Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32
33struct mempolicy;
34struct anon_vma;
35struct anon_vma_chain;
36struct user_struct;
37struct pt_regs;
38
39extern int sysctl_page_lock_unfairness;
40
41void init_mm_internals(void);
42
43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
44extern unsigned long max_mapnr;
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
52#endif
53
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
75extern void * high_memory;
76extern int page_cluster;
77
78#ifdef CONFIG_SYSCTL
79extern int sysctl_legacy_va_layout;
80#else
81#define sysctl_legacy_va_layout 0
82#endif
83
84#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85extern const int mmap_rnd_bits_min;
86extern const int mmap_rnd_bits_max;
87extern int mmap_rnd_bits __read_mostly;
88#endif
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90extern const int mmap_rnd_compat_bits_min;
91extern const int mmap_rnd_compat_bits_max;
92extern int mmap_rnd_compat_bits __read_mostly;
93#endif
94
95#include <asm/page.h>
96#include <asm/processor.h>
97
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for architectures that don't support memory tagging.
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
137 */
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statements if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0;
158 fallthrough;
159 case 72:
160 _pp[8] = 0;
161 fallthrough;
162 case 64:
163 _pp[7] = 0;
164 fallthrough;
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
200extern unsigned long sysctl_user_reserve_kbytes;
201extern unsigned long sysctl_admin_reserve_kbytes;
202
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
213
214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
217#else
218#define nth_page(page,n) ((page) + (n))
219#define folio_page_idx(folio, p) ((p) - &(folio)->page)
220#endif
221
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
225/* to align the pointer to the (prev) page boundary */
226#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227
228/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230
231#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
232static inline struct folio *lru_to_folio(struct list_head *head)
233{
234 return list_entry((head)->prev, struct folio, lru);
235}
236
237void setup_initial_init_mm(void *start_code, void *end_code,
238 void *end_data, void *brk);
239
240/*
241 * Linux kernel virtual memory manager primitives.
242 * The idea being to have a "virtual" mm in the same way
243 * we have a virtual fs - giving a cleaner interface to the
244 * mm details, and allowing different kinds of memory mappings
245 * (from shared memory to executable loading to arbitrary
246 * mmap() functions).
247 */
248
249struct vm_area_struct *vm_area_alloc(struct mm_struct *);
250struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251void vm_area_free(struct vm_area_struct *);
252
253#ifndef CONFIG_MMU
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264#define VM_NONE 0x00000000
265
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
279#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
280#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
281
282#define VM_LOCKED 0x00002000
283#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
284
285 /* Used by sys_madvise() */
286#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
287#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
288
289#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
290#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
291#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
292#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
293#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
294#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
295#define VM_SYNC 0x00800000 /* Synchronous page faults */
296#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
297#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
298#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
299
300#ifdef CONFIG_MEM_SOFT_DIRTY
301# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
302#else
303# define VM_SOFTDIRTY 0
304#endif
305
306#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
307#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
308#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
309#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
310
311#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
316#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
317#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
318#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
319#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
320#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
321#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
322#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
323
324#ifdef CONFIG_ARCH_HAS_PKEYS
325# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
326# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
327# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
328# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
329# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
330#ifdef CONFIG_PPC
331# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
332#else
333# define VM_PKEY_BIT4 0
334#endif
335#endif /* CONFIG_ARCH_HAS_PKEYS */
336
337#if defined(CONFIG_X86)
338# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
339#elif defined(CONFIG_PPC)
340# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
341#elif defined(CONFIG_PARISC)
342# define VM_GROWSUP VM_ARCH_1
343#elif defined(CONFIG_IA64)
344# define VM_GROWSUP VM_ARCH_1
345#elif defined(CONFIG_SPARC64)
346# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
347# define VM_ARCH_CLEAR VM_SPARC_ADI
348#elif defined(CONFIG_ARM64)
349# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
350# define VM_ARCH_CLEAR VM_ARM64_BTI
351#elif !defined(CONFIG_MMU)
352# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
353#endif
354
355#if defined(CONFIG_ARM64_MTE)
356# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
357# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
358#else
359# define VM_MTE VM_NONE
360# define VM_MTE_ALLOWED VM_NONE
361#endif
362
363#ifndef VM_GROWSUP
364# define VM_GROWSUP VM_NONE
365#endif
366
367#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
368# define VM_UFFD_MINOR_BIT 37
369# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
370#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
371# define VM_UFFD_MINOR VM_NONE
372#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
373
374/* Bits set in the VMA until the stack is in its final location */
375#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
376
377#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
378
379/* Common data flag combinations */
380#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
383 VM_MAYWRITE | VM_MAYEXEC)
384#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386
387#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
388#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
389#endif
390
391#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
392#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
393#endif
394
395#ifdef CONFIG_STACK_GROWSUP
396#define VM_STACK VM_GROWSUP
397#else
398#define VM_STACK VM_GROWSDOWN
399#endif
400
401#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
402
403/* VMA basic access permission flags */
404#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
405
406
407/*
408 * Special vmas that are non-mergable, non-mlock()able.
409 */
410#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
411
412/* This mask prevents VMA from being scanned with khugepaged */
413#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
414
415/* This mask defines which mm->def_flags a process can inherit its parent */
416#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
417
418/* This mask is used to clear all the VMA flags used by mlock */
419#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
420
421/* Arch-specific flags to clear when updating VM flags on protection change */
422#ifndef VM_ARCH_CLEAR
423# define VM_ARCH_CLEAR VM_NONE
424#endif
425#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
426
427/*
428 * mapping from the currently active vm_flags protection bits (the
429 * low four bits) to a page protection mask..
430 */
431
432/*
433 * The default fault flags that should be used by most of the
434 * arch-specific page fault handlers.
435 */
436#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
437 FAULT_FLAG_KILLABLE | \
438 FAULT_FLAG_INTERRUPTIBLE)
439
440/**
441 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
442 * @flags: Fault flags.
443 *
444 * This is mostly used for places where we want to try to avoid taking
445 * the mmap_lock for too long a time when waiting for another condition
446 * to change, in which case we can try to be polite to release the
447 * mmap_lock in the first round to avoid potential starvation of other
448 * processes that would also want the mmap_lock.
449 *
450 * Return: true if the page fault allows retry and this is the first
451 * attempt of the fault handling; false otherwise.
452 */
453static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
454{
455 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
456 (!(flags & FAULT_FLAG_TRIED));
457}
458
459#define FAULT_FLAG_TRACE \
460 { FAULT_FLAG_WRITE, "WRITE" }, \
461 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
462 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
463 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
464 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
465 { FAULT_FLAG_TRIED, "TRIED" }, \
466 { FAULT_FLAG_USER, "USER" }, \
467 { FAULT_FLAG_REMOTE, "REMOTE" }, \
468 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
469 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
470
471/*
472 * vm_fault is filled by the pagefault handler and passed to the vma's
473 * ->fault function. The vma's ->fault is responsible for returning a bitmask
474 * of VM_FAULT_xxx flags that give details about how the fault was handled.
475 *
476 * MM layer fills up gfp_mask for page allocations but fault handler might
477 * alter it if its implementation requires a different allocation context.
478 *
479 * pgoff should be used in favour of virtual_address, if possible.
480 */
481struct vm_fault {
482 const struct {
483 struct vm_area_struct *vma; /* Target VMA */
484 gfp_t gfp_mask; /* gfp mask to be used for allocations */
485 pgoff_t pgoff; /* Logical page offset based on vma */
486 unsigned long address; /* Faulting virtual address - masked */
487 unsigned long real_address; /* Faulting virtual address - unmasked */
488 };
489 enum fault_flag flags; /* FAULT_FLAG_xxx flags
490 * XXX: should really be 'const' */
491 pmd_t *pmd; /* Pointer to pmd entry matching
492 * the 'address' */
493 pud_t *pud; /* Pointer to pud entry matching
494 * the 'address'
495 */
496 union {
497 pte_t orig_pte; /* Value of PTE at the time of fault */
498 pmd_t orig_pmd; /* Value of PMD at the time of fault,
499 * used by PMD fault only.
500 */
501 };
502
503 struct page *cow_page; /* Page handler may use for COW fault */
504 struct page *page; /* ->fault handlers should return a
505 * page here, unless VM_FAULT_NOPAGE
506 * is set (which is also implied by
507 * VM_FAULT_ERROR).
508 */
509 /* These three entries are valid only while holding ptl lock */
510 pte_t *pte; /* Pointer to pte entry matching
511 * the 'address'. NULL if the page
512 * table hasn't been allocated.
513 */
514 spinlock_t *ptl; /* Page table lock.
515 * Protects pte page table if 'pte'
516 * is not NULL, otherwise pmd.
517 */
518 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
519 * vm_ops->map_pages() sets up a page
520 * table from atomic context.
521 * do_fault_around() pre-allocates
522 * page table to avoid allocation from
523 * atomic context.
524 */
525};
526
527/* page entry size for vm->huge_fault() */
528enum page_entry_size {
529 PE_SIZE_PTE = 0,
530 PE_SIZE_PMD,
531 PE_SIZE_PUD,
532};
533
534/*
535 * These are the virtual MM functions - opening of an area, closing and
536 * unmapping it (needed to keep files on disk up-to-date etc), pointer
537 * to the functions called when a no-page or a wp-page exception occurs.
538 */
539struct vm_operations_struct {
540 void (*open)(struct vm_area_struct * area);
541 /**
542 * @close: Called when the VMA is being removed from the MM.
543 * Context: User context. May sleep. Caller holds mmap_lock.
544 */
545 void (*close)(struct vm_area_struct * area);
546 /* Called any time before splitting to check if it's allowed */
547 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
548 int (*mremap)(struct vm_area_struct *area);
549 /*
550 * Called by mprotect() to make driver-specific permission
551 * checks before mprotect() is finalised. The VMA must not
552 * be modified. Returns 0 if eprotect() can proceed.
553 */
554 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
555 unsigned long end, unsigned long newflags);
556 vm_fault_t (*fault)(struct vm_fault *vmf);
557 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
558 enum page_entry_size pe_size);
559 vm_fault_t (*map_pages)(struct vm_fault *vmf,
560 pgoff_t start_pgoff, pgoff_t end_pgoff);
561 unsigned long (*pagesize)(struct vm_area_struct * area);
562
563 /* notification that a previously read-only page is about to become
564 * writable, if an error is returned it will cause a SIGBUS */
565 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
566
567 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
568 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
569
570 /* called by access_process_vm when get_user_pages() fails, typically
571 * for use by special VMAs. See also generic_access_phys() for a generic
572 * implementation useful for any iomem mapping.
573 */
574 int (*access)(struct vm_area_struct *vma, unsigned long addr,
575 void *buf, int len, int write);
576
577 /* Called by the /proc/PID/maps code to ask the vma whether it
578 * has a special name. Returning non-NULL will also cause this
579 * vma to be dumped unconditionally. */
580 const char *(*name)(struct vm_area_struct *vma);
581
582#ifdef CONFIG_NUMA
583 /*
584 * set_policy() op must add a reference to any non-NULL @new mempolicy
585 * to hold the policy upon return. Caller should pass NULL @new to
586 * remove a policy and fall back to surrounding context--i.e. do not
587 * install a MPOL_DEFAULT policy, nor the task or system default
588 * mempolicy.
589 */
590 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
591
592 /*
593 * get_policy() op must add reference [mpol_get()] to any policy at
594 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
595 * in mm/mempolicy.c will do this automatically.
596 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
597 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
598 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
599 * must return NULL--i.e., do not "fallback" to task or system default
600 * policy.
601 */
602 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 unsigned long addr);
604#endif
605 /*
606 * Called by vm_normal_page() for special PTEs to find the
607 * page for @addr. This is useful if the default behavior
608 * (using pte_page()) would not find the correct page.
