at v6.1 71 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 54 * in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58 59/* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80/* Two fragments for cross MMIO pages. */ 81#define KVM_MAX_MMIO_FRAGMENTS 2 82 83#ifndef KVM_ADDRESS_SPACE_NUM 84#define KVM_ADDRESS_SPACE_NUM 1 85#endif 86 87/* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94#define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 100/* 101 * error pfns indicate that the gfn is in slot but faild to 102 * translate it to pfn on host. 103 */ 104static inline bool is_error_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_MASK); 107} 108 109/* 110 * error_noslot pfns indicate that the gfn can not be 111 * translated to pfn - it is not in slot or failed to 112 * translate it to pfn. 113 */ 114static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 115{ 116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 117} 118 119/* noslot pfn indicates that the gfn is not in slot. */ 120static inline bool is_noslot_pfn(kvm_pfn_t pfn) 121{ 122 return pfn == KVM_PFN_NOSLOT; 123} 124 125/* 126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 127 * provide own defines and kvm_is_error_hva 128 */ 129#ifndef KVM_HVA_ERR_BAD 130 131#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 132#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 133 134static inline bool kvm_is_error_hva(unsigned long addr) 135{ 136 return addr >= PAGE_OFFSET; 137} 138 139#endif 140 141#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 142 143static inline bool is_error_page(struct page *page) 144{ 145 return IS_ERR(page); 146} 147 148#define KVM_REQUEST_MASK GENMASK(7,0) 149#define KVM_REQUEST_NO_WAKEUP BIT(8) 150#define KVM_REQUEST_WAIT BIT(9) 151#define KVM_REQUEST_NO_ACTION BIT(10) 152/* 153 * Architecture-independent vcpu->requests bit members 154 * Bits 3-7 are reserved for more arch-independent bits. 155 */ 156#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 157#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 158#define KVM_REQ_UNBLOCK 2 159#define KVM_REQUEST_ARCH_BASE 8 160 161/* 162 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 163 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 164 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 165 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 166 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 167 * guarantee the vCPU received an IPI and has actually exited guest mode. 168 */ 169#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 170 171#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 172 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 173 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 174}) 175#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 176 177bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 178 unsigned long *vcpu_bitmap); 179bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 180bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 181 struct kvm_vcpu *except); 182bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 183 unsigned long *vcpu_bitmap); 184 185#define KVM_USERSPACE_IRQ_SOURCE_ID 0 186#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 187 188extern struct mutex kvm_lock; 189extern struct list_head vm_list; 190 191struct kvm_io_range { 192 gpa_t addr; 193 int len; 194 struct kvm_io_device *dev; 195}; 196 197#define NR_IOBUS_DEVS 1000 198 199struct kvm_io_bus { 200 int dev_count; 201 int ioeventfd_count; 202 struct kvm_io_range range[]; 203}; 204 205enum kvm_bus { 206 KVM_MMIO_BUS, 207 KVM_PIO_BUS, 208 KVM_VIRTIO_CCW_NOTIFY_BUS, 209 KVM_FAST_MMIO_BUS, 210 KVM_NR_BUSES 211}; 212 213int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 214 int len, const void *val); 215int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 216 gpa_t addr, int len, const void *val, long cookie); 217int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 218 int len, void *val); 219int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 220 int len, struct kvm_io_device *dev); 221int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 222 struct kvm_io_device *dev); 223struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 224 gpa_t addr); 225 226#ifdef CONFIG_KVM_ASYNC_PF 227struct kvm_async_pf { 228 struct work_struct work; 229 struct list_head link; 230 struct list_head queue; 231 struct kvm_vcpu *vcpu; 232 struct mm_struct *mm; 233 gpa_t cr2_or_gpa; 234 unsigned long addr; 235 struct kvm_arch_async_pf arch; 236 bool wakeup_all; 237 bool notpresent_injected; 238}; 239 240void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 241void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 242bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 243 unsigned long hva, struct kvm_arch_async_pf *arch); 244int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 245#endif 246 247#ifdef KVM_ARCH_WANT_MMU_NOTIFIER 248struct kvm_gfn_range { 249 struct kvm_memory_slot *slot; 250 gfn_t start; 251 gfn_t end; 252 pte_t pte; 253 bool may_block; 254}; 255bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 256bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 257bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 258bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 259#endif 260 261enum { 262 OUTSIDE_GUEST_MODE, 263 IN_GUEST_MODE, 264 EXITING_GUEST_MODE, 265 READING_SHADOW_PAGE_TABLES, 266}; 267 268#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 269 270struct kvm_host_map { 271 /* 272 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 273 * a 'struct page' for it. When using mem= kernel parameter some memory 274 * can be used as guest memory but they are not managed by host 275 * kernel). 276 * If 'pfn' is not managed by the host kernel, this field is 277 * initialized to KVM_UNMAPPED_PAGE. 278 */ 279 struct page *page; 280 void *hva; 281 kvm_pfn_t pfn; 282 kvm_pfn_t gfn; 283}; 284 285/* 286 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 287 * directly to check for that. 288 */ 289static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 290{ 291 return !!map->hva; 292} 293 294static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 295{ 296 return single_task_running() && !need_resched() && ktime_before(cur, stop); 297} 298 299/* 300 * Sometimes a large or cross-page mmio needs to be broken up into separate 301 * exits for userspace servicing. 302 */ 303struct kvm_mmio_fragment { 304 gpa_t gpa; 305 void *data; 306 unsigned len; 307}; 308 309struct kvm_vcpu { 310 struct kvm *kvm; 311#ifdef CONFIG_PREEMPT_NOTIFIERS 312 struct preempt_notifier preempt_notifier; 313#endif 314 int cpu; 315 int vcpu_id; /* id given by userspace at creation */ 316 int vcpu_idx; /* index in kvm->vcpus array */ 317 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 318#ifdef CONFIG_PROVE_RCU 319 int srcu_depth; 320#endif 321 int mode; 322 u64 requests; 323 unsigned long guest_debug; 324 325 struct mutex mutex; 326 struct kvm_run *run; 327 328#ifndef __KVM_HAVE_ARCH_WQP 329 struct rcuwait wait; 330#endif 331 struct pid __rcu *pid; 332 int sigset_active; 333 sigset_t sigset; 334 unsigned int halt_poll_ns; 335 bool valid_wakeup; 336 337#ifdef CONFIG_HAS_IOMEM 338 int mmio_needed; 339 int mmio_read_completed; 340 int mmio_is_write; 341 int mmio_cur_fragment; 342 int mmio_nr_fragments; 343 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 344#endif 345 346#ifdef CONFIG_KVM_ASYNC_PF 347 struct { 348 u32 queued; 349 struct list_head queue; 350 struct list_head done; 351 spinlock_t lock; 352 } async_pf; 353#endif 354 355#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 356 /* 357 * Cpu relax intercept or pause loop exit optimization 358 * in_spin_loop: set when a vcpu does a pause loop exit 359 * or cpu relax intercepted. 360 * dy_eligible: indicates whether vcpu is eligible for directed yield. 361 */ 362 struct { 363 bool in_spin_loop; 364 bool dy_eligible; 365 } spin_loop; 366#endif 367 bool preempted; 368 bool ready; 369 struct kvm_vcpu_arch arch; 370 struct kvm_vcpu_stat stat; 371 char stats_id[KVM_STATS_NAME_SIZE]; 372 struct kvm_dirty_ring dirty_ring; 373 374 /* 375 * The most recently used memslot by this vCPU and the slots generation 376 * for which it is valid. 377 * No wraparound protection is needed since generations won't overflow in 378 * thousands of years, even assuming 1M memslot operations per second. 379 */ 380 struct kvm_memory_slot *last_used_slot; 381 u64 last_used_slot_gen; 382}; 383 384/* 385 * Start accounting time towards a guest. 386 * Must be called before entering guest context. 387 */ 388static __always_inline void guest_timing_enter_irqoff(void) 389{ 390 /* 391 * This is running in ioctl context so its safe to assume that it's the 392 * stime pending cputime to flush. 