Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2022 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740static struct key *builtin_regdb_keys;
741
742static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743{
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784}
785
786static int __init load_builtin_regdb_keys(void)
787{
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801#endif
802#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805#endif
806
807 return 0;
808}
809
810MODULE_FIRMWARE("regulatory.db.p7s");
811
812static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813{
814 const struct firmware *sig;
815 bool result;
816
817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 return false;
819
820 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 builtin_regdb_keys,
822 VERIFYING_UNSPECIFIED_SIGNATURE,
823 NULL, NULL) == 0;
824
825 release_firmware(sig);
826
827 return result;
828}
829
830static void free_regdb_keyring(void)
831{
832 key_put(builtin_regdb_keys);
833}
834#else
835static int load_builtin_regdb_keys(void)
836{
837 return 0;
838}
839
840static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841{
842 return true;
843}
844
845static void free_regdb_keyring(void)
846{
847}
848#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
850static bool valid_regdb(const u8 *data, unsigned int size)
851{
852 const struct fwdb_header *hdr = (void *)data;
853 const struct fwdb_country *country;
854
855 if (size < sizeof(*hdr))
856 return false;
857
858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 return false;
860
861 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 return false;
863
864 if (!regdb_has_valid_signature(data, size))
865 return false;
866
867 country = &hdr->country[0];
868 while ((u8 *)(country + 1) <= data + size) {
869 if (!country->coll_ptr)
870 break;
871 if (!valid_country(data, size, country))
872 return false;
873 country++;
874 }
875
876 return true;
877}
878
879static void set_wmm_rule(const struct fwdb_header *db,
880 const struct fwdb_country *country,
881 const struct fwdb_rule *rule,
882 struct ieee80211_reg_rule *rrule)
883{
884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 struct fwdb_wmm_rule *wmm;
886 unsigned int i, wmm_ptr;
887
888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 wmm = (void *)((u8 *)db + wmm_ptr);
890
891 if (!valid_wmm(wmm)) {
892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 country->alpha2[0], country->alpha2[1]);
895 return;
896 }
897
898 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 wmm_rule->client[i].cw_min =
900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
903 wmm_rule->client[i].cot =
904 1000 * be16_to_cpu(wmm->client[i].cot);
905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 }
910
911 rrule->has_wmm = true;
912}
913
914static int __regdb_query_wmm(const struct fwdb_header *db,
915 const struct fwdb_country *country, int freq,
916 struct ieee80211_reg_rule *rrule)
917{
918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 int i;
921
922 for (i = 0; i < coll->n_rules; i++) {
923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 continue;
929
930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 set_wmm_rule(db, country, rule, rrule);
933 return 0;
934 }
935 }
936
937 return -ENODATA;
938}
939
940int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941{
942 const struct fwdb_header *hdr = regdb;
943 const struct fwdb_country *country;
944
945 if (!regdb)
946 return -ENODATA;
947
948 if (IS_ERR(regdb))
949 return PTR_ERR(regdb);
950
951 country = &hdr->country[0];
952 while (country->coll_ptr) {
953 if (alpha2_equal(alpha2, country->alpha2))
954 return __regdb_query_wmm(regdb, country, freq, rule);
955
956 country++;
957 }
958
959 return -ENODATA;
960}
961EXPORT_SYMBOL(reg_query_regdb_wmm);
962
963static int regdb_query_country(const struct fwdb_header *db,
964 const struct fwdb_country *country)
965{
966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 struct ieee80211_regdomain *regdom;
969 unsigned int i;
970
971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 GFP_KERNEL);
973 if (!regdom)
974 return -ENOMEM;
975
976 regdom->n_reg_rules = coll->n_rules;
977 regdom->alpha2[0] = country->alpha2[0];
978 regdom->alpha2[1] = country->alpha2[1];
979 regdom->dfs_region = coll->dfs_region;
980
981 for (i = 0; i < regdom->n_reg_rules; i++) {
982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
986
987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991 rrule->power_rule.max_antenna_gain = 0;
992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994 rrule->flags = 0;
995 if (rule->flags & FWDB_FLAG_NO_OFDM)
996 rrule->flags |= NL80211_RRF_NO_OFDM;
997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 if (rule->flags & FWDB_FLAG_DFS)
1000 rrule->flags |= NL80211_RRF_DFS;
1001 if (rule->flags & FWDB_FLAG_NO_IR)
1002 rrule->flags |= NL80211_RRF_NO_IR;
1003 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006 rrule->dfs_cac_ms = 0;
1007
1008 /* handle optional data */
1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 rrule->dfs_cac_ms =
1011 1000 * be16_to_cpu(rule->cac_timeout);
1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 set_wmm_rule(db, country, rule, rrule);
1014 }
1015
1016 return reg_schedule_apply(regdom);
1017}
1018
1019static int query_regdb(const char *alpha2)
1020{
1021 const struct fwdb_header *hdr = regdb;
1022 const struct fwdb_country *country;
1023
1024 ASSERT_RTNL();
1025
1026 if (IS_ERR(regdb))
1027 return PTR_ERR(regdb);
1028
1029 country = &hdr->country[0];
1030 while (country->coll_ptr) {
1031 if (alpha2_equal(alpha2, country->alpha2))
1032 return regdb_query_country(regdb, country);
1033 country++;
1034 }
1035
1036 return -ENODATA;
1037}
1038
1039static void regdb_fw_cb(const struct firmware *fw, void *context)
1040{
1041 int set_error = 0;
1042 bool restore = true;
1043 void *db;
1044
1045 if (!fw) {
1046 pr_info("failed to load regulatory.db\n");
1047 set_error = -ENODATA;
1048 } else if (!valid_regdb(fw->data, fw->size)) {
1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 set_error = -EINVAL;
1051 }
1052
1053 rtnl_lock();
1054 if (regdb && !IS_ERR(regdb)) {
1055 /* negative case - a bug
1056 * positive case - can happen due to race in case of multiple cb's in
1057 * queue, due to usage of asynchronous callback
1058 *
1059 * Either case, just restore and free new db.
1060 */
1061 } else if (set_error) {
1062 regdb = ERR_PTR(set_error);
1063 } else if (fw) {
1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 if (db) {
1066 regdb = db;
1067 restore = context && query_regdb(context);
1068 } else {
1069 restore = true;
1070 }
1071 }
1072
1073 if (restore)
1074 restore_regulatory_settings(true, false);
1075
1076 rtnl_unlock();
1077
1078 kfree(context);
1079
1080 release_firmware(fw);
1081}
1082
1083MODULE_FIRMWARE("regulatory.db");
1084
1085static int query_regdb_file(const char *alpha2)
1086{
1087 ASSERT_RTNL();
1088
1089 if (regdb)
1090 return query_regdb(alpha2);
1091
1092 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093 if (!alpha2)
1094 return -ENOMEM;
1095
1096 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097 ®_pdev->dev, GFP_KERNEL,
1098 (void *)alpha2, regdb_fw_cb);
1099}
1100
1101int reg_reload_regdb(void)
1102{
1103 const struct firmware *fw;
1104 void *db;
1105 int err;
1106 const struct ieee80211_regdomain *current_regdomain;
1107 struct regulatory_request *request;
1108
1109 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1110 if (err)
1111 return err;
1112
1113 if (!valid_regdb(fw->data, fw->size)) {
1114 err = -ENODATA;
1115 goto out;
1116 }
1117
1118 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119 if (!db) {
1120 err = -ENOMEM;
1121 goto out;
1122 }
1123
1124 rtnl_lock();
1125 if (!IS_ERR_OR_NULL(regdb))
1126 kfree(regdb);
1127 regdb = db;
1128
1129 /* reset regulatory domain */
1130 current_regdomain = get_cfg80211_regdom();
1131
1132 request = kzalloc(sizeof(*request), GFP_KERNEL);
1133 if (!request) {
1134 err = -ENOMEM;
1135 goto out_unlock;
1136 }
1137
1138 request->wiphy_idx = WIPHY_IDX_INVALID;
1139 request->alpha2[0] = current_regdomain->alpha2[0];
1140 request->alpha2[1] = current_regdomain->alpha2[1];
1141 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143
1144 reg_process_hint(request);
1145
1146out_unlock:
1147 rtnl_unlock();
1148 out:
1149 release_firmware(fw);
1150 return err;
1151}
1152
1153static bool reg_query_database(struct regulatory_request *request)
1154{
1155 if (query_regdb_file(request->alpha2) == 0)
1156 return true;
1157
1158 if (call_crda(request->alpha2) == 0)
1159 return true;
1160
1161 return false;
1162}
1163
1164bool reg_is_valid_request(const char *alpha2)
1165{
1166 struct regulatory_request *lr = get_last_request();
1167
1168 if (!lr || lr->processed)
1169 return false;
1170
1171 return alpha2_equal(lr->alpha2, alpha2);
1172}
1173
1174static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175{
1176 struct regulatory_request *lr = get_last_request();
1177
1178 /*
1179 * Follow the driver's regulatory domain, if present, unless a country
1180 * IE has been processed or a user wants to help complaince further
1181 */
1182 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184 wiphy->regd)
1185 return get_wiphy_regdom(wiphy);
1186
1187 return get_cfg80211_regdom();
1188}
1189
1190static unsigned int
1191reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192 const struct ieee80211_reg_rule *rule)
1193{
1194 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195 const struct ieee80211_freq_range *freq_range_tmp;
1196 const struct ieee80211_reg_rule *tmp;
1197 u32 start_freq, end_freq, idx, no;
1198
1199 for (idx = 0; idx < rd->n_reg_rules; idx++)
1200 if (rule == &rd->reg_rules[idx])
1201 break;
1202
1203 if (idx == rd->n_reg_rules)
1204 return 0;
1205
1206 /* get start_freq */
1207 no = idx;
1208
1209 while (no) {
1210 tmp = &rd->reg_rules[--no];
1211 freq_range_tmp = &tmp->freq_range;
1212
1213 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214 break;
1215
1216 freq_range = freq_range_tmp;
1217 }
1218
1219 start_freq = freq_range->start_freq_khz;
1220
1221 /* get end_freq */
1222 freq_range = &rule->freq_range;
1223 no = idx;
1224
1225 while (no < rd->n_reg_rules - 1) {
1226 tmp = &rd->reg_rules[++no];
1227 freq_range_tmp = &tmp->freq_range;
1228
1229 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230 break;
1231
1232 freq_range = freq_range_tmp;
1233 }
1234
1235 end_freq = freq_range->end_freq_khz;
1236
1237 return end_freq - start_freq;
1238}
1239
1240unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241 const struct ieee80211_reg_rule *rule)
1242{
1243 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244
1245 if (rule->flags & NL80211_RRF_NO_320MHZ)
1246 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247 if (rule->flags & NL80211_RRF_NO_160MHZ)
1248 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249 if (rule->flags & NL80211_RRF_NO_80MHZ)
1250 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251
1252 /*
1253 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254 * are not allowed.
1255 */
1256 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257 rule->flags & NL80211_RRF_NO_HT40PLUS)
1258 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259
1260 return bw;
1261}
1262
1263/* Sanity check on a regulatory rule */
1264static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265{
1266 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267 u32 freq_diff;
1268
1269 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270 return false;
1271
1272 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273 return false;
1274
1275 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276
1277 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278 freq_range->max_bandwidth_khz > freq_diff)
1279 return false;
1280
1281 return true;
1282}
1283
1284static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285{
1286 const struct ieee80211_reg_rule *reg_rule = NULL;
1287 unsigned int i;
1288
1289 if (!rd->n_reg_rules)
1290 return false;
1291
1292 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293 return false;
1294
1295 for (i = 0; i < rd->n_reg_rules; i++) {
1296 reg_rule = &rd->reg_rules[i];
1297 if (!is_valid_reg_rule(reg_rule))
1298 return false;
1299 }
1300
1301 return true;
1302}
1303
1304/**
1305 * freq_in_rule_band - tells us if a frequency is in a frequency band
1306 * @freq_range: frequency rule we want to query
1307 * @freq_khz: frequency we are inquiring about
1308 *
1309 * This lets us know if a specific frequency rule is or is not relevant to
1310 * a specific frequency's band. Bands are device specific and artificial
1311 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312 * however it is safe for now to assume that a frequency rule should not be
1313 * part of a frequency's band if the start freq or end freq are off by more
1314 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315 * 60 GHz band.
1316 * This resolution can be lowered and should be considered as we add
1317 * regulatory rule support for other "bands".
1318 **/
1319static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320 u32 freq_khz)
1321{
1322#define ONE_GHZ_IN_KHZ 1000000
1323 /*
1324 * From 802.11ad: directional multi-gigabit (DMG):
1325 * Pertaining to operation in a frequency band containing a channel
1326 * with the Channel starting frequency above 45 GHz.
1327 */
1328 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331 return true;
1332 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333 return true;
1334 return false;
1335#undef ONE_GHZ_IN_KHZ
1336}
1337
1338/*
1339 * Later on we can perhaps use the more restrictive DFS
1340 * region but we don't have information for that yet so
1341 * for now simply disallow conflicts.
