Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#ifndef SELFTEST_KVM_PROCESSOR_H
9#define SELFTEST_KVM_PROCESSOR_H
10
11#include <assert.h>
12#include <stdint.h>
13#include <syscall.h>
14
15#include <asm/msr-index.h>
16#include <asm/prctl.h>
17
18#include <linux/stringify.h>
19
20#include "../kvm_util.h"
21
22#define NMI_VECTOR 0x02
23
24#define X86_EFLAGS_FIXED (1u << 1)
25
26#define X86_CR4_VME (1ul << 0)
27#define X86_CR4_PVI (1ul << 1)
28#define X86_CR4_TSD (1ul << 2)
29#define X86_CR4_DE (1ul << 3)
30#define X86_CR4_PSE (1ul << 4)
31#define X86_CR4_PAE (1ul << 5)
32#define X86_CR4_MCE (1ul << 6)
33#define X86_CR4_PGE (1ul << 7)
34#define X86_CR4_PCE (1ul << 8)
35#define X86_CR4_OSFXSR (1ul << 9)
36#define X86_CR4_OSXMMEXCPT (1ul << 10)
37#define X86_CR4_UMIP (1ul << 11)
38#define X86_CR4_LA57 (1ul << 12)
39#define X86_CR4_VMXE (1ul << 13)
40#define X86_CR4_SMXE (1ul << 14)
41#define X86_CR4_FSGSBASE (1ul << 16)
42#define X86_CR4_PCIDE (1ul << 17)
43#define X86_CR4_OSXSAVE (1ul << 18)
44#define X86_CR4_SMEP (1ul << 20)
45#define X86_CR4_SMAP (1ul << 21)
46#define X86_CR4_PKE (1ul << 22)
47
48/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
49enum cpuid_output_regs {
50 KVM_CPUID_EAX,
51 KVM_CPUID_EBX,
52 KVM_CPUID_ECX,
53 KVM_CPUID_EDX
54};
55
56/*
57 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
58 * passed by value with no overhead.
59 */
60struct kvm_x86_cpu_feature {
61 u32 function;
62 u16 index;
63 u8 reg;
64 u8 bit;
65};
66#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
67({ \
68 struct kvm_x86_cpu_feature feature = { \
69 .function = fn, \
70 .index = idx, \
71 .reg = KVM_CPUID_##gpr, \
72 .bit = __bit, \
73 }; \
74 \
75 feature; \
76})
77
78/*
79 * Basic Leafs, a.k.a. Intel defined
80 */
81#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
82#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
83#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
84#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
85#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
86#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
87#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
88#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
89#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
90#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
91#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
92#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
93#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
94#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
95#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
96#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
97#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
98#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
99#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
100#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
101#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
102#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
103#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
104#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
105#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
106#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
107#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
108#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
109#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
110#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
111#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
112#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
113#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
114#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
115#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
116#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
117#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
118#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
119#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
120#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
121#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
122
123/*
124 * Extended Leafs, a.k.a. AMD defined
125 */
126#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
127#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
128#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
129#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
130#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
131#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
132#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
133#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
134#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
135#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
136#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
137#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
138#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
139#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
140#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
141#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
142
143/*
144 * KVM defined paravirt features.
