Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146
147 if (bss->pub.hidden_beacon_bss)
148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150 if (bss->pub.transmitted_bss)
151 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152}
153
154static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 struct cfg80211_internal_bss *bss)
156{
157 lockdep_assert_held(&rdev->bss_lock);
158
159 if (bss->pub.hidden_beacon_bss) {
160 struct cfg80211_internal_bss *hbss;
161 hbss = container_of(bss->pub.hidden_beacon_bss,
162 struct cfg80211_internal_bss,
163 pub);
164 hbss->refcount--;
165 if (hbss->refcount == 0)
166 bss_free(hbss);
167 }
168
169 if (bss->pub.transmitted_bss) {
170 struct cfg80211_internal_bss *tbss;
171
172 tbss = container_of(bss->pub.transmitted_bss,
173 struct cfg80211_internal_bss,
174 pub);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183}
184
185static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187{
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213}
214
215bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217{
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 return true;
226
227 /*
228 * non inheritance element format is:
229 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 * Both lists are optional. Both lengths are mandatory.
231 * This means valid length is:
232 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 */
234 id_len = non_inherit_elem->data[1];
235 if (non_inherit_elem->datalen < 3 + id_len)
236 return true;
237
238 ext_id_len = non_inherit_elem->data[2 + id_len];
239 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 return true;
241
242 if (elem->id == WLAN_EID_EXTENSION) {
243 if (!ext_id_len)
244 return true;
245 loop_len = ext_id_len;
246 list = &non_inherit_elem->data[3 + id_len];
247 id = elem->data[0];
248 } else {
249 if (!id_len)
250 return true;
251 loop_len = id_len;
252 list = &non_inherit_elem->data[2];
253 id = elem->id;
254 }
255
256 for (i = 0; i < loop_len; i++) {
257 if (list[i] == id)
258 return false;
259 }
260
261 return true;
262}
263EXPORT_SYMBOL(cfg80211_is_element_inherited);
264
265static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
266 const u8 *subelement, size_t subie_len,
267 u8 *new_ie, gfp_t gfp)
268{
269 u8 *pos, *tmp;
270 const u8 *tmp_old, *tmp_new;
271 const struct element *non_inherit_elem;
272 u8 *sub_copy;
273
274 /* copy subelement as we need to change its content to
275 * mark an ie after it is processed.
276 */
277 sub_copy = kmemdup(subelement, subie_len, gfp);
278 if (!sub_copy)
279 return 0;
280
281 pos = &new_ie[0];
282
283 /* set new ssid */
284 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
285 if (tmp_new) {
286 memcpy(pos, tmp_new, tmp_new[1] + 2);
287 pos += (tmp_new[1] + 2);
288 }
289
290 /* get non inheritance list if exists */
291 non_inherit_elem =
292 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
293 sub_copy, subie_len);
294
295 /* go through IEs in ie (skip SSID) and subelement,
296 * merge them into new_ie
297 */
298 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
299 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
300
301 while (tmp_old + 2 - ie <= ielen &&
302 tmp_old + tmp_old[1] + 2 - ie <= ielen) {
303 if (tmp_old[0] == 0) {
304 tmp_old++;
305 continue;
306 }
307
308 if (tmp_old[0] == WLAN_EID_EXTENSION)
309 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
310 subie_len);
311 else
312 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
313 subie_len);
314
315 if (!tmp) {
316 const struct element *old_elem = (void *)tmp_old;
317
318 /* ie in old ie but not in subelement */
319 if (cfg80211_is_element_inherited(old_elem,
320 non_inherit_elem)) {
321 memcpy(pos, tmp_old, tmp_old[1] + 2);
322 pos += tmp_old[1] + 2;
323 }
324 } else {
325 /* ie in transmitting ie also in subelement,
326 * copy from subelement and flag the ie in subelement
327 * as copied (by setting eid field to WLAN_EID_SSID,
328 * which is skipped anyway).
329 * For vendor ie, compare OUI + type + subType to
330 * determine if they are the same ie.
331 */
332 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
333 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
334 /* same vendor ie, copy from
335 * subelement
336 */
337 memcpy(pos, tmp, tmp[1] + 2);
338 pos += tmp[1] + 2;
339 tmp[0] = WLAN_EID_SSID;
340 } else {
341 memcpy(pos, tmp_old, tmp_old[1] + 2);
342 pos += tmp_old[1] + 2;
343 }
344 } else {
345 /* copy ie from subelement into new ie */
346 memcpy(pos, tmp, tmp[1] + 2);
347 pos += tmp[1] + 2;
348 tmp[0] = WLAN_EID_SSID;
349 }
350 }
351
352 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
353 break;
354
355 tmp_old += tmp_old[1] + 2;
356 }
357
358 /* go through subelement again to check if there is any ie not
359 * copied to new ie, skip ssid, capability, bssid-index ie
360 */
361 tmp_new = sub_copy;
362 while (tmp_new + 2 - sub_copy <= subie_len &&
363 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
364 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
365 tmp_new[0] == WLAN_EID_SSID)) {
366 memcpy(pos, tmp_new, tmp_new[1] + 2);
367 pos += tmp_new[1] + 2;
368 }
369 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
370 break;
371 tmp_new += tmp_new[1] + 2;
372 }
373
374 kfree(sub_copy);
375 return pos - new_ie;
376}
377
378static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
379 const u8 *ssid, size_t ssid_len)
380{
381 const struct cfg80211_bss_ies *ies;
382 const struct element *ssid_elem;
383
384 if (bssid && !ether_addr_equal(a->bssid, bssid))
385 return false;
386
387 if (!ssid)
388 return true;
389
390 ies = rcu_access_pointer(a->ies);
391 if (!ies)
392 return false;
393 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
394 if (!ssid_elem)
395 return false;
396 if (ssid_elem->datalen != ssid_len)
397 return false;
398 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
399}
400
401static int
402cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
403 struct cfg80211_bss *nontrans_bss)
404{
405 const struct element *ssid_elem;
406 struct cfg80211_bss *bss = NULL;
407
408 rcu_read_lock();
409 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
410 if (!ssid_elem) {
411 rcu_read_unlock();
412 return -EINVAL;
413 }
414
415 /* check if nontrans_bss is in the list */
416 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
417 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
418 ssid_elem->datalen)) {
419 rcu_read_unlock();
420 return 0;
421 }
422 }
423
424 rcu_read_unlock();
425
426 /*
427 * This is a bit weird - it's not on the list, but already on another
428 * one! The only way that could happen is if there's some BSSID/SSID
429 * shared by multiple APs in their multi-BSSID profiles, potentially
430 * with hidden SSID mixed in ... ignore it.
431 */
432 if (!list_empty(&nontrans_bss->nontrans_list))
433 return -EINVAL;
434
435 /* add to the list */
436 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
437 return 0;
438}
439
440static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
441 unsigned long expire_time)
442{
443 struct cfg80211_internal_bss *bss, *tmp;
444 bool expired = false;
445
446 lockdep_assert_held(&rdev->bss_lock);
447
448 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
449 if (atomic_read(&bss->hold))
450 continue;
451 if (!time_after(expire_time, bss->ts))
452 continue;
453
454 if (__cfg80211_unlink_bss(rdev, bss))
455 expired = true;
456 }
457
458 if (expired)
459 rdev->bss_generation++;
460}
461
462static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
463{
464 struct cfg80211_internal_bss *bss, *oldest = NULL;
465 bool ret;
466
467 lockdep_assert_held(&rdev->bss_lock);
468
469 list_for_each_entry(bss, &rdev->bss_list, list) {
470 if (atomic_read(&bss->hold))
471 continue;
472
473 if (!list_empty(&bss->hidden_list) &&
474 !bss->pub.hidden_beacon_bss)
475 continue;
476
477 if (oldest && time_before(oldest->ts, bss->ts))
478 continue;
479 oldest = bss;
480 }
481
482 if (WARN_ON(!oldest))
483 return false;
484
485 /*
486 * The callers make sure to increase rdev->bss_generation if anything
487 * gets removed (and a new entry added), so there's no need to also do
488 * it here.
489 */
490
491 ret = __cfg80211_unlink_bss(rdev, oldest);
492 WARN_ON(!ret);
493 return ret;
494}
495
496static u8 cfg80211_parse_bss_param(u8 data,
497 struct cfg80211_colocated_ap *coloc_ap)
498{
499 coloc_ap->oct_recommended =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
501 coloc_ap->same_ssid =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
503 coloc_ap->multi_bss =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
505 coloc_ap->transmitted_bssid =
506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
507 coloc_ap->unsolicited_probe =
508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
509 coloc_ap->colocated_ess =
510 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
511
512 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
513}
514
515static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
516 const struct element **elem, u32 *s_ssid)
517{
518
519 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
520 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
521 return -EINVAL;
522
523 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
524 return 0;
525}
526
527static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
528{
529 struct cfg80211_colocated_ap *ap, *tmp_ap;
530
531 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
532 list_del(&ap->list);
533 kfree(ap);
534 }
535}
536
537static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
538 const u8 *pos, u8 length,
539 const struct element *ssid_elem,
540 int s_ssid_tmp)
541{
542 /* skip the TBTT offset */
543 pos++;
544
545 memcpy(entry->bssid, pos, ETH_ALEN);
546 pos += ETH_ALEN;
547
548 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
549 memcpy(&entry->short_ssid, pos,
550 sizeof(entry->short_ssid));
551 entry->short_ssid_valid = true;
552 pos += 4;
553 }
554
555 /* skip non colocated APs */
556 if (!cfg80211_parse_bss_param(*pos, entry))
557 return -EINVAL;
558 pos++;
559
560 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
561 /*
562 * no information about the short ssid. Consider the entry valid
563 * for now. It would later be dropped in case there are explicit
564 * SSIDs that need to be matched
565 */
566 if (!entry->same_ssid)
567 return 0;
568 }
569
570 if (entry->same_ssid) {
571 entry->short_ssid = s_ssid_tmp;
572 entry->short_ssid_valid = true;
573
574 /*
575 * This is safe because we validate datalen in
576 * cfg80211_parse_colocated_ap(), before calling this
577 * function.
578 */
579 memcpy(&entry->ssid, &ssid_elem->data,
580 ssid_elem->datalen);
581 entry->ssid_len = ssid_elem->datalen;
582 }
583 return 0;
584}
585
586static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
587 struct list_head *list)
588{
589 struct ieee80211_neighbor_ap_info *ap_info;
590 const struct element *elem, *ssid_elem;
591 const u8 *pos, *end;
592 u32 s_ssid_tmp;
593 int n_coloc = 0, ret;
594 LIST_HEAD(ap_list);
595
596 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
597 ies->len);
598 if (!elem)
599 return 0;
600
601 pos = elem->data;
602 end = pos + elem->datalen;
603
604 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
605 if (ret)
606 return ret;
607
608 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
609 while (pos + sizeof(*ap_info) <= end) {
610 enum nl80211_band band;
611 int freq;
612 u8 length, i, count;
613
614 ap_info = (void *)pos;
615 count = u8_get_bits(ap_info->tbtt_info_hdr,
616 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
617 length = ap_info->tbtt_info_len;
618
619 pos += sizeof(*ap_info);
620
621 if (!ieee80211_operating_class_to_band(ap_info->op_class,
622 &band))
623 break;
624
625 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
626
627 if (end - pos < count * length)
628 break;
629
630 /*
631 * TBTT info must include bss param + BSSID +
632 * (short SSID or same_ssid bit to be set).