609 */
610 struct page *(*find_special_page)(struct vm_area_struct *vma,
611 unsigned long addr);
612};
613
614static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
615{
616 static const struct vm_operations_struct dummy_vm_ops = {};
617
618 memset(vma, 0, sizeof(*vma));
619 vma->vm_mm = mm;
620 vma->vm_ops = &dummy_vm_ops;
621 INIT_LIST_HEAD(&vma->anon_vma_chain);
622}
623
624static inline void vma_set_anonymous(struct vm_area_struct *vma)
625{
626 vma->vm_ops = NULL;
627}
628
629static inline bool vma_is_anonymous(struct vm_area_struct *vma)
630{
631 return !vma->vm_ops;
632}
633
634static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
635{
636 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
637
638 if (!maybe_stack)
639 return false;
640
641 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
642 VM_STACK_INCOMPLETE_SETUP)
643 return true;
644
645 return false;
646}
647
648static inline bool vma_is_foreign(struct vm_area_struct *vma)
649{
650 if (!current->mm)
651 return true;
652
653 if (current->mm != vma->vm_mm)
654 return true;
655
656 return false;
657}
658
659static inline bool vma_is_accessible(struct vm_area_struct *vma)
660{
661 return vma->vm_flags & VM_ACCESS_FLAGS;
662}
663
664static inline
665struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
666{
667 return mas_find(&vmi->mas, max);
668}
669
670static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
671{
672 /*
673 * Uses vma_find() to get the first VMA when the iterator starts.
674 * Calling mas_next() could skip the first entry.
675 */
676 return vma_find(vmi, ULONG_MAX);
677}
678
679static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
680{
681 return mas_prev(&vmi->mas, 0);
682}
683
684static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
685{
686 return vmi->mas.index;
687}
688
689#define for_each_vma(__vmi, __vma) \
690 while (((__vma) = vma_next(&(__vmi))) != NULL)
691
692/* The MM code likes to work with exclusive end addresses */
693#define for_each_vma_range(__vmi, __vma, __end) \
694 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
695
696#ifdef CONFIG_SHMEM
697/*
698 * The vma_is_shmem is not inline because it is used only by slow
699 * paths in userfault.
700 */
701bool vma_is_shmem(struct vm_area_struct *vma);
702#else
703static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
704#endif
705
706int vma_is_stack_for_current(struct vm_area_struct *vma);
707
708/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
709#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
710
711struct mmu_gather;
712struct inode;
713
714static inline unsigned int compound_order(struct page *page)
715{
716 if (!PageHead(page))
717 return 0;
718 return page[1].compound_order;
719}
720
721/**
722 * folio_order - The allocation order of a folio.
723 * @folio: The folio.
724 *
725 * A folio is composed of 2^order pages. See get_order() for the definition
726 * of order.
727 *
728 * Return: The order of the folio.
729 */
730static inline unsigned int folio_order(struct folio *folio)
731{
732 if (!folio_test_large(folio))
733 return 0;
734 return folio->_folio_order;
735}
736
737#include <linux/huge_mm.h>
738
739/*
740 * Methods to modify the page usage count.
741 *
742 * What counts for a page usage:
743 * - cache mapping (page->mapping)
744 * - private data (page->private)
745 * - page mapped in a task's page tables, each mapping
746 * is counted separately
747 *
748 * Also, many kernel routines increase the page count before a critical
749 * routine so they can be sure the page doesn't go away from under them.
750 */
751
752/*
753 * Drop a ref, return true if the refcount fell to zero (the page has no users)
754 */
755static inline int put_page_testzero(struct page *page)
756{
757 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
758 return page_ref_dec_and_test(page);
759}
760
761static inline int folio_put_testzero(struct folio *folio)
762{
763 return put_page_testzero(&folio->page);
764}
765
766/*
767 * Try to grab a ref unless the page has a refcount of zero, return false if
768 * that is the case.
769 * This can be called when MMU is off so it must not access
770 * any of the virtual mappings.
771 */
772static inline bool get_page_unless_zero(struct page *page)
773{
774 return page_ref_add_unless(page, 1, 0);
775}
776
777extern int page_is_ram(unsigned long pfn);
778
779enum {
780 REGION_INTERSECTS,
781 REGION_DISJOINT,
782 REGION_MIXED,
783};
784
785int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
786 unsigned long desc);
787
788/* Support for virtually mapped pages */
789struct page *vmalloc_to_page(const void *addr);
790unsigned long vmalloc_to_pfn(const void *addr);
791
792/*
793 * Determine if an address is within the vmalloc range
794 *
795 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
796 * is no special casing required.
797 */
798
799#ifndef is_ioremap_addr
800#define is_ioremap_addr(x) is_vmalloc_addr(x)
801#endif
802
803#ifdef CONFIG_MMU
804extern bool is_vmalloc_addr(const void *x);
805extern int is_vmalloc_or_module_addr(const void *x);
806#else
807static inline bool is_vmalloc_addr(const void *x)
808{
809 return false;
810}
811static inline int is_vmalloc_or_module_addr(const void *x)
812{
813 return 0;
814}
815#endif
816
817/*
818 * How many times the entire folio is mapped as a single unit (eg by a
819 * PMD or PUD entry). This is probably not what you want, except for
820 * debugging purposes; look at folio_mapcount() or page_mapcount()
821 * instead.
822 */
823static inline int folio_entire_mapcount(struct folio *folio)
824{
825 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
826 return atomic_read(folio_mapcount_ptr(folio)) + 1;
827}
828
829/*
830 * Mapcount of compound page as a whole, does not include mapped sub-pages.
831 *
832 * Must be called only for compound pages.
833 */
834static inline int compound_mapcount(struct page *page)
835{
836 return folio_entire_mapcount(page_folio(page));
837}
838
839/*
840 * The atomic page->_mapcount, starts from -1: so that transitions
841 * both from it and to it can be tracked, using atomic_inc_and_test
842 * and atomic_add_negative(-1).
843 */
844static inline void page_mapcount_reset(struct page *page)
845{
846 atomic_set(&(page)->_mapcount, -1);
847}
848
849int __page_mapcount(struct page *page);
850
851/*
852 * Mapcount of 0-order page; when compound sub-page, includes
853 * compound_mapcount().
854 *
855 * Result is undefined for pages which cannot be mapped into userspace.
856 * For example SLAB or special types of pages. See function page_has_type().
857 * They use this place in struct page differently.
858 */
859static inline int page_mapcount(struct page *page)
860{
861 if (unlikely(PageCompound(page)))
862 return __page_mapcount(page);
863 return atomic_read(&page->_mapcount) + 1;
864}
865
866int folio_mapcount(struct folio *folio);
867
868#ifdef CONFIG_TRANSPARENT_HUGEPAGE
869static inline int total_mapcount(struct page *page)
870{
871 return folio_mapcount(page_folio(page));
872}
873
874#else
875static inline int total_mapcount(struct page *page)
876{
877 return page_mapcount(page);
878}
879#endif
880
881static inline struct page *virt_to_head_page(const void *x)
882{
883 struct page *page = virt_to_page(x);
884
885 return compound_head(page);
886}
887
888static inline struct folio *virt_to_folio(const void *x)
889{
890 struct page *page = virt_to_page(x);
891
892 return page_folio(page);
893}
894
895void __folio_put(struct folio *folio);
896
897void put_pages_list(struct list_head *pages);
898
899void split_page(struct page *page, unsigned int order);
900void folio_copy(struct folio *dst, struct folio *src);
901
902unsigned long nr_free_buffer_pages(void);
903
904/*
905 * Compound pages have a destructor function. Provide a
906 * prototype for that function and accessor functions.
907 * These are _only_ valid on the head of a compound page.
908 */
909typedef void compound_page_dtor(struct page *);
910
911/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
912enum compound_dtor_id {
913 NULL_COMPOUND_DTOR,
914 COMPOUND_PAGE_DTOR,
915#ifdef CONFIG_HUGETLB_PAGE
916 HUGETLB_PAGE_DTOR,
917#endif
918#ifdef CONFIG_TRANSPARENT_HUGEPAGE
919 TRANSHUGE_PAGE_DTOR,
920#endif
921 NR_COMPOUND_DTORS,
922};
923extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
924
925static inline void set_compound_page_dtor(struct page *page,
926 enum compound_dtor_id compound_dtor)
927{
928 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
929 page[1].compound_dtor = compound_dtor;
930}
931
932void destroy_large_folio(struct folio *folio);
933
934static inline int head_compound_pincount(struct page *head)
935{
936 return atomic_read(compound_pincount_ptr(head));
937}
938
939static inline void set_compound_order(struct page *page, unsigned int order)
940{
941 page[1].compound_order = order;
942#ifdef CONFIG_64BIT
943 page[1].compound_nr = 1U << order;
944#endif
945}
946
947/* Returns the number of pages in this potentially compound page. */
948static inline unsigned long compound_nr(struct page *page)
949{
950 if (!PageHead(page))
951 return 1;
952#ifdef CONFIG_64BIT
953 return page[1].compound_nr;
954#else
955 return 1UL << compound_order(page);
956#endif
957}
958
959/* Returns the number of bytes in this potentially compound page. */
960static inline unsigned long page_size(struct page *page)
961{
962 return PAGE_SIZE << compound_order(page);
963}
964
965/* Returns the number of bits needed for the number of bytes in a page */
966static inline unsigned int page_shift(struct page *page)
967{
968 return PAGE_SHIFT + compound_order(page);
969}
970
971/**
972 * thp_order - Order of a transparent huge page.
973 * @page: Head page of a transparent huge page.
974 */
975static inline unsigned int thp_order(struct page *page)
976{
977 VM_BUG_ON_PGFLAGS(PageTail(page), page);
978 return compound_order(page);
979}
980
981/**
982 * thp_nr_pages - The number of regular pages in this huge page.
983 * @page: The head page of a huge page.
984 */
985static inline int thp_nr_pages(struct page *page)
986{
987 VM_BUG_ON_PGFLAGS(PageTail(page), page);
988 return compound_nr(page);
989}
990
991/**
992 * thp_size - Size of a transparent huge page.
993 * @page: Head page of a transparent huge page.
994 *
995 * Return: Number of bytes in this page.
996 */
997static inline unsigned long thp_size(struct page *page)
998{
999 return PAGE_SIZE << thp_order(page);
1000}
1001
1002void free_compound_page(struct page *page);
1003
1004#ifdef CONFIG_MMU
1005/*
1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1007 * servicing faults for write access. In the normal case, do always want
1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1009 * that do not have writing enabled, when used by access_process_vm.
1010 */
1011static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012{
1013 if (likely(vma->vm_flags & VM_WRITE))
1014 pte = pte_mkwrite(pte);
1015 return pte;
1016}
1017
1018vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1019void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1020
1021vm_fault_t finish_fault(struct vm_fault *vmf);
1022vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1023#endif
1024
1025/*
1026 * Multiple processes may "see" the same page. E.g. for untouched
1027 * mappings of /dev/null, all processes see the same page full of
1028 * zeroes, and text pages of executables and shared libraries have
1029 * only one copy in memory, at most, normally.
1030 *
1031 * For the non-reserved pages, page_count(page) denotes a reference count.
1032 * page_count() == 0 means the page is free. page->lru is then used for
1033 * freelist management in the buddy allocator.
1034 * page_count() > 0 means the page has been allocated.
1035 *
1036 * Pages are allocated by the slab allocator in order to provide memory
1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039 * unless a particular usage is carefully commented. (the responsibility of
1040 * freeing the kmalloc memory is the caller's, of course).
1041 *
1042 * A page may be used by anyone else who does a __get_free_page().
1043 * In this case, page_count still tracks the references, and should only
1044 * be used through the normal accessor functions. The top bits of page->flags
1045 * and page->virtual store page management information, but all other fields
1046 * are unused and could be used privately, carefully. The management of this
1047 * page is the responsibility of the one who allocated it, and those who have
1048 * subsequently been given references to it.
