Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _PARISC_PGTABLE_H
3#define _PARISC_PGTABLE_H
4
5#include <asm/page.h>
6
7#if CONFIG_PGTABLE_LEVELS == 3
8#include <asm-generic/pgtable-nopud.h>
9#elif CONFIG_PGTABLE_LEVELS == 2
10#include <asm-generic/pgtable-nopmd.h>
11#endif
12
13#include <asm/fixmap.h>
14
15#ifndef __ASSEMBLY__
16/*
17 * we simulate an x86-style page table for the linux mm code
18 */
19
20#include <linux/bitops.h>
21#include <linux/spinlock.h>
22#include <linux/mm_types.h>
23#include <asm/processor.h>
24#include <asm/cache.h>
25
26/*
27 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
28 * memory. For the return value to be meaningful, ADDR must be >=
29 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
30 * require a hash-, or multi-level tree-lookup or something of that
31 * sort) but it guarantees to return TRUE only if accessing the page
32 * at that address does not cause an error. Note that there may be
33 * addresses for which kern_addr_valid() returns FALSE even though an
34 * access would not cause an error (e.g., this is typically true for
35 * memory mapped I/O regions.
36 *
37 * XXX Need to implement this for parisc.
38 */
39#define kern_addr_valid(addr) (1)
40
41/* This is for the serialization of PxTLB broadcasts. At least on the N class
42 * systems, only one PxTLB inter processor broadcast can be active at any one
43 * time on the Merced bus. */
44extern spinlock_t pa_tlb_flush_lock;
45#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
46extern int pa_serialize_tlb_flushes;
47#else
48#define pa_serialize_tlb_flushes (0)
49#endif
50
51#define purge_tlb_start(flags) do { \
52 if (pa_serialize_tlb_flushes) \
53 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \
54 else \
55 local_irq_save(flags); \
56 } while (0)
57#define purge_tlb_end(flags) do { \
58 if (pa_serialize_tlb_flushes) \
59 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \
60 else \
61 local_irq_restore(flags); \
62 } while (0)
63
64/* Purge data and instruction TLB entries. The TLB purge instructions
65 * are slow on SMP machines since the purge must be broadcast to all CPUs.
66 */
67
68static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
69{
70 unsigned long flags;
71
72 purge_tlb_start(flags);
73 mtsp(mm->context.space_id, SR_TEMP1);
74 pdtlb(SR_TEMP1, addr);
75 pitlb(SR_TEMP1, addr);
76 purge_tlb_end(flags);
77}
78
79extern void __update_cache(pte_t pte);
80
81/* Certain architectures need to do special things when PTEs
82 * within a page table are directly modified. Thus, the following
83 * hook is made available.
84 */
85#define set_pte(pteptr, pteval) \
86 do { \
87 *(pteptr) = (pteval); \
88 mb(); \
89 } while(0)
90
91#define set_pte_at(mm, addr, pteptr, pteval) \
92 do { \
93 if (pte_present(pteval) && \
94 pte_user(pteval)) \
95 __update_cache(pteval); \
96 *(pteptr) = (pteval); \
97 purge_tlb_entries(mm, addr); \
98 } while (0)
99
100#endif /* !__ASSEMBLY__ */
101
102#define pte_ERROR(e) \
103 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
104#if CONFIG_PGTABLE_LEVELS == 3
105#define pmd_ERROR(e) \
106 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
107#endif
108#define pgd_ERROR(e) \
109 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
110
111/* This is the size of the initially mapped kernel memory */
112#if defined(CONFIG_64BIT)
113#define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */
114#else
115#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */
116#endif
117#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
118
119#if CONFIG_PGTABLE_LEVELS == 3
120#define PMD_TABLE_ORDER 1
121#define PGD_TABLE_ORDER 0
122#else
123#define PGD_TABLE_ORDER 1
124#endif
125
126/* Definitions for 3rd level (we use PLD here for Page Lower directory
127 * because PTE_SHIFT is used lower down to mean shift that has to be
128 * done to get usable bits out of the PTE) */
129#define PLD_SHIFT PAGE_SHIFT
130#define PLD_SIZE PAGE_SIZE
131#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
132#define PTRS_PER_PTE (1UL << BITS_PER_PTE)
133
134/* Definitions for 2nd level */
135#if CONFIG_PGTABLE_LEVELS == 3
136#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
137#define PMD_SIZE (1UL << PMD_SHIFT)
138#define PMD_MASK (~(PMD_SIZE-1))
139#define BITS_PER_PMD (PAGE_SHIFT + PMD_TABLE_ORDER - BITS_PER_PMD_ENTRY)
140#define PTRS_PER_PMD (1UL << BITS_PER_PMD)
141#else
142#define BITS_PER_PMD 0
143#endif
144
145/* Definitions for 1st level */
146#define PGDIR_SHIFT (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD)
147#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_TABLE_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
148#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
149#else
150#define BITS_PER_PGD (PAGE_SHIFT + PGD_TABLE_ORDER - BITS_PER_PGD_ENTRY)
151#endif
152#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
153#define PGDIR_MASK (~(PGDIR_SIZE-1))
154#define PTRS_PER_PGD (1UL << BITS_PER_PGD)
155#define USER_PTRS_PER_PGD PTRS_PER_PGD
156
157#ifdef CONFIG_64BIT
158#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
159#define MAX_ADDRESS (1UL << MAX_ADDRBITS)
160#define SPACEID_SHIFT (MAX_ADDRBITS - 32)
161#else
162#define MAX_ADDRBITS (BITS_PER_LONG)
163#define MAX_ADDRESS (1ULL << MAX_ADDRBITS)
164#define SPACEID_SHIFT 0
165#endif
166
167/* This calculates the number of initial pages we need for the initial