145 */
146#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
147#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
148#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
149#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
150#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
151#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
152#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
153#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
154/* Bit 8 apparently isn't used?!?! */
155#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
156#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
157#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
158#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
159#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
160#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
161#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
162#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
163#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
164
165/* Page table bitfield declarations */
166#define PTE_PRESENT_MASK BIT_ULL(0)
167#define PTE_WRITABLE_MASK BIT_ULL(1)
168#define PTE_USER_MASK BIT_ULL(2)
169#define PTE_ACCESSED_MASK BIT_ULL(5)
170#define PTE_DIRTY_MASK BIT_ULL(6)
171#define PTE_LARGE_MASK BIT_ULL(7)
172#define PTE_GLOBAL_MASK BIT_ULL(8)
173#define PTE_NX_MASK BIT_ULL(63)
174
175#define PAGE_SHIFT 12
176#define PAGE_SIZE (1ULL << PAGE_SHIFT)
177#define PAGE_MASK (~(PAGE_SIZE-1))
178
179#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
180#define PTE_GET_PFN(pte) (((pte) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT)
181
182/* General Registers in 64-Bit Mode */
183struct gpr64_regs {
184 u64 rax;
185 u64 rcx;
186 u64 rdx;
187 u64 rbx;
188 u64 rsp;
189 u64 rbp;
190 u64 rsi;
191 u64 rdi;
192 u64 r8;
193 u64 r9;
194 u64 r10;
195 u64 r11;
196 u64 r12;
197 u64 r13;
198 u64 r14;
199 u64 r15;
200};
201
202struct desc64 {
203 uint16_t limit0;
204 uint16_t base0;
205 unsigned base1:8, type:4, s:1, dpl:2, p:1;
206 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
207 uint32_t base3;
208 uint32_t zero1;
209} __attribute__((packed));
210
211struct desc_ptr {
212 uint16_t size;
213 uint64_t address;
214} __attribute__((packed));
215
216struct kvm_x86_state {
217 struct kvm_xsave *xsave;
218 struct kvm_vcpu_events events;
219 struct kvm_mp_state mp_state;
220 struct kvm_regs regs;
221 struct kvm_xcrs xcrs;
222 struct kvm_sregs sregs;
223 struct kvm_debugregs debugregs;
224 union {
225 struct kvm_nested_state nested;
226 char nested_[16384];
227 };
228 struct kvm_msrs msrs;
229};
230
231static inline uint64_t get_desc64_base(const struct desc64 *desc)
232{
233 return ((uint64_t)desc->base3 << 32) |
234 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
235}
236
237static inline uint64_t rdtsc(void)
238{
239 uint32_t eax, edx;
240 uint64_t tsc_val;
241 /*
242 * The lfence is to wait (on Intel CPUs) until all previous
243 * instructions have been executed. If software requires RDTSC to be
244 * executed prior to execution of any subsequent instruction, it can
245 * execute LFENCE immediately after RDTSC
246 */
247 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
248 tsc_val = ((uint64_t)edx) << 32 | eax;
249 return tsc_val;
250}
251
252static inline uint64_t rdtscp(uint32_t *aux)
253{
254 uint32_t eax, edx;
255
256 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
257 return ((uint64_t)edx) << 32 | eax;
258}
259
260static inline uint64_t rdmsr(uint32_t msr)
261{
262 uint32_t a, d;
263
264 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
265
266 return a | ((uint64_t) d << 32);
267}
268
269static inline void wrmsr(uint32_t msr, uint64_t value)
270{
271 uint32_t a = value;
272 uint32_t d = value >> 32;
273
274 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
275}
276
277
278static inline uint16_t inw(uint16_t port)
279{
280 uint16_t tmp;
281
282 __asm__ __volatile__("in %%dx, %%ax"
283 : /* output */ "=a" (tmp)
284 : /* input */ "d" (port));
285
286 return tmp;
287}
288
289static inline uint16_t get_es(void)
290{
291 uint16_t es;
292
293 __asm__ __volatile__("mov %%es, %[es]"
294 : /* output */ [es]"=rm"(es));
295 return es;
296}
297
298static inline uint16_t get_cs(void)
299{
300 uint16_t cs;
301
302 __asm__ __volatile__("mov %%cs, %[cs]"
303 : /* output */ [cs]"=rm"(cs));
304 return cs;
305}
306
307static inline uint16_t get_ss(void)
308{
309 uint16_t ss;
310
311 __asm__ __volatile__("mov %%ss, %[ss]"
312 : /* output */ [ss]"=rm"(ss));
313 return ss;
314}
315
316static inline uint16_t get_ds(void)
317{
318 uint16_t ds;
319
320 __asm__ __volatile__("mov %%ds, %[ds]"
321 : /* output */ [ds]"=rm"(ds));
322 return ds;
323}
324
325static inline uint16_t get_fs(void)
326{
327 uint16_t fs;
328
329 __asm__ __volatile__("mov %%fs, %[fs]"
330 : /* output */ [fs]"=rm"(fs));
331 return fs;
332}
333
334static inline uint16_t get_gs(void)
335{
336 uint16_t gs;
337
338 __asm__ __volatile__("mov %%gs, %[gs]"
339 : /* output */ [gs]"=rm"(gs));
340 return gs;
341}
342
343static inline uint16_t get_tr(void)
344{
345 uint16_t tr;
346
347 __asm__ __volatile__("str %[tr]"
348 : /* output */ [tr]"=rm"(tr));
349 return tr;
350}
351
352static inline uint64_t get_cr0(void)
353{
354 uint64_t cr0;
355
356 __asm__ __volatile__("mov %%cr0, %[cr0]"
357 : /* output */ [cr0]"=r"(cr0));
358 return cr0;
359}
360
361static inline uint64_t get_cr3(void)
362{
363 uint64_t cr3;
364
365 __asm__ __volatile__("mov %%cr3, %[cr3]"
366 : /* output */ [cr3]"=r"(cr3));
367 return cr3;
368}
