Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15#include <linux/page_table_check.h>
16
17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20#endif
21
22/*
23 * On almost all architectures and configurations, 0 can be used as the
24 * upper ceiling to free_pgtables(): on many architectures it has the same
25 * effect as using TASK_SIZE. However, there is one configuration which
26 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 */
28#ifndef USER_PGTABLES_CEILING
29#define USER_PGTABLES_CEILING 0UL
30#endif
31
32/*
33 * This defines the first usable user address. Platforms
34 * can override its value with custom FIRST_USER_ADDRESS
35 * defined in their respective <asm/pgtable.h>.
36 */
37#ifndef FIRST_USER_ADDRESS
38#define FIRST_USER_ADDRESS 0UL
39#endif
40
41/*
42 * This defines the generic helper for accessing PMD page
43 * table page. Although platforms can still override this
44 * via their respective <asm/pgtable.h>.
45 */
46#ifndef pmd_pgtable
47#define pmd_pgtable(pmd) pmd_page(pmd)
48#endif
49
50/*
51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 *
53 * The pXx_index() functions return the index of the entry in the page
54 * table page which would control the given virtual address
55 *
56 * As these functions may be used by the same code for different levels of
57 * the page table folding, they are always available, regardless of
58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59 * because in such cases PTRS_PER_PxD equals 1.
60 */
61
62static inline unsigned long pte_index(unsigned long address)
63{
64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65}
66#define pte_index pte_index
67
68#ifndef pmd_index
69static inline unsigned long pmd_index(unsigned long address)
70{
71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72}
73#define pmd_index pmd_index
74#endif
75
76#ifndef pud_index
77static inline unsigned long pud_index(unsigned long address)
78{
79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80}
81#define pud_index pud_index
82#endif
83
84#ifndef pgd_index
85/* Must be a compile-time constant, so implement it as a macro */
86#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87#endif
88
89#ifndef pte_offset_kernel
90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91{
92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93}
94#define pte_offset_kernel pte_offset_kernel
95#endif
96
97#if defined(CONFIG_HIGHPTE)
98#define pte_offset_map(dir, address) \
99 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
100 pte_index((address)))
101#define pte_unmap(pte) kunmap_atomic((pte))
102#else
103#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
104#define pte_unmap(pte) ((void)(pte)) /* NOP */
105#endif
106
107/* Find an entry in the second-level page table.. */
108#ifndef pmd_offset
109static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110{
111 return pud_pgtable(*pud) + pmd_index(address);
112}
113#define pmd_offset pmd_offset
114#endif
115
116#ifndef pud_offset
117static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118{
119 return p4d_pgtable(*p4d) + pud_index(address);
120}
121#define pud_offset pud_offset
122#endif
123
124static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125{
126 return (pgd + pgd_index(address));
127};
128
129/*
130 * a shortcut to get a pgd_t in a given mm
131 */
132#ifndef pgd_offset
133#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
134#endif
135
136/*
137 * a shortcut which implies the use of the kernel's pgd, instead
138 * of a process's
139 */
140#ifndef pgd_offset_k
141#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
142#endif
143
144/*
145 * In many cases it is known that a virtual address is mapped at PMD or PTE
146 * level, so instead of traversing all the page table levels, we can get a
147 * pointer to the PMD entry in user or kernel page table or translate a virtual
148 * address to the pointer in the PTE in the kernel page tables with simple
149 * helpers.
150 */
151static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152{
153 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154}
155
156static inline pmd_t *pmd_off_k(unsigned long va)
157{
158 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159}
160
161static inline pte_t *virt_to_kpte(unsigned long vaddr)
162{
163 pmd_t *pmd = pmd_off_k(vaddr);
164
165 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166}
167
168#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
169extern int ptep_set_access_flags(struct vm_area_struct *vma,
170 unsigned long address, pte_t *ptep,
171 pte_t entry, int dirty);
172#endif
173
174#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
175#ifdef CONFIG_TRANSPARENT_HUGEPAGE
176extern int pmdp_set_access_flags(struct vm_area_struct *vma,
177 unsigned long address, pmd_t *pmdp,
178 pmd_t entry, int dirty);
179extern int pudp_set_access_flags(struct vm_area_struct *vma,
180 unsigned long address, pud_t *pudp,
181 pud_t entry, int dirty);
182#else
183static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
184 unsigned long address, pmd_t *pmdp,
185 pmd_t entry, int dirty)
186{
187 BUILD_BUG();
188 return 0;
189}
190static inline int pudp_set_access_flags(struct vm_area_struct *vma,
191 unsigned long address, pud_t *pudp,
192 pud_t entry, int dirty)
193{
194 BUILD_BUG();
195 return 0;
196}
197#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
198#endif
199
200#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
201static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
202 unsigned long address,
203 pte_t *ptep)
204{
205 pte_t pte = *ptep;
206 int r = 1;
207 if (!pte_young(pte))
208 r = 0;
209 else
210 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
211 return r;
212}
213#endif
214
215#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
216#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
217static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
218 unsigned long address,
219 pmd_t *pmdp)
220{
221 pmd_t pmd = *pmdp;
222 int r = 1;
223 if (!pmd_young(pmd))
224 r = 0;
225 else
226 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
227 return r;
228}
229#else
230static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
231 unsigned long address,
232 pmd_t *pmdp)
233{
234 BUILD_BUG();
235 return 0;
236}
237#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
238#endif
239
240#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
241int ptep_clear_flush_young(struct vm_area_struct *vma,
242 unsigned long address, pte_t *ptep);
243#endif
244
245#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
248 unsigned long address, pmd_t *pmdp);
249#else
250/*
251 * Despite relevant to THP only, this API is called from generic rmap code
252 * under PageTransHuge(), hence needs a dummy implementation for !THP
253 */
254static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 unsigned long address, pmd_t *pmdp)
256{
257 BUILD_BUG();
258 return 0;
259}
260#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
261#endif
262
263#ifndef arch_has_hw_pte_young
264/*
265 * Return whether the accessed bit is supported on the local CPU.
