at v6.1 46 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_VMALLOC, 37 MEMCG_KMEM, 38 MEMCG_ZSWAP_B, 39 MEMCG_ZSWAPPED, 40 MEMCG_NR_STAT, 41}; 42 43enum memcg_memory_event { 44 MEMCG_LOW, 45 MEMCG_HIGH, 46 MEMCG_MAX, 47 MEMCG_OOM, 48 MEMCG_OOM_KILL, 49 MEMCG_OOM_GROUP_KILL, 50 MEMCG_SWAP_HIGH, 51 MEMCG_SWAP_MAX, 52 MEMCG_SWAP_FAIL, 53 MEMCG_NR_MEMORY_EVENTS, 54}; 55 56struct mem_cgroup_reclaim_cookie { 57 pg_data_t *pgdat; 58 unsigned int generation; 59}; 60 61#ifdef CONFIG_MEMCG 62 63#define MEM_CGROUP_ID_SHIFT 16 64#define MEM_CGROUP_ID_MAX USHRT_MAX 65 66struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69}; 70 71/* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81}; 82 83struct memcg_vmstats_percpu; 84struct memcg_vmstats; 85 86struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90}; 91 92/* 93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 94 * shrinkers, which have elements charged to this memcg. 95 */ 96struct shrinker_info { 97 struct rcu_head rcu; 98 atomic_long_t *nr_deferred; 99 unsigned long *map; 100}; 101 102struct lruvec_stats_percpu { 103 /* Local (CPU and cgroup) state */ 104 long state[NR_VM_NODE_STAT_ITEMS]; 105 106 /* Delta calculation for lockless upward propagation */ 107 long state_prev[NR_VM_NODE_STAT_ITEMS]; 108}; 109 110struct lruvec_stats { 111 /* Aggregated (CPU and subtree) state */ 112 long state[NR_VM_NODE_STAT_ITEMS]; 113 114 /* Pending child counts during tree propagation */ 115 long state_pending[NR_VM_NODE_STAT_ITEMS]; 116}; 117 118/* 119 * per-node information in memory controller. 120 */ 121struct mem_cgroup_per_node { 122 struct lruvec lruvec; 123 124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 125 struct lruvec_stats lruvec_stats; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter; 130 131 struct shrinker_info __rcu *shrinker_info; 132 133 struct rb_node tree_node; /* RB tree node */ 134 unsigned long usage_in_excess;/* Set to the value by which */ 135 /* the soft limit is exceeded*/ 136 bool on_tree; 137 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 138 /* use container_of */ 139}; 140 141struct mem_cgroup_threshold { 142 struct eventfd_ctx *eventfd; 143 unsigned long threshold; 144}; 145 146/* For threshold */ 147struct mem_cgroup_threshold_ary { 148 /* An array index points to threshold just below or equal to usage. */ 149 int current_threshold; 150 /* Size of entries[] */ 151 unsigned int size; 152 /* Array of thresholds */ 153 struct mem_cgroup_threshold entries[]; 154}; 155 156struct mem_cgroup_thresholds { 157 /* Primary thresholds array */ 158 struct mem_cgroup_threshold_ary *primary; 159 /* 160 * Spare threshold array. 161 * This is needed to make mem_cgroup_unregister_event() "never fail". 162 * It must be able to store at least primary->size - 1 entries. 163 */ 164 struct mem_cgroup_threshold_ary *spare; 165}; 166 167/* 168 * Remember four most recent foreign writebacks with dirty pages in this 169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 170 * one in a given round, we're likely to catch it later if it keeps 171 * foreign-dirtying, so a fairly low count should be enough. 172 * 173 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 174 */ 175#define MEMCG_CGWB_FRN_CNT 4 176 177struct memcg_cgwb_frn { 178 u64 bdi_id; /* bdi->id of the foreign inode */ 179 int memcg_id; /* memcg->css.id of foreign inode */ 180 u64 at; /* jiffies_64 at the time of dirtying */ 181 struct wb_completion done; /* tracks in-flight foreign writebacks */ 182}; 183 184/* 185 * Bucket for arbitrarily byte-sized objects charged to a memory 186 * cgroup. The bucket can be reparented in one piece when the cgroup 187 * is destroyed, without having to round up the individual references 188 * of all live memory objects in the wild. 189 */ 190struct obj_cgroup { 191 struct percpu_ref refcnt; 192 struct mem_cgroup *memcg; 193 atomic_t nr_charged_bytes; 194 union { 195 struct list_head list; /* protected by objcg_lock */ 196 struct rcu_head rcu; 197 }; 198}; 199 200/* 201 * The memory controller data structure. The memory controller controls both 202 * page cache and RSS per cgroup. We would eventually like to provide 203 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 204 * to help the administrator determine what knobs to tune. 205 */ 206struct mem_cgroup { 207 struct cgroup_subsys_state css; 208 209 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 210 struct mem_cgroup_id id; 211 212 /* Accounted resources */ 213 struct page_counter memory; /* Both v1 & v2 */ 214 215 union { 216 struct page_counter swap; /* v2 only */ 217 struct page_counter memsw; /* v1 only */ 218 }; 219 220 /* Legacy consumer-oriented counters */ 221 struct page_counter kmem; /* v1 only */ 222 struct page_counter tcpmem; /* v1 only */ 223 224 /* Range enforcement for interrupt charges */ 225 struct work_struct high_work; 226 227#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 228 unsigned long zswap_max; 229#endif 230 231 unsigned long soft_limit; 232 233 /* vmpressure notifications */ 234 struct vmpressure vmpressure; 235 236 /* 237 * Should the OOM killer kill all belonging tasks, had it kill one? 238 */ 239 bool oom_group; 240 241 /* protected by memcg_oom_lock */ 242 bool oom_lock; 243 int under_oom; 244 245 int swappiness; 246 /* OOM-Killer disable */ 247 int oom_kill_disable; 248 249 /* memory.events and memory.events.local */ 250 struct cgroup_file events_file; 251 struct cgroup_file events_local_file; 252 253 /* handle for "memory.swap.events" */ 254 struct cgroup_file swap_events_file; 255 256 /* protect arrays of thresholds */ 257 struct mutex thresholds_lock; 258 259 /* thresholds for memory usage. RCU-protected */ 260 struct mem_cgroup_thresholds thresholds; 261 262 /* thresholds for mem+swap usage. RCU-protected */ 263 struct mem_cgroup_thresholds memsw_thresholds; 264 265 /* For oom notifier event fd */ 266 struct list_head oom_notify; 267 268 /* 269 * Should we move charges of a task when a task is moved into this 270 * mem_cgroup ? And what type of charges should we move ? 