393 */ 394 instrumentation_begin(); 395 vtime_account_guest_enter(); 396 instrumentation_end(); 397} 398 399/* 400 * Enter guest context and enter an RCU extended quiescent state. 401 * 402 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 403 * unsafe to use any code which may directly or indirectly use RCU, tracing 404 * (including IRQ flag tracing), or lockdep. All code in this period must be 405 * non-instrumentable. 406 */ 407static __always_inline void guest_context_enter_irqoff(void) 408{ 409 /* 410 * KVM does not hold any references to rcu protected data when it 411 * switches CPU into a guest mode. In fact switching to a guest mode 412 * is very similar to exiting to userspace from rcu point of view. In 413 * addition CPU may stay in a guest mode for quite a long time (up to 414 * one time slice). Lets treat guest mode as quiescent state, just like 415 * we do with user-mode execution. 416 */ 417 if (!context_tracking_guest_enter()) { 418 instrumentation_begin(); 419 rcu_virt_note_context_switch(smp_processor_id()); 420 instrumentation_end(); 421 } 422} 423 424/* 425 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 426 * guest_state_enter_irqoff(). 427 */ 428static __always_inline void guest_enter_irqoff(void) 429{ 430 guest_timing_enter_irqoff(); 431 guest_context_enter_irqoff(); 432} 433 434/** 435 * guest_state_enter_irqoff - Fixup state when entering a guest 436 * 437 * Entry to a guest will enable interrupts, but the kernel state is interrupts 438 * disabled when this is invoked. Also tell RCU about it. 439 * 440 * 1) Trace interrupts on state 441 * 2) Invoke context tracking if enabled to adjust RCU state 442 * 3) Tell lockdep that interrupts are enabled 443 * 444 * Invoked from architecture specific code before entering a guest. 445 * Must be called with interrupts disabled and the caller must be 446 * non-instrumentable. 447 * The caller has to invoke guest_timing_enter_irqoff() before this. 448 * 449 * Note: this is analogous to exit_to_user_mode(). 450 */ 451static __always_inline void guest_state_enter_irqoff(void) 452{ 453 instrumentation_begin(); 454 trace_hardirqs_on_prepare(); 455 lockdep_hardirqs_on_prepare(); 456 instrumentation_end(); 457 458 guest_context_enter_irqoff(); 459 lockdep_hardirqs_on(CALLER_ADDR0); 460} 461 462/* 463 * Exit guest context and exit an RCU extended quiescent state. 464 * 465 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 466 * unsafe to use any code which may directly or indirectly use RCU, tracing 467 * (including IRQ flag tracing), or lockdep. All code in this period must be 468 * non-instrumentable. 469 */ 470static __always_inline void guest_context_exit_irqoff(void) 471{ 472 context_tracking_guest_exit(); 473} 474 475/* 476 * Stop accounting time towards a guest. 477 * Must be called after exiting guest context. 478 */ 479static __always_inline void guest_timing_exit_irqoff(void) 480{ 481 instrumentation_begin(); 482 /* Flush the guest cputime we spent on the guest */ 483 vtime_account_guest_exit(); 484 instrumentation_end(); 485} 486 487/* 488 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 489 * guest_timing_exit_irqoff(). 490 */ 491static __always_inline void guest_exit_irqoff(void) 492{ 493 guest_context_exit_irqoff(); 494 guest_timing_exit_irqoff(); 495} 496 497static inline void guest_exit(void) 498{ 499 unsigned long flags; 500 501 local_irq_save(flags); 502 guest_exit_irqoff(); 503 local_irq_restore(flags); 504} 505 506/** 507 * guest_state_exit_irqoff - Establish state when returning from guest mode 508 * 509 * Entry from a guest disables interrupts, but guest mode is traced as 510 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 511 * 512 * 1) Tell lockdep that interrupts are disabled 513 * 2) Invoke context tracking if enabled to reactivate RCU 514 * 3) Trace interrupts off state 515 * 516 * Invoked from architecture specific code after exiting a guest. 517 * Must be invoked with interrupts disabled and the caller must be 518 * non-instrumentable. 519 * The caller has to invoke guest_timing_exit_irqoff() after this. 520 * 521 * Note: this is analogous to enter_from_user_mode(). 522 */ 523static __always_inline void guest_state_exit_irqoff(void) 524{ 525 lockdep_hardirqs_off(CALLER_ADDR0); 526 guest_context_exit_irqoff(); 527 528 instrumentation_begin(); 529 trace_hardirqs_off_finish(); 530 instrumentation_end(); 531} 532 533static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 534{ 535 /* 536 * The memory barrier ensures a previous write to vcpu->requests cannot 537 * be reordered with the read of vcpu->mode. It pairs with the general 538 * memory barrier following the write of vcpu->mode in VCPU RUN. 539 */ 540 smp_mb__before_atomic(); 541 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 542} 543 544/* 545 * Some of the bitops functions do not support too long bitmaps. 546 * This number must be determined not to exceed such limits. 547 */ 548#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 549 550/* 551 * Since at idle each memslot belongs to two memslot sets it has to contain 552 * two embedded nodes for each data structure that it forms a part of. 553 * 554 * Two memslot sets (one active and one inactive) are necessary so the VM 555 * continues to run on one memslot set while the other is being modified. 556 * 557 * These two memslot sets normally point to the same set of memslots. 558 * They can, however, be desynchronized when performing a memslot management 559 * operation by replacing the memslot to be modified by its copy. 560 * After the operation is complete, both memslot sets once again point to 561 * the same, common set of memslot data. 562 * 563 * The memslots themselves are independent of each other so they can be 564 * individually added or deleted. 565 */ 566struct kvm_memory_slot { 567 struct hlist_node id_node[2]; 568 struct interval_tree_node hva_node[2]; 569 struct rb_node gfn_node[2]; 570 gfn_t base_gfn; 571 unsigned long npages; 572 unsigned long *dirty_bitmap; 573 struct kvm_arch_memory_slot arch; 574 unsigned long userspace_addr; 575 u32 flags; 576 short id; 577 u16 as_id; 578}; 579 580static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 581{ 582 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 583} 584 585static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 586{ 587 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 588} 589 590static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 591{ 592 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 593 594 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 595} 596 597#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 598#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 599#endif 600 601struct kvm_s390_adapter_int { 602 u64 ind_addr; 603 u64 summary_addr; 604 u64 ind_offset; 605 u32 summary_offset; 606 u32 adapter_id; 607}; 608 609struct kvm_hv_sint { 610 u32 vcpu; 611 u32 sint; 612}; 613 614struct kvm_xen_evtchn { 615 u32 port; 616 u32 vcpu_id; 617 int vcpu_idx; 618 u32 priority; 619}; 620 621struct kvm_kernel_irq_routing_entry { 622 u32 gsi; 623 u32 type; 624 int (*set)(struct kvm_kernel_irq_routing_entry *e, 625 struct kvm *kvm, int irq_source_id, int level, 626 bool line_status); 627 union { 628 struct { 629 unsigned irqchip; 630 unsigned pin; 631 } irqchip; 632 struct { 633 u32 address_lo; 634 u32 address_hi; 635 u32 data; 636 u32 flags; 637 u32 devid; 638 } msi; 639 struct kvm_s390_adapter_int adapter; 640 struct kvm_hv_sint hv_sint; 641 struct kvm_xen_evtchn xen_evtchn; 642 }; 643 struct hlist_node link; 644}; 645 646#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 647struct kvm_irq_routing_table { 648 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 649 u32 nr_rt_entries; 650 /* 651 * Array indexed by gsi. Each entry contains list of irq chips 652 * the gsi is connected to. 653 */ 654 struct hlist_head map[]; 655}; 656#endif 657 658#ifndef KVM_INTERNAL_MEM_SLOTS 659#define KVM_INTERNAL_MEM_SLOTS 0 660#endif 661 662#define KVM_MEM_SLOTS_NUM SHRT_MAX 663#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 664 665#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 666static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 667{ 668 return 0; 669} 670#endif 671 672struct kvm_memslots { 673 u64 generation; 674 atomic_long_t last_used_slot; 675 struct rb_root_cached hva_tree; 676 struct rb_root gfn_tree; 677 /* 678 * The mapping table from slot id to memslot. 679 * 680 * 7-bit bucket count matches the size of the old id to index array for 681 * 512 slots, while giving good performance with this slot count. 682 * Higher bucket counts bring only small performance improvements but 683 * always result in higher memory usage (even for lower memslot counts). 