Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54 * in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of install_new_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_ADDRESS_SPACE_NUM
84#define KVM_ADDRESS_SPACE_NUM 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99
100/*
101 * error pfns indicate that the gfn is in slot but faild to
102 * translate it to pfn on host.
103 */
104static inline bool is_error_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_MASK);
107}
108
109/*
110 * error_noslot pfns indicate that the gfn can not be
111 * translated to pfn - it is not in slot or failed to
112 * translate it to pfn.
113 */
114static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115{
116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117}
118
119/* noslot pfn indicates that the gfn is not in slot. */
120static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121{
122 return pfn == KVM_PFN_NOSLOT;
123}
124
125/*
126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127 * provide own defines and kvm_is_error_hva
128 */
129#ifndef KVM_HVA_ERR_BAD
130
131#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
132#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
133
134static inline bool kvm_is_error_hva(unsigned long addr)
135{
136 return addr >= PAGE_OFFSET;
137}
138
139#endif
140
141#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
142
143static inline bool is_error_page(struct page *page)
144{
145 return IS_ERR(page);
146}
147
148#define KVM_REQUEST_MASK GENMASK(7,0)
149#define KVM_REQUEST_NO_WAKEUP BIT(8)
150#define KVM_REQUEST_WAIT BIT(9)
151#define KVM_REQUEST_NO_ACTION BIT(10)
152/*
153 * Architecture-independent vcpu->requests bit members
154 * Bits 3-7 are reserved for more arch-independent bits.
155 */
156#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158#define KVM_REQ_UNBLOCK 2
159#define KVM_REQUEST_ARCH_BASE 8
160
161/*
162 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
163 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
164 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
165 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
166 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
167 * guarantee the vCPU received an IPI and has actually exited guest mode.
168 */
169#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
170
171#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
172 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
173 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
174})
175#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
176
177bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
178 unsigned long *vcpu_bitmap);
179bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
180bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
181 struct kvm_vcpu *except);
182bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
183 unsigned long *vcpu_bitmap);
184
185#define KVM_USERSPACE_IRQ_SOURCE_ID 0
186#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
187
188extern struct mutex kvm_lock;
189extern struct list_head vm_list;
190
191struct kvm_io_range {
192 gpa_t addr;
193 int len;
194 struct kvm_io_device *dev;
195};
196
197#define NR_IOBUS_DEVS 1000
198
199struct kvm_io_bus {
200 int dev_count;
201 int ioeventfd_count;
202 struct kvm_io_range range[];
203};
204
205enum kvm_bus {
206 KVM_MMIO_BUS,
207 KVM_PIO_BUS,
208 KVM_VIRTIO_CCW_NOTIFY_BUS,
209 KVM_FAST_MMIO_BUS,
210 KVM_NR_BUSES
211};
212
213int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
214 int len, const void *val);
215int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
216 gpa_t addr, int len, const void *val, long cookie);
217int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
218 int len, void *val);
219int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
220 int len, struct kvm_io_device *dev);
221int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
222 struct kvm_io_device *dev);
223struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
224 gpa_t addr);
225
226#ifdef CONFIG_KVM_ASYNC_PF
227struct kvm_async_pf {
228 struct work_struct work;
229 struct list_head link;
230 struct list_head queue;
231 struct kvm_vcpu *vcpu;
232 struct mm_struct *mm;
233 gpa_t cr2_or_gpa;
234 unsigned long addr;
235 struct kvm_arch_async_pf arch;
236 bool wakeup_all;
237 bool notpresent_injected;
238};
239
240void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
241void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
242bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
243 unsigned long hva, struct kvm_arch_async_pf *arch);
244int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
245#endif
246
247#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
248struct kvm_gfn_range {
249 struct kvm_memory_slot *slot;
250 gfn_t start;
251 gfn_t end;
252 pte_t pte;
253 bool may_block;
254};
255bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
256bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
257bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259#endif
260
261enum {
262 OUTSIDE_GUEST_MODE,
263 IN_GUEST_MODE,
264 EXITING_GUEST_MODE,
265 READING_SHADOW_PAGE_TABLES,
266};
267
268#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
269
270struct kvm_host_map {
271 /*
272 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
273 * a 'struct page' for it. When using mem= kernel parameter some memory
274 * can be used as guest memory but they are not managed by host
275 * kernel).
276 * If 'pfn' is not managed by the host kernel, this field is
277 * initialized to KVM_UNMAPPED_PAGE.
278 */
279 struct page *page;
280 void *hva;
281 kvm_pfn_t pfn;
282 kvm_pfn_t gfn;
283};
284
285/*
286 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
287 * directly to check for that.
288 */
289static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
290{
291 return !!map->hva;
292}
293
294static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
295{
296 return single_task_running() && !need_resched() && ktime_before(cur, stop);
297}
298
299/*
300 * Sometimes a large or cross-page mmio needs to be broken up into separate
301 * exits for userspace servicing.