1049 *
1050 * The other pages (we may call them "pagecache pages") are completely
1051 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052 * The following discussion applies only to them.
1053 *
1054 * A pagecache page contains an opaque `private' member, which belongs to the
1055 * page's address_space. Usually, this is the address of a circular list of
1056 * the page's disk buffers. PG_private must be set to tell the VM to call
1057 * into the filesystem to release these pages.
1058 *
1059 * A page may belong to an inode's memory mapping. In this case, page->mapping
1060 * is the pointer to the inode, and page->index is the file offset of the page,
1061 * in units of PAGE_SIZE.
1062 *
1063 * If pagecache pages are not associated with an inode, they are said to be
1064 * anonymous pages. These may become associated with the swapcache, and in that
1065 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1066 *
1067 * In either case (swapcache or inode backed), the pagecache itself holds one
1068 * reference to the page. Setting PG_private should also increment the
1069 * refcount. The each user mapping also has a reference to the page.
1070 *
1071 * The pagecache pages are stored in a per-mapping radix tree, which is
1072 * rooted at mapping->i_pages, and indexed by offset.
1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1075 *
1076 * All pagecache pages may be subject to I/O:
1077 * - inode pages may need to be read from disk,
1078 * - inode pages which have been modified and are MAP_SHARED may need
1079 * to be written back to the inode on disk,
1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081 * modified may need to be swapped out to swap space and (later) to be read
1082 * back into memory.
1083 */
1084
1085#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1086DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1087
1088bool __put_devmap_managed_page_refs(struct page *page, int refs);
1089static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1090{
1091 if (!static_branch_unlikely(&devmap_managed_key))
1092 return false;
1093 if (!is_zone_device_page(page))
1094 return false;
1095 return __put_devmap_managed_page_refs(page, refs);
1096}
1097#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1098static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1099{
1100 return false;
1101}
1102#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1103
1104static inline bool put_devmap_managed_page(struct page *page)
1105{
1106 return put_devmap_managed_page_refs(page, 1);
1107}
1108
1109/* 127: arbitrary random number, small enough to assemble well */
1110#define folio_ref_zero_or_close_to_overflow(folio) \
1111 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1112
1113/**
1114 * folio_get - Increment the reference count on a folio.
1115 * @folio: The folio.
1116 *
1117 * Context: May be called in any context, as long as you know that
1118 * you have a refcount on the folio. If you do not already have one,
1119 * folio_try_get() may be the right interface for you to use.
1120 */
1121static inline void folio_get(struct folio *folio)
1122{
1123 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1124 folio_ref_inc(folio);
1125}
1126
1127static inline void get_page(struct page *page)
1128{
1129 folio_get(page_folio(page));
1130}
1131
1132bool __must_check try_grab_page(struct page *page, unsigned int flags);
1133
1134static inline __must_check bool try_get_page(struct page *page)
1135{
1136 page = compound_head(page);
1137 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1138 return false;
1139 page_ref_inc(page);
1140 return true;
1141}
1142
1143/**
1144 * folio_put - Decrement the reference count on a folio.
1145 * @folio: The folio.
1146 *
1147 * If the folio's reference count reaches zero, the memory will be
1148 * released back to the page allocator and may be used by another
1149 * allocation immediately. Do not access the memory or the struct folio
1150 * after calling folio_put() unless you can be sure that it wasn't the
1151 * last reference.
1152 *
1153 * Context: May be called in process or interrupt context, but not in NMI
1154 * context. May be called while holding a spinlock.
1155 */
1156static inline void folio_put(struct folio *folio)
1157{
1158 if (folio_put_testzero(folio))
1159 __folio_put(folio);
1160}
1161
1162/**
1163 * folio_put_refs - Reduce the reference count on a folio.
1164 * @folio: The folio.
1165 * @refs: The amount to subtract from the folio's reference count.
1166 *
1167 * If the folio's reference count reaches zero, the memory will be
1168 * released back to the page allocator and may be used by another
1169 * allocation immediately. Do not access the memory or the struct folio
1170 * after calling folio_put_refs() unless you can be sure that these weren't
1171 * the last references.
1172 *
1173 * Context: May be called in process or interrupt context, but not in NMI
1174 * context. May be called while holding a spinlock.
1175 */
1176static inline void folio_put_refs(struct folio *folio, int refs)
1177{
1178 if (folio_ref_sub_and_test(folio, refs))
1179 __folio_put(folio);
1180}
1181
1182void release_pages(struct page **pages, int nr);
1183
1184/**
1185 * folios_put - Decrement the reference count on an array of folios.
1186 * @folios: The folios.
1187 * @nr: How many folios there are.
1188 *
1189 * Like folio_put(), but for an array of folios. This is more efficient
1190 * than writing the loop yourself as it will optimise the locks which
1191 * need to be taken if the folios are freed.
1192 *
1193 * Context: May be called in process or interrupt context, but not in NMI
1194 * context. May be called while holding a spinlock.
1195 */
1196static inline void folios_put(struct folio **folios, unsigned int nr)
1197{
1198 release_pages((struct page **)folios, nr);
1199}
1200
1201static inline void put_page(struct page *page)
1202{
1203 struct folio *folio = page_folio(page);
1204
1205 /*
1206 * For some devmap managed pages we need to catch refcount transition
1207 * from 2 to 1:
1208 */
1209 if (put_devmap_managed_page(&folio->page))
1210 return;
1211 folio_put(folio);
1212}
1213
1214/*
1215 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1216 * the page's refcount so that two separate items are tracked: the original page
1217 * reference count, and also a new count of how many pin_user_pages() calls were
1218 * made against the page. ("gup-pinned" is another term for the latter).
1219 *
1220 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1221 * distinct from normal pages. As such, the unpin_user_page() call (and its
1222 * variants) must be used in order to release gup-pinned pages.
1223 *
1224 * Choice of value:
1225 *
1226 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1227 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1228 * simpler, due to the fact that adding an even power of two to the page
1229 * refcount has the effect of using only the upper N bits, for the code that
1230 * counts up using the bias value. This means that the lower bits are left for
1231 * the exclusive use of the original code that increments and decrements by one
1232 * (or at least, by much smaller values than the bias value).
1233 *
1234 * Of course, once the lower bits overflow into the upper bits (and this is
1235 * OK, because subtraction recovers the original values), then visual inspection
1236 * no longer suffices to directly view the separate counts. However, for normal
1237 * applications that don't have huge page reference counts, this won't be an
1238 * issue.
1239 *
1240 * Locking: the lockless algorithm described in folio_try_get_rcu()
1241 * provides safe operation for get_user_pages(), page_mkclean() and
1242 * other calls that race to set up page table entries.
1243 */
1244#define GUP_PIN_COUNTING_BIAS (1U << 10)
1245
1246void unpin_user_page(struct page *page);
1247void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1248 bool make_dirty);
1249void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1250 bool make_dirty);
1251void unpin_user_pages(struct page **pages, unsigned long npages);
1252
1253static inline bool is_cow_mapping(vm_flags_t flags)
1254{
1255 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1256}
1257
1258#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1259#define SECTION_IN_PAGE_FLAGS
1260#endif
1261
1262/*
1263 * The identification function is mainly used by the buddy allocator for
1264 * determining if two pages could be buddies. We are not really identifying
1265 * the zone since we could be using the section number id if we do not have
1266 * node id available in page flags.
1267 * We only guarantee that it will return the same value for two combinable
1268 * pages in a zone.
1269 */
1270static inline int page_zone_id(struct page *page)
1271{
1272 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1273}
1274
1275#ifdef NODE_NOT_IN_PAGE_FLAGS
1276extern int page_to_nid(const struct page *page);
1277#else
1278static inline int page_to_nid(const struct page *page)
1279{
1280 struct page *p = (struct page *)page;
1281
1282 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1283}
1284#endif
1285
1286static inline int folio_nid(const struct folio *folio)
1287{
1288 return page_to_nid(&folio->page);
1289}
1290
1291#ifdef CONFIG_NUMA_BALANCING
1292/* page access time bits needs to hold at least 4 seconds */
1293#define PAGE_ACCESS_TIME_MIN_BITS 12
1294#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1295#define PAGE_ACCESS_TIME_BUCKETS \
1296 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1297#else
1298#define PAGE_ACCESS_TIME_BUCKETS 0
1299#endif
1300
1301#define PAGE_ACCESS_TIME_MASK \
1302 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1303
1304static inline int cpu_pid_to_cpupid(int cpu, int pid)
1305{
1306 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1307}
1308
1309static inline int cpupid_to_pid(int cpupid)
1310{
1311 return cpupid & LAST__PID_MASK;
1312}
1313
1314static inline int cpupid_to_cpu(int cpupid)
1315{
1316 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1317}
1318
1319static inline int cpupid_to_nid(int cpupid)
1320{
1321 return cpu_to_node(cpupid_to_cpu(cpupid));
1322}
1323
1324static inline bool cpupid_pid_unset(int cpupid)
1325{
1326 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1327}
1328
1329static inline bool cpupid_cpu_unset(int cpupid)
1330{
1331 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1332}
1333
1334static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1335{
1336 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1337}
1338
1339#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1340#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1341static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1342{
1343 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1344}
1345
1346static inline int page_cpupid_last(struct page *page)
1347{
1348 return page->_last_cpupid;
1349}
1350static inline void page_cpupid_reset_last(struct page *page)
1351{
1352 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1353}
1354#else
1355static inline int page_cpupid_last(struct page *page)
1356{
1357 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1358}
1359
1360extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1361
1362static inline void page_cpupid_reset_last(struct page *page)
1363{
1364 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1365}
1366#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1367
1368static inline int xchg_page_access_time(struct page *page, int time)
1369{
1370 int last_time;
1371
1372 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1373 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1374}
1375#else /* !CONFIG_NUMA_BALANCING */
1376static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1377{
1378 return page_to_nid(page); /* XXX */
1379}
1380
1381static inline int xchg_page_access_time(struct page *page, int time)
1382{
1383 return 0;
1384}
1385
1386static inline int page_cpupid_last(struct page *page)
1387{
1388 return page_to_nid(page); /* XXX */
1389}
1390
1391static inline int cpupid_to_nid(int cpupid)
1392{
1393 return -1;
1394}
1395
1396static inline int cpupid_to_pid(int cpupid)
1397{
1398 return -1;
1399}
1400
1401static inline int cpupid_to_cpu(int cpupid)
1402{
1403 return -1;
1404}
1405
1406static inline int cpu_pid_to_cpupid(int nid, int pid)
1407{
1408 return -1;
1409}
1410
1411static inline bool cpupid_pid_unset(int cpupid)
1412{
1413 return true;
1414}
1415
1416static inline void page_cpupid_reset_last(struct page *page)
1417{
1418}
1419
1420static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1421{
1422 return false;
1423}
1424#endif /* CONFIG_NUMA_BALANCING */
1425
1426#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1427
1428/*
1429 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1430 * setting tags for all pages to native kernel tag value 0xff, as the default
1431 * value 0x00 maps to 0xff.
