Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_NUMA
35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37/* zero numa counters within a zone */
38static void zero_zone_numa_counters(struct zone *zone)
39{
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49}
50
51/* zero numa counters of all the populated zones */
52static void zero_zones_numa_counters(void)
53{
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58}
59
60/* zero global numa counters */
61static void zero_global_numa_counters(void)
62{
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67}
68
69static void invalid_numa_statistics(void)
70{
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73}
74
75static DEFINE_MUTEX(vm_numa_stat_lock);
76
77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79{
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103}
104#endif
105
106#ifdef CONFIG_VM_EVENT_COUNTERS
107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110static void sum_vm_events(unsigned long *ret)
111{
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123}
124
125/*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129*/
130void all_vm_events(unsigned long *ret)
131{
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135}
136EXPORT_SYMBOL_GPL(all_vm_events);
137
138/*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144void vm_events_fold_cpu(int cpu)
145{
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153}
154
155#endif /* CONFIG_VM_EVENT_COUNTERS */
156
157/*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165EXPORT_SYMBOL(vm_zone_stat);
166EXPORT_SYMBOL(vm_node_stat);
167
168#ifdef CONFIG_NUMA
169static void fold_vm_zone_numa_events(struct zone *zone)
170{
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
185}
186
187void fold_vm_numa_events(void)
188{
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193}
194#endif
195
196#ifdef CONFIG_SMP
197
198int calculate_pressure_threshold(struct zone *zone)
199{
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220}
221
222int calculate_normal_threshold(struct zone *zone)
223{
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267}
268
269/*
270 * Refresh the thresholds for each zone.
271 */
272void refresh_zone_stat_thresholds(void)
273{
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315}
316
317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319{
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335}
336
337/*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344{
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370}
371EXPORT_SYMBOL(__mod_zone_page_state);
372
373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375{
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406}
407EXPORT_SYMBOL(__mod_node_page_state);
408
409/*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433{
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451}
452
453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454{
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474}
475
476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477{
478 __inc_zone_state(page_zone(page), item);
479}
480EXPORT_SYMBOL(__inc_zone_page_state);
481
482void __inc_node_page_state(struct page *page, enum node_stat_item item)
483{
484 __inc_node_state(page_pgdat(page), item);
485}
486EXPORT_SYMBOL(__inc_node_page_state);
487
488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489{
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507}
508
509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510{
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530}
531
532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533{
534 __dec_zone_state(page_zone(page), item);
535}
536EXPORT_SYMBOL(__dec_zone_page_state);
537
538void __dec_node_page_state(struct page *page, enum node_stat_item item)
539{
540 __dec_node_state(page_pgdat(page), item);
541}
542EXPORT_SYMBOL(__dec_node_page_state);
543
544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545/*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556*/
557static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559{
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long o, n, t, z;
563
564 do {
565 z = 0; /* overflow to zone counters */
566
567 /*
568 * The fetching of the stat_threshold is racy. We may apply
569 * a counter threshold to the wrong the cpu if we get
570 * rescheduled while executing here. However, the next
571 * counter update will apply the threshold again and
572 * therefore bring the counter under the threshold again.
573 *
574 * Most of the time the thresholds are the same anyways
575 * for all cpus in a zone.
576 */
577 t = this_cpu_read(pcp->stat_threshold);
578
579 o = this_cpu_read(*p);
580 n = delta + o;
581
582 if (abs(n) > t) {
583 int os = overstep_mode * (t >> 1) ;
584
585 /* Overflow must be added to zone counters */
586 z = n + os;
587 n = -os;
588 }
589 } while (this_cpu_cmpxchg(*p, o, n) != o);
590
591 if (z)
592 zone_page_state_add(z, zone, item);
593}
594
595void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596 long delta)
597{
598 mod_zone_state(zone, item, delta, 0);
599}
600EXPORT_SYMBOL(mod_zone_page_state);
601
602void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603{
604 mod_zone_state(page_zone(page), item, 1, 1);
605}
606EXPORT_SYMBOL(inc_zone_page_state);
607
608void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609{
610 mod_zone_state(page_zone(page), item, -1, -1);
611}
612EXPORT_SYMBOL(dec_zone_page_state);
613
614static inline void mod_node_state(struct pglist_data *pgdat,
615 enum node_stat_item item, int delta, int overstep_mode)
616{
617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 s8 __percpu *p = pcp->vm_node_stat_diff + item;
619 long o, n, t, z;
620
621 if (vmstat_item_in_bytes(item)) {
622 /*
623 * Only cgroups use subpage accounting right now; at
624 * the global level, these items still change in
625 * multiples of whole pages. Store them as pages
626 * internally to keep the per-cpu counters compact.
627 */
628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 delta >>= PAGE_SHIFT;
630 }
631
632 do {
633 z = 0; /* overflow to node counters */
634
635 /*
636 * The fetching of the stat_threshold is racy. We may apply
637 * a counter threshold to the wrong the cpu if we get
638 * rescheduled while executing here. However, the next
639 * counter update will apply the threshold again and
640 * therefore bring the counter under the threshold again.
641 *
642 * Most of the time the thresholds are the same anyways
643 * for all cpus in a node.