302 */
303struct kvm_mmio_fragment {
304 gpa_t gpa;
305 void *data;
306 unsigned len;
307};
308
309struct kvm_vcpu {
310 struct kvm *kvm;
311#ifdef CONFIG_PREEMPT_NOTIFIERS
312 struct preempt_notifier preempt_notifier;
313#endif
314 int cpu;
315 int vcpu_id; /* id given by userspace at creation */
316 int vcpu_idx; /* index in kvm->vcpus array */
317 int ____srcu_idx; /* Don't use this directly. You've been warned. */
318#ifdef CONFIG_PROVE_RCU
319 int srcu_depth;
320#endif
321 int mode;
322 u64 requests;
323 unsigned long guest_debug;
324
325 struct mutex mutex;
326 struct kvm_run *run;
327
328#ifndef __KVM_HAVE_ARCH_WQP
329 struct rcuwait wait;
330#endif
331 struct pid __rcu *pid;
332 int sigset_active;
333 sigset_t sigset;
334 unsigned int halt_poll_ns;
335 bool valid_wakeup;
336
337#ifdef CONFIG_HAS_IOMEM
338 int mmio_needed;
339 int mmio_read_completed;
340 int mmio_is_write;
341 int mmio_cur_fragment;
342 int mmio_nr_fragments;
343 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
344#endif
345
346#ifdef CONFIG_KVM_ASYNC_PF
347 struct {
348 u32 queued;
349 struct list_head queue;
350 struct list_head done;
351 spinlock_t lock;
352 } async_pf;
353#endif
354
355#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
356 /*
357 * Cpu relax intercept or pause loop exit optimization
358 * in_spin_loop: set when a vcpu does a pause loop exit
359 * or cpu relax intercepted.
360 * dy_eligible: indicates whether vcpu is eligible for directed yield.
361 */
362 struct {
363 bool in_spin_loop;
364 bool dy_eligible;
365 } spin_loop;
366#endif
367 bool preempted;
368 bool ready;
369 struct kvm_vcpu_arch arch;
370 struct kvm_vcpu_stat stat;
371 char stats_id[KVM_STATS_NAME_SIZE];
372 struct kvm_dirty_ring dirty_ring;
373
374 /*
375 * The most recently used memslot by this vCPU and the slots generation
376 * for which it is valid.
377 * No wraparound protection is needed since generations won't overflow in
378 * thousands of years, even assuming 1M memslot operations per second.
379 */
380 struct kvm_memory_slot *last_used_slot;
381 u64 last_used_slot_gen;
382};
383
384/*
385 * Start accounting time towards a guest.
386 * Must be called before entering guest context.
387 */
388static __always_inline void guest_timing_enter_irqoff(void)
389{
390 /*
391 * This is running in ioctl context so its safe to assume that it's the
392 * stime pending cputime to flush.
393 */
394 instrumentation_begin();
395 vtime_account_guest_enter();
396 instrumentation_end();
397}
398
399/*
400 * Enter guest context and enter an RCU extended quiescent state.
401 *
402 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
403 * unsafe to use any code which may directly or indirectly use RCU, tracing
404 * (including IRQ flag tracing), or lockdep. All code in this period must be
405 * non-instrumentable.
406 */
407static __always_inline void guest_context_enter_irqoff(void)
408{
409 /*
410 * KVM does not hold any references to rcu protected data when it
411 * switches CPU into a guest mode. In fact switching to a guest mode
412 * is very similar to exiting to userspace from rcu point of view. In
413 * addition CPU may stay in a guest mode for quite a long time (up to
414 * one time slice). Lets treat guest mode as quiescent state, just like
415 * we do with user-mode execution.
416 */
417 if (!context_tracking_guest_enter()) {
418 instrumentation_begin();
419 rcu_virt_note_context_switch(smp_processor_id());
420 instrumentation_end();
421 }
422}
423
424/*
425 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
426 * guest_state_enter_irqoff().
427 */
428static __always_inline void guest_enter_irqoff(void)
429{
430 guest_timing_enter_irqoff();
431 guest_context_enter_irqoff();
432}
433
434/**
435 * guest_state_enter_irqoff - Fixup state when entering a guest
436 *
437 * Entry to a guest will enable interrupts, but the kernel state is interrupts
438 * disabled when this is invoked. Also tell RCU about it.
439 *
440 * 1) Trace interrupts on state
441 * 2) Invoke context tracking if enabled to adjust RCU state
442 * 3) Tell lockdep that interrupts are enabled
443 *
444 * Invoked from architecture specific code before entering a guest.
445 * Must be called with interrupts disabled and the caller must be
446 * non-instrumentable.
447 * The caller has to invoke guest_timing_enter_irqoff() before this.
448 *
449 * Note: this is analogous to exit_to_user_mode().
450 */
451static __always_inline void guest_state_enter_irqoff(void)
452{
453 instrumentation_begin();
454 trace_hardirqs_on_prepare();
455 lockdep_hardirqs_on_prepare();
456 instrumentation_end();
457
458 guest_context_enter_irqoff();
459 lockdep_hardirqs_on(CALLER_ADDR0);
460}
461
462/*
463 * Exit guest context and exit an RCU extended quiescent state.
464 *
465 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
466 * unsafe to use any code which may directly or indirectly use RCU, tracing
467 * (including IRQ flag tracing), or lockdep. All code in this period must be
468 * non-instrumentable.