1432 */
1433
1434static inline u8 page_kasan_tag(const struct page *page)
1435{
1436 u8 tag = 0xff;
1437
1438 if (kasan_enabled()) {
1439 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1440 tag ^= 0xff;
1441 }
1442
1443 return tag;
1444}
1445
1446static inline void page_kasan_tag_set(struct page *page, u8 tag)
1447{
1448 unsigned long old_flags, flags;
1449
1450 if (!kasan_enabled())
1451 return;
1452
1453 tag ^= 0xff;
1454 old_flags = READ_ONCE(page->flags);
1455 do {
1456 flags = old_flags;
1457 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1458 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1459 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1460}
1461
1462static inline void page_kasan_tag_reset(struct page *page)
1463{
1464 if (kasan_enabled())
1465 page_kasan_tag_set(page, 0xff);
1466}
1467
1468#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1469
1470static inline u8 page_kasan_tag(const struct page *page)
1471{
1472 return 0xff;
1473}
1474
1475static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1476static inline void page_kasan_tag_reset(struct page *page) { }
1477
1478#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1479
1480static inline struct zone *page_zone(const struct page *page)
1481{
1482 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1483}
1484
1485static inline pg_data_t *page_pgdat(const struct page *page)
1486{
1487 return NODE_DATA(page_to_nid(page));
1488}
1489
1490static inline struct zone *folio_zone(const struct folio *folio)
1491{
1492 return page_zone(&folio->page);
1493}
1494
1495static inline pg_data_t *folio_pgdat(const struct folio *folio)
1496{
1497 return page_pgdat(&folio->page);
1498}
1499
1500#ifdef SECTION_IN_PAGE_FLAGS
1501static inline void set_page_section(struct page *page, unsigned long section)
1502{
1503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1505}
1506
1507static inline unsigned long page_to_section(const struct page *page)
1508{
1509 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1510}
1511#endif
1512
1513/**
1514 * folio_pfn - Return the Page Frame Number of a folio.
1515 * @folio: The folio.
1516 *
1517 * A folio may contain multiple pages. The pages have consecutive
1518 * Page Frame Numbers.
1519 *
1520 * Return: The Page Frame Number of the first page in the folio.
1521 */
1522static inline unsigned long folio_pfn(struct folio *folio)
1523{
1524 return page_to_pfn(&folio->page);
1525}
1526
1527static inline struct folio *pfn_folio(unsigned long pfn)
1528{
1529 return page_folio(pfn_to_page(pfn));
1530}
1531
1532static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1533{
1534 return &folio_page(folio, 1)->compound_pincount;
1535}
1536
1537/**
1538 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1539 * @folio: The folio.
1540 *
1541 * This function checks if a folio has been pinned via a call to
1542 * a function in the pin_user_pages() family.
1543 *
1544 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1545 * because it means "definitely not pinned for DMA", but true means "probably
1546 * pinned for DMA, but possibly a false positive due to having at least
1547 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1548 *
1549 * False positives are OK, because: a) it's unlikely for a folio to
1550 * get that many refcounts, and b) all the callers of this routine are
1551 * expected to be able to deal gracefully with a false positive.
1552 *
1553 * For large folios, the result will be exactly correct. That's because
1554 * we have more tracking data available: the compound_pincount is used
1555 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1556 *
1557 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1558 *
1559 * Return: True, if it is likely that the page has been "dma-pinned".
1560 * False, if the page is definitely not dma-pinned.
1561 */
1562static inline bool folio_maybe_dma_pinned(struct folio *folio)
1563{
1564 if (folio_test_large(folio))
1565 return atomic_read(folio_pincount_ptr(folio)) > 0;
1566
1567 /*
1568 * folio_ref_count() is signed. If that refcount overflows, then
1569 * folio_ref_count() returns a negative value, and callers will avoid
1570 * further incrementing the refcount.
1571 *
1572 * Here, for that overflow case, use the sign bit to count a little
1573 * bit higher via unsigned math, and thus still get an accurate result.
1574 */
1575 return ((unsigned int)folio_ref_count(folio)) >=
1576 GUP_PIN_COUNTING_BIAS;
1577}
1578
1579static inline bool page_maybe_dma_pinned(struct page *page)
1580{
1581 return folio_maybe_dma_pinned(page_folio(page));
1582}
1583
1584/*
1585 * This should most likely only be called during fork() to see whether we
1586 * should break the cow immediately for an anon page on the src mm.
1587 *
1588 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1589 */
1590static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1591 struct page *page)
1592{
1593 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1594
1595 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1596 return false;
1597
1598 return page_maybe_dma_pinned(page);
1599}
1600
1601/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1602#ifdef CONFIG_MIGRATION
1603static inline bool is_longterm_pinnable_page(struct page *page)
1604{
1605#ifdef CONFIG_CMA
1606 int mt = get_pageblock_migratetype(page);
1607
1608 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1609 return false;
1610#endif
1611 /* The zero page may always be pinned */
1612 if (is_zero_pfn(page_to_pfn(page)))
1613 return true;
1614
1615 /* Coherent device memory must always allow eviction. */
1616 if (is_device_coherent_page(page))
1617 return false;
1618
1619 /* Otherwise, non-movable zone pages can be pinned. */
1620 return !is_zone_movable_page(page);
1621}
1622#else
1623static inline bool is_longterm_pinnable_page(struct page *page)
1624{
1625 return true;
1626}
1627#endif
1628
1629static inline bool folio_is_longterm_pinnable(struct folio *folio)
1630{
1631 return is_longterm_pinnable_page(&folio->page);
1632}
1633
1634static inline void set_page_zone(struct page *page, enum zone_type zone)
1635{
1636 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1637 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1638}
1639
1640static inline void set_page_node(struct page *page, unsigned long node)
1641{
1642 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1643 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1644}
1645
1646static inline void set_page_links(struct page *page, enum zone_type zone,
1647 unsigned long node, unsigned long pfn)
1648{
1649 set_page_zone(page, zone);
1650 set_page_node(page, node);
1651#ifdef SECTION_IN_PAGE_FLAGS
1652 set_page_section(page, pfn_to_section_nr(pfn));
1653#endif
1654}
1655
1656/**
1657 * folio_nr_pages - The number of pages in the folio.
1658 * @folio: The folio.
1659 *
1660 * Return: A positive power of two.
1661 */
1662static inline long folio_nr_pages(struct folio *folio)
1663{
1664 if (!folio_test_large(folio))
1665 return 1;
1666#ifdef CONFIG_64BIT
1667 return folio->_folio_nr_pages;
1668#else
1669 return 1L << folio->_folio_order;
1670#endif
1671}
1672
1673/**
1674 * folio_next - Move to the next physical folio.
1675 * @folio: The folio we're currently operating on.
1676 *
1677 * If you have physically contiguous memory which may span more than
1678 * one folio (eg a &struct bio_vec), use this function to move from one
1679 * folio to the next. Do not use it if the memory is only virtually
1680 * contiguous as the folios are almost certainly not adjacent to each
1681 * other. This is the folio equivalent to writing ``page++``.
1682 *
1683 * Context: We assume that the folios are refcounted and/or locked at a
1684 * higher level and do not adjust the reference counts.
1685 * Return: The next struct folio.
1686 */
1687static inline struct folio *folio_next(struct folio *folio)
1688{
1689 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1690}
1691
1692/**
1693 * folio_shift - The size of the memory described by this folio.
1694 * @folio: The folio.
1695 *
1696 * A folio represents a number of bytes which is a power-of-two in size.
1697 * This function tells you which power-of-two the folio is. See also
1698 * folio_size() and folio_order().
1699 *
1700 * Context: The caller should have a reference on the folio to prevent
1701 * it from being split. It is not necessary for the folio to be locked.
1702 * Return: The base-2 logarithm of the size of this folio.
1703 */
1704static inline unsigned int folio_shift(struct folio *folio)
1705{
1706 return PAGE_SHIFT + folio_order(folio);
1707}
1708
1709/**
1710 * folio_size - The number of bytes in a folio.
1711 * @folio: The folio.
1712 *
1713 * Context: The caller should have a reference on the folio to prevent
1714 * it from being split. It is not necessary for the folio to be locked.
1715 * Return: The number of bytes in this folio.
1716 */
1717static inline size_t folio_size(struct folio *folio)
1718{
1719 return PAGE_SIZE << folio_order(folio);
1720}
1721
1722#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1723static inline int arch_make_page_accessible(struct page *page)
1724{
1725 return 0;
1726}
1727#endif
1728
1729#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1730static inline int arch_make_folio_accessible(struct folio *folio)
1731{
1732 int ret;
1733 long i, nr = folio_nr_pages(folio);
1734
1735 for (i = 0; i < nr; i++) {
1736 ret = arch_make_page_accessible(folio_page(folio, i));
1737 if (ret)
1738 break;
1739 }
1740
1741 return ret;
1742}
1743#endif
1744
1745/*
1746 * Some inline functions in vmstat.h depend on page_zone()
1747 */
1748#include <linux/vmstat.h>
1749
1750static __always_inline void *lowmem_page_address(const struct page *page)
1751{
1752 return page_to_virt(page);
1753}
1754
1755#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1756#define HASHED_PAGE_VIRTUAL
1757#endif
1758
1759#if defined(WANT_PAGE_VIRTUAL)
1760static inline void *page_address(const struct page *page)
1761{
1762 return page->virtual;
1763}
1764static inline void set_page_address(struct page *page, void *address)
1765{
1766 page->virtual = address;
1767}
1768#define page_address_init() do { } while(0)
1769#endif
1770
1771#if defined(HASHED_PAGE_VIRTUAL)
1772void *page_address(const struct page *page);
1773void set_page_address(struct page *page, void *virtual);
1774void page_address_init(void);
1775#endif
1776
1777#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1778#define page_address(page) lowmem_page_address(page)
1779#define set_page_address(page, address) do { } while(0)
1780#define page_address_init() do { } while(0)
1781#endif
1782
1783static inline void *folio_address(const struct folio *folio)
1784{
1785 return page_address(&folio->page);
1786}
1787
1788extern void *page_rmapping(struct page *page);
1789extern pgoff_t __page_file_index(struct page *page);
1790
1791/*
1792 * Return the pagecache index of the passed page. Regular pagecache pages
1793 * use ->index whereas swapcache pages use swp_offset(->private)
1794 */
1795static inline pgoff_t page_index(struct page *page)
1796{
1797 if (unlikely(PageSwapCache(page)))
1798 return __page_file_index(page);
1799 return page->index;
1800}
1801
1802bool page_mapped(struct page *page);
1803bool folio_mapped(struct folio *folio);
1804
1805/*
1806 * Return true only if the page has been allocated with
1807 * ALLOC_NO_WATERMARKS and the low watermark was not
1808 * met implying that the system is under some pressure.
1809 */
1810static inline bool page_is_pfmemalloc(const struct page *page)
1811{
1812 /*
1813 * lru.next has bit 1 set if the page is allocated from the
1814 * pfmemalloc reserves. Callers may simply overwrite it if
1815 * they do not need to preserve that information.
1816 */
1817 return (uintptr_t)page->lru.next & BIT(1);
1818}
1819
1820/*
1821 * Only to be called by the page allocator on a freshly allocated
1822 * page.
1823 */
1824static inline void set_page_pfmemalloc(struct page *page)
1825{
1826 page->lru.next = (void *)BIT(1);
1827}
1828
1829static inline void clear_page_pfmemalloc(struct page *page)
1830{
1831 page->lru.next = NULL;
1832}
1833
1834/*
1835 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1836 */
1837extern void pagefault_out_of_memory(void);
1838
1839#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1840#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1841#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1842
1843/*
1844 * Flags passed to show_mem() and show_free_areas() to suppress output in
1845 * various contexts.
1846 */
1847#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1848
1849extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1850static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1851{
1852 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1853}
1854
1855/*
1856 * Parameter block passed down to zap_pte_range in exceptional cases.
1857 */
1858struct zap_details {
1859 struct folio *single_folio; /* Locked folio to be unmapped */
1860 bool even_cows; /* Zap COWed private pages too? */
1861 zap_flags_t zap_flags; /* Extra flags for zapping */
1862};
1863
1864/*
1865 * Whether to drop the pte markers, for example, the uffd-wp information for
1866 * file-backed memory. This should only be specified when we will completely
1867 * drop the page in the mm, either by truncation or unmapping of the vma. By
1868 * default, the flag is not set.