684 */ 685 DECLARE_HASHTABLE(id_hash, 7); 686 int node_idx; 687}; 688 689struct kvm { 690#ifdef KVM_HAVE_MMU_RWLOCK 691 rwlock_t mmu_lock; 692#else 693 spinlock_t mmu_lock; 694#endif /* KVM_HAVE_MMU_RWLOCK */ 695 696 struct mutex slots_lock; 697 698 /* 699 * Protects the arch-specific fields of struct kvm_memory_slots in 700 * use by the VM. To be used under the slots_lock (above) or in a 701 * kvm->srcu critical section where acquiring the slots_lock would 702 * lead to deadlock with the synchronize_srcu in 703 * install_new_memslots. 704 */ 705 struct mutex slots_arch_lock; 706 struct mm_struct *mm; /* userspace tied to this vm */ 707 unsigned long nr_memslot_pages; 708 /* The two memslot sets - active and inactive (per address space) */ 709 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 710 /* The current active memslot set for each address space */ 711 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 712 struct xarray vcpu_array; 713 714 /* Used to wait for completion of MMU notifiers. */ 715 spinlock_t mn_invalidate_lock; 716 unsigned long mn_active_invalidate_count; 717 struct rcuwait mn_memslots_update_rcuwait; 718 719 /* For management / invalidation of gfn_to_pfn_caches */ 720 spinlock_t gpc_lock; 721 struct list_head gpc_list; 722 723 /* 724 * created_vcpus is protected by kvm->lock, and is incremented 725 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 726 * incremented after storing the kvm_vcpu pointer in vcpus, 727 * and is accessed atomically. 728 */ 729 atomic_t online_vcpus; 730 int max_vcpus; 731 int created_vcpus; 732 int last_boosted_vcpu; 733 struct list_head vm_list; 734 struct mutex lock; 735 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 736#ifdef CONFIG_HAVE_KVM_EVENTFD 737 struct { 738 spinlock_t lock; 739 struct list_head items; 740 struct list_head resampler_list; 741 struct mutex resampler_lock; 742 } irqfds; 743 struct list_head ioeventfds; 744#endif 745 struct kvm_vm_stat stat; 746 struct kvm_arch arch; 747 refcount_t users_count; 748#ifdef CONFIG_KVM_MMIO 749 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 750 spinlock_t ring_lock; 751 struct list_head coalesced_zones; 752#endif 753 754 struct mutex irq_lock; 755#ifdef CONFIG_HAVE_KVM_IRQCHIP 756 /* 757 * Update side is protected by irq_lock. 758 */ 759 struct kvm_irq_routing_table __rcu *irq_routing; 760#endif 761#ifdef CONFIG_HAVE_KVM_IRQFD 762 struct hlist_head irq_ack_notifier_list; 763#endif 764 765#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 766 struct mmu_notifier mmu_notifier; 767 unsigned long mmu_invalidate_seq; 768 long mmu_invalidate_in_progress; 769 unsigned long mmu_invalidate_range_start; 770 unsigned long mmu_invalidate_range_end; 771#endif 772 struct list_head devices; 773 u64 manual_dirty_log_protect; 774 struct dentry *debugfs_dentry; 775 struct kvm_stat_data **debugfs_stat_data; 776 struct srcu_struct srcu; 777 struct srcu_struct irq_srcu; 778 pid_t userspace_pid; 779 bool override_halt_poll_ns; 780 unsigned int max_halt_poll_ns; 781 u32 dirty_ring_size; 782 bool vm_bugged; 783 bool vm_dead; 784 785#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 786 struct notifier_block pm_notifier; 787#endif 788 char stats_id[KVM_STATS_NAME_SIZE]; 789}; 790 791#define kvm_err(fmt, ...) \ 792 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 793#define kvm_info(fmt, ...) \ 794 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 795#define kvm_debug(fmt, ...) \ 796 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 797#define kvm_debug_ratelimited(fmt, ...) \ 798 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 799 ## __VA_ARGS__) 800#define kvm_pr_unimpl(fmt, ...) \ 801 pr_err_ratelimited("kvm [%i]: " fmt, \ 802 task_tgid_nr(current), ## __VA_ARGS__) 803 804/* The guest did something we don't support. */ 805#define vcpu_unimpl(vcpu, fmt, ...) \ 806 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 807 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 808 809#define vcpu_debug(vcpu, fmt, ...) \ 810 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 811#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 812 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 813 ## __VA_ARGS__) 814#define vcpu_err(vcpu, fmt, ...) \ 815 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 816 817static inline void kvm_vm_dead(struct kvm *kvm) 818{ 819 kvm->vm_dead = true; 820 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 821} 822 823static inline void kvm_vm_bugged(struct kvm *kvm) 824{ 825 kvm->vm_bugged = true; 826 kvm_vm_dead(kvm); 827} 828 829 830#define KVM_BUG(cond, kvm, fmt...) \ 831({ \ 832 int __ret = (cond); \ 833 \ 834 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 835 kvm_vm_bugged(kvm); \ 836 unlikely(__ret); \ 837}) 838 839#define KVM_BUG_ON(cond, kvm) \ 840({ \ 841 int __ret = (cond); \ 842 \ 843 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 844 kvm_vm_bugged(kvm); \ 845 unlikely(__ret); \ 846}) 847 848static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 849{ 850#ifdef CONFIG_PROVE_RCU 851 WARN_ONCE(vcpu->srcu_depth++, 852 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 853#endif 854 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 855} 856 857static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 858{ 859 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 860 861#ifdef CONFIG_PROVE_RCU 862 WARN_ONCE(--vcpu->srcu_depth, 863 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 864#endif 865} 866 867static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 868{ 869 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 870} 871 872static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 873{ 874 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 875 lockdep_is_held(&kvm->slots_lock) || 876 !refcount_read(&kvm->users_count)); 877} 878 879static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 880{ 881 int num_vcpus = atomic_read(&kvm->online_vcpus); 882 i = array_index_nospec(i, num_vcpus); 883 884 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 885 smp_rmb(); 886 return xa_load(&kvm->vcpu_array, i); 887} 888 889#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 890 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 891 (atomic_read(&kvm->online_vcpus) - 1)) 892 893static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 894{ 895 struct kvm_vcpu *vcpu = NULL; 896 unsigned long i; 897 898 if (id < 0) 899 return NULL; 900 if (id < KVM_MAX_VCPUS) 901 vcpu = kvm_get_vcpu(kvm, id); 902 if (vcpu && vcpu->vcpu_id == id) 903 return vcpu; 904 kvm_for_each_vcpu(i, vcpu, kvm) 905 if (vcpu->vcpu_id == id) 906 return vcpu; 907 return NULL; 908} 909 910void kvm_destroy_vcpus(struct kvm *kvm); 911 912void vcpu_load(struct kvm_vcpu *vcpu); 913void vcpu_put(struct kvm_vcpu *vcpu); 914 915#ifdef __KVM_HAVE_IOAPIC 916void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 917void kvm_arch_post_irq_routing_update(struct kvm *kvm); 918#else 919static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 920{ 921} 922static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 923{ 924} 925#endif 926 927#ifdef CONFIG_HAVE_KVM_IRQFD 928int kvm_irqfd_init(void); 929void kvm_irqfd_exit(void); 930#else 931static inline int kvm_irqfd_init(void) 932{ 933 return 0; 934} 935 936static inline void kvm_irqfd_exit(void) 937{ 938} 939#endif 940int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 941 struct module *module); 942void kvm_exit(void); 943 944void kvm_get_kvm(struct kvm *kvm); 945bool kvm_get_kvm_safe(struct kvm *kvm); 946void kvm_put_kvm(struct kvm *kvm); 947bool file_is_kvm(struct file *file); 948void kvm_put_kvm_no_destroy(struct kvm *kvm); 949 950static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 951{ 952 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 953 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 954 lockdep_is_held(&kvm->slots_lock) || 955 !refcount_read(&kvm->users_count)); 956} 957 958static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 959{ 960 return __kvm_memslots(kvm, 0); 961} 962 963static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 964{ 965 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 966 967 return __kvm_memslots(vcpu->kvm, as_id); 968} 969 970static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 971{ 972 return RB_EMPTY_ROOT(&slots->gfn_tree); 973} 974 975#define kvm_for_each_memslot(memslot, bkt, slots) \ 976 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 977 if (WARN_ON_ONCE(!memslot->npages)) { \ 978 } else 979 980static inline 981struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 982{ 983 struct kvm_memory_slot *slot; 984 int idx = slots->node_idx; 985 986 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 987 if (slot->id == id) 988 return slot; 989 } 990 991 return NULL; 992} 993 994/* Iterator used for walking memslots that overlap a gfn range. */ 995struct kvm_memslot_iter { 996 struct kvm_memslots *slots; 997 struct rb_node *node; 998 struct kvm_memory_slot *slot; 999}; 1000 1001static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1002{ 1003 iter->node = rb_next(iter->node); 1004 if (!iter->node) 1005 return; 1006 1007 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1008} 1009 1010static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1011 struct kvm_memslots *slots, 1012 gfn_t start) 1013{ 1014 int idx = slots->node_idx; 1015 struct rb_node *tmp; 1016 struct kvm_memory_slot *slot; 1017 1018 iter->slots = slots; 1019 1020 /* 1021 * Find the so called "upper bound" of a key - the first node that has 1022 * its key strictly greater than the searched one (the start gfn in our case). 