469 */
470static __always_inline void guest_context_exit_irqoff(void)
471{
472 context_tracking_guest_exit();
473}
474
475/*
476 * Stop accounting time towards a guest.
477 * Must be called after exiting guest context.
478 */
479static __always_inline void guest_timing_exit_irqoff(void)
480{
481 instrumentation_begin();
482 /* Flush the guest cputime we spent on the guest */
483 vtime_account_guest_exit();
484 instrumentation_end();
485}
486
487/*
488 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
489 * guest_timing_exit_irqoff().
490 */
491static __always_inline void guest_exit_irqoff(void)
492{
493 guest_context_exit_irqoff();
494 guest_timing_exit_irqoff();
495}
496
497static inline void guest_exit(void)
498{
499 unsigned long flags;
500
501 local_irq_save(flags);
502 guest_exit_irqoff();
503 local_irq_restore(flags);
504}
505
506/**
507 * guest_state_exit_irqoff - Establish state when returning from guest mode
508 *
509 * Entry from a guest disables interrupts, but guest mode is traced as
510 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
511 *
512 * 1) Tell lockdep that interrupts are disabled
513 * 2) Invoke context tracking if enabled to reactivate RCU
514 * 3) Trace interrupts off state
515 *
516 * Invoked from architecture specific code after exiting a guest.
517 * Must be invoked with interrupts disabled and the caller must be
518 * non-instrumentable.
519 * The caller has to invoke guest_timing_exit_irqoff() after this.
520 *
521 * Note: this is analogous to enter_from_user_mode().
522 */
523static __always_inline void guest_state_exit_irqoff(void)
524{
525 lockdep_hardirqs_off(CALLER_ADDR0);
526 guest_context_exit_irqoff();
527
528 instrumentation_begin();
529 trace_hardirqs_off_finish();
530 instrumentation_end();
531}
532
533static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
534{
535 /*
536 * The memory barrier ensures a previous write to vcpu->requests cannot
537 * be reordered with the read of vcpu->mode. It pairs with the general
538 * memory barrier following the write of vcpu->mode in VCPU RUN.
539 */
540 smp_mb__before_atomic();
541 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
542}
543
544/*
545 * Some of the bitops functions do not support too long bitmaps.
546 * This number must be determined not to exceed such limits.
547 */
548#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
549
550/*
551 * Since at idle each memslot belongs to two memslot sets it has to contain
552 * two embedded nodes for each data structure that it forms a part of.
553 *
554 * Two memslot sets (one active and one inactive) are necessary so the VM
555 * continues to run on one memslot set while the other is being modified.
556 *
557 * These two memslot sets normally point to the same set of memslots.
558 * They can, however, be desynchronized when performing a memslot management
559 * operation by replacing the memslot to be modified by its copy.
560 * After the operation is complete, both memslot sets once again point to
561 * the same, common set of memslot data.
562 *
563 * The memslots themselves are independent of each other so they can be
564 * individually added or deleted.
565 */
566struct kvm_memory_slot {
567 struct hlist_node id_node[2];
568 struct interval_tree_node hva_node[2];
569 struct rb_node gfn_node[2];
570 gfn_t base_gfn;
571 unsigned long npages;
572 unsigned long *dirty_bitmap;
573 struct kvm_arch_memory_slot arch;
574 unsigned long userspace_addr;
575 u32 flags;
576 short id;
577 u16 as_id;
578};
579
580static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
581{
582 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
583}
584
585static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
586{
587 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
588}
589
590static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
591{
592 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
593
594 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
595}
596
597#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
598#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
599#endif
600
601struct kvm_s390_adapter_int {
602 u64 ind_addr;
603 u64 summary_addr;
604 u64 ind_offset;
605 u32 summary_offset;
606 u32 adapter_id;
607};
608
609struct kvm_hv_sint {
610 u32 vcpu;
611 u32 sint;
612};
613
614struct kvm_xen_evtchn {
615 u32 port;
616 u32 vcpu_id;
617 int vcpu_idx;
618 u32 priority;
619};
620
621struct kvm_kernel_irq_routing_entry {
622 u32 gsi;
623 u32 type;
624 int (*set)(struct kvm_kernel_irq_routing_entry *e,
625 struct kvm *kvm, int irq_source_id, int level,
626 bool line_status);
627 union {
628 struct {
629 unsigned irqchip;
630 unsigned pin;
631 } irqchip;
632 struct {
633 u32 address_lo;
634 u32 address_hi;
635 u32 data;
636 u32 flags;
637 u32 devid;
638 } msi;
639 struct kvm_s390_adapter_int adapter;
640 struct kvm_hv_sint hv_sint;
641 struct kvm_xen_evtchn xen_evtchn;
642 };
643 struct hlist_node link;
644};
645
646#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
647struct kvm_irq_routing_table {
648 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
649 u32 nr_rt_entries;
650 /*
651 * Array indexed by gsi. Each entry contains list of irq chips
652 * the gsi is connected to.