266 *
267 * This stub assumes accessing through an old PTE triggers a page fault.
268 * Architectures that automatically set the access bit should overwrite it.
269 */
270static inline bool arch_has_hw_pte_young(void)
271{
272 return false;
273}
274#endif
275
276#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
277static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
278 unsigned long address,
279 pte_t *ptep)
280{
281 pte_t pte = *ptep;
282 pte_clear(mm, address, ptep);
283 page_table_check_pte_clear(mm, address, pte);
284 return pte;
285}
286#endif
287
288static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
289 pte_t *ptep)
290{
291 ptep_get_and_clear(mm, addr, ptep);
292}
293
294#ifndef __HAVE_ARCH_PTEP_GET
295static inline pte_t ptep_get(pte_t *ptep)
296{
297 return READ_ONCE(*ptep);
298}
299#endif
300
301#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
302/*
303 * WARNING: only to be used in the get_user_pages_fast() implementation.
304 *
305 * With get_user_pages_fast(), we walk down the pagetables without taking any
306 * locks. For this we would like to load the pointers atomically, but sometimes
307 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
308 * we do have is the guarantee that a PTE will only either go from not present
309 * to present, or present to not present or both -- it will not switch to a
310 * completely different present page without a TLB flush in between; something
311 * that we are blocking by holding interrupts off.
312 *
313 * Setting ptes from not present to present goes:
314 *
315 * ptep->pte_high = h;
316 * smp_wmb();
317 * ptep->pte_low = l;
318 *
319 * And present to not present goes:
320 *
321 * ptep->pte_low = 0;
322 * smp_wmb();
323 * ptep->pte_high = 0;
324 *
325 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
326 * We load pte_high *after* loading pte_low, which ensures we don't see an older
327 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
328 * picked up a changed pte high. We might have gotten rubbish values from
329 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
330 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
331 * operates on present ptes we're safe.
332 */
333static inline pte_t ptep_get_lockless(pte_t *ptep)
334{
335 pte_t pte;
336
337 do {
338 pte.pte_low = ptep->pte_low;
339 smp_rmb();
340 pte.pte_high = ptep->pte_high;
341 smp_rmb();
342 } while (unlikely(pte.pte_low != ptep->pte_low));
343
344 return pte;
345}
346#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
347/*
348 * We require that the PTE can be read atomically.
349 */
350static inline pte_t ptep_get_lockless(pte_t *ptep)
351{
352 return ptep_get(ptep);
353}
354#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
355
356#ifdef CONFIG_TRANSPARENT_HUGEPAGE
357#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
358static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
359 unsigned long address,
360 pmd_t *pmdp)
361{
362 pmd_t pmd = *pmdp;
363
364 pmd_clear(pmdp);
365 page_table_check_pmd_clear(mm, address, pmd);
366
367 return pmd;
368}
369#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
370#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
371static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
372 unsigned long address,
373 pud_t *pudp)
374{
375 pud_t pud = *pudp;
376
377 pud_clear(pudp);
378 page_table_check_pud_clear(mm, address, pud);
379
380 return pud;
381}
382#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
383#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
384
385#ifdef CONFIG_TRANSPARENT_HUGEPAGE
386#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
387static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
388 unsigned long address, pmd_t *pmdp,
389 int full)
390{
391 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
392}
393#endif
394
395#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
396static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
397 unsigned long address, pud_t *pudp,
398 int full)
399{
400 return pudp_huge_get_and_clear(mm, address, pudp);
401}
402#endif
403#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
404
405#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
406static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
407 unsigned long address, pte_t *ptep,
408 int full)
409{
410 pte_t pte;
411 pte = ptep_get_and_clear(mm, address, ptep);
412 return pte;
413}
414#endif
415
416
417/*
418 * If two threads concurrently fault at the same page, the thread that
419 * won the race updates the PTE and its local TLB/Cache. The other thread
420 * gives up, simply does nothing, and continues; on architectures where
421 * software can update TLB, local TLB can be updated here to avoid next page
422 * fault. This function updates TLB only, do nothing with cache or others.
423 * It is the difference with function update_mmu_cache.
424 */
425#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
426static inline void update_mmu_tlb(struct vm_area_struct *vma,
427 unsigned long address, pte_t *ptep)
428{
429}
430#define __HAVE_ARCH_UPDATE_MMU_TLB
431#endif
432
433/*
434 * Some architectures may be able to avoid expensive synchronization
435 * primitives when modifications are made to PTE's which are already
436 * not present, or in the process of an address space destruction.
437 */
438#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
439static inline void pte_clear_not_present_full(struct mm_struct *mm,
440 unsigned long address,
441 pte_t *ptep,
442 int full)
443{
444 pte_clear(mm, address, ptep);
445}
446#endif
447
448#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
449extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
450 unsigned long address,
451 pte_t *ptep);
452#endif
453
454#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
455extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
456 unsigned long address,
457 pmd_t *pmdp);
458extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
459 unsigned long address,
460 pud_t *pudp);
461#endif
462
463#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
464struct mm_struct;
465static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
466{
467 pte_t old_pte = *ptep;
468 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
469}
470#endif
471
472/*
473 * On some architectures hardware does not set page access bit when accessing
474 * memory page, it is responsibility of software setting this bit. It brings
475 * out extra page fault penalty to track page access bit. For optimization page
476 * access bit can be set during all page fault flow on these arches.
477 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
478 * where software maintains page access bit.