168 * page tables */
169#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
170# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
171#else
172# define PT_INITIAL (1) /* all initial PTEs fit into one page */
173#endif
174
175/*
176 * pgd entries used up by user/kernel:
177 */
178
179/* NB: The tlb miss handlers make certain assumptions about the order */
180/* of the following bits, so be careful (One example, bits 25-31 */
181/* are moved together in one instruction). */
182
183#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
184#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
185#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
186#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
187#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
188#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
189#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
190#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
191#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
192#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
193#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */
194#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
195#ifdef CONFIG_HUGETLB_PAGE
196#define _PAGE_SPECIAL_BIT _PAGE_DMB_BIT /* DMB feature is currently unused */
197#else
198#define _PAGE_SPECIAL_BIT _PAGE_HPAGE_BIT /* use unused HUGE PAGE bit */
199#endif
200
201/* N.B. The bits are defined in terms of a 32 bit word above, so the */
202/* following macro is ok for both 32 and 64 bit. */
203
204#define xlate_pabit(x) (31 - x)
205
206/* this defines the shift to the usable bits in the PTE it is set so
207 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
208 * to zero */
209#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
210
211/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
212#define PFN_PTE_SHIFT 12
213
214#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
215#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
216#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
217#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
218#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
219#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
220#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
221#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
222#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
223#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
224#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
225#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT))
226#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
227#define _PAGE_SPECIAL (1 << xlate_pabit(_PAGE_SPECIAL_BIT))
228
229#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
230#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_SPECIAL)
231#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
232#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC)
233#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
234#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE)
235
236/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
237 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
238 * for a few meta-information bits, so we shift the address to be
239 * able to effectively address 40/42/44-bits of physical address space
240 * depending on 4k/16k/64k PAGE_SIZE */
241#define _PxD_PRESENT_BIT 31
242#define _PxD_VALID_BIT 30
243
244#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
245#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
246#define PxD_FLAG_MASK (0xf)
247#define PxD_FLAG_SHIFT (4)
248#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
249
250#ifndef __ASSEMBLY__
251
252#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER)
253#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE)
254/* Others seem to make this executable, I don't know if that's correct
255 or not. The stack is mapped this way though so this is necessary
256 in the short term - dhd@linuxcare.com, 2000-08-08 */
257#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ)
258#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE)
259#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC)
260#define PAGE_COPY PAGE_EXECREAD
261#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
262#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
263#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
264#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
265#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
266#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
267#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ)
268
269
270/*
271 * We could have an execute only page using "gateway - promote to priv
272 * level 3", but that is kind of silly. So, the way things are defined
273 * now, we must always have read permission for pages with execute
274 * permission. For the fun of it we'll go ahead and support write only
275 * pages.
276 */
277
278 /*xwr*/
279
280extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
281
282/* initial page tables for 0-8MB for kernel */
283
284extern pte_t pg0[];
285
286/* zero page used for uninitialized stuff */
287
288extern unsigned long *empty_zero_page;
289
290/*
291 * ZERO_PAGE is a global shared page that is always zero: used
292 * for zero-mapped memory areas etc..