271 */ 272 unsigned long move_charge_at_immigrate; 273 /* taken only while moving_account > 0 */ 274 spinlock_t move_lock; 275 unsigned long move_lock_flags; 276 277 CACHELINE_PADDING(_pad1_); 278 279 /* memory.stat */ 280 struct memcg_vmstats *vmstats; 281 282 /* memory.events */ 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 285 286 unsigned long socket_pressure; 287 288 /* Legacy tcp memory accounting */ 289 bool tcpmem_active; 290 int tcpmem_pressure; 291 292#ifdef CONFIG_MEMCG_KMEM 293 int kmemcg_id; 294 struct obj_cgroup __rcu *objcg; 295 /* list of inherited objcgs, protected by objcg_lock */ 296 struct list_head objcg_list; 297#endif 298 299 CACHELINE_PADDING(_pad2_); 300 301 /* 302 * set > 0 if pages under this cgroup are moving to other cgroup. 303 */ 304 atomic_t moving_account; 305 struct task_struct *move_lock_task; 306 307 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 308 309#ifdef CONFIG_CGROUP_WRITEBACK 310 struct list_head cgwb_list; 311 struct wb_domain cgwb_domain; 312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 313#endif 314 315 /* List of events which userspace want to receive */ 316 struct list_head event_list; 317 spinlock_t event_list_lock; 318 319#ifdef CONFIG_TRANSPARENT_HUGEPAGE 320 struct deferred_split deferred_split_queue; 321#endif 322 323#ifdef CONFIG_LRU_GEN 324 /* per-memcg mm_struct list */ 325 struct lru_gen_mm_list mm_list; 326#endif 327 328 struct mem_cgroup_per_node *nodeinfo[]; 329}; 330 331/* 332 * size of first charge trial. 333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 334 * workload. 335 */ 336#define MEMCG_CHARGE_BATCH 64U 337 338extern struct mem_cgroup *root_mem_cgroup; 339 340enum page_memcg_data_flags { 341 /* page->memcg_data is a pointer to an objcgs vector */ 342 MEMCG_DATA_OBJCGS = (1UL << 0), 343 /* page has been accounted as a non-slab kernel page */ 344 MEMCG_DATA_KMEM = (1UL << 1), 345 /* the next bit after the last actual flag */ 346 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 347}; 348 349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 350 351static inline bool folio_memcg_kmem(struct folio *folio); 352 353/* 354 * After the initialization objcg->memcg is always pointing at 355 * a valid memcg, but can be atomically swapped to the parent memcg. 356 * 357 * The caller must ensure that the returned memcg won't be released: 358 * e.g. acquire the rcu_read_lock or css_set_lock. 359 */ 360static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 361{ 362 return READ_ONCE(objcg->memcg); 363} 364 365/* 366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 367 * @folio: Pointer to the folio. 368 * 369 * Returns a pointer to the memory cgroup associated with the folio, 370 * or NULL. This function assumes that the folio is known to have a 371 * proper memory cgroup pointer. It's not safe to call this function 372 * against some type of folios, e.g. slab folios or ex-slab folios or 373 * kmem folios. 374 */ 375static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 376{ 377 unsigned long memcg_data = folio->memcg_data; 378 379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 382 383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 384} 385 386/* 387 * __folio_objcg - get the object cgroup associated with a kmem folio. 388 * @folio: Pointer to the folio. 389 * 390 * Returns a pointer to the object cgroup associated with the folio, 391 * or NULL. This function assumes that the folio is known to have a 392 * proper object cgroup pointer. It's not safe to call this function 393 * against some type of folios, e.g. slab folios or ex-slab folios or 394 * LRU folios. 395 */ 396static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 397{ 398 unsigned long memcg_data = folio->memcg_data; 399 400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 403 404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 405} 406 407/* 408 * folio_memcg - Get the memory cgroup associated with a folio. 409 * @folio: Pointer to the folio. 410 * 411 * Returns a pointer to the memory cgroup associated with the folio, 412 * or NULL. This function assumes that the folio is known to have a 413 * proper memory cgroup pointer. It's not safe to call this function 414 * against some type of folios, e.g. slab folios or ex-slab folios. 415 * 416 * For a non-kmem folio any of the following ensures folio and memcg binding 417 * stability: 418 * 419 * - the folio lock 420 * - LRU isolation 421 * - lock_page_memcg() 422 * - exclusive reference 423 * - mem_cgroup_trylock_pages() 424 * 425 * For a kmem folio a caller should hold an rcu read lock to protect memcg 426 * associated with a kmem folio from being released. 427 */ 428static inline struct mem_cgroup *folio_memcg(struct folio *folio) 429{ 430 if (folio_memcg_kmem(folio)) 431 return obj_cgroup_memcg(__folio_objcg(folio)); 432 return __folio_memcg(folio); 433} 434 435static inline struct mem_cgroup *page_memcg(struct page *page) 436{ 437 return folio_memcg(page_folio(page)); 438} 439 440/** 441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 442 * @folio: Pointer to the folio. 443 * 444 * This function assumes that the folio is known to have a 445 * proper memory cgroup pointer. It's not safe to call this function 446 * against some type of folios, e.g. slab folios or ex-slab folios. 447 * 448 * Return: A pointer to the memory cgroup associated with the folio, 449 * or NULL. 450 */ 451static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 452{ 453 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 454 455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 456 WARN_ON_ONCE(!rcu_read_lock_held()); 457 458 if (memcg_data & MEMCG_DATA_KMEM) { 459 struct obj_cgroup *objcg; 460 461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 462 return obj_cgroup_memcg(objcg); 463 } 464 465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 466} 467 468/* 469 * page_memcg_check - get the memory cgroup associated with a page 470 * @page: a pointer to the page struct 471 * 472 * Returns a pointer to the memory cgroup associated with the page, 473 * or NULL. This function unlike page_memcg() can take any page 474 * as an argument. It has to be used in cases when it's not known if a page 475 * has an associated memory cgroup pointer or an object cgroups vector or 476 * an object cgroup. 