1342 */
1343static enum nl80211_dfs_regions
1344reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345 const enum nl80211_dfs_regions dfs_region2)
1346{
1347 if (dfs_region1 != dfs_region2)
1348 return NL80211_DFS_UNSET;
1349 return dfs_region1;
1350}
1351
1352static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353 const struct ieee80211_wmm_ac *wmm_ac2,
1354 struct ieee80211_wmm_ac *intersect)
1355{
1356 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360}
1361
1362/*
1363 * Helper for regdom_intersect(), this does the real
1364 * mathematical intersection fun
1365 */
1366static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367 const struct ieee80211_regdomain *rd2,
1368 const struct ieee80211_reg_rule *rule1,
1369 const struct ieee80211_reg_rule *rule2,
1370 struct ieee80211_reg_rule *intersected_rule)
1371{
1372 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373 struct ieee80211_freq_range *freq_range;
1374 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375 struct ieee80211_power_rule *power_rule;
1376 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377 struct ieee80211_wmm_rule *wmm_rule;
1378 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379
1380 freq_range1 = &rule1->freq_range;
1381 freq_range2 = &rule2->freq_range;
1382 freq_range = &intersected_rule->freq_range;
1383
1384 power_rule1 = &rule1->power_rule;
1385 power_rule2 = &rule2->power_rule;
1386 power_rule = &intersected_rule->power_rule;
1387
1388 wmm_rule1 = &rule1->wmm_rule;
1389 wmm_rule2 = &rule2->wmm_rule;
1390 wmm_rule = &intersected_rule->wmm_rule;
1391
1392 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393 freq_range2->start_freq_khz);
1394 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395 freq_range2->end_freq_khz);
1396
1397 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399
1400 if (rule1->flags & NL80211_RRF_AUTO_BW)
1401 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402 if (rule2->flags & NL80211_RRF_AUTO_BW)
1403 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404
1405 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406
1407 intersected_rule->flags = rule1->flags | rule2->flags;
1408
1409 /*
1410 * In case NL80211_RRF_AUTO_BW requested for both rules
1411 * set AUTO_BW in intersected rule also. Next we will
1412 * calculate BW correctly in handle_channel function.
1413 * In other case remove AUTO_BW flag while we calculate
1414 * maximum bandwidth correctly and auto calculation is
1415 * not required.
1416 */
1417 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418 (rule2->flags & NL80211_RRF_AUTO_BW))
1419 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420 else
1421 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422
1423 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424 if (freq_range->max_bandwidth_khz > freq_diff)
1425 freq_range->max_bandwidth_khz = freq_diff;
1426
1427 power_rule->max_eirp = min(power_rule1->max_eirp,
1428 power_rule2->max_eirp);
1429 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430 power_rule2->max_antenna_gain);
1431
1432 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433 rule2->dfs_cac_ms);
1434
1435 if (rule1->has_wmm && rule2->has_wmm) {
1436 u8 ac;
1437
1438 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440 &wmm_rule2->client[ac],
1441 &wmm_rule->client[ac]);
1442 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443 &wmm_rule2->ap[ac],
1444 &wmm_rule->ap[ac]);
1445 }
1446
1447 intersected_rule->has_wmm = true;
1448 } else if (rule1->has_wmm) {
1449 *wmm_rule = *wmm_rule1;
1450 intersected_rule->has_wmm = true;
1451 } else if (rule2->has_wmm) {
1452 *wmm_rule = *wmm_rule2;
1453 intersected_rule->has_wmm = true;
1454 } else {
1455 intersected_rule->has_wmm = false;
1456 }
1457
1458 if (!is_valid_reg_rule(intersected_rule))
1459 return -EINVAL;
1460
1461 return 0;
1462}
1463
1464/* check whether old rule contains new rule */
1465static bool rule_contains(struct ieee80211_reg_rule *r1,
1466 struct ieee80211_reg_rule *r2)
1467{
1468 /* for simplicity, currently consider only same flags */
1469 if (r1->flags != r2->flags)
1470 return false;
1471
1472 /* verify r1 is more restrictive */
1473 if ((r1->power_rule.max_antenna_gain >
1474 r2->power_rule.max_antenna_gain) ||
1475 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476 return false;
1477
1478 /* make sure r2's range is contained within r1 */
1479 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481 return false;
1482
1483 /* and finally verify that r1.max_bw >= r2.max_bw */
1484 if (r1->freq_range.max_bandwidth_khz <
1485 r2->freq_range.max_bandwidth_khz)
1486 return false;
1487
1488 return true;
1489}
1490
1491/* add or extend current rules. do nothing if rule is already contained */
1492static void add_rule(struct ieee80211_reg_rule *rule,
1493 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494{
1495 struct ieee80211_reg_rule *tmp_rule;
1496 int i;
1497
1498 for (i = 0; i < *n_rules; i++) {
1499 tmp_rule = ®_rules[i];
1500 /* rule is already contained - do nothing */
1501 if (rule_contains(tmp_rule, rule))
1502 return;
1503
1504 /* extend rule if possible */
1505 if (rule_contains(rule, tmp_rule)) {
1506 memcpy(tmp_rule, rule, sizeof(*rule));
1507 return;
1508 }
1509 }
1510
1511 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1512 (*n_rules)++;
1513}
1514
1515/**
1516 * regdom_intersect - do the intersection between two regulatory domains
1517 * @rd1: first regulatory domain
1518 * @rd2: second regulatory domain
1519 *
1520 * Use this function to get the intersection between two regulatory domains.
1521 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522 * as no one single alpha2 can represent this regulatory domain.
1523 *
1524 * Returns a pointer to the regulatory domain structure which will hold the
1525 * resulting intersection of rules between rd1 and rd2. We will
1526 * kzalloc() this structure for you.
1527 */
1528static struct ieee80211_regdomain *
1529regdom_intersect(const struct ieee80211_regdomain *rd1,
1530 const struct ieee80211_regdomain *rd2)
1531{
1532 int r;
1533 unsigned int x, y;
1534 unsigned int num_rules = 0;
1535 const struct ieee80211_reg_rule *rule1, *rule2;
1536 struct ieee80211_reg_rule intersected_rule;
1537 struct ieee80211_regdomain *rd;
1538
1539 if (!rd1 || !rd2)
1540 return NULL;
1541
1542 /*
1543 * First we get a count of the rules we'll need, then we actually
1544 * build them. This is to so we can malloc() and free() a
1545 * regdomain once. The reason we use reg_rules_intersect() here
1546 * is it will return -EINVAL if the rule computed makes no sense.
1547 * All rules that do check out OK are valid.
1548 */
1549
1550 for (x = 0; x < rd1->n_reg_rules; x++) {
1551 rule1 = &rd1->reg_rules[x];
1552 for (y = 0; y < rd2->n_reg_rules; y++) {
1553 rule2 = &rd2->reg_rules[y];
1554 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555 &intersected_rule))
1556 num_rules++;
1557 }
1558 }
1559
1560 if (!num_rules)
1561 return NULL;
1562
1563 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564 if (!rd)
1565 return NULL;
1566
1567 for (x = 0; x < rd1->n_reg_rules; x++) {
1568 rule1 = &rd1->reg_rules[x];
1569 for (y = 0; y < rd2->n_reg_rules; y++) {
1570 rule2 = &rd2->reg_rules[y];
1571 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572 &intersected_rule);
1573 /*
1574 * No need to memset here the intersected rule here as
1575 * we're not using the stack anymore
1576 */
1577 if (r)
1578 continue;
1579
1580 add_rule(&intersected_rule, rd->reg_rules,
1581 &rd->n_reg_rules);
1582 }
1583 }
1584
1585 rd->alpha2[0] = '9';
1586 rd->alpha2[1] = '8';
1587 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588 rd2->dfs_region);
1589
1590 return rd;
1591}
1592
1593/*
1594 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595 * want to just have the channel structure use these
1596 */
1597static u32 map_regdom_flags(u32 rd_flags)
1598{
1599 u32 channel_flags = 0;
1600 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601 channel_flags |= IEEE80211_CHAN_NO_IR;
1602 if (rd_flags & NL80211_RRF_DFS)
1603 channel_flags |= IEEE80211_CHAN_RADAR;
1604 if (rd_flags & NL80211_RRF_NO_OFDM)
1605 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614 if (rd_flags & NL80211_RRF_NO_80MHZ)
1615 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616 if (rd_flags & NL80211_RRF_NO_160MHZ)
1617 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618 if (rd_flags & NL80211_RRF_NO_HE)
1619 channel_flags |= IEEE80211_CHAN_NO_HE;
1620 if (rd_flags & NL80211_RRF_NO_320MHZ)
1621 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622 return channel_flags;
1623}
1624
1625static const struct ieee80211_reg_rule *
1626freq_reg_info_regd(u32 center_freq,
1627 const struct ieee80211_regdomain *regd, u32 bw)
1628{
1629 int i;
1630 bool band_rule_found = false;
1631 bool bw_fits = false;
1632
1633 if (!regd)
1634 return ERR_PTR(-EINVAL);
1635
1636 for (i = 0; i < regd->n_reg_rules; i++) {
1637 const struct ieee80211_reg_rule *rr;
1638 const struct ieee80211_freq_range *fr = NULL;
1639
1640 rr = ®d->reg_rules[i];
1641 fr = &rr->freq_range;
1642
1643 /*
1644 * We only need to know if one frequency rule was
1645 * in center_freq's band, that's enough, so let's
1646 * not overwrite it once found
1647 */
1648 if (!band_rule_found)
1649 band_rule_found = freq_in_rule_band(fr, center_freq);
1650
1651 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652
1653 if (band_rule_found && bw_fits)
1654 return rr;
1655 }
1656
1657 if (!band_rule_found)
1658 return ERR_PTR(-ERANGE);
1659
1660 return ERR_PTR(-EINVAL);
1661}
1662
1663static const struct ieee80211_reg_rule *
1664__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665{
1666 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669 int i = ARRAY_SIZE(bws) - 1;
1670 u32 bw;
1671
1672 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674 if (!IS_ERR(reg_rule))
1675 return reg_rule;
1676 }
1677
1678 return reg_rule;
1679}
1680
1681const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682 u32 center_freq)
1683{
1684 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685
1686 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687}
1688EXPORT_SYMBOL(freq_reg_info);
1689
1690const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691{
1692 switch (initiator) {
1693 case NL80211_REGDOM_SET_BY_CORE:
1694 return "core";
1695 case NL80211_REGDOM_SET_BY_USER:
1696 return "user";
1697 case NL80211_REGDOM_SET_BY_DRIVER:
1698 return "driver";
1699 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700 return "country element";
1701 default:
1702 WARN_ON(1);
1703 return "bug";
1704 }
1705}
1706EXPORT_SYMBOL(reg_initiator_name);
1707
1708static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709 const struct ieee80211_reg_rule *reg_rule,
1710 const struct ieee80211_channel *chan)
1711{
1712 const struct ieee80211_freq_range *freq_range = NULL;
1713 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715
1716 freq_range = ®_rule->freq_range;
1717
1718 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719 center_freq_khz = ieee80211_channel_to_khz(chan);
1720 /* Check if auto calculation requested */
1721 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723
1724 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1725 if (!cfg80211_does_bw_fit_range(freq_range,
1726 center_freq_khz,
1727 MHZ_TO_KHZ(10)))
1728 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729 if (!cfg80211_does_bw_fit_range(freq_range,
1730 center_freq_khz,
1731 MHZ_TO_KHZ(20)))
1732 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733
1734 if (is_s1g) {
1735 /* S1G is strict about non overlapping channels. We can
1736 * calculate which bandwidth is allowed per channel by finding
1737 * the largest bandwidth which cleanly divides the freq_range.
1738 */
1739 int edge_offset;
1740 int ch_bw = max_bandwidth_khz;
1741
1742 while (ch_bw) {
1743 edge_offset = (center_freq_khz - ch_bw / 2) -
1744 freq_range->start_freq_khz;
1745 if (edge_offset % ch_bw == 0) {
1746 switch (KHZ_TO_MHZ(ch_bw)) {
1747 case 1:
1748 bw_flags |= IEEE80211_CHAN_1MHZ;
1749 break;
1750 case 2:
1751 bw_flags |= IEEE80211_CHAN_2MHZ;
1752 break;
1753 case 4:
1754 bw_flags |= IEEE80211_CHAN_4MHZ;
1755 break;
1756 case 8:
1757 bw_flags |= IEEE80211_CHAN_8MHZ;
1758 break;
1759 case 16:
1760 bw_flags |= IEEE80211_CHAN_16MHZ;
1761 break;
1762 default:
1763 /* If we got here, no bandwidths fit on
1764 * this frequency, ie. band edge.