653 */
654 struct hlist_head map[];
655};
656#endif
657
658#ifndef KVM_INTERNAL_MEM_SLOTS
659#define KVM_INTERNAL_MEM_SLOTS 0
660#endif
661
662#define KVM_MEM_SLOTS_NUM SHRT_MAX
663#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
664
665#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
666static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
667{
668 return 0;
669}
670#endif
671
672struct kvm_memslots {
673 u64 generation;
674 atomic_long_t last_used_slot;
675 struct rb_root_cached hva_tree;
676 struct rb_root gfn_tree;
677 /*
678 * The mapping table from slot id to memslot.
679 *
680 * 7-bit bucket count matches the size of the old id to index array for
681 * 512 slots, while giving good performance with this slot count.
682 * Higher bucket counts bring only small performance improvements but
683 * always result in higher memory usage (even for lower memslot counts).
684 */
685 DECLARE_HASHTABLE(id_hash, 7);
686 int node_idx;
687};
688
689struct kvm {
690#ifdef KVM_HAVE_MMU_RWLOCK
691 rwlock_t mmu_lock;
692#else
693 spinlock_t mmu_lock;
694#endif /* KVM_HAVE_MMU_RWLOCK */
695
696 struct mutex slots_lock;
697
698 /*
699 * Protects the arch-specific fields of struct kvm_memory_slots in
700 * use by the VM. To be used under the slots_lock (above) or in a
701 * kvm->srcu critical section where acquiring the slots_lock would
702 * lead to deadlock with the synchronize_srcu in
703 * install_new_memslots.
704 */
705 struct mutex slots_arch_lock;
706 struct mm_struct *mm; /* userspace tied to this vm */
707 unsigned long nr_memslot_pages;
708 /* The two memslot sets - active and inactive (per address space) */
709 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
710 /* The current active memslot set for each address space */
711 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
712 struct xarray vcpu_array;
713
714 /* Used to wait for completion of MMU notifiers. */
715 spinlock_t mn_invalidate_lock;
716 unsigned long mn_active_invalidate_count;
717 struct rcuwait mn_memslots_update_rcuwait;
718
719 /* For management / invalidation of gfn_to_pfn_caches */
720 spinlock_t gpc_lock;
721 struct list_head gpc_list;
722
723 /*
724 * created_vcpus is protected by kvm->lock, and is incremented
725 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
726 * incremented after storing the kvm_vcpu pointer in vcpus,
727 * and is accessed atomically.
728 */
729 atomic_t online_vcpus;
730 int max_vcpus;
731 int created_vcpus;
732 int last_boosted_vcpu;
733 struct list_head vm_list;
734 struct mutex lock;
735 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
736#ifdef CONFIG_HAVE_KVM_EVENTFD
737 struct {
738 spinlock_t lock;
739 struct list_head items;
740 struct list_head resampler_list;
741 struct mutex resampler_lock;
742 } irqfds;
743 struct list_head ioeventfds;
744#endif
745 struct kvm_vm_stat stat;
746 struct kvm_arch arch;
747 refcount_t users_count;
748#ifdef CONFIG_KVM_MMIO
749 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
750 spinlock_t ring_lock;
751 struct list_head coalesced_zones;
752#endif
753
754 struct mutex irq_lock;
755#ifdef CONFIG_HAVE_KVM_IRQCHIP
756 /*
757 * Update side is protected by irq_lock.
758 */
759 struct kvm_irq_routing_table __rcu *irq_routing;
760#endif
761#ifdef CONFIG_HAVE_KVM_IRQFD
762 struct hlist_head irq_ack_notifier_list;
763#endif
764
765#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
766 struct mmu_notifier mmu_notifier;
767 unsigned long mmu_invalidate_seq;
768 long mmu_invalidate_in_progress;
769 unsigned long mmu_invalidate_range_start;
770 unsigned long mmu_invalidate_range_end;
771#endif
772 struct list_head devices;
773 u64 manual_dirty_log_protect;
774 struct dentry *debugfs_dentry;
775 struct kvm_stat_data **debugfs_stat_data;
776 struct srcu_struct srcu;
777 struct srcu_struct irq_srcu;
778 pid_t userspace_pid;
779 unsigned int max_halt_poll_ns;
780 u32 dirty_ring_size;
781 bool vm_bugged;
782 bool vm_dead;
783
784#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
785 struct notifier_block pm_notifier;
786#endif
787 char stats_id[KVM_STATS_NAME_SIZE];
788};
789
790#define kvm_err(fmt, ...) \
791 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
792#define kvm_info(fmt, ...) \
793 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
794#define kvm_debug(fmt, ...) \
795 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
796#define kvm_debug_ratelimited(fmt, ...) \
797 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
798 ## __VA_ARGS__)
799#define kvm_pr_unimpl(fmt, ...) \
800 pr_err_ratelimited("kvm [%i]: " fmt, \
801 task_tgid_nr(current), ## __VA_ARGS__)
802
803/* The guest did something we don't support. */
804#define vcpu_unimpl(vcpu, fmt, ...) \
805 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
806 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
807
808#define vcpu_debug(vcpu, fmt, ...) \
809 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
810#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
811 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
812 ## __VA_ARGS__)
813#define vcpu_err(vcpu, fmt, ...) \
814 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
815
816static inline void kvm_vm_dead(struct kvm *kvm)
817{
818 kvm->vm_dead = true;