479 */
480#ifndef pte_sw_mkyoung
481static inline pte_t pte_sw_mkyoung(pte_t pte)
482{
483 return pte;
484}
485#define pte_sw_mkyoung pte_sw_mkyoung
486#endif
487
488#ifndef pte_savedwrite
489#define pte_savedwrite pte_write
490#endif
491
492#ifndef pte_mk_savedwrite
493#define pte_mk_savedwrite pte_mkwrite
494#endif
495
496#ifndef pte_clear_savedwrite
497#define pte_clear_savedwrite pte_wrprotect
498#endif
499
500#ifndef pmd_savedwrite
501#define pmd_savedwrite pmd_write
502#endif
503
504#ifndef pmd_mk_savedwrite
505#define pmd_mk_savedwrite pmd_mkwrite
506#endif
507
508#ifndef pmd_clear_savedwrite
509#define pmd_clear_savedwrite pmd_wrprotect
510#endif
511
512#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
513#ifdef CONFIG_TRANSPARENT_HUGEPAGE
514static inline void pmdp_set_wrprotect(struct mm_struct *mm,
515 unsigned long address, pmd_t *pmdp)
516{
517 pmd_t old_pmd = *pmdp;
518 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
519}
520#else
521static inline void pmdp_set_wrprotect(struct mm_struct *mm,
522 unsigned long address, pmd_t *pmdp)
523{
524 BUILD_BUG();
525}
526#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
527#endif
528#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
529#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
530static inline void pudp_set_wrprotect(struct mm_struct *mm,
531 unsigned long address, pud_t *pudp)
532{
533 pud_t old_pud = *pudp;
534
535 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
536}
537#else
538static inline void pudp_set_wrprotect(struct mm_struct *mm,
539 unsigned long address, pud_t *pudp)
540{
541 BUILD_BUG();
542}
543#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
544#endif
545
546#ifndef pmdp_collapse_flush
547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
548extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
549 unsigned long address, pmd_t *pmdp);
550#else
551static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
552 unsigned long address,
553 pmd_t *pmdp)
554{
555 BUILD_BUG();
556 return *pmdp;
557}
558#define pmdp_collapse_flush pmdp_collapse_flush
559#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
560#endif
561
562#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
563extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
564 pgtable_t pgtable);
565#endif
566
567#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
568extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
569#endif
570
571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
572/*
573 * This is an implementation of pmdp_establish() that is only suitable for an
574 * architecture that doesn't have hardware dirty/accessed bits. In this case we
575 * can't race with CPU which sets these bits and non-atomic approach is fine.
576 */
577static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
578 unsigned long address, pmd_t *pmdp, pmd_t pmd)
579{
580 pmd_t old_pmd = *pmdp;
581 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
582 return old_pmd;
583}
584#endif
585
586#ifndef __HAVE_ARCH_PMDP_INVALIDATE
587extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
588 pmd_t *pmdp);
589#endif
590
591#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
592
593/*
594 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
595 * hugepage mapping in the page tables. This function is similar to
596 * pmdp_invalidate(), but should only be used if the access and dirty bits would
597 * not be cleared by the software in the new PMD value. The function ensures
598 * that hardware changes of the access and dirty bits updates would not be lost.
599 *
600 * Doing so can allow in certain architectures to avoid a TLB flush in most
601 * cases. Yet, another TLB flush might be necessary later if the PMD update
602 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
603 * even when a TLB flush is needed because of the update, the caller may be able
604 * to batch these TLB flushing operations, so fewer TLB flush operations are
605 * needed.
606 */
607extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
608 unsigned long address, pmd_t *pmdp);
609#endif
610
611#ifndef __HAVE_ARCH_PTE_SAME
612static inline int pte_same(pte_t pte_a, pte_t pte_b)
613{
614 return pte_val(pte_a) == pte_val(pte_b);
615}
616#endif
617
618#ifndef __HAVE_ARCH_PTE_UNUSED
619/*
620 * Some architectures provide facilities to virtualization guests
621 * so that they can flag allocated pages as unused. This allows the
622 * host to transparently reclaim unused pages. This function returns
623 * whether the pte's page is unused.
624 */
625static inline int pte_unused(pte_t pte)
626{
627 return 0;
628}
629#endif
630
631#ifndef pte_access_permitted
632#define pte_access_permitted(pte, write) \
633 (pte_present(pte) && (!(write) || pte_write(pte)))
634#endif
635
636#ifndef pmd_access_permitted
637#define pmd_access_permitted(pmd, write) \
638 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
639#endif
640
641#ifndef pud_access_permitted
642#define pud_access_permitted(pud, write) \
643 (pud_present(pud) && (!(write) || pud_write(pud)))
644#endif
645
646#ifndef p4d_access_permitted
647#define p4d_access_permitted(p4d, write) \
648 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
649#endif
650
651#ifndef pgd_access_permitted
652#define pgd_access_permitted(pgd, write) \
653 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
654#endif
655
656#ifndef __HAVE_ARCH_PMD_SAME
657static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
658{
659 return pmd_val(pmd_a) == pmd_val(pmd_b);
660}
661
662static inline int pud_same(pud_t pud_a, pud_t pud_b)
663{
664 return pud_val(pud_a) == pud_val(pud_b);
665}
666#endif
667
668#ifndef __HAVE_ARCH_P4D_SAME
669static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
670{
671 return p4d_val(p4d_a) == p4d_val(p4d_b);
672}
673#endif
674
675#ifndef __HAVE_ARCH_PGD_SAME
676static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
677{
678 return pgd_val(pgd_a) == pgd_val(pgd_b);
679}
680#endif
681
682/*
683 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
684 * TLB flush will be required as a result of the "set". For example, use
685 * in scenarios where it is known ahead of time that the routine is
686 * setting non-present entries, or re-setting an existing entry to the
687 * same value. Otherwise, use the typical "set" helpers and flush the
688 * TLB.