477 * 478 * For a non-kmem page any of the following ensures page and memcg binding 479 * stability: 480 * 481 * - the page lock 482 * - LRU isolation 483 * - lock_page_memcg() 484 * - exclusive reference 485 * - mem_cgroup_trylock_pages() 486 * 487 * For a kmem page a caller should hold an rcu read lock to protect memcg 488 * associated with a kmem page from being released. 489 */ 490static inline struct mem_cgroup *page_memcg_check(struct page *page) 491{ 492 /* 493 * Because page->memcg_data might be changed asynchronously 494 * for slab pages, READ_ONCE() should be used here. 495 */ 496 unsigned long memcg_data = READ_ONCE(page->memcg_data); 497 498 if (memcg_data & MEMCG_DATA_OBJCGS) 499 return NULL; 500 501 if (memcg_data & MEMCG_DATA_KMEM) { 502 struct obj_cgroup *objcg; 503 504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 505 return obj_cgroup_memcg(objcg); 506 } 507 508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 509} 510 511static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 512{ 513 struct mem_cgroup *memcg; 514 515 rcu_read_lock(); 516retry: 517 memcg = obj_cgroup_memcg(objcg); 518 if (unlikely(!css_tryget(&memcg->css))) 519 goto retry; 520 rcu_read_unlock(); 521 522 return memcg; 523} 524 525#ifdef CONFIG_MEMCG_KMEM 526/* 527 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 528 * @folio: Pointer to the folio. 529 * 530 * Checks if the folio has MemcgKmem flag set. The caller must ensure 531 * that the folio has an associated memory cgroup. It's not safe to call 532 * this function against some types of folios, e.g. slab folios. 533 */ 534static inline bool folio_memcg_kmem(struct folio *folio) 535{ 536 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 537 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 538 return folio->memcg_data & MEMCG_DATA_KMEM; 539} 540 541 542#else 543static inline bool folio_memcg_kmem(struct folio *folio) 544{ 545 return false; 546} 547 548#endif 549 550static inline bool PageMemcgKmem(struct page *page) 551{ 552 return folio_memcg_kmem(page_folio(page)); 553} 554 555static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 556{ 557 return (memcg == root_mem_cgroup); 558} 559 560static inline bool mem_cgroup_disabled(void) 561{ 562 return !cgroup_subsys_enabled(memory_cgrp_subsys); 563} 564 565static inline void mem_cgroup_protection(struct mem_cgroup *root, 566 struct mem_cgroup *memcg, 567 unsigned long *min, 568 unsigned long *low) 569{ 570 *min = *low = 0; 571 572 if (mem_cgroup_disabled()) 573 return; 574 575 /* 576 * There is no reclaim protection applied to a targeted reclaim. 577 * We are special casing this specific case here because 578 * mem_cgroup_protected calculation is not robust enough to keep 579 * the protection invariant for calculated effective values for 580 * parallel reclaimers with different reclaim target. This is 581 * especially a problem for tail memcgs (as they have pages on LRU) 582 * which would want to have effective values 0 for targeted reclaim 583 * but a different value for external reclaim. 584 * 585 * Example 586 * Let's have global and A's reclaim in parallel: 587 * | 588 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 589 * |\ 590 * | C (low = 1G, usage = 2.5G) 591 * B (low = 1G, usage = 0.5G) 592 * 593 * For the global reclaim 594 * A.elow = A.low 595 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 596 * C.elow = min(C.usage, C.low) 597 * 598 * With the effective values resetting we have A reclaim 599 * A.elow = 0 600 * B.elow = B.low 601 * C.elow = C.low 602 * 603 * If the global reclaim races with A's reclaim then 604 * B.elow = C.elow = 0 because children_low_usage > A.elow) 605 * is possible and reclaiming B would be violating the protection. 606 * 607 */ 608 if (root == memcg) 609 return; 610 611 *min = READ_ONCE(memcg->memory.emin); 612 *low = READ_ONCE(memcg->memory.elow); 613} 614 615void mem_cgroup_calculate_protection(struct mem_cgroup *root, 616 struct mem_cgroup *memcg); 617 618static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 619{ 620 /* 621 * The root memcg doesn't account charges, and doesn't support 622 * protection. 623 */ 624 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 625 626} 627 628static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 629{ 630 if (!mem_cgroup_supports_protection(memcg)) 631 return false; 632 633 return READ_ONCE(memcg->memory.elow) >= 634 page_counter_read(&memcg->memory); 635} 636 637static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 638{ 639 if (!mem_cgroup_supports_protection(memcg)) 640 return false; 641 642 return READ_ONCE(memcg->memory.emin) >= 643 page_counter_read(&memcg->memory); 644} 645 646int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 647 648/** 649 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 650 * @folio: Folio to charge. 651 * @mm: mm context of the allocating task. 652 * @gfp: Reclaim mode. 653 * 654 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 655 * pages according to @gfp if necessary. If @mm is NULL, try to 656 * charge to the active memcg. 657 * 658 * Do not use this for folios allocated for swapin. 659 * 660 * Return: 0 on success. Otherwise, an error code is returned. 661 */ 662static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 663 gfp_t gfp) 664{ 665 if (mem_cgroup_disabled()) 666 return 0; 667 return __mem_cgroup_charge(folio, mm, gfp); 668} 669 670int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 671 gfp_t gfp, swp_entry_t entry); 672void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 673 674void __mem_cgroup_uncharge(struct folio *folio); 675 676/** 677 * mem_cgroup_uncharge - Uncharge a folio. 