1869 */
1870#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
1871/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1872#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
1873
1874#ifdef CONFIG_MMU
1875extern bool can_do_mlock(void);
1876#else
1877static inline bool can_do_mlock(void) { return false; }
1878#endif
1879extern int user_shm_lock(size_t, struct ucounts *);
1880extern void user_shm_unlock(size_t, struct ucounts *);
1881
1882struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1883 pte_t pte);
1884struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1885 pmd_t pmd);
1886
1887void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1888 unsigned long size);
1889void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1890 unsigned long size);
1891void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1892 unsigned long size, struct zap_details *details);
1893void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1894 struct vm_area_struct *start_vma, unsigned long start,
1895 unsigned long end);
1896
1897struct mmu_notifier_range;
1898
1899void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1900 unsigned long end, unsigned long floor, unsigned long ceiling);
1901int
1902copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1903int follow_pte(struct mm_struct *mm, unsigned long address,
1904 pte_t **ptepp, spinlock_t **ptlp);
1905int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1906 unsigned long *pfn);
1907int follow_phys(struct vm_area_struct *vma, unsigned long address,
1908 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1909int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1910 void *buf, int len, int write);
1911
1912extern void truncate_pagecache(struct inode *inode, loff_t new);
1913extern void truncate_setsize(struct inode *inode, loff_t newsize);
1914void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1915void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1916int generic_error_remove_page(struct address_space *mapping, struct page *page);
1917
1918#ifdef CONFIG_MMU
1919extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1920 unsigned long address, unsigned int flags,
1921 struct pt_regs *regs);
1922extern int fixup_user_fault(struct mm_struct *mm,
1923 unsigned long address, unsigned int fault_flags,
1924 bool *unlocked);
1925void unmap_mapping_pages(struct address_space *mapping,
1926 pgoff_t start, pgoff_t nr, bool even_cows);
1927void unmap_mapping_range(struct address_space *mapping,
1928 loff_t const holebegin, loff_t const holelen, int even_cows);
1929#else
1930static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1931 unsigned long address, unsigned int flags,
1932 struct pt_regs *regs)
1933{
1934 /* should never happen if there's no MMU */
1935 BUG();
1936 return VM_FAULT_SIGBUS;
1937}
1938static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1939 unsigned int fault_flags, bool *unlocked)
1940{
1941 /* should never happen if there's no MMU */
1942 BUG();
1943 return -EFAULT;
1944}
1945static inline void unmap_mapping_pages(struct address_space *mapping,
1946 pgoff_t start, pgoff_t nr, bool even_cows) { }
1947static inline void unmap_mapping_range(struct address_space *mapping,
1948 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1949#endif
1950
1951static inline void unmap_shared_mapping_range(struct address_space *mapping,
1952 loff_t const holebegin, loff_t const holelen)
1953{
1954 unmap_mapping_range(mapping, holebegin, holelen, 0);
1955}
1956
1957extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1958 void *buf, int len, unsigned int gup_flags);
1959extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1960 void *buf, int len, unsigned int gup_flags);
1961extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1962 void *buf, int len, unsigned int gup_flags);
1963
1964long get_user_pages_remote(struct mm_struct *mm,
1965 unsigned long start, unsigned long nr_pages,
1966 unsigned int gup_flags, struct page **pages,
1967 struct vm_area_struct **vmas, int *locked);
1968long pin_user_pages_remote(struct mm_struct *mm,
1969 unsigned long start, unsigned long nr_pages,
1970 unsigned int gup_flags, struct page **pages,
1971 struct vm_area_struct **vmas, int *locked);
1972long get_user_pages(unsigned long start, unsigned long nr_pages,
1973 unsigned int gup_flags, struct page **pages,
1974 struct vm_area_struct **vmas);
1975long pin_user_pages(unsigned long start, unsigned long nr_pages,
1976 unsigned int gup_flags, struct page **pages,
1977 struct vm_area_struct **vmas);
1978long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1979 struct page **pages, unsigned int gup_flags);
1980long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1981 struct page **pages, unsigned int gup_flags);
1982
1983int get_user_pages_fast(unsigned long start, int nr_pages,
1984 unsigned int gup_flags, struct page **pages);
1985int pin_user_pages_fast(unsigned long start, int nr_pages,
1986 unsigned int gup_flags, struct page **pages);
1987
1988int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1989int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1990 struct task_struct *task, bool bypass_rlim);
1991
1992struct kvec;
1993int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1994 struct page **pages);
1995struct page *get_dump_page(unsigned long addr);
1996
1997bool folio_mark_dirty(struct folio *folio);
1998bool set_page_dirty(struct page *page);
1999int set_page_dirty_lock(struct page *page);
2000
2001int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2002
2003extern unsigned long move_page_tables(struct vm_area_struct *vma,
2004 unsigned long old_addr, struct vm_area_struct *new_vma,
2005 unsigned long new_addr, unsigned long len,
2006 bool need_rmap_locks);
2007
2008/*
2009 * Flags used by change_protection(). For now we make it a bitmap so
2010 * that we can pass in multiple flags just like parameters. However
2011 * for now all the callers are only use one of the flags at the same
2012 * time.
2013 */
2014/*
2015 * Whether we should manually check if we can map individual PTEs writable,
2016 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2017 * PTEs automatically in a writable mapping.
2018 */
2019#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2020/* Whether this protection change is for NUMA hints */
2021#define MM_CP_PROT_NUMA (1UL << 1)
2022/* Whether this change is for write protecting */
2023#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2024#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2025#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2026 MM_CP_UFFD_WP_RESOLVE)
2027
2028extern unsigned long change_protection(struct mmu_gather *tlb,
2029 struct vm_area_struct *vma, unsigned long start,
2030 unsigned long end, pgprot_t newprot,
2031 unsigned long cp_flags);
2032extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
2033 struct vm_area_struct **pprev, unsigned long start,
2034 unsigned long end, unsigned long newflags);
2035
2036/*
2037 * doesn't attempt to fault and will return short.
2038 */
2039int get_user_pages_fast_only(unsigned long start, int nr_pages,
2040 unsigned int gup_flags, struct page **pages);
2041int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2042 unsigned int gup_flags, struct page **pages);
2043
2044static inline bool get_user_page_fast_only(unsigned long addr,
2045 unsigned int gup_flags, struct page **pagep)
2046{
2047 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2048}
2049/*
2050 * per-process(per-mm_struct) statistics.
2051 */
2052static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2053{
2054 long val = atomic_long_read(&mm->rss_stat.count[member]);
2055
2056#ifdef SPLIT_RSS_COUNTING
2057 /*
2058 * counter is updated in asynchronous manner and may go to minus.
2059 * But it's never be expected number for users.
2060 */
2061 if (val < 0)
2062 val = 0;
2063#endif
2064 return (unsigned long)val;
2065}
2066
2067void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2068
2069static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2070{
2071 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2072
2073 mm_trace_rss_stat(mm, member, count);
2074}
2075
2076static inline void inc_mm_counter(struct mm_struct *mm, int member)
2077{
2078 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2079
2080 mm_trace_rss_stat(mm, member, count);
2081}
2082
2083static inline void dec_mm_counter(struct mm_struct *mm, int member)
2084{
2085 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2086
2087 mm_trace_rss_stat(mm, member, count);
2088}
2089
2090/* Optimized variant when page is already known not to be PageAnon */
2091static inline int mm_counter_file(struct page *page)
2092{
2093 if (PageSwapBacked(page))
2094 return MM_SHMEMPAGES;
2095 return MM_FILEPAGES;
2096}
2097
2098static inline int mm_counter(struct page *page)
2099{
2100 if (PageAnon(page))
2101 return MM_ANONPAGES;
2102 return mm_counter_file(page);
2103}
2104
2105static inline unsigned long get_mm_rss(struct mm_struct *mm)
2106{
2107 return get_mm_counter(mm, MM_FILEPAGES) +
2108 get_mm_counter(mm, MM_ANONPAGES) +
2109 get_mm_counter(mm, MM_SHMEMPAGES);
2110}
2111
2112static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2113{
2114 return max(mm->hiwater_rss, get_mm_rss(mm));
2115}
2116
2117static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2118{
2119 return max(mm->hiwater_vm, mm->total_vm);
2120}
2121
2122static inline void update_hiwater_rss(struct mm_struct *mm)
2123{
2124 unsigned long _rss = get_mm_rss(mm);
2125
2126 if ((mm)->hiwater_rss < _rss)
2127 (mm)->hiwater_rss = _rss;
2128}
2129
2130static inline void update_hiwater_vm(struct mm_struct *mm)
2131{
2132 if (mm->hiwater_vm < mm->total_vm)
2133 mm->hiwater_vm = mm->total_vm;
2134}
2135
2136static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2137{
2138 mm->hiwater_rss = get_mm_rss(mm);
2139}
2140
2141static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2142 struct mm_struct *mm)
2143{
2144 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2145
2146 if (*maxrss < hiwater_rss)
2147 *maxrss = hiwater_rss;
2148}
2149
2150#if defined(SPLIT_RSS_COUNTING)
2151void sync_mm_rss(struct mm_struct *mm);
2152#else
2153static inline void sync_mm_rss(struct mm_struct *mm)
2154{
2155}
2156#endif
2157
2158#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2159static inline int pte_special(pte_t pte)
2160{
2161 return 0;
2162}
2163
2164static inline pte_t pte_mkspecial(pte_t pte)
2165{
2166 return pte;
2167}
2168#endif
2169
2170#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2171static inline int pte_devmap(pte_t pte)
2172{
2173 return 0;
2174}
2175#endif
2176
2177int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2178
2179extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2180 spinlock_t **ptl);
2181static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2182 spinlock_t **ptl)
2183{
2184 pte_t *ptep;
2185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2186 return ptep;
2187}
2188
2189#ifdef __PAGETABLE_P4D_FOLDED
2190static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2191 unsigned long address)
2192{
2193 return 0;
2194}
2195#else
2196int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2197#endif
2198
2199#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2200static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2201 unsigned long address)
2202{
2203 return 0;
2204}
2205static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2206static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2207
2208#else
2209int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2210
2211static inline void mm_inc_nr_puds(struct mm_struct *mm)
2212{
2213 if (mm_pud_folded(mm))
2214 return;
2215 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2216}
2217
2218static inline void mm_dec_nr_puds(struct mm_struct *mm)
2219{
2220 if (mm_pud_folded(mm))
2221 return;
2222 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2223}
2224#endif
2225
2226#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2227static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2228 unsigned long address)
2229{
2230 return 0;
2231}
2232
2233static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2234static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2235
2236#else
2237int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2238
2239static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2240{
2241 if (mm_pmd_folded(mm))
2242 return;
2243 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2244}
2245
2246static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2247{
2248 if (mm_pmd_folded(mm))
2249 return;
2250 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2251}
2252#endif
2253
2254#ifdef CONFIG_MMU
2255static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2256{
2257 atomic_long_set(&mm->pgtables_bytes, 0);
2258}
2259
2260static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2261{
2262 return atomic_long_read(&mm->pgtables_bytes);
2263}
2264
2265static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2266{
2267 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2268}
2269
2270static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2271{
2272 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2273}
2274#else
2275
2276static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2277static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2278{
2279 return 0;
2280}
2281
2282static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2283static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2284#endif
2285
2286int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2287int __pte_alloc_kernel(pmd_t *pmd);
2288
2289#if defined(CONFIG_MMU)
2290
2291static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2292 unsigned long address)
2293{
2294 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2295 NULL : p4d_offset(pgd, address);
2296}
2297
2298static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2299 unsigned long address)
2300{
2301 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2302 NULL : pud_offset(p4d, address);
2303}
2304
2305static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2306{
2307 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2308 NULL: pmd_offset(pud, address);
2309}
2310#endif /* CONFIG_MMU */
2311
2312#if USE_SPLIT_PTE_PTLOCKS
2313#if ALLOC_SPLIT_PTLOCKS
2314void __init ptlock_cache_init(void);
2315extern bool ptlock_alloc(struct page *page);
2316extern void ptlock_free(struct page *page);
2317
2318static inline spinlock_t *ptlock_ptr(struct page *page)
2319{
2320 return page->ptl;
2321}
2322#else /* ALLOC_SPLIT_PTLOCKS */
2323static inline void ptlock_cache_init(void)
2324{
2325}
2326
2327static inline bool ptlock_alloc(struct page *page)
2328{
2329 return true;
2330}
2331
2332static inline void ptlock_free(struct page *page)
2333{
2334}
2335
2336static inline spinlock_t *ptlock_ptr(struct page *page)
2337{
2338 return &page->ptl;
2339}
2340#endif /* ALLOC_SPLIT_PTLOCKS */
2341
2342static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2343{
2344 return ptlock_ptr(pmd_page(*pmd));
2345}
2346
2347static inline bool ptlock_init(struct page *page)
2348{
2349 /*
2350 * prep_new_page() initialize page->private (and therefore page->ptl)
2351 * with 0. Make sure nobody took it in use in between.