689 */
690#define set_pte_safe(ptep, pte) \
691({ \
692 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
693 set_pte(ptep, pte); \
694})
695
696#define set_pmd_safe(pmdp, pmd) \
697({ \
698 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
699 set_pmd(pmdp, pmd); \
700})
701
702#define set_pud_safe(pudp, pud) \
703({ \
704 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
705 set_pud(pudp, pud); \
706})
707
708#define set_p4d_safe(p4dp, p4d) \
709({ \
710 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
711 set_p4d(p4dp, p4d); \
712})
713
714#define set_pgd_safe(pgdp, pgd) \
715({ \
716 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
717 set_pgd(pgdp, pgd); \
718})
719
720#ifndef __HAVE_ARCH_DO_SWAP_PAGE
721/*
722 * Some architectures support metadata associated with a page. When a
723 * page is being swapped out, this metadata must be saved so it can be
724 * restored when the page is swapped back in. SPARC M7 and newer
725 * processors support an ADI (Application Data Integrity) tag for the
726 * page as metadata for the page. arch_do_swap_page() can restore this
727 * metadata when a page is swapped back in.
728 */
729static inline void arch_do_swap_page(struct mm_struct *mm,
730 struct vm_area_struct *vma,
731 unsigned long addr,
732 pte_t pte, pte_t oldpte)
733{
734
735}
736#endif
737
738#ifndef __HAVE_ARCH_UNMAP_ONE
739/*
740 * Some architectures support metadata associated with a page. When a
741 * page is being swapped out, this metadata must be saved so it can be
742 * restored when the page is swapped back in. SPARC M7 and newer
743 * processors support an ADI (Application Data Integrity) tag for the
744 * page as metadata for the page. arch_unmap_one() can save this
745 * metadata on a swap-out of a page.
746 */
747static inline int arch_unmap_one(struct mm_struct *mm,
748 struct vm_area_struct *vma,
749 unsigned long addr,
750 pte_t orig_pte)
751{
752 return 0;
753}
754#endif
755
756/*
757 * Allow architectures to preserve additional metadata associated with
758 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
759 * prototypes must be defined in the arch-specific asm/pgtable.h file.
760 */
761#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
762static inline int arch_prepare_to_swap(struct page *page)
763{
764 return 0;
765}
766#endif
767
768#ifndef __HAVE_ARCH_SWAP_INVALIDATE
769static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
770{
771}
772
773static inline void arch_swap_invalidate_area(int type)
774{
775}
776#endif
777
778#ifndef __HAVE_ARCH_SWAP_RESTORE
779static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
780{
781}
782#endif
783
784#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
785#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
786#endif
787
788#ifndef __HAVE_ARCH_MOVE_PTE
789#define move_pte(pte, prot, old_addr, new_addr) (pte)
790#endif
791
792#ifndef pte_accessible
793# define pte_accessible(mm, pte) ((void)(pte), 1)
794#endif
795
796#ifndef flush_tlb_fix_spurious_fault
797#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
798#endif
799
800/*
801 * When walking page tables, get the address of the next boundary,
802 * or the end address of the range if that comes earlier. Although no
803 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
804 */
805
806#define pgd_addr_end(addr, end) \
807({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
808 (__boundary - 1 < (end) - 1)? __boundary: (end); \
809})
810
811#ifndef p4d_addr_end
812#define p4d_addr_end(addr, end) \
813({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
814 (__boundary - 1 < (end) - 1)? __boundary: (end); \
815})
816#endif
817
818#ifndef pud_addr_end
819#define pud_addr_end(addr, end) \
820({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
821 (__boundary - 1 < (end) - 1)? __boundary: (end); \
822})
823#endif
824
825#ifndef pmd_addr_end
826#define pmd_addr_end(addr, end) \
827({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
828 (__boundary - 1 < (end) - 1)? __boundary: (end); \
829})
830#endif
831
832/*
833 * When walking page tables, we usually want to skip any p?d_none entries;
834 * and any p?d_bad entries - reporting the error before resetting to none.
835 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
836 */
837void pgd_clear_bad(pgd_t *);
838
839#ifndef __PAGETABLE_P4D_FOLDED
840void p4d_clear_bad(p4d_t *);
841#else
842#define p4d_clear_bad(p4d) do { } while (0)
843#endif
844
845#ifndef __PAGETABLE_PUD_FOLDED
846void pud_clear_bad(pud_t *);
847#else
848#define pud_clear_bad(p4d) do { } while (0)
849#endif
850
851void pmd_clear_bad(pmd_t *);
852
853static inline int pgd_none_or_clear_bad(pgd_t *pgd)
854{
855 if (pgd_none(*pgd))
856 return 1;
857 if (unlikely(pgd_bad(*pgd))) {
858 pgd_clear_bad(pgd);
859 return 1;
860 }
861 return 0;
862}
863
864static inline int p4d_none_or_clear_bad(p4d_t *p4d)
865{
866 if (p4d_none(*p4d))
867 return 1;
868 if (unlikely(p4d_bad(*p4d))) {
869 p4d_clear_bad(p4d);
870 return 1;
871 }
872 return 0;
873}
874
875static inline int pud_none_or_clear_bad(pud_t *pud)
876{
877 if (pud_none(*pud))
878 return 1;
879 if (unlikely(pud_bad(*pud))) {
880 pud_clear_bad(pud);
881 return 1;
882 }
883 return 0;
884}
885
886static inline int pmd_none_or_clear_bad(pmd_t *pmd)
887{
888 if (pmd_none(*pmd))
889 return 1;
890 if (unlikely(pmd_bad(*pmd))) {
891 pmd_clear_bad(pmd);
892 return 1;
893 }
894 return 0;
895}
896
897static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
898 unsigned long addr,
899 pte_t *ptep)
900{
901 /*
902 * Get the current pte state, but zero it out to make it
903 * non-present, preventing the hardware from asynchronously
904 * updating it.