678 * @folio: Folio to uncharge. 679 * 680 * Uncharge a folio previously charged with mem_cgroup_charge(). 681 */ 682static inline void mem_cgroup_uncharge(struct folio *folio) 683{ 684 if (mem_cgroup_disabled()) 685 return; 686 __mem_cgroup_uncharge(folio); 687} 688 689void __mem_cgroup_uncharge_list(struct list_head *page_list); 690static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 691{ 692 if (mem_cgroup_disabled()) 693 return; 694 __mem_cgroup_uncharge_list(page_list); 695} 696 697void mem_cgroup_migrate(struct folio *old, struct folio *new); 698 699/** 700 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 701 * @memcg: memcg of the wanted lruvec 702 * @pgdat: pglist_data 703 * 704 * Returns the lru list vector holding pages for a given @memcg & 705 * @pgdat combination. This can be the node lruvec, if the memory 706 * controller is disabled. 707 */ 708static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 709 struct pglist_data *pgdat) 710{ 711 struct mem_cgroup_per_node *mz; 712 struct lruvec *lruvec; 713 714 if (mem_cgroup_disabled()) { 715 lruvec = &pgdat->__lruvec; 716 goto out; 717 } 718 719 if (!memcg) 720 memcg = root_mem_cgroup; 721 722 mz = memcg->nodeinfo[pgdat->node_id]; 723 lruvec = &mz->lruvec; 724out: 725 /* 726 * Since a node can be onlined after the mem_cgroup was created, 727 * we have to be prepared to initialize lruvec->pgdat here; 728 * and if offlined then reonlined, we need to reinitialize it. 729 */ 730 if (unlikely(lruvec->pgdat != pgdat)) 731 lruvec->pgdat = pgdat; 732 return lruvec; 733} 734 735/** 736 * folio_lruvec - return lruvec for isolating/putting an LRU folio 737 * @folio: Pointer to the folio. 738 * 739 * This function relies on folio->mem_cgroup being stable. 740 */ 741static inline struct lruvec *folio_lruvec(struct folio *folio) 742{ 743 struct mem_cgroup *memcg = folio_memcg(folio); 744 745 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 746 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 747} 748 749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 750 751struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 752 753struct lruvec *folio_lruvec_lock(struct folio *folio); 754struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 755struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 756 unsigned long *flags); 757 758#ifdef CONFIG_DEBUG_VM 759void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 760#else 761static inline 762void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 763{ 764} 765#endif 766 767static inline 768struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 769 return css ? container_of(css, struct mem_cgroup, css) : NULL; 770} 771 772static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 773{ 774 return percpu_ref_tryget(&objcg->refcnt); 775} 776 777static inline void obj_cgroup_get(struct obj_cgroup *objcg) 778{ 779 percpu_ref_get(&objcg->refcnt); 780} 781 782static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 783 unsigned long nr) 784{ 785 percpu_ref_get_many(&objcg->refcnt, nr); 786} 787 788static inline void obj_cgroup_put(struct obj_cgroup *objcg) 789{ 790 percpu_ref_put(&objcg->refcnt); 791} 792 793static inline void mem_cgroup_put(struct mem_cgroup *memcg) 794{ 795 if (memcg) 796 css_put(&memcg->css); 797} 798 799#define mem_cgroup_from_counter(counter, member) \ 800 container_of(counter, struct mem_cgroup, member) 801 802struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 803 struct mem_cgroup *, 804 struct mem_cgroup_reclaim_cookie *); 805void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 806int mem_cgroup_scan_tasks(struct mem_cgroup *, 807 int (*)(struct task_struct *, void *), void *); 808 809static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 810{ 811 if (mem_cgroup_disabled()) 812 return 0; 813 814 return memcg->id.id; 815} 816struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 817 818#ifdef CONFIG_SHRINKER_DEBUG 819static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 820{ 821 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 822} 823 824struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 825#endif 826 827static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 828{ 829 return mem_cgroup_from_css(seq_css(m)); 830} 831 832static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 833{ 834 struct mem_cgroup_per_node *mz; 835 836 if (mem_cgroup_disabled()) 837 return NULL; 838 839 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 840 return mz->memcg; 841} 842 843/** 844 * parent_mem_cgroup - find the accounting parent of a memcg 845 * @memcg: memcg whose parent to find 846 * 847 * Returns the parent memcg, or NULL if this is the root or the memory 848 * controller is in legacy no-hierarchy mode. 849 */ 850static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 851{ 852 return mem_cgroup_from_css(memcg->css.parent); 853} 854 855static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 856 struct mem_cgroup *root) 857{ 858 if (root == memcg) 859 return true; 860 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 861} 862 863static inline bool mm_match_cgroup(struct mm_struct *mm, 864 struct mem_cgroup *memcg) 865{ 866 struct mem_cgroup *task_memcg; 867 bool match = false; 868 869 rcu_read_lock(); 870 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 871 if (task_memcg) 872 match = mem_cgroup_is_descendant(task_memcg, memcg); 873 rcu_read_unlock(); 874 return match; 875} 876 877struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 878ino_t page_cgroup_ino(struct page *page); 879 880static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 881{ 882 if (mem_cgroup_disabled()) 883 return true; 884 return !!