast paths after init_debug_pagealloc() has run, or when a 3179 * false negative result is not harmful when called too early. 3180 */ 3181static inline bool debug_pagealloc_enabled_static(void) 3182{ 3183 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3184 return false; 3185 3186 return static_branch_unlikely(&_debug_pagealloc_enabled); 3187} 3188 3189#ifdef CONFIG_DEBUG_PAGEALLOC 3190/* 3191 * To support DEBUG_PAGEALLOC architecture must ensure that 3192 * __kernel_map_pages() never fails 3193 */ 3194extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3195 3196static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3197{ 3198 if (debug_pagealloc_enabled_static()) 3199 __kernel_map_pages(page, numpages, 1); 3200} 3201 3202static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3203{ 3204 if (debug_pagealloc_enabled_static()) 3205 __kernel_map_pages(page, numpages, 0); 3206} 3207#else /* CONFIG_DEBUG_PAGEALLOC */ 3208static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3209static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3210#endif /* CONFIG_DEBUG_PAGEALLOC */ 3211 3212#ifdef __HAVE_ARCH_GATE_AREA 3213extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3214extern int in_gate_area_no_mm(unsigned long addr); 3215extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3216#else 3217static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3218{ 3219 return NULL; 3220} 3221static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3222static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3223{ 3224 return 0; 3225} 3226#endif /* __HAVE_ARCH_GATE_AREA */ 3227 3228extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3229 3230#ifdef CONFIG_SYSCTL 3231extern int sysctl_drop_caches; 3232int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3233 loff_t *); 3234#endif 3235 3236void drop_slab(void); 3237 3238#ifndef CONFIG_MMU 3239#define randomize_va_space 0 3240#else 3241extern int randomize_va_space; 3242#endif 3243 3244const char * arch_vma_name(struct vm_area_struct *vma); 3245#ifdef CONFIG_MMU 3246void print_vma_addr(char *prefix, unsigned long rip); 3247#else 3248static inline void print_vma_addr(char *prefix, unsigned long rip) 3249{ 3250} 3251#endif 3252 3253void *sparse_buffer_alloc(unsigned long size); 3254struct page * __populate_section_memmap(unsigned long pfn, 3255 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3256 struct dev_pagemap *pgmap); 3257pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3258p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3259pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3260pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3261pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3262 struct vmem_altmap *altmap, struct page *reuse); 3263void *vmemmap_alloc_block(unsigned long size, int node); 3264struct vmem_altmap; 3265void *vmemmap_alloc_block_buf(unsigned long size, int node, 3266 struct vmem_altmap *altmap); 3267void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3268int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3269 int node, struct vmem_altmap *altmap); 3270int vmemmap_populate(unsigned long start, unsigned long end, int node, 3271 struct vmem_altmap *altmap); 3272void vmemmap_populate_print_last(void); 3273#ifdef CONFIG_MEMORY_HOTPLUG 3274void vmemmap_free(unsigned long start, unsigned long end, 3275 struct vmem_altmap *altmap); 3276#endif 3277void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3278 unsigned long nr_pages); 3279 3280enum mf_flags { 3281 MF_COUNT_INCREASED = 1 << 0, 3282 MF_ACTION_REQUIRED = 1 << 1, 3283 MF_MUST_KILL = 1 << 2, 3284 MF_SOFT_OFFLINE = 1 << 3, 3285 MF_UNPOISON = 1 << 4, 3286 MF_SW_SIMULATED = 1 << 5, 3287 MF_NO_RETRY = 1 << 6, 3288}; 3289int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3290 unsigned long count, int mf_flags); 3291extern int memory_failure(unsigned long pfn, int flags); 3292extern void memory_failure_queue(unsigned long pfn, int flags); 3293extern void memory_failure_queue_kick(int cpu); 3294extern int unpoison_memory(unsigned long pfn); 3295extern int sysctl_memory_failure_early_kill; 3296extern int sysctl_memory_failure_recovery; 3297extern void shake_page(struct page *p); 3298extern atomic_long_t num_poisoned_pages __read_mostly; 3299extern int soft_offline_page(unsigned long pfn, int flags); 3300#ifdef CONFIG_MEMORY_FAILURE 3301extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); 3302#else 3303static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 3304{ 3305 return 0; 3306} 3307#endif 3308 3309#ifndef arch_memory_failure 3310static inline int arch_memory_failure(unsigned long pfn, int flags) 3311{ 3312 return -ENXIO; 3313} 3314#endif 3315 3316#ifndef arch_is_platform_page 3317static inline bool arch_is_platform_page(u64 paddr) 3318{ 3319 return false; 3320} 3321#endif 3322 3323/* 3324 * Error handlers for various types of pages. 