Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1.. SPDX-License-Identifier: GPL-2.0
2
3Writing Tests
4=============
5
6Test Cases
7----------
8
9The fundamental unit in KUnit is the test case. A test case is a function with
10the signature ``void (*)(struct kunit *test)``. It calls the function under test
11and then sets *expectations* for what should happen. For example:
12
13.. code-block:: c
14
15 void example_test_success(struct kunit *test)
16 {
17 }
18
19 void example_test_failure(struct kunit *test)
20 {
21 KUNIT_FAIL(test, "This test never passes.");
22 }
23
24In the above example, ``example_test_success`` always passes because it does
25nothing; no expectations are set, and therefore all expectations pass. On the
26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``,
27which is a special expectation that logs a message and causes the test case to
28fail.
29
30Expectations
31~~~~~~~~~~~~
32An *expectation* specifies that we expect a piece of code to do something in a
33test. An expectation is called like a function. A test is made by setting
34expectations about the behavior of a piece of code under test. When one or more
35expectations fail, the test case fails and information about the failure is
36logged. For example:
37
38.. code-block:: c
39
40 void add_test_basic(struct kunit *test)
41 {
42 KUNIT_EXPECT_EQ(test, 1, add(1, 0));
43 KUNIT_EXPECT_EQ(test, 2, add(1, 1));
44 }
45
46In the above example, ``add_test_basic`` makes a number of assertions about the
47behavior of a function called ``add``. The first parameter is always of type
48``struct kunit *``, which contains information about the current test context.
49The second parameter, in this case, is what the value is expected to be. The
50last value is what the value actually is. If ``add`` passes all of these
51expectations, the test case, ``add_test_basic`` will pass; if any one of these
52expectations fails, the test case will fail.
53
54A test case *fails* when any expectation is violated; however, the test will
55continue to run, and try other expectations until the test case ends or is
56otherwise terminated. This is as opposed to *assertions* which are discussed
57later.
58
59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst.
60
61.. note::
62 A single test case should be short, easy to understand, and focused on a
63 single behavior.
64
65For example, if we want to rigorously test the ``add`` function above, create
66additional tests cases which would test each property that an ``add`` function
67should have as shown below:
68
69.. code-block:: c
70
71 void add_test_basic(struct kunit *test)
72 {
73 KUNIT_EXPECT_EQ(test, 1, add(1, 0));
74 KUNIT_EXPECT_EQ(test, 2, add(1, 1));
75 }
76
77 void add_test_negative(struct kunit *test)
78 {
79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
80 }
81
82 void add_test_max(struct kunit *test)
83 {
84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
86 }
87
88 void add_test_overflow(struct kunit *test)
89 {
90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
91 }
92
93Assertions
94~~~~~~~~~~
95
96An assertion is like an expectation, except that the assertion immediately
97terminates the test case if the condition is not satisfied. For example:
98
99.. code-block:: c
100
101 static void test_sort(struct kunit *test)
102 {
103 int *a, i, r = 1;
104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL);
105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a);
106 for (i = 0; i < TEST_LEN; i++) {
107 r = (r * 725861) % 6599;
108 a[i] = r;
109 }
110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL);
111 for (i = 0; i < TEST_LEN-1; i++)
112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]);
113 }
114
115In this example, the method under test should return pointer to a value. If the
116pointer returns null or an errno, we want to stop the test since the following
117expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us
118to bail out of the test case if the appropriate conditions are not satisfied to
119complete the test.