633 * ignore other options, and move to the
634 * next AP info
635 */
636 if (band != NL80211_BAND_6GHZ ||
637 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
638 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
639 pos += count * length;
640 continue;
641 }
642
643 for (i = 0; i < count; i++) {
644 struct cfg80211_colocated_ap *entry;
645
646 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
647 GFP_ATOMIC);
648
649 if (!entry)
650 break;
651
652 entry->center_freq = freq;
653
654 if (!cfg80211_parse_ap_info(entry, pos, length,
655 ssid_elem, s_ssid_tmp)) {
656 n_coloc++;
657 list_add_tail(&entry->list, &ap_list);
658 } else {
659 kfree(entry);
660 }
661
662 pos += length;
663 }
664 }
665
666 if (pos != end) {
667 cfg80211_free_coloc_ap_list(&ap_list);
668 return 0;
669 }
670
671 list_splice_tail(&ap_list, list);
672 return n_coloc;
673}
674
675static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
676 struct ieee80211_channel *chan,
677 bool add_to_6ghz)
678{
679 int i;
680 u32 n_channels = request->n_channels;
681 struct cfg80211_scan_6ghz_params *params =
682 &request->scan_6ghz_params[request->n_6ghz_params];
683
684 for (i = 0; i < n_channels; i++) {
685 if (request->channels[i] == chan) {
686 if (add_to_6ghz)
687 params->channel_idx = i;
688 return;
689 }
690 }
691
692 request->channels[n_channels] = chan;
693 if (add_to_6ghz)
694 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
695 n_channels;
696
697 request->n_channels++;
698}
699
700static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
701 struct cfg80211_scan_request *request)
702{
703 int i;
704 u32 s_ssid;
705
706 for (i = 0; i < request->n_ssids; i++) {
707 /* wildcard ssid in the scan request */
708 if (!request->ssids[i].ssid_len) {
709 if (ap->multi_bss && !ap->transmitted_bssid)
710 continue;
711
712 return true;
713 }
714
715 if (ap->ssid_len &&
716 ap->ssid_len == request->ssids[i].ssid_len) {
717 if (!memcmp(request->ssids[i].ssid, ap->ssid,
718 ap->ssid_len))
719 return true;
720 } else if (ap->short_ssid_valid) {
721 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
722 request->ssids[i].ssid_len);
723
724 if (ap->short_ssid == s_ssid)
725 return true;
726 }
727 }
728
729 return false;
730}
731
732static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
733{
734 u8 i;
735 struct cfg80211_colocated_ap *ap;
736 int n_channels, count = 0, err;
737 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
738 LIST_HEAD(coloc_ap_list);
739 bool need_scan_psc = true;
740 const struct ieee80211_sband_iftype_data *iftd;
741
742 rdev_req->scan_6ghz = true;
743
744 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
745 return -EOPNOTSUPP;
746
747 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
748 rdev_req->wdev->iftype);
749 if (!iftd || !iftd->he_cap.has_he)
750 return -EOPNOTSUPP;
751
752 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
753
754 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
755 struct cfg80211_internal_bss *intbss;
756
757 spin_lock_bh(&rdev->bss_lock);
758 list_for_each_entry(intbss, &rdev->bss_list, list) {
759 struct cfg80211_bss *res = &intbss->pub;
760 const struct cfg80211_bss_ies *ies;
761
762 ies = rcu_access_pointer(res->ies);
763 count += cfg80211_parse_colocated_ap(ies,
764 &coloc_ap_list);
765 }
766 spin_unlock_bh(&rdev->bss_lock);
767 }
768
769 request = kzalloc(struct_size(request, channels, n_channels) +
770 sizeof(*request->scan_6ghz_params) * count +
771 sizeof(*request->ssids) * rdev_req->n_ssids,
772 GFP_KERNEL);
773 if (!request) {
774 cfg80211_free_coloc_ap_list(&coloc_ap_list);
775 return -ENOMEM;
776 }
777
778 *request = *rdev_req;
779 request->n_channels = 0;
780 request->scan_6ghz_params =
781 (void *)&request->channels[n_channels];
782
783 /*
784 * PSC channels should not be scanned in case of direct scan with 1 SSID
785 * and at least one of the reported co-located APs with same SSID
786 * indicating that all APs in the same ESS are co-located
787 */
788 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
789 list_for_each_entry(ap, &coloc_ap_list, list) {
790 if (ap->colocated_ess &&
791 cfg80211_find_ssid_match(ap, request)) {
792 need_scan_psc = false;
793 break;
794 }
795 }
796 }
797
798 /*
799 * add to the scan request the channels that need to be scanned
800 * regardless of the collocated APs (PSC channels or all channels
801 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
802 */
803 for (i = 0; i < rdev_req->n_channels; i++) {
804 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
805 ((need_scan_psc &&
806 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
807 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
808 cfg80211_scan_req_add_chan(request,
809 rdev_req->channels[i],
810 false);
811 }
812 }
813
814 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
815 goto skip;
816
817 list_for_each_entry(ap, &coloc_ap_list, list) {
818 bool found = false;
819 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
820 &request->scan_6ghz_params[request->n_6ghz_params];
821 struct ieee80211_channel *chan =
822 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
823
824 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
825 continue;
826
827 for (i = 0; i < rdev_req->n_channels; i++) {
828 if (rdev_req->channels[i] == chan)
829 found = true;
830 }
831
832 if (!found)
833 continue;
834
835 if (request->n_ssids > 0 &&
836 !cfg80211_find_ssid_match(ap, request))
837 continue;
838
839 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
840 continue;
841
842 cfg80211_scan_req_add_chan(request, chan, true);
843 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
844 scan_6ghz_params->short_ssid = ap->short_ssid;
845 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
846 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
847
848 /*
849 * If a PSC channel is added to the scan and 'need_scan_psc' is
850 * set to false, then all the APs that the scan logic is
851 * interested with on the channel are collocated and thus there
852 * is no need to perform the initial PSC channel listen.
853 */
854 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
855 scan_6ghz_params->psc_no_listen = true;
856
857 request->n_6ghz_params++;
858 }
859
860skip:
861 cfg80211_free_coloc_ap_list(&coloc_ap_list);
862
863 if (request->n_channels) {
864 struct cfg80211_scan_request *old = rdev->int_scan_req;
865 rdev->int_scan_req = request;
866
867 /*
868 * Add the ssids from the parent scan request to the new scan
869 * request, so the driver would be able to use them in its
870 * probe requests to discover hidden APs on PSC channels.
871 */
872 request->ssids = (void *)&request->channels[request->n_channels];
873 request->n_ssids = rdev_req->n_ssids;
874 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
875 request->n_ssids);
876
877 /*
878 * If this scan follows a previous scan, save the scan start
879 * info from the first part of the scan
880 */
881 if (old)
882 rdev->int_scan_req->info = old->info;
883
884 err = rdev_scan(rdev, request);
885 if (err) {
886 rdev->int_scan_req = old;
887 kfree(request);
888 } else {
889 kfree(old);
890 }
891
892 return err;
893 }
894
895 kfree(request);
896 return -EINVAL;
897}
898
899int cfg80211_scan(struct cfg80211_registered_device *rdev)
900{
901 struct cfg80211_scan_request *request;
902 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
903 u32 n_channels = 0, idx, i;
904
905 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
906 return rdev_scan(rdev, rdev_req);
907
908 for (i = 0; i < rdev_req->n_channels; i++) {
909 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
910 n_channels++;
911 }
912
913 if (!n_channels)
914 return cfg80211_scan_6ghz(rdev);
915
916 request = kzalloc(struct_size(request, channels, n_channels),
917 GFP_KERNEL);
918 if (!request)
919 return -ENOMEM;
920
921 *request = *rdev_req;
922 request->n_channels = n_channels;
923
924 for (i = idx = 0; i < rdev_req->n_channels; i++) {
925 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
926 request->channels[idx++] = rdev_req->channels[i];
927 }
928
929 rdev_req->scan_6ghz = false;
930 rdev->int_scan_req = request;
931 return rdev_scan(rdev, request);
932}
933
934void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
935 bool send_message)
936{
937 struct cfg80211_scan_request *request, *rdev_req;
938 struct wireless_dev *wdev;
939 struct sk_buff *msg;
940#ifdef CONFIG_CFG80211_WEXT
941 union iwreq_data wrqu;
942#endif
943
944 lockdep_assert_held(&rdev->wiphy.mtx);
945
946 if (rdev->scan_msg) {
947 nl80211_send_scan_msg(rdev, rdev->scan_msg);
948 rdev->scan_msg = NULL;
949 return;
950 }
951
952 rdev_req = rdev->scan_req;
953 if (!rdev_req)
954 return;
955
956 wdev = rdev_req->wdev;
957 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
958
959 if (wdev_running(wdev) &&
960 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
961 !rdev_req->scan_6ghz && !request->info.aborted &&
962 !cfg80211_scan_6ghz(rdev))
963 return;
964
965 /*
966 * This must be before sending the other events!
967 * Otherwise, wpa_supplicant gets completely confused with
968 * wext events.
969 */
970 if (wdev->netdev)
971 cfg80211_sme_scan_done(wdev->netdev);
972
973 if (!request->info.aborted &&
974 request->flags & NL80211_SCAN_FLAG_FLUSH) {
975 /* flush entries from previous scans */
976 spin_lock_bh(&rdev->bss_lock);
977 __cfg80211_bss_expire(rdev, request->scan_start);
978 spin_unlock_bh(&rdev->bss_lock);
979 }
980
981 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
982
983#ifdef CONFIG_CFG80211_WEXT
984 if (wdev->netdev && !request->info.aborted) {
985 memset(&wrqu, 0, sizeof(wrqu));
986
987 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
988 }
989#endif
990
991 dev_put(wdev->netdev);
992
993 kfree(rdev->int_scan_req);
994 rdev->int_scan_req = NULL;
995
996 kfree(rdev->scan_req);
997 rdev->scan_req = NULL;
998
999 if (!send_message)
1000 rdev->scan_msg = msg;
1001 else
1002 nl80211_send_scan_msg(rdev, msg);
1003}
1004
1005void __cfg80211_scan_done(struct work_struct *wk)
1006{
1007 struct cfg80211_registered_device *rdev;
1008
1009 rdev = container_of(wk, struct cfg80211_registered_device,
1010 scan_done_wk);
1011
1012 wiphy_lock(&rdev->wiphy);
1013 ___cfg80211_scan_done(rdev, true);
1014 wiphy_unlock(&rdev->wiphy);
1015}
1016
1017void cfg80211_scan_done(struct cfg80211_scan_request *request,
1018 struct cfg80211_scan_info *info)
1019{
1020 struct cfg80211_scan_info old_info = request->info;
1021
1022 trace_cfg80211_scan_done(request, info);
1023 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1024 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1025
1026 request->info = *info;
1027
1028 /*
1029 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1030 * be of the first part. In such a case old_info.scan_start_tsf should
1031 * be non zero.