819 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
820}
821
822static inline void kvm_vm_bugged(struct kvm *kvm)
823{
824 kvm->vm_bugged = true;
825 kvm_vm_dead(kvm);
826}
827
828
829#define KVM_BUG(cond, kvm, fmt...) \
830({ \
831 int __ret = (cond); \
832 \
833 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
834 kvm_vm_bugged(kvm); \
835 unlikely(__ret); \
836})
837
838#define KVM_BUG_ON(cond, kvm) \
839({ \
840 int __ret = (cond); \
841 \
842 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
843 kvm_vm_bugged(kvm); \
844 unlikely(__ret); \
845})
846
847static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
848{
849#ifdef CONFIG_PROVE_RCU
850 WARN_ONCE(vcpu->srcu_depth++,
851 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
852#endif
853 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
854}
855
856static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
857{
858 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
859
860#ifdef CONFIG_PROVE_RCU
861 WARN_ONCE(--vcpu->srcu_depth,
862 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
863#endif
864}
865
866static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
867{
868 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
869}
870
871static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
872{
873 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
874 lockdep_is_held(&kvm->slots_lock) ||
875 !refcount_read(&kvm->users_count));
876}
877
878static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
879{
880 int num_vcpus = atomic_read(&kvm->online_vcpus);
881 i = array_index_nospec(i, num_vcpus);
882
883 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
884 smp_rmb();
885 return xa_load(&kvm->vcpu_array, i);
886}
887
888#define kvm_for_each_vcpu(idx, vcpup, kvm) \
889 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
890 (atomic_read(&kvm->online_vcpus) - 1))
891
892static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
893{
894 struct kvm_vcpu *vcpu = NULL;
895 unsigned long i;
896
897 if (id < 0)
898 return NULL;
899 if (id < KVM_MAX_VCPUS)
900 vcpu = kvm_get_vcpu(kvm, id);
901 if (vcpu && vcpu->vcpu_id == id)
902 return vcpu;
903 kvm_for_each_vcpu(i, vcpu, kvm)
904 if (vcpu->vcpu_id == id)
905 return vcpu;
906 return NULL;
907}
908
909void kvm_destroy_vcpus(struct kvm *kvm);
910
911void vcpu_load(struct kvm_vcpu *vcpu);
912void vcpu_put(struct kvm_vcpu *vcpu);
913
914#ifdef __KVM_HAVE_IOAPIC
915void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
916void kvm_arch_post_irq_routing_update(struct kvm *kvm);
917#else
918static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
919{
920}
921static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
922{
923}
924#endif
925
926#ifdef CONFIG_HAVE_KVM_IRQFD
927int kvm_irqfd_init(void);
928void kvm_irqfd_exit(void);
929#else
930static inline int kvm_irqfd_init(void)
931{
932 return 0;
933}
934
935static inline void kvm_irqfd_exit(void)
936{
937}
938#endif
939int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
940 struct module *module);
941void kvm_exit(void);
942
943void kvm_get_kvm(struct kvm *kvm);
944bool kvm_get_kvm_safe(struct kvm *kvm);
945void kvm_put_kvm(struct kvm *kvm);
946bool file_is_kvm(struct file *file);
947void kvm_put_kvm_no_destroy(struct kvm *kvm);
948
949static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
950{
951 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
952 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
953 lockdep_is_held(&kvm->slots_lock) ||
954 !refcount_read(&kvm->users_count));
955}
956
957static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
958{
959 return __kvm_memslots(kvm, 0);
960}
961
962static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
963{
964 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
965
966 return __kvm_memslots(vcpu->kvm, as_id);
967}
968
969static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
970{
971 return RB_EMPTY_ROOT(&slots->gfn_tree);
972}
973
974#define kvm_for_each_memslot(memslot, bkt, slots) \
975 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
976 if (WARN_ON_ONCE(!memslot->npages)) { \
977 } else
978
979static inline
980struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
981{
982 struct kvm_memory_slot *slot;
983 int idx = slots->node_idx;
984
985 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
986 if (slot->id == id)
987 return slot;
988 }
989
990 return NULL;
991}
992
993/* Iterator used for walking memslots that overlap a gfn range. */
994struct kvm_memslot_iter {
995 struct kvm_memslots *slots;
996 struct rb_node *node;
997 struct kvm_memory_slot *slot;
998};
999
1000static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1001{
1002 iter->node = rb_next(iter->node);
1003 if (!iter->node)
1004 return;
1005
1006 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1007}
1008
1009static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1010 struct kvm_memslots *slots,
1011 gfn_t start)
1012{
1013 int idx = slots->node_idx;
1014 struct rb_node *tmp;
1015 struct kvm_memory_slot *slot;
1016
1017 iter->slots = slots;
1018
1019 /*
1020 * Find the so called "upper bound" of a key - the first node that has
1021 * its key strictly greater than the searched one (the start gfn in our case).