120
121Test Suites
122~~~~~~~~~~~
123
124We need many test cases covering all the unit's behaviors. It is common to have
125many similar tests. In order to reduce duplication in these closely related
126tests, most unit testing frameworks (including KUnit) provide the concept of a
127*test suite*. A test suite is a collection of test cases for a unit of code
128with optional setup and teardown functions that run before/after the whole
129suite and/or every test case. For example:
130
131.. code-block:: c
132
133 static struct kunit_case example_test_cases[] = {
134 KUNIT_CASE(example_test_foo),
135 KUNIT_CASE(example_test_bar),
136 KUNIT_CASE(example_test_baz),
137 {}
138 };
139
140 static struct kunit_suite example_test_suite = {
141 .name = "example",
142 .init = example_test_init,
143 .exit = example_test_exit,
144 .suite_init = example_suite_init,
145 .suite_exit = example_suite_exit,
146 .test_cases = example_test_cases,
147 };
148 kunit_test_suite(example_test_suite);
149
150In the above example, the test suite ``example_test_suite`` would first run
151``example_suite_init``, then run the test cases ``example_test_foo``,
152``example_test_bar``, and ``example_test_baz``. Each would have
153``example_test_init`` called immediately before it and ``example_test_exit``
154called immediately after it. Finally, ``example_suite_exit`` would be called
155after everything else. ``kunit_test_suite(example_test_suite)`` registers the
156test suite with the KUnit test framework.
157
158.. note::
159 A test case will only run if it is associated with a test suite.
160
161``kunit_test_suite(...)`` is a macro which tells the linker to put the
162specified test suite in a special linker section so that it can be run by KUnit
163either after ``late_init``, or when the test module is loaded (if the test was
164built as a module).
165
166For more information, see Documentation/dev-tools/kunit/api/test.rst.
167
168.. _kunit-on-non-uml:
169
170Writing Tests For Other Architectures
171-------------------------------------
172
173It is better to write tests that run on UML to tests that only run under a
174particular architecture. It is better to write tests that run under QEMU or
175another easy to obtain (and monetarily free) software environment to a specific
176piece of hardware.
177
178Nevertheless, there are still valid reasons to write a test that is architecture
179or hardware specific. For example, we might want to test code that really
180belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does
181not depend on physical hardware. Some of our test cases may not need hardware,
182only few tests actually require the hardware to test it. When hardware is not
183available, instead of disabling tests, we can skip them.
184
185Now that we have narrowed down exactly what bits are hardware specific, the
186actual procedure for writing and running the tests is same as writing normal
187KUnit tests.
188
189.. important::
190 We may have to reset hardware state. If this is not possible, we may only
191 be able to run one test case per invocation.
192
193.. TODO(brendanhiggins@google.com): Add an actual example of an architecture-
194 dependent KUnit test.
195
196Common Patterns
197===============
198
199Isolating Behavior
200------------------
201
202Unit testing limits the amount of code under test to a single unit. It controls
203what code gets run when the unit under test calls a function. Where a function
204is exposed as part of an API such that the definition of that function can be
205changed without affecting the rest of the code base. In the kernel, this comes
206from two constructs: classes, which are structs that contain function pointers
207provided by the implementer, and architecture-specific functions, which have
208definitions selected at compile time.
209
210Classes
211~~~~~~~
212
213Classes are not a construct that is built into the C programming language;
214however, it is an easily derived concept. Accordingly, in most cases, every
215project that does not use a standardized object oriented library (like GNOME's
216GObject) has their own slightly different way of doing object oriented
217programming; the Linux kernel is no exception.
218
219The central concept in kernel object oriented programming is the class. In the
220kernel, a *class* is a struct that contains function pointers. This creates a
221contract between *implementers* and *users* since it forces them to use the
222same function signature without having to call the function directly. To be a
223class, the function pointers must specify that a pointer to the class, known as
224a *class handle*, be one of the parameters. Thus the member functions (also
225known as *methods*) have access to member variables (also known as *fields*)
226allowing the same implementation to have multiple *instances*.
227
228A class can be *overridden* by *child classes* by embedding the *parent class*
229in the child class. Then when the child class *method* is called, the child
230implementation knows that the pointer passed to it is of a parent contained
231within the child. Thus, the child can compute the pointer to itself because the
232pointer to the parent is always a fixed offset from the pointer to the child.