644 */
645 t = this_cpu_read(pcp->stat_threshold);
646
647 o = this_cpu_read(*p);
648 n = delta + o;
649
650 if (abs(n) > t) {
651 int os = overstep_mode * (t >> 1) ;
652
653 /* Overflow must be added to node counters */
654 z = n + os;
655 n = -os;
656 }
657 } while (this_cpu_cmpxchg(*p, o, n) != o);
658
659 if (z)
660 node_page_state_add(z, pgdat, item);
661}
662
663void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664 long delta)
665{
666 mod_node_state(pgdat, item, delta, 0);
667}
668EXPORT_SYMBOL(mod_node_page_state);
669
670void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671{
672 mod_node_state(pgdat, item, 1, 1);
673}
674
675void inc_node_page_state(struct page *page, enum node_stat_item item)
676{
677 mod_node_state(page_pgdat(page), item, 1, 1);
678}
679EXPORT_SYMBOL(inc_node_page_state);
680
681void dec_node_page_state(struct page *page, enum node_stat_item item)
682{
683 mod_node_state(page_pgdat(page), item, -1, -1);
684}
685EXPORT_SYMBOL(dec_node_page_state);
686#else
687/*
688 * Use interrupt disable to serialize counter updates
689 */
690void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 long delta)
692{
693 unsigned long flags;
694
695 local_irq_save(flags);
696 __mod_zone_page_state(zone, item, delta);
697 local_irq_restore(flags);
698}
699EXPORT_SYMBOL(mod_zone_page_state);
700
701void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702{
703 unsigned long flags;
704 struct zone *zone;
705
706 zone = page_zone(page);
707 local_irq_save(flags);
708 __inc_zone_state(zone, item);
709 local_irq_restore(flags);
710}
711EXPORT_SYMBOL(inc_zone_page_state);
712
713void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714{
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __dec_zone_page_state(page, item);
719 local_irq_restore(flags);
720}
721EXPORT_SYMBOL(dec_zone_page_state);
722
723void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724{
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __inc_node_state(pgdat, item);
729 local_irq_restore(flags);
730}
731EXPORT_SYMBOL(inc_node_state);
732
733void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734 long delta)
735{
736 unsigned long flags;
737
738 local_irq_save(flags);
739 __mod_node_page_state(pgdat, item, delta);
740 local_irq_restore(flags);
741}
742EXPORT_SYMBOL(mod_node_page_state);
743
744void inc_node_page_state(struct page *page, enum node_stat_item item)
745{
746 unsigned long flags;
747 struct pglist_data *pgdat;
748
749 pgdat = page_pgdat(page);
750 local_irq_save(flags);
751 __inc_node_state(pgdat, item);
752 local_irq_restore(flags);
753}
754EXPORT_SYMBOL(inc_node_page_state);
755
756void dec_node_page_state(struct page *page, enum node_stat_item item)
757{
758 unsigned long flags;
759
760 local_irq_save(flags);
761 __dec_node_page_state(page, item);
762 local_irq_restore(flags);
763}
764EXPORT_SYMBOL(dec_node_page_state);
765#endif
766
767/*
768 * Fold a differential into the global counters.
769 * Returns the number of counters updated.
770 */
771static int fold_diff(int *zone_diff, int *node_diff)
772{
773 int i;
774 int changes = 0;
775
776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777 if (zone_diff[i]) {
778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779 changes++;
780 }
781
782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783 if (node_diff[i]) {
784 atomic_long_add(node_diff[i], &vm_node_stat[i]);
785 changes++;
786 }
787 return changes;
788}
789
790/*
791 * Update the zone counters for the current cpu.
792 *
793 * Note that refresh_cpu_vm_stats strives to only access
794 * node local memory. The per cpu pagesets on remote zones are placed
795 * in the memory local to the processor using that pageset. So the
796 * loop over all zones will access a series of cachelines local to
797 * the processor.
798 *
799 * The call to zone_page_state_add updates the cachelines with the
800 * statistics in the remote zone struct as well as the global cachelines
801 * with the global counters. These could cause remote node cache line
802 * bouncing and will have to be only done when necessary.
803 *
804 * The function returns the number of global counters updated.
805 */
806static int refresh_cpu_vm_stats(bool do_pagesets)
807{
808 struct pglist_data *pgdat;
809 struct zone *zone;
810 int i;
811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813 int changes = 0;
814
815 for_each_populated_zone(zone) {
816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817#ifdef CONFIG_NUMA
818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819#endif
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829#ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832#endif
833 }
834 }
835#ifdef CONFIG_NUMA
836
837 if (do_pagesets) {
838 cond_resched();
839 /*
840 * Deal with draining the remote pageset of this
841 * processor
842 *
843 * Check if there are pages remaining in this pageset
844 * if not then there is nothing to expire.
845 */
846 if (!__this_cpu_read(pcp->expire) ||
847 !__this_cpu_read(pcp->count))
848 continue;
849
850 /*
851 * We never drain zones local to this processor.
852 */
853 if (zone_to_nid(zone) == numa_node_id()) {
854 __this_cpu_write(pcp->expire, 0);
855 continue;
856 }
857
858 if (__this_cpu_dec_return(pcp->expire))
859 continue;
860
861 if (__this_cpu_read(pcp->count)) {
862 drain_zone_pages(zone, this_cpu_ptr(pcp));
863 changes++;
864 }
865 }
866#endif
867 }
868
869 for_each_online_pgdat(pgdat) {
870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871
872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873 int v;
874
875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876 if (v) {
877 atomic_long_add(v, &pgdat->vm_stat[i]);
878 global_node_diff[i] += v;
879 }
880 }
881 }
882
883 changes += fold_diff(global_zone_diff, global_node_diff);
884 return changes;
885}
886
887/*
888 * Fold the data for an offline cpu into the global array.
889 * There cannot be any access by the offline cpu and therefore
890 * synchronization is simplified.
891 */
892void cpu_vm_stats_fold(int cpu)
893{
894 struct pglist_data *pgdat;
895 struct zone *zone;
896 int i;
897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899
900 for_each_populated_zone(zone) {
901 struct per_cpu_zonestat *pzstats;
902
903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904
905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 if (pzstats->vm_stat_diff[i]) {
907 int v;
908
909 v = pzstats->vm_stat_diff[i];
910 pzstats->vm_stat_diff[i] = 0;
911 atomic_long_add(v, &zone->vm_stat[i]);
912 global_zone_diff[i] += v;
913 }
914 }
915#ifdef CONFIG_NUMA
916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 if (pzstats->vm_numa_event[i]) {
918 unsigned long v;
919
920 v = pzstats->vm_numa_event[i];
921 pzstats->vm_numa_event[i] = 0;
922 zone_numa_event_add(v, zone, i);
923 }
924 }
925#endif
926 }
927
928 for_each_online_pgdat(pgdat) {
929 struct per_cpu_nodestat *p;
930
931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932
933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 if (p->vm_node_stat_diff[i]) {
935 int v;
936
937 v = p->vm_node_stat_diff[i];
938 p->vm_node_stat_diff[i] = 0;
939 atomic_long_add(v, &pgdat->vm_stat[i]);
940 global_node_diff[i] += v;
941 }
942 }
943
944 fold_diff(global_zone_diff, global_node_diff);
945}
946
947/*
948 * this is only called if !populated_zone(zone), which implies no other users of
949 * pset->vm_stat_diff[] exist.