1023 */ 1024 iter->node = NULL; 1025 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1026 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1027 if (start < slot->base_gfn) { 1028 iter->node = tmp; 1029 tmp = tmp->rb_left; 1030 } else { 1031 tmp = tmp->rb_right; 1032 } 1033 } 1034 1035 /* 1036 * Find the slot with the lowest gfn that can possibly intersect with 1037 * the range, so we'll ideally have slot start <= range start 1038 */ 1039 if (iter->node) { 1040 /* 1041 * A NULL previous node means that the very first slot 1042 * already has a higher start gfn. 1043 * In this case slot start > range start. 1044 */ 1045 tmp = rb_prev(iter->node); 1046 if (tmp) 1047 iter->node = tmp; 1048 } else { 1049 /* a NULL node below means no slots */ 1050 iter->node = rb_last(&slots->gfn_tree); 1051 } 1052 1053 if (iter->node) { 1054 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1055 1056 /* 1057 * It is possible in the slot start < range start case that the 1058 * found slot ends before or at range start (slot end <= range start) 1059 * and so it does not overlap the requested range. 1060 * 1061 * In such non-overlapping case the next slot (if it exists) will 1062 * already have slot start > range start, otherwise the logic above 1063 * would have found it instead of the current slot. 1064 */ 1065 if (iter->slot->base_gfn + iter->slot->npages <= start) 1066 kvm_memslot_iter_next(iter); 1067 } 1068} 1069 1070static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1071{ 1072 if (!iter->node) 1073 return false; 1074 1075 /* 1076 * If this slot starts beyond or at the end of the range so does 1077 * every next one 1078 */ 1079 return iter->slot->base_gfn < end; 1080} 1081 1082/* Iterate over each memslot at least partially intersecting [start, end) range */ 1083#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1084 for (kvm_memslot_iter_start(iter, slots, start); \ 1085 kvm_memslot_iter_is_valid(iter, end); \ 1086 kvm_memslot_iter_next(iter)) 1087 1088/* 1089 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1090 * - create a new memory slot 1091 * - delete an existing memory slot 1092 * - modify an existing memory slot 1093 * -- move it in the guest physical memory space 1094 * -- just change its flags 1095 * 1096 * Since flags can be changed by some of these operations, the following 1097 * differentiation is the best we can do for __kvm_set_memory_region(): 1098 */ 1099enum kvm_mr_change { 1100 KVM_MR_CREATE, 1101 KVM_MR_DELETE, 1102 KVM_MR_MOVE, 1103 KVM_MR_FLAGS_ONLY, 1104}; 1105 1106int kvm_set_memory_region(struct kvm *kvm, 1107 const struct kvm_userspace_memory_region *mem); 1108int __kvm_set_memory_region(struct kvm *kvm, 1109 const struct kvm_userspace_memory_region *mem); 1110void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1111void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1112int kvm_arch_prepare_memory_region(struct kvm *kvm, 1113 const struct kvm_memory_slot *old, 1114 struct kvm_memory_slot *new, 1115 enum kvm_mr_change change); 1116void kvm_arch_commit_memory_region(struct kvm *kvm, 1117 struct kvm_memory_slot *old, 1118 const struct kvm_memory_slot *new, 1119 enum kvm_mr_change change); 1120/* flush all memory translations */ 1121void kvm_arch_flush_shadow_all(struct kvm *kvm); 1122/* flush memory translations pointing to 'slot' */ 1123void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1124 struct kvm_memory_slot *slot); 1125 1126int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1127 struct page **pages, int nr_pages); 1128 1129struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1130unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1131unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1132unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1133unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1134 bool *writable); 1135void kvm_release_page_clean(struct page *page); 1136void kvm_release_page_dirty(struct page *page); 1137 1138kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1139kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1140 bool *writable); 1141kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1142kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1143kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1144 bool atomic, bool *async, bool write_fault, 1145 bool *writable, hva_t *hva); 1146 1147void kvm_release_pfn_clean(kvm_pfn_t pfn); 1148void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1149void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1150void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1151 1152void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1153int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1154 int len); 1155int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1156int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1157 void *data, unsigned long len); 1158int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1159 void *data, unsigned int offset, 1160 unsigned long len); 1161int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1162 int offset, int len); 1163int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1164 unsigned long len); 1165int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1166 void *data, unsigned long len); 1167int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1168 void *data, unsigned int offset, 1169 unsigned long len); 1170int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1171 gpa_t gpa, unsigned long len); 1172 1173#define __kvm_get_guest(kvm, gfn, offset, v) \ 1174({ \ 1175 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1176 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1177 int __ret = -EFAULT; \ 1178 \ 1179 if (!kvm_is_error_hva(__addr)) \ 1180 __ret = get_user(v, __uaddr); \ 1181 __ret; \ 1182}) 1183 1184#define kvm_get_guest(kvm, gpa, v) \ 1185({ \ 1186 gpa_t __gpa = gpa; \ 1187 struct kvm *__kvm = kvm; \ 1188 \ 1189 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1190 offset_in_page(__gpa), v); \ 1191}) 1192 1193#define __kvm_put_guest(kvm, gfn, offset, v) \ 1194({ \ 1195 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1196 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1197 int __ret = -EFAULT; \ 1198 \ 1199 if (!kvm_is_error_hva(__addr)) \ 1200 __ret = put_user(v, __uaddr); \ 1201 if (!__ret) \ 1202 mark_page_dirty(kvm, gfn); \ 1203 __ret; \ 1204}) 1205 1206#define kvm_put_guest(kvm, gpa, v) \ 1207({ \ 1208 gpa_t __gpa = gpa; \ 1209 struct kvm *__kvm = kvm; \ 1210 \ 1211 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1212 offset_in_page(__gpa), v); \ 1213}) 1214 1215int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1216struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1217bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1218bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1219unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1220void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1221void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1222 1223struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1224struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1225kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1226kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1227int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1228void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1229unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1230unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1231int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1232 int len); 1233int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1234 unsigned long len); 1235int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1236 unsigned long len); 1237int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1238 int offset, int len); 1239int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1240 unsigned long len); 1241void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1242 1243/** 1244 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1245 * 1246 * @gpc: struct gfn_to_pfn_cache object. 1247 * 1248 * This sets up a gfn_to_pfn_cache by initializing locks. Note, the cache must 1249 * be zero-allocated (or zeroed by the caller before init). 