3325 */ 3326enum mf_result { 3327 MF_IGNORED, /* Error: cannot be handled */ 3328 MF_FAILED, /* Error: handling failed */ 3329 MF_DELAYED, /* Will be handled later */ 3330 MF_RECOVERED, /* Successfully recovered */ 3331}; 3332 3333enum mf_action_page_type { 3334 MF_MSG_KERNEL, 3335 MF_MSG_KERNEL_HIGH_ORDER, 3336 MF_MSG_SLAB, 3337 MF_MSG_DIFFERENT_COMPOUND, 3338 MF_MSG_HUGE, 3339 MF_MSG_FREE_HUGE, 3340 MF_MSG_UNMAP_FAILED, 3341 MF_MSG_DIRTY_SWAPCACHE, 3342 MF_MSG_CLEAN_SWAPCACHE, 3343 MF_MSG_DIRTY_MLOCKED_LRU, 3344 MF_MSG_CLEAN_MLOCKED_LRU, 3345 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3346 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3347 MF_MSG_DIRTY_LRU, 3348 MF_MSG_CLEAN_LRU, 3349 MF_MSG_TRUNCATED_LRU, 3350 MF_MSG_BUDDY, 3351 MF_MSG_DAX, 3352 MF_MSG_UNSPLIT_THP, 3353 MF_MSG_UNKNOWN, 3354}; 3355 3356#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3357extern void clear_huge_page(struct page *page, 3358 unsigned long addr_hint, 3359 unsigned int pages_per_huge_page); 3360extern void copy_user_huge_page(struct page *dst, struct page *src, 3361 unsigned long addr_hint, 3362 struct vm_area_struct *vma, 3363 unsigned int pages_per_huge_page); 3364extern long copy_huge_page_from_user(struct page *dst_page, 3365 const void __user *usr_src, 3366 unsigned int pages_per_huge_page, 3367 bool allow_pagefault); 3368 3369/** 3370 * vma_is_special_huge - Are transhuge page-table entries considered special? 3371 * @vma: Pointer to the struct vm_area_struct to consider 3372 * 3373 * Whether transhuge page-table entries are considered "special" following 3374 * the definition in vm_normal_page(). 3375 * 3376 * Return: true if transhuge page-table entries should be considered special, 3377 * false otherwise. 3378 */ 3379static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3380{ 3381 return vma_is_dax(vma) || (vma->vm_file && 3382 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3383} 3384 3385#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3386 3387#ifdef CONFIG_DEBUG_PAGEALLOC 3388extern unsigned int _debug_guardpage_minorder; 3389DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3390 3391static inline unsigned int debug_guardpage_minorder(void) 3392{ 3393 return _debug_guardpage_minorder; 3394} 3395 3396static inline bool debug_guardpage_enabled(void) 3397{ 3398 return static_branch_unlikely(&_debug_guardpage_enabled); 3399} 3400 3401static inline bool page_is_guard(struct page *page) 3402{ 3403 if (!debug_guardpage_enabled()) 3404 return false; 3405 3406 return PageGuard(page); 3407} 3408#else 3409static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3410static inline bool debug_guardpage_enabled(void) { return false; } 3411static inline bool page_is_guard(struct page *page) { return false; } 3412#endif /* CONFIG_DEBUG_PAGEALLOC */ 3413 3414#if MAX_NUMNODES > 1 3415void __init setup_nr_node_ids(void); 3416#else 3417static inline void setup_nr_node_ids(void) {} 3418#endif 3419 3420extern int memcmp_pages(struct page *page1, struct page *page2); 3421 3422static inline int pages_identical(struct page *page1, struct page *page2) 3423{ 3424 return !memcmp_pages(page1, page2); 3425} 3426 3427#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3428unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3429 pgoff_t first_index, pgoff_t nr, 3430 pgoff_t bitmap_pgoff, 3431 unsigned long *bitmap, 3432 pgoff_t *start, 3433 pgoff_t *end); 3434 3435unsigned long wp_shared_mapping_range(struct address_space *mapping, 3436 pgoff_t first_index, pgoff_t nr); 3437#endif 3438 3439extern int sysctl_nr_trim_pages; 3440 3441#ifdef CONFIG_PRINTK 3442void mem_dump_obj(void *object); 3443#else 3444static inline void mem_dump_obj(void *object) {} 3445#endif 3446 3447/** 3448 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3449 * @seals: the seals to check 3450 * @vma: the vma to operate on 3451 * 3452 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3453 * the vma flags. Return 0 if check pass, or <0 for errors. 3454 */ 3455static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3456{ 3457 if (seals & F_SEAL_FUTURE_WRITE) { 3458 /* 3459 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3460 * "future write" seal active. 3461 */ 3462 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3463 return -EPERM; 3464 3465 /* 3466 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3467 * MAP_SHARED and read-only, take care to not allow mprotect to 3468 * revert protections on such mappings. Do this only for shared 3469 * mappings. For private mappings, don't need to mask 3470 * VM_MAYWRITE as we still want them to be COW-writable. 3471 */ 3472 if (vma->vm_flags & VM_SHARED) 3473 vma->vm_flags &= ~(VM_MAYWRITE); 3474 } 3475 3476 return 0; 3477} 3478 3479#ifdef CONFIG_ANON_VMA_NAME 3480int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3481 unsigned long len_in, 3482 struct anon_vma_name *anon_name); 3483#else 3484static inline int 3485madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3486 unsigned long len_in, struct anon_vma_name *anon_name) { 3487 return 0; 3488} 3489#endif 3490 3491#endif /* _LINUX_MM_H */