1765 */
1766 bw_flags |= IEEE80211_CHAN_DISABLED;
1767 break;
1768 }
1769 break;
1770 }
1771 ch_bw /= 2;
1772 }
1773 } else {
1774 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779 bw_flags |= IEEE80211_CHAN_NO_HT40;
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786 }
1787 return bw_flags;
1788}
1789
1790static void handle_channel_single_rule(struct wiphy *wiphy,
1791 enum nl80211_reg_initiator initiator,
1792 struct ieee80211_channel *chan,
1793 u32 flags,
1794 struct regulatory_request *lr,
1795 struct wiphy *request_wiphy,
1796 const struct ieee80211_reg_rule *reg_rule)
1797{
1798 u32 bw_flags = 0;
1799 const struct ieee80211_power_rule *power_rule = NULL;
1800 const struct ieee80211_regdomain *regd;
1801
1802 regd = reg_get_regdomain(wiphy);
1803
1804 power_rule = ®_rule->power_rule;
1805 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806
1807 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808 request_wiphy && request_wiphy == wiphy &&
1809 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810 /*
1811 * This guarantees the driver's requested regulatory domain
1812 * will always be used as a base for further regulatory
1813 * settings
1814 */
1815 chan->flags = chan->orig_flags =
1816 map_regdom_flags(reg_rule->flags) | bw_flags;
1817 chan->max_antenna_gain = chan->orig_mag =
1818 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820 (int) MBM_TO_DBM(power_rule->max_eirp);
1821
1822 if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824 if (reg_rule->dfs_cac_ms)
1825 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826 }
1827
1828 return;
1829 }
1830
1831 chan->dfs_state = NL80211_DFS_USABLE;
1832 chan->dfs_state_entered = jiffies;
1833
1834 chan->beacon_found = false;
1835 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836 chan->max_antenna_gain =
1837 min_t(int, chan->orig_mag,
1838 MBI_TO_DBI(power_rule->max_antenna_gain));
1839 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840
1841 if (chan->flags & IEEE80211_CHAN_RADAR) {
1842 if (reg_rule->dfs_cac_ms)
1843 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844 else
1845 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846 }
1847
1848 if (chan->orig_mpwr) {
1849 /*
1850 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851 * will always follow the passed country IE power settings.
1852 */
1853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855 chan->max_power = chan->max_reg_power;
1856 else
1857 chan->max_power = min(chan->orig_mpwr,
1858 chan->max_reg_power);
1859 } else
1860 chan->max_power = chan->max_reg_power;
1861}
1862
1863static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864 enum nl80211_reg_initiator initiator,
1865 struct ieee80211_channel *chan,
1866 u32 flags,
1867 struct regulatory_request *lr,
1868 struct wiphy *request_wiphy,
1869 const struct ieee80211_reg_rule *rrule1,
1870 const struct ieee80211_reg_rule *rrule2,
1871 struct ieee80211_freq_range *comb_range)
1872{
1873 u32 bw_flags1 = 0;
1874 u32 bw_flags2 = 0;
1875 const struct ieee80211_power_rule *power_rule1 = NULL;
1876 const struct ieee80211_power_rule *power_rule2 = NULL;
1877 const struct ieee80211_regdomain *regd;
1878
1879 regd = reg_get_regdomain(wiphy);
1880
1881 power_rule1 = &rrule1->power_rule;
1882 power_rule2 = &rrule2->power_rule;
1883 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885
1886 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887 request_wiphy && request_wiphy == wiphy &&
1888 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889 /* This guarantees the driver's requested regulatory domain
1890 * will always be used as a base for further regulatory
1891 * settings
1892 */
1893 chan->flags =
1894 map_regdom_flags(rrule1->flags) |
1895 map_regdom_flags(rrule2->flags) |
1896 bw_flags1 |
1897 bw_flags2;
1898 chan->orig_flags = chan->flags;
1899 chan->max_antenna_gain =
1900 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901 MBI_TO_DBI(power_rule2->max_antenna_gain));
1902 chan->orig_mag = chan->max_antenna_gain;
1903 chan->max_reg_power =
1904 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905 MBM_TO_DBM(power_rule2->max_eirp));
1906 chan->max_power = chan->max_reg_power;
1907 chan->orig_mpwr = chan->max_reg_power;
1908
1909 if (chan->flags & IEEE80211_CHAN_RADAR) {
1910 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912 chan->dfs_cac_ms = max_t(unsigned int,
1913 rrule1->dfs_cac_ms,
1914 rrule2->dfs_cac_ms);
1915 }
1916
1917 return;
1918 }
1919
1920 chan->dfs_state = NL80211_DFS_USABLE;
1921 chan->dfs_state_entered = jiffies;
1922
1923 chan->beacon_found = false;
1924 chan->flags = flags | bw_flags1 | bw_flags2 |
1925 map_regdom_flags(rrule1->flags) |
1926 map_regdom_flags(rrule2->flags);
1927
1928 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929 * (otherwise no adj. rule case), recheck therefore
1930 */
1931 if (cfg80211_does_bw_fit_range(comb_range,
1932 ieee80211_channel_to_khz(chan),
1933 MHZ_TO_KHZ(10)))
1934 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935 if (cfg80211_does_bw_fit_range(comb_range,
1936 ieee80211_channel_to_khz(chan),
1937 MHZ_TO_KHZ(20)))
1938 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939
1940 chan->max_antenna_gain =
1941 min_t(int, chan->orig_mag,
1942 min_t(int,
1943 MBI_TO_DBI(power_rule1->max_antenna_gain),
1944 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945 chan->max_reg_power = min_t(int,
1946 MBM_TO_DBM(power_rule1->max_eirp),
1947 MBM_TO_DBM(power_rule2->max_eirp));
1948
1949 if (chan->flags & IEEE80211_CHAN_RADAR) {
1950 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951 chan->dfs_cac_ms = max_t(unsigned int,
1952 rrule1->dfs_cac_ms,
1953 rrule2->dfs_cac_ms);
1954 else
1955 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956 }
1957
1958 if (chan->orig_mpwr) {
1959 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960 * will always follow the passed country IE power settings.
1961 */
1962 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964 chan->max_power = chan->max_reg_power;
1965 else
1966 chan->max_power = min(chan->orig_mpwr,
1967 chan->max_reg_power);
1968 } else {
1969 chan->max_power = chan->max_reg_power;
1970 }
1971}
1972
1973/* Note that right now we assume the desired channel bandwidth
1974 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975 * per channel, the primary and the extension channel).
1976 */
1977static void handle_channel(struct wiphy *wiphy,
1978 enum nl80211_reg_initiator initiator,
1979 struct ieee80211_channel *chan)
1980{
1981 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982 struct regulatory_request *lr = get_last_request();
1983 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984 const struct ieee80211_reg_rule *rrule = NULL;
1985 const struct ieee80211_reg_rule *rrule1 = NULL;
1986 const struct ieee80211_reg_rule *rrule2 = NULL;
1987
1988 u32 flags = chan->orig_flags;
1989
1990 rrule = freq_reg_info(wiphy, orig_chan_freq);
1991 if (IS_ERR(rrule)) {
1992 /* check for adjacent match, therefore get rules for
1993 * chan - 20 MHz and chan + 20 MHz and test
1994 * if reg rules are adjacent
1995 */
1996 rrule1 = freq_reg_info(wiphy,
1997 orig_chan_freq - MHZ_TO_KHZ(20));
1998 rrule2 = freq_reg_info(wiphy,
1999 orig_chan_freq + MHZ_TO_KHZ(20));
2000 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001 struct ieee80211_freq_range comb_range;
2002
2003 if (rrule1->freq_range.end_freq_khz !=
2004 rrule2->freq_range.start_freq_khz)
2005 goto disable_chan;
2006
2007 comb_range.start_freq_khz =
2008 rrule1->freq_range.start_freq_khz;
2009 comb_range.end_freq_khz =
2010 rrule2->freq_range.end_freq_khz;
2011 comb_range.max_bandwidth_khz =
2012 min_t(u32,
2013 rrule1->freq_range.max_bandwidth_khz,
2014 rrule2->freq_range.max_bandwidth_khz);
2015
2016 if (!cfg80211_does_bw_fit_range(&comb_range,
2017 orig_chan_freq,
2018 MHZ_TO_KHZ(20)))
2019 goto disable_chan;
2020
2021 handle_channel_adjacent_rules(wiphy, initiator, chan,
2022 flags, lr, request_wiphy,
2023 rrule1, rrule2,
2024 &comb_range);
2025 return;
2026 }
2027
2028disable_chan:
2029 /* We will disable all channels that do not match our
2030 * received regulatory rule unless the hint is coming
2031 * from a Country IE and the Country IE had no information
2032 * about a band. The IEEE 802.11 spec allows for an AP
2033 * to send only a subset of the regulatory rules allowed,
2034 * so an AP in the US that only supports 2.4 GHz may only send
2035 * a country IE with information for the 2.4 GHz band
2036 * while 5 GHz is still supported.
2037 */
2038 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039 PTR_ERR(rrule) == -ERANGE)
2040 return;
2041
2042 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043 request_wiphy && request_wiphy == wiphy &&
2044 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045 pr_debug("Disabling freq %d.%03d MHz for good\n",
2046 chan->center_freq, chan->freq_offset);
2047 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048 chan->flags = chan->orig_flags;
2049 } else {
2050 pr_debug("Disabling freq %d.%03d MHz\n",
2051 chan->center_freq, chan->freq_offset);
2052 chan->flags |= IEEE80211_CHAN_DISABLED;
2053 }
2054 return;
2055 }
2056
2057 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058 request_wiphy, rrule);
2059}
2060
2061static void handle_band(struct wiphy *wiphy,
2062 enum nl80211_reg_initiator initiator,
2063 struct ieee80211_supported_band *sband)
2064{
2065 unsigned int i;
2066
2067 if (!sband)
2068 return;
2069
2070 for (i = 0; i < sband->n_channels; i++)
2071 handle_channel(wiphy, initiator, &sband->channels[i]);
2072}
2073
2074static bool reg_request_cell_base(struct regulatory_request *request)
2075{
2076 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077 return false;
2078 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079}
2080
2081bool reg_last_request_cell_base(void)
2082{
2083 return reg_request_cell_base(get_last_request());
2084}
2085
2086#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087/* Core specific check */
2088static enum reg_request_treatment
2089reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090{
2091 struct regulatory_request *lr = get_last_request();
2092
2093 if (!reg_num_devs_support_basehint)
2094 return REG_REQ_IGNORE;
2095
2096 if (reg_request_cell_base(lr) &&
2097 !regdom_changes(pending_request->alpha2))
2098 return REG_REQ_ALREADY_SET;
2099
2100 return REG_REQ_OK;
2101}
2102
2103/* Device specific check */
2104static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105{
2106 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107}
2108#else
2109static enum reg_request_treatment
2110reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111{
2112 return REG_REQ_IGNORE;
2113}
2114
2115static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116{
2117 return true;
2118}
2119#endif
2120
2121static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122{
2123 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125 return true;
2126 return false;
2127}
2128
2129static bool ignore_reg_update(struct wiphy *wiphy,
2130 enum nl80211_reg_initiator initiator)
2131{
2132 struct regulatory_request *lr = get_last_request();
2133
2134 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135 return true;
2136
2137 if (!lr) {
2138 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139 reg_initiator_name(initiator));
2140 return true;
2141 }
2142
2143 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146 reg_initiator_name(initiator));
2147 return true;
2148 }
2149
2150 /*
2151 * wiphy->regd will be set once the device has its own
2152 * desired regulatory domain set
2153 */
2154 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156 !is_world_regdom(lr->alpha2)) {
2157 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158 reg_initiator_name(initiator));
2159 return true;
2160 }
2161
2162 if (reg_request_cell_base(lr))
2163 return reg_dev_ignore_cell_hint(wiphy);
2164
2165 return false;
2166}
2167
2168static bool reg_is_world_roaming(struct wiphy *wiphy)
2169{
2170 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172 struct regulatory_request *lr = get_last_request();
2173
2174 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175 return true;
2176
2177 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179 return true;
2180
2181 return false;
2182}
2183
2184static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 struct reg_beacon *reg_beacon)
2186{
2187 struct ieee80211_supported_band *sband;
2188 struct ieee80211_channel *chan;
2189 bool channel_changed = false;
2190 struct ieee80211_channel chan_before;
2191
2192 sband = wiphy->bands[reg_beacon->chan.band];
2193 chan = &sband->channels[chan_idx];
2194
2195 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2196 return;
2197
2198 if (chan->beacon_found)
2199 return;
2200
2201 chan->beacon_found = true;
2202
2203 if (!reg_is_world_roaming(wiphy))
2204 return;
2205
2206 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207 return;
2208
2209 chan_before = *chan;
2210
2211 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213 channel_changed = true;
2214 }
2215
2216 if (channel_changed)
2217 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218}
2219
2220/*
2221 * Called when a scan on a wiphy finds a beacon on
2222 * new channel
2223 */
2224static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225 struct reg_beacon *reg_beacon)
2226{
2227 unsigned int i;
2228 struct ieee80211_supported_band *sband;
2229
2230 if (!wiphy->bands[reg_beacon->chan.band])
2231 return;
2232
2233 sband = wiphy->bands[reg_beacon->chan.band];
2234
2235 for (i = 0; i < sband->n_channels; i++)
2236 handle_reg_beacon(wiphy, i, reg_beacon);
2237}
2238
2239/*
2240 * Called upon reg changes or a new wiphy is added
2241 */
2242static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243{
2244 unsigned int i;
2245 struct ieee80211_supported_band *sband;
2246 struct reg_beacon *reg_beacon;
2247
2248 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2249 if (!wiphy->bands[reg_beacon->chan.band])
2250 continue;
2251 sband = wiphy->bands[reg_beacon->chan.band];
2252 for (i = 0; i < sband->n_channels; i++)
2253 handle_reg_beacon(wiphy, i, reg_beacon);
2254 }
2255}
2256
2257/* Reap the advantages of previously found beacons */
2258static void reg_process_beacons(struct wiphy *wiphy)
2259{
2260 /*
2261 * Means we are just firing up cfg80211, so no beacons would
2262 * have been processed yet.