1022 */
1023 iter->node = NULL;
1024 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1025 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1026 if (start < slot->base_gfn) {
1027 iter->node = tmp;
1028 tmp = tmp->rb_left;
1029 } else {
1030 tmp = tmp->rb_right;
1031 }
1032 }
1033
1034 /*
1035 * Find the slot with the lowest gfn that can possibly intersect with
1036 * the range, so we'll ideally have slot start <= range start
1037 */
1038 if (iter->node) {
1039 /*
1040 * A NULL previous node means that the very first slot
1041 * already has a higher start gfn.
1042 * In this case slot start > range start.
1043 */
1044 tmp = rb_prev(iter->node);
1045 if (tmp)
1046 iter->node = tmp;
1047 } else {
1048 /* a NULL node below means no slots */
1049 iter->node = rb_last(&slots->gfn_tree);
1050 }
1051
1052 if (iter->node) {
1053 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1054
1055 /*
1056 * It is possible in the slot start < range start case that the
1057 * found slot ends before or at range start (slot end <= range start)
1058 * and so it does not overlap the requested range.
1059 *
1060 * In such non-overlapping case the next slot (if it exists) will
1061 * already have slot start > range start, otherwise the logic above
1062 * would have found it instead of the current slot.
1063 */
1064 if (iter->slot->base_gfn + iter->slot->npages <= start)
1065 kvm_memslot_iter_next(iter);
1066 }
1067}
1068
1069static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1070{
1071 if (!iter->node)
1072 return false;
1073
1074 /*
1075 * If this slot starts beyond or at the end of the range so does
1076 * every next one
1077 */
1078 return iter->slot->base_gfn < end;
1079}
1080
1081/* Iterate over each memslot at least partially intersecting [start, end) range */
1082#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1083 for (kvm_memslot_iter_start(iter, slots, start); \
1084 kvm_memslot_iter_is_valid(iter, end); \
1085 kvm_memslot_iter_next(iter))
1086
1087/*
1088 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1089 * - create a new memory slot
1090 * - delete an existing memory slot
1091 * - modify an existing memory slot
1092 * -- move it in the guest physical memory space
1093 * -- just change its flags
1094 *
1095 * Since flags can be changed by some of these operations, the following
1096 * differentiation is the best we can do for __kvm_set_memory_region():
1097 */
1098enum kvm_mr_change {
1099 KVM_MR_CREATE,
1100 KVM_MR_DELETE,
1101 KVM_MR_MOVE,
1102 KVM_MR_FLAGS_ONLY,
1103};
1104
1105int kvm_set_memory_region(struct kvm *kvm,
1106 const struct kvm_userspace_memory_region *mem);
1107int __kvm_set_memory_region(struct kvm *kvm,
1108 const struct kvm_userspace_memory_region *mem);
1109void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1110void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1111int kvm_arch_prepare_memory_region(struct kvm *kvm,
1112 const struct kvm_memory_slot *old,
1113 struct kvm_memory_slot *new,
1114 enum kvm_mr_change change);
1115void kvm_arch_commit_memory_region(struct kvm *kvm,
1116 struct kvm_memory_slot *old,
1117 const struct kvm_memory_slot *new,
1118 enum kvm_mr_change change);
1119/* flush all memory translations */
1120void kvm_arch_flush_shadow_all(struct kvm *kvm);
1121/* flush memory translations pointing to 'slot' */
1122void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1123 struct kvm_memory_slot *slot);
1124
1125int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1126 struct page **pages, int nr_pages);
1127
1128struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1129unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1130unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1131unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1132unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1133 bool *writable);
1134void kvm_release_page_clean(struct page *page);
1135void kvm_release_page_dirty(struct page *page);
1136
1137kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1138kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1139 bool *writable);
1140kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1141kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1142kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1143 bool atomic, bool *async, bool write_fault,
1144 bool *writable, hva_t *hva);
1145
1146void kvm_release_pfn_clean(kvm_pfn_t pfn);
1147void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1148void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1149void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1150
1151void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1152int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1153 int len);
1154int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1155int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1156 void *data, unsigned long len);
1157int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1158 void *data, unsigned int offset,
1159 unsigned long len);
1160int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1161 int offset, int len);
1162int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1163 unsigned long len);
1164int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1165 void *data, unsigned long len);
1166int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1167 void *data, unsigned int offset,
1168 unsigned long len);
1169int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1170 gpa_t gpa, unsigned long len);
1171
1172#define __kvm_get_guest(kvm, gfn, offset, v) \
1173({ \
1174 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1175 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1176 int __ret = -EFAULT; \
1177 \
1178 if (!kvm_is_error_hva(__addr)) \
1179 __ret = get_user(v, __uaddr); \
1180 __ret; \
1181})
1182
1183#define kvm_get_guest(kvm, gpa, v) \
1184({ \
1185 gpa_t __gpa = gpa; \
1186 struct kvm *__kvm = kvm; \
1187 \
1188 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1189 offset_in_page(__gpa), v); \
1190})
1191
1192#define __kvm_put_guest(kvm, gfn, offset, v) \
1193({ \
1194 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1195 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1196 int __ret = -EFAULT; \
1197 \
1198 if (!kvm_is_error_hva(__addr)) \
1199 __ret = put_user(v, __uaddr); \
1200 if (!__ret) \
1201 mark_page_dirty(kvm, gfn); \
1202 __ret; \
1203})
1204
1205#define kvm_put_guest(kvm, gpa, v) \
1206({ \
1207 gpa_t __gpa = gpa; \
1208 struct kvm *__kvm = kvm; \
1209 \
1210 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1211 offset_in_page(__gpa), v); \
1212})
1213
1214int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1215struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1216bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1217bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1218unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1219void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1220void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1221
1222struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1223struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1224kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1225kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1226int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1227void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1228unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1229unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1230int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1231 int len);
1232int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1233 unsigned long len);
1234int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1235 unsigned long len);
1236int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1237 int offset, int len);
1238int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1239 unsigned long len);
1240void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1241
1242/**
1243 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1244 * given guest physical address.