2352 *
2353 * It can happen if arch try to use slab for page table allocation:
2354 * slab code uses page->slab_cache, which share storage with page->ptl.
2355 */
2356 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2357 if (!ptlock_alloc(page))
2358 return false;
2359 spin_lock_init(ptlock_ptr(page));
2360 return true;
2361}
2362
2363#else /* !USE_SPLIT_PTE_PTLOCKS */
2364/*
2365 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2366 */
2367static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2368{
2369 return &mm->page_table_lock;
2370}
2371static inline void ptlock_cache_init(void) {}
2372static inline bool ptlock_init(struct page *page) { return true; }
2373static inline void ptlock_free(struct page *page) {}
2374#endif /* USE_SPLIT_PTE_PTLOCKS */
2375
2376static inline void pgtable_init(void)
2377{
2378 ptlock_cache_init();
2379 pgtable_cache_init();
2380}
2381
2382static inline bool pgtable_pte_page_ctor(struct page *page)
2383{
2384 if (!ptlock_init(page))
2385 return false;
2386 __SetPageTable(page);
2387 inc_lruvec_page_state(page, NR_PAGETABLE);
2388 return true;
2389}
2390
2391static inline void pgtable_pte_page_dtor(struct page *page)
2392{
2393 ptlock_free(page);
2394 __ClearPageTable(page);
2395 dec_lruvec_page_state(page, NR_PAGETABLE);
2396}
2397
2398#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2399({ \
2400 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2401 pte_t *__pte = pte_offset_map(pmd, address); \
2402 *(ptlp) = __ptl; \
2403 spin_lock(__ptl); \
2404 __pte; \
2405})
2406
2407#define pte_unmap_unlock(pte, ptl) do { \
2408 spin_unlock(ptl); \
2409 pte_unmap(pte); \
2410} while (0)
2411
2412#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2413
2414#define pte_alloc_map(mm, pmd, address) \
2415 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2416
2417#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2418 (pte_alloc(mm, pmd) ? \
2419 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2420
2421#define pte_alloc_kernel(pmd, address) \
2422 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2423 NULL: pte_offset_kernel(pmd, address))
2424
2425#if USE_SPLIT_PMD_PTLOCKS
2426
2427static struct page *pmd_to_page(pmd_t *pmd)
2428{
2429 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2430 return virt_to_page((void *)((unsigned long) pmd & mask));
2431}
2432
2433static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2434{
2435 return ptlock_ptr(pmd_to_page(pmd));
2436}
2437
2438static inline bool pmd_ptlock_init(struct page *page)
2439{
2440#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2441 page->pmd_huge_pte = NULL;
2442#endif
2443 return ptlock_init(page);
2444}
2445
2446static inline void pmd_ptlock_free(struct page *page)
2447{
2448#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2449 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2450#endif
2451 ptlock_free(page);
2452}
2453
2454#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2455
2456#else
2457
2458static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2459{
2460 return &mm->page_table_lock;
2461}
2462
2463static inline bool pmd_ptlock_init(struct page *page) { return true; }
2464static inline void pmd_ptlock_free(struct page *page) {}
2465
2466#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2467
2468#endif
2469
2470static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2471{
2472 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2473 spin_lock(ptl);
2474 return ptl;
2475}
2476
2477static inline bool pgtable_pmd_page_ctor(struct page *page)
2478{
2479 if (!pmd_ptlock_init(page))
2480 return false;
2481 __SetPageTable(page);
2482 inc_lruvec_page_state(page, NR_PAGETABLE);
2483 return true;
2484}
2485
2486static inline void pgtable_pmd_page_dtor(struct page *page)
2487{
2488 pmd_ptlock_free(page);
2489 __ClearPageTable(page);
2490 dec_lruvec_page_state(page, NR_PAGETABLE);
2491}
2492
2493/*
2494 * No scalability reason to split PUD locks yet, but follow the same pattern
2495 * as the PMD locks to make it easier if we decide to. The VM should not be
2496 * considered ready to switch to split PUD locks yet; there may be places
2497 * which need to be converted from page_table_lock.
2498 */
2499static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2500{
2501 return &mm->page_table_lock;
2502}
2503
2504static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2505{
2506 spinlock_t *ptl = pud_lockptr(mm, pud);
2507
2508 spin_lock(ptl);
2509 return ptl;
2510}
2511
2512extern void __init pagecache_init(void);
2513extern void free_initmem(void);
2514
2515/*
2516 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2517 * into the buddy system. The freed pages will be poisoned with pattern
2518 * "poison" if it's within range [0, UCHAR_MAX].
2519 * Return pages freed into the buddy system.
2520 */
2521extern unsigned long free_reserved_area(void *start, void *end,
2522 int poison, const char *s);
2523
2524extern void adjust_managed_page_count(struct page *page, long count);
2525extern void mem_init_print_info(void);
2526
2527extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2528
2529/* Free the reserved page into the buddy system, so it gets managed. */
2530static inline void free_reserved_page(struct page *page)
2531{
2532 ClearPageReserved(page);
2533 init_page_count(page);
2534 __free_page(page);
2535 adjust_managed_page_count(page, 1);
2536}
2537#define free_highmem_page(page) free_reserved_page(page)
2538
2539static inline void mark_page_reserved(struct page *page)
2540{
2541 SetPageReserved(page);
2542 adjust_managed_page_count(page, -1);
2543}
2544
2545/*
2546 * Default method to free all the __init memory into the buddy system.
2547 * The freed pages will be poisoned with pattern "poison" if it's within
2548 * range [0, UCHAR_MAX].
2549 * Return pages freed into the buddy system.
2550 */
2551static inline unsigned long free_initmem_default(int poison)
2552{
2553 extern char __init_begin[], __init_end[];
2554
2555 return free_reserved_area(&__init_begin, &__init_end,
2556 poison, "unused kernel image (initmem)");
2557}
2558
2559static inline unsigned long get_num_physpages(void)
2560{
2561 int nid;
2562 unsigned long phys_pages = 0;
2563
2564 for_each_online_node(nid)
2565 phys_pages += node_present_pages(nid);
2566
2567 return phys_pages;
2568}
2569
2570/*
2571 * Using memblock node mappings, an architecture may initialise its
2572 * zones, allocate the backing mem_map and account for memory holes in an
2573 * architecture independent manner.
2574 *
2575 * An architecture is expected to register range of page frames backed by
2576 * physical memory with memblock_add[_node]() before calling
2577 * free_area_init() passing in the PFN each zone ends at. At a basic
2578 * usage, an architecture is expected to do something like
2579 *
2580 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2581 * max_highmem_pfn};
2582 * for_each_valid_physical_page_range()
2583 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2584 * free_area_init(max_zone_pfns);
2585 */
2586void free_area_init(unsigned long *max_zone_pfn);
2587unsigned long node_map_pfn_alignment(void);
2588unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2589 unsigned long end_pfn);
2590extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2591 unsigned long end_pfn);
2592extern void get_pfn_range_for_nid(unsigned int nid,
2593 unsigned long *start_pfn, unsigned long *end_pfn);
2594
2595#ifndef CONFIG_NUMA
2596static inline int early_pfn_to_nid(unsigned long pfn)
2597{
2598 return 0;
2599}
2600#else
2601/* please see mm/page_alloc.c */
2602extern int __meminit early_pfn_to_nid(unsigned long pfn);
2603#endif
2604
2605extern void set_dma_reserve(unsigned long new_dma_reserve);
2606extern void memmap_init_range(unsigned long, int, unsigned long,
2607 unsigned long, unsigned long, enum meminit_context,
2608 struct vmem_altmap *, int migratetype);
2609extern void setup_per_zone_wmarks(void);
2610extern void calculate_min_free_kbytes(void);
2611extern int __meminit init_per_zone_wmark_min(void);
2612extern void mem_init(void);
2613extern void __init mmap_init(void);
2614
2615extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2616static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2617{
2618 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2619}
2620extern long si_mem_available(void);
2621extern void si_meminfo(struct sysinfo * val);
2622extern void si_meminfo_node(struct sysinfo *val, int nid);
2623#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2624extern unsigned long arch_reserved_kernel_pages(void);
2625#endif
2626
2627extern __printf(3, 4)
2628void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2629
2630extern void setup_per_cpu_pageset(void);
2631
2632/* page_alloc.c */
2633extern int min_free_kbytes;
2634extern int watermark_boost_factor;
2635extern int watermark_scale_factor;
2636extern bool arch_has_descending_max_zone_pfns(void);
2637
2638/* nommu.c */
2639extern atomic_long_t mmap_pages_allocated;
2640extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2641
2642/* interval_tree.c */
2643void vma_interval_tree_insert(struct vm_area_struct *node,
2644 struct rb_root_cached *root);
2645void vma_interval_tree_insert_after(struct vm_area_struct *node,
2646 struct vm_area_struct *prev,
2647 struct rb_root_cached *root);
2648void vma_interval_tree_remove(struct vm_area_struct *node,
2649 struct rb_root_cached *root);
2650struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2651 unsigned long start, unsigned long last);
2652struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2653 unsigned long start, unsigned long last);
2654
2655#define vma_interval_tree_foreach(vma, root, start, last) \
2656 for (vma = vma_interval_tree_iter_first(root, start, last); \
2657 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2658
2659void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2660 struct rb_root_cached *root);
2661void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2662 struct rb_root_cached *root);
2663struct anon_vma_chain *
2664anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2665 unsigned long start, unsigned long last);
2666struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2667 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2668#ifdef CONFIG_DEBUG_VM_RB
2669void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2670#endif
2671
2672#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2673 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2674 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2675
2676/* mmap.c */
2677extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2678extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2679 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2680 struct vm_area_struct *expand);
2681static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2682 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2683{
2684 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2685}
2686extern struct vm_area_struct *vma_merge(struct mm_struct *,
2687 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2688 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2689 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2690extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2691extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2692 unsigned long addr, int new_below);
2693extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2694 unsigned long addr, int new_below);
2695extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2696extern void unlink_file_vma(struct vm_area_struct *);
2697extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2698 unsigned long addr, unsigned long len, pgoff_t pgoff,
2699 bool *need_rmap_locks);
2700extern void exit_mmap(struct mm_struct *);
2701
2702void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2703void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2704
2705static inline int check_data_rlimit(unsigned long rlim,
2706 unsigned long new,
2707 unsigned long start,
2708 unsigned long end_data,
2709 unsigned long start_data)
2710{
2711 if (rlim < RLIM_INFINITY) {
2712 if (((new - start) + (end_data - start_data)) > rlim)
2713 return -ENOSPC;
2714 }
2715
2716 return 0;
2717}
2718
2719extern int mm_take_all_locks(struct mm_struct *mm);
2720extern void mm_drop_all_locks(struct mm_struct *mm);
2721
2722extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2723extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2724extern struct file *get_mm_exe_file(struct mm_struct *mm);
2725extern struct file *get_task_exe_file(struct task_struct *task);
2726
2727extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2728extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2729
2730extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2731 const struct vm_special_mapping *sm);
2732extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2733 unsigned long addr, unsigned long len,
2734 unsigned long flags,
2735 const struct vm_special_mapping *spec);
2736/* This is an obsolete alternative to _install_special_mapping. */
2737extern int install_special_mapping(struct mm_struct *mm,
2738 unsigned long addr, unsigned long len,
2739 unsigned long flags, struct page **pages);
2740
2741unsigned long randomize_stack_top(unsigned long stack_top);
2742unsigned long randomize_page(unsigned long start, unsigned long range);
2743
2744extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2745
2746extern unsigned long mmap_region(struct file *file, unsigned long addr,
2747 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2748 struct list_head *uf);
2749extern unsigned long do_mmap(struct file *file, unsigned long addr,
2750 unsigned long len, unsigned long prot, unsigned long flags,
2751 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2752extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2753 unsigned long start, size_t len, struct list_head *uf,
2754 bool downgrade);
2755extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2756 struct list_head *uf);
2757extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2758
2759#ifdef CONFIG_MMU
2760extern int __mm_populate(unsigned long addr, unsigned long len,
2761 int ignore_errors);
2762static inline void mm_populate(unsigned long addr, unsigned long len)
2763{
2764 /* Ignore errors */
2765 (void) __mm_populate(addr, len, 1);
2766}
2767#else
2768static inline void mm_populate(unsigned long addr, unsigned long len) {}
2769#endif
2770
2771/* These take the mm semaphore themselves */
2772extern int __must_check vm_brk(unsigned long, unsigned long);
2773extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2774extern int vm_munmap(unsigned long, size_t);
2775extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2776 unsigned long, unsigned long,
2777 unsigned long, unsigned long);
2778
2779struct vm_unmapped_area_info {
2780#define VM_UNMAPPED_AREA_TOPDOWN 1
2781 unsigned long flags;
2782 unsigned long length;
2783 unsigned long low_limit;
2784 unsigned long high_limit;
2785 unsigned long align_mask;
2786 unsigned long align_offset;
2787};
2788
2789extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2790
2791/* truncate.c */
2792extern void truncate_inode_pages(struct address_space *, loff_t);
2793extern void truncate_inode_pages_range(struct address_space *,
2794 loff_t lstart, loff_t lend);
2795extern void truncate_inode_pages_final(struct address_space *);
2796
2797/* generic vm_area_ops exported for stackable file systems */
2798extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2799extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2800 pgoff_t start_pgoff, pgoff_t end_pgoff);
2801extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2802
2803extern unsigned long stack_guard_gap;
2804/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2805extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2806
2807/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2808extern int expand_downwards(struct vm_area_struct *vma,
2809 unsigned long address);
2810#if VM_GROWSUP
2811extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2812#else
2813 #define expand_upwards(vma, address) (0)
2814#endif
2815
2816/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2817extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2818extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2819 struct vm_area_struct **pprev);
2820
2821/*
2822 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2823 * NULL if none. Assume start_addr < end_addr.
