at v6.1 17 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Block data types and constants. Directly include this file only to 4 * break include dependency loop. 5 */ 6#ifndef __LINUX_BLK_TYPES_H 7#define __LINUX_BLK_TYPES_H 8 9#include <linux/types.h> 10#include <linux/bvec.h> 11#include <linux/device.h> 12#include <linux/ktime.h> 13 14struct bio_set; 15struct bio; 16struct bio_integrity_payload; 17struct page; 18struct io_context; 19struct cgroup_subsys_state; 20typedef void (bio_end_io_t) (struct bio *); 21struct bio_crypt_ctx; 22 23/* 24 * The basic unit of block I/O is a sector. It is used in a number of contexts 25 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 26 * bytes. Variables of type sector_t represent an offset or size that is a 27 * multiple of 512 bytes. Hence these two constants. 28 */ 29#ifndef SECTOR_SHIFT 30#define SECTOR_SHIFT 9 31#endif 32#ifndef SECTOR_SIZE 33#define SECTOR_SIZE (1 << SECTOR_SHIFT) 34#endif 35 36#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 37#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 38#define SECTOR_MASK (PAGE_SECTORS - 1) 39 40struct block_device { 41 sector_t bd_start_sect; 42 sector_t bd_nr_sectors; 43 struct disk_stats __percpu *bd_stats; 44 unsigned long bd_stamp; 45 bool bd_read_only; /* read-only policy */ 46 dev_t bd_dev; 47 atomic_t bd_openers; 48 struct inode * bd_inode; /* will die */ 49 struct super_block * bd_super; 50 void * bd_claiming; 51 struct device bd_device; 52 void * bd_holder; 53 int bd_holders; 54 bool bd_write_holder; 55 struct kobject *bd_holder_dir; 56 u8 bd_partno; 57 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ 58 struct gendisk * bd_disk; 59 struct request_queue * bd_queue; 60 61 /* The counter of freeze processes */ 62 int bd_fsfreeze_count; 63 /* Mutex for freeze */ 64 struct mutex bd_fsfreeze_mutex; 65 struct super_block *bd_fsfreeze_sb; 66 67 struct partition_meta_info *bd_meta_info; 68#ifdef CONFIG_FAIL_MAKE_REQUEST 69 bool bd_make_it_fail; 70#endif 71} __randomize_layout; 72 73#define bdev_whole(_bdev) \ 74 ((_bdev)->bd_disk->part0) 75 76#define dev_to_bdev(device) \ 77 container_of((device), struct block_device, bd_device) 78 79#define bdev_kobj(_bdev) \ 80 (&((_bdev)->bd_device.kobj)) 81 82/* 83 * Block error status values. See block/blk-core:blk_errors for the details. 84 * Alpha cannot write a byte atomically, so we need to use 32-bit value. 85 */ 86#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) 87typedef u32 __bitwise blk_status_t; 88typedef u32 blk_short_t; 89#else 90typedef u8 __bitwise blk_status_t; 91typedef u16 blk_short_t; 92#endif 93#define BLK_STS_OK 0 94#define BLK_STS_NOTSUPP ((__force blk_status_t)1) 95#define BLK_STS_TIMEOUT ((__force blk_status_t)2) 96#define BLK_STS_NOSPC ((__force blk_status_t)3) 97#define BLK_STS_TRANSPORT ((__force blk_status_t)4) 98#define BLK_STS_TARGET ((__force blk_status_t)5) 99#define BLK_STS_NEXUS ((__force blk_status_t)6) 100#define BLK_STS_MEDIUM ((__force blk_status_t)7) 101#define BLK_STS_PROTECTION ((__force blk_status_t)8) 102#define BLK_STS_RESOURCE ((__force blk_status_t)9) 103#define BLK_STS_IOERR ((__force blk_status_t)10) 104 105/* hack for device mapper, don't use elsewhere: */ 106#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) 107 108/* 109 * BLK_STS_AGAIN should only be returned if RQF_NOWAIT is set 110 * and the bio would block (cf bio_wouldblock_error()) 111 */ 112#define BLK_STS_AGAIN ((__force blk_status_t)12) 113 114/* 115 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if 116 * device related resources are unavailable, but the driver can guarantee 117 * that the queue will be rerun in the future once resources become 118 * available again. This is typically the case for device specific 119 * resources that are consumed for IO. If the driver fails allocating these 120 * resources, we know that inflight (or pending) IO will free these 121 * resource upon completion. 