950 */
951void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952{
953 unsigned long v;
954 int i;
955
956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 if (pzstats->vm_stat_diff[i]) {
958 v = pzstats->vm_stat_diff[i];
959 pzstats->vm_stat_diff[i] = 0;
960 zone_page_state_add(v, zone, i);
961 }
962 }
963
964#ifdef CONFIG_NUMA
965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 if (pzstats->vm_numa_event[i]) {
967 v = pzstats->vm_numa_event[i];
968 pzstats->vm_numa_event[i] = 0;
969 zone_numa_event_add(v, zone, i);
970 }
971 }
972#endif
973}
974#endif
975
976#ifdef CONFIG_NUMA
977/*
978 * Determine the per node value of a stat item. This function
979 * is called frequently in a NUMA machine, so try to be as
980 * frugal as possible.
981 */
982unsigned long sum_zone_node_page_state(int node,
983 enum zone_stat_item item)
984{
985 struct zone *zones = NODE_DATA(node)->node_zones;
986 int i;
987 unsigned long count = 0;
988
989 for (i = 0; i < MAX_NR_ZONES; i++)
990 count += zone_page_state(zones + i, item);
991
992 return count;
993}
994
995/* Determine the per node value of a numa stat item. */
996unsigned long sum_zone_numa_event_state(int node,
997 enum numa_stat_item item)
998{
999 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1001 int i;
1002
1003 for (i = 0; i < MAX_NR_ZONES; i++)
1004 count += zone_numa_event_state(zones + i, item);
1005
1006 return count;
1007}
1008
1009/*
1010 * Determine the per node value of a stat item.
1011 */
1012unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 enum node_stat_item item)
1014{
1015 long x = atomic_long_read(&pgdat->vm_stat[item]);
1016#ifdef CONFIG_SMP
1017 if (x < 0)
1018 x = 0;
1019#endif
1020 return x;
1021}
1022
1023unsigned long node_page_state(struct pglist_data *pgdat,
1024 enum node_stat_item item)
1025{
1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028 return node_page_state_pages(pgdat, item);
1029}
1030#endif
1031
1032#ifdef CONFIG_COMPACTION
1033
1034struct contig_page_info {
1035 unsigned long free_pages;
1036 unsigned long free_blocks_total;
1037 unsigned long free_blocks_suitable;
1038};
1039
1040/*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
1048static void fill_contig_page_info(struct zone *zone,
1049 unsigned int suitable_order,
1050 struct contig_page_info *info)
1051{
1052 unsigned int order;
1053
1054 info->free_pages = 0;
1055 info->free_blocks_total = 0;
1056 info->free_blocks_suitable = 0;
1057
1058 for (order = 0; order < MAX_ORDER; order++) {
1059 unsigned long blocks;
1060
1061 /*
1062 * Count number of free blocks.
1063 *
1064 * Access to nr_free is lockless as nr_free is used only for
1065 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066 */
1067 blocks = data_race(zone->free_area[order].nr_free);
1068 info->free_blocks_total += blocks;
1069
1070 /* Count free base pages */
1071 info->free_pages += blocks << order;
1072
1073 /* Count the suitable free blocks */
1074 if (order >= suitable_order)
1075 info->free_blocks_suitable += blocks <<
1076 (order - suitable_order);
1077 }
1078}
1079
1080/*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
1087static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088{
1089 unsigned long requested = 1UL << order;
1090
1091 if (WARN_ON_ONCE(order >= MAX_ORDER))
1092 return 0;
1093
1094 if (!info->free_blocks_total)
1095 return 0;
1096
1097 /* Fragmentation index only makes sense when a request would fail */
1098 if (info->free_blocks_suitable)
1099 return -1000;
1100
1101 /*
1102 * Index is between 0 and 1 so return within 3 decimal places
1103 *
1104 * 0 => allocation would fail due to lack of memory
1105 * 1 => allocation would fail due to fragmentation
1106 */
1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108}
1109
1110/*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
1115unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116{
1117 struct contig_page_info info;
1118
1119 fill_contig_page_info(zone, order, &info);
1120 if (info.free_pages == 0)
1121 return 0;
1122
1123 return div_u64((info.free_pages -
1124 (info.free_blocks_suitable << order)) * 100,
1125 info.free_pages);
1126}
1127
1128/* Same as __fragmentation index but allocs contig_page_info on stack */
1129int fragmentation_index(struct zone *zone, unsigned int order)
1130{
1131 struct contig_page_info info;
1132
1133 fill_contig_page_info(zone, order, &info);
1134 return __fragmentation_index(order, &info);
1135}
1136#endif
1137
1138#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140#ifdef CONFIG_ZONE_DMA
1141#define TEXT_FOR_DMA(xx) xx "_dma",
1142#else
1143#define TEXT_FOR_DMA(xx)
1144#endif
1145
1146#ifdef CONFIG_ZONE_DMA32
1147#define TEXT_FOR_DMA32(xx) xx "_dma32",
1148#else
1149#define TEXT_FOR_DMA32(xx)
1150#endif
1151
1152#ifdef CONFIG_HIGHMEM
1153#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154#else
1155#define TEXT_FOR_HIGHMEM(xx)
1156#endif
1157
1158#ifdef CONFIG_ZONE_DEVICE
1159#define TEXT_FOR_DEVICE(xx) xx "_device",
1160#else
1161#define TEXT_FOR_DEVICE(xx)
1162#endif
1163
1164#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166 TEXT_FOR_DEVICE(xx)
1167
1168const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1170 "nr_free_pages",
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1177 "nr_mlock",
1178 "nr_bounce",
1179#if IS_ENABLED(CONFIG_ZSMALLOC)
1180 "nr_zspages",
1181#endif
1182 "nr_free_cma",
1183
1184 /* enum numa_stat_item counters */
1185#ifdef CONFIG_NUMA
1186 "numa_hit",
1187 "numa_miss",
1188 "numa_foreign",
1189 "numa_interleave",
1190 "numa_local",
1191 "numa_other",
1192#endif
1193
1194 /* enum node_stat_item counters */
1195 "nr_inactive_anon",
1196 "nr_active_anon",
1197 "nr_inactive_file",