905 */
906 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
907}
908
909static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
910 unsigned long addr,
911 pte_t *ptep, pte_t pte)
912{
913 /*
914 * The pte is non-present, so there's no hardware state to
915 * preserve.
916 */
917 set_pte_at(vma->vm_mm, addr, ptep, pte);
918}
919
920#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
921/*
922 * Start a pte protection read-modify-write transaction, which
923 * protects against asynchronous hardware modifications to the pte.
924 * The intention is not to prevent the hardware from making pte
925 * updates, but to prevent any updates it may make from being lost.
926 *
927 * This does not protect against other software modifications of the
928 * pte; the appropriate pte lock must be held over the transaction.
929 *
930 * Note that this interface is intended to be batchable, meaning that
931 * ptep_modify_prot_commit may not actually update the pte, but merely
932 * queue the update to be done at some later time. The update must be
933 * actually committed before the pte lock is released, however.
934 */
935static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
936 unsigned long addr,
937 pte_t *ptep)
938{
939 return __ptep_modify_prot_start(vma, addr, ptep);
940}
941
942/*
943 * Commit an update to a pte, leaving any hardware-controlled bits in
944 * the PTE unmodified.
945 */
946static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
947 unsigned long addr,
948 pte_t *ptep, pte_t old_pte, pte_t pte)
949{
950 __ptep_modify_prot_commit(vma, addr, ptep, pte);
951}
952#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
953#endif /* CONFIG_MMU */
954
955/*
956 * No-op macros that just return the current protection value. Defined here
957 * because these macros can be used even if CONFIG_MMU is not defined.
958 */
959
960#ifndef pgprot_nx
961#define pgprot_nx(prot) (prot)
962#endif
963
964#ifndef pgprot_noncached
965#define pgprot_noncached(prot) (prot)
966#endif
967
968#ifndef pgprot_writecombine
969#define pgprot_writecombine pgprot_noncached
970#endif
971
972#ifndef pgprot_writethrough
973#define pgprot_writethrough pgprot_noncached
974#endif
975
976#ifndef pgprot_device
977#define pgprot_device pgprot_noncached
978#endif
979
980#ifndef pgprot_mhp
981#define pgprot_mhp(prot) (prot)
982#endif
983
984#ifdef CONFIG_MMU
985#ifndef pgprot_modify
986#define pgprot_modify pgprot_modify
987static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
988{
989 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
990 newprot = pgprot_noncached(newprot);
991 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
992 newprot = pgprot_writecombine(newprot);
993 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
994 newprot = pgprot_device(newprot);
995 return newprot;
996}
997#endif
998#endif /* CONFIG_MMU */
999
1000#ifndef pgprot_encrypted
1001#define pgprot_encrypted(prot) (prot)
1002#endif
1003
1004#ifndef pgprot_decrypted
1005#define pgprot_decrypted(prot) (prot)
1006#endif
1007
1008/*
1009 * A facility to provide lazy MMU batching. This allows PTE updates and
1010 * page invalidations to be delayed until a call to leave lazy MMU mode
1011 * is issued. Some architectures may benefit from doing this, and it is
1012 * beneficial for both shadow and direct mode hypervisors, which may batch
1013 * the PTE updates which happen during this window. Note that using this
1014 * interface requires that read hazards be removed from the code. A read
1015 * hazard could result in the direct mode hypervisor case, since the actual
1016 * write to the page tables may not yet have taken place, so reads though
1017 * a raw PTE pointer after it has been modified are not guaranteed to be
1018 * up to date. This mode can only be entered and left under the protection of
1019 * the page table locks for all page tables which may be modified. In the UP
1020 * case, this is required so that preemption is disabled, and in the SMP case,
1021 * it must synchronize the delayed page table writes properly on other CPUs.
1022 */
1023#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1024#define arch_enter_lazy_mmu_mode() do {} while (0)
1025#define arch_leave_lazy_mmu_mode() do {} while (0)
1026#define arch_flush_lazy_mmu_mode() do {} while (0)
1027#endif
1028
1029/*
1030 * A facility to provide batching of the reload of page tables and
1031 * other process state with the actual context switch code for
1032 * paravirtualized guests. By convention, only one of the batched
1033 * update (lazy) modes (CPU, MMU) should be active at any given time,
1034 * entry should never be nested, and entry and exits should always be
1035 * paired. This is for sanity of maintaining and reasoning about the
1036 * kernel code. In this case, the exit (end of the context switch) is
1037 * in architecture-specific code, and so doesn't need a generic
1038 * definition.
1039 */
1040#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1041#define arch_start_context_switch(prev) do {} while (0)
1042#endif
1043
1044/*
1045 * When replacing an anonymous page by a real (!non) swap entry, we clear
1046 * PG_anon_exclusive from the page and instead remember whether the flag was
1047 * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1048 * (possibly shared). On swapin, we use that information to restore
1049 * PG_anon_exclusive, which is very helpful in cases where we might have
1050 * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1051 * detect exclusivity.
1052 *
1053 * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1054 * ...).