1245 *
1246 * @kvm: pointer to kvm instance.
1247 * @gpc: struct gfn_to_pfn_cache object.
1248 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1249 * invalidation.
1250 * @usage: indicates if the resulting host physical PFN is used while
1251 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1252 * the cache from MMU notifiers---but not for KVM memslot
1253 * changes!---will also force @vcpu to exit the guest and
1254 * refresh the cache); and/or if the PFN used directly
1255 * by KVM (and thus needs a kernel virtual mapping).
1256 * @gpa: guest physical address to map.
1257 * @len: sanity check; the range being access must fit a single page.
1258 *
1259 * @return: 0 for success.
1260 * -EINVAL for a mapping which would cross a page boundary.
1261 * -EFAULT for an untranslatable guest physical address.
1262 *
1263 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1264 * invalidations to be processed. Callers are required to use
1265 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1266 * accessing the target page.
1267 */
1268int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1269 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1270 gpa_t gpa, unsigned long len);
1271
1272/**
1273 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1274 *
1275 * @kvm: pointer to kvm instance.
1276 * @gpc: struct gfn_to_pfn_cache object.
1277 * @gpa: current guest physical address to map.
1278 * @len: sanity check; the range being access must fit a single page.
1279 *
1280 * @return: %true if the cache is still valid and the address matches.
1281 * %false if the cache is not valid.
1282 *
1283 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1284 * while calling this function, and then continue to hold the lock until the
1285 * access is complete.
1286 *
1287 * Callers in IN_GUEST_MODE may do so without locking, although they should
1288 * still hold a read lock on kvm->scru for the memslot checks.
1289 */
1290bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1291 gpa_t gpa, unsigned long len);
1292
1293/**
1294 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1295 *
1296 * @kvm: pointer to kvm instance.
1297 * @gpc: struct gfn_to_pfn_cache object.
1298 * @gpa: updated guest physical address to map.
1299 * @len: sanity check; the range being access must fit a single page.
1300 *
1301 * @return: 0 for success.
1302 * -EINVAL for a mapping which would cross a page boundary.
1303 * -EFAULT for an untranslatable guest physical address.
1304 *
1305 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1306 * returm from this function does not mean the page can be immediately
1307 * accessed because it may have raced with an invalidation. Callers must
1308 * still lock and check the cache status, as this function does not return
1309 * with the lock still held to permit access.
1310 */
1311int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1312 gpa_t gpa, unsigned long len);
1313
1314/**
1315 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1316 *
1317 * @kvm: pointer to kvm instance.
1318 * @gpc: struct gfn_to_pfn_cache object.
1319 *
1320 * This unmaps the referenced page. The cache is left in the invalid state
1321 * but at least the mapping from GPA to userspace HVA will remain cached
1322 * and can be reused on a subsequent refresh.
1323 */
1324void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1325
1326/**
1327 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1328 *
1329 * @kvm: pointer to kvm instance.
1330 * @gpc: struct gfn_to_pfn_cache object.
1331 *
1332 * This removes a cache from the @kvm's list to be processed on MMU notifier
1333 * invocation.