1198 "nr_active_file",
1199 "nr_unevictable",
1200 "nr_slab_reclaimable",
1201 "nr_slab_unreclaimable",
1202 "nr_isolated_anon",
1203 "nr_isolated_file",
1204 "workingset_nodes",
1205 "workingset_refault_anon",
1206 "workingset_refault_file",
1207 "workingset_activate_anon",
1208 "workingset_activate_file",
1209 "workingset_restore_anon",
1210 "workingset_restore_file",
1211 "workingset_nodereclaim",
1212 "nr_anon_pages",
1213 "nr_mapped",
1214 "nr_file_pages",
1215 "nr_dirty",
1216 "nr_writeback",
1217 "nr_writeback_temp",
1218 "nr_shmem",
1219 "nr_shmem_hugepages",
1220 "nr_shmem_pmdmapped",
1221 "nr_file_hugepages",
1222 "nr_file_pmdmapped",
1223 "nr_anon_transparent_hugepages",
1224 "nr_vmscan_write",
1225 "nr_vmscan_immediate_reclaim",
1226 "nr_dirtied",
1227 "nr_written",
1228 "nr_throttled_written",
1229 "nr_kernel_misc_reclaimable",
1230 "nr_foll_pin_acquired",
1231 "nr_foll_pin_released",
1232 "nr_kernel_stack",
1233#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234 "nr_shadow_call_stack",
1235#endif
1236 "nr_page_table_pages",
1237 "nr_sec_page_table_pages",
1238#ifdef CONFIG_SWAP
1239 "nr_swapcached",
1240#endif
1241#ifdef CONFIG_NUMA_BALANCING
1242 "pgpromote_success",
1243 "pgpromote_candidate",
1244#endif
1245
1246 /* enum writeback_stat_item counters */
1247 "nr_dirty_threshold",
1248 "nr_dirty_background_threshold",
1249
1250#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251 /* enum vm_event_item counters */
1252 "pgpgin",
1253 "pgpgout",
1254 "pswpin",
1255 "pswpout",
1256
1257 TEXTS_FOR_ZONES("pgalloc")
1258 TEXTS_FOR_ZONES("allocstall")
1259 TEXTS_FOR_ZONES("pgskip")
1260
1261 "pgfree",
1262 "pgactivate",
1263 "pgdeactivate",
1264 "pglazyfree",
1265
1266 "pgfault",
1267 "pgmajfault",
1268 "pglazyfreed",
1269
1270 "pgrefill",
1271 "pgreuse",
1272 "pgsteal_kswapd",
1273 "pgsteal_direct",
1274 "pgdemote_kswapd",
1275 "pgdemote_direct",
1276 "pgscan_kswapd",
1277 "pgscan_direct",
1278 "pgscan_direct_throttle",
1279 "pgscan_anon",
1280 "pgscan_file",
1281 "pgsteal_anon",
1282 "pgsteal_file",
1283
1284#ifdef CONFIG_NUMA
1285 "zone_reclaim_failed",
1286#endif
1287 "pginodesteal",
1288 "slabs_scanned",
1289 "kswapd_inodesteal",
1290 "kswapd_low_wmark_hit_quickly",
1291 "kswapd_high_wmark_hit_quickly",
1292 "pageoutrun",
1293
1294 "pgrotated",
1295
1296 "drop_pagecache",
1297 "drop_slab",
1298 "oom_kill",
1299
1300#ifdef CONFIG_NUMA_BALANCING
1301 "numa_pte_updates",
1302 "numa_huge_pte_updates",
1303 "numa_hint_faults",
1304 "numa_hint_faults_local",
1305 "numa_pages_migrated",
1306#endif
1307#ifdef CONFIG_MIGRATION
1308 "pgmigrate_success",
1309 "pgmigrate_fail",
1310 "thp_migration_success",
1311 "thp_migration_fail",
1312 "thp_migration_split",
1313#endif
1314#ifdef CONFIG_COMPACTION
1315 "compact_migrate_scanned",
1316 "compact_free_scanned",
1317 "compact_isolated",
1318 "compact_stall",
1319 "compact_fail",
1320 "compact_success",
1321 "compact_daemon_wake",
1322 "compact_daemon_migrate_scanned",
1323 "compact_daemon_free_scanned",
1324#endif
1325
1326#ifdef CONFIG_HUGETLB_PAGE
1327 "htlb_buddy_alloc_success",
1328 "htlb_buddy_alloc_fail",
1329#endif
1330#ifdef CONFIG_CMA
1331 "cma_alloc_success",
1332 "cma_alloc_fail",
1333#endif
1334 "unevictable_pgs_culled",
1335 "unevictable_pgs_scanned",
1336 "unevictable_pgs_rescued",
1337 "unevictable_pgs_mlocked",
1338 "unevictable_pgs_munlocked",
1339 "unevictable_pgs_cleared",
1340 "unevictable_pgs_stranded",
1341
1342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1343 "thp_fault_alloc",
1344 "thp_fault_fallback",
1345 "thp_fault_fallback_charge",
1346 "thp_collapse_alloc",
1347 "thp_collapse_alloc_failed",
1348 "thp_file_alloc",
1349 "thp_file_fallback",
1350 "thp_file_fallback_charge",
1351 "thp_file_mapped",
1352 "thp_split_page",
1353 "thp_split_page_failed",
1354 "thp_deferred_split_page",
1355 "thp_split_pmd",
1356 "thp_scan_exceed_none_pte",
1357 "thp_scan_exceed_swap_pte",
1358 "thp_scan_exceed_share_pte",
1359#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1360 "thp_split_pud",
1361#endif
1362 "thp_zero_page_alloc",
1363 "thp_zero_page_alloc_failed",
1364 "thp_swpout",
1365 "thp_swpout_fallback",
1366#endif
1367#ifdef CONFIG_MEMORY_BALLOON
1368 "balloon_inflate",
1369 "balloon_deflate",
1370#ifdef CONFIG_BALLOON_COMPACTION
1371 "balloon_migrate",
1372#endif
1373#endif /* CONFIG_MEMORY_BALLOON */
1374#ifdef CONFIG_DEBUG_TLBFLUSH
1375 "nr_tlb_remote_flush",
1376 "nr_tlb_remote_flush_received",
1377 "nr_tlb_local_flush_all",
1378 "nr_tlb_local_flush_one",
1379#endif /* CONFIG_DEBUG_TLBFLUSH */
1380
1381#ifdef CONFIG_SWAP
1382 "swap_ra",
1383 "swap_ra_hit",
1384#ifdef CONFIG_KSM
1385 "ksm_swpin_copy",
1386#endif
1387#endif
1388#ifdef CONFIG_KSM
1389 "cow_ksm",
1390#endif
1391#ifdef CONFIG_ZSWAP
1392 "zswpin",
1393 "zswpout",
1394#endif
1395#ifdef CONFIG_X86
1396 "direct_map_level2_splits",
1397 "direct_map_level3_splits",
1398#endif
1399#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1400};
1401#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1402
1403#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1404 defined(CONFIG_PROC_FS)
1405static void *frag_start(struct seq_file *m, loff_t *pos)
1406{
1407 pg_data_t *pgdat;
1408 loff_t node = *pos;
1409
1410 for (pgdat = first_online_pgdat();
1411 pgdat && node;
1412 pgdat = next_online_pgdat(pgdat))
1413 --node;
1414
1415 return pgdat;
1416}
1417
1418static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1419{
1420 pg_data_t *pgdat = (pg_data_t *)arg;
1421
1422 (*pos)++;
1423 return next_online_pgdat(pgdat);
1424}
1425
1426static void frag_stop(struct seq_file *m, void *arg)
1427{
1428}
1429
1430/*
1431 * Walk zones in a node and print using a callback.