369
370static inline uint64_t get_cr4(void)
371{
372 uint64_t cr4;
373
374 __asm__ __volatile__("mov %%cr4, %[cr4]"
375 : /* output */ [cr4]"=r"(cr4));
376 return cr4;
377}
378
379static inline void set_cr4(uint64_t val)
380{
381 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
382}
383
384static inline struct desc_ptr get_gdt(void)
385{
386 struct desc_ptr gdt;
387 __asm__ __volatile__("sgdt %[gdt]"
388 : /* output */ [gdt]"=m"(gdt));
389 return gdt;
390}
391
392static inline struct desc_ptr get_idt(void)
393{
394 struct desc_ptr idt;
395 __asm__ __volatile__("sidt %[idt]"
396 : /* output */ [idt]"=m"(idt));
397 return idt;
398}
399
400static inline void outl(uint16_t port, uint32_t value)
401{
402 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
403}
404
405static inline void __cpuid(uint32_t function, uint32_t index,
406 uint32_t *eax, uint32_t *ebx,
407 uint32_t *ecx, uint32_t *edx)
408{
409 *eax = function;
410 *ecx = index;
411
412 asm volatile("cpuid"
413 : "=a" (*eax),
414 "=b" (*ebx),
415 "=c" (*ecx),
416 "=d" (*edx)
417 : "0" (*eax), "2" (*ecx)
418 : "memory");
419}
420
421static inline void cpuid(uint32_t function,
422 uint32_t *eax, uint32_t *ebx,
423 uint32_t *ecx, uint32_t *edx)
424{
425 return __cpuid(function, 0, eax, ebx, ecx, edx);
426}
427
428static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
429{
430 uint32_t gprs[4];
431
432 __cpuid(feature.function, feature.index,
433 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
434 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
435
436 return gprs[feature.reg] & BIT(feature.bit);
437}
438
439#define SET_XMM(__var, __xmm) \
440 asm volatile("movq %0, %%"#__xmm : : "r"(__var) : #__xmm)
441
442static inline void set_xmm(int n, unsigned long val)
443{
444 switch (n) {
445 case 0:
446 SET_XMM(val, xmm0);
447 break;
448 case 1:
449 SET_XMM(val, xmm1);
450 break;
451 case 2:
452 SET_XMM(val, xmm2);
453 break;
454 case 3:
455 SET_XMM(val, xmm3);
456 break;
457 case 4:
458 SET_XMM(val, xmm4);
459 break;
460 case 5:
461 SET_XMM(val, xmm5);
462 break;
463 case 6:
464 SET_XMM(val, xmm6);
465 break;
466 case 7:
467 SET_XMM(val, xmm7);
468 break;
469 }
470}
471
472#define GET_XMM(__xmm) \
473({ \
474 unsigned long __val; \
475 asm volatile("movq %%"#__xmm", %0" : "=r"(__val)); \
476 __val; \
477})
478
479static inline unsigned long get_xmm(int n)
480{
481 assert(n >= 0 && n <= 7);
482
483 switch (n) {
484 case 0:
485 return GET_XMM(xmm0);
486 case 1:
487 return GET_XMM(xmm1);
488 case 2:
489 return GET_XMM(xmm2);
490 case 3:
491 return GET_XMM(xmm3);
492 case 4:
493 return GET_XMM(xmm4);
494 case 5:
495 return GET_XMM(xmm5);
496 case 6:
497 return GET_XMM(xmm6);
498 case 7:
499 return GET_XMM(xmm7);
500 }
501
502 /* never reached */
503 return 0;
504}
505
506static inline void cpu_relax(void)
507{
508 asm volatile("rep; nop" ::: "memory");
509}
510
511#define vmmcall() \
512 __asm__ __volatile__( \
513 "vmmcall\n" \
514 )
515
516#define ud2() \
517 __asm__ __volatile__( \
518 "ud2\n" \
519 )
520
521#define hlt() \
522 __asm__ __volatile__( \
523 "hlt\n" \
524 )
525
526bool is_intel_cpu(void);
527bool is_amd_cpu(void);
528
529static inline unsigned int x86_family(unsigned int eax)
530{
531 unsigned int x86;
532
533 x86 = (eax >> 8) & 0xf;
534
535 if (x86 == 0xf)
536 x86 += (eax >> 20) & 0xff;
537
538 return x86;
539}
540
541static inline unsigned int x86_model(unsigned int eax)
542{
543 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
544}
545
546struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
547void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
548void kvm_x86_state_cleanup(struct kvm_x86_state *state);
549
550const struct kvm_msr_list *kvm_get_msr_index_list(void);
551const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
552bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
553uint64_t kvm_get_feature_msr(uint64_t msr_index);
554
555static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
556 struct kvm_msrs *msrs)
557{
558 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
559
560 TEST_ASSERT(r == msrs->nmsrs,
561 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
562 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
563}
564static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
565{
566 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
567
568 TEST_ASSERT(r == msrs->nmsrs,
569 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
570 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
571}
572static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
573 struct kvm_debugregs *debugregs)
574{
575 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
576}
577static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
578 struct kvm_debugregs *debugregs)
579{
580 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
581}
582static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
583 struct kvm_xsave *xsave)
584{
585 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
586}
587static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
588 struct kvm_xsave *xsave)
589{
590 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
591}
592static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
593 struct kvm_xsave *xsave)
594{
595 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
596}
597static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
598 struct kvm_xcrs *xcrs)
599{
600 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
601}
602static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
603{