1055 */
1056#ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1057static inline pte_t pte_swp_mkexclusive(pte_t pte)
1058{
1059 return pte;
1060}
1061
1062static inline int pte_swp_exclusive(pte_t pte)
1063{
1064 return false;
1065}
1066
1067static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1068{
1069 return pte;
1070}
1071#endif
1072
1073#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1074#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1075static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1076{
1077 return pmd;
1078}
1079
1080static inline int pmd_swp_soft_dirty(pmd_t pmd)
1081{
1082 return 0;
1083}
1084
1085static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1086{
1087 return pmd;
1088}
1089#endif
1090#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1091static inline int pte_soft_dirty(pte_t pte)
1092{
1093 return 0;
1094}
1095
1096static inline int pmd_soft_dirty(pmd_t pmd)
1097{
1098 return 0;
1099}
1100
1101static inline pte_t pte_mksoft_dirty(pte_t pte)
1102{
1103 return pte;
1104}
1105
1106static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1107{
1108 return pmd;
1109}
1110
1111static inline pte_t pte_clear_soft_dirty(pte_t pte)
1112{
1113 return pte;
1114}
1115
1116static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1117{
1118 return pmd;
1119}
1120
1121static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1122{
1123 return pte;
1124}
1125
1126static inline int pte_swp_soft_dirty(pte_t pte)
1127{
1128 return 0;
1129}
1130
1131static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1132{
1133 return pte;
1134}
1135
1136static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1137{
1138 return pmd;
1139}
1140
1141static inline int pmd_swp_soft_dirty(pmd_t pmd)
1142{
1143 return 0;
1144}
1145
1146static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1147{
1148 return pmd;
1149}
1150#endif
1151
1152#ifndef __HAVE_PFNMAP_TRACKING
1153/*
1154 * Interfaces that can be used by architecture code to keep track of
1155 * memory type of pfn mappings specified by the remap_pfn_range,
1156 * vmf_insert_pfn.
1157 */
1158
1159/*
1160 * track_pfn_remap is called when a _new_ pfn mapping is being established
1161 * by remap_pfn_range() for physical range indicated by pfn and size.
1162 */
1163static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1164 unsigned long pfn, unsigned long addr,
1165 unsigned long size)
1166{
1167 return 0;
1168}
1169
1170/*
1171 * track_pfn_insert is called when a _new_ single pfn is established
1172 * by vmf_insert_pfn().
1173 */
1174static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1175 pfn_t pfn)
1176{
1177}
1178
1179/*
1180 * track_pfn_copy is called when vma that is covering the pfnmap gets
1181 * copied through copy_page_range().
1182 */
1183static inline int track_pfn_copy(struct vm_area_struct *vma)
1184{
1185 return 0;
1186}
1187
1188/*
1189 * untrack_pfn is called while unmapping a pfnmap for a region.
1190 * untrack can be called for a specific region indicated by pfn and size or
1191 * can be for the entire vma (in which case pfn, size are zero).
1192 */
1193static inline void untrack_pfn(struct vm_area_struct *vma,
1194 unsigned long pfn, unsigned long size)
1195{
1196}
1197
1198/*
1199 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1200 */
1201static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1202{
1203}
1204#else
1205extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1206 unsigned long pfn, unsigned long addr,
1207 unsigned long size);
1208extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1209 pfn_t pfn);
1210extern int track_pfn_copy(struct vm_area_struct *vma);
1211extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1212 unsigned long size);
1213extern void untrack_pfn_moved(struct vm_area_struct *vma);
1214#endif
1215
1216#ifdef CONFIG_MMU
1217#ifdef __HAVE_COLOR_ZERO_PAGE
1218static inline int is_zero_pfn(unsigned long pfn)
1219{
1220 extern unsigned long zero_pfn;
1221 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1222 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1223}
1224
1225#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1226
1227#else
1228static inline int is_zero_pfn(unsigned long pfn)
1229{
1230 extern unsigned long zero_pfn;
1231 return pfn == zero_pfn;
1232}
1233
1234static inline unsigned long my_zero_pfn(unsigned long addr)
1235{
1236 extern unsigned long zero_pfn;
1237 return zero_pfn;
1238}
1239#endif
1240#else
1241static inline int is_zero_pfn(unsigned long pfn)
1242{
1243 return 0;
1244}
1245
1246static inline unsigned long my_zero_pfn(unsigned long addr)
1247{
1248 return 0;
1249}
1250#endif /* CONFIG_MMU */
1251
1252#ifdef CONFIG_MMU
1253
1254#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1255static inline int pmd_trans_huge(pmd_t pmd)
1256{
1257 return 0;
1258}
1259#ifndef pmd_write
1260static inline int pmd_write(pmd_t pmd)
1261{
1262 BUG();
1263 return 0;
1264}
1265#endif /* pmd_write */
1266#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1267
1268#ifndef pud_write
1269static inline int pud_write(pud_t pud)
1270{
1271 BUG();
1272 return 0;
1273}
1274#endif /* pud_write */
1275
1276#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1277static inline int pmd_devmap(pmd_t pmd)
1278{
1279 return 0;
1280}
1281static inline int pud_devmap(pud_t pud)
1282{
1283 return 0;
1284}
1285static inline int pgd_devmap(pgd_t pgd)
1286{
1287 return 0;
1288}
1289#endif
1290
1291#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1292 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1293static inline int pud_trans_huge(pud_t pud)
1294{
1295 return 0;
1296}
1297#endif
1298
1299/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1300static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1301{
1302 pud_t pudval = READ_ONCE(*pud);
1303
1304 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1305 return 1;
1306 if (unlikely(pud_bad(pudval))) {
1307 pud_clear_bad(pud);
1308 return 1;
1309 }
1310 return 0;
1311}
1312
1313/* See pmd_trans_unstable for discussion. */
1314static inline int pud_trans_unstable(pud_t *pud)
1315{
1316#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1317 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1318 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1319#else
1320 return 0;
1321#endif
1322}
1323
1324#ifndef pmd_read_atomic
1325static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1326{
1327 /*
1328 * Depend on compiler for an atomic pmd read. NOTE: this is
1329 * only going to work, if the pmdval_t isn't larger than
1330 * an unsigned long.