1432 * If @assert_populated is true, only use callback for zones that are populated.
1433 */
1434static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1435 bool assert_populated, bool nolock,
1436 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1437{
1438 struct zone *zone;
1439 struct zone *node_zones = pgdat->node_zones;
1440 unsigned long flags;
1441
1442 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1443 if (assert_populated && !populated_zone(zone))
1444 continue;
1445
1446 if (!nolock)
1447 spin_lock_irqsave(&zone->lock, flags);
1448 print(m, pgdat, zone);
1449 if (!nolock)
1450 spin_unlock_irqrestore(&zone->lock, flags);
1451 }
1452}
1453#endif
1454
1455#ifdef CONFIG_PROC_FS
1456static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1457 struct zone *zone)
1458{
1459 int order;
1460
1461 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1462 for (order = 0; order < MAX_ORDER; ++order)
1463 /*
1464 * Access to nr_free is lockless as nr_free is used only for
1465 * printing purposes. Use data_race to avoid KCSAN warning.
1466 */
1467 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1468 seq_putc(m, '\n');
1469}
1470
1471/*
1472 * This walks the free areas for each zone.
1473 */
1474static int frag_show(struct seq_file *m, void *arg)
1475{
1476 pg_data_t *pgdat = (pg_data_t *)arg;
1477 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1478 return 0;
1479}
1480
1481static void pagetypeinfo_showfree_print(struct seq_file *m,
1482 pg_data_t *pgdat, struct zone *zone)
1483{
1484 int order, mtype;
1485
1486 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1487 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1488 pgdat->node_id,
1489 zone->name,
1490 migratetype_names[mtype]);
1491 for (order = 0; order < MAX_ORDER; ++order) {
1492 unsigned long freecount = 0;
1493 struct free_area *area;
1494 struct list_head *curr;
1495 bool overflow = false;
1496
1497 area = &(zone->free_area[order]);
1498
1499 list_for_each(curr, &area->free_list[mtype]) {
1500 /*
1501 * Cap the free_list iteration because it might
1502 * be really large and we are under a spinlock
1503 * so a long time spent here could trigger a
1504 * hard lockup detector. Anyway this is a
1505 * debugging tool so knowing there is a handful
1506 * of pages of this order should be more than
1507 * sufficient.
1508 */
1509 if (++freecount >= 100000) {
1510 overflow = true;
1511 break;
1512 }
1513 }
1514 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1515 spin_unlock_irq(&zone->lock);
1516 cond_resched();
1517 spin_lock_irq(&zone->lock);
1518 }
1519 seq_putc(m, '\n');
1520 }
1521}
1522
1523/* Print out the free pages at each order for each migatetype */
1524static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1525{
1526 int order;
1527 pg_data_t *pgdat = (pg_data_t *)arg;
1528
1529 /* Print header */
1530 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1531 for (order = 0; order < MAX_ORDER; ++order)
1532 seq_printf(m, "%6d ", order);
1533 seq_putc(m, '\n');
1534
1535 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1536}
1537
1538static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1539 pg_data_t *pgdat, struct zone *zone)
1540{
1541 int mtype;
1542 unsigned long pfn;
1543 unsigned long start_pfn = zone->zone_start_pfn;
1544 unsigned long end_pfn = zone_end_pfn(zone);
1545 unsigned long count[MIGRATE_TYPES] = { 0, };
1546
1547 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1548 struct page *page;
1549
1550 page = pfn_to_online_page(pfn);
1551 if (!page)
1552 continue;
1553
1554 if (page_zone(page) != zone)
1555 continue;
1556
1557 mtype = get_pageblock_migratetype(page);
1558
1559 if (mtype < MIGRATE_TYPES)
1560 count[mtype]++;
1561 }
1562
1563 /* Print counts */
1564 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1565 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1566 seq_printf(m, "%12lu ", count[mtype]);
1567 seq_putc(m, '\n');
1568}
1569
1570/* Print out the number of pageblocks for each migratetype */
1571static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1572{
1573 int mtype;
1574 pg_data_t *pgdat = (pg_data_t *)arg;
1575
1576 seq_printf(m, "\n%-23s", "Number of blocks type ");
1577 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1578 seq_printf(m, "%12s ", migratetype_names[mtype]);
1579 seq_putc(m, '\n');
1580 walk_zones_in_node(m, pgdat, true, false,
1581 pagetypeinfo_showblockcount_print);
1582}
1583
1584/*
1585 * Print out the number of pageblocks for each migratetype that contain pages
1586 * of other types. This gives an indication of how well fallbacks are being
1587 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1588 * to determine what is going on
1589 */
1590static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1591{
1592#ifdef CONFIG_PAGE_OWNER
1593 int mtype;
1594
1595 if (!static_branch_unlikely(&page_owner_inited))
1596 return;
1597
1598 drain_all_pages(NULL);
1599
1600 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1601 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1602 seq_printf(m, "%12s ", migratetype_names[mtype]);
1603 seq_putc(m, '\n');
1604
1605 walk_zones_in_node(m, pgdat, true, true,
1606 pagetypeinfo_showmixedcount_print);
1607#endif /* CONFIG_PAGE_OWNER */
1608}
1609
1610/*
1611 * This prints out statistics in relation to grouping pages by mobility.