122 * 123 * This is different from BLK_STS_RESOURCE in that it explicitly references 124 * a device specific resource. For resources of wider scope, allocation 125 * failure can happen without having pending IO. This means that we can't 126 * rely on request completions freeing these resources, as IO may not be in 127 * flight. Examples of that are kernel memory allocations, DMA mappings, or 128 * any other system wide resources. 129 */ 130#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) 131 132/* 133 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone 134 * related resources are unavailable, but the driver can guarantee the queue 135 * will be rerun in the future once the resources become available again. 136 * 137 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references 138 * a zone specific resource and IO to a different zone on the same device could 139 * still be served. Examples of that are zones that are write-locked, but a read 140 * to the same zone could be served. 141 */ 142#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14) 143 144/* 145 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion 146 * path if the device returns a status indicating that too many zone resources 147 * are currently open. The same command should be successful if resubmitted 148 * after the number of open zones decreases below the device's limits, which is 149 * reported in the request_queue's max_open_zones. 150 */ 151#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15) 152 153/* 154 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion 155 * path if the device returns a status indicating that too many zone resources 156 * are currently active. The same command should be successful if resubmitted 157 * after the number of active zones decreases below the device's limits, which 158 * is reported in the request_queue's max_active_zones. 159 */ 160#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16) 161 162/* 163 * BLK_STS_OFFLINE is returned from the driver when the target device is offline 164 * or is being taken offline. This could help differentiate the case where a 165 * device is intentionally being shut down from a real I/O error. 166 */ 167#define BLK_STS_OFFLINE ((__force blk_status_t)17) 168 169/** 170 * blk_path_error - returns true if error may be path related 171 * @error: status the request was completed with 172 * 173 * Description: 174 * This classifies block error status into non-retryable errors and ones 175 * that may be successful if retried on a failover path. 176 * 177 * Return: 178 * %false - retrying failover path will not help 179 * %true - may succeed if retried 180 */ 181static inline bool blk_path_error(blk_status_t error) 182{ 183 switch (error) { 184 case BLK_STS_NOTSUPP: 185 case BLK_STS_NOSPC: 186 case BLK_STS_TARGET: 187 case BLK_STS_NEXUS: 188 case BLK_STS_MEDIUM: 189 case BLK_STS_PROTECTION: 190 return false; 191 } 192 193 /* Anything else could be a path failure, so should be retried */ 194 return true; 195} 196 197/* 198 * From most significant bit: 199 * 1 bit: reserved for other usage, see below 200 * 12 bits: original size of bio 201 * 51 bits: issue time of bio 202 */ 203#define BIO_ISSUE_RES_BITS 1 204#define BIO_ISSUE_SIZE_BITS 12 205#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 206#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 