(memcg->css.flags & CSS_ONLINE); 885} 886 887void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 888 int zid, int nr_pages); 889 890static inline 891unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 892 enum lru_list lru, int zone_idx) 893{ 894 struct mem_cgroup_per_node *mz; 895 896 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 897 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 898} 899 900void mem_cgroup_handle_over_high(void); 901 902unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 903 904unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 905 906void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 907 struct task_struct *p); 908 909void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 910 911static inline void mem_cgroup_enter_user_fault(void) 912{ 913 WARN_ON(current->in_user_fault); 914 current->in_user_fault = 1; 915} 916 917static inline void mem_cgroup_exit_user_fault(void) 918{ 919 WARN_ON(!current->in_user_fault); 920 current->in_user_fault = 0; 921} 922 923static inline bool task_in_memcg_oom(struct task_struct *p) 924{ 925 return p->memcg_in_oom; 926} 927 928bool mem_cgroup_oom_synchronize(bool wait); 929struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 930 struct mem_cgroup *oom_domain); 931void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 932 933void folio_memcg_lock(struct folio *folio); 934void folio_memcg_unlock(struct folio *folio); 935void lock_page_memcg(struct page *page); 936void unlock_page_memcg(struct page *page); 937 938void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 939 940/* try to stablize folio_memcg() for all the pages in a memcg */ 941static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 942{ 943 rcu_read_lock(); 944 945 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 946 return true; 947 948 rcu_read_unlock(); 949 return false; 950} 951 952static inline void mem_cgroup_unlock_pages(void) 953{ 954 rcu_read_unlock(); 955} 956 957/* idx can be of type enum memcg_stat_item or node_stat_item */ 958static inline void mod_memcg_state(struct mem_cgroup *memcg, 959 int idx, int val) 960{ 961 unsigned long flags; 962 963 local_irq_save(flags); 964 __mod_memcg_state(memcg, idx, val); 965 local_irq_restore(flags); 966} 967 968static inline void mod_memcg_page_state(struct page *page, 969 int idx, int val) 970{ 971 struct mem_cgroup *memcg; 972 973 if (mem_cgroup_disabled()) 974 return; 975 976 rcu_read_lock(); 977 memcg = page_memcg(page); 978 if (memcg) 979 mod_memcg_state(memcg, idx, val); 980 rcu_read_unlock(); 981} 982 983unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 984 985static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 986 enum node_stat_item idx) 987{ 988 struct mem_cgroup_per_node *pn; 989 long x; 990 991 if (mem_cgroup_disabled()) 992 return node_page_state(lruvec_pgdat(lruvec), idx); 993 994 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 995 x = READ_ONCE(pn->lruvec_stats.state[idx]); 996#ifdef CONFIG_SMP 997 if (x < 0) 998 x = 0; 999#endif 1000 return x; 1001} 1002 1003static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1004 enum node_stat_item idx) 1005{ 1006 struct mem_cgroup_per_node *pn; 1007 long x = 0; 1008 int cpu; 1009 1010 if (mem_cgroup_disabled()) 1011 return node_page_state(lruvec_pgdat(lruvec), idx); 1012 1013 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1014 for_each_possible_cpu(cpu) 1015 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 1016#ifdef CONFIG_SMP 1017 if (x < 0) 1018 x = 0; 1019#endif 1020 return x; 1021} 1022 1023void mem_cgroup_flush_stats(void); 1024void mem_cgroup_flush_stats_delayed(void); 1025 1026void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1027 int val); 1028void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1029 1030static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1031 int val) 1032{ 1033 unsigned long flags; 1034 1035 local_irq_save(flags); 1036 __mod_lruvec_kmem_state(p, idx, val); 1037 local_irq_restore(flags); 1038} 1039 1040static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1041 enum node_stat_item idx, int val) 1042{ 1043 unsigned long flags; 1044 1045 local_irq_save(flags); 1046 __mod_memcg_lruvec_state(lruvec, idx, val); 1047 local_irq_restore(flags); 1048} 1049 1050void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1051 unsigned long count); 1052 1053static inline void count_memcg_events(struct mem_cgroup *memcg, 1054 enum vm_event_item idx, 1055 unsigned long count) 1056{ 1057 unsigned long flags; 1058 1059 local_irq_save(flags); 1060 __count_memcg_events(memcg, idx, count); 1061 local_irq_restore(flags); 1062} 1063 1064static inline void count_memcg_page_event(struct page *page, 1065 enum vm_event_item idx) 1066{ 1067 struct mem_cgroup *memcg = page_memcg(page); 1068 1069 if (memcg) 1070 count_memcg_events(memcg, idx, 1); 1071} 1072 1073static inline void count_memcg_folio_events(struct folio *folio, 1074 enum vm_event_item idx, unsigned long nr) 1075{ 1076 struct mem_cgroup *memcg = folio_memcg(folio); 1077 1078 if (memcg) 1079 count_memcg_events(memcg, idx, nr); 1080} 1081 1082static inline void count_memcg_event_mm(struct mm_struct *mm, 1083 enum vm_event_item idx) 1084{ 1085 struct mem_cgroup *memcg; 1086 1087 if (mem_cgroup_disabled()) 1088 return; 1089 1090 rcu_read_lock(); 1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1092 if (likely(memcg)) 1093 count_memcg_events(memcg, idx, 1); 1094 rcu_read_unlock(); 1095} 1096 1097static inline void memcg_memory_event(struct mem_cgroup *memcg, 1098 enum memcg_memory_event event) 1099{ 1100 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1101 event == MEMCG_SWAP_FAIL; 1102 1103 atomic_long_inc(&memcg->memory_events_local[event]); 1104 if (!swap_event) 1105 cgroup_file_notify(&memcg->events_local_file); 1106 1107 do { 1108 atomic_long_inc(&memcg->memory_events[event]); 1109 if (swap_event) 1110 cgroup_file_notify(&memcg->swap_events_file); 1111 else 1112 cgroup_file_notify(&memcg->events_file); 1113 1114 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1115 break; 1116 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1117 break; 1118 } while ((memcg = parent_mem_cgroup(memcg)) && 1119 !mem_cgroup_is_root(memcg)); 1120} 1121 1122static inline void memcg_memory_event_mm(struct mm_struct *mm, 1123 enum memcg_memory_event event) 1124{ 1125 struct mem_cgroup *memcg; 1126 1127 if (mem_cgroup_disabled()) 1128 return; 1129 1130 rcu_read_lock(); 1131 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1132 if (likely(memcg)) 1133 memcg_memory_event(memcg, event); 1134 rcu_read_unlock(); 1135} 1136 1137void split_page_memcg(struct page *head, unsigned int nr); 1138 1139unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1140 gfp_t gfp_mask, 1141 unsigned long *total_scanned); 1142 1143#else /* CONFIG_MEMCG */ 1144 1145#define MEM_CGROUP_ID_SHIFT 0 1146#define MEM_CGROUP_ID_MAX 0 1147 1148static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1149{ 1150 return NULL; 1151} 1152 1153static inline struct mem_cgroup *page_memcg(struct page *page) 1154{ 1155 return NULL; 1156} 1157 1158static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1159{ 1160 WARN_ON_ONCE(!rcu_read_lock_held()); 1161 return NULL; 1162} 1163 1164static inline struct mem_cgroup *page_memcg_check(struct page *page) 1165{ 1166 return NULL; 1167} 1168 1169static inline bool folio_memcg_kmem(struct folio *folio) 1170{ 1171 return false; 1172} 1173 1174static inline bool PageMemcgKmem(struct page *page) 1175{ 1176 return false; 1177} 1178 1179static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1180{ 1181 return true; 1182} 1183 1184static inline bool mem_cgroup_disabled(void) 1185{ 1186 return true; 1187} 1188 1189static inline void memcg_memory_event(struct mem_cgroup *memcg, 1190 enum memcg_memory_event event) 1191{ 1192} 1193 1194static inline void memcg_memory_event_mm(struct mm_struct *mm, 1195 enum memcg_memory_event event) 1196{ 1197} 1198 1199static inline void mem_cgroup_protection(struct mem_cgroup *root, 1200 struct mem_cgroup *memcg, 1201 unsigned long *min, 1202 unsigned long *low) 1203{ 1204 *min = *low = 0; 1205} 1206 1207static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1208 struct mem_cgroup *memcg) 1209{ 1210} 1211 1212static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1213{ 1214 return false; 1215} 1216 1217static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1218{ 1219 return false; 1220} 1221 1222static inline int mem_cgroup_charge(struct folio *folio, 1223 struct mm_struct *mm, gfp_t gfp) 1224{ 1225 return 0; 1226} 1227 1228static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1229 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1230{ 1231 return 0; 1232} 1233 1234static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1235{ 1236} 1237 1238static inline void mem_cgroup_uncharge(struct folio *folio) 1239{ 1240} 1241 1242static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1243{ 1244} 1245 1246static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1247{ 1248} 1249 1250static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1251 struct pglist_data *pgdat) 1252{ 1253 return &pgdat->__lruvec; 1254} 1255 1256static inline struct lruvec *folio_lruvec(struct folio *folio) 1257{ 1258 struct pglist_data *pgdat = folio_pgdat(folio); 1259 return &pgdat->__lruvec; 1260} 1261 1262static inline 1263void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1264{ 1265} 1266 1267static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1268{ 1269 return NULL; 1270} 1271 1272static inline bool mm_match_cgroup(struct mm_struct *mm, 1273 struct mem_cgroup *memcg) 1274{ 1275 return true; 1276} 1277 1278static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1279{ 1280 return NULL; 1281} 1282 1283static inline 1284struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1285{ 1286 return NULL; 1287} 1288 1289static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1290{ 1291} 1292 1293static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1294{ 1295} 1296 1297static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1298{ 1299 struct pglist_data *pgdat = folio_pgdat(folio); 1300 1301 spin_lock(&pgdat->__lruvec.lru_lock); 1302 return &pgdat->__lruvec; 1303} 1304 1305static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1306{ 1307 struct pglist_data *pgdat = folio_pgdat(folio); 1308 1309 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1310 return &pgdat->__lruvec; 1311} 1312 1313static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1314 unsigned long *flagsp) 1315{ 1316 struct pglist_data *pgdat = folio_pgdat(folio); 1317 1318 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1319 return &pgdat->__lruvec; 1320} 1321 1322static inline struct mem_cgroup * 1323mem_cgroup_iter(struct mem_cgroup *root, 1324 struct mem_cgroup *prev, 1325 struct mem_cgroup_reclaim_cookie *reclaim) 1326{ 1327 return NULL; 1328} 1329 1330static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1331 struct mem_cgroup *prev) 1332{ 1333} 1334 1335static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1336 int (*fn)(struct task_struct *, void *), void *arg) 1337{ 1338 return 0; 1339} 1340 1341static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1342{ 1343 return 0; 1344} 1345 1346static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1347{ 1348 WARN_ON_ONCE(id); 1349 /* XXX: This should always return root_mem_cgroup */ 1350 return NULL; 1351} 1352 1353#ifdef CONFIG_SHRINKER_DEBUG 1354static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1355{ 1356 return 0; 1357} 1358 1359static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1360{ 1361 return NULL; 1362} 1363#endif 1364 1365static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1366{ 1367 return NULL; 1368} 1369 1370static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1371{ 1372 return NULL; 1373} 1374 1375static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1376{ 1377 return true; 1378} 1379 1380static inline 1381unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1382 enum lru_list lru, int zone_idx) 