1612 * It is expensive to collect so do not constantly read the file.
1613 */
1614static int pagetypeinfo_show(struct seq_file *m, void *arg)
1615{
1616 pg_data_t *pgdat = (pg_data_t *)arg;
1617
1618 /* check memoryless node */
1619 if (!node_state(pgdat->node_id, N_MEMORY))
1620 return 0;
1621
1622 seq_printf(m, "Page block order: %d\n", pageblock_order);
1623 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1624 seq_putc(m, '\n');
1625 pagetypeinfo_showfree(m, pgdat);
1626 pagetypeinfo_showblockcount(m, pgdat);
1627 pagetypeinfo_showmixedcount(m, pgdat);
1628
1629 return 0;
1630}
1631
1632static const struct seq_operations fragmentation_op = {
1633 .start = frag_start,
1634 .next = frag_next,
1635 .stop = frag_stop,
1636 .show = frag_show,
1637};
1638
1639static const struct seq_operations pagetypeinfo_op = {
1640 .start = frag_start,
1641 .next = frag_next,
1642 .stop = frag_stop,
1643 .show = pagetypeinfo_show,
1644};
1645
1646static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1647{
1648 int zid;
1649
1650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1651 struct zone *compare = &pgdat->node_zones[zid];
1652
1653 if (populated_zone(compare))
1654 return zone == compare;
1655 }
1656
1657 return false;
1658}
1659
1660static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1661 struct zone *zone)
1662{
1663 int i;
1664 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1665 if (is_zone_first_populated(pgdat, zone)) {
1666 seq_printf(m, "\n per-node stats");
1667 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1668 unsigned long pages = node_page_state_pages(pgdat, i);
1669
1670 if (vmstat_item_print_in_thp(i))
1671 pages /= HPAGE_PMD_NR;
1672 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1673 pages);
1674 }
1675 }
1676 seq_printf(m,
1677 "\n pages free %lu"
1678 "\n boost %lu"
1679 "\n min %lu"
1680 "\n low %lu"
1681 "\n high %lu"
1682 "\n spanned %lu"
1683 "\n present %lu"
1684 "\n managed %lu"
1685 "\n cma %lu",
1686 zone_page_state(zone, NR_FREE_PAGES),
1687 zone->watermark_boost,
1688 min_wmark_pages(zone),
1689 low_wmark_pages(zone),
1690 high_wmark_pages(zone),
1691 zone->spanned_pages,
1692 zone->present_pages,
1693 zone_managed_pages(zone),
1694 zone_cma_pages(zone));
1695
1696 seq_printf(m,
1697 "\n protection: (%ld",
1698 zone->lowmem_reserve[0]);
1699 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1700 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1701 seq_putc(m, ')');
1702
1703 /* If unpopulated, no other information is useful */
1704 if (!populated_zone(zone)) {
1705 seq_putc(m, '\n');
1706 return;
1707 }
1708
1709 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1710 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1711 zone_page_state(zone, i));
1712
1713#ifdef CONFIG_NUMA
1714 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1715 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1716 zone_numa_event_state(zone, i));
1717#endif
1718
1719 seq_printf(m, "\n pagesets");
1720 for_each_online_cpu(i) {
1721 struct per_cpu_pages *pcp;
1722 struct per_cpu_zonestat __maybe_unused *pzstats;
1723
1724 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1725 seq_printf(m,
1726 "\n cpu: %i"
1727 "\n count: %i"
1728 "\n high: %i"
1729 "\n batch: %i",
1730 i,
1731 pcp->count,
1732 pcp->high,
1733 pcp->batch);
1734#ifdef CONFIG_SMP
1735 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1736 seq_printf(m, "\n vm stats threshold: %d",
1737 pzstats->stat_threshold);
1738#endif
1739 }
1740 seq_printf(m,
1741 "\n node_unreclaimable: %u"
1742 "\n start_pfn: %lu",
1743 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1744 zone->zone_start_pfn);
1745 seq_putc(m, '\n');
1746}
1747
1748/*
1749 * Output information about zones in @pgdat. All zones are printed regardless
1750 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1751 * set of all zones and userspace would not be aware of such zones if they are
1752 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1753 */
1754static int zoneinfo_show(struct seq_file *m, void *arg)
1755{
1756 pg_data_t *pgdat = (pg_data_t *)arg;
1757 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1758 return 0;
1759}
1760
1761static const struct seq_operations zoneinfo_op = {
1762 .start = frag_start, /* iterate over all zones. The same as in
1763 * fragmentation. */
1764 .next = frag_next,
1765 .stop = frag_stop,
1766 .show = zoneinfo_show,
1767};
1768
1769#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1770 NR_VM_NUMA_EVENT_ITEMS + \
1771 NR_VM_NODE_STAT_ITEMS + \
1772 NR_VM_WRITEBACK_STAT_ITEMS + \
1773 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1774 NR_VM_EVENT_ITEMS : 0))
1775
1776static void *vmstat_start(struct seq_file *m, loff_t *pos)
1777{
1778 unsigned long *v;
1779 int i;
1780
1781 if (*pos >= NR_VMSTAT_ITEMS)
1782 return NULL;
1783
1784 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1785 fold_vm_numa_events();
1786 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1787 m->private = v;
1788 if (!v)
1789 return ERR_PTR(-ENOMEM);
1790 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1791 v[i] = global_zone_page_state(i);
1792 v += NR_VM_ZONE_STAT_ITEMS;
1793
1794#ifdef CONFIG_NUMA
1795 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1796 v[i] = global_numa_event_state(i);
1797 v += NR_VM_NUMA_EVENT_ITEMS;
1798#endif
1799
1800 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1801 v[i] = global_node_page_state_pages(i);
1802 if (vmstat_item_print_in_thp(i))
1803 v[i] /= HPAGE_PMD_NR;
1804 }
1805 v += NR_VM_NODE_STAT_ITEMS;
1806
1807 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1808 v + NR_DIRTY_THRESHOLD);
1809 v += NR_VM_WRITEBACK_STAT_ITEMS;
1810
1811#ifdef CONFIG_VM_EVENT_COUNTERS
1812 all_vm_events(v);
1813 v[PGPGIN] /= 2; /* sectors -> kbytes */
1814 v[PGPGOUT] /= 2;
1815#endif
1816 return (unsigned long *)m->private + *pos;
1817}
1818
1819static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1820{
1821 (*pos)++;
1822 if (*pos >= NR_VMSTAT_ITEMS)
1823 return NULL;
1824 return (unsigned long *)m->private + *pos;
1825}
1826
1827static int vmstat_show(struct seq_file *m, void *arg)
1828{
1829 unsigned long *l = arg;
1830 unsigned long off = l - (unsigned long *)m->private;
1831
1832 seq_puts(m, vmstat_text[off]);
1833 seq_put_decimal_ull(m, " ", *l);
1834 seq_putc(m, '\n');
1835
1836 if (off == NR_VMSTAT_ITEMS - 1) {
1837 /*
1838 * We've come to the end - add any deprecated counters to avoid
1839 * breaking userspace which might depend on them being present.