1032 */
1033 if (request->scan_6ghz && old_info.scan_start_tsf) {
1034 request->info.scan_start_tsf = old_info.scan_start_tsf;
1035 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1036 sizeof(request->info.tsf_bssid));
1037 }
1038
1039 request->notified = true;
1040 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1041}
1042EXPORT_SYMBOL(cfg80211_scan_done);
1043
1044void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1045 struct cfg80211_sched_scan_request *req)
1046{
1047 lockdep_assert_held(&rdev->wiphy.mtx);
1048
1049 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1050}
1051
1052static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1053 struct cfg80211_sched_scan_request *req)
1054{
1055 lockdep_assert_held(&rdev->wiphy.mtx);
1056
1057 list_del_rcu(&req->list);
1058 kfree_rcu(req, rcu_head);
1059}
1060
1061static struct cfg80211_sched_scan_request *
1062cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1063{
1064 struct cfg80211_sched_scan_request *pos;
1065
1066 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1067 lockdep_is_held(&rdev->wiphy.mtx)) {
1068 if (pos->reqid == reqid)
1069 return pos;
1070 }
1071 return NULL;
1072}
1073
1074/*
1075 * Determines if a scheduled scan request can be handled. When a legacy
1076 * scheduled scan is running no other scheduled scan is allowed regardless
1077 * whether the request is for legacy or multi-support scan. When a multi-support
1078 * scheduled scan is running a request for legacy scan is not allowed. In this
1079 * case a request for multi-support scan can be handled if resources are
1080 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1081 */
1082int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1083 bool want_multi)
1084{
1085 struct cfg80211_sched_scan_request *pos;
1086 int i = 0;
1087
1088 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1089 /* request id zero means legacy in progress */
1090 if (!i && !pos->reqid)
1091 return -EINPROGRESS;
1092 i++;
1093 }
1094
1095 if (i) {
1096 /* no legacy allowed when multi request(s) are active */
1097 if (!want_multi)
1098 return -EINPROGRESS;
1099
1100 /* resource limit reached */
1101 if (i == rdev->wiphy.max_sched_scan_reqs)
1102 return -ENOSPC;
1103 }
1104 return 0;
1105}
1106
1107void cfg80211_sched_scan_results_wk(struct work_struct *work)
1108{
1109 struct cfg80211_registered_device *rdev;
1110 struct cfg80211_sched_scan_request *req, *tmp;
1111
1112 rdev = container_of(work, struct cfg80211_registered_device,
1113 sched_scan_res_wk);
1114
1115 wiphy_lock(&rdev->wiphy);
1116 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1117 if (req->report_results) {
1118 req->report_results = false;
1119 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1120 /* flush entries from previous scans */
1121 spin_lock_bh(&rdev->bss_lock);
1122 __cfg80211_bss_expire(rdev, req->scan_start);
1123 spin_unlock_bh(&rdev->bss_lock);
1124 req->scan_start = jiffies;
1125 }
1126 nl80211_send_sched_scan(req,
1127 NL80211_CMD_SCHED_SCAN_RESULTS);
1128 }
1129 }
1130 wiphy_unlock(&rdev->wiphy);
1131}
1132
1133void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1134{
1135 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1136 struct cfg80211_sched_scan_request *request;
1137
1138 trace_cfg80211_sched_scan_results(wiphy, reqid);
1139 /* ignore if we're not scanning */
1140
1141 rcu_read_lock();
1142 request = cfg80211_find_sched_scan_req(rdev, reqid);
1143 if (request) {
1144 request->report_results = true;
1145 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1146 }
1147 rcu_read_unlock();
1148}
1149EXPORT_SYMBOL(cfg80211_sched_scan_results);
1150
1151void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1152{
1153 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1154
1155 lockdep_assert_held(&wiphy->mtx);
1156
1157 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1158
1159 __cfg80211_stop_sched_scan(rdev, reqid, true);
1160}
1161EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1162
1163void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1164{
1165 wiphy_lock(wiphy);
1166 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1167 wiphy_unlock(wiphy);
1168}
1169EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1170
1171int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1172 struct cfg80211_sched_scan_request *req,
1173 bool driver_initiated)
1174{
1175 lockdep_assert_held(&rdev->wiphy.mtx);
1176
1177 if (!driver_initiated) {
1178 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1179 if (err)
1180 return err;
1181 }
1182
1183 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1184
1185 cfg80211_del_sched_scan_req(rdev, req);
1186
1187 return 0;
1188}
1189
1190int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1191 u64 reqid, bool driver_initiated)
1192{
1193 struct cfg80211_sched_scan_request *sched_scan_req;
1194
1195 lockdep_assert_held(&rdev->wiphy.mtx);
1196
1197 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1198 if (!sched_scan_req)
1199 return -ENOENT;
1200
1201 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1202 driver_initiated);
1203}
1204
1205void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1206 unsigned long age_secs)
1207{
1208 struct cfg80211_internal_bss *bss;
1209 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1210
1211 spin_lock_bh(&rdev->bss_lock);
1212 list_for_each_entry(bss, &rdev->bss_list, list)
1213 bss->ts -= age_jiffies;
1214 spin_unlock_bh(&rdev->bss_lock);
1215}
1216
1217void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1218{
1219 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1220}
1221
1222void cfg80211_bss_flush(struct wiphy *wiphy)
1223{
1224 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1225
1226 spin_lock_bh(&rdev->bss_lock);
1227 __cfg80211_bss_expire(rdev, jiffies);
1228 spin_unlock_bh(&rdev->bss_lock);
1229}
1230EXPORT_SYMBOL(cfg80211_bss_flush);
1231
1232const struct element *
1233cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1234 const u8 *match, unsigned int match_len,
1235 unsigned int match_offset)
1236{
1237 const struct element *elem;
1238
1239 for_each_element_id(elem, eid, ies, len) {
1240 if (elem->datalen >= match_offset + match_len &&
1241 !memcmp(elem->data + match_offset, match, match_len))
1242 return elem;
1243 }
1244
1245 return NULL;
1246}
1247EXPORT_SYMBOL(cfg80211_find_elem_match);
1248
1249const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1250 const u8 *ies,
1251 unsigned int len)
1252{
1253 const struct element *elem;
1254 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1255 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1256
1257 if (WARN_ON(oui_type > 0xff))
1258 return NULL;
1259
1260 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1261 match, match_len, 0);
1262
1263 if (!elem || elem->datalen < 4)
1264 return NULL;
1265
1266 return elem;
1267}
1268EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1269
1270/**
1271 * enum bss_compare_mode - BSS compare mode
1272 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1273 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1274 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1275 */
1276enum bss_compare_mode {
1277 BSS_CMP_REGULAR,
1278 BSS_CMP_HIDE_ZLEN,
1279 BSS_CMP_HIDE_NUL,
1280};
1281
1282static int cmp_bss(struct cfg80211_bss *a,
1283 struct cfg80211_bss *b,
1284 enum bss_compare_mode mode)
1285{
1286 const struct cfg80211_bss_ies *a_ies, *b_ies;
1287 const u8 *ie1 = NULL;
1288 const u8 *ie2 = NULL;
1289 int i, r;
1290
1291 if (a->channel != b->channel)
1292 return b->channel->center_freq - a->channel->center_freq;
1293
1294 a_ies = rcu_access_pointer(a->ies);
1295 if (!a_ies)
1296 return -1;
1297 b_ies = rcu_access_pointer(b->ies);
1298 if (!b_ies)
1299 return 1;
1300
1301 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1302 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1303 a_ies->data, a_ies->len);
1304 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1306 b_ies->data, b_ies->len);
1307 if (ie1 && ie2) {
1308 int mesh_id_cmp;
1309
1310 if (ie1[1] == ie2[1])
1311 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1312 else
1313 mesh_id_cmp = ie2[1] - ie1[1];
1314
1315 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1316 a_ies->data, a_ies->len);
1317 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1318 b_ies->data, b_ies->len);
1319 if (ie1 && ie2) {
1320 if (mesh_id_cmp)
1321 return mesh_id_cmp;
1322 if (ie1[1] != ie2[1])
1323 return ie2[1] - ie1[1];
1324 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1325 }
1326 }
1327
1328 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1329 if (r)
1330 return r;
1331
1332 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1333 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1334
1335 if (!ie1 && !ie2)
1336 return 0;
1337
1338 /*
1339 * Note that with "hide_ssid", the function returns a match if
1340 * the already-present BSS ("b") is a hidden SSID beacon for
1341 * the new BSS ("a").
1342 */
1343
1344 /* sort missing IE before (left of) present IE */
1345 if (!ie1)
1346 return -1;
1347 if (!ie2)
1348 return 1;
1349
1350 switch (mode) {
1351 case BSS_CMP_HIDE_ZLEN:
1352 /*
1353 * In ZLEN mode we assume the BSS entry we're
1354 * looking for has a zero-length SSID. So if
1355 * the one we're looking at right now has that,
1356 * return 0. Otherwise, return the difference
1357 * in length, but since we're looking for the
1358 * 0-length it's really equivalent to returning
1359 * the length of the one we're looking at.
1360 *
1361 * No content comparison is needed as we assume
1362 * the content length is zero.