1383{ 1384 return 0; 1385} 1386 1387static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1388{ 1389 return 0; 1390} 1391 1392static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1393{ 1394 return 0; 1395} 1396 1397static inline void 1398mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1399{ 1400} 1401 1402static inline void 1403mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1404{ 1405} 1406 1407static inline void lock_page_memcg(struct page *page) 1408{ 1409} 1410 1411static inline void unlock_page_memcg(struct page *page) 1412{ 1413} 1414 1415static inline void folio_memcg_lock(struct folio *folio) 1416{ 1417} 1418 1419static inline void folio_memcg_unlock(struct folio *folio) 1420{ 1421} 1422 1423static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1424{ 1425 /* to match folio_memcg_rcu() */ 1426 rcu_read_lock(); 1427 return true; 1428} 1429 1430static inline void mem_cgroup_unlock_pages(void) 1431{ 1432 rcu_read_unlock(); 1433} 1434 1435static inline void mem_cgroup_handle_over_high(void) 1436{ 1437} 1438 1439static inline void mem_cgroup_enter_user_fault(void) 1440{ 1441} 1442 1443static inline void mem_cgroup_exit_user_fault(void) 1444{ 1445} 1446 1447static inline bool task_in_memcg_oom(struct task_struct *p) 1448{ 1449 return false; 1450} 1451 1452static inline bool mem_cgroup_oom_synchronize(bool wait) 1453{ 1454 return false; 1455} 1456 1457static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1458 struct task_struct *victim, struct mem_cgroup *oom_domain) 1459{ 1460 return NULL; 1461} 1462 1463static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1464{ 1465} 1466 1467static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1468 int idx, 1469 int nr) 1470{ 1471} 1472 1473static inline void mod_memcg_state(struct mem_cgroup *memcg, 1474 int idx, 1475 int nr) 1476{ 1477} 1478 1479static inline void mod_memcg_page_state(struct page *page, 1480 int idx, int val) 1481{ 1482} 1483 1484static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1485{ 1486 return 0; 1487} 1488 1489static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1490 enum node_stat_item idx) 1491{ 1492 return node_page_state(lruvec_pgdat(lruvec), idx); 1493} 1494 1495static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1496 enum node_stat_item idx) 1497{ 1498 return node_page_state(lruvec_pgdat(lruvec), idx); 1499} 1500 1501static inline void mem_cgroup_flush_stats(void) 1502{ 1503} 1504 1505static inline void mem_cgroup_flush_stats_delayed(void) 1506{ 1507} 1508 1509static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1510 enum node_stat_item idx, int val) 1511{ 1512} 1513 1514static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1515 int val) 1516{ 1517 struct page *page = virt_to_head_page(p); 1518 1519 __mod_node_page_state(page_pgdat(page), idx, val); 1520} 1521 1522static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1523 int val) 1524{ 1525 struct page *page = virt_to_head_page(p); 1526 1527 mod_node_page_state(page_pgdat(page), idx, val); 1528} 1529 1530static inline void count_memcg_events(struct mem_cgroup *memcg, 1531 enum vm_event_item idx, 1532 unsigned long count) 1533{ 1534} 1535 1536static inline void __count_memcg_events(struct mem_cgroup *memcg, 1537 enum vm_event_item idx, 1538 unsigned long count) 1539{ 1540} 1541 1542static inline void count_memcg_page_event(struct page *page, 1543 int idx) 1544{ 1545} 1546 1547static inline void count_memcg_folio_events(struct folio *folio, 1548 enum vm_event_item idx, unsigned long nr) 1549{ 1550} 1551 1552static inline 1553void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1554{ 1555} 1556 1557static inline void split_page_memcg(struct page *head, unsigned int nr) 1558{ 1559} 1560 1561static inline 1562unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1563 gfp_t gfp_mask, 1564 unsigned long *total_scanned) 1565{ 1566 return 0; 1567} 1568#endif /* CONFIG_MEMCG */ 1569 1570static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1571{ 1572 __mod_lruvec_kmem_state(p, idx, 1); 1573} 1574 1575static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1576{ 1577 __mod_lruvec_kmem_state(p, idx, -1); 1578} 1579 1580static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1581{ 1582 struct mem_cgroup *memcg; 1583 1584 memcg = lruvec_memcg(lruvec); 1585 if (!memcg) 1586 return NULL; 1587 memcg = parent_mem_cgroup(memcg); 1588 if (!memcg) 1589 return NULL; 1590 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1591} 1592 1593static inline void unlock_page_lruvec(struct lruvec *lruvec) 1594{ 1595 spin_unlock(&lruvec->lru_lock); 1596} 1597 1598static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1599{ 1600 spin_unlock_irq(&lruvec->lru_lock); 1601} 1602 1603static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1604 unsigned long flags) 1605{ 1606 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1607} 1608 1609/* Test requires a stable page->memcg binding, see page_memcg() */ 1610static inline bool folio_matches_lruvec(struct folio *folio, 1611 struct lruvec *lruvec) 1612{ 1613 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1614 lruvec_memcg(lruvec) == folio_memcg(folio); 1615} 1616 1617/* Don't lock again iff page's lruvec locked */ 1618static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1619 struct lruvec *locked_lruvec) 1620{ 1621 if (locked_lruvec) { 1622 if (folio_matches_lruvec(folio, locked_lruvec)) 1623 return locked_lruvec; 1624 1625 unlock_page_lruvec_irq(locked_lruvec); 1626 } 1627 1628 return folio_lruvec_lock_irq(folio); 1629} 1630 1631/* Don't lock again iff page's lruvec locked */ 1632static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1633 struct lruvec *locked_lruvec, unsigned long *flags) 1634{ 1635 if (locked_lruvec) { 1636 if (folio_matches_lruvec(folio, locked_lruvec)) 1637 return locked_lruvec; 1638 1639 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1640 } 1641 1642 return folio_lruvec_lock_irqsave(folio, flags); 1643} 