Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
5 * (C) SGI 2006, Christoph Lameter
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
15#include <linux/gfp.h>
16#include <linux/overflow.h>
17#include <linux/types.h>
18#include <linux/workqueue.h>
19#include <linux/percpu-refcount.h>
20
21
22/*
23 * Flags to pass to kmem_cache_create().
24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25 */
26/* DEBUG: Perform (expensive) checks on alloc/free */
27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
28/* DEBUG: Red zone objs in a cache */
29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
30/* DEBUG: Poison objects */
31#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
32/* Indicate a kmalloc slab */
33#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U)
34/* Align objs on cache lines */
35#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
36/* Use GFP_DMA memory */
37#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
38/* Use GFP_DMA32 memory */
39#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
40/* DEBUG: Store the last owner for bug hunting */
41#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
42/* Panic if kmem_cache_create() fails */
43#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
44/*
45 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
46 *
47 * This delays freeing the SLAB page by a grace period, it does _NOT_
48 * delay object freeing. This means that if you do kmem_cache_free()
49 * that memory location is free to be reused at any time. Thus it may
50 * be possible to see another object there in the same RCU grace period.
51 *
52 * This feature only ensures the memory location backing the object
53 * stays valid, the trick to using this is relying on an independent
54 * object validation pass. Something like:
55 *
56 * rcu_read_lock()
57 * again:
58 * obj = lockless_lookup(key);
59 * if (obj) {
60 * if (!try_get_ref(obj)) // might fail for free objects
61 * goto again;
62 *
63 * if (obj->key != key) { // not the object we expected
64 * put_ref(obj);
65 * goto again;
66 * }
67 * }
68 * rcu_read_unlock();
69 *
70 * This is useful if we need to approach a kernel structure obliquely,
71 * from its address obtained without the usual locking. We can lock
72 * the structure to stabilize it and check it's still at the given address,
73 * only if we can be sure that the memory has not been meanwhile reused
74 * for some other kind of object (which our subsystem's lock might corrupt).
75 *
76 * rcu_read_lock before reading the address, then rcu_read_unlock after
77 * taking the spinlock within the structure expected at that address.
78 *
79 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
80 */
81/* Defer freeing slabs to RCU */
82#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
83/* Spread some memory over cpuset */
84#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
85/* Trace allocations and frees */
86#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
87
88/* Flag to prevent checks on free */
89#ifdef CONFIG_DEBUG_OBJECTS
90# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
91#else
92# define SLAB_DEBUG_OBJECTS 0
93#endif
94
95/* Avoid kmemleak tracing */
96#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
97
98/* Fault injection mark */
99#ifdef CONFIG_FAILSLAB
100# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
101#else
102# define SLAB_FAILSLAB 0
103#endif
104/* Account to memcg */
105#ifdef CONFIG_MEMCG_KMEM
106# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
107#else
108# define SLAB_ACCOUNT 0
109#endif
110
111#ifdef CONFIG_KASAN_GENERIC
112#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
113#else
114#define SLAB_KASAN 0
115#endif
116
117/*
118 * Ignore user specified debugging flags.
119 * Intended for caches created for self-tests so they have only flags
120 * specified in the code and other flags are ignored.
121 */
122#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U)
123
124#ifdef CONFIG_KFENCE
125#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U)
126#else
127#define SLAB_SKIP_KFENCE 0
128#endif
129
130/* The following flags affect the page allocator grouping pages by mobility */
131/* Objects are reclaimable */
132#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
133#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
134
135/*
136 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
137 *
138 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
139 *
140 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
141 * Both make kfree a no-op.
142 */
143#define ZERO_SIZE_PTR ((void *)16)
144
145#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
146 (unsigned long)ZERO_SIZE_PTR)
147
148#include <linux/kasan.h>
149
150struct list_lru;
151struct mem_cgroup;
152/*
153 * struct kmem_cache related prototypes
154 */
155void __init kmem_cache_init(void);
156bool slab_is_available(void);
157
158struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
159 unsigned int align, slab_flags_t flags,
160 void (*ctor)(void *));
161struct kmem_cache *kmem_cache_create_usercopy(const char *name,
162 unsigned int size, unsigned int align,
163 slab_flags_t flags,
164 unsigned int useroffset, unsigned int usersize,
165 void (*ctor)(void *));
166void kmem_cache_destroy(struct kmem_cache *s);
167int kmem_cache_shrink(struct kmem_cache *s);
168
169/*
170 * Please use this macro to create slab caches. Simply specify the
171 * name of the structure and maybe some flags that are listed above.