207#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 208#define BIO_ISSUE_SIZE_MASK \ 209 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 210#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 211 212/* Reserved bit for blk-throtl */ 213#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 214 215struct bio_issue { 216 u64 value; 217}; 218 219static inline u64 __bio_issue_time(u64 time) 220{ 221 return time & BIO_ISSUE_TIME_MASK; 222} 223 224static inline u64 bio_issue_time(struct bio_issue *issue) 225{ 226 return __bio_issue_time(issue->value); 227} 228 229static inline sector_t bio_issue_size(struct bio_issue *issue) 230{ 231 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 232} 233 234static inline void bio_issue_init(struct bio_issue *issue, 235 sector_t size) 236{ 237 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 238 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 239 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | 240 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 241} 242 243typedef __u32 __bitwise blk_opf_t; 244 245typedef unsigned int blk_qc_t; 246#define BLK_QC_T_NONE -1U 247 248/* 249 * main unit of I/O for the block layer and lower layers (ie drivers and 250 * stacking drivers) 251 */ 252struct bio { 253 struct bio *bi_next; /* request queue link */ 254 struct block_device *bi_bdev; 255 blk_opf_t bi_opf; /* bottom bits REQ_OP, top bits 256 * req_flags. 257 */ 258 unsigned short bi_flags; /* BIO_* below */ 259 unsigned short bi_ioprio; 260 blk_status_t bi_status; 261 atomic_t __bi_remaining; 262 263 struct bvec_iter bi_iter; 264 265 blk_qc_t bi_cookie; 266 bio_end_io_t *bi_end_io; 267 void *bi_private; 268#ifdef CONFIG_BLK_CGROUP 269 /* 270 * Represents the association of the css and request_queue for the bio. 271 * If a bio goes direct to device, it will not have a blkg as it will 272 * not have a request_queue associated with it. The reference is put 273 * on release of the bio. 274 */ 275 struct blkcg_gq *bi_blkg; 276 struct bio_issue bi_issue; 277#ifdef CONFIG_BLK_CGROUP_IOCOST 278 u64 bi_iocost_cost; 279#endif 280#endif 281 282#ifdef CONFIG_BLK_INLINE_ENCRYPTION 283 struct bio_crypt_ctx *bi_crypt_context; 284#endif 285 286 union { 287#if defined(CONFIG_BLK_DEV_INTEGRITY) 288 struct bio_integrity_payload *bi_integrity; /* data integrity */ 289#endif 290 }; 291 292 unsigned short bi_vcnt; /* how many bio_vec's */ 293 294 /* 295 * Everything starting with bi_max_vecs will be preserved by bio_reset() 296 */ 297 298 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ 299 300 atomic_t __bi_cnt; /* pin count */ 301 302 struct bio_vec *bi_io_vec; /* the actual vec list */ 303 304 struct bio_set *bi_pool; 305 306 /* 307 * We can inline a number of vecs at the end of the bio, to avoid 308 * double allocations for a small number of bio_vecs. This member 309 * MUST obviously be kept at the very end of the bio. 310 */ 311 struct bio_vec bi_inline_vecs[]; 312}; 313 314#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) 315#define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT) 316 317/* 318 * bio flags 319 */ 320enum { 321 BIO_NO_PAGE_REF, /* don't put release vec pages */ 322 BIO_CLONED, /* doesn't own data */ 323 BIO_BOUNCED, /* bio is a bounce bio */ 324 BIO_QUIET, /* Make BIO Quiet */ 325 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ 326 BIO_REFFED, /* bio has elevated ->bi_cnt */ 327 BIO_BPS_THROTTLED, /* This bio has already been subjected to 328 * throttling rules. Don't do it again. */ 329 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion 330 * of this bio. */ 331 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ 332 BIO_QOS_THROTTLED, /* bio went through rq_qos throttle path */ 333 BIO_QOS_MERGED, /* but went through rq_qos merge path */ 334 BIO_REMAPPED, 335 BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */ 336 BIO_FLAG_LAST 337}; 338 339typedef __u32 __bitwise blk_mq_req_flags_t; 340 341#define REQ_OP_BITS 8 342#define REQ_OP_MASK (__force blk_opf_t)((1 << REQ_OP_BITS) - 1) 343#define REQ_FLAG_BITS 24 344 345/** 346 * enum req_op - Operations common to the bio and request structures. 