1334 */
1335void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1336
1337void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1338void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1339
1340void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1341bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1342void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1343void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1344bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1345void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1346int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1347void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1348
1349void kvm_flush_remote_tlbs(struct kvm *kvm);
1350
1351#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1352int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1353int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1354int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1355void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1356void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1357#endif
1358
1359void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1360 unsigned long end);
1361void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1362 unsigned long end);
1363
1364long kvm_arch_dev_ioctl(struct file *filp,
1365 unsigned int ioctl, unsigned long arg);
1366long kvm_arch_vcpu_ioctl(struct file *filp,
1367 unsigned int ioctl, unsigned long arg);
1368vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1369
1370int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1371
1372void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1373 struct kvm_memory_slot *slot,
1374 gfn_t gfn_offset,
1375 unsigned long mask);
1376void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1377
1378#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1379void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1380 const struct kvm_memory_slot *memslot);
1381#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1383int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1384 int *is_dirty, struct kvm_memory_slot **memslot);
1385#endif
1386
1387int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1388 bool line_status);
1389int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1390 struct kvm_enable_cap *cap);
1391long kvm_arch_vm_ioctl(struct file *filp,
1392 unsigned int ioctl, unsigned long arg);
1393long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1394 unsigned long arg);
1395
1396int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1397int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1398
1399int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1400 struct kvm_translation *tr);
1401
1402int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1403int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1404int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1405 struct kvm_sregs *sregs);
1406int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1407 struct kvm_sregs *sregs);
1408int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1409 struct kvm_mp_state *mp_state);
1410int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1411 struct kvm_mp_state *mp_state);
1412int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1413 struct kvm_guest_debug *dbg);
1414int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1415
1416int kvm_arch_init(void *opaque);
1417void kvm_arch_exit(void);
1418
1419void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1420
1421void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1422void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1423int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1424int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1425void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1426void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1427
1428#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1429int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1430#endif
1431
1432#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1433void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1434#else
1435static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1436#endif
1437
1438int kvm_arch_hardware_enable(void);
1439void kvm_arch_hardware_disable(void);
1440int kvm_arch_hardware_setup(void *opaque);
1441void kvm_arch_hardware_unsetup(void);
1442int kvm_arch_check_processor_compat(void *opaque);
1443int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1444bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1445int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1446bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1447bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1448int kvm_arch_post_init_vm(struct kvm *kvm);
1449void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1450int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1451
1452#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1453/*
1454 * All architectures that want to use vzalloc currently also
1455 * need their own kvm_arch_alloc_vm implementation.
1456 */
1457static inline struct kvm *kvm_arch_alloc_vm(void)
1458{
1459 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1460}
1461#endif
1462
1463static inline void __kvm_arch_free_vm(struct kvm *kvm)
1464{
1465 kvfree(kvm);
1466}
1467
1468#ifndef __KVM_HAVE_ARCH_VM_FREE
1469static inline void kvm_arch_free_vm(struct kvm *kvm)
1470{
1471 __kvm_arch_free_vm(kvm);
1472}
1473#endif
1474
1475#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1476static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1477{
1478 return -ENOTSUPP;
1479}
1480#endif
1481
1482#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1483void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1484void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1485bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1486#else
1487static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1488{
1489}
1490
1491static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1492{
1493}
1494
1495static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1496{
1497 return false;
1498}
1499#endif
1500#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1501void kvm_arch_start_assignment(struct kvm *kvm);
1502void kvm_arch_end_assignment(struct kvm *kvm);
1503bool kvm_arch_has_assigned_device(struct kvm *kvm);
1504#else
1505static inline void kvm_arch_start_assignment(struct kvm *kvm)
1506{
1507}
1508
1509static inline void kvm_arch_end_assignment(struct kvm *kvm)
1510{
1511}
1512
1513static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1514{
1515 return false;
1516}
1517#endif
1518
1519static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1520{
1521#ifdef __KVM_HAVE_ARCH_WQP
1522 return vcpu->arch.waitp;
1523#else
1524 return &vcpu->wait;
1525#endif
1526}
1527
1528/*
1529 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1530 * true if the vCPU was blocking and was awakened, false otherwise.
1531 */
1532static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1533{
1534 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1535}
1536
1537static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1538{
1539 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1540}
1541
1542#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1543/*
1544 * returns true if the virtual interrupt controller is initialized and
1545 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1546 * controller is dynamically instantiated and this is not always true.
1547 */
1548bool kvm_arch_intc_initialized(struct kvm *kvm);
1549#else
1550static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1551{
1552 return true;
1553}
1554#endif
1555
1556#ifdef CONFIG_GUEST_PERF_EVENTS
1557unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1558
1559void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1560void kvm_unregister_perf_callbacks(void);
1561#else
1562static inline void kvm_register_perf_callbacks(void *ign) {}
1563static inline void kvm_unregister_perf_callbacks(void) {}
1564#endif /* CONFIG_GUEST_PERF_EVENTS */
1565
1566int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1567void kvm_arch_destroy_vm(struct kvm *kvm);
1568void kvm_arch_sync_events(struct kvm *kvm);
1569
1570int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1571
1572struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1573bool kvm_is_zone_device_page(struct page *page);
1574
1575struct kvm_irq_ack_notifier {
1576 struct hlist_node link;
1577 unsigned gsi;
1578 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1579};
1580
1581int kvm_irq_map_gsi(struct kvm *kvm,
1582 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1583int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1584
1585int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1586 bool line_status);
1587int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1588 int irq_source_id, int level, bool line_status);
1589int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1590 struct kvm *kvm, int irq_source_id,
1591 int level, bool line_status);
1592bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1593void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1594void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1595void kvm_register_irq_ack_notifier(struct kvm *kvm,
1596 struct kvm_irq_ack_notifier *kian);
1597void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1598 struct kvm_irq_ack_notifier *kian);
1599int kvm_request_irq_source_id(struct kvm *kvm);
1600void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1601bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1602
1603/*
1604 * Returns a pointer to the memslot if it contains gfn.
1605 * Otherwise returns NULL.
1606 */
1607static inline struct kvm_memory_slot *
1608try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1609{
1610 if (!slot)
1611 return NULL;
1612
1613 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1614 return slot;
1615 else
1616 return NULL;
1617}
1618
1619/*
1620 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1621 *
1622 