1331 */
1332 return *pmdp;
1333}
1334#endif
1335
1336#ifndef arch_needs_pgtable_deposit
1337#define arch_needs_pgtable_deposit() (false)
1338#endif
1339/*
1340 * This function is meant to be used by sites walking pagetables with
1341 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1342 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1343 * into a null pmd and the transhuge page fault can convert a null pmd
1344 * into an hugepmd or into a regular pmd (if the hugepage allocation
1345 * fails). While holding the mmap_lock in read mode the pmd becomes
1346 * stable and stops changing under us only if it's not null and not a
1347 * transhuge pmd. When those races occurs and this function makes a
1348 * difference vs the standard pmd_none_or_clear_bad, the result is
1349 * undefined so behaving like if the pmd was none is safe (because it
1350 * can return none anyway). The compiler level barrier() is critically
1351 * important to compute the two checks atomically on the same pmdval.
1352 *
1353 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1354 * care of reading the pmd atomically to avoid SMP race conditions
1355 * against pmd_populate() when the mmap_lock is hold for reading by the
1356 * caller (a special atomic read not done by "gcc" as in the generic
1357 * version above, is also needed when THP is disabled because the page
1358 * fault can populate the pmd from under us).
1359 */
1360static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1361{
1362 pmd_t pmdval = pmd_read_atomic(pmd);
1363 /*
1364 * The barrier will stabilize the pmdval in a register or on
1365 * the stack so that it will stop changing under the code.
1366 *
1367 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1368 * pmd_read_atomic is allowed to return a not atomic pmdval
1369 * (for example pointing to an hugepage that has never been
1370 * mapped in the pmd). The below checks will only care about
1371 * the low part of the pmd with 32bit PAE x86 anyway, with the
1372 * exception of pmd_none(). So the important thing is that if
1373 * the low part of the pmd is found null, the high part will
1374 * be also null or the pmd_none() check below would be
1375 * confused.
1376 */
1377#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1378 barrier();
1379#endif
1380 /*
1381 * !pmd_present() checks for pmd migration entries
1382 *
1383 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1384 * But using that requires moving current function and pmd_trans_unstable()
1385 * to linux/swapops.h to resolve dependency, which is too much code move.
1386 *
1387 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1388 * because !pmd_present() pages can only be under migration not swapped
1389 * out.
1390 *
1391 * pmd_none() is preserved for future condition checks on pmd migration
1392 * entries and not confusing with this function name, although it is
1393 * redundant with !pmd_present().
1394 */
1395 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1396 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1397 return 1;
1398 if (unlikely(pmd_bad(pmdval))) {
1399 pmd_clear_bad(pmd);
1400 return 1;
1401 }
1402 return 0;
1403}
1404
1405/*
1406 * This is a noop if Transparent Hugepage Support is not built into
1407 * the kernel. Otherwise it is equivalent to
1408 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1409 * places that already verified the pmd is not none and they want to
1410 * walk ptes while holding the mmap sem in read mode (write mode don't
1411 * need this). If THP is not enabled, the pmd can't go away under the
1412 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1413 * run a pmd_trans_unstable before walking the ptes after
1414 * split_huge_pmd returns (because it may have run when the pmd become
1415 * null, but then a page fault can map in a THP and not a regular page).
1416 */
1417static inline int pmd_trans_unstable(pmd_t *pmd)
1418{
1419#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1420 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1421#else
1422 return 0;
1423#endif
1424}
1425
1426/*
1427 * the ordering of these checks is important for pmds with _page_devmap set.
1428 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1429 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1430 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1431 */
1432static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1433{
1434 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1435}
1436
1437#ifndef CONFIG_NUMA_BALANCING
1438/*
1439 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1440 * the only case the kernel cares is for NUMA balancing and is only ever set
1441 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1442 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1443 * is the responsibility of the caller to distinguish between PROT_NONE
1444 * protections and NUMA hinting fault protections.
1445 */
1446static inline int pte_protnone(pte_t pte)
1447{
1448 return 0;
1449}
1450
1451static inline int pmd_protnone(pmd_t pmd)
1452{
1453 return 0;
1454}
1455#endif /* CONFIG_NUMA_BALANCING */
1456
1457#endif /* CONFIG_MMU */
1458
1459#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1460
1461#ifndef __PAGETABLE_P4D_FOLDED
1462int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1463void p4d_clear_huge(p4d_t *p4d);
1464#else
1465static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1466{
1467 return 0;
1468}
1469static inline void p4d_clear_huge(p4d_t *p4d) { }
1470#endif /* !__PAGETABLE_P4D_FOLDED */
1471
1472int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1473int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1474int pud_clear_huge(pud_t *pud);
1475int pmd_clear_huge(pmd_t *pmd);
1476int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1477int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1478int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1479#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1480static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1481{
1482 return 0;
1483}
1484static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1485{
1486 return 0;
1487}
1488static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1489{
1490 return 0;
1491}
1492static inline void p4d_clear_huge(p4d_t *p4d) { }
1493static inline int pud_clear_huge(pud_t *pud)
1494{
1495 return 0;
1496}
1497static inline int pmd_clear_huge(pmd_t *pmd)
1498{
1499 return 0;
1500}
1501static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1502{
1503 return 0;
1504}
1505static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1506{
1507 return 0;
1508}
1509static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1510{
1511 return 0;
1512}
1513#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1514
1515#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1516#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517/*
1518 * ARCHes with special requirements for evicting THP backing TLB entries can
1519 * implement this. Otherwise also, it can help optimize normal TLB flush in
1520 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1521 * entire TLB if flush span is greater than a threshold, which will
1522 * likely be true for a single huge page. Thus a single THP flush will
1523 * invalidate the entire TLB which is not desirable.
