at v6.1 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HIGHMEM_H 3#define _LINUX_HIGHMEM_H 4 5#include <linux/fs.h> 6#include <linux/kernel.h> 7#include <linux/bug.h> 8#include <linux/cacheflush.h> 9#include <linux/kmsan.h> 10#include <linux/mm.h> 11#include <linux/uaccess.h> 12#include <linux/hardirq.h> 13 14#include "highmem-internal.h" 15 16/** 17 * kmap - Map a page for long term usage 18 * @page: Pointer to the page to be mapped 19 * 20 * Returns: The virtual address of the mapping 21 * 22 * Can only be invoked from preemptible task context because on 32bit 23 * systems with CONFIG_HIGHMEM enabled this function might sleep. 24 * 25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 26 * this returns the virtual address of the direct kernel mapping. 27 * 28 * The returned virtual address is globally visible and valid up to the 29 * point where it is unmapped via kunmap(). The pointer can be handed to 30 * other contexts. 31 * 32 * For highmem pages on 32bit systems this can be slow as the mapping space 33 * is limited and protected by a global lock. In case that there is no 34 * mapping slot available the function blocks until a slot is released via 35 * kunmap(). 36 */ 37static inline void *kmap(struct page *page); 38 39/** 40 * kunmap - Unmap the virtual address mapped by kmap() 41 * @page: Pointer to the page which was mapped by kmap() 42 * 43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 44 * pages in the low memory area. 45 */ 46static inline void kunmap(struct page *page); 47 48/** 49 * kmap_to_page - Get the page for a kmap'ed address 50 * @addr: The address to look up 51 * 52 * Returns: The page which is mapped to @addr. 53 */ 54static inline struct page *kmap_to_page(void *addr); 55 56/** 57 * kmap_flush_unused - Flush all unused kmap mappings in order to 58 * remove stray mappings 59 */ 60static inline void kmap_flush_unused(void); 61 62/** 63 * kmap_local_page - Map a page for temporary usage 64 * @page: Pointer to the page to be mapped 65 * 66 * Returns: The virtual address of the mapping 67 * 68 * Can be invoked from any context, including interrupts. 69 * 70 * Requires careful handling when nesting multiple mappings because the map 71 * management is stack based. The unmap has to be in the reverse order of 72 * the map operation: 73 * 74 * addr1 = kmap_local_page(page1); 75 * addr2 = kmap_local_page(page2); 76 * ... 77 * kunmap_local(addr2); 78 * kunmap_local(addr1); 79 * 80 * Unmapping addr1 before addr2 is invalid and causes malfunction. 81 * 82 * Contrary to kmap() mappings the mapping is only valid in the context of 83 * the caller and cannot be handed to other contexts. 84 * 85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 86 * virtual address of the direct mapping. Only real highmem pages are 87 * temporarily mapped. 88 * 89 * While it is significantly faster than kmap() for the higmem case it 90 * comes with restrictions about the pointer validity. 91 * 92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 93 * disabling migration in order to keep the virtual address stable across 94 * preemption. No caller of kmap_local_page() can rely on this side effect. 95 */ 96static inline void *kmap_local_page(struct page *page); 97 98/** 99 * kmap_local_folio - Map a page in this folio for temporary usage 100 * @folio: The folio containing the page. 101 * @offset: The byte offset within the folio which identifies the page. 102 * 103 * Requires careful handling when nesting multiple mappings because the map 104 * management is stack based. The unmap has to be in the reverse order of 105 * the map operation:: 106 * 107 * addr1 = kmap_local_folio(folio1, offset1); 108 * addr2 = kmap_local_folio(folio2, offset2); 109 * ... 110 * kunmap_local(addr2); 111 * kunmap_local(addr1); 112 * 113 * Unmapping addr1 before addr2 is invalid and causes malfunction. 114 * 115 * Contrary to kmap() mappings the mapping is only valid in the context of 116 * the caller and cannot be handed to other contexts. 117 * 118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 119 * virtual address of the direct mapping. Only real highmem pages are 120 * temporarily mapped. 121 * 122 * While it is significantly faster than kmap() for the higmem case it 123 * comes with restrictions about the pointer validity. Only use when really 124 * necessary. 