1840 */
1841 seq_puts(m, "nr_unstable 0\n");
1842 }
1843 return 0;
1844}
1845
1846static void vmstat_stop(struct seq_file *m, void *arg)
1847{
1848 kfree(m->private);
1849 m->private = NULL;
1850}
1851
1852static const struct seq_operations vmstat_op = {
1853 .start = vmstat_start,
1854 .next = vmstat_next,
1855 .stop = vmstat_stop,
1856 .show = vmstat_show,
1857};
1858#endif /* CONFIG_PROC_FS */
1859
1860#ifdef CONFIG_SMP
1861static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1862int sysctl_stat_interval __read_mostly = HZ;
1863
1864#ifdef CONFIG_PROC_FS
1865static void refresh_vm_stats(struct work_struct *work)
1866{
1867 refresh_cpu_vm_stats(true);
1868}
1869
1870int vmstat_refresh(struct ctl_table *table, int write,
1871 void *buffer, size_t *lenp, loff_t *ppos)
1872{
1873 long val;
1874 int err;
1875 int i;
1876
1877 /*
1878 * The regular update, every sysctl_stat_interval, may come later
1879 * than expected: leaving a significant amount in per_cpu buckets.
1880 * This is particularly misleading when checking a quantity of HUGE
1881 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1882 * which can equally be echo'ed to or cat'ted from (by root),
1883 * can be used to update the stats just before reading them.
1884 *
1885 * Oh, and since global_zone_page_state() etc. are so careful to hide
1886 * transiently negative values, report an error here if any of
1887 * the stats is negative, so we know to go looking for imbalance.
1888 */
1889 err = schedule_on_each_cpu(refresh_vm_stats);
1890 if (err)
1891 return err;
1892 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1893 /*
1894 * Skip checking stats known to go negative occasionally.
1895 */
1896 switch (i) {
1897 case NR_ZONE_WRITE_PENDING:
1898 case NR_FREE_CMA_PAGES:
1899 continue;
1900 }
1901 val = atomic_long_read(&vm_zone_stat[i]);
1902 if (val < 0) {
1903 pr_warn("%s: %s %ld\n",
1904 __func__, zone_stat_name(i), val);
1905 }
1906 }
1907 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1908 /*
1909 * Skip checking stats known to go negative occasionally.
1910 */
1911 switch (i) {
1912 case NR_WRITEBACK:
1913 continue;
1914 }
1915 val = atomic_long_read(&vm_node_stat[i]);
1916 if (val < 0) {
1917 pr_warn("%s: %s %ld\n",
1918 __func__, node_stat_name(i), val);
1919 }
1920 }
1921 if (write)
1922 *ppos += *lenp;
1923 else
1924 *lenp = 0;
1925 return 0;
1926}
1927#endif /* CONFIG_PROC_FS */
1928
1929static void vmstat_update(struct work_struct *w)
1930{
1931 if (refresh_cpu_vm_stats(true)) {
1932 /*
1933 * Counters were updated so we expect more updates
1934 * to occur in the future. Keep on running the
1935 * update worker thread.
1936 */
1937 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1938 this_cpu_ptr(&vmstat_work),
1939 round_jiffies_relative(sysctl_stat_interval));
1940 }
1941}
1942
1943/*
1944 * Check if the diffs for a certain cpu indicate that
1945 * an update is needed.
1946 */
1947static bool need_update(int cpu)
1948{
1949 pg_data_t *last_pgdat = NULL;
1950 struct zone *zone;
1951
1952 for_each_populated_zone(zone) {
1953 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1954 struct per_cpu_nodestat *n;
1955
1956 /*
1957 * The fast way of checking if there are any vmstat diffs.
1958 */
1959 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1960 return true;
1961
1962 if (last_pgdat == zone->zone_pgdat)
1963 continue;
1964 last_pgdat = zone->zone_pgdat;
1965 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1966 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1967 return true;
1968 }
1969 return false;
1970}
1971
1972/*
1973 * Switch off vmstat processing and then fold all the remaining differentials
1974 * until the diffs stay at zero. The function is used by NOHZ and can only be
1975 * invoked when tick processing is not active.
1976 */
1977void quiet_vmstat(void)
1978{
1979 if (system_state != SYSTEM_RUNNING)
1980 return;
1981
1982 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1983 return;
1984
1985 if (!need_update(smp_processor_id()))
1986 return;
1987
1988 /*
1989 * Just refresh counters and do not care about the pending delayed
1990 * vmstat_update. It doesn't fire that often to matter and canceling
1991 * it would be too expensive from this path.
1992 * vmstat_shepherd will take care about that for us.
1993 */
1994 refresh_cpu_vm_stats(false);
1995}
1996
1997/*
1998 * Shepherd worker thread that checks the
1999 * differentials of processors that have their worker
2000 * threads for vm statistics updates disabled because of
2001 * inactivity.