293 */
294
295#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
296
297#define pte_none(x) (pte_val(x) == 0)
298#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
299#define pte_user(x) (pte_val(x) & _PAGE_USER)
300#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0))
301
302#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
303#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
304#define pud_flag(x) (pud_val(x) & PxD_FLAG_MASK)
305#define pud_address(x) ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
306#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
307#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
308
309#define pmd_none(x) (!pmd_val(x))
310#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
311#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
312static inline void pmd_clear(pmd_t *pmd) {
313 set_pmd(pmd, __pmd(0));
314}
315
316
317
318#if CONFIG_PGTABLE_LEVELS == 3
319#define pud_pgtable(pud) ((pmd_t *) __va(pud_address(pud)))
320#define pud_page(pud) virt_to_page((void *)pud_pgtable(pud))
321
322/* For 64 bit we have three level tables */
323
324#define pud_none(x) (!pud_val(x))
325#define pud_bad(x) (!(pud_flag(x) & PxD_FLAG_VALID))
326#define pud_present(x) (pud_flag(x) & PxD_FLAG_PRESENT)
327static inline void pud_clear(pud_t *pud) {
328 set_pud(pud, __pud(0));
329}
330#endif
331
332/*
333 * The following only work if pte_present() is true.
334 * Undefined behaviour if not..
335 */
336static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
337static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
338static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
339static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
340
341static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
342static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
343static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
344static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
345static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
346static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
347static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; }
348
349/*
350 * Huge pte definitions.
351 */
352#ifdef CONFIG_HUGETLB_PAGE
353#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE)
354#define pte_mkhuge(pte) (__pte(pte_val(pte) | \
355 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
356#else
357#define pte_huge(pte) (0)
358#define pte_mkhuge(pte) (pte)
359#endif
360
361
362/*
363 * Conversion functions: convert a page and protection to a page entry,
364 * and a page entry and page directory to the page they refer to.
365 */
366#define __mk_pte(addr,pgprot) \
367({ \
368 pte_t __pte; \
369 \
370 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
371 \
372 __pte; \
373})
374
375#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
376
377static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
378{
379 pte_t pte;
380 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
381 return pte;
382}
383
384static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
385{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
386
387/* Permanent address of a page. On parisc we don't have highmem. */
388
389#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
390
391#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
392
393static inline unsigned long pmd_page_vaddr(pmd_t pmd)
394{
395 return ((unsigned long) __va(pmd_address(pmd)));
396}
397
398#define pmd_pfn(pmd) (pmd_address(pmd) >> PAGE_SHIFT)
399#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
400#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
401
402/* Find an entry in the second-level page table.. */
403
404extern void paging_init (void);
405
406/* Used for deferring calls to flush_dcache_page() */
407
408#define PG_dcache_dirty PG_arch_1
409
410#define update_mmu_cache(vms,addr,ptep) __update_cache(*ptep)
411
412/* Encode and de-code a swap entry */
413
414#define __swp_type(x) ((x).val & 0x1f)
415#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
416 (((x).val >> 8) & ~0x7) )
417#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
418 ((offset & 0x7) << 6) | \
419 ((offset & ~0x7) << 8) })
420#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
421#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
422
423static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
424{
425 pte_t pte;
426
427 if (!pte_young(*ptep))
428 return 0;
429
430 pte = *ptep;
431 if (!pte_young(pte)) {
432 return 0;
433 }
434 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
435 return 1;
436}
437
438struct mm_struct;
439static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
440{
441 pte_t old_pte;
442
443 old_pte = *ptep;
444 set_pte_at(mm, addr, ptep, __pte(0));
445
446 return old_pte;
447}
448
449static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
450{
451 set_pte_at(mm, addr, ptep, pte_wrprotect(*ptep));
452}
453
454#define pte_same(A,B) (pte_val(A) == pte_val(B))
455
456struct seq_file;
457extern void arch_report_meminfo(struct seq_file *m);
458
459#endif /* !__ASSEMBLY__ */
460
461
462/* TLB page size encoding - see table 3-1 in parisc20.pdf */
463#define _PAGE_SIZE_ENCODING_4K 0
464#define _PAGE_SIZE_ENCODING_16K 1
465#define _PAGE_SIZE_ENCODING_64K 2
466#define _PAGE_SIZE_ENCODING_256K 3
467#define _PAGE_SIZE_ENCODING_1M 4
468#define _PAGE_SIZE_ENCODING_4M 5
469#define _PAGE_SIZE_ENCODING_16M 6
470#define _PAGE_SIZE_ENCODING_64M 7
471
472#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
473# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
474#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
475# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
476#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
477# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
478#endif
479
480
481#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
482
483/* We provide our own get_unmapped_area to provide cache coherency */
484
485#define HAVE_ARCH_UNMAPPED_AREA
486#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
487
488#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
489#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
490#define __HAVE_ARCH_PTEP_SET_WRPROTECT
491#define __HAVE_ARCH_PTE_SAME
492
493#endif /* _PARISC_PGTABLE_H */