233This offset is the offset of the parent contained in the child struct. For
234example:
235
236.. code-block:: c
237
238 struct shape {
239 int (*area)(struct shape *this);
240 };
241
242 struct rectangle {
243 struct shape parent;
244 int length;
245 int width;
246 };
247
248 int rectangle_area(struct shape *this)
249 {
250 struct rectangle *self = container_of(this, struct rectangle, parent);
251
252 return self->length * self->width;
253 };
254
255 void rectangle_new(struct rectangle *self, int length, int width)
256 {
257 self->parent.area = rectangle_area;
258 self->length = length;
259 self->width = width;
260 }
261
262In this example, computing the pointer to the child from the pointer to the
263parent is done by ``container_of``.
264
265Faking Classes
266~~~~~~~~~~~~~~
267
268In order to unit test a piece of code that calls a method in a class, the
269behavior of the method must be controllable, otherwise the test ceases to be a
270unit test and becomes an integration test.
271
272A fake class implements a piece of code that is different than what runs in a
273production instance, but behaves identical from the standpoint of the callers.
274This is done to replace a dependency that is hard to deal with, or is slow. For
275example, implementing a fake EEPROM that stores the "contents" in an
276internal buffer. Assume we have a class that represents an EEPROM:
277
278.. code-block:: c
279
280 struct eeprom {
281 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
282 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
283 };
284
285And we want to test code that buffers writes to the EEPROM:
286
287.. code-block:: c
288
289 struct eeprom_buffer {
290 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
291 int flush(struct eeprom_buffer *this);
292 size_t flush_count; /* Flushes when buffer exceeds flush_count. */
293 };
294
295 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
296 void destroy_eeprom_buffer(struct eeprom *eeprom);
297
298We can test this code by *faking out* the underlying EEPROM:
299
300.. code-block:: c
301
302 struct fake_eeprom {
303 struct eeprom parent;
304 char contents[FAKE_EEPROM_CONTENTS_SIZE];
305 };
306
307 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
308 {
309 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
310
311 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
312 memcpy(buffer, this->contents + offset, count);
313
314 return count;
315 }
316
317 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
318 {
319 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
320
321 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
322 memcpy(this->contents + offset, buffer, count);
323
324 return count;
325 }
326
327 void fake_eeprom_init(struct fake_eeprom *this)
328 {
329 this->parent.read = fake_eeprom_read;
330 this->parent.write = fake_eeprom_write;
331 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
332 }
333
334We can now use it to test ``struct eeprom_buffer``:
335
336.. code-block:: c
337
338 struct eeprom_buffer_test {
339 struct fake_eeprom *fake_eeprom;
340 struct eeprom_buffer *eeprom_buffer;
341 };
342
343 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
344 {
345 struct eeprom_buffer_test *ctx = test->priv;
346 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
347 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
348 char buffer[] = {0xff};
349
350 eeprom_buffer->flush_count = SIZE_MAX;
351
352 eeprom_buffer->write(eeprom_buffer, buffer, 1);
353 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
354
355 eeprom_buffer->write(eeprom_buffer, buffer, 1);
356 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
357
358 eeprom_buffer->flush(eeprom_buffer);
359 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
360 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
361 }
362
363 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
364 {
365 struct eeprom_buffer_test *ctx = test->priv;
366 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
367 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
368 char buffer[] = {0xff};
369
370 eeprom_buffer->flush_count = 2;
371
372 eeprom_buffer->write(eeprom_buffer, buffer, 1);
373 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
374
375 eeprom_buffer->write(eeprom_buffer, buffer, 1);
376 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
377 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
378 }
379
380 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
381 {
382 struct eeprom_buffer_test *ctx = test->priv;
383 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
384 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
385 char buffer[] = {0xff, 0xff};
386
387 eeprom_buffer->flush_count = 2;
388
389 eeprom_buffer->write(eeprom_buffer, buffer, 1);
390 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
391
392 eeprom_buffer->write(eeprom_buffer, buffer, 2);
393 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
394 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
395 /* Should have only flushed the first two bytes. */
396 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
397 }
398
399 static int eeprom_buffer_test_init(struct kunit *test)
400 {
401 struct eeprom_buffer_test *ctx;
402
403 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
404 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
405
406 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
407 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
408 fake_eeprom_init(ctx->fake_eeprom);
409
410 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
411 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
412
413 test->priv = ctx;
414
415 return 0;
416 }
417
418 static void eeprom_buffer_test_exit(struct kunit *test)
419 {
420 struct eeprom_buffer_test *ctx = test->priv;
421
422 destroy_eeprom_buffer(ctx->eeprom_buffer);
423 }
424
425Testing Against Multiple Inputs
426-------------------------------
427
428Testing just a few inputs is not enough to ensure that the code works correctly,
429for example: testing a hash function.