172 *
173 * The alignment of the struct determines object alignment. If you
174 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
175 * then the objects will be properly aligned in SMP configurations.
176 */
177#define KMEM_CACHE(__struct, __flags) \
178 kmem_cache_create(#__struct, sizeof(struct __struct), \
179 __alignof__(struct __struct), (__flags), NULL)
180
181/*
182 * To whitelist a single field for copying to/from usercopy, use this
183 * macro instead for KMEM_CACHE() above.
184 */
185#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
186 kmem_cache_create_usercopy(#__struct, \
187 sizeof(struct __struct), \
188 __alignof__(struct __struct), (__flags), \
189 offsetof(struct __struct, __field), \
190 sizeof_field(struct __struct, __field), NULL)
191
192/*
193 * Common kmalloc functions provided by all allocators
194 */
195void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
196void kfree(const void *objp);
197void kfree_sensitive(const void *objp);
198size_t __ksize(const void *objp);
199
200/**
201 * ksize - Report actual allocation size of associated object
202 *
203 * @objp: Pointer returned from a prior kmalloc()-family allocation.
204 *
205 * This should not be used for writing beyond the originally requested
206 * allocation size. Either use krealloc() or round up the allocation size
207 * with kmalloc_size_roundup() prior to allocation. If this is used to
208 * access beyond the originally requested allocation size, UBSAN_BOUNDS
209 * and/or FORTIFY_SOURCE may trip, since they only know about the
210 * originally allocated size via the __alloc_size attribute.
211 */
212size_t ksize(const void *objp);
213
214#ifdef CONFIG_PRINTK
215bool kmem_valid_obj(void *object);
216void kmem_dump_obj(void *object);
217#endif
218
219/*
220 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
221 * alignment larger than the alignment of a 64-bit integer.
222 * Setting ARCH_DMA_MINALIGN in arch headers allows that.
223 */
224#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
225#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
226#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
227#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
228#else
229#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
230#endif
231
232/*
233 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
234 * Intended for arches that get misalignment faults even for 64 bit integer
235 * aligned buffers.
236 */
237#ifndef ARCH_SLAB_MINALIGN
238#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
239#endif
240
241/*
242 * Arches can define this function if they want to decide the minimum slab
243 * alignment at runtime. The value returned by the function must be a power
244 * of two and >= ARCH_SLAB_MINALIGN.
245 */
246#ifndef arch_slab_minalign
247static inline unsigned int arch_slab_minalign(void)
248{
249 return ARCH_SLAB_MINALIGN;
250}
251#endif
252
253/*
254 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
255 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
256 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
257 */
258#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
259#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
260#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
261
262/*
263 * Kmalloc array related definitions
264 */
265
266#ifdef CONFIG_SLAB
267/*
268 * SLAB and SLUB directly allocates requests fitting in to an order-1 page
269 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
270 */
271#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
272#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
273#ifndef KMALLOC_SHIFT_LOW
274#define KMALLOC_SHIFT_LOW 5
275#endif
276#endif
277
278#ifdef CONFIG_SLUB
279#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
280#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
281#ifndef KMALLOC_SHIFT_LOW
282#define KMALLOC_SHIFT_LOW 3
283#endif
284#endif
285
286#ifdef CONFIG_SLOB
287/*
288 * SLOB passes all requests larger than one page to the page allocator.
289 * No kmalloc array is necessary since objects of different sizes can
290 * be allocated from the same page.
291 */
292#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
293#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
294#ifndef KMALLOC_SHIFT_LOW
295#define KMALLOC_SHIFT_LOW 3
296#endif
297#endif
298
299/* Maximum allocatable size */
300#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
301/* Maximum size for which we actually use a slab cache */
302#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
303/* Maximum order allocatable via the slab allocator */
304#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
305
306/*
307 * Kmalloc subsystem.
308 */
309#ifndef KMALLOC_MIN_SIZE
310#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
311#endif
312
313/*
314 * This restriction comes from byte sized index implementation.
315 * Page size is normally 2^12 bytes and, in this case, if we want to use
316 * byte sized index which can represent 2^8 entries, the size of the object
317 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
318 * If minimum size of kmalloc is less than 16, we use it as minimum object
319 * size and give up to use byte sized index.
320 */
321#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
322 (KMALLOC_MIN_SIZE) : 16)
323
324/*
325 * Whenever changing this, take care of that kmalloc_type() and
326 * create_kmalloc_caches() still work as intended.