125 * 126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 127 * disabling migration in order to keep the virtual address stable across 128 * preemption. No caller of kmap_local_folio() can rely on this side effect. 129 * 130 * Context: Can be invoked from any context. 131 * Return: The virtual address of @offset. 132 */ 133static inline void *kmap_local_folio(struct folio *folio, size_t offset); 134 135/** 136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 137 * @page: Pointer to the page to be mapped 138 * 139 * Returns: The virtual address of the mapping 140 * 141 * In fact a wrapper around kmap_local_page() which also disables pagefaults 142 * and, depending on PREEMPT_RT configuration, also CPU migration and 143 * preemption. Therefore users should not count on the latter two side effects. 144 * 145 * Mappings should always be released by kunmap_atomic(). 146 * 147 * Do not use in new code. Use kmap_local_page() instead. 148 * 149 * It is used in atomic context when code wants to access the contents of a 150 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 151 * example a page in the pagecache. The API has two functions, and they 152 * can be used in a manner similar to the following:: 153 * 154 * // Find the page of interest. 155 * struct page *page = find_get_page(mapping, offset); 156 * 157 * // Gain access to the contents of that page. 158 * void *vaddr = kmap_atomic(page); 159 * 160 * // Do something to the contents of that page. 161 * memset(vaddr, 0, PAGE_SIZE); 162 * 163 * // Unmap that page. 164 * kunmap_atomic(vaddr); 165 * 166 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 167 * call, not the argument. 168 * 169 * If you need to map two pages because you want to copy from one page to 170 * another you need to keep the kmap_atomic calls strictly nested, like: 171 * 172 * vaddr1 = kmap_atomic(page1); 173 * vaddr2 = kmap_atomic(page2); 174 * 175 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 176 * 177 * kunmap_atomic(vaddr2); 178 * kunmap_atomic(vaddr1); 179 */ 180static inline void *kmap_atomic(struct page *page); 181 182/* Highmem related interfaces for management code */ 183static inline unsigned int nr_free_highpages(void); 184static inline unsigned long totalhigh_pages(void); 185 186#ifndef ARCH_HAS_FLUSH_ANON_PAGE 187static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 188{ 189} 190#endif 191 192#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 193static inline void flush_kernel_vmap_range(void *vaddr, int size) 194{ 195} 196static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 197{ 198} 199#endif 200 201/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 202#ifndef clear_user_highpage 203static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 204{ 205 void *addr = kmap_local_page(page); 206 clear_user_page(addr, vaddr, page); 207 kunmap_local(addr); 208} 209#endif 210 211#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE 212/** 213 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move 214 * @vma: The VMA the page is to be allocated for 215 * @vaddr: The virtual address the page will be inserted into 216 * 217 * Returns: The allocated and zeroed HIGHMEM page 218 * 219 * This function will allocate a page for a VMA that the caller knows will 220 * be able to migrate in the future using move_pages() or reclaimed 221 * 222 * An architecture may override this function by defining 223 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own 224 * implementation. 225 */ 226static inline struct page * 227alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, 228 unsigned long vaddr) 229{ 230 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 231 232 if (page) 233 clear_user_highpage(page, vaddr); 234 235 return page; 236} 237#endif 238 239static inline void clear_highpage(struct page *page) 240{ 241 void *kaddr = kmap_local_page(page); 242 clear_page(kaddr); 243 kunmap_local(kaddr); 244} 245 246static inline void clear_highpage_kasan_tagged(struct page *page) 247{ 248 u8 tag; 249 250 tag = page_kasan_tag(page); 251 page_kasan_tag_reset(page); 252 clear_highpage(page); 253 page_kasan_tag_set(page, tag); 254} 255 256#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE 257 258static inline void tag_clear_highpage(struct page *page) 259{ 260} 261 262#endif 263 264/* 265 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 266 * If we pass in a head page, we can zero up to the size of the compound page. 267 */ 268#ifdef CONFIG_HIGHMEM 269void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 