2263 */
2264 if (!last_request)
2265 return;
2266 wiphy_update_beacon_reg(wiphy);
2267}
2268
2269static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270{
2271 if (!chan)
2272 return false;
2273 if (chan->flags & IEEE80211_CHAN_DISABLED)
2274 return false;
2275 /* This would happen when regulatory rules disallow HT40 completely */
2276 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277 return false;
2278 return true;
2279}
2280
2281static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282 struct ieee80211_channel *channel)
2283{
2284 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286 const struct ieee80211_regdomain *regd;
2287 unsigned int i;
2288 u32 flags;
2289
2290 if (!is_ht40_allowed(channel)) {
2291 channel->flags |= IEEE80211_CHAN_NO_HT40;
2292 return;
2293 }
2294
2295 /*
2296 * We need to ensure the extension channels exist to
2297 * be able to use HT40- or HT40+, this finds them (or not)
2298 */
2299 for (i = 0; i < sband->n_channels; i++) {
2300 struct ieee80211_channel *c = &sband->channels[i];
2301
2302 if (c->center_freq == (channel->center_freq - 20))
2303 channel_before = c;
2304 if (c->center_freq == (channel->center_freq + 20))
2305 channel_after = c;
2306 }
2307
2308 flags = 0;
2309 regd = get_wiphy_regdom(wiphy);
2310 if (regd) {
2311 const struct ieee80211_reg_rule *reg_rule =
2312 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313 regd, MHZ_TO_KHZ(20));
2314
2315 if (!IS_ERR(reg_rule))
2316 flags = reg_rule->flags;
2317 }
2318
2319 /*
2320 * Please note that this assumes target bandwidth is 20 MHz,
2321 * if that ever changes we also need to change the below logic
2322 * to include that as well.
2323 */
2324 if (!is_ht40_allowed(channel_before) ||
2325 flags & NL80211_RRF_NO_HT40MINUS)
2326 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327 else
2328 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329
2330 if (!is_ht40_allowed(channel_after) ||
2331 flags & NL80211_RRF_NO_HT40PLUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335}
2336
2337static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338 struct ieee80211_supported_band *sband)
2339{
2340 unsigned int i;
2341
2342 if (!sband)
2343 return;
2344
2345 for (i = 0; i < sband->n_channels; i++)
2346 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347}
2348
2349static void reg_process_ht_flags(struct wiphy *wiphy)
2350{
2351 enum nl80211_band band;
2352
2353 if (!wiphy)
2354 return;
2355
2356 for (band = 0; band < NUM_NL80211_BANDS; band++)
2357 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358}
2359
2360static void reg_call_notifier(struct wiphy *wiphy,
2361 struct regulatory_request *request)
2362{
2363 if (wiphy->reg_notifier)
2364 wiphy->reg_notifier(wiphy, request);
2365}
2366
2367static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368{
2369 struct cfg80211_chan_def chandef = {};
2370 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371 enum nl80211_iftype iftype;
2372 bool ret;
2373 int link;
2374
2375 wdev_lock(wdev);
2376 iftype = wdev->iftype;
2377
2378 /* make sure the interface is active */
2379 if (!wdev->netdev || !netif_running(wdev->netdev))
2380 goto wdev_inactive_unlock;
2381
2382 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2383 struct ieee80211_channel *chan;
2384
2385 if (!wdev->valid_links && link > 0)
2386 break;
2387 if (!(wdev->valid_links & BIT(link)))
2388 continue;
2389 switch (iftype) {
2390 case NL80211_IFTYPE_AP:
2391 case NL80211_IFTYPE_P2P_GO:
2392 if (!wdev->links[link].ap.beacon_interval)
2393 continue;
2394 chandef = wdev->links[link].ap.chandef;
2395 break;
2396 case NL80211_IFTYPE_MESH_POINT:
2397 if (!wdev->u.mesh.beacon_interval)
2398 continue;
2399 chandef = wdev->u.mesh.chandef;
2400 break;
2401 case NL80211_IFTYPE_ADHOC:
2402 if (!wdev->u.ibss.ssid_len)
2403 continue;
2404 chandef = wdev->u.ibss.chandef;
2405 break;
2406 case NL80211_IFTYPE_STATION:
2407 case NL80211_IFTYPE_P2P_CLIENT:
2408 /* Maybe we could consider disabling that link only? */
2409 if (!wdev->links[link].client.current_bss)
2410 continue;
2411
2412 chan = wdev->links[link].client.current_bss->pub.channel;
2413 if (!chan)
2414 continue;
2415
2416 if (!rdev->ops->get_channel ||
2417 rdev_get_channel(rdev, wdev, link, &chandef))
2418 cfg80211_chandef_create(&chandef, chan,
2419 NL80211_CHAN_NO_HT);
2420 break;
2421 case NL80211_IFTYPE_MONITOR:
2422 case NL80211_IFTYPE_AP_VLAN:
2423 case NL80211_IFTYPE_P2P_DEVICE:
2424 /* no enforcement required */
2425 break;
2426 default:
2427 /* others not implemented for now */
2428 WARN_ON(1);
2429 break;
2430 }
2431
2432 wdev_unlock(wdev);
2433
2434 switch (iftype) {
2435 case NL80211_IFTYPE_AP:
2436 case NL80211_IFTYPE_P2P_GO:
2437 case NL80211_IFTYPE_ADHOC:
2438 case NL80211_IFTYPE_MESH_POINT:
2439 wiphy_lock(wiphy);
2440 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2441 iftype);
2442 wiphy_unlock(wiphy);
2443
2444 if (!ret)
2445 return ret;
2446 break;
2447 case NL80211_IFTYPE_STATION:
2448 case NL80211_IFTYPE_P2P_CLIENT:
2449 ret = cfg80211_chandef_usable(wiphy, &chandef,
2450 IEEE80211_CHAN_DISABLED);
2451 if (!ret)
2452 return ret;
2453 break;
2454 default:
2455 break;
2456 }
2457
2458 wdev_lock(wdev);
2459 }
2460
2461 wdev_unlock(wdev);
2462
2463 return true;
2464
2465wdev_inactive_unlock:
2466 wdev_unlock(wdev);
2467 return true;
2468}
2469
2470static void reg_leave_invalid_chans(struct wiphy *wiphy)
2471{
2472 struct wireless_dev *wdev;
2473 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2474
2475 ASSERT_RTNL();
2476
2477 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2478 if (!reg_wdev_chan_valid(wiphy, wdev))
2479 cfg80211_leave(rdev, wdev);
2480}
2481
2482static void reg_check_chans_work(struct work_struct *work)
2483{
2484 struct cfg80211_registered_device *rdev;
2485
2486 pr_debug("Verifying active interfaces after reg change\n");
2487 rtnl_lock();
2488
2489 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2490 if (!(rdev->wiphy.regulatory_flags &
2491 REGULATORY_IGNORE_STALE_KICKOFF))
2492 reg_leave_invalid_chans(&rdev->wiphy);
2493
2494 rtnl_unlock();
2495}
2496
2497static void reg_check_channels(void)
2498{
2499 /*
2500 * Give usermode a chance to do something nicer (move to another
2501 * channel, orderly disconnection), before forcing a disconnection.
2502 */
2503 mod_delayed_work(system_power_efficient_wq,
2504 ®_check_chans,
2505 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2506}
2507
2508static void wiphy_update_regulatory(struct wiphy *wiphy,
2509 enum nl80211_reg_initiator initiator)
2510{
2511 enum nl80211_band band;
2512 struct regulatory_request *lr = get_last_request();
2513
2514 if (ignore_reg_update(wiphy, initiator)) {
2515 /*
2516 * Regulatory updates set by CORE are ignored for custom
2517 * regulatory cards. Let us notify the changes to the driver,
2518 * as some drivers used this to restore its orig_* reg domain.
2519 */
2520 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2521 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2522 !(wiphy->regulatory_flags &
2523 REGULATORY_WIPHY_SELF_MANAGED))
2524 reg_call_notifier(wiphy, lr);
2525 return;
2526 }
2527
2528 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2529
2530 for (band = 0; band < NUM_NL80211_BANDS; band++)
2531 handle_band(wiphy, initiator, wiphy->bands[band]);
2532
2533 reg_process_beacons(wiphy);
2534 reg_process_ht_flags(wiphy);
2535 reg_call_notifier(wiphy, lr);
2536}
2537
2538static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2539{
2540 struct cfg80211_registered_device *rdev;
2541 struct wiphy *wiphy;
2542
2543 ASSERT_RTNL();
2544
2545 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2546 wiphy = &rdev->wiphy;
2547 wiphy_update_regulatory(wiphy, initiator);
2548 }
2549
2550 reg_check_channels();
2551}
2552
2553static void handle_channel_custom(struct wiphy *wiphy,
2554 struct ieee80211_channel *chan,
2555 const struct ieee80211_regdomain *regd,
2556 u32 min_bw)
2557{
2558 u32 bw_flags = 0;
2559 const struct ieee80211_reg_rule *reg_rule = NULL;
2560 const struct ieee80211_power_rule *power_rule = NULL;
2561 u32 bw, center_freq_khz;
2562
2563 center_freq_khz = ieee80211_channel_to_khz(chan);
2564 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2565 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2566 if (!IS_ERR(reg_rule))
2567 break;
2568 }
2569
2570 if (IS_ERR_OR_NULL(reg_rule)) {
2571 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2572 chan->center_freq, chan->freq_offset);
2573 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2574 chan->flags |= IEEE80211_CHAN_DISABLED;
2575 } else {
2576 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2577 chan->flags = chan->orig_flags;
2578 }
2579 return;
2580 }
2581
2582 power_rule = ®_rule->power_rule;
2583 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2584
2585 chan->dfs_state_entered = jiffies;
2586 chan->dfs_state = NL80211_DFS_USABLE;
2587
2588 chan->beacon_found = false;
2589
2590 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2591 chan->flags = chan->orig_flags | bw_flags |
2592 map_regdom_flags(reg_rule->flags);
2593 else
2594 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2595
2596 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2597 chan->max_reg_power = chan->max_power =
2598 (int) MBM_TO_DBM(power_rule->max_eirp);
2599
2600 if (chan->flags & IEEE80211_CHAN_RADAR) {
2601 if (reg_rule->dfs_cac_ms)
2602 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2603 else
2604 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2605 }
2606
2607 chan->max_power = chan->max_reg_power;
2608}
2609
2610static void handle_band_custom(struct wiphy *wiphy,
2611 struct ieee80211_supported_band *sband,
2612 const struct ieee80211_regdomain *regd)
2613{
2614 unsigned int i;
2615
2616 if (!sband)
2617 return;
2618
2619 /*
2620 * We currently assume that you always want at least 20 MHz,
2621 * otherwise channel 12 might get enabled if this rule is
2622 * compatible to US, which permits 2402 - 2472 MHz.
2623 */
2624 for (i = 0; i < sband->n_channels; i++)
2625 handle_channel_custom(wiphy, &sband->channels[i], regd,
2626 MHZ_TO_KHZ(20));
2627}
2628
2629/* Used by drivers prior to wiphy registration */
2630void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2631 const struct ieee80211_regdomain *regd)
2632{
2633 const struct ieee80211_regdomain *new_regd, *tmp;
2634 enum nl80211_band band;
2635 unsigned int bands_set = 0;
2636
2637 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2638 "wiphy should have REGULATORY_CUSTOM_REG\n");
2639 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2640
2641 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2642 if (!wiphy->bands[band])
2643 continue;
2644 handle_band_custom(wiphy, wiphy->bands[band], regd);
2645 bands_set++;
2646 }
2647
2648 /*
2649 * no point in calling this if it won't have any effect
2650 * on your device's supported bands.