327 *
328 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
329 * is for accounted but unreclaimable and non-dma objects. All the other
330 * kmem caches can have both accounted and unaccounted objects.
331 */
332enum kmalloc_cache_type {
333 KMALLOC_NORMAL = 0,
334#ifndef CONFIG_ZONE_DMA
335 KMALLOC_DMA = KMALLOC_NORMAL,
336#endif
337#ifndef CONFIG_MEMCG_KMEM
338 KMALLOC_CGROUP = KMALLOC_NORMAL,
339#else
340 KMALLOC_CGROUP,
341#endif
342 KMALLOC_RECLAIM,
343#ifdef CONFIG_ZONE_DMA
344 KMALLOC_DMA,
345#endif
346 NR_KMALLOC_TYPES
347};
348
349#ifndef CONFIG_SLOB
350extern struct kmem_cache *
351kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
352
353/*
354 * Define gfp bits that should not be set for KMALLOC_NORMAL.
355 */
356#define KMALLOC_NOT_NORMAL_BITS \
357 (__GFP_RECLAIMABLE | \
358 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
359 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
360
361static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
362{
363 /*
364 * The most common case is KMALLOC_NORMAL, so test for it
365 * with a single branch for all the relevant flags.
366 */
367 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
368 return KMALLOC_NORMAL;
369
370 /*
371 * At least one of the flags has to be set. Their priorities in
372 * decreasing order are:
373 * 1) __GFP_DMA
374 * 2) __GFP_RECLAIMABLE
375 * 3) __GFP_ACCOUNT
376 */
377 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
378 return KMALLOC_DMA;
379 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
380 return KMALLOC_RECLAIM;
381 else
382 return KMALLOC_CGROUP;
383}
384
385/*
386 * Figure out which kmalloc slab an allocation of a certain size
387 * belongs to.
388 * 0 = zero alloc
389 * 1 = 65 .. 96 bytes
390 * 2 = 129 .. 192 bytes
391 * n = 2^(n-1)+1 .. 2^n
392 *
393 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
394 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
395 * Callers where !size_is_constant should only be test modules, where runtime
396 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
397 */
398static __always_inline unsigned int __kmalloc_index(size_t size,
399 bool size_is_constant)
400{
401 if (!size)
402 return 0;
403
404 if (size <= KMALLOC_MIN_SIZE)
405 return KMALLOC_SHIFT_LOW;
406
407 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
408 return 1;
409 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
410 return 2;
411 if (size <= 8) return 3;
412 if (size <= 16) return 4;
413 if (size <= 32) return 5;
414 if (size <= 64) return 6;
415 if (size <= 128) return 7;
416 if (size <= 256) return 8;
417 if (size <= 512) return 9;
418 if (size <= 1024) return 10;
419 if (size <= 2 * 1024) return 11;
420 if (size <= 4 * 1024) return 12;
421 if (size <= 8 * 1024) return 13;
422 if (size <= 16 * 1024) return 14;
423 if (size <= 32 * 1024) return 15;
424 if (size <= 64 * 1024) return 16;
425 if (size <= 128 * 1024) return 17;
426 if (size <= 256 * 1024) return 18;
427 if (size <= 512 * 1024) return 19;
428 if (size <= 1024 * 1024) return 20;
429 if (size <= 2 * 1024 * 1024) return 21;
430
431 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
432 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
433 else
434 BUG();
435
436 /* Will never be reached. Needed because the compiler may complain */
437 return -1;
438}
439static_assert(PAGE_SHIFT <= 20);
440#define kmalloc_index(s) __kmalloc_index(s, true)
441#endif /* !CONFIG_SLOB */
442
443void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
444void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
445void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
446 gfp_t gfpflags) __assume_slab_alignment __malloc;
447void kmem_cache_free(struct kmem_cache *s, void *objp);
448
449/*
450 * Bulk allocation and freeing operations. These are accelerated in an
451 * allocator specific way to avoid taking locks repeatedly or building
452 * metadata structures unnecessarily.
453 *
454 * Note that interrupts must be enabled when calling these functions.
455 */
456void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
457int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
458
459/*
460 * Caller must not use kfree_bulk() on memory not originally allocated
461 * by kmalloc(), because the SLOB allocator cannot handle this.