1524 * e.g. see arch/arc: flush_pmd_tlb_range
1525 */
1526#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1527#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1528#else
1529#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1530#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1531#endif
1532#endif
1533
1534struct file;
1535int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1536 unsigned long size, pgprot_t *vma_prot);
1537
1538#ifndef CONFIG_X86_ESPFIX64
1539static inline void init_espfix_bsp(void) { }
1540#endif
1541
1542extern void __init pgtable_cache_init(void);
1543
1544#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1545static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1546{
1547 return true;
1548}
1549
1550static inline bool arch_has_pfn_modify_check(void)
1551{
1552 return false;
1553}
1554#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1555
1556/*
1557 * Architecture PAGE_KERNEL_* fallbacks
1558 *
1559 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1560 * because they really don't support them, or the port needs to be updated to
1561 * reflect the required functionality. Below are a set of relatively safe
1562 * fallbacks, as best effort, which we can count on in lieu of the architectures
1563 * not defining them on their own yet.
1564 */
1565
1566#ifndef PAGE_KERNEL_RO
1567# define PAGE_KERNEL_RO PAGE_KERNEL
1568#endif
1569
1570#ifndef PAGE_KERNEL_EXEC
1571# define PAGE_KERNEL_EXEC PAGE_KERNEL
1572#endif
1573
1574/*
1575 * Page Table Modification bits for pgtbl_mod_mask.
1576 *
1577 * These are used by the p?d_alloc_track*() set of functions an in the generic
1578 * vmalloc/ioremap code to track at which page-table levels entries have been
1579 * modified. Based on that the code can better decide when vmalloc and ioremap
1580 * mapping changes need to be synchronized to other page-tables in the system.
1581 */
1582#define __PGTBL_PGD_MODIFIED 0
1583#define __PGTBL_P4D_MODIFIED 1
1584#define __PGTBL_PUD_MODIFIED 2
1585#define __PGTBL_PMD_MODIFIED 3
1586#define __PGTBL_PTE_MODIFIED 4
1587
1588#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1589#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1590#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1591#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1592#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1593
1594/* Page-Table Modification Mask */
1595typedef unsigned int pgtbl_mod_mask;
1596
1597#endif /* !__ASSEMBLY__ */
1598
1599#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1600#ifdef CONFIG_PHYS_ADDR_T_64BIT
1601/*
1602 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1603 * with physical address space extension, but falls back to
1604 * BITS_PER_LONG otherwise.
1605 */
1606#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1607#else
1608#define MAX_POSSIBLE_PHYSMEM_BITS 32
1609#endif
1610#endif
1611
1612#ifndef has_transparent_hugepage
1613#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1614#endif
1615
1616/*
1617 * On some architectures it depends on the mm if the p4d/pud or pmd
1618 * layer of the page table hierarchy is folded or not.
1619 */
1620#ifndef mm_p4d_folded
1621#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1622#endif
1623
1624#ifndef mm_pud_folded
1625#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1626#endif
1627
1628#ifndef mm_pmd_folded
1629#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1630#endif
1631
1632#ifndef p4d_offset_lockless
1633#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1634#endif
1635#ifndef pud_offset_lockless
1636#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1637#endif
1638#ifndef pmd_offset_lockless
1639#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1640#endif
1641
1642/*
1643 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1644 * This differs from p?d_huge() by the fact that they are always available (if
1645 * the architecture supports large pages at the appropriate level) even
1646 * if CONFIG_HUGETLB_PAGE is not defined.
1647 * Only meaningful when called on a valid entry.
1648 */
1649#ifndef pgd_leaf
1650#define pgd_leaf(x) 0
1651#endif
1652#ifndef p4d_leaf
1653#define p4d_leaf(x) 0
1654#endif
1655#ifndef pud_leaf
1656#define pud_leaf(x) 0
1657#endif
1658#ifndef pmd_leaf
1659#define pmd_leaf(x) 0
1660#endif
1661
1662#ifndef pgd_leaf_size
1663#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1664#endif
1665#ifndef p4d_leaf_size
1666#define p4d_leaf_size(x) P4D_SIZE
1667#endif
1668#ifndef pud_leaf_size
1669#define pud_leaf_size(x) PUD_SIZE
1670#endif
1671#ifndef pmd_leaf_size
1672#define pmd_leaf_size(x) PMD_SIZE
1673#endif
1674#ifndef pte_leaf_size
1675#define pte_leaf_size(x) PAGE_SIZE
1676#endif
1677
1678/*
1679 * Some architectures have MMUs that are configurable or selectable at boot
1680 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1681 * helps to have a static maximum value.
1682 */
1683
1684#ifndef MAX_PTRS_PER_PTE
1685#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1686#endif
1687
1688#ifndef MAX_PTRS_PER_PMD
1689#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1690#endif
1691
1692#ifndef MAX_PTRS_PER_PUD
1693#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1694#endif
1695
1696#ifndef MAX_PTRS_PER_P4D
1697#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1698#endif
1699
1700/* description of effects of mapping type and prot in current implementation.
1701 * this is due to the limited x86 page protection hardware. The expected
1702 * behavior is in parens:
1703 *
1704 * map_type prot
1705 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1706 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1707 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1708 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1709 *
1710 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1711 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1712 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1713 *
1714 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1715 * MAP_PRIVATE (with Enhanced PAN supported):
1716 * r: (no) no
1717 * w: (no) no
1718 * x: (yes) yes
1719 */
1720#define DECLARE_VM_GET_PAGE_PROT \
1721pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1722{ \
1723 return protection_map[vm_flags & \
1724 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1725} \
1726EXPORT_SYMBOL(vm_get_page_prot);
1727
1728#endif /* _LINUX_PGTABLE_H */