604 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
605}
606
607const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
608const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
609const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
610
611bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
612 struct kvm_x86_cpu_feature feature);
613
614static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
615{
616 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
617}
618
619static inline size_t kvm_cpuid2_size(int nr_entries)
620{
621 return sizeof(struct kvm_cpuid2) +
622 sizeof(struct kvm_cpuid_entry2) * nr_entries;
623}
624
625/*
626 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
627 * entries sized to hold @nr_entries. The caller is responsible for freeing
628 * the struct.
629 */
630static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
631{
632 struct kvm_cpuid2 *cpuid;
633
634 cpuid = malloc(kvm_cpuid2_size(nr_entries));
635 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
636
637 cpuid->nent = nr_entries;
638
639 return cpuid;
640}
641
642const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
643 uint32_t function, uint32_t index);
644void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
645void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
646
647static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
648 uint32_t function,
649 uint32_t index)
650{
651 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
652 function, index);
653}
654
655static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
656 uint32_t function)
657{
658 return __vcpu_get_cpuid_entry(vcpu, function, 0);
659}
660
661static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
662{
663 int r;
664
665 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
666 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
667 if (r)
668 return r;
669
670 /* On success, refresh the cache to pick up adjustments made by KVM. */
671 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
672 return 0;
673}
674
675static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
676{
677 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
678 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
679
680 /* Refresh the cache to pick up adjustments made by KVM. */
681 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
682}
683
684void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
685
686void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
687void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
688 struct kvm_x86_cpu_feature feature,
689 bool set);
690
691static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
692 struct kvm_x86_cpu_feature feature)
693{
694 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
695
696}
697
698static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
699 struct kvm_x86_cpu_feature feature)
700{
701 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
702}
703
704static inline const struct kvm_cpuid_entry2 *__kvm_get_supported_cpuid_entry(uint32_t function,
705 uint32_t index)
706{
707 return get_cpuid_entry(kvm_get_supported_cpuid(), function, index);
708}
709
710static inline const struct kvm_cpuid_entry2 *kvm_get_supported_cpuid_entry(uint32_t function)
711{
712 return __kvm_get_supported_cpuid_entry(function, 0);
713}
714
715uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
716int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
717
718static inline void vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index,
719 uint64_t msr_value)
720{
721 int r = _vcpu_set_msr(vcpu, msr_index, msr_value);
722
723 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_SET_MSRS, r));
724}
725
726static inline uint32_t kvm_get_cpuid_max_basic(void)
727{
728 return kvm_get_supported_cpuid_entry(0)->eax;
729}
730
731static inline uint32_t kvm_get_cpuid_max_extended(void)
732{
733 return kvm_get_supported_cpuid_entry(0x80000000)->eax;
734}
735
736void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
737bool vm_is_unrestricted_guest(struct kvm_vm *vm);
738
739struct ex_regs {
740 uint64_t rax, rcx, rdx, rbx;
741 uint64_t rbp, rsi, rdi;
742 uint64_t r8, r9, r10, r11;
743 uint64_t r12, r13, r14, r15;
744 uint64_t vector;
745 uint64_t error_code;
746 uint64_t rip;
747 uint64_t cs;
748 uint64_t rflags;
749};
750
751void vm_init_descriptor_tables(struct kvm_vm *vm);
752void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
753void vm_install_exception_handler(struct kvm_vm *vm, int vector,
754 void (*handler)(struct ex_regs *));
755
756/* If a toddler were to say "abracadabra". */
757#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
758
759/*
760 * KVM selftest exception fixup uses registers to coordinate with the exception
761 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
762 * per-CPU data. Using only registers avoids having to map memory into the
763 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
764 * for recursive faults when accessing memory in the handler. The downside to
765 * using registers is that it restricts what registers can be used by the actual
766 * instruction. But, selftests are 64-bit only, making register* pressure a
767 * minor concern. Use r9-r11 as they are volatile, i.e. don't need* to be saved
768 * by the callee, and except for r11 are not implicit parameters to any
769 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
770 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
771 * is higher priority than testing non-faulting SYSCALL/SYSRET.