2651 */
2652 WARN_ON(!bands_set);
2653 new_regd = reg_copy_regd(regd);
2654 if (IS_ERR(new_regd))
2655 return;
2656
2657 rtnl_lock();
2658 wiphy_lock(wiphy);
2659
2660 tmp = get_wiphy_regdom(wiphy);
2661 rcu_assign_pointer(wiphy->regd, new_regd);
2662 rcu_free_regdom(tmp);
2663
2664 wiphy_unlock(wiphy);
2665 rtnl_unlock();
2666}
2667EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2668
2669static void reg_set_request_processed(void)
2670{
2671 bool need_more_processing = false;
2672 struct regulatory_request *lr = get_last_request();
2673
2674 lr->processed = true;
2675
2676 spin_lock(®_requests_lock);
2677 if (!list_empty(®_requests_list))
2678 need_more_processing = true;
2679 spin_unlock(®_requests_lock);
2680
2681 cancel_crda_timeout();
2682
2683 if (need_more_processing)
2684 schedule_work(®_work);
2685}
2686
2687/**
2688 * reg_process_hint_core - process core regulatory requests
2689 * @core_request: a pending core regulatory request
2690 *
2691 * The wireless subsystem can use this function to process
2692 * a regulatory request issued by the regulatory core.
2693 */
2694static enum reg_request_treatment
2695reg_process_hint_core(struct regulatory_request *core_request)
2696{
2697 if (reg_query_database(core_request)) {
2698 core_request->intersect = false;
2699 core_request->processed = false;
2700 reg_update_last_request(core_request);
2701 return REG_REQ_OK;
2702 }
2703
2704 return REG_REQ_IGNORE;
2705}
2706
2707static enum reg_request_treatment
2708__reg_process_hint_user(struct regulatory_request *user_request)
2709{
2710 struct regulatory_request *lr = get_last_request();
2711
2712 if (reg_request_cell_base(user_request))
2713 return reg_ignore_cell_hint(user_request);
2714
2715 if (reg_request_cell_base(lr))
2716 return REG_REQ_IGNORE;
2717
2718 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2719 return REG_REQ_INTERSECT;
2720 /*
2721 * If the user knows better the user should set the regdom
2722 * to their country before the IE is picked up
2723 */
2724 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2725 lr->intersect)
2726 return REG_REQ_IGNORE;
2727 /*
2728 * Process user requests only after previous user/driver/core
2729 * requests have been processed
2730 */
2731 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2732 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2733 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2734 regdom_changes(lr->alpha2))
2735 return REG_REQ_IGNORE;
2736
2737 if (!regdom_changes(user_request->alpha2))
2738 return REG_REQ_ALREADY_SET;
2739
2740 return REG_REQ_OK;
2741}
2742
2743/**
2744 * reg_process_hint_user - process user regulatory requests
2745 * @user_request: a pending user regulatory request
2746 *
2747 * The wireless subsystem can use this function to process
2748 * a regulatory request initiated by userspace.
2749 */
2750static enum reg_request_treatment
2751reg_process_hint_user(struct regulatory_request *user_request)
2752{
2753 enum reg_request_treatment treatment;
2754
2755 treatment = __reg_process_hint_user(user_request);
2756 if (treatment == REG_REQ_IGNORE ||
2757 treatment == REG_REQ_ALREADY_SET)
2758 return REG_REQ_IGNORE;
2759
2760 user_request->intersect = treatment == REG_REQ_INTERSECT;
2761 user_request->processed = false;
2762
2763 if (reg_query_database(user_request)) {
2764 reg_update_last_request(user_request);
2765 user_alpha2[0] = user_request->alpha2[0];
2766 user_alpha2[1] = user_request->alpha2[1];
2767 return REG_REQ_OK;
2768 }
2769
2770 return REG_REQ_IGNORE;
2771}
2772
2773static enum reg_request_treatment
2774__reg_process_hint_driver(struct regulatory_request *driver_request)
2775{
2776 struct regulatory_request *lr = get_last_request();
2777
2778 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779 if (regdom_changes(driver_request->alpha2))
2780 return REG_REQ_OK;
2781 return REG_REQ_ALREADY_SET;
2782 }
2783
2784 /*
2785 * This would happen if you unplug and plug your card
2786 * back in or if you add a new device for which the previously
2787 * loaded card also agrees on the regulatory domain.
2788 */
2789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790 !regdom_changes(driver_request->alpha2))
2791 return REG_REQ_ALREADY_SET;
2792
2793 return REG_REQ_INTERSECT;
2794}
2795
2796/**
2797 * reg_process_hint_driver - process driver regulatory requests
2798 * @wiphy: the wireless device for the regulatory request
2799 * @driver_request: a pending driver regulatory request
2800 *
2801 * The wireless subsystem can use this function to process
2802 * a regulatory request issued by an 802.11 driver.
2803 *
2804 * Returns one of the different reg request treatment values.
2805 */
2806static enum reg_request_treatment
2807reg_process_hint_driver(struct wiphy *wiphy,
2808 struct regulatory_request *driver_request)
2809{
2810 const struct ieee80211_regdomain *regd, *tmp;
2811 enum reg_request_treatment treatment;
2812
2813 treatment = __reg_process_hint_driver(driver_request);
2814
2815 switch (treatment) {
2816 case REG_REQ_OK:
2817 break;
2818 case REG_REQ_IGNORE:
2819 return REG_REQ_IGNORE;
2820 case REG_REQ_INTERSECT:
2821 case REG_REQ_ALREADY_SET:
2822 regd = reg_copy_regd(get_cfg80211_regdom());
2823 if (IS_ERR(regd))
2824 return REG_REQ_IGNORE;
2825
2826 tmp = get_wiphy_regdom(wiphy);
2827 ASSERT_RTNL();
2828 wiphy_lock(wiphy);
2829 rcu_assign_pointer(wiphy->regd, regd);
2830 wiphy_unlock(wiphy);
2831 rcu_free_regdom(tmp);
2832 }
2833
2834
2835 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836 driver_request->processed = false;
2837
2838 /*
2839 * Since CRDA will not be called in this case as we already
2840 * have applied the requested regulatory domain before we just
2841 * inform userspace we have processed the request
2842 */
2843 if (treatment == REG_REQ_ALREADY_SET) {
2844 nl80211_send_reg_change_event(driver_request);
2845 reg_update_last_request(driver_request);
2846 reg_set_request_processed();
2847 return REG_REQ_ALREADY_SET;
2848 }
2849
2850 if (reg_query_database(driver_request)) {
2851 reg_update_last_request(driver_request);
2852 return REG_REQ_OK;
2853 }
2854
2855 return REG_REQ_IGNORE;
2856}
2857
2858static enum reg_request_treatment
2859__reg_process_hint_country_ie(struct wiphy *wiphy,
2860 struct regulatory_request *country_ie_request)
2861{
2862 struct wiphy *last_wiphy = NULL;
2863 struct regulatory_request *lr = get_last_request();
2864
2865 if (reg_request_cell_base(lr)) {
2866 /* Trust a Cell base station over the AP's country IE */
2867 if (regdom_changes(country_ie_request->alpha2))
2868 return REG_REQ_IGNORE;
2869 return REG_REQ_ALREADY_SET;
2870 } else {
2871 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872 return REG_REQ_IGNORE;
2873 }
2874
2875 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876 return -EINVAL;
2877
2878 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879 return REG_REQ_OK;
2880
2881 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882
2883 if (last_wiphy != wiphy) {
2884 /*
2885 * Two cards with two APs claiming different
2886 * Country IE alpha2s. We could
2887 * intersect them, but that seems unlikely
2888 * to be correct. Reject second one for now.
2889 */
2890 if (regdom_changes(country_ie_request->alpha2))
2891 return REG_REQ_IGNORE;
2892 return REG_REQ_ALREADY_SET;
2893 }
2894
2895 if (regdom_changes(country_ie_request->alpha2))
2896 return REG_REQ_OK;
2897 return REG_REQ_ALREADY_SET;
2898}
2899
2900/**
2901 * reg_process_hint_country_ie - process regulatory requests from country IEs
2902 * @wiphy: the wireless device for the regulatory request
2903 * @country_ie_request: a regulatory request from a country IE
2904 *
2905 * The wireless subsystem can use this function to process
2906 * a regulatory request issued by a country Information Element.
2907 *
2908 * Returns one of the different reg request treatment values.
2909 */
2910static enum reg_request_treatment
2911reg_process_hint_country_ie(struct wiphy *wiphy,
2912 struct regulatory_request *country_ie_request)
2913{
2914 enum reg_request_treatment treatment;
2915
2916 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917
2918 switch (treatment) {
2919 case REG_REQ_OK:
2920 break;
2921 case REG_REQ_IGNORE:
2922 return REG_REQ_IGNORE;
2923 case REG_REQ_ALREADY_SET:
2924 reg_free_request(country_ie_request);
2925 return REG_REQ_ALREADY_SET;
2926 case REG_REQ_INTERSECT:
2927 /*
2928 * This doesn't happen yet, not sure we
2929 * ever want to support it for this case.
2930 */
2931 WARN_ONCE(1, "Unexpected intersection for country elements");
2932 return REG_REQ_IGNORE;
2933 }
2934
2935 country_ie_request->intersect = false;
2936 country_ie_request->processed = false;
2937
2938 if (reg_query_database(country_ie_request)) {
2939 reg_update_last_request(country_ie_request);
2940 return REG_REQ_OK;
2941 }
2942
2943 return REG_REQ_IGNORE;
2944}
2945
2946bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947{
2948 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951 bool dfs_domain_same;
2952
2953 rcu_read_lock();
2954
2955 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956 wiphy1_regd = rcu_dereference(wiphy1->regd);
2957 if (!wiphy1_regd)
2958 wiphy1_regd = cfg80211_regd;
2959
2960 wiphy2_regd = rcu_dereference(wiphy2->regd);
2961 if (!wiphy2_regd)
2962 wiphy2_regd = cfg80211_regd;
2963
2964 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965
2966 rcu_read_unlock();
2967
2968 return dfs_domain_same;
2969}
2970
2971static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972 struct ieee80211_channel *src_chan)
2973{
2974 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976 return;
2977
2978 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979 src_chan->flags & IEEE80211_CHAN_DISABLED)
2980 return;
2981
2982 if (src_chan->center_freq == dst_chan->center_freq &&
2983 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984 dst_chan->dfs_state = src_chan->dfs_state;
2985 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986 }
2987}
2988
2989static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990 struct wiphy *src_wiphy)
2991{
2992 struct ieee80211_supported_band *src_sband, *dst_sband;
2993 struct ieee80211_channel *src_chan, *dst_chan;
2994 int i, j, band;
2995
2996 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997 return;
2998
2999 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000 dst_sband = dst_wiphy->bands[band];
3001 src_sband = src_wiphy->bands[band];
3002 if (!dst_sband || !src_sband)
3003 continue;
3004
3005 for (i = 0; i < dst_sband->n_channels; i++) {
3006 dst_chan = &dst_sband->channels[i];
3007 for (j = 0; j < src_sband->n_channels; j++) {
3008 src_chan = &src_sband->channels[j];
3009 reg_copy_dfs_chan_state(dst_chan, src_chan);
3010 }
3011 }
3012 }
3013}
3014
3015static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016{
3017 struct cfg80211_registered_device *rdev;
3018
3019 ASSERT_RTNL();
3020
3021 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3022 if (wiphy == &rdev->wiphy)
3023 continue;
3024 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025 }
3026}
3027
3028/* This processes *all* regulatory hints */
3029static void reg_process_hint(struct regulatory_request *reg_request)
3030{
3031 struct wiphy *wiphy = NULL;
3032 enum reg_request_treatment treatment;
3033 enum nl80211_reg_initiator initiator = reg_request->initiator;
3034
3035 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037
3038 switch (initiator) {
3039 case NL80211_REGDOM_SET_BY_CORE:
3040 treatment = reg_process_hint_core(reg_request);
3041 break;
3042 case NL80211_REGDOM_SET_BY_USER:
3043 treatment = reg_process_hint_user(reg_request);
3044 break;
3045 case NL80211_REGDOM_SET_BY_DRIVER:
3046 if (!wiphy)
3047 goto out_free;
3048 treatment = reg_process_hint_driver(wiphy, reg_request);
3049 break;
3050 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051 if (!wiphy)
3052 goto out_free;
3053 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054 break;
3055 default:
3056 WARN(1, "invalid initiator %d\n", initiator);
3057 goto out_free;
3058 }
3059
3060 if (treatment == REG_REQ_IGNORE)
3061 goto out_free;
3062
3063 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064 "unexpected treatment value %d\n", treatment);
3065
3066 /* This is required so that the orig_* parameters are saved.
3067 * NOTE: treatment must be set for any case that reaches here!
3068 */
3069 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071 wiphy_update_regulatory(wiphy, initiator);
3072 wiphy_all_share_dfs_chan_state(wiphy);
3073 reg_check_channels();
3074 }
3075
3076 return;
3077
3078out_free:
3079 reg_free_request(reg_request);
3080}
3081
3082static void notify_self_managed_wiphys(struct regulatory_request *request)
3083{
3084 struct cfg80211_registered_device *rdev;
3085 struct wiphy *wiphy;
3086
3087 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3088 wiphy = &rdev->wiphy;
3089 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090 request->initiator == NL80211_REGDOM_SET_BY_USER)
3091 reg_call_notifier(wiphy, request);
3092 }
3093}
3094
3095/*
3096 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097 * Regulatory hints come on a first come first serve basis and we
3098 * must process each one atomically.