2824 */
2825struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2826 unsigned long start_addr, unsigned long end_addr);
2827
2828/**
2829 * vma_lookup() - Find a VMA at a specific address
2830 * @mm: The process address space.
2831 * @addr: The user address.
2832 *
2833 * Return: The vm_area_struct at the given address, %NULL otherwise.
2834 */
2835static inline
2836struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2837{
2838 return mtree_load(&mm->mm_mt, addr);
2839}
2840
2841static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2842{
2843 unsigned long vm_start = vma->vm_start;
2844
2845 if (vma->vm_flags & VM_GROWSDOWN) {
2846 vm_start -= stack_guard_gap;
2847 if (vm_start > vma->vm_start)
2848 vm_start = 0;
2849 }
2850 return vm_start;
2851}
2852
2853static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2854{
2855 unsigned long vm_end = vma->vm_end;
2856
2857 if (vma->vm_flags & VM_GROWSUP) {
2858 vm_end += stack_guard_gap;
2859 if (vm_end < vma->vm_end)
2860 vm_end = -PAGE_SIZE;
2861 }
2862 return vm_end;
2863}
2864
2865static inline unsigned long vma_pages(struct vm_area_struct *vma)
2866{
2867 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2868}
2869
2870/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2871static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2872 unsigned long vm_start, unsigned long vm_end)
2873{
2874 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
2875
2876 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2877 vma = NULL;
2878
2879 return vma;
2880}
2881
2882static inline bool range_in_vma(struct vm_area_struct *vma,
2883 unsigned long start, unsigned long end)
2884{
2885 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2886}
2887
2888#ifdef CONFIG_MMU
2889pgprot_t vm_get_page_prot(unsigned long vm_flags);
2890void vma_set_page_prot(struct vm_area_struct *vma);
2891#else
2892static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2893{
2894 return __pgprot(0);
2895}
2896static inline void vma_set_page_prot(struct vm_area_struct *vma)
2897{
2898 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2899}
2900#endif
2901
2902void vma_set_file(struct vm_area_struct *vma, struct file *file);
2903
2904#ifdef CONFIG_NUMA_BALANCING
2905unsigned long change_prot_numa(struct vm_area_struct *vma,
2906 unsigned long start, unsigned long end);
2907#endif
2908
2909struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2910int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2911 unsigned long pfn, unsigned long size, pgprot_t);
2912int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2913 unsigned long pfn, unsigned long size, pgprot_t prot);
2914int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2915int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2916 struct page **pages, unsigned long *num);
2917int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2918 unsigned long num);
2919int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2920 unsigned long num);
2921vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2922 unsigned long pfn);
2923vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2924 unsigned long pfn, pgprot_t pgprot);
2925vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2926 pfn_t pfn);
2927vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2928 pfn_t pfn, pgprot_t pgprot);
2929vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2930 unsigned long addr, pfn_t pfn);
2931int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2932
2933static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2934 unsigned long addr, struct page *page)
2935{
2936 int err = vm_insert_page(vma, addr, page);
2937
2938 if (err == -ENOMEM)
2939 return VM_FAULT_OOM;
2940 if (err < 0 && err != -EBUSY)
2941 return VM_FAULT_SIGBUS;
2942
2943 return VM_FAULT_NOPAGE;
2944}
2945
2946#ifndef io_remap_pfn_range
2947static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2948 unsigned long addr, unsigned long pfn,
2949 unsigned long size, pgprot_t prot)
2950{
2951 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2952}
2953#endif
2954
2955static inline vm_fault_t vmf_error(int err)
2956{
2957 if (err == -ENOMEM)
2958 return VM_FAULT_OOM;
2959 return VM_FAULT_SIGBUS;
2960}
2961
2962struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2963 unsigned int foll_flags);
2964
2965#define FOLL_WRITE 0x01 /* check pte is writable */
2966#define FOLL_TOUCH 0x02 /* mark page accessed */
2967#define FOLL_GET 0x04 /* do get_page on page */
2968#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2969#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2970#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2971 * and return without waiting upon it */
2972#define FOLL_NOFAULT 0x80 /* do not fault in pages */
2973#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2974#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2975#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2976#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2977#define FOLL_ANON 0x8000 /* don't do file mappings */
2978#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2979#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2980#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2981#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2982
2983/*
2984 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2985 * other. Here is what they mean, and how to use them:
2986 *
2987 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2988 * period _often_ under userspace control. This is in contrast to
2989 * iov_iter_get_pages(), whose usages are transient.
2990 *
2991 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2992 * lifetime enforced by the filesystem and we need guarantees that longterm
2993 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2994 * the filesystem. Ideas for this coordination include revoking the longterm
2995 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2996 * added after the problem with filesystems was found FS DAX VMAs are
2997 * specifically failed. Filesystem pages are still subject to bugs and use of
2998 * FOLL_LONGTERM should be avoided on those pages.
2999 *
3000 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3001 * Currently only get_user_pages() and get_user_pages_fast() support this flag
3002 * and calls to get_user_pages_[un]locked are specifically not allowed. This
3003 * is due to an incompatibility with the FS DAX check and
3004 * FAULT_FLAG_ALLOW_RETRY.
3005 *
3006 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3007 * that region. And so, CMA attempts to migrate the page before pinning, when
3008 * FOLL_LONGTERM is specified.
3009 *
3010 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3011 * but an additional pin counting system) will be invoked. This is intended for
3012 * anything that gets a page reference and then touches page data (for example,
3013 * Direct IO). This lets the filesystem know that some non-file-system entity is
3014 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3015 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3016 * a call to unpin_user_page().
3017 *
3018 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3019 * and separate refcounting mechanisms, however, and that means that each has
3020 * its own acquire and release mechanisms:
3021 *
3022 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3023 *
3024 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3025 *
3026 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3027 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3028 * calls applied to them, and that's perfectly OK. This is a constraint on the
3029 * callers, not on the pages.)
3030 *
3031 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3032 * directly by the caller. That's in order to help avoid mismatches when
3033 * releasing pages: get_user_pages*() pages must be released via put_page(),
3034 * while pin_user_pages*() pages must be released via unpin_user_page().
3035 *
3036 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3037 */
3038
3039static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3040{
3041 if (vm_fault & VM_FAULT_OOM)
3042 return -ENOMEM;
3043 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3044 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3045 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3046 return -EFAULT;
3047 return 0;
3048}
3049
3050/*
3051 * Indicates for which pages that are write-protected in the page table,
3052 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3053 * GUP pin will remain consistent with the pages mapped into the page tables
3054 * of the MM.
3055 *
3056 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3057 * PageAnonExclusive() has to protect against concurrent GUP:
3058 * * Ordinary GUP: Using the PT lock
3059 * * GUP-fast and fork(): mm->write_protect_seq
3060 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3061 * page_try_share_anon_rmap()
3062 *
3063 * Must be called with the (sub)page that's actually referenced via the
3064 * page table entry, which might not necessarily be the head page for a
3065 * PTE-mapped THP.
3066 */
3067static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3068{
3069 /*
3070 * FOLL_WRITE is implicitly handled correctly as the page table entry
3071 * has to be writable -- and if it references (part of) an anonymous
3072 * folio, that part is required to be marked exclusive.
3073 */
3074 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3075 return false;
3076 /*
3077 * Note: PageAnon(page) is stable until the page is actually getting
3078 * freed.
3079 */
3080 if (!PageAnon(page))
3081 return false;
3082
3083 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3084 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3085 smp_rmb();
3086
3087 /*
3088 * Note that PageKsm() pages cannot be exclusive, and consequently,
3089 * cannot get pinned.
3090 */
3091 return !PageAnonExclusive(page);
3092}
3093
3094/*
3095 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3096 * a (NUMA hinting) fault is required.
3097 */
3098static inline bool gup_can_follow_protnone(unsigned int flags)
3099{
3100 /*
3101 * FOLL_FORCE has to be able to make progress even if the VMA is
3102 * inaccessible. Further, FOLL_FORCE access usually does not represent
3103 * application behaviour and we should avoid triggering NUMA hinting
3104 * faults.
3105 */
3106 return flags & FOLL_FORCE;
3107}
3108
3109typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3110extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3111 unsigned long size, pte_fn_t fn, void *data);
3112extern int apply_to_existing_page_range(struct mm_struct *mm,
3113 unsigned long address, unsigned long size,
3114 pte_fn_t fn, void *data);
3115
3116extern void __init init_mem_debugging_and_hardening(void);
3117#ifdef CONFIG_PAGE_POISONING
3118extern void __kernel_poison_pages(struct page *page, int numpages);
3119extern void __kernel_unpoison_pages(struct page *page, int numpages);
3120extern bool _page_poisoning_enabled_early;
3121DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3122static inline bool page_poisoning_enabled(void)
3123{
3124 return _page_poisoning_enabled_early;
3125}
3126/*
3127 * For use in fast paths after init_mem_debugging() has run, or when a
3128 * false negative result is not harmful when called too early.