1363 */
1364 return ie2[1];
1365 case BSS_CMP_REGULAR:
1366 default:
1367 /* sort by length first, then by contents */
1368 if (ie1[1] != ie2[1])
1369 return ie2[1] - ie1[1];
1370 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1371 case BSS_CMP_HIDE_NUL:
1372 if (ie1[1] != ie2[1])
1373 return ie2[1] - ie1[1];
1374 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1375 for (i = 0; i < ie2[1]; i++)
1376 if (ie2[i + 2])
1377 return -1;
1378 return 0;
1379 }
1380}
1381
1382static bool cfg80211_bss_type_match(u16 capability,
1383 enum nl80211_band band,
1384 enum ieee80211_bss_type bss_type)
1385{
1386 bool ret = true;
1387 u16 mask, val;
1388
1389 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1390 return ret;
1391
1392 if (band == NL80211_BAND_60GHZ) {
1393 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1394 switch (bss_type) {
1395 case IEEE80211_BSS_TYPE_ESS:
1396 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1397 break;
1398 case IEEE80211_BSS_TYPE_PBSS:
1399 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1400 break;
1401 case IEEE80211_BSS_TYPE_IBSS:
1402 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1403 break;
1404 default:
1405 return false;
1406 }
1407 } else {
1408 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1409 switch (bss_type) {
1410 case IEEE80211_BSS_TYPE_ESS:
1411 val = WLAN_CAPABILITY_ESS;
1412 break;
1413 case IEEE80211_BSS_TYPE_IBSS:
1414 val = WLAN_CAPABILITY_IBSS;
1415 break;
1416 case IEEE80211_BSS_TYPE_MBSS:
1417 val = 0;
1418 break;
1419 default:
1420 return false;
1421 }
1422 }
1423
1424 ret = ((capability & mask) == val);
1425 return ret;
1426}
1427
1428/* Returned bss is reference counted and must be cleaned up appropriately. */
1429struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1430 struct ieee80211_channel *channel,
1431 const u8 *bssid,
1432 const u8 *ssid, size_t ssid_len,
1433 enum ieee80211_bss_type bss_type,
1434 enum ieee80211_privacy privacy)
1435{
1436 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1437 struct cfg80211_internal_bss *bss, *res = NULL;
1438 unsigned long now = jiffies;
1439 int bss_privacy;
1440
1441 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1442 privacy);
1443
1444 spin_lock_bh(&rdev->bss_lock);
1445
1446 list_for_each_entry(bss, &rdev->bss_list, list) {
1447 if (!cfg80211_bss_type_match(bss->pub.capability,
1448 bss->pub.channel->band, bss_type))
1449 continue;
1450
1451 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1452 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1453 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1454 continue;
1455 if (channel && bss->pub.channel != channel)
1456 continue;
1457 if (!is_valid_ether_addr(bss->pub.bssid))
1458 continue;
1459 /* Don't get expired BSS structs */
1460 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1461 !atomic_read(&bss->hold))
1462 continue;
1463 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1464 res = bss;
1465 bss_ref_get(rdev, res);
1466 break;
1467 }
1468 }
1469
1470 spin_unlock_bh(&rdev->bss_lock);
1471 if (!res)
1472 return NULL;
1473 trace_cfg80211_return_bss(&res->pub);
1474 return &res->pub;
1475}
1476EXPORT_SYMBOL(cfg80211_get_bss);
1477
1478static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1479 struct cfg80211_internal_bss *bss)
1480{
1481 struct rb_node **p = &rdev->bss_tree.rb_node;
1482 struct rb_node *parent = NULL;
1483 struct cfg80211_internal_bss *tbss;
1484 int cmp;
1485
1486 while (*p) {
1487 parent = *p;
1488 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1489
1490 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1491
1492 if (WARN_ON(!cmp)) {
1493 /* will sort of leak this BSS */
1494 return;
1495 }
1496
1497 if (cmp < 0)
1498 p = &(*p)->rb_left;
1499 else
1500 p = &(*p)->rb_right;
1501 }
1502
1503 rb_link_node(&bss->rbn, parent, p);
1504 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1505}
1506
1507static struct cfg80211_internal_bss *
1508rb_find_bss(struct cfg80211_registered_device *rdev,
1509 struct cfg80211_internal_bss *res,
1510 enum bss_compare_mode mode)
1511{
1512 struct rb_node *n = rdev->bss_tree.rb_node;
1513 struct cfg80211_internal_bss *bss;
1514 int r;
1515
1516 while (n) {
1517 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1518 r = cmp_bss(&res->pub, &bss->pub, mode);
1519
1520 if (r == 0)
1521 return bss;
1522 else if (r < 0)
1523 n = n->rb_left;
1524 else
1525 n = n->rb_right;
1526 }
1527
1528 return NULL;
1529}
1530
1531static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1532 struct cfg80211_internal_bss *new)
1533{
1534 const struct cfg80211_bss_ies *ies;
1535 struct cfg80211_internal_bss *bss;
1536 const u8 *ie;
1537 int i, ssidlen;
1538 u8 fold = 0;
1539 u32 n_entries = 0;
1540
1541 ies = rcu_access_pointer(new->pub.beacon_ies);
1542 if (WARN_ON(!ies))
1543 return false;
1544
1545 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1546 if (!ie) {
1547 /* nothing to do */
1548 return true;
1549 }
1550
1551 ssidlen = ie[1];
1552 for (i = 0; i < ssidlen; i++)
1553 fold |= ie[2 + i];
1554
1555 if (fold) {
1556 /* not a hidden SSID */
1557 return true;
1558 }
1559
1560 /* This is the bad part ... */
1561
1562 list_for_each_entry(bss, &rdev->bss_list, list) {
1563 /*
1564 * we're iterating all the entries anyway, so take the
1565 * opportunity to validate the list length accounting
1566 */
1567 n_entries++;
1568
1569 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1570 continue;
1571 if (bss->pub.channel != new->pub.channel)
1572 continue;
1573 if (bss->pub.scan_width != new->pub.scan_width)
1574 continue;
1575 if (rcu_access_pointer(bss->pub.beacon_ies))
1576 continue;
1577 ies = rcu_access_pointer(bss->pub.ies);
1578 if (!ies)
1579 continue;
1580 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1581 if (!ie)
1582 continue;
1583 if (ssidlen && ie[1] != ssidlen)
1584 continue;
1585 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1586 continue;
1587 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1588 list_del(&bss->hidden_list);
1589 /* combine them */
1590 list_add(&bss->hidden_list, &new->hidden_list);
1591 bss->pub.hidden_beacon_bss = &new->pub;
1592 new->refcount += bss->refcount;
1593 rcu_assign_pointer(bss->pub.beacon_ies,
1594 new->pub.beacon_ies);
1595 }
1596
1597 WARN_ONCE(n_entries != rdev->bss_entries,
1598 "rdev bss entries[%d]/list[len:%d] corruption\n",
1599 rdev->bss_entries, n_entries);
1600
1601 return true;
1602}
1603
1604struct cfg80211_non_tx_bss {
1605 struct cfg80211_bss *tx_bss;
1606 u8 max_bssid_indicator;
1607 u8 bssid_index;
1608};
1609
1610static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1611 const struct cfg80211_bss_ies *new_ies,
1612 const struct cfg80211_bss_ies *old_ies)
1613{
1614 struct cfg80211_internal_bss *bss;
1615
1616 /* Assign beacon IEs to all sub entries */
1617 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1618 const struct cfg80211_bss_ies *ies;
1619
1620 ies = rcu_access_pointer(bss->pub.beacon_ies);
1621 WARN_ON(ies != old_ies);
1622
1623 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1624 }
1625}
1626
1627static bool
1628cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1629 struct cfg80211_internal_bss *known,
1630 struct cfg80211_internal_bss *new,
1631 bool signal_valid)
1632{
1633 lockdep_assert_held(&rdev->bss_lock);
1634
1635 /* Update IEs */
1636 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1637 const struct cfg80211_bss_ies *old;
1638
1639 old = rcu_access_pointer(known->pub.proberesp_ies);
1640
1641 rcu_assign_pointer(known->pub.proberesp_ies,
1642 new->pub.proberesp_ies);
1643 /* Override possible earlier Beacon frame IEs */
1644 rcu_assign_pointer(known->pub.ies,
1645 new->pub.proberesp_ies);
1646 if (old)
1647 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1648 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1649 const struct cfg80211_bss_ies *old;
1650
1651 if (known->pub.hidden_beacon_bss &&
1652 !list_empty(&known->hidden_list)) {
1653 const struct cfg80211_bss_ies *f;
1654
1655 /* The known BSS struct is one of the probe
1656 * response members of a group, but we're
1657 * receiving a beacon (beacon_ies in the new
1658 * bss is used). This can only mean that the
1659 * AP changed its beacon from not having an
1660 * SSID to showing it, which is confusing so
1661 * drop this information.
1662 */
1663
1664 f = rcu_access_pointer(new->pub.beacon_ies);
1665 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1666 return false;
1667 }
1668
1669 old = rcu_access_pointer(known->pub.beacon_ies);
1670
1671 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1672
1673 /* Override IEs if they were from a beacon before */
1674 if (old == rcu_access_pointer(known->pub.ies))
1675 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1676
1677 cfg80211_update_hidden_bsses(known, new->pub.beacon_ies, old);
1678
1679 if (old)
1680 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1681 }
1682
1683 known->pub.beacon_interval = new->pub.beacon_interval;
1684
1685 /* don't update the signal if beacon was heard on
1686 * adjacent channel.
1687 */
1688 if (signal_valid)
1689 known->pub.signal = new->pub.signal;
1690 known->pub.capability = new->pub.capability;
1691 known->ts = new->ts;
1692 known->ts_boottime = new->ts_boottime;
1693 known->parent_tsf = new->parent_tsf;
1694 known->pub.chains = new->pub.chains;
1695 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1696 IEEE80211_MAX_CHAINS);
1697 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1698 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1699 known->pub.bssid_index = new->pub.bssid_index;
1700
1701 return true;
1702}
1703
1704/* Returned bss is reference counted and must be cleaned up appropriately. */
1705struct cfg80211_internal_bss *
1706cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1707 struct cfg80211_internal_bss *tmp,
1708 bool signal_valid, unsigned long ts)
1709{
1710 struct cfg80211_internal_bss *found = NULL;
1711
1712 if (WARN_ON(!tmp->pub.channel))
1713 return NULL;
1714
1715 tmp->ts = ts;
1716
1717 spin_lock_bh(&rdev->bss_lock);
1718
1719 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1720 spin_unlock_bh(&rdev->bss_lock);
1721 return NULL;
1722 }
1723
1724 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1725
1726 if (found) {
1727 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1728 goto drop;
1729 } else {
1730 struct cfg80211_internal_bss *new;
1731 struct cfg80211_internal_bss *hidden;
1732 struct cfg80211_bss_ies *ies;
1733
1734 /*
1735 * create a copy -- the "res" variable that is passed in
1736 * is allocated on the stack since it's not needed in the
1737 * more common case of an update
1738 */
1739 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1740 GFP_ATOMIC);
1741 if (!new) {
1742 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1743 if (ies)
1744 kfree_rcu(ies, rcu_head);
1745 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1746 if (ies)
1747 kfree_rcu(ies, rcu_head);
1748 goto drop;
1749 }
1750 memcpy(new, tmp, sizeof(*new));
1751 new->refcount = 1;
1752 INIT_LIST_HEAD(&new->hidden_list);
1753 INIT_LIST_HEAD(&new->pub.nontrans_list);
1754 /* we'll set this later if it was non-NULL */
1755 new->pub.transmitted_bss = NULL;
1756
1757 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1758 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1759 if (!hidden)
1760 hidden = rb_find_bss(rdev, tmp,
1761 BSS_CMP_HIDE_NUL);
1762 if (hidden) {
1763 new->pub.hidden_beacon_bss = &hidden->pub;
1764 list_add(&new->hidden_list,
1765 &hidden->hidden_list);
1766 hidden->refcount++;
1767 rcu_assign_pointer(new->pub.beacon_ies,
1768 hidden->pub.beacon_ies);
1769 }
1770 } else {
1771 /*
1772 * Ok so we found a beacon, and don't have an entry. If
1773 * it's a beacon with hidden SSID, we might be in for an
1774 * expensive search for any probe responses that should
1775 * be grouped with this beacon for updates ...