462 */
463static __always_inline void kfree_bulk(size_t size, void **p)
464{
465 kmem_cache_free_bulk(NULL, size, p);
466}
467
468void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
469 __alloc_size(1);
470void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
471 __malloc;
472
473#ifdef CONFIG_TRACING
474void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
475 __assume_kmalloc_alignment __alloc_size(3);
476
477void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
478 int node, size_t size) __assume_kmalloc_alignment
479 __alloc_size(4);
480#else /* CONFIG_TRACING */
481/* Save a function call when CONFIG_TRACING=n */
482static __always_inline __alloc_size(3)
483void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
484{
485 void *ret = kmem_cache_alloc(s, flags);
486
487 ret = kasan_kmalloc(s, ret, size, flags);
488 return ret;
489}
490
491static __always_inline __alloc_size(4)
492void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
493 int node, size_t size)
494{
495 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
496
497 ret = kasan_kmalloc(s, ret, size, gfpflags);
498 return ret;
499}
500#endif /* CONFIG_TRACING */
501
502void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
503 __alloc_size(1);
504
505void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
506 __alloc_size(1);
507
508/**
509 * kmalloc - allocate memory
510 * @size: how many bytes of memory are required.
511 * @flags: the type of memory to allocate.
512 *
513 * kmalloc is the normal method of allocating memory
514 * for objects smaller than page size in the kernel.
515 *
516 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
517 * bytes. For @size of power of two bytes, the alignment is also guaranteed
518 * to be at least to the size.
519 *
520 * The @flags argument may be one of the GFP flags defined at
521 * include/linux/gfp.h and described at
522 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
523 *
524 * The recommended usage of the @flags is described at
525 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
526 *
527 * Below is a brief outline of the most useful GFP flags
528 *
529 * %GFP_KERNEL
530 * Allocate normal kernel ram. May sleep.
531 *
532 * %GFP_NOWAIT
533 * Allocation will not sleep.
534 *
535 * %GFP_ATOMIC
536 * Allocation will not sleep. May use emergency pools.
537 *
538 * %GFP_HIGHUSER
539 * Allocate memory from high memory on behalf of user.
540 *
541 * Also it is possible to set different flags by OR'ing
542 * in one or more of the following additional @flags:
543 *
544 * %__GFP_HIGH
545 * This allocation has high priority and may use emergency pools.
546 *
547 * %__GFP_NOFAIL
548 * Indicate that this allocation is in no way allowed to fail
549 * (think twice before using).
550 *
551 * %__GFP_NORETRY
552 * If memory is not immediately available,
553 * then give up at once.
554 *
555 * %__GFP_NOWARN
556 * If allocation fails, don't issue any warnings.
557 *
558 * %__GFP_RETRY_MAYFAIL
559 * Try really hard to succeed the allocation but fail
560 * eventually.
561 */
562static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
563{
564 if (__builtin_constant_p(size)) {
565#ifndef CONFIG_SLOB
566 unsigned int index;
567#endif
568 if (size > KMALLOC_MAX_CACHE_SIZE)
569 return kmalloc_large(size, flags);
570#ifndef CONFIG_SLOB
571 index = kmalloc_index(size);
572
573 if (!index)
574 return ZERO_SIZE_PTR;
575
576 return kmalloc_trace(
577 kmalloc_caches[kmalloc_type(flags)][index],
578 flags, size);
579#endif
580 }
581 return __kmalloc(size, flags);
582}
583
584#ifndef CONFIG_SLOB
585static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
586{
587 if (__builtin_constant_p(size)) {
588 unsigned int index;
589
590 if (size > KMALLOC_MAX_CACHE_SIZE)
591 return kmalloc_large_node(size, flags, node);
592
593 index = kmalloc_index(size);
594
595 if (!index)
596 return ZERO_SIZE_PTR;
597
598 return kmalloc_node_trace(
599 kmalloc_caches[kmalloc_type(flags)][index],
600 flags, node, size);
601 }
602 return __kmalloc_node(size, flags, node);
603}
604#else
605static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
606{
607 if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE)
608 return kmalloc_large_node(size, flags, node);
609
610 return __kmalloc_node(size, flags, node);
611}
612#endif
613
614/**
615 * kmalloc_array - allocate memory for an array.
616 * @n: number of elements.
617 * @size: element size.
618 * @flags: the type of memory to allocate (see kmalloc).
619 */
620static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
621{
622 size_t bytes;
623
624 if (unlikely(check_mul_overflow(n, size, &bytes)))
625 return NULL;
626 if (__builtin_constant_p(n) && __builtin_constant_p(size))
627 return kmalloc(bytes, flags);
628 return __kmalloc(bytes, flags);
629}
630
631/**
632 * krealloc_array - reallocate memory for an array.