430
431We can write a helper macro or function. The function is called for each input.
432For example, to test ``sha1sum(1)``, we can write:
433
434.. code-block:: c
435
436 #define TEST_SHA1(in, want) \
437 sha1sum(in, out); \
438 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in);
439
440 char out[40];
441 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed");
442 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169");
443
444Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more
445detailed error and make the assertions clearer within the helper macros.
446
447The ``_MSG`` variants are useful when the same expectation is called multiple
448times (in a loop or helper function) and thus the line number is not enough to
449identify what failed, as shown below.
450
451In complicated cases, we recommend using a *table-driven test* compared to the
452helper macro variation, for example:
453
454.. code-block:: c
455
456 int i;
457 char out[40];
458
459 struct sha1_test_case {
460 const char *str;
461 const char *sha1;
462 };
463
464 struct sha1_test_case cases[] = {
465 {
466 .str = "hello world",
467 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
468 },
469 {
470 .str = "hello world!",
471 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
472 },
473 };
474 for (i = 0; i < ARRAY_SIZE(cases); ++i) {
475 sha1sum(cases[i].str, out);
476 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1,
477 "sha1sum(%s)", cases[i].str);
478 }
479
480
481There is more boilerplate code involved, but it can:
482
483* be more readable when there are multiple inputs/outputs (due to field names).
484
485 * For example, see ``fs/ext4/inode-test.c``.
486
487* reduce duplication if test cases are shared across multiple tests.
488
489 * For example: if we want to test ``sha256sum``, we could add a ``sha256``
490 field and reuse ``cases``.
491
492* be converted to a "parameterized test".
493
494Parameterized Testing
495~~~~~~~~~~~~~~~~~~~~~
496
497The table-driven testing pattern is common enough that KUnit has special
498support for it.
499
500By reusing the same ``cases`` array from above, we can write the test as a
501"parameterized test" with the following.
502
503.. code-block:: c
504
505 // This is copy-pasted from above.
506 struct sha1_test_case {
507 const char *str;
508 const char *sha1;
509 };
510 const struct sha1_test_case cases[] = {
511 {
512 .str = "hello world",
513 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
514 },
515 {
516 .str = "hello world!",
517 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
518 },
519 };
520
521 // Need a helper function to generate a name for each test case.
522 static void case_to_desc(const struct sha1_test_case *t, char *desc)
523 {
524 strcpy(desc, t->str);
525 }
526 // Creates `sha1_gen_params()` to iterate over `cases`.
527 KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc);
528
529 // Looks no different from a normal test.
530 static void sha1_test(struct kunit *test)
531 {
532 // This function can just contain the body of the for-loop.
533 // The former `cases[i]` is accessible under test->param_value.
534 char out[40];
535 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value);
536
537 sha1sum(test_param->str, out);
538 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1,
539 "sha1sum(%s)", test_param->str);
540 }
541
542 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the
543 // function declared by KUNIT_ARRAY_PARAM.
544 static struct kunit_case sha1_test_cases[] = {
545 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params),
546 {}
547 };
548
549Exiting Early on Failed Expectations
550------------------------------------
551
552We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue
553execution. In some cases, it is unsafe to continue. We can use the
554``KUNIT_ASSERT`` variant to exit on failure.