1776 */
1777 if (!cfg80211_combine_bsses(rdev, new)) {
1778 bss_ref_put(rdev, new);
1779 goto drop;
1780 }
1781 }
1782
1783 if (rdev->bss_entries >= bss_entries_limit &&
1784 !cfg80211_bss_expire_oldest(rdev)) {
1785 bss_ref_put(rdev, new);
1786 goto drop;
1787 }
1788
1789 /* This must be before the call to bss_ref_get */
1790 if (tmp->pub.transmitted_bss) {
1791 struct cfg80211_internal_bss *pbss =
1792 container_of(tmp->pub.transmitted_bss,
1793 struct cfg80211_internal_bss,
1794 pub);
1795
1796 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1797 bss_ref_get(rdev, pbss);
1798 }
1799
1800 list_add_tail(&new->list, &rdev->bss_list);
1801 rdev->bss_entries++;
1802 rb_insert_bss(rdev, new);
1803 found = new;
1804 }
1805
1806 rdev->bss_generation++;
1807 bss_ref_get(rdev, found);
1808 spin_unlock_bh(&rdev->bss_lock);
1809
1810 return found;
1811 drop:
1812 spin_unlock_bh(&rdev->bss_lock);
1813 return NULL;
1814}
1815
1816int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1817 enum nl80211_band band,
1818 enum cfg80211_bss_frame_type ftype)
1819{
1820 const struct element *tmp;
1821
1822 if (band == NL80211_BAND_6GHZ) {
1823 struct ieee80211_he_operation *he_oper;
1824
1825 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1826 ielen);
1827 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1828 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1829 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1830
1831 he_oper = (void *)&tmp->data[1];
1832
1833 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1834 if (!he_6ghz_oper)
1835 return -1;
1836
1837 if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1838 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1839 return he_6ghz_oper->primary;
1840 }
1841 } else if (band == NL80211_BAND_S1GHZ) {
1842 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1843 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1844 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1845
1846 return s1gop->oper_ch;
1847 }
1848 } else {
1849 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1850 if (tmp && tmp->datalen == 1)
1851 return tmp->data[0];
1852
1853 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1854 if (tmp &&
1855 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1856 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1857
1858 return htop->primary_chan;
1859 }
1860 }
1861
1862 return -1;
1863}
1864EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1865
1866/*
1867 * Update RX channel information based on the available frame payload
1868 * information. This is mainly for the 2.4 GHz band where frames can be received
1869 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1870 * element to indicate the current (transmitting) channel, but this might also
1871 * be needed on other bands if RX frequency does not match with the actual
1872 * operating channel of a BSS, or if the AP reports a different primary channel.
1873 */
1874static struct ieee80211_channel *
1875cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1876 struct ieee80211_channel *channel,
1877 enum nl80211_bss_scan_width scan_width,
1878 enum cfg80211_bss_frame_type ftype)
1879{
1880 u32 freq;
1881 int channel_number;
1882 struct ieee80211_channel *alt_channel;
1883
1884 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1885 channel->band, ftype);
1886
1887 if (channel_number < 0) {
1888 /* No channel information in frame payload */
1889 return channel;
1890 }
1891
1892 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1893
1894 /*
1895 * In 6GHz, duplicated beacon indication is relevant for
1896 * beacons only.
1897 */
1898 if (channel->band == NL80211_BAND_6GHZ &&
1899 (freq == channel->center_freq ||
1900 abs(freq - channel->center_freq) > 80))
1901 return channel;
1902
1903 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1904 if (!alt_channel) {
1905 if (channel->band == NL80211_BAND_2GHZ) {
1906 /*
1907 * Better not allow unexpected channels when that could
1908 * be going beyond the 1-11 range (e.g., discovering
1909 * BSS on channel 12 when radio is configured for
1910 * channel 11.
1911 */
1912 return NULL;
1913 }
1914
1915 /* No match for the payload channel number - ignore it */
1916 return channel;
1917 }
1918
1919 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1920 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1921 /*
1922 * Ignore channel number in 5 and 10 MHz channels where there
1923 * may not be an n:1 or 1:n mapping between frequencies and
1924 * channel numbers.
1925 */
1926 return channel;
1927 }
1928
1929 /*
1930 * Use the channel determined through the payload channel number
1931 * instead of the RX channel reported by the driver.
1932 */
1933 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1934 return NULL;
1935 return alt_channel;
1936}
1937
1938/* Returned bss is reference counted and must be cleaned up appropriately. */
1939static struct cfg80211_bss *
1940cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1941 struct cfg80211_inform_bss *data,
1942 enum cfg80211_bss_frame_type ftype,
1943 const u8 *bssid, u64 tsf, u16 capability,
1944 u16 beacon_interval, const u8 *ie, size_t ielen,
1945 struct cfg80211_non_tx_bss *non_tx_data,
1946 gfp_t gfp)
1947{
1948 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1949 struct cfg80211_bss_ies *ies;
1950 struct ieee80211_channel *channel;
1951 struct cfg80211_internal_bss tmp = {}, *res;
1952 int bss_type;
1953 bool signal_valid;
1954 unsigned long ts;
1955
1956 if (WARN_ON(!wiphy))
1957 return NULL;
1958
1959 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1960 (data->signal < 0 || data->signal > 100)))
1961 return NULL;
1962
1963 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1964 data->scan_width, ftype);
1965 if (!channel)
1966 return NULL;
1967
1968 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1969 tmp.pub.channel = channel;
1970 tmp.pub.scan_width = data->scan_width;
1971 tmp.pub.signal = data->signal;
1972 tmp.pub.beacon_interval = beacon_interval;
1973 tmp.pub.capability = capability;
1974 tmp.ts_boottime = data->boottime_ns;
1975 tmp.parent_tsf = data->parent_tsf;
1976 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1977
1978 if (non_tx_data) {
1979 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1980 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1981 tmp.pub.bssid_index = non_tx_data->bssid_index;
1982 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1983 } else {
1984 ts = jiffies;
1985 }
1986
1987 /*
1988 * If we do not know here whether the IEs are from a Beacon or Probe
1989 * Response frame, we need to pick one of the options and only use it
1990 * with the driver that does not provide the full Beacon/Probe Response
1991 * frame. Use Beacon frame pointer to avoid indicating that this should
1992 * override the IEs pointer should we have received an earlier
1993 * indication of Probe Response data.
1994 */
1995 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1996 if (!ies)
1997 return NULL;
1998 ies->len = ielen;
1999 ies->tsf = tsf;
2000 ies->from_beacon = false;
2001 memcpy(ies->data, ie, ielen);
2002
2003 switch (ftype) {
2004 case CFG80211_BSS_FTYPE_BEACON:
2005 ies->from_beacon = true;
2006 fallthrough;
2007 case CFG80211_BSS_FTYPE_UNKNOWN:
2008 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2009 break;
2010 case CFG80211_BSS_FTYPE_PRESP:
2011 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2012 break;
2013 }
2014 rcu_assign_pointer(tmp.pub.ies, ies);
2015
2016 signal_valid = data->chan == channel;
2017 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2018 if (!res)
2019 return NULL;
2020
2021 if (channel->band == NL80211_BAND_60GHZ) {
2022 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2023 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2024 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2025 regulatory_hint_found_beacon(wiphy, channel, gfp);
2026 } else {
2027 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2028 regulatory_hint_found_beacon(wiphy, channel, gfp);
2029 }
2030
2031 if (non_tx_data) {
2032 /* this is a nontransmitting bss, we need to add it to
2033 * transmitting bss' list if it is not there
2034 */
2035 spin_lock_bh(&rdev->bss_lock);
2036 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2037 &res->pub)) {
2038 if (__cfg80211_unlink_bss(rdev, res)) {
2039 rdev->bss_generation++;
2040 res = NULL;
2041 }
2042 }
2043 spin_unlock_bh(&rdev->bss_lock);
2044
2045 if (!res)
2046 return NULL;
2047 }
2048
2049 trace_cfg80211_return_bss(&res->pub);
2050 /* cfg80211_bss_update gives us a referenced result */
2051 return &res->pub;
2052}
2053
2054static const struct element
2055*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2056 const struct element *mbssid_elem,
2057 const struct element *sub_elem)
2058{
2059 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2060 const struct element *next_mbssid;
2061 const struct element *next_sub;
2062
2063 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2064 mbssid_end,
2065 ielen - (mbssid_end - ie));
2066
2067 /*
2068 * If it is not the last subelement in current MBSSID IE or there isn't
2069 * a next MBSSID IE - profile is complete.
2070 */
2071 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2072 !next_mbssid)
2073 return NULL;
2074
2075 /* For any length error, just return NULL */
2076
2077 if (next_mbssid->datalen < 4)
2078 return NULL;
2079
2080 next_sub = (void *)&next_mbssid->data[1];
2081
2082 if (next_mbssid->data + next_mbssid->datalen <
2083 next_sub->data + next_sub->datalen)
2084 return NULL;
2085
2086 if (next_sub->id != 0 || next_sub->datalen < 2)
2087 return NULL;
2088
2089 /*
2090 * Check if the first element in the next sub element is a start
2091 * of a new profile
2092 */
2093 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2094 NULL : next_mbssid;
2095}
2096
2097size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2098 const struct element *mbssid_elem,
2099 const struct element *sub_elem,
2100 u8 *merged_ie, size_t max_copy_len)
2101{
2102 size_t copied_len = sub_elem->datalen;
2103 const struct element *next_mbssid;
2104
2105 if (sub_elem->datalen > max_copy_len)
2106 return 0;
2107
2108 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2109
2110 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2111 mbssid_elem,
2112 sub_elem))) {
2113 const struct element *next_sub = (void *)&next_mbssid->data[1];
2114
2115 if (copied_len + next_sub->datalen > max_copy_len)
2116 break;
2117 memcpy(merged_ie + copied_len, next_sub->data,
2118 next_sub->datalen);
2119 copied_len += next_sub->datalen;
2120 }
2121
2122 return copied_len;
2123}
2124EXPORT_SYMBOL(cfg80211_merge_profile);
2125
2126static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2127 struct cfg80211_inform_bss *data,
2128 enum cfg80211_bss_frame_type ftype,
2129 const u8 *bssid, u64 tsf,
2130 u16 beacon_interval, const u8 *ie,
2131 size_t ielen,
2132 struct cfg80211_non_tx_bss *non_tx_data,
2133 gfp_t gfp)
2134{
2135 const u8 *mbssid_index_ie;
2136 const struct element *elem, *sub;
2137 size_t new_ie_len;
2138 u8 new_bssid[ETH_ALEN];
2139 u8 *new_ie, *profile;
2140 u64 seen_indices = 0;
2141 u16 capability;
2142 struct cfg80211_bss *bss;
2143
2144 if (!non_tx_data)
2145 return;
2146 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2147 return;
2148 if (!wiphy->support_mbssid)
2149 return;
2150 if (wiphy->support_only_he_mbssid &&
2151 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2152 return;
2153
2154 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2155 if (!new_ie)
2156 return;
2157
2158 profile = kmalloc(ielen, gfp);
2159 if (!profile)
2160 goto out;
2161
2162 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2163 if (elem->datalen < 4)
2164 continue;
2165 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2166 continue;
2167 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2168 u8 profile_len;
2169
2170 if (sub->id != 0 || sub->datalen < 4) {
2171 /* not a valid BSS profile */
2172 continue;
2173 }
2174
2175 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2176 sub->data[1] != 2) {
2177 /* The first element within the Nontransmitted
2178 * BSSID Profile is not the Nontransmitted
2179 * BSSID Capability element.