2002 */
2003static void vmstat_shepherd(struct work_struct *w);
2004
2005static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2006
2007static void vmstat_shepherd(struct work_struct *w)
2008{
2009 int cpu;
2010
2011 cpus_read_lock();
2012 /* Check processors whose vmstat worker threads have been disabled */
2013 for_each_online_cpu(cpu) {
2014 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2015
2016 if (!delayed_work_pending(dw) && need_update(cpu))
2017 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2018
2019 cond_resched();
2020 }
2021 cpus_read_unlock();
2022
2023 schedule_delayed_work(&shepherd,
2024 round_jiffies_relative(sysctl_stat_interval));
2025}
2026
2027static void __init start_shepherd_timer(void)
2028{
2029 int cpu;
2030
2031 for_each_possible_cpu(cpu)
2032 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2033 vmstat_update);
2034
2035 schedule_delayed_work(&shepherd,
2036 round_jiffies_relative(sysctl_stat_interval));
2037}
2038
2039static void __init init_cpu_node_state(void)
2040{
2041 int node;
2042
2043 for_each_online_node(node) {
2044 if (!cpumask_empty(cpumask_of_node(node)))
2045 node_set_state(node, N_CPU);
2046 }
2047}
2048
2049static int vmstat_cpu_online(unsigned int cpu)
2050{
2051 refresh_zone_stat_thresholds();
2052
2053 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2054 node_set_state(cpu_to_node(cpu), N_CPU);
2055 }
2056
2057 return 0;
2058}
2059
2060static int vmstat_cpu_down_prep(unsigned int cpu)
2061{
2062 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2063 return 0;
2064}
2065
2066static int vmstat_cpu_dead(unsigned int cpu)
2067{
2068 const struct cpumask *node_cpus;
2069 int node;
2070
2071 node = cpu_to_node(cpu);
2072
2073 refresh_zone_stat_thresholds();
2074 node_cpus = cpumask_of_node(node);
2075 if (!cpumask_empty(node_cpus))
2076 return 0;
2077
2078 node_clear_state(node, N_CPU);
2079
2080 return 0;
2081}
2082
2083#endif
2084
2085struct workqueue_struct *mm_percpu_wq;
2086
2087void __init init_mm_internals(void)
2088{
2089 int ret __maybe_unused;
2090
2091 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2092
2093#ifdef CONFIG_SMP
2094 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2095 NULL, vmstat_cpu_dead);
2096 if (ret < 0)
2097 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2098
2099 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2100 vmstat_cpu_online,
2101 vmstat_cpu_down_prep);
2102 if (ret < 0)
2103 pr_err("vmstat: failed to register 'online' hotplug state\n");
2104
2105 cpus_read_lock();
2106 init_cpu_node_state();
2107 cpus_read_unlock();
2108
2109 start_shepherd_timer();
2110#endif
2111#ifdef CONFIG_PROC_FS
2112 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2113 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2114 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2115 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2116#endif
2117}
2118
2119#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2120
2121/*
2122 * Return an index indicating how much of the available free memory is
2123 * unusable for an allocation of the requested size.
2124 */
2125static int unusable_free_index(unsigned int order,
2126 struct contig_page_info *info)
2127{
2128 /* No free memory is interpreted as all free memory is unusable */
2129 if (info->free_pages == 0)
2130 return 1000;
2131
2132 /*
2133 * Index should be a value between 0 and 1. Return a value to 3
2134 * decimal places.
2135 *
2136 * 0 => no fragmentation
2137 * 1 => high fragmentation
2138 */
2139 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2140
2141}
2142
2143static void unusable_show_print(struct seq_file *m,
2144 pg_data_t *pgdat, struct zone *zone)
2145{
2146 unsigned int order;
2147 int index;
2148 struct contig_page_info info;
2149
2150 seq_printf(m, "Node %d, zone %8s ",
2151 pgdat->node_id,
2152 zone->name);
2153 for (order = 0; order < MAX_ORDER; ++order) {
2154 fill_contig_page_info(zone, order, &info);
2155 index = unusable_free_index(order, &info);
2156 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2157 }
2158
2159 seq_putc(m, '\n');
2160}
2161
2162/*
2163 * Display unusable free space index
2164 *
2165 * The unusable free space index measures how much of the available free
2166 * memory cannot be used to satisfy an allocation of a given size and is a
2167 * value between 0 and 1. The higher the value, the more of free memory is
2168 * unusable and by implication, the worse the external fragmentation is. This
2169 * can be expressed as a percentage by multiplying by 100.
2170 */
2171static int unusable_show(struct seq_file *m, void *arg)
2172{
2173 pg_data_t *pgdat = (pg_data_t *)arg;
2174
2175 /* check memoryless node */
2176 if (!node_state(pgdat->node_id, N_MEMORY))
2177 return 0;
2178
2179 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2180
2181 return 0;
2182}
2183
2184static const struct seq_operations unusable_sops = {
2185 .start = frag_start,
2186 .next = frag_next,
2187 .stop = frag_stop,
2188 .show = unusable_show,
2189};
2190
2191DEFINE_SEQ_ATTRIBUTE(unusable);
2192
2193static void extfrag_show_print(struct seq_file *m,
2194 pg_data_t *pgdat, struct zone *zone)
2195{
2196 unsigned int order;
2197 int index;
2198
2199 /* Alloc on stack as interrupts are disabled for zone walk */
2200 struct contig_page_info info;
2201
2202 seq_printf(m, "Node %d, zone %8s ",
2203 pgdat->node_id,
2204 zone->name);
2205 for (order = 0; order < MAX_ORDER; ++order) {
2206 fill_contig_page_info(zone, order, &info);
2207 index = __fragmentation_index(order, &info);
2208 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2209 }
2210
2211 seq_putc(m, '\n');
2212}
2213
2214/*
2215 * Display fragmentation index for orders that allocations would fail for
2216 */
2217static int extfrag_show(struct seq_file *m, void *arg)
2218{
2219 pg_data_t *pgdat = (pg_data_t *)arg;
2220
2221 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2222
2223 return 0;
2224}
2225
2226static const struct seq_operations extfrag_sops = {
2227 .start = frag_start,
2228 .next = frag_next,
2229 .stop = frag_stop,
2230 .show = extfrag_show,
2231};
2232
2233DEFINE_SEQ_ATTRIBUTE(extfrag);
2234
2235static int __init extfrag_debug_init(void)
2236{
2237 struct dentry *extfrag_debug_root;
2238
2239 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2240
2241 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2242 &unusable_fops);
2243
2244 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2245 &extfrag_fops);
2246
2247 return 0;
2248}
2249
2250module_init(extfrag_debug_init);
2251#endif