3099 */
3100static void reg_process_pending_hints(void)
3101{
3102 struct regulatory_request *reg_request, *lr;
3103
3104 lr = get_last_request();
3105
3106 /* When last_request->processed becomes true this will be rescheduled */
3107 if (lr && !lr->processed) {
3108 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109 return;
3110 }
3111
3112 spin_lock(®_requests_lock);
3113
3114 if (list_empty(®_requests_list)) {
3115 spin_unlock(®_requests_lock);
3116 return;
3117 }
3118
3119 reg_request = list_first_entry(®_requests_list,
3120 struct regulatory_request,
3121 list);
3122 list_del_init(®_request->list);
3123
3124 spin_unlock(®_requests_lock);
3125
3126 notify_self_managed_wiphys(reg_request);
3127
3128 reg_process_hint(reg_request);
3129
3130 lr = get_last_request();
3131
3132 spin_lock(®_requests_lock);
3133 if (!list_empty(®_requests_list) && lr && lr->processed)
3134 schedule_work(®_work);
3135 spin_unlock(®_requests_lock);
3136}
3137
3138/* Processes beacon hints -- this has nothing to do with country IEs */
3139static void reg_process_pending_beacon_hints(void)
3140{
3141 struct cfg80211_registered_device *rdev;
3142 struct reg_beacon *pending_beacon, *tmp;
3143
3144 /* This goes through the _pending_ beacon list */
3145 spin_lock_bh(®_pending_beacons_lock);
3146
3147 list_for_each_entry_safe(pending_beacon, tmp,
3148 ®_pending_beacons, list) {
3149 list_del_init(&pending_beacon->list);
3150
3151 /* Applies the beacon hint to current wiphys */
3152 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3153 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154
3155 /* Remembers the beacon hint for new wiphys or reg changes */
3156 list_add_tail(&pending_beacon->list, ®_beacon_list);
3157 }
3158
3159 spin_unlock_bh(®_pending_beacons_lock);
3160}
3161
3162static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163{
3164 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165 const struct ieee80211_regdomain *tmp;
3166 const struct ieee80211_regdomain *regd;
3167 enum nl80211_band band;
3168 struct regulatory_request request = {};
3169
3170 ASSERT_RTNL();
3171 lockdep_assert_wiphy(wiphy);
3172
3173 spin_lock(®_requests_lock);
3174 regd = rdev->requested_regd;
3175 rdev->requested_regd = NULL;
3176 spin_unlock(®_requests_lock);
3177
3178 if (!regd)
3179 return;
3180
3181 tmp = get_wiphy_regdom(wiphy);
3182 rcu_assign_pointer(wiphy->regd, regd);
3183 rcu_free_regdom(tmp);
3184
3185 for (band = 0; band < NUM_NL80211_BANDS; band++)
3186 handle_band_custom(wiphy, wiphy->bands[band], regd);
3187
3188 reg_process_ht_flags(wiphy);
3189
3190 request.wiphy_idx = get_wiphy_idx(wiphy);
3191 request.alpha2[0] = regd->alpha2[0];
3192 request.alpha2[1] = regd->alpha2[1];
3193 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194
3195 nl80211_send_wiphy_reg_change_event(&request);
3196}
3197
3198static void reg_process_self_managed_hints(void)
3199{
3200 struct cfg80211_registered_device *rdev;
3201
3202 ASSERT_RTNL();
3203
3204 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3205 wiphy_lock(&rdev->wiphy);
3206 reg_process_self_managed_hint(&rdev->wiphy);
3207 wiphy_unlock(&rdev->wiphy);
3208 }
3209
3210 reg_check_channels();
3211}
3212
3213static void reg_todo(struct work_struct *work)
3214{
3215 rtnl_lock();
3216 reg_process_pending_hints();
3217 reg_process_pending_beacon_hints();
3218 reg_process_self_managed_hints();
3219 rtnl_unlock();
3220}
3221
3222static void queue_regulatory_request(struct regulatory_request *request)
3223{
3224 request->alpha2[0] = toupper(request->alpha2[0]);
3225 request->alpha2[1] = toupper(request->alpha2[1]);
3226
3227 spin_lock(®_requests_lock);
3228 list_add_tail(&request->list, ®_requests_list);
3229 spin_unlock(®_requests_lock);
3230
3231 schedule_work(®_work);
3232}
3233
3234/*
3235 * Core regulatory hint -- happens during cfg80211_init()
3236 * and when we restore regulatory settings.
3237 */
3238static int regulatory_hint_core(const char *alpha2)
3239{
3240 struct regulatory_request *request;
3241
3242 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243 if (!request)
3244 return -ENOMEM;
3245
3246 request->alpha2[0] = alpha2[0];
3247 request->alpha2[1] = alpha2[1];
3248 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3249 request->wiphy_idx = WIPHY_IDX_INVALID;
3250
3251 queue_regulatory_request(request);
3252
3253 return 0;
3254}
3255
3256/* User hints */
3257int regulatory_hint_user(const char *alpha2,
3258 enum nl80211_user_reg_hint_type user_reg_hint_type)
3259{
3260 struct regulatory_request *request;
3261
3262 if (WARN_ON(!alpha2))
3263 return -EINVAL;
3264
3265 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3266 return -EINVAL;
3267
3268 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3269 if (!request)
3270 return -ENOMEM;
3271
3272 request->wiphy_idx = WIPHY_IDX_INVALID;
3273 request->alpha2[0] = alpha2[0];
3274 request->alpha2[1] = alpha2[1];
3275 request->initiator = NL80211_REGDOM_SET_BY_USER;
3276 request->user_reg_hint_type = user_reg_hint_type;
3277
3278 /* Allow calling CRDA again */
3279 reset_crda_timeouts();
3280
3281 queue_regulatory_request(request);
3282
3283 return 0;
3284}
3285
3286int regulatory_hint_indoor(bool is_indoor, u32 portid)
3287{
3288 spin_lock(®_indoor_lock);
3289
3290 /* It is possible that more than one user space process is trying to
3291 * configure the indoor setting. To handle such cases, clear the indoor
3292 * setting in case that some process does not think that the device
3293 * is operating in an indoor environment. In addition, if a user space
3294 * process indicates that it is controlling the indoor setting, save its
3295 * portid, i.e., make it the owner.
3296 */
3297 reg_is_indoor = is_indoor;
3298 if (reg_is_indoor) {
3299 if (!reg_is_indoor_portid)
3300 reg_is_indoor_portid = portid;
3301 } else {
3302 reg_is_indoor_portid = 0;
3303 }
3304
3305 spin_unlock(®_indoor_lock);
3306
3307 if (!is_indoor)
3308 reg_check_channels();
3309
3310 return 0;
3311}
3312
3313void regulatory_netlink_notify(u32 portid)
3314{
3315 spin_lock(®_indoor_lock);
3316
3317 if (reg_is_indoor_portid != portid) {
3318 spin_unlock(®_indoor_lock);
3319 return;
3320 }
3321
3322 reg_is_indoor = false;
3323 reg_is_indoor_portid = 0;
3324
3325 spin_unlock(®_indoor_lock);
3326
3327 reg_check_channels();
3328}
3329
3330/* Driver hints */
3331int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3332{
3333 struct regulatory_request *request;
3334
3335 if (WARN_ON(!alpha2 || !wiphy))
3336 return -EINVAL;
3337
3338 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3339
3340 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3341 if (!request)
3342 return -ENOMEM;
3343
3344 request->wiphy_idx = get_wiphy_idx(wiphy);
3345
3346 request->alpha2[0] = alpha2[0];
3347 request->alpha2[1] = alpha2[1];
3348 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3349
3350 /* Allow calling CRDA again */
3351 reset_crda_timeouts();
3352
3353 queue_regulatory_request(request);
3354
3355 return 0;
3356}
3357EXPORT_SYMBOL(regulatory_hint);
3358
3359void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3360 const u8 *country_ie, u8 country_ie_len)
3361{
3362 char alpha2[2];
3363 enum environment_cap env = ENVIRON_ANY;
3364 struct regulatory_request *request = NULL, *lr;
3365
3366 /* IE len must be evenly divisible by 2 */
3367 if (country_ie_len & 0x01)
3368 return;
3369
3370 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3371 return;
3372
3373 request = kzalloc(sizeof(*request), GFP_KERNEL);
3374 if (!request)
3375 return;
3376
3377 alpha2[0] = country_ie[0];
3378 alpha2[1] = country_ie[1];
3379
3380 if (country_ie[2] == 'I')
3381 env = ENVIRON_INDOOR;
3382 else if (country_ie[2] == 'O')
3383 env = ENVIRON_OUTDOOR;
3384
3385 rcu_read_lock();
3386 lr = get_last_request();
3387
3388 if (unlikely(!lr))
3389 goto out;
3390
3391 /*
3392 * We will run this only upon a successful connection on cfg80211.
3393 * We leave conflict resolution to the workqueue, where can hold
3394 * the RTNL.
3395 */
3396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3397 lr->wiphy_idx != WIPHY_IDX_INVALID)
3398 goto out;
3399
3400 request->wiphy_idx = get_wiphy_idx(wiphy);
3401 request->alpha2[0] = alpha2[0];
3402 request->alpha2[1] = alpha2[1];
3403 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3404 request->country_ie_env = env;
3405
3406 /* Allow calling CRDA again */
3407 reset_crda_timeouts();
3408
3409 queue_regulatory_request(request);
3410 request = NULL;
3411out:
3412 kfree(request);
3413 rcu_read_unlock();
3414}
3415
3416static void restore_alpha2(char *alpha2, bool reset_user)
3417{
3418 /* indicates there is no alpha2 to consider for restoration */
3419 alpha2[0] = '9';
3420 alpha2[1] = '7';
3421
3422 /* The user setting has precedence over the module parameter */
3423 if (is_user_regdom_saved()) {
3424 /* Unless we're asked to ignore it and reset it */
3425 if (reset_user) {
3426 pr_debug("Restoring regulatory settings including user preference\n");
3427 user_alpha2[0] = '9';
3428 user_alpha2[1] = '7';
3429
3430 /*
3431 * If we're ignoring user settings, we still need to
3432 * check the module parameter to ensure we put things
3433 * back as they were for a full restore.
3434 */
3435 if (!is_world_regdom(ieee80211_regdom)) {
3436 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3437 ieee80211_regdom[0], ieee80211_regdom[1]);
3438 alpha2[0] = ieee80211_regdom[0];
3439 alpha2[1] = ieee80211_regdom[1];
3440 }
3441 } else {
3442 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3443 user_alpha2[0], user_alpha2[1]);
3444 alpha2[0] = user_alpha2[0];
3445 alpha2[1] = user_alpha2[1];
3446 }
3447 } else if (!is_world_regdom(ieee80211_regdom)) {
3448 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3449 ieee80211_regdom[0], ieee80211_regdom[1]);
3450 alpha2[0] = ieee80211_regdom[0];
3451 alpha2[1] = ieee80211_regdom[1];
3452 } else
3453 pr_debug("Restoring regulatory settings\n");
3454}
3455
3456static void restore_custom_reg_settings(struct wiphy *wiphy)
3457{
3458 struct ieee80211_supported_band *sband;
3459 enum nl80211_band band;
3460 struct ieee80211_channel *chan;
3461 int i;
3462
3463 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3464 sband = wiphy->bands[band];
3465 if (!sband)
3466 continue;
3467 for (i = 0; i < sband->n_channels; i++) {
3468 chan = &sband->channels[i];
3469 chan->flags = chan->orig_flags;
3470 chan->max_antenna_gain = chan->orig_mag;
3471 chan->max_power = chan->orig_mpwr;
3472 chan->beacon_found = false;
3473 }
3474 }
3475}
3476
3477/*
3478 * Restoring regulatory settings involves ignoring any
3479 * possibly stale country IE information and user regulatory
3480 * settings if so desired, this includes any beacon hints
3481 * learned as we could have traveled outside to another country
3482 * after disconnection. To restore regulatory settings we do
3483 * exactly what we did at bootup:
3484 *
3485 * - send a core regulatory hint
3486 * - send a user regulatory hint if applicable
3487 *
3488 * Device drivers that send a regulatory hint for a specific country
3489 * keep their own regulatory domain on wiphy->regd so that does
3490 * not need to be remembered.
3491 */
3492static void restore_regulatory_settings(bool reset_user, bool cached)
3493{
3494 char alpha2[2];
3495 char world_alpha2[2];
3496 struct reg_beacon *reg_beacon, *btmp;
3497 LIST_HEAD(tmp_reg_req_list);
3498 struct cfg80211_registered_device *rdev;
3499
3500 ASSERT_RTNL();
3501
3502 /*
3503 * Clear the indoor setting in case that it is not controlled by user
3504 * space, as otherwise there is no guarantee that the device is still
3505 * operating in an indoor environment.