2180 */
2181 continue;
2182 }
2183
2184 memset(profile, 0, ielen);
2185 profile_len = cfg80211_merge_profile(ie, ielen,
2186 elem,
2187 sub,
2188 profile,
2189 ielen);
2190
2191 /* found a Nontransmitted BSSID Profile */
2192 mbssid_index_ie = cfg80211_find_ie
2193 (WLAN_EID_MULTI_BSSID_IDX,
2194 profile, profile_len);
2195 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2196 mbssid_index_ie[2] == 0 ||
2197 mbssid_index_ie[2] > 46) {
2198 /* No valid Multiple BSSID-Index element */
2199 continue;
2200 }
2201
2202 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2203 /* We don't support legacy split of a profile */
2204 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2205 mbssid_index_ie[2]);
2206
2207 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2208
2209 non_tx_data->bssid_index = mbssid_index_ie[2];
2210 non_tx_data->max_bssid_indicator = elem->data[0];
2211
2212 cfg80211_gen_new_bssid(bssid,
2213 non_tx_data->max_bssid_indicator,
2214 non_tx_data->bssid_index,
2215 new_bssid);
2216 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2217 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2218 profile,
2219 profile_len, new_ie,
2220 gfp);
2221 if (!new_ie_len)
2222 continue;
2223
2224 capability = get_unaligned_le16(profile + 2);
2225 bss = cfg80211_inform_single_bss_data(wiphy, data,
2226 ftype,
2227 new_bssid, tsf,
2228 capability,
2229 beacon_interval,
2230 new_ie,
2231 new_ie_len,
2232 non_tx_data,
2233 gfp);
2234 if (!bss)
2235 break;
2236 cfg80211_put_bss(wiphy, bss);
2237 }
2238 }
2239
2240out:
2241 kfree(new_ie);
2242 kfree(profile);
2243}
2244
2245struct cfg80211_bss *
2246cfg80211_inform_bss_data(struct wiphy *wiphy,
2247 struct cfg80211_inform_bss *data,
2248 enum cfg80211_bss_frame_type ftype,
2249 const u8 *bssid, u64 tsf, u16 capability,
2250 u16 beacon_interval, const u8 *ie, size_t ielen,
2251 gfp_t gfp)
2252{
2253 struct cfg80211_bss *res;
2254 struct cfg80211_non_tx_bss non_tx_data;
2255
2256 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2257 capability, beacon_interval, ie,
2258 ielen, NULL, gfp);
2259 if (!res)
2260 return NULL;
2261 non_tx_data.tx_bss = res;
2262 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2263 beacon_interval, ie, ielen, &non_tx_data,
2264 gfp);
2265 return res;
2266}
2267EXPORT_SYMBOL(cfg80211_inform_bss_data);
2268
2269static void
2270cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2271 struct cfg80211_inform_bss *data,
2272 struct ieee80211_mgmt *mgmt, size_t len,
2273 struct cfg80211_non_tx_bss *non_tx_data,
2274 gfp_t gfp)
2275{
2276 enum cfg80211_bss_frame_type ftype;
2277 const u8 *ie = mgmt->u.probe_resp.variable;
2278 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2279 u.probe_resp.variable);
2280
2281 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2282 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2283
2284 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2285 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2286 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2287 ie, ielen, non_tx_data, gfp);
2288}
2289
2290static void
2291cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2292 struct cfg80211_bss *nontrans_bss,
2293 struct ieee80211_mgmt *mgmt, size_t len)
2294{
2295 u8 *ie, *new_ie, *pos;
2296 const struct element *nontrans_ssid;
2297 const u8 *trans_ssid, *mbssid;
2298 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2299 u.probe_resp.variable);
2300 size_t new_ie_len;
2301 struct cfg80211_bss_ies *new_ies;
2302 const struct cfg80211_bss_ies *old;
2303 size_t cpy_len;
2304
2305 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2306
2307 ie = mgmt->u.probe_resp.variable;
2308
2309 new_ie_len = ielen;
2310 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2311 if (!trans_ssid)
2312 return;
2313 new_ie_len -= trans_ssid[1];
2314 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2315 /*
2316 * It's not valid to have the MBSSID element before SSID
2317 * ignore if that happens - the code below assumes it is
2318 * after (while copying things inbetween).
2319 */
2320 if (!mbssid || mbssid < trans_ssid)
2321 return;
2322 new_ie_len -= mbssid[1];
2323
2324 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2325 if (!nontrans_ssid)
2326 return;
2327
2328 new_ie_len += nontrans_ssid->datalen;
2329
2330 /* generate new ie for nontrans BSS
2331 * 1. replace SSID with nontrans BSS' SSID
2332 * 2. skip MBSSID IE
2333 */
2334 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2335 if (!new_ie)
2336 return;
2337
2338 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2339 if (!new_ies)
2340 goto out_free;
2341
2342 pos = new_ie;
2343
2344 /* copy the nontransmitted SSID */
2345 cpy_len = nontrans_ssid->datalen + 2;
2346 memcpy(pos, nontrans_ssid, cpy_len);
2347 pos += cpy_len;
2348 /* copy the IEs between SSID and MBSSID */
2349 cpy_len = trans_ssid[1] + 2;
2350 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2351 pos += (mbssid - (trans_ssid + cpy_len));
2352 /* copy the IEs after MBSSID */
2353 cpy_len = mbssid[1] + 2;
2354 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2355
2356 /* update ie */
2357 new_ies->len = new_ie_len;
2358 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2359 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2360 memcpy(new_ies->data, new_ie, new_ie_len);
2361 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2362 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2363 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2364 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2365 if (old)
2366 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2367 } else {
2368 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2369 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2370 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2371 new_ies, old);
2372 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2373 if (old)
2374 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2375 }
2376
2377out_free:
2378 kfree(new_ie);
2379}
2380
2381/* cfg80211_inform_bss_width_frame helper */
2382static struct cfg80211_bss *
2383cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2384 struct cfg80211_inform_bss *data,
2385 struct ieee80211_mgmt *mgmt, size_t len,
2386 gfp_t gfp)
2387{
2388 struct cfg80211_internal_bss tmp = {}, *res;
2389 struct cfg80211_bss_ies *ies;
2390 struct ieee80211_channel *channel;
2391 bool signal_valid;
2392 struct ieee80211_ext *ext = NULL;
2393 u8 *bssid, *variable;
2394 u16 capability, beacon_int;
2395 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2396 u.probe_resp.variable);
2397 int bss_type;
2398 enum cfg80211_bss_frame_type ftype;
2399
2400 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2401 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2402
2403 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2404
2405 if (WARN_ON(!mgmt))
2406 return NULL;
2407
2408 if (WARN_ON(!wiphy))
2409 return NULL;
2410
2411 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2412 (data->signal < 0 || data->signal > 100)))
2413 return NULL;
2414
2415 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2416 ext = (void *) mgmt;
2417 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2418 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2419 min_hdr_len = offsetof(struct ieee80211_ext,
2420 u.s1g_short_beacon.variable);
2421 }
2422
2423 if (WARN_ON(len < min_hdr_len))
2424 return NULL;
2425
2426 ielen = len - min_hdr_len;
2427 variable = mgmt->u.probe_resp.variable;
2428 if (ext) {
2429 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2430 variable = ext->u.s1g_short_beacon.variable;
2431 else
2432 variable = ext->u.s1g_beacon.variable;
2433 }
2434
2435 if (ieee80211_is_beacon(mgmt->frame_control))
2436 ftype = CFG80211_BSS_FTYPE_BEACON;
2437 else if (ieee80211_is_probe_resp(mgmt->frame_control))
2438 ftype = CFG80211_BSS_FTYPE_PRESP;
2439 else
2440 ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2441
2442 channel = cfg80211_get_bss_channel(wiphy, variable,
2443 ielen, data->chan, data->scan_width,
2444 ftype);
2445 if (!channel)
2446 return NULL;
2447
2448 if (ext) {
2449 const struct ieee80211_s1g_bcn_compat_ie *compat;
2450 const struct element *elem;
2451
2452 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2453 variable, ielen);
2454 if (!elem)
2455 return NULL;
2456 if (elem->datalen < sizeof(*compat))
2457 return NULL;
2458 compat = (void *)elem->data;
2459 bssid = ext->u.s1g_beacon.sa;
2460 capability = le16_to_cpu(compat->compat_info);
2461 beacon_int = le16_to_cpu(compat->beacon_int);
2462 } else {
2463 bssid = mgmt->bssid;
2464 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2465 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2466 }
2467
2468 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2469 if (!ies)
2470 return NULL;
2471 ies->len = ielen;
2472 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2473 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2474 ieee80211_is_s1g_beacon(mgmt->frame_control);
2475 memcpy(ies->data, variable, ielen);
2476
2477 if (ieee80211_is_probe_resp(mgmt->frame_control))
2478 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2479 else
2480 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2481 rcu_assign_pointer(tmp.pub.ies, ies);
2482
2483 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2484 tmp.pub.beacon_interval = beacon_int;
2485 tmp.pub.capability = capability;
2486 tmp.pub.channel = channel;
2487 tmp.pub.scan_width = data->scan_width;
2488 tmp.pub.signal = data->signal;
2489 tmp.ts_boottime = data->boottime_ns;
2490 tmp.parent_tsf = data->parent_tsf;
2491 tmp.pub.chains = data->chains;
2492 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2493 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2494
2495 signal_valid = data->chan == channel;
2496 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2497 jiffies);
2498 if (!res)
2499 return NULL;
2500
2501 if (channel->band == NL80211_BAND_60GHZ) {
2502 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2503 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2504 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2505 regulatory_hint_found_beacon(wiphy, channel, gfp);
2506 } else {
2507 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2508 regulatory_hint_found_beacon(wiphy, channel, gfp);
2509 }
2510
2511 trace_cfg80211_return_bss(&res->pub);
2512 /* cfg80211_bss_update gives us a referenced result */
2513 return &res->pub;
2514}
2515
2516struct cfg80211_bss *
2517cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2518 struct cfg80211_inform_bss *data,
2519 struct ieee80211_mgmt *mgmt, size_t len,
2520 gfp_t gfp)
2521{
2522 struct cfg80211_bss *res, *tmp_bss;
2523 const u8 *ie = mgmt->u.probe_resp.variable;
2524 const struct cfg80211_bss_ies *ies1, *ies2;
2525 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2526 u.probe_resp.variable);
2527 struct cfg80211_non_tx_bss non_tx_data;
2528
2529 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2530 len, gfp);
2531 if (!res || !wiphy->support_mbssid ||
2532 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2533 return res;
2534 if (wiphy->support_only_he_mbssid &&
2535 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2536 return res;
2537
2538 non_tx_data.tx_bss = res;
2539 /* process each non-transmitting bss */
2540 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2541 &non_tx_data, gfp);
2542
2543 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2544
2545 /* check if the res has other nontransmitting bss which is not
2546 * in MBSSID IE
2547 */
2548 ies1 = rcu_access_pointer(res->ies);
2549
2550 /* go through nontrans_list, if the timestamp of the BSS is
2551 * earlier than the timestamp of the transmitting BSS then
2552 * update it
2553 */
2554 list_for_each_entry(tmp_bss, &res->nontrans_list,
2555 nontrans_list) {
2556 ies2 = rcu_access_pointer(tmp_bss->ies);
2557 if (ies2->tsf < ies1->tsf)
2558 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2559 mgmt, len);
2560 }
2561 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2562
2563 return res;
2564}
2565EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2566
2567void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2568{
2569 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2570 struct cfg80211_internal_bss *bss;
2571
2572 if (!pub)
2573 return;
2574
2575 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2576
2577 spin_lock_bh(&rdev->bss_lock);
2578 bss_ref_get(rdev, bss);
2579 spin_unlock_bh(&rdev->bss_lock);
2580}
2581EXPORT_SYMBOL(cfg80211_ref_bss);
2582
2583void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2584{
2585 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2586 struct cfg80211_internal_bss *bss;
2587
2588 if (!pub)
2589 return;
2590
2591 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2592
2593 spin_lock_bh(&rdev->bss_lock);
2594 bss_ref_put(rdev, bss);
2595 spin_unlock_bh(&rdev->bss_lock);
2596}
2597EXPORT_SYMBOL(cfg80211_put_bss);
2598
2599void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2600{
2601 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2602 struct cfg80211_internal_bss *bss, *tmp1;
2603 struct cfg80211_bss *nontrans_bss, *tmp;
2604
2605 if (WARN_ON(!pub))
2606 return;
2607
2608 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2609
2610 spin_lock_bh(&rdev->bss_lock);
2611 if (list_empty(&bss->list))
2612 goto out;
2613
2614 list_for_each_entry_safe(nontrans_bss, tmp,
2615 &pub->nontrans_list,
2616 nontrans_list) {
2617 tmp1 = container_of(nontrans_bss,
2618 struct cfg80211_internal_bss, pub);
2619 if (__cfg80211_unlink_bss(rdev, tmp1))
2620 rdev->bss_generation++;
2621 }
2622
2623 if (__cfg80211_unlink_bss(rdev, bss))
2624 rdev->bss_generation++;
2625out:
2626 spin_unlock_bh(&rdev->bss_lock);
2627}
2628EXPORT_SYMBOL(cfg80211_unlink_bss);
2629
2630void cfg80211_bss_iter(struct wiphy *wiphy,
2631 struct cfg80211_chan_def *chandef,
2632 void (*iter)(struct wiphy *wiphy,
2633 struct cfg80211_bss *bss,
2634 void *data),
2635 void *iter_data)
2636{
2637 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2638 struct cfg80211_internal_bss *bss;
2639
2640 spin_lock_bh(&rdev->bss_lock);
2641
2642 list_for_each_entry(bss, &rdev->bss_list, list) {
2643 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2644 false))
2645 iter(wiphy, &bss->pub, iter_data);
2646 }
2647
2648 spin_unlock_bh(&rdev->bss_lock);
2649}
2650EXPORT_SYMBOL(cfg80211_bss_iter);
2651
2652void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2653 unsigned int link_id,
2654 struct ieee80211_channel *chan)
2655{
2656 struct wiphy *wiphy = wdev->wiphy;
2657 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2658 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2659 struct cfg80211_internal_bss *new = NULL;
2660 struct cfg80211_internal_bss *bss;
2661 struct cfg80211_bss *nontrans_bss;
2662 struct cfg80211_bss *tmp;
2663
2664 spin_lock_bh(&rdev->bss_lock);
2665
2666 /*
2667 * Some APs use CSA also for bandwidth changes, i.e., without actually
2668 * changing the control channel, so no need to update in such a case.