347 * We use 8 bits for encoding the operation, and the remaining 24 for flags. 348 * 349 * The least significant bit of the operation number indicates the data 350 * transfer direction: 351 * 352 * - if the least significant bit is set transfers are TO the device 353 * - if the least significant bit is not set transfers are FROM the device 354 * 355 * If a operation does not transfer data the least significant bit has no 356 * meaning. 357 */ 358enum req_op { 359 /* read sectors from the device */ 360 REQ_OP_READ = (__force blk_opf_t)0, 361 /* write sectors to the device */ 362 REQ_OP_WRITE = (__force blk_opf_t)1, 363 /* flush the volatile write cache */ 364 REQ_OP_FLUSH = (__force blk_opf_t)2, 365 /* discard sectors */ 366 REQ_OP_DISCARD = (__force blk_opf_t)3, 367 /* securely erase sectors */ 368 REQ_OP_SECURE_ERASE = (__force blk_opf_t)5, 369 /* write the zero filled sector many times */ 370 REQ_OP_WRITE_ZEROES = (__force blk_opf_t)9, 371 /* Open a zone */ 372 REQ_OP_ZONE_OPEN = (__force blk_opf_t)10, 373 /* Close a zone */ 374 REQ_OP_ZONE_CLOSE = (__force blk_opf_t)11, 375 /* Transition a zone to full */ 376 REQ_OP_ZONE_FINISH = (__force blk_opf_t)12, 377 /* write data at the current zone write pointer */ 378 REQ_OP_ZONE_APPEND = (__force blk_opf_t)13, 379 /* reset a zone write pointer */ 380 REQ_OP_ZONE_RESET = (__force blk_opf_t)15, 381 /* reset all the zone present on the device */ 382 REQ_OP_ZONE_RESET_ALL = (__force blk_opf_t)17, 383 384 /* Driver private requests */ 385 REQ_OP_DRV_IN = (__force blk_opf_t)34, 386 REQ_OP_DRV_OUT = (__force blk_opf_t)35, 387 388 REQ_OP_LAST = (__force blk_opf_t)36, 389}; 390 391enum req_flag_bits { 392 __REQ_FAILFAST_DEV = /* no driver retries of device errors */ 393 REQ_OP_BITS, 394 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ 395 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ 396 __REQ_SYNC, /* request is sync (sync write or read) */ 397 __REQ_META, /* metadata io request */ 398 __REQ_PRIO, /* boost priority in cfq */ 399 __REQ_NOMERGE, /* don't touch this for merging */ 400 __REQ_IDLE, /* anticipate more IO after this one */ 401 __REQ_INTEGRITY, /* I/O includes block integrity payload */ 402 __REQ_FUA, /* forced unit access */ 403 __REQ_PREFLUSH, /* request for cache flush */ 404 __REQ_RAHEAD, /* read ahead, can fail anytime */ 405 __REQ_BACKGROUND, /* background IO */ 406 __REQ_NOWAIT, /* Don't wait if request will block */ 407 /* 408 * When a shared kthread needs to issue a bio for a cgroup, doing 409 * so synchronously can lead to priority inversions as the kthread 410 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes 411 * submit_bio() punt the actual issuing to a dedicated per-blkcg 412 * work item to avoid such priority inversions. 