555
556.. code-block:: c
557
558 void example_test_user_alloc_function(struct kunit *test)
559 {
560 void *object = alloc_some_object_for_me();
561
562 /* Make sure we got a valid pointer back. */
563 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object);
564 do_something_with_object(object);
565 }
566
567Allocating Memory
568-----------------
569
570Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit
571will then ensure that the memory is freed once the test completes.
572
573This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit
574early from a test without having to worry about remembering to call ``kfree``.
575For example:
576
577.. code-block:: c
578
579 void example_test_allocation(struct kunit *test)
580 {
581 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL);
582 /* Ensure allocation succeeded. */
583 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer);
584
585 KUNIT_ASSERT_STREQ(test, buffer, "");
586 }
587
588
589Testing Static Functions
590------------------------
591
592If we do not want to expose functions or variables for testing, one option is to
593conditionally ``#include`` the test file at the end of your .c file. For
594example:
595
596.. code-block:: c
597
598 /* In my_file.c */
599
600 static int do_interesting_thing();
601
602 #ifdef CONFIG_MY_KUNIT_TEST
603 #include "my_kunit_test.c"
604 #endif
605
606Injecting Test-Only Code
607------------------------
608
609Similar to as shown above, we can add test-specific logic. For example:
610
611.. code-block:: c
612
613 /* In my_file.h */
614
615 #ifdef CONFIG_MY_KUNIT_TEST
616 /* Defined in my_kunit_test.c */
617 void test_only_hook(void);
618 #else
619 void test_only_hook(void) { }
620 #endif
621
622This test-only code can be made more useful by accessing the current ``kunit_test``
623as shown in next section: *Accessing The Current Test*.
624
625Accessing The Current Test
626--------------------------
627
628In some cases, we need to call test-only code from outside the test file.
629For example, see example in section *Injecting Test-Only Code* or if
630we are providing a fake implementation of an ops struct. Using
631``kunit_test`` field in ``task_struct``, we can access it via
632``current->kunit_test``.
633
634The example below includes how to implement "mocking":
635
636.. code-block:: c
637
638 #include <linux/sched.h> /* for current */
639
640 struct test_data {
641 int foo_result;
642 int want_foo_called_with;
643 };
644
645 static int fake_foo(int arg)
646 {
647 struct kunit *test = current->kunit_test;
648 struct test_data *test_data = test->priv;
649
650 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg);
651 return test_data->foo_result;
652 }
653
654 static void example_simple_test(struct kunit *test)
655 {
656 /* Assume priv (private, a member used to pass test data from
657 * the init function) is allocated in the suite's .init */
658 struct test_data *test_data = test->priv;
659
660 test_data->foo_result = 42;
661 test_data->want_foo_called_with = 1;
662
663 /* In a real test, we'd probably pass a pointer to fake_foo somewhere
664 * like an ops struct, etc. instead of calling it directly. */
665 KUNIT_EXPECT_EQ(test, fake_foo(1), 42);
666 }
667
668In this example, we are using the ``priv`` member of ``struct kunit`` as a way
669of passing data to the test from the init function. In general ``priv`` is
670pointer that can be used for any user data. This is preferred over static
671variables, as it avoids concurrency issues.
672
673Had we wanted something more flexible, we could have used a named ``kunit_resource``.
674Each test can have multiple resources which have string names providing the same
675flexibility as a ``priv`` member, but also, for example, allowing helper
676functions to create resources without conflicting with each other. It is also
677possible to define a clean up function for each resource, making it easy to
678avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/test.rst.
679
680Failing The Current Test
681------------------------
682
683If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)``
684which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``.
685For example, we have an option to enable some extra debug checks on some data
686structures as shown below:
687
688.. code-block:: c
689
690 #include <kunit/test-bug.h>
691
692 #ifdef CONFIG_EXTRA_DEBUG_CHECKS
693 static void validate_my_data(struct data *data)
694 {
695 if (is_valid(data))
696 return;
697
698 kunit_fail_current_test("data %p is invalid", data);
699
700 /* Normal, non-KUnit, error reporting code here. */
701 }
702 #else
703 static void my_debug_function(void) { }
704 #endif
705