1250 */ 1251void kvm_gpc_init(struct gfn_to_pfn_cache *gpc); 1252 1253/** 1254 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1255 * physical address. 1256 * 1257 * @kvm: pointer to kvm instance. 1258 * @gpc: struct gfn_to_pfn_cache object. 1259 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1260 * invalidation. 1261 * @usage: indicates if the resulting host physical PFN is used while 1262 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1263 * the cache from MMU notifiers---but not for KVM memslot 1264 * changes!---will also force @vcpu to exit the guest and 1265 * refresh the cache); and/or if the PFN used directly 1266 * by KVM (and thus needs a kernel virtual mapping). 1267 * @gpa: guest physical address to map. 1268 * @len: sanity check; the range being access must fit a single page. 1269 * 1270 * @return: 0 for success. 1271 * -EINVAL for a mapping which would cross a page boundary. 1272 * -EFAULT for an untranslatable guest physical address. 1273 * 1274 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1275 * invalidations to be processed. Callers are required to use 1276 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before 1277 * accessing the target page. 1278 */ 1279int kvm_gpc_activate(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1280 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, 1281 gpa_t gpa, unsigned long len); 1282 1283/** 1284 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. 1285 * 1286 * @kvm: pointer to kvm instance. 1287 * @gpc: struct gfn_to_pfn_cache object. 1288 * @gpa: current guest physical address to map. 1289 * @len: sanity check; the range being access must fit a single page. 1290 * 1291 * @return: %true if the cache is still valid and the address matches. 1292 * %false if the cache is not valid. 1293 * 1294 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1295 * while calling this function, and then continue to hold the lock until the 1296 * access is complete. 1297 * 1298 * Callers in IN_GUEST_MODE may do so without locking, although they should 1299 * still hold a read lock on kvm->scru for the memslot checks. 1300 */ 1301bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1302 gpa_t gpa, unsigned long len); 1303 1304/** 1305 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. 1306 * 1307 * @kvm: pointer to kvm instance. 1308 * @gpc: struct gfn_to_pfn_cache object. 1309 * @gpa: updated guest physical address to map. 1310 * @len: sanity check; the range being access must fit a single page. 1311 * 1312 * @return: 0 for success. 1313 * -EINVAL for a mapping which would cross a page boundary. 1314 * -EFAULT for an untranslatable guest physical address. 1315 * 1316 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1317 * returm from this function does not mean the page can be immediately 1318 * accessed because it may have raced with an invalidation. Callers must 1319 * still lock and check the cache status, as this function does not return 1320 * with the lock still held to permit access. 1321 */ 1322int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1323 gpa_t gpa, unsigned long len); 1324 1325/** 1326 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. 1327 * 1328 * @kvm: pointer to kvm instance. 1329 * @gpc: struct gfn_to_pfn_cache object. 1330 * 1331 * This unmaps the referenced page. The cache is left in the invalid state 1332 * but at least the mapping from GPA to userspace HVA will remain cached 1333 * and can be reused on a subsequent refresh. 1334 */ 1335void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1336 1337/** 1338 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1339 * 1340 * @kvm: pointer to kvm instance. 1341 * @gpc: struct gfn_to_pfn_cache object. 1342 * 1343 * This removes a cache from the @kvm's list to be processed on MMU notifier 1344 * invocation. 1345 */ 1346void kvm_gpc_deactivate(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1347 1348void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1349void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1350 1351void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1352bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1353void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1354void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1355bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1356void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1357int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1358void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1359 1360void kvm_flush_remote_tlbs(struct kvm *kvm); 1361 1362#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1363int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1364int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1365int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1366void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1367void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1368#endif 1369 1370void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 1371 unsigned long end); 1372void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 1373 unsigned long end); 1374 1375long kvm_arch_dev_ioctl(struct file *filp, 1376 unsigned int ioctl, unsigned long arg); 1377long kvm_arch_vcpu_ioctl(struct file *filp, 1378 unsigned int ioctl, unsigned long arg); 1379vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1380 1381int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1382 1383void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1384 struct kvm_memory_slot *slot, 1385 gfn_t gfn_offset, 1386 unsigned long mask); 1387void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1388 1389#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1390void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1391 const struct kvm_memory_slot *memslot); 1392#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1393int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1394int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1395 int *is_dirty, struct kvm_memory_slot **memslot); 1396#endif 1397 1398int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1399 bool line_status); 1400int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1401 struct kvm_enable_cap *cap); 1402long kvm_arch_vm_ioctl(struct file *filp, 1403 unsigned int ioctl, unsigned long arg); 1404long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1405 unsigned long arg); 1406 1407int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1408int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1409 1410int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1411 struct kvm_translation *tr); 1412 1413int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1414int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1415int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1416 struct kvm_sregs *sregs); 1417int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1418 struct kvm_sregs *sregs); 1419int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1420 struct kvm_mp_state *mp_state); 1421int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1422 struct kvm_mp_state *mp_state); 1423int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1424 struct kvm_guest_debug *dbg); 1425int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1426 1427int kvm_arch_init(void *opaque); 1428void kvm_arch_exit(void); 1429 1430void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1431 1432void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1433void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1434int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1435int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1436void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1437void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1438 1439#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1440int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1441#endif 1442 1443#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1444void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1445#else 1446static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1447#endif 1448 1449int kvm_arch_hardware_enable(void); 1450void kvm_arch_hardware_disable(void); 1451int kvm_arch_hardware_setup(void *opaque); 1452void kvm_arch_hardware_unsetup(void); 1453int kvm_arch_check_processor_compat(void *opaque); 1454int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1455bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1456int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1457bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1458bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1459int kvm_arch_post_init_vm(struct kvm *kvm); 1460void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1461int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1462 1463#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1464/* 1465 * All architectures that want to use vzalloc currently also 1466 * need their own kvm_arch_alloc_vm implementation. 