413 */ 414 __REQ_CGROUP_PUNT, 415 __REQ_POLLED, /* caller polls for completion using bio_poll */ 416 __REQ_ALLOC_CACHE, /* allocate IO from cache if available */ 417 __REQ_SWAP, /* swap I/O */ 418 __REQ_DRV, /* for driver use */ 419 420 /* 421 * Command specific flags, keep last: 422 */ 423 /* for REQ_OP_WRITE_ZEROES: */ 424 __REQ_NOUNMAP, /* do not free blocks when zeroing */ 425 426 __REQ_NR_BITS, /* stops here */ 427}; 428 429#define REQ_FAILFAST_DEV \ 430 (__force blk_opf_t)(1ULL << __REQ_FAILFAST_DEV) 431#define REQ_FAILFAST_TRANSPORT \ 432 (__force blk_opf_t)(1ULL << __REQ_FAILFAST_TRANSPORT) 433#define REQ_FAILFAST_DRIVER \ 434 (__force blk_opf_t)(1ULL << __REQ_FAILFAST_DRIVER) 435#define REQ_SYNC (__force blk_opf_t)(1ULL << __REQ_SYNC) 436#define REQ_META (__force blk_opf_t)(1ULL << __REQ_META) 437#define REQ_PRIO (__force blk_opf_t)(1ULL << __REQ_PRIO) 438#define REQ_NOMERGE (__force blk_opf_t)(1ULL << __REQ_NOMERGE) 439#define REQ_IDLE (__force blk_opf_t)(1ULL << __REQ_IDLE) 440#define REQ_INTEGRITY (__force blk_opf_t)(1ULL << __REQ_INTEGRITY) 441#define REQ_FUA (__force blk_opf_t)(1ULL << __REQ_FUA) 442#define REQ_PREFLUSH (__force blk_opf_t)(1ULL << __REQ_PREFLUSH) 443#define REQ_RAHEAD (__force blk_opf_t)(1ULL << __REQ_RAHEAD) 444#define REQ_BACKGROUND (__force blk_opf_t)(1ULL << __REQ_BACKGROUND) 445#define REQ_NOWAIT (__force blk_opf_t)(1ULL << __REQ_NOWAIT) 446#define REQ_CGROUP_PUNT (__force blk_opf_t)(1ULL << __REQ_CGROUP_PUNT) 447 448#define REQ_NOUNMAP (__force blk_opf_t)(1ULL << __REQ_NOUNMAP) 449#define REQ_POLLED (__force blk_opf_t)(1ULL << __REQ_POLLED) 450#define REQ_ALLOC_CACHE (__force blk_opf_t)(1ULL << __REQ_ALLOC_CACHE) 451 452#define REQ_DRV (__force blk_opf_t)(1ULL << __REQ_DRV) 453#define REQ_SWAP (__force blk_opf_t)(1ULL << __REQ_SWAP) 454 455#define REQ_FAILFAST_MASK \ 456 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) 457 458#define REQ_NOMERGE_FLAGS \ 459 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) 460 461enum stat_group { 462 STAT_READ, 463 STAT_WRITE, 464 STAT_DISCARD, 465 STAT_FLUSH, 466 467 NR_STAT_GROUPS 468}; 469 470static inline enum req_op bio_op(const struct bio *bio) 471{ 472 return bio->bi_opf & REQ_OP_MASK; 473} 474 475/* obsolete, don't use in new code */ 476static inline void bio_set_op_attrs(struct bio *bio, enum req_op op, 477 blk_opf_t op_flags) 478{ 479 bio->bi_opf = op | op_flags; 480} 481 482static inline bool op_is_write(blk_opf_t op) 483{ 484 return !!(op & (__force blk_opf_t)1); 485} 486 487/* 488 * Check if the bio or request is one that needs special treatment in the 489 * flush state machine. 490 */ 491static inline bool op_is_flush(blk_opf_t op) 492{ 493 return op & (REQ_FUA | REQ_PREFLUSH); 494} 495 496/* 497 * Reads are always treated as synchronous, as are requests with the FUA or 498 * PREFLUSH flag. Other operations may be marked as synchronous using the 499 * REQ_SYNC flag. 500 */ 501static inline bool op_is_sync(blk_opf_t op) 502{ 503 return (op & REQ_OP_MASK) == REQ_OP_READ || 504 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); 505} 506 507static inline bool op_is_discard(blk_opf_t op) 508{ 509 return (op & REQ_OP_MASK) == REQ_OP_DISCARD; 510} 511 512/* 513 * Check if a bio or request operation is a zone management operation, with 514 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case 515 * due to its different handling in the block layer and device response in 516 * case of command failure. 517 */ 518static inline bool op_is_zone_mgmt(enum req_op op) 519{ 520 switch (op & REQ_OP_MASK) { 521 case REQ_OP_ZONE_RESET: 522 case REQ_OP_ZONE_OPEN: 523 case REQ_OP_ZONE_CLOSE: 524 case REQ_OP_ZONE_FINISH: 525 return true; 526 default: 527 return false; 528 } 529} 530 531static inline int op_stat_group(enum req_op op) 532{ 533 if (op_is_discard(op)) 534 return STAT_DISCARD; 535 return op_is_write(op); 536} 537 538struct blk_rq_stat { 539 u64 mean; 540 u64 min; 541 u64 max; 542 u32 nr_samples; 543 u64 batch; 544}; 545 546#endif /* __LINUX_BLK_TYPES_H */