2669 */
2670 if (cbss->pub.channel == chan)
2671 goto done;
2672
2673 /* use transmitting bss */
2674 if (cbss->pub.transmitted_bss)
2675 cbss = container_of(cbss->pub.transmitted_bss,
2676 struct cfg80211_internal_bss,
2677 pub);
2678
2679 cbss->pub.channel = chan;
2680
2681 list_for_each_entry(bss, &rdev->bss_list, list) {
2682 if (!cfg80211_bss_type_match(bss->pub.capability,
2683 bss->pub.channel->band,
2684 wdev->conn_bss_type))
2685 continue;
2686
2687 if (bss == cbss)
2688 continue;
2689
2690 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2691 new = bss;
2692 break;
2693 }
2694 }
2695
2696 if (new) {
2697 /* to save time, update IEs for transmitting bss only */
2698 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2699 new->pub.proberesp_ies = NULL;
2700 new->pub.beacon_ies = NULL;
2701 }
2702
2703 list_for_each_entry_safe(nontrans_bss, tmp,
2704 &new->pub.nontrans_list,
2705 nontrans_list) {
2706 bss = container_of(nontrans_bss,
2707 struct cfg80211_internal_bss, pub);
2708 if (__cfg80211_unlink_bss(rdev, bss))
2709 rdev->bss_generation++;
2710 }
2711
2712 WARN_ON(atomic_read(&new->hold));
2713 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2714 rdev->bss_generation++;
2715 }
2716
2717 rb_erase(&cbss->rbn, &rdev->bss_tree);
2718 rb_insert_bss(rdev, cbss);
2719 rdev->bss_generation++;
2720
2721 list_for_each_entry_safe(nontrans_bss, tmp,
2722 &cbss->pub.nontrans_list,
2723 nontrans_list) {
2724 bss = container_of(nontrans_bss,
2725 struct cfg80211_internal_bss, pub);
2726 bss->pub.channel = chan;
2727 rb_erase(&bss->rbn, &rdev->bss_tree);
2728 rb_insert_bss(rdev, bss);
2729 rdev->bss_generation++;
2730 }
2731
2732done:
2733 spin_unlock_bh(&rdev->bss_lock);
2734}
2735
2736#ifdef CONFIG_CFG80211_WEXT
2737static struct cfg80211_registered_device *
2738cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2739{
2740 struct cfg80211_registered_device *rdev;
2741 struct net_device *dev;
2742
2743 ASSERT_RTNL();
2744
2745 dev = dev_get_by_index(net, ifindex);
2746 if (!dev)
2747 return ERR_PTR(-ENODEV);
2748 if (dev->ieee80211_ptr)
2749 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2750 else
2751 rdev = ERR_PTR(-ENODEV);
2752 dev_put(dev);
2753 return rdev;
2754}
2755
2756int cfg80211_wext_siwscan(struct net_device *dev,
2757 struct iw_request_info *info,
2758 union iwreq_data *wrqu, char *extra)
2759{
2760 struct cfg80211_registered_device *rdev;
2761 struct wiphy *wiphy;
2762 struct iw_scan_req *wreq = NULL;
2763 struct cfg80211_scan_request *creq;
2764 int i, err, n_channels = 0;
2765 enum nl80211_band band;
2766
2767 if (!netif_running(dev))
2768 return -ENETDOWN;
2769
2770 if (wrqu->data.length == sizeof(struct iw_scan_req))
2771 wreq = (struct iw_scan_req *)extra;
2772
2773 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2774
2775 if (IS_ERR(rdev))
2776 return PTR_ERR(rdev);
2777
2778 if (rdev->scan_req || rdev->scan_msg)
2779 return -EBUSY;
2780
2781 wiphy = &rdev->wiphy;
2782
2783 /* Determine number of channels, needed to allocate creq */
2784 if (wreq && wreq->num_channels)
2785 n_channels = wreq->num_channels;
2786 else
2787 n_channels = ieee80211_get_num_supported_channels(wiphy);
2788
2789 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2790 n_channels * sizeof(void *),
2791 GFP_ATOMIC);
2792 if (!creq)
2793 return -ENOMEM;
2794
2795 creq->wiphy = wiphy;
2796 creq->wdev = dev->ieee80211_ptr;
2797 /* SSIDs come after channels */
2798 creq->ssids = (void *)&creq->channels[n_channels];
2799 creq->n_channels = n_channels;
2800 creq->n_ssids = 1;
2801 creq->scan_start = jiffies;
2802
2803 /* translate "Scan on frequencies" request */
2804 i = 0;
2805 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2806 int j;
2807
2808 if (!wiphy->bands[band])
2809 continue;
2810
2811 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2812 /* ignore disabled channels */
2813 if (wiphy->bands[band]->channels[j].flags &
2814 IEEE80211_CHAN_DISABLED)
2815 continue;
2816
2817 /* If we have a wireless request structure and the
2818 * wireless request specifies frequencies, then search
2819 * for the matching hardware channel.