1467 */ 1468static inline struct kvm *kvm_arch_alloc_vm(void) 1469{ 1470 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1471} 1472#endif 1473 1474static inline void __kvm_arch_free_vm(struct kvm *kvm) 1475{ 1476 kvfree(kvm); 1477} 1478 1479#ifndef __KVM_HAVE_ARCH_VM_FREE 1480static inline void kvm_arch_free_vm(struct kvm *kvm) 1481{ 1482 __kvm_arch_free_vm(kvm); 1483} 1484#endif 1485 1486#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1487static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1488{ 1489 return -ENOTSUPP; 1490} 1491#endif 1492 1493#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1494void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1495void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1496bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1497#else 1498static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1499{ 1500} 1501 1502static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1503{ 1504} 1505 1506static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1507{ 1508 return false; 1509} 1510#endif 1511#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1512void kvm_arch_start_assignment(struct kvm *kvm); 1513void kvm_arch_end_assignment(struct kvm *kvm); 1514bool kvm_arch_has_assigned_device(struct kvm *kvm); 1515#else 1516static inline void kvm_arch_start_assignment(struct kvm *kvm) 1517{ 1518} 1519 1520static inline void kvm_arch_end_assignment(struct kvm *kvm) 1521{ 1522} 1523 1524static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1525{ 1526 return false; 1527} 1528#endif 1529 1530static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1531{ 1532#ifdef __KVM_HAVE_ARCH_WQP 1533 return vcpu->arch.waitp; 1534#else 1535 return &vcpu->wait; 1536#endif 1537} 1538 1539/* 1540 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1541 * true if the vCPU was blocking and was awakened, false otherwise. 1542 */ 1543static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1544{ 1545 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1546} 1547 1548static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1549{ 1550 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1551} 1552 1553#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1554/* 1555 * returns true if the virtual interrupt controller is initialized and 1556 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1557 * controller is dynamically instantiated and this is not always true. 1558 */ 1559bool kvm_arch_intc_initialized(struct kvm *kvm); 1560#else 1561static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1562{ 1563 return true; 1564} 1565#endif 1566 1567#ifdef CONFIG_GUEST_PERF_EVENTS 1568unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1569 1570void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1571void kvm_unregister_perf_callbacks(void); 1572#else 1573static inline void kvm_register_perf_callbacks(void *ign) {} 1574static inline void kvm_unregister_perf_callbacks(void) {} 1575#endif /* CONFIG_GUEST_PERF_EVENTS */ 1576 1577int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1578void kvm_arch_destroy_vm(struct kvm *kvm); 1579void kvm_arch_sync_events(struct kvm *kvm); 1580 1581int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1582 1583struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1584bool kvm_is_zone_device_page(struct page *page); 1585 1586struct kvm_irq_ack_notifier { 1587 struct hlist_node link; 1588 unsigned gsi; 1589 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1590}; 1591 1592int kvm_irq_map_gsi(struct kvm *kvm, 1593 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1594int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1595 1596int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1597 bool line_status); 1598int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1599 int irq_source_id, int level, bool line_status); 1600int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1601 struct kvm *kvm, int irq_source_id, 1602 int level, bool line_status); 1603bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1604void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1605void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1606void kvm_register_irq_ack_notifier(struct kvm *kvm, 1607 struct kvm_irq_ack_notifier *kian); 1608void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1609 struct kvm_irq_ack_notifier *kian); 1610int kvm_request_irq_source_id(struct kvm *kvm); 1611void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1612bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1613 1614/* 1615 * Returns a pointer to the memslot if it contains gfn. 1616 * Otherwise returns NULL. 1617 */ 1618static inline struct kvm_memory_slot * 1619try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1620{ 1621 if (!slot) 1622 return NULL; 1623 1624 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1625 return slot; 1626 else 1627 return NULL; 1628} 1629 1630/* 1631 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1632 * 1633 * With "approx" set returns the memslot also when the address falls 1634 * in a hole. In that case one of the memslots bordering the hole is 1635 * returned. 1636 */ 1637static inline struct kvm_memory_slot * 1638search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1639{ 1640 struct kvm_memory_slot *slot; 1641 struct rb_node *node; 1642 int idx = slots->node_idx; 1643 1644 slot = NULL; 1645 for (node = slots->gfn_tree.rb_node; node; ) { 1646 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1647 if (gfn >= slot->base_gfn) { 1648 if (gfn < slot->base_gfn + slot->npages) 1649 return slot; 1650 node = node->rb_right; 1651 } else 1652 node = node->rb_left; 1653 } 1654 1655 return approx ? slot : NULL; 1656} 1657 1658static inline struct kvm_memory_slot * 1659____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1660{ 1661 struct kvm_memory_slot *slot; 1662 1663 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1664 slot = try_get_memslot(slot, gfn); 1665 if (slot) 1666 return slot; 1667 1668 slot = search_memslots(slots, gfn, approx); 1669 if (slot) { 1670 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1671 return slot; 1672 } 1673 1674 return NULL; 1675} 1676 1677/* 1678 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1679 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1680 * because that would bloat other code too much. 1681 */ 1682static inline struct kvm_memory_slot * 1683__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1684{ 1685 return ____gfn_to_memslot(slots, gfn, false); 1686} 1687 1688static inline unsigned long 1689__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1690{ 1691 /* 1692 * The index was checked originally in search_memslots. To avoid 1693 * that a malicious guest builds a Spectre gadget out of e.g. page 1694 * table walks, do not let the processor speculate loads outside 1695 * the guest's registered memslots. 1696 */ 1697 unsigned long offset = gfn - slot->base_gfn; 1698 offset = array_index_nospec(offset, slot->npages); 1699 return slot->userspace_addr + offset * PAGE_SIZE; 1700} 1701 1702static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1703{ 1704 return gfn_to_memslot(kvm, gfn)->id; 1705} 1706 1707static inline gfn_t 1708hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1709{ 1710 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1711 1712 return slot->base_gfn + gfn_offset; 1713} 1714 1715static inline gpa_t gfn_to_gpa(gfn_t gfn) 1716{ 1717 return (gpa_t)gfn << PAGE_SHIFT; 1718} 1719 1720static inline gfn_t gpa_to_gfn(gpa_t gpa) 1721{ 1722 return (gfn_t)(gpa >> PAGE_SHIFT); 1723} 1724 1725static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1726{ 1727 return (hpa_t)pfn << PAGE_SHIFT; 1728} 1729 1730static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1731{ 1732 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1733 1734 return kvm_is_error_hva(hva); 1735} 1736 1737enum kvm_stat_kind { 1738 KVM_STAT_VM, 1739 KVM_STAT_VCPU, 1740}; 1741 1742struct kvm_stat_data { 1743 struct kvm *kvm; 1744 const struct _kvm_stats_desc *desc; 1745 enum kvm_stat_kind kind; 1746}; 1747 1748struct _kvm_stats_desc { 1749 struct kvm_stats_desc desc; 1750 char name[KVM_STATS_NAME_SIZE]; 1751}; 1752 1753#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1754 .flags = type | unit | base | \ 1755 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1756 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1757 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1758 .exponent = exp, \ 1759 .size = sz, \ 1760 .bucket_size = bsz 1761 1762#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1763 { \ 1764 { \ 1765 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1766 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1767 }, \ 1768 .name = #stat, \ 1769 } 1770#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1771 { \ 1772 { \ 1773 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1774 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1775 }, \ 1776 .name = #stat, \ 1777 } 1778#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1779 { \ 1780 { \ 1781 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1782 .offset = offsetof(struct kvm_vm_stat, stat) \ 1783 }, \ 1784 .name = #stat, \ 1785 } 1786#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1787 { \ 1788 { \ 1789 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1790 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1791 }, \ 1792 .name = #stat, \ 1793 } 1794/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1795#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1796 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1797 1798#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1799 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1800 unit, base, exponent, 1, 0) 1801#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1802 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1803 unit, base, exponent, 1, 0) 1804#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1805 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1806 unit, base, exponent, 1, 0) 1807#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1808 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1809 unit, base, exponent, sz, bsz) 1810#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1811 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1812 unit, base, exponent, sz, 0) 1813 1814/* Cumulative counter, read/write */ 1815#define STATS_DESC_COUNTER(SCOPE, name) \ 1816 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1817 KVM_STATS_BASE_POW10, 0) 1818/* Instantaneous counter, read only */ 1819#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1820 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1821 KVM_STATS_BASE_POW10, 0) 1822/* Peak counter, read/write */ 1823#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1824 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1825 KVM_STATS_BASE_POW10, 0) 1826 1827/* Instantaneous boolean value, read only */ 1828#define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1829 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1830 KVM_STATS_BASE_POW10, 0) 1831/* Peak (sticky) boolean value, read/write */ 1832#define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1833 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1834 KVM_STATS_BASE_POW10, 0) 1835 1836/* Cumulative time in nanosecond */ 1837#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1838 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1839 KVM_STATS_BASE_POW10, -9) 1840/* Linear histogram for time in nanosecond */ 1841#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1842 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1843 KVM_STATS_BASE_POW10, -9, sz, bsz) 1844/* Logarithmic histogram for time in nanosecond */ 1845#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1846 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1847 KVM_STATS_BASE_POW10, -9, sz) 1848 1849#define KVM_GENERIC_VM_STATS() \ 1850 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1851 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1852 1853#define KVM_GENERIC_VCPU_STATS() \ 1854 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1855 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1856 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1857 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1858 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1859 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1860 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1861 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1862 HALT_POLL_HIST_COUNT), \ 1863 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1864 HALT_POLL_HIST_COUNT), \ 1865 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1866 HALT_POLL_HIST_COUNT), \ 1867 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1868 1869extern struct dentry *kvm_debugfs_dir; 1870 1871ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1872 const struct _kvm_stats_desc *desc, 1873 void *stats, size_t size_stats, 1874 char __user *user_buffer, size_t size, loff_t *offset); 1875 1876/** 1877 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1878 * statistics data. 1879 * 1880 * @data: start address of the stats data 1881 * @size: the number of bucket of the stats data 1882 * @value: the new value used to update the linear histogram's bucket 1883 * @bucket_size: the size (width) of a bucket 1884 */ 1885static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1886 u64 value, size_t bucket_size) 1887{ 1888 size_t index = div64_u64(value, bucket_size); 1889 1890 index = min(index, size - 1); 1891 ++data[index]; 1892} 1893 1894/** 1895 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1896 * statistics data. 1897 * 1898 * @data: start address of the stats data 1899 * @size: the number of bucket of the stats data 1900 * @value: the new value used to update the logarithmic histogram's bucket 1901 */ 1902static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1903{ 1904 size_t index = fls64(value); 1905 1906 index = min(index, size - 1); 1907 ++data[index]; 1908} 1909 1910#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1911 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1912#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1913 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1914 1915 1916extern const struct kvm_stats_header kvm_vm_stats_header; 1917extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1918extern const struct kvm_stats_header kvm_vcpu_stats_header; 1919extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1920 1921#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1922static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1923{ 1924 if (unlikely(kvm->mmu_invalidate_in_progress)) 1925 return 1; 1926 /* 1927 * Ensure the read of mmu_invalidate_in_progress happens before 1928 * the read of mmu_invalidate_seq. This interacts with the 1929 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1930 * that the caller either sees the old (non-zero) value of 1931 * mmu_invalidate_in_progress or the new (incremented) value of 1932 * mmu_invalidate_seq. 1933 * 1934 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1935 * than under kvm->mmu_lock, for scalability, so can't rely on 1936 * kvm->mmu_lock to keep things ordered. 1937 */ 1938 smp_rmb(); 1939 if (kvm->mmu_invalidate_seq != mmu_seq) 1940 return 1; 1941 return 0; 1942} 1943 1944static inline int mmu_invalidate_retry_hva(struct kvm *kvm, 1945 unsigned long mmu_seq, 1946 unsigned long hva) 1947{ 1948 lockdep_assert_held(&kvm->mmu_lock); 1949 /* 1950 * If mmu_invalidate_in_progress is non-zero, then the range maintained 1951 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 1952 * that might be being invalidated. Note that it may include some false 1953 * positives, due to shortcuts when handing concurrent invalidations. 1954 */ 1955 if (unlikely(kvm->mmu_invalidate_in_progress) && 1956 hva >= kvm->mmu_invalidate_range_start && 1957 hva < kvm->mmu_invalidate_range_end) 1958 return 1; 1959 if (kvm->mmu_invalidate_seq != mmu_seq) 1960 return 1; 1961 return 0; 1962} 1963#endif 1964 1965#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1966 1967#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1968 1969bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1970int kvm_set_irq_routing(struct kvm *kvm, 1971 const struct kvm_irq_routing_entry *entries, 1972 unsigned nr, 1973 unsigned flags); 1974int kvm_set_routing_entry(struct kvm *kvm, 1975 struct kvm_kernel_irq_routing_entry *e, 1976 const struct kvm_irq_routing_entry *ue); 1977void kvm_free_irq_routing(struct kvm *kvm); 1978 1979#else 1980 1981static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1982 1983#endif 1984 1985int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1986 1987#ifdef CONFIG_HAVE_KVM_EVENTFD 1988 1989void kvm_eventfd_init(struct kvm *kvm); 1990int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1991 1992#ifdef CONFIG_HAVE_KVM_IRQFD 1993int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1994void kvm_irqfd_release(struct kvm *kvm); 1995void kvm_irq_routing_update(struct kvm *); 1996#else 1997static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1998{ 1999 return -EINVAL; 2000} 2001 2002static inline void kvm_irqfd_release(struct kvm *kvm) {} 2003#endif 2004 2005#else 2006 2007static inline void kvm_eventfd_init(struct kvm *kvm) {} 2008 2009static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2010{ 2011 return -EINVAL; 2012} 2013 2014static inline void kvm_irqfd_release(struct kvm *kvm) {} 2015 2016#ifdef CONFIG_HAVE_KVM_IRQCHIP 2017static inline void kvm_irq_routing_update(struct kvm *kvm) 2018{ 2019} 2020#endif 2021 2022static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2023{ 2024 return -ENOSYS; 2025} 2026 2027#endif /* CONFIG_HAVE_KVM_EVENTFD */ 2028 2029void kvm_arch_irq_routing_update(struct kvm *kvm); 2030 2031static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2032{ 2033 /* 2034 * Ensure the rest of the request is published to kvm_check_request's 2035 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2036 */ 2037 smp_wmb(); 2038 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2039} 2040 2041static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2042{ 2043 /* 2044 * Request that don't require vCPU action should never be logged in 2045 * vcpu->requests. The vCPU won't clear the request, so it will stay 2046 * logged indefinitely and prevent the vCPU from entering the guest. 