633 * @p: pointer to the memory chunk to reallocate
634 * @new_n: new number of elements to alloc
635 * @new_size: new size of a single member of the array
636 * @flags: the type of memory to allocate (see kmalloc)
637 */
638static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
639 size_t new_n,
640 size_t new_size,
641 gfp_t flags)
642{
643 size_t bytes;
644
645 if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
646 return NULL;
647
648 return krealloc(p, bytes, flags);
649}
650
651/**
652 * kcalloc - allocate memory for an array. The memory is set to zero.
653 * @n: number of elements.
654 * @size: element size.
655 * @flags: the type of memory to allocate (see kmalloc).
656 */
657static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
658{
659 return kmalloc_array(n, size, flags | __GFP_ZERO);
660}
661
662void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
663 unsigned long caller) __alloc_size(1);
664#define kmalloc_node_track_caller(size, flags, node) \
665 __kmalloc_node_track_caller(size, flags, node, \
666 _RET_IP_)
667
668/*
669 * kmalloc_track_caller is a special version of kmalloc that records the
670 * calling function of the routine calling it for slab leak tracking instead
671 * of just the calling function (confusing, eh?).
672 * It's useful when the call to kmalloc comes from a widely-used standard
673 * allocator where we care about the real place the memory allocation
674 * request comes from.
675 */
676#define kmalloc_track_caller(size, flags) \
677 __kmalloc_node_track_caller(size, flags, \
678 NUMA_NO_NODE, _RET_IP_)
679
680static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
681 int node)
682{
683 size_t bytes;
684
685 if (unlikely(check_mul_overflow(n, size, &bytes)))
686 return NULL;
687 if (__builtin_constant_p(n) && __builtin_constant_p(size))
688 return kmalloc_node(bytes, flags, node);
689 return __kmalloc_node(bytes, flags, node);
690}
691
692static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
693{
694 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
695}
696
697/*
698 * Shortcuts
699 */
700static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
701{
702 return kmem_cache_alloc(k, flags | __GFP_ZERO);
703}
704
705/**
706 * kzalloc - allocate memory. The memory is set to zero.
707 * @size: how many bytes of memory are required.
708 * @flags: the type of memory to allocate (see kmalloc).
709 */
710static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
711{
712 return kmalloc(size, flags | __GFP_ZERO);
713}
714
715/**
716 * kzalloc_node - allocate zeroed memory from a particular memory node.
717 * @size: how many bytes of memory are required.
718 * @flags: the type of memory to allocate (see kmalloc).
719 * @node: memory node from which to allocate
720 */
721static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
722{
723 return kmalloc_node(size, flags | __GFP_ZERO, node);
724}
725
726extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
727static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
728{
729 return kvmalloc_node(size, flags, NUMA_NO_NODE);
730}
731static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
732{
733 return kvmalloc_node(size, flags | __GFP_ZERO, node);
734}
735static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
736{
737 return kvmalloc(size, flags | __GFP_ZERO);
738}
739
740static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
741{
742 size_t bytes;
743
744 if (unlikely(check_mul_overflow(n, size, &bytes)))
745 return NULL;
746
747 return kvmalloc(bytes, flags);
748}
749
750static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
751{
752 return kvmalloc_array(n, size, flags | __GFP_ZERO);
753}
754
755extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
756 __realloc_size(3);
757extern void kvfree(const void *addr);
758extern void kvfree_sensitive(const void *addr, size_t len);
759
760unsigned int kmem_cache_size(struct kmem_cache *s);
761
762/**
763 * kmalloc_size_roundup - Report allocation bucket size for the given size
764 *
765 * @size: Number of bytes to round up from.
766 *
767 * This returns the number of bytes that would be available in a kmalloc()
768 * allocation of @size bytes. For example, a 126 byte request would be
769 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
770 * for the general-purpose kmalloc()-based allocations, and is not for the
771 * pre-sized kmem_cache_alloc()-based allocations.)
772 *
773 * Use this to kmalloc() the full bucket size ahead of time instead of using
774 * ksize() to query the size after an allocation.
775 */
776size_t kmalloc_size_roundup(size_t size);
777
778void __init kmem_cache_init_late(void);
779
780#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
781int slab_prepare_cpu(unsigned int cpu);
782int slab_dead_cpu(unsigned int cpu);
783#else
784#define slab_prepare_cpu NULL
785#define slab_dead_cpu NULL
786#endif
787
788#endif /* _LINUX_SLAB_H */