3506 */
3507 spin_lock(®_indoor_lock);
3508 if (reg_is_indoor && !reg_is_indoor_portid) {
3509 reg_is_indoor = false;
3510 reg_check_channels();
3511 }
3512 spin_unlock(®_indoor_lock);
3513
3514 reset_regdomains(true, &world_regdom);
3515 restore_alpha2(alpha2, reset_user);
3516
3517 /*
3518 * If there's any pending requests we simply
3519 * stash them to a temporary pending queue and
3520 * add then after we've restored regulatory
3521 * settings.
3522 */
3523 spin_lock(®_requests_lock);
3524 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3525 spin_unlock(®_requests_lock);
3526
3527 /* Clear beacon hints */
3528 spin_lock_bh(®_pending_beacons_lock);
3529 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3530 list_del(®_beacon->list);
3531 kfree(reg_beacon);
3532 }
3533 spin_unlock_bh(®_pending_beacons_lock);
3534
3535 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3536 list_del(®_beacon->list);
3537 kfree(reg_beacon);
3538 }
3539
3540 /* First restore to the basic regulatory settings */
3541 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3542 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3543
3544 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3545 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3546 continue;
3547 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3548 restore_custom_reg_settings(&rdev->wiphy);
3549 }
3550
3551 if (cached && (!is_an_alpha2(alpha2) ||
3552 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3553 reset_regdomains(false, cfg80211_world_regdom);
3554 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3555 print_regdomain(get_cfg80211_regdom());
3556 nl80211_send_reg_change_event(&core_request_world);
3557 reg_set_request_processed();
3558
3559 if (is_an_alpha2(alpha2) &&
3560 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3561 struct regulatory_request *ureq;
3562
3563 spin_lock(®_requests_lock);
3564 ureq = list_last_entry(®_requests_list,
3565 struct regulatory_request,
3566 list);
3567 list_del(&ureq->list);
3568 spin_unlock(®_requests_lock);
3569
3570 notify_self_managed_wiphys(ureq);
3571 reg_update_last_request(ureq);
3572 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3573 REGD_SOURCE_CACHED);
3574 }
3575 } else {
3576 regulatory_hint_core(world_alpha2);
3577
3578 /*
3579 * This restores the ieee80211_regdom module parameter
3580 * preference or the last user requested regulatory
3581 * settings, user regulatory settings takes precedence.
3582 */
3583 if (is_an_alpha2(alpha2))
3584 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3585 }
3586
3587 spin_lock(®_requests_lock);
3588 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3589 spin_unlock(®_requests_lock);
3590
3591 pr_debug("Kicking the queue\n");
3592
3593 schedule_work(®_work);
3594}
3595
3596static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3597{
3598 struct cfg80211_registered_device *rdev;
3599 struct wireless_dev *wdev;
3600
3601 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3602 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3603 wdev_lock(wdev);
3604 if (!(wdev->wiphy->regulatory_flags & flag)) {
3605 wdev_unlock(wdev);
3606 return false;
3607 }
3608 wdev_unlock(wdev);
3609 }
3610 }
3611
3612 return true;
3613}
3614
3615void regulatory_hint_disconnect(void)
3616{
3617 /* Restore of regulatory settings is not required when wiphy(s)
3618 * ignore IE from connected access point but clearance of beacon hints
3619 * is required when wiphy(s) supports beacon hints.
3620 */
3621 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3622 struct reg_beacon *reg_beacon, *btmp;
3623
3624 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3625 return;
3626
3627 spin_lock_bh(®_pending_beacons_lock);
3628 list_for_each_entry_safe(reg_beacon, btmp,
3629 ®_pending_beacons, list) {
3630 list_del(®_beacon->list);
3631 kfree(reg_beacon);
3632 }
3633 spin_unlock_bh(®_pending_beacons_lock);
3634
3635 list_for_each_entry_safe(reg_beacon, btmp,
3636 ®_beacon_list, list) {
3637 list_del(®_beacon->list);
3638 kfree(reg_beacon);
3639 }
3640
3641 return;
3642 }
3643
3644 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3645 restore_regulatory_settings(false, true);
3646}
3647
3648static bool freq_is_chan_12_13_14(u32 freq)
3649{
3650 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3651 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3652 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3653 return true;
3654 return false;
3655}
3656
3657static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3658{
3659 struct reg_beacon *pending_beacon;
3660
3661 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3662 if (ieee80211_channel_equal(beacon_chan,
3663 &pending_beacon->chan))
3664 return true;
3665 return false;
3666}
3667
3668int regulatory_hint_found_beacon(struct wiphy *wiphy,
3669 struct ieee80211_channel *beacon_chan,
3670 gfp_t gfp)
3671{
3672 struct reg_beacon *reg_beacon;
3673 bool processing;
3674
3675 if (beacon_chan->beacon_found ||
3676 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3677 (beacon_chan->band == NL80211_BAND_2GHZ &&
3678 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3679 return 0;
3680
3681 spin_lock_bh(®_pending_beacons_lock);
3682 processing = pending_reg_beacon(beacon_chan);
3683 spin_unlock_bh(®_pending_beacons_lock);
3684
3685 if (processing)
3686 return 0;
3687
3688 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3689 if (!reg_beacon)
3690 return -ENOMEM;
3691
3692 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3693 beacon_chan->center_freq, beacon_chan->freq_offset,
3694 ieee80211_freq_khz_to_channel(
3695 ieee80211_channel_to_khz(beacon_chan)),
3696 wiphy_name(wiphy));
3697
3698 memcpy(®_beacon->chan, beacon_chan,
3699 sizeof(struct ieee80211_channel));
3700
3701 /*
3702 * Since we can be called from BH or and non-BH context
3703 * we must use spin_lock_bh()
3704 */
3705 spin_lock_bh(®_pending_beacons_lock);
3706 list_add_tail(®_beacon->list, ®_pending_beacons);
3707 spin_unlock_bh(®_pending_beacons_lock);
3708
3709 schedule_work(®_work);
3710
3711 return 0;
3712}
3713
3714static void print_rd_rules(const struct ieee80211_regdomain *rd)
3715{
3716 unsigned int i;
3717 const struct ieee80211_reg_rule *reg_rule = NULL;
3718 const struct ieee80211_freq_range *freq_range = NULL;
3719 const struct ieee80211_power_rule *power_rule = NULL;
3720 char bw[32], cac_time[32];
3721
3722 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3723
3724 for (i = 0; i < rd->n_reg_rules; i++) {
3725 reg_rule = &rd->reg_rules[i];
3726 freq_range = ®_rule->freq_range;
3727 power_rule = ®_rule->power_rule;
3728
3729 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3730 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3731 freq_range->max_bandwidth_khz,
3732 reg_get_max_bandwidth(rd, reg_rule));
3733 else
3734 snprintf(bw, sizeof(bw), "%d KHz",
3735 freq_range->max_bandwidth_khz);
3736
3737 if (reg_rule->flags & NL80211_RRF_DFS)
3738 scnprintf(cac_time, sizeof(cac_time), "%u s",
3739 reg_rule->dfs_cac_ms/1000);
3740 else
3741 scnprintf(cac_time, sizeof(cac_time), "N/A");
3742
3743
3744 /*
3745 * There may not be documentation for max antenna gain
3746 * in certain regions
3747 */
3748 if (power_rule->max_antenna_gain)
3749 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3750 freq_range->start_freq_khz,
3751 freq_range->end_freq_khz,
3752 bw,
3753 power_rule->max_antenna_gain,
3754 power_rule->max_eirp,
3755 cac_time);
3756 else
3757 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3758 freq_range->start_freq_khz,
3759 freq_range->end_freq_khz,
3760 bw,
3761 power_rule->max_eirp,
3762 cac_time);
3763 }
3764}
3765
3766bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3767{
3768 switch (dfs_region) {
3769 case NL80211_DFS_UNSET:
3770 case NL80211_DFS_FCC:
3771 case NL80211_DFS_ETSI:
3772 case NL80211_DFS_JP:
3773 return true;
3774 default:
3775 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3776 return false;
3777 }
3778}
3779
3780static void print_regdomain(const struct ieee80211_regdomain *rd)
3781{
3782 struct regulatory_request *lr = get_last_request();
3783
3784 if (is_intersected_alpha2(rd->alpha2)) {
3785 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3786 struct cfg80211_registered_device *rdev;
3787 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3788 if (rdev) {
3789 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3790 rdev->country_ie_alpha2[0],
3791 rdev->country_ie_alpha2[1]);
3792 } else
3793 pr_debug("Current regulatory domain intersected:\n");
3794 } else
3795 pr_debug("Current regulatory domain intersected:\n");
3796 } else if (is_world_regdom(rd->alpha2)) {
3797 pr_debug("World regulatory domain updated:\n");
3798 } else {
3799 if (is_unknown_alpha2(rd->alpha2))
3800 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3801 else {
3802 if (reg_request_cell_base(lr))
3803 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3804 rd->alpha2[0], rd->alpha2[1]);
3805 else
3806 pr_debug("Regulatory domain changed to country: %c%c\n",
3807 rd->alpha2[0], rd->alpha2[1]);
3808 }
3809 }
3810
3811 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3812 print_rd_rules(rd);
3813}
3814
3815static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3816{
3817 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3818 print_rd_rules(rd);
3819}
3820
3821static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3822{
3823 if (!is_world_regdom(rd->alpha2))
3824 return -EINVAL;
3825 update_world_regdomain(rd);
3826 return 0;
3827}
3828
3829static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3830 struct regulatory_request *user_request)
3831{
3832 const struct ieee80211_regdomain *intersected_rd = NULL;
3833
3834 if (!regdom_changes(rd->alpha2))
3835 return -EALREADY;
3836
3837 if (!is_valid_rd(rd)) {
3838 pr_err("Invalid regulatory domain detected: %c%c\n",
3839 rd->alpha2[0], rd->alpha2[1]);
3840 print_regdomain_info(rd);
3841 return -EINVAL;
3842 }
3843
3844 if (!user_request->intersect) {
3845 reset_regdomains(false, rd);
3846 return 0;
3847 }
3848
3849 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3850 if (!intersected_rd)
3851 return -EINVAL;
3852
3853 kfree(rd);
3854 rd = NULL;
3855 reset_regdomains(false, intersected_rd);
3856
3857 return 0;
3858}
3859
3860static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3861 struct regulatory_request *driver_request)
3862{
3863 const struct ieee80211_regdomain *regd;
3864 const struct ieee80211_regdomain *intersected_rd = NULL;
3865 const struct ieee80211_regdomain *tmp;
3866 struct wiphy *request_wiphy;
3867
3868 if (is_world_regdom(rd->alpha2))
3869 return -EINVAL;
3870
3871 if (!regdom_changes(rd->alpha2))
3872 return -EALREADY;
3873
3874 if (!is_valid_rd(rd)) {
3875 pr_err("Invalid regulatory domain detected: %c%c\n",
3876 rd->alpha2[0], rd->alpha2[1]);
3877 print_regdomain_info(rd);
3878 return -EINVAL;
3879 }
3880
3881 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3882 if (!request_wiphy)
3883 return -ENODEV;
3884
3885 if (!driver_request->intersect) {
3886 ASSERT_RTNL();
3887 wiphy_lock(request_wiphy);
3888 if (request_wiphy->regd) {
3889 wiphy_unlock(request_wiphy);
3890 return -EALREADY;
3891 }
3892
3893 regd = reg_copy_regd(rd);
3894 if (IS_ERR(regd)) {
3895 wiphy_unlock(request_wiphy);
3896 return PTR_ERR(regd);
3897 }
3898
3899 rcu_assign_pointer(request_wiphy->regd, regd);
3900 wiphy_unlock(request_wiphy);
3901 reset_regdomains(false, rd);
3902 return 0;
3903 }
3904
3905 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3906 if (!intersected_rd)
3907 return -EINVAL;
3908
3909 /*
3910 * We can trash what CRDA provided now.
3911 * However if a driver requested this specific regulatory
3912 * domain we keep it for its private use
3913 */
3914 tmp = get_wiphy_regdom(request_wiphy);
3915 rcu_assign_pointer(request_wiphy->regd, rd);
3916 rcu_free_regdom(tmp);
3917
3918 rd = NULL;
3919
3920 reset_regdomains(false, intersected_rd);
3921
3922 return 0;
3923}
3924
3925static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3926 struct regulatory_request *country_ie_request)
3927{
3928 struct wiphy *request_wiphy;
3929
3930 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3931 !is_unknown_alpha2(rd->alpha2))
3932 return -EINVAL;
3933
3934 /*
3935 * Lets only bother proceeding on the same alpha2 if the current
3936 * rd is non static (it means CRDA was present and was used last)
3937 * and the pending request came in from a country IE
3938 */
3939
3940 if (!is_valid_rd(rd)) {
3941 pr_err("Invalid regulatory domain detected: %c%c\n",
3942 rd->alpha2[0], rd->alpha2[1]);
3943 print_regdomain_info(rd);
3944 return -EINVAL;
3945 }
3946
3947 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3948 if (!request_wiphy)
3949 return -ENODEV;
3950
3951 if (country_ie_request->intersect)
3952 return -EINVAL;
3953
3954 reset_regdomains(false, rd);
3955 return 0;
3956}
3957
3958/*
3959 * Use this call to set the current regulatory domain. Conflicts with
3960 * multiple drivers can be ironed out later. Caller must've already
3961 * kmalloc'd the rd structure.