2820 */
2821 if (wreq && wreq->num_channels) {
2822 int k;
2823 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2824 for (k = 0; k < wreq->num_channels; k++) {
2825 struct iw_freq *freq =
2826 &wreq->channel_list[k];
2827 int wext_freq =
2828 cfg80211_wext_freq(freq);
2829
2830 if (wext_freq == wiphy_freq)
2831 goto wext_freq_found;
2832 }
2833 goto wext_freq_not_found;
2834 }
2835
2836 wext_freq_found:
2837 creq->channels[i] = &wiphy->bands[band]->channels[j];
2838 i++;
2839 wext_freq_not_found: ;
2840 }
2841 }
2842 /* No channels found? */
2843 if (!i) {
2844 err = -EINVAL;
2845 goto out;
2846 }
2847
2848 /* Set real number of channels specified in creq->channels[] */
2849 creq->n_channels = i;
2850
2851 /* translate "Scan for SSID" request */
2852 if (wreq) {
2853 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2854 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2855 err = -EINVAL;
2856 goto out;
2857 }
2858 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2859 creq->ssids[0].ssid_len = wreq->essid_len;
2860 }
2861 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2862 creq->n_ssids = 0;
2863 }
2864
2865 for (i = 0; i < NUM_NL80211_BANDS; i++)
2866 if (wiphy->bands[i])
2867 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2868
2869 eth_broadcast_addr(creq->bssid);
2870
2871 wiphy_lock(&rdev->wiphy);
2872
2873 rdev->scan_req = creq;
2874 err = rdev_scan(rdev, creq);
2875 if (err) {
2876 rdev->scan_req = NULL;
2877 /* creq will be freed below */
2878 } else {
2879 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2880 /* creq now owned by driver */
2881 creq = NULL;
2882 dev_hold(dev);
2883 }
2884 wiphy_unlock(&rdev->wiphy);
2885 out:
2886 kfree(creq);
2887 return err;
2888}
2889EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2890
2891static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2892 const struct cfg80211_bss_ies *ies,
2893 char *current_ev, char *end_buf)
2894{
2895 const u8 *pos, *end, *next;
2896 struct iw_event iwe;
2897
2898 if (!ies)
2899 return current_ev;
2900
2901 /*
2902 * If needed, fragment the IEs buffer (at IE boundaries) into short
2903 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2904 */
2905 pos = ies->data;
2906 end = pos + ies->len;
2907
2908 while (end - pos > IW_GENERIC_IE_MAX) {
2909 next = pos + 2 + pos[1];
2910 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2911 next = next + 2 + next[1];
2912
2913 memset(&iwe, 0, sizeof(iwe));
2914 iwe.cmd = IWEVGENIE;
2915 iwe.u.data.length = next - pos;
2916 current_ev = iwe_stream_add_point_check(info, current_ev,
2917 end_buf, &iwe,
2918 (void *)pos);
2919 if (IS_ERR(current_ev))
2920 return current_ev;
2921 pos = next;
2922 }
2923
2924 if (end > pos) {
2925 memset(&iwe, 0, sizeof(iwe));
2926 iwe.cmd = IWEVGENIE;
2927 iwe.u.data.length = end - pos;
2928 current_ev = iwe_stream_add_point_check(info, current_ev,
2929 end_buf, &iwe,
2930 (void *)pos);
2931 if (IS_ERR(current_ev))
2932 return current_ev;
2933 }
2934
2935 return current_ev;
2936}
2937
2938static char *
2939ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2940 struct cfg80211_internal_bss *bss, char *current_ev,
2941 char *end_buf)
2942{
2943 const struct cfg80211_bss_ies *ies;
2944 struct iw_event iwe;
2945 const u8 *ie;
2946 u8 buf[50];
2947 u8 *cfg, *p, *tmp;
2948 int rem, i, sig;
2949 bool ismesh = false;
2950
2951 memset(&iwe, 0, sizeof(iwe));
2952 iwe.cmd = SIOCGIWAP;
2953 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2954 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2955 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2956 IW_EV_ADDR_LEN);
2957 if (IS_ERR(current_ev))
2958 return current_ev;
2959
2960 memset(&iwe, 0, sizeof(iwe));
2961 iwe.cmd = SIOCGIWFREQ;
2962 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2963 iwe.u.freq.e = 0;
2964 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2965 IW_EV_FREQ_LEN);
2966 if (IS_ERR(current_ev))
2967 return current_ev;
2968
2969 memset(&iwe, 0, sizeof(iwe));
2970 iwe.cmd = SIOCGIWFREQ;
2971 iwe.u.freq.m = bss->pub.channel->center_freq;
2972 iwe.u.freq.e = 6;
2973 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2974 IW_EV_FREQ_LEN);
2975 if (IS_ERR(current_ev))
2976 return current_ev;
2977
2978 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2979 memset(&iwe, 0, sizeof(iwe));
2980 iwe.cmd = IWEVQUAL;
2981 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2982 IW_QUAL_NOISE_INVALID |
2983 IW_QUAL_QUAL_UPDATED;
2984 switch (wiphy->signal_type) {
2985 case CFG80211_SIGNAL_TYPE_MBM:
2986 sig = bss->pub.signal / 100;
2987 iwe.u.qual.level = sig;
2988 iwe.u.qual.updated |= IW_QUAL_DBM;
2989 if (sig < -110) /* rather bad */
2990 sig = -110;
2991 else if (sig > -40) /* perfect */
2992 sig = -40;
2993 /* will give a range of 0 .. 70 */
2994 iwe.u.qual.qual = sig + 110;
2995 break;
2996 case CFG80211_SIGNAL_TYPE_UNSPEC:
2997 iwe.u.qual.level = bss->pub.signal;
2998 /* will give range 0 .. 100 */
2999 iwe.u.qual.qual = bss->pub.signal;
3000 break;
3001 default:
3002 /* not reached */
3003 break;
3004 }
3005 current_ev = iwe_stream_add_event_check(info, current_ev,
3006 end_buf, &iwe,
3007 IW_EV_QUAL_LEN);
3008 if (IS_ERR(current_ev))
3009 return current_ev;
3010 }
3011
3012 memset(&iwe, 0, sizeof(iwe));
3013 iwe.cmd = SIOCGIWENCODE;
3014 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3015 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3016 else
3017 iwe.u.data.flags = IW_ENCODE_DISABLED;
3018 iwe.u.data.length = 0;
3019 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3020 &iwe, "");
3021 if (IS_ERR(current_ev))
3022 return current_ev;
3023
3024 rcu_read_lock();
3025 ies = rcu_dereference(bss->pub.ies);
3026 rem = ies->len;
3027 ie = ies->data;
3028
3029 while (rem >= 2) {
3030 /* invalid data */
3031 if (ie[1] > rem - 2)
3032 break;
3033
3034 switch (ie[0]) {
3035 case WLAN_EID_SSID:
3036 memset(&iwe, 0, sizeof(iwe));
3037 iwe.cmd = SIOCGIWESSID;
3038 iwe.u.data.length = ie[1];
3039 iwe.u.data.flags = 1;
3040 current_ev = iwe_stream_add_point_check(info,
3041 current_ev,
3042 end_buf, &iwe,
3043 (u8 *)ie + 2);
3044 if (IS_ERR(current_ev))
3045 goto unlock;
3046 break;
3047 case WLAN_EID_MESH_ID:
3048 memset(&iwe, 0, sizeof(iwe));
3049 iwe.cmd = SIOCGIWESSID;
3050 iwe.u.data.length = ie[1];
3051 iwe.u.data.flags = 1;
3052 current_ev = iwe_stream_add_point_check(info,
3053 current_ev,
3054 end_buf, &iwe,
3055 (u8 *)ie + 2);
3056 if (IS_ERR(current_ev))
3057 goto unlock;
3058 break;
3059 case WLAN_EID_MESH_CONFIG:
3060 ismesh = true;
3061 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3062 break;
3063 cfg = (u8 *)ie + 2;
3064 memset(&iwe, 0, sizeof(iwe));
3065 iwe.cmd = IWEVCUSTOM;
3066 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3067 "0x%02X", cfg[0]);
3068 iwe.u.data.length = strlen(buf);
3069 current_ev = iwe_stream_add_point_check(info,
3070 current_ev,
3071 end_buf,
3072 &iwe, buf);
3073 if (IS_ERR(current_ev))
3074 goto unlock;
3075 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3076 cfg[1]);
3077 iwe.u.data.length = strlen(buf);
3078 current_ev = iwe_stream_add_point_check(info,
3079 current_ev,
3080 end_buf,
3081 &iwe, buf);
3082 if (IS_ERR(current_ev))
3083 goto unlock;
3084 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3085 cfg[2]);
3086 iwe.u.data.length = strlen(buf);
3087 current_ev = iwe_stream_add_point_check(info,
3088 current_ev,
3089 end_buf,
3090 &iwe, buf);
3091 if (IS_ERR(current_ev))
3092 goto unlock;
3093 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3094 iwe.u.data.length = strlen(buf);
3095 current_ev = iwe_stream_add_point_check(info,
3096 current_ev,
3097 end_buf,
3098 &iwe, buf);
3099 if (IS_ERR(current_ev))
3100 goto unlock;
3101 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3102 iwe.u.data.length = strlen(buf);
3103 current_ev = iwe_stream_add_point_check(info,
3104 current_ev,
3105 end_buf,
3106 &iwe, buf);
3107 if (IS_ERR(current_ev))
3108 goto unlock;
3109 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3110 iwe.u.data.length = strlen(buf);
3111 current_ev = iwe_stream_add_point_check(info,
3112 current_ev,
3113 end_buf,
3114 &iwe, buf);
3115 if (IS_ERR(current_ev))
3116 goto unlock;
3117 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3118 iwe.u.data.length = strlen(buf);
3119 current_ev = iwe_stream_add_point_check(info,
3120 current_ev,
3121 end_buf,
3122 &iwe, buf);
3123 if (IS_ERR(current_ev))
3124 goto unlock;
3125 break;
3126 case WLAN_EID_SUPP_RATES:
3127 case WLAN_EID_EXT_SUPP_RATES:
3128 /* display all supported rates in readable format */
3129 p = current_ev + iwe_stream_lcp_len(info);
3130
3131 memset(&iwe, 0, sizeof(iwe));
3132 iwe.cmd = SIOCGIWRATE;
3133 /* Those two flags are ignored... */
3134 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3135
3136 for (i = 0; i < ie[1]; i++) {
3137 iwe.u.bitrate.value =
3138 ((ie[i + 2] & 0x7f) * 500000);
3139 tmp = p;
3140 p = iwe_stream_add_value(info, current_ev, p,
3141 end_buf, &iwe,
3142 IW_EV_PARAM_LEN);
3143 if (p == tmp) {
3144 current_ev = ERR_PTR(-E2BIG);
3145 goto unlock;
3146 }
3147 }
3148 current_ev = p;
3149 break;
3150 }
3151 rem -= ie[1] + 2;
3152 ie += ie[1] + 2;
3153 }
3154
3155 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3156 ismesh) {
3157 memset(&iwe, 0, sizeof(iwe));
3158 iwe.cmd = SIOCGIWMODE;
3159 if (ismesh)
3160 iwe.u.mode = IW_MODE_MESH;
3161 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3162 iwe.u.mode = IW_MODE_MASTER;
3163 else
3164 iwe.u.mode = IW_MODE_ADHOC;
3165 current_ev = iwe_stream_add_event_check(info, current_ev,
3166 end_buf, &iwe,
3167 IW_EV_UINT_LEN);
3168 if (IS_ERR(current_ev))
3169 goto unlock;
3170 }
3171
3172 memset(&iwe, 0, sizeof(iwe));
3173 iwe.cmd = IWEVCUSTOM;
3174 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3175 iwe.u.data.length = strlen(buf);
3176 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3177 &iwe, buf);
3178 if (IS_ERR(current_ev))
3179 goto unlock;
3180 memset(&iwe, 0, sizeof(iwe));
3181 iwe.cmd = IWEVCUSTOM;
3182 sprintf(buf, " Last beacon: %ums ago",
3183 elapsed_jiffies_msecs(bss->ts));
3184 iwe.u.data.length = strlen(buf);
3185 current_ev = iwe_stream_add_point_check(info, current_ev,
3186 end_buf, &iwe, buf);
3187 if (IS_ERR(current_ev))
3188 goto unlock;
3189
3190 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3191
3192 unlock:
3193 rcu_read_unlock();
3194 return current_ev;
3195}
3196
3197
3198static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3199 struct iw_request_info *info,
3200 char *buf, size_t len)
3201{
3202 char *current_ev = buf;
3203 char *end_buf = buf + len;
3204 struct cfg80211_internal_bss *bss;
3205 int err = 0;
3206
3207 spin_lock_bh(&rdev->bss_lock);
3208 cfg80211_bss_expire(rdev);
3209
3210 list_for_each_entry(bss, &rdev->bss_list, list) {
3211 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3212 err = -E2BIG;
3213 break;
3214 }
3215 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3216 current_ev, end_buf);
3217 if (IS_ERR(current_ev)) {
3218 err = PTR_ERR(current_ev);
3219 break;
3220 }
3221 }
3222 spin_unlock_bh(&rdev->bss_lock);
3223
3224 if (err)
3225 return err;
3226 return current_ev - buf;
3227}
3228
3229
3230int cfg80211_wext_giwscan(struct net_device *dev,
3231 struct iw_request_info *info,
3232 struct iw_point *data, char *extra)
3233{
3234 struct cfg80211_registered_device *rdev;
3235 int res;
3236
3237 if (!netif_running(dev))
3238 return -ENETDOWN;
3239
3240 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3241
3242 if (IS_ERR(rdev))
3243 return PTR_ERR(rdev);
3244
3245 if (rdev->scan_req || rdev->scan_msg)
3246 return -EAGAIN;
3247
3248 res = ieee80211_scan_results(rdev, info, extra, data->length);
3249 data->length = 0;
3250 if (res >= 0) {
3251 data->length = res;
3252 res = 0;
3253 }
3254
3255 return res;
3256}
3257EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3258#endif