1644 1645#ifdef CONFIG_CGROUP_WRITEBACK 1646 1647struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1648void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1649 unsigned long *pheadroom, unsigned long *pdirty, 1650 unsigned long *pwriteback); 1651 1652void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1653 struct bdi_writeback *wb); 1654 1655static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1656 struct bdi_writeback *wb) 1657{ 1658 if (mem_cgroup_disabled()) 1659 return; 1660 1661 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css)) 1662 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1663} 1664 1665void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1666 1667#else /* CONFIG_CGROUP_WRITEBACK */ 1668 1669static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1670{ 1671 return NULL; 1672} 1673 1674static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1675 unsigned long *pfilepages, 1676 unsigned long *pheadroom, 1677 unsigned long *pdirty, 1678 unsigned long *pwriteback) 1679{ 1680} 1681 1682static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1683 struct bdi_writeback *wb) 1684{ 1685} 1686 1687static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1688{ 1689} 1690 1691#endif /* CONFIG_CGROUP_WRITEBACK */ 1692 1693struct sock; 1694bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1695 gfp_t gfp_mask); 1696void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1697#ifdef CONFIG_MEMCG 1698extern struct static_key_false memcg_sockets_enabled_key; 1699#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1700void mem_cgroup_sk_alloc(struct sock *sk); 1701void mem_cgroup_sk_free(struct sock *sk); 1702static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1703{ 1704 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1705 return true; 1706 do { 1707 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1708 return true; 1709 } while ((memcg = parent_mem_cgroup(memcg))); 1710 return false; 1711} 1712 1713int alloc_shrinker_info(struct mem_cgroup *memcg); 1714void free_shrinker_info(struct mem_cgroup *memcg); 1715void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1716void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1717#else 1718#define mem_cgroup_sockets_enabled 0 1719static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1720static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1721static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1722{ 1723 return false; 1724} 1725 1726static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1727 int nid, int shrinker_id) 1728{ 1729} 1730#endif 1731 1732#ifdef CONFIG_MEMCG_KMEM 1733bool mem_cgroup_kmem_disabled(void); 1734int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1735void __memcg_kmem_uncharge_page(struct page *page, int order); 1736 1737struct obj_cgroup *get_obj_cgroup_from_current(void); 1738struct obj_cgroup *get_obj_cgroup_from_page(struct page *page); 1739 1740int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1741void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1742 1743extern struct static_key_false memcg_kmem_enabled_key; 1744 1745static inline bool memcg_kmem_enabled(void) 1746{ 1747 return static_branch_likely(&memcg_kmem_enabled_key); 1748} 1749 1750static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1751 int order) 1752{ 1753 if (memcg_kmem_enabled()) 1754 return __memcg_kmem_charge_page(page, gfp, order); 1755 return 0; 1756} 1757 1758static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1759{ 1760 if (memcg_kmem_enabled()) 1761 __memcg_kmem_uncharge_page(page, order); 1762} 1763 1764/* 1765 * A helper for accessing memcg's kmem_id, used for getting 1766 * corresponding LRU lists. 1767 */ 1768static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1769{ 1770 return memcg ? memcg->kmemcg_id : -1; 1771} 1772 1773struct mem_cgroup *mem_cgroup_from_obj(void *p); 1774struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1775 1776static inline void count_objcg_event(struct obj_cgroup *objcg, 1777 enum vm_event_item idx) 1778{ 1779 struct mem_cgroup *memcg; 1780 1781 if (!memcg_kmem_enabled()) 1782 return; 1783 1784 rcu_read_lock(); 1785 memcg = obj_cgroup_memcg(objcg); 1786 count_memcg_events(memcg, idx, 1); 1787 rcu_read_unlock(); 1788} 1789 1790#else 1791static inline bool mem_cgroup_kmem_disabled(void) 1792{ 1793 return true; 1794} 1795 1796static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1797 int order) 1798{ 1799 return 0; 1800} 1801 1802static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1803{ 1804} 1805 1806static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1807 int order) 1808{ 1809 return 0; 1810} 1811 1812static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1813{ 1814} 1815 1816static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 1817{ 1818 return NULL; 1819} 1820 1821static inline bool memcg_kmem_enabled(void) 1822{ 1823 return false; 1824} 1825 1826static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1827{ 1828 return -1; 1829} 1830 1831static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1832{ 1833 return NULL; 1834} 1835 1836static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1837{ 1838 return NULL; 1839} 1840 1841static inline void count_objcg_event(struct obj_cgroup *objcg, 1842 enum vm_event_item idx) 1843{ 1844} 1845 1846#endif /* CONFIG_MEMCG_KMEM */ 1847 1848#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1849bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1850void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1851void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1852#else 1853static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1854{ 1855 return true; 1856} 1857static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1858 size_t size) 1859{ 1860} 1861static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1862 size_t size) 1863{ 1864} 1865#endif 1866 1867#endif /* _LINUX_MEMCONTROL_H */