3962 */
3963int set_regdom(const struct ieee80211_regdomain *rd,
3964 enum ieee80211_regd_source regd_src)
3965{
3966 struct regulatory_request *lr;
3967 bool user_reset = false;
3968 int r;
3969
3970 if (IS_ERR_OR_NULL(rd))
3971 return -ENODATA;
3972
3973 if (!reg_is_valid_request(rd->alpha2)) {
3974 kfree(rd);
3975 return -EINVAL;
3976 }
3977
3978 if (regd_src == REGD_SOURCE_CRDA)
3979 reset_crda_timeouts();
3980
3981 lr = get_last_request();
3982
3983 /* Note that this doesn't update the wiphys, this is done below */
3984 switch (lr->initiator) {
3985 case NL80211_REGDOM_SET_BY_CORE:
3986 r = reg_set_rd_core(rd);
3987 break;
3988 case NL80211_REGDOM_SET_BY_USER:
3989 cfg80211_save_user_regdom(rd);
3990 r = reg_set_rd_user(rd, lr);
3991 user_reset = true;
3992 break;
3993 case NL80211_REGDOM_SET_BY_DRIVER:
3994 r = reg_set_rd_driver(rd, lr);
3995 break;
3996 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3997 r = reg_set_rd_country_ie(rd, lr);
3998 break;
3999 default:
4000 WARN(1, "invalid initiator %d\n", lr->initiator);
4001 kfree(rd);
4002 return -EINVAL;
4003 }
4004
4005 if (r) {
4006 switch (r) {
4007 case -EALREADY:
4008 reg_set_request_processed();
4009 break;
4010 default:
4011 /* Back to world regulatory in case of errors */
4012 restore_regulatory_settings(user_reset, false);
4013 }
4014
4015 kfree(rd);
4016 return r;
4017 }
4018
4019 /* This would make this whole thing pointless */
4020 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4021 return -EINVAL;
4022
4023 /* update all wiphys now with the new established regulatory domain */
4024 update_all_wiphy_regulatory(lr->initiator);
4025
4026 print_regdomain(get_cfg80211_regdom());
4027
4028 nl80211_send_reg_change_event(lr);
4029
4030 reg_set_request_processed();
4031
4032 return 0;
4033}
4034
4035static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036 struct ieee80211_regdomain *rd)
4037{
4038 const struct ieee80211_regdomain *regd;
4039 const struct ieee80211_regdomain *prev_regd;
4040 struct cfg80211_registered_device *rdev;
4041
4042 if (WARN_ON(!wiphy || !rd))
4043 return -EINVAL;
4044
4045 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4046 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047 return -EPERM;
4048
4049 if (WARN(!is_valid_rd(rd),
4050 "Invalid regulatory domain detected: %c%c\n",
4051 rd->alpha2[0], rd->alpha2[1])) {
4052 print_regdomain_info(rd);
4053 return -EINVAL;
4054 }
4055
4056 regd = reg_copy_regd(rd);
4057 if (IS_ERR(regd))
4058 return PTR_ERR(regd);
4059
4060 rdev = wiphy_to_rdev(wiphy);
4061
4062 spin_lock(®_requests_lock);
4063 prev_regd = rdev->requested_regd;
4064 rdev->requested_regd = regd;
4065 spin_unlock(®_requests_lock);
4066
4067 kfree(prev_regd);
4068 return 0;
4069}
4070
4071int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4072 struct ieee80211_regdomain *rd)
4073{
4074 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4075
4076 if (ret)
4077 return ret;
4078
4079 schedule_work(®_work);
4080 return 0;
4081}
4082EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4083
4084int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4085 struct ieee80211_regdomain *rd)
4086{
4087 int ret;
4088
4089 ASSERT_RTNL();
4090
4091 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4092 if (ret)
4093 return ret;
4094
4095 /* process the request immediately */
4096 reg_process_self_managed_hint(wiphy);
4097 reg_check_channels();
4098 return 0;
4099}
4100EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4101
4102void wiphy_regulatory_register(struct wiphy *wiphy)
4103{
4104 struct regulatory_request *lr = get_last_request();
4105
4106 /* self-managed devices ignore beacon hints and country IE */
4107 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4108 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4109 REGULATORY_COUNTRY_IE_IGNORE;
4110
4111 /*
4112 * The last request may have been received before this
4113 * registration call. Call the driver notifier if
4114 * initiator is USER.
4115 */
4116 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4117 reg_call_notifier(wiphy, lr);
4118 }
4119
4120 if (!reg_dev_ignore_cell_hint(wiphy))
4121 reg_num_devs_support_basehint++;
4122
4123 wiphy_update_regulatory(wiphy, lr->initiator);
4124 wiphy_all_share_dfs_chan_state(wiphy);
4125 reg_process_self_managed_hints();
4126}
4127
4128void wiphy_regulatory_deregister(struct wiphy *wiphy)
4129{
4130 struct wiphy *request_wiphy = NULL;
4131 struct regulatory_request *lr;
4132
4133 lr = get_last_request();
4134
4135 if (!reg_dev_ignore_cell_hint(wiphy))
4136 reg_num_devs_support_basehint--;
4137
4138 rcu_free_regdom(get_wiphy_regdom(wiphy));
4139 RCU_INIT_POINTER(wiphy->regd, NULL);
4140
4141 if (lr)
4142 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4143
4144 if (!request_wiphy || request_wiphy != wiphy)
4145 return;
4146
4147 lr->wiphy_idx = WIPHY_IDX_INVALID;
4148 lr->country_ie_env = ENVIRON_ANY;
4149}
4150
4151/*
4152 * See FCC notices for UNII band definitions
4153 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4154 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4155 */
4156int cfg80211_get_unii(int freq)
4157{
4158 /* UNII-1 */
4159 if (freq >= 5150 && freq <= 5250)
4160 return 0;
4161
4162 /* UNII-2A */
4163 if (freq > 5250 && freq <= 5350)
4164 return 1;
4165
4166 /* UNII-2B */
4167 if (freq > 5350 && freq <= 5470)
4168 return 2;
4169
4170 /* UNII-2C */
4171 if (freq > 5470 && freq <= 5725)
4172 return 3;
4173
4174 /* UNII-3 */
4175 if (freq > 5725 && freq <= 5825)
4176 return 4;
4177
4178 /* UNII-5 */
4179 if (freq > 5925 && freq <= 6425)
4180 return 5;
4181
4182 /* UNII-6 */
4183 if (freq > 6425 && freq <= 6525)
4184 return 6;
4185
4186 /* UNII-7 */
4187 if (freq > 6525 && freq <= 6875)
4188 return 7;
4189
4190 /* UNII-8 */
4191 if (freq > 6875 && freq <= 7125)
4192 return 8;
4193
4194 return -EINVAL;
4195}
4196
4197bool regulatory_indoor_allowed(void)
4198{
4199 return reg_is_indoor;
4200}
4201
4202bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4203{
4204 const struct ieee80211_regdomain *regd = NULL;
4205 const struct ieee80211_regdomain *wiphy_regd = NULL;
4206 bool pre_cac_allowed = false;
4207
4208 rcu_read_lock();
4209
4210 regd = rcu_dereference(cfg80211_regdomain);
4211 wiphy_regd = rcu_dereference(wiphy->regd);
4212 if (!wiphy_regd) {
4213 if (regd->dfs_region == NL80211_DFS_ETSI)
4214 pre_cac_allowed = true;
4215
4216 rcu_read_unlock();
4217
4218 return pre_cac_allowed;
4219 }
4220
4221 if (regd->dfs_region == wiphy_regd->dfs_region &&
4222 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4223 pre_cac_allowed = true;
4224
4225 rcu_read_unlock();
4226
4227 return pre_cac_allowed;
4228}
4229EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4230
4231static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4232{
4233 struct wireless_dev *wdev;
4234 /* If we finished CAC or received radar, we should end any
4235 * CAC running on the same channels.
4236 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 * either all channels are available - those the CAC_FINISHED
4238 * event has effected another wdev state, or there is a channel
4239 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 * event has effected another wdev state.
4241 * In both cases we should end the CAC on the wdev.
4242 */
4243 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244 struct cfg80211_chan_def *chandef;
4245
4246 if (!wdev->cac_started)
4247 continue;
4248
4249 /* FIXME: radar detection is tied to link 0 for now */
4250 chandef = wdev_chandef(wdev, 0);
4251 if (!chandef)
4252 continue;
4253
4254 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255 rdev_end_cac(rdev, wdev->netdev);
4256 }
4257}
4258
4259void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4260 struct cfg80211_chan_def *chandef,
4261 enum nl80211_dfs_state dfs_state,
4262 enum nl80211_radar_event event)
4263{
4264 struct cfg80211_registered_device *rdev;
4265
4266 ASSERT_RTNL();
4267
4268 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4269 return;
4270
4271 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4272 if (wiphy == &rdev->wiphy)
4273 continue;
4274
4275 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4276 continue;
4277
4278 if (!ieee80211_get_channel(&rdev->wiphy,
4279 chandef->chan->center_freq))
4280 continue;
4281
4282 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4283
4284 if (event == NL80211_RADAR_DETECTED ||
4285 event == NL80211_RADAR_CAC_FINISHED) {
4286 cfg80211_sched_dfs_chan_update(rdev);
4287 cfg80211_check_and_end_cac(rdev);
4288 }
4289
4290 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4291 }
4292}
4293
4294static int __init regulatory_init_db(void)
4295{
4296 int err;
4297
4298 /*
4299 * It's possible that - due to other bugs/issues - cfg80211
4300 * never called regulatory_init() below, or that it failed;
4301 * in that case, don't try to do any further work here as
4302 * it's doomed to lead to crashes.
4303 */
4304 if (IS_ERR_OR_NULL(reg_pdev))
4305 return -EINVAL;
4306
4307 err = load_builtin_regdb_keys();
4308 if (err)
4309 return err;
4310
4311 /* We always try to get an update for the static regdomain */
4312 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4313 if (err) {
4314 if (err == -ENOMEM) {
4315 platform_device_unregister(reg_pdev);
4316 return err;
4317 }
4318 /*
4319 * N.B. kobject_uevent_env() can fail mainly for when we're out
4320 * memory which is handled and propagated appropriately above
4321 * but it can also fail during a netlink_broadcast() or during
4322 * early boot for call_usermodehelper(). For now treat these
4323 * errors as non-fatal.
4324 */
4325 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4326 }
4327
4328 /*
4329 * Finally, if the user set the module parameter treat it
4330 * as a user hint.
4331 */
4332 if (!is_world_regdom(ieee80211_regdom))
4333 regulatory_hint_user(ieee80211_regdom,
4334 NL80211_USER_REG_HINT_USER);
4335
4336 return 0;
4337}
4338#ifndef MODULE
4339late_initcall(regulatory_init_db);
4340#endif
4341
4342int __init regulatory_init(void)
4343{
4344 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4345 if (IS_ERR(reg_pdev))
4346 return PTR_ERR(reg_pdev);
4347
4348 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4349
4350 user_alpha2[0] = '9';
4351 user_alpha2[1] = '7';
4352
4353#ifdef MODULE
4354 return regulatory_init_db();
4355#else
4356 return 0;
4357#endif
4358}
4359
4360void regulatory_exit(void)
4361{
4362 struct regulatory_request *reg_request, *tmp;
4363 struct reg_beacon *reg_beacon, *btmp;
4364
4365 cancel_work_sync(®_work);
4366 cancel_crda_timeout_sync();
4367 cancel_delayed_work_sync(®_check_chans);
4368
4369 /* Lock to suppress warnings */
4370 rtnl_lock();
4371 reset_regdomains(true, NULL);
4372 rtnl_unlock();
4373
4374 dev_set_uevent_suppress(®_pdev->dev, true);
4375
4376 platform_device_unregister(reg_pdev);
4377
4378 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4379 list_del(®_beacon->list);
4380 kfree(reg_beacon);
4381 }
4382
4383 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4384 list_del(®_beacon->list);
4385 kfree(reg_beacon);
4386 }
4387
4388 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4389 list_del(®_request->list);
4390 kfree(reg_request);
4391 }
4392
4393 if (!IS_ERR_OR_NULL(regdb))
4394 kfree(regdb);
4395 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4396 kfree(cfg80211_user_regdom);
4397
4398 free_regdb_keyring();
4399}