772 *
773 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
774 * is guaranteed to be non-zero on fault.
775 *
776 * REGISTER INPUTS:
777 * r9 = MAGIC
778 * r10 = RIP
779 * r11 = new RIP on fault
780 *
781 * REGISTER OUTPUTS:
782 * r9 = exception vector (non-zero)
783 */
784#define KVM_ASM_SAFE(insn) \
785 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
786 "lea 1f(%%rip), %%r10\n\t" \
787 "lea 2f(%%rip), %%r11\n\t" \
788 "1: " insn "\n\t" \
789 "movb $0, %[vector]\n\t" \
790 "jmp 3f\n\t" \
791 "2:\n\t" \
792 "mov %%r9b, %[vector]\n\t" \
793 "3:\n\t"
794
795#define KVM_ASM_SAFE_OUTPUTS(v) [vector] "=qm"(v)
796#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
797
798#define kvm_asm_safe(insn, inputs...) \
799({ \
800 uint8_t vector; \
801 \
802 asm volatile(KVM_ASM_SAFE(insn) \
803 : KVM_ASM_SAFE_OUTPUTS(vector) \
804 : inputs \
805 : KVM_ASM_SAFE_CLOBBERS); \
806 vector; \
807})
808
809static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
810{
811 uint8_t vector;
812 uint32_t a, d;
813
814 asm volatile(KVM_ASM_SAFE("rdmsr")
815 : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector)
816 : "c"(msr)
817 : KVM_ASM_SAFE_CLOBBERS);
818
819 *val = (uint64_t)a | ((uint64_t)d << 32);
820 return vector;
821}
822
823static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
824{
825 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
826}
827
828bool kvm_is_tdp_enabled(void);
829
830uint64_t vm_get_page_table_entry(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
831 uint64_t vaddr);
832void vm_set_page_table_entry(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
833 uint64_t vaddr, uint64_t pte);
834
835uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
836 uint64_t a3);
837
838void __vm_xsave_require_permission(int bit, const char *name);
839
840#define vm_xsave_require_permission(perm) \
841 __vm_xsave_require_permission(perm, #perm)
842
843enum pg_level {
844 PG_LEVEL_NONE,
845 PG_LEVEL_4K,
846 PG_LEVEL_2M,
847 PG_LEVEL_1G,
848 PG_LEVEL_512G,
849 PG_LEVEL_NUM
850};
851
852#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
853#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
854
855#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
856#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
857#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
858
859void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
860void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
861 uint64_t nr_bytes, int level);
862
863/*
864 * Basic CPU control in CR0
865 */
866#define X86_CR0_PE (1UL<<0) /* Protection Enable */
867#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
868#define X86_CR0_EM (1UL<<2) /* Emulation */
869#define X86_CR0_TS (1UL<<3) /* Task Switched */
870#define X86_CR0_ET (1UL<<4) /* Extension Type */
871#define X86_CR0_NE (1UL<<5) /* Numeric Error */
872#define X86_CR0_WP (1UL<<16) /* Write Protect */
873#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
874#define X86_CR0_NW (1UL<<29) /* Not Write-through */
875#define X86_CR0_CD (1UL<<30) /* Cache Disable */
876#define X86_CR0_PG (1UL<<31) /* Paging */
877
878#define XSTATE_XTILE_CFG_BIT 17
879#define XSTATE_XTILE_DATA_BIT 18
880
881#define XSTATE_XTILE_CFG_MASK (1ULL << XSTATE_XTILE_CFG_BIT)
882#define XSTATE_XTILE_DATA_MASK (1ULL << XSTATE_XTILE_DATA_BIT)
883#define XFEATURE_XTILE_MASK (XSTATE_XTILE_CFG_MASK | \
884 XSTATE_XTILE_DATA_MASK)
885#endif /* SELFTEST_KVM_PROCESSOR_H */