270 unsigned start2, unsigned end2); 271#else 272static inline void zero_user_segments(struct page *page, 273 unsigned start1, unsigned end1, 274 unsigned start2, unsigned end2) 275{ 276 void *kaddr = kmap_local_page(page); 277 unsigned int i; 278 279 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 280 281 if (end1 > start1) 282 memset(kaddr + start1, 0, end1 - start1); 283 284 if (end2 > start2) 285 memset(kaddr + start2, 0, end2 - start2); 286 287 kunmap_local(kaddr); 288 for (i = 0; i < compound_nr(page); i++) 289 flush_dcache_page(page + i); 290} 291#endif 292 293static inline void zero_user_segment(struct page *page, 294 unsigned start, unsigned end) 295{ 296 zero_user_segments(page, start, end, 0, 0); 297} 298 299static inline void zero_user(struct page *page, 300 unsigned start, unsigned size) 301{ 302 zero_user_segments(page, start, start + size, 0, 0); 303} 304 305#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 306 307static inline void copy_user_highpage(struct page *to, struct page *from, 308 unsigned long vaddr, struct vm_area_struct *vma) 309{ 310 char *vfrom, *vto; 311 312 vfrom = kmap_local_page(from); 313 vto = kmap_local_page(to); 314 copy_user_page(vto, vfrom, vaddr, to); 315 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 316 kunmap_local(vto); 317 kunmap_local(vfrom); 318} 319 320#endif 321 322#ifndef __HAVE_ARCH_COPY_HIGHPAGE 323 324static inline void copy_highpage(struct page *to, struct page *from) 325{ 326 char *vfrom, *vto; 327 328 vfrom = kmap_local_page(from); 329 vto = kmap_local_page(to); 330 copy_page(vto, vfrom); 331 kmsan_copy_page_meta(to, from); 332 kunmap_local(vto); 333 kunmap_local(vfrom); 334} 335 336#endif 337 338static inline void memcpy_page(struct page *dst_page, size_t dst_off, 339 struct page *src_page, size_t src_off, 340 size_t len) 341{ 342 char *dst = kmap_local_page(dst_page); 343 char *src = kmap_local_page(src_page); 344 345 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 346 memcpy(dst + dst_off, src + src_off, len); 347 kunmap_local(src); 348 kunmap_local(dst); 349} 350 351static inline void memset_page(struct page *page, size_t offset, int val, 352 size_t len) 353{ 354 char *addr = kmap_local_page(page); 355 356 VM_BUG_ON(offset + len > PAGE_SIZE); 357 memset(addr + offset, val, len); 358 kunmap_local(addr); 359} 360 361static inline void memcpy_from_page(char *to, struct page *page, 362 size_t offset, size_t len) 363{ 364 char *from = kmap_local_page(page); 365 366 VM_BUG_ON(offset + len > PAGE_SIZE); 367 memcpy(to, from + offset, len); 368 kunmap_local(from); 369} 370 371static inline void memcpy_to_page(struct page *page, size_t offset, 372 const char *from, size_t len) 373{ 374 char *to = kmap_local_page(page); 375 376 VM_BUG_ON(offset + len > PAGE_SIZE); 377 memcpy(to + offset, from, len); 378 flush_dcache_page(page); 379 kunmap_local(to); 380} 381 382static inline void memzero_page(struct page *page, size_t offset, size_t len) 383{ 384 char *addr = kmap_local_page(page); 385 386 VM_BUG_ON(offset + len > PAGE_SIZE); 387 memset(addr + offset, 0, len); 388 flush_dcache_page(page); 389 kunmap_local(addr); 390} 391 392/** 393 * folio_zero_segments() - Zero two byte ranges in a folio. 394 * @folio: The folio to write to. 395 * @start1: The first byte to zero. 396 * @xend1: One more than the last byte in the first range. 397 * @start2: The first byte to zero in the second range. 398 * @xend2: One more than the last byte in the second range. 399 */ 400static inline void folio_zero_segments(struct folio *folio, 401 size_t start1, size_t xend1, size_t start2, size_t xend2) 402{ 403 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 404} 405 406/** 407 * folio_zero_segment() - Zero a byte range in a folio. 408 * @folio: The folio to write to. 409 * @start: The first byte to zero. 410 * @xend: One more than the last byte to zero. 411 */ 412static inline void folio_zero_segment(struct folio *folio, 413 size_t start, size_t xend) 414{ 415 zero_user_segments(&folio->page, start, xend, 0, 0); 416} 417 418/** 419 * folio_zero_range() - Zero a byte range in a folio. 420 * @folio: The folio to write to. 421 * @start: The first byte to zero. 422 * @length: The number of bytes to zero. 423 */ 424static inline void folio_zero_range(struct folio *folio, 425 size_t start, size_t length) 426{ 427 zero_user_segments(&folio->page, start, start + length, 0, 0); 428} 429 430#endif /* _LINUX_HIGHMEM_H */