3129 */
3130static inline bool page_poisoning_enabled_static(void)
3131{
3132 return static_branch_unlikely(&_page_poisoning_enabled);
3133}
3134static inline void kernel_poison_pages(struct page *page, int numpages)
3135{
3136 if (page_poisoning_enabled_static())
3137 __kernel_poison_pages(page, numpages);
3138}
3139static inline void kernel_unpoison_pages(struct page *page, int numpages)
3140{
3141 if (page_poisoning_enabled_static())
3142 __kernel_unpoison_pages(page, numpages);
3143}
3144#else
3145static inline bool page_poisoning_enabled(void) { return false; }
3146static inline bool page_poisoning_enabled_static(void) { return false; }
3147static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3148static inline void kernel_poison_pages(struct page *page, int numpages) { }
3149static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3150#endif
3151
3152DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3153static inline bool want_init_on_alloc(gfp_t flags)
3154{
3155 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3156 &init_on_alloc))
3157 return true;
3158 return flags & __GFP_ZERO;
3159}
3160
3161DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3162static inline bool want_init_on_free(void)
3163{
3164 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3165 &init_on_free);
3166}
3167
3168extern bool _debug_pagealloc_enabled_early;
3169DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3170
3171static inline bool debug_pagealloc_enabled(void)
3172{
3173 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3174 _debug_pagealloc_enabled_early;
3175}
3176
3177/*
3178 * For use in fast paths after init_debug_pagealloc() has run, or when a
3179 * false negative result is not harmful when called too early.
3180 */
3181static inline bool debug_pagealloc_enabled_static(void)
3182{
3183 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3184 return false;
3185
3186 return static_branch_unlikely(&_debug_pagealloc_enabled);
3187}
3188
3189#ifdef CONFIG_DEBUG_PAGEALLOC
3190/*
3191 * To support DEBUG_PAGEALLOC architecture must ensure that
3192 * __kernel_map_pages() never fails
3193 */
3194extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3195
3196static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3197{
3198 if (debug_pagealloc_enabled_static())
3199 __kernel_map_pages(page, numpages, 1);
3200}
3201
3202static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3203{
3204 if (debug_pagealloc_enabled_static())
3205 __kernel_map_pages(page, numpages, 0);
3206}
3207#else /* CONFIG_DEBUG_PAGEALLOC */
3208static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3209static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3210#endif /* CONFIG_DEBUG_PAGEALLOC */
3211
3212#ifdef __HAVE_ARCH_GATE_AREA
3213extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3214extern int in_gate_area_no_mm(unsigned long addr);
3215extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3216#else
3217static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3218{
3219 return NULL;
3220}
3221static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3222static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3223{
3224 return 0;
3225}
3226#endif /* __HAVE_ARCH_GATE_AREA */
3227
3228extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3229
3230#ifdef CONFIG_SYSCTL
3231extern int sysctl_drop_caches;
3232int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3233 loff_t *);
3234#endif
3235
3236void drop_slab(void);
3237
3238#ifndef CONFIG_MMU
3239#define randomize_va_space 0
3240#else
3241extern int randomize_va_space;
3242#endif
3243
3244const char * arch_vma_name(struct vm_area_struct *vma);
3245#ifdef CONFIG_MMU
3246void print_vma_addr(char *prefix, unsigned long rip);
3247#else
3248static inline void print_vma_addr(char *prefix, unsigned long rip)
3249{
3250}
3251#endif
3252
3253void *sparse_buffer_alloc(unsigned long size);
3254struct page * __populate_section_memmap(unsigned long pfn,
3255 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3256 struct dev_pagemap *pgmap);
3257pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3258p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3259pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3260pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3261pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3262 struct vmem_altmap *altmap, struct page *reuse);
3263void *vmemmap_alloc_block(unsigned long size, int node);
3264struct vmem_altmap;
3265void *vmemmap_alloc_block_buf(unsigned long size, int node,
3266 struct vmem_altmap *altmap);
3267void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3268int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3269 int node, struct vmem_altmap *altmap);
3270int vmemmap_populate(unsigned long start, unsigned long end, int node,
3271 struct vmem_altmap *altmap);
3272void vmemmap_populate_print_last(void);
3273#ifdef CONFIG_MEMORY_HOTPLUG
3274void vmemmap_free(unsigned long start, unsigned long end,
3275 struct vmem_altmap *altmap);
3276#endif
3277void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3278 unsigned long nr_pages);
3279
3280enum mf_flags {
3281 MF_COUNT_INCREASED = 1 << 0,
3282 MF_ACTION_REQUIRED = 1 << 1,
3283 MF_MUST_KILL = 1 << 2,
3284 MF_SOFT_OFFLINE = 1 << 3,
3285 MF_UNPOISON = 1 << 4,
3286 MF_SW_SIMULATED = 1 << 5,
3287 MF_NO_RETRY = 1 << 6,
3288};
3289int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3290 unsigned long count, int mf_flags);
3291extern int memory_failure(unsigned long pfn, int flags);
3292extern void memory_failure_queue(unsigned long pfn, int flags);
3293extern void memory_failure_queue_kick(int cpu);
3294extern int unpoison_memory(unsigned long pfn);
3295extern int sysctl_memory_failure_early_kill;
3296extern int sysctl_memory_failure_recovery;
3297extern void shake_page(struct page *p);
3298extern atomic_long_t num_poisoned_pages __read_mostly;
3299extern int soft_offline_page(unsigned long pfn, int flags);
3300#ifdef CONFIG_MEMORY_FAILURE
3301extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3302#else
3303static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3304{
3305 return 0;
3306}
3307#endif
3308
3309#ifndef arch_memory_failure
3310static inline int arch_memory_failure(unsigned long pfn, int flags)
3311{
3312 return -ENXIO;
3313}
3314#endif
3315
3316#ifndef arch_is_platform_page
3317static inline bool arch_is_platform_page(u64 paddr)
3318{
3319 return false;
3320}
3321#endif
3322
3323/*
3324 * Error handlers for various types of pages.
3325 */
3326enum mf_result {
3327 MF_IGNORED, /* Error: cannot be handled */
3328 MF_FAILED, /* Error: handling failed */
3329 MF_DELAYED, /* Will be handled later */
3330 MF_RECOVERED, /* Successfully recovered */
3331};
3332
3333enum mf_action_page_type {
3334 MF_MSG_KERNEL,
3335 MF_MSG_KERNEL_HIGH_ORDER,
3336 MF_MSG_SLAB,
3337 MF_MSG_DIFFERENT_COMPOUND,
3338 MF_MSG_HUGE,
3339 MF_MSG_FREE_HUGE,
3340 MF_MSG_UNMAP_FAILED,
3341 MF_MSG_DIRTY_SWAPCACHE,
3342 MF_MSG_CLEAN_SWAPCACHE,
3343 MF_MSG_DIRTY_MLOCKED_LRU,
3344 MF_MSG_CLEAN_MLOCKED_LRU,
3345 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3346 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3347 MF_MSG_DIRTY_LRU,
3348 MF_MSG_CLEAN_LRU,
3349 MF_MSG_TRUNCATED_LRU,
3350 MF_MSG_BUDDY,
3351 MF_MSG_DAX,
3352 MF_MSG_UNSPLIT_THP,
3353 MF_MSG_UNKNOWN,
3354};
3355
3356#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3357extern void clear_huge_page(struct page *page,
3358 unsigned long addr_hint,
3359 unsigned int pages_per_huge_page);
3360extern void copy_user_huge_page(struct page *dst, struct page *src,
3361 unsigned long addr_hint,
3362 struct vm_area_struct *vma,
3363 unsigned int pages_per_huge_page);
3364extern long copy_huge_page_from_user(struct page *dst_page,
3365 const void __user *usr_src,
3366 unsigned int pages_per_huge_page,
3367 bool allow_pagefault);
3368
3369/**
3370 * vma_is_special_huge - Are transhuge page-table entries considered special?
3371 * @vma: Pointer to the struct vm_area_struct to consider
3372 *
3373 * Whether transhuge page-table entries are considered "special" following
3374 * the definition in vm_normal_page().
3375 *
3376 * Return: true if transhuge page-table entries should be considered special,
3377 * false otherwise.
3378 */
3379static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3380{
3381 return vma_is_dax(vma) || (vma->vm_file &&
3382 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3383}
3384
3385#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3386
3387#ifdef CONFIG_DEBUG_PAGEALLOC
3388extern unsigned int _debug_guardpage_minorder;
3389DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3390
3391static inline unsigned int debug_guardpage_minorder(void)
3392{
3393 return _debug_guardpage_minorder;
3394}
3395
3396static inline bool debug_guardpage_enabled(void)
3397{
3398 return static_branch_unlikely(&_debug_guardpage_enabled);
3399}
3400
3401static inline bool page_is_guard(struct page *page)
3402{
3403 if (!debug_guardpage_enabled())
3404 return false;
3405
3406 return PageGuard(page);
3407}
3408#else
3409static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3410static inline bool debug_guardpage_enabled(void) { return false; }
3411static inline bool page_is_guard(struct page *page) { return false; }
3412#endif /* CONFIG_DEBUG_PAGEALLOC */
3413
3414#if MAX_NUMNODES > 1
3415void __init setup_nr_node_ids(void);
3416#else
3417static inline void setup_nr_node_ids(void) {}
3418#endif
3419
3420extern int memcmp_pages(struct page *page1, struct page *page2);
3421
3422static inline int pages_identical(struct page *page1, struct page *page2)
3423{
3424 return !memcmp_pages(page1, page2);
3425}
3426
3427#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3428unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3429 pgoff_t first_index, pgoff_t nr,
3430 pgoff_t bitmap_pgoff,
3431 unsigned long *bitmap,
3432 pgoff_t *start,
3433 pgoff_t *end);
3434
3435unsigned long wp_shared_mapping_range(struct address_space *mapping,
3436 pgoff_t first_index, pgoff_t nr);
3437#endif
3438
3439extern int sysctl_nr_trim_pages;
3440
3441#ifdef CONFIG_PRINTK
3442void mem_dump_obj(void *object);
3443#else
3444static inline void mem_dump_obj(void *object) {}
3445#endif
3446
3447/**
3448 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3449 * @seals: the seals to check
3450 * @vma: the vma to operate on
3451 *
3452 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3453 * the vma flags. Return 0 if check pass, or <0 for errors.
3454 */
3455static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3456{
3457 if (seals & F_SEAL_FUTURE_WRITE) {
3458 /*
3459 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3460 * "future write" seal active.
3461 */
3462 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3463 return -EPERM;
3464
3465 /*
3466 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3467 * MAP_SHARED and read-only, take care to not allow mprotect to
3468 * revert protections on such mappings. Do this only for shared
3469 * mappings. For private mappings, don't need to mask
3470 * VM_MAYWRITE as we still want them to be COW-writable.
3471 */
3472 if (vma->vm_flags & VM_SHARED)
3473 vma->vm_flags &= ~(VM_MAYWRITE);
3474 }
3475
3476 return 0;
3477}
3478
3479#ifdef CONFIG_ANON_VMA_NAME
3480int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3481 unsigned long len_in,
3482 struct anon_vma_name *anon_name);
3483#else
3484static inline int
3485madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3486 unsigned long len_in, struct anon_vma_name *anon_name) {
3487 return 0;
3488}
3489#endif
3490
3491#endif /* _LINUX_MM_H */