2047 */ 2048 BUILD_BUG_ON(!__builtin_constant_p(req) || 2049 (req & KVM_REQUEST_NO_ACTION)); 2050 2051 __kvm_make_request(req, vcpu); 2052} 2053 2054static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2055{ 2056 return READ_ONCE(vcpu->requests); 2057} 2058 2059static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2060{ 2061 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2062} 2063 2064static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2065{ 2066 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2067} 2068 2069static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2070{ 2071 if (kvm_test_request(req, vcpu)) { 2072 kvm_clear_request(req, vcpu); 2073 2074 /* 2075 * Ensure the rest of the request is visible to kvm_check_request's 2076 * caller. Paired with the smp_wmb in kvm_make_request. 2077 */ 2078 smp_mb__after_atomic(); 2079 return true; 2080 } else { 2081 return false; 2082 } 2083} 2084 2085extern bool kvm_rebooting; 2086 2087extern unsigned int halt_poll_ns; 2088extern unsigned int halt_poll_ns_grow; 2089extern unsigned int halt_poll_ns_grow_start; 2090extern unsigned int halt_poll_ns_shrink; 2091 2092struct kvm_device { 2093 const struct kvm_device_ops *ops; 2094 struct kvm *kvm; 2095 void *private; 2096 struct list_head vm_node; 2097}; 2098 2099/* create, destroy, and name are mandatory */ 2100struct kvm_device_ops { 2101 const char *name; 2102 2103 /* 2104 * create is called holding kvm->lock and any operations not suitable 2105 * to do while holding the lock should be deferred to init (see 2106 * below). 2107 */ 2108 int (*create)(struct kvm_device *dev, u32 type); 2109 2110 /* 2111 * init is called after create if create is successful and is called 2112 * outside of holding kvm->lock. 2113 */ 2114 void (*init)(struct kvm_device *dev); 2115 2116 /* 2117 * Destroy is responsible for freeing dev. 2118 * 2119 * Destroy may be called before or after destructors are called 2120 * on emulated I/O regions, depending on whether a reference is 2121 * held by a vcpu or other kvm component that gets destroyed 2122 * after the emulated I/O. 2123 */ 2124 void (*destroy)(struct kvm_device *dev); 2125 2126 /* 2127 * Release is an alternative method to free the device. It is 2128 * called when the device file descriptor is closed. Once 2129 * release is called, the destroy method will not be called 2130 * anymore as the device is removed from the device list of 2131 * the VM. kvm->lock is held. 2132 */ 2133 void (*release)(struct kvm_device *dev); 2134 2135 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2136 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2137 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2138 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2139 unsigned long arg); 2140 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2141}; 2142 2143void kvm_device_get(struct kvm_device *dev); 2144void kvm_device_put(struct kvm_device *dev); 2145struct kvm_device *kvm_device_from_filp(struct file *filp); 2146int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2147void kvm_unregister_device_ops(u32 type); 2148 2149extern struct kvm_device_ops kvm_mpic_ops; 2150extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2151extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2152 2153#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2154 2155static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2156{ 2157 vcpu->spin_loop.in_spin_loop = val; 2158} 2159static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2160{ 2161 vcpu->spin_loop.dy_eligible = val; 2162} 2163 2164#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2165 2166static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2167{ 2168} 2169 2170static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2171{ 2172} 2173#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2174 2175static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2176{ 2177 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2178 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2179} 2180 2181struct kvm_vcpu *kvm_get_running_vcpu(void); 2182struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2183 2184#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2185bool kvm_arch_has_irq_bypass(void); 2186int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2187 struct irq_bypass_producer *); 2188void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2189 struct irq_bypass_producer *); 2190void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2191void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2192int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2193 uint32_t guest_irq, bool set); 2194bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2195 struct kvm_kernel_irq_routing_entry *); 2196#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2197 2198#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2199/* If we wakeup during the poll time, was it a sucessful poll? */ 2200static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2201{ 2202 return vcpu->valid_wakeup; 2203} 2204 2205#else 2206static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2207{ 2208 return true; 2209} 2210#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2211 2212#ifdef CONFIG_HAVE_KVM_NO_POLL 2213/* Callback that tells if we must not poll */ 2214bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2215#else 2216static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2217{ 2218 return false; 2219} 2220#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2221 2222#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2223long kvm_arch_vcpu_async_ioctl(struct file *filp, 2224 unsigned int ioctl, unsigned long arg); 2225#else 2226static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2227 unsigned int ioctl, 2228 unsigned long arg) 2229{ 2230 return -ENOIOCTLCMD; 2231} 2232#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2233 2234void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2235 unsigned long start, unsigned long end); 2236 2237void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2238 2239#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2240int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2241#else 2242static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2243{ 2244 return 0; 2245} 2246#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2247 2248typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2249 2250int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2251 uintptr_t data, const char *name, 2252 struct task_struct **thread_ptr); 2253 2254#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2255static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2256{ 2257 vcpu->run->exit_reason = KVM_EXIT_INTR; 2258 vcpu->stat.signal_exits++; 2259} 2260#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2261 2262/* 2263 * If more than one page is being (un)accounted, @virt must be the address of 2264 * the first page of a block of pages what were allocated together (i.e 2265 * accounted together). 2266 * 2267 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2268 * is thread-safe. 2269 */ 2270static inline void kvm_account_pgtable_pages(void *virt, int nr) 2271{ 2272 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2273} 2274 2275/* 2276 * This defines how many reserved entries we want to keep before we 2277 * kick the vcpu to the userspace to avoid dirty ring full. This 2278 * value can be tuned to higher if e.g. PML is enabled on the host. 2279 */ 2280#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2281 2282/* Max number of entries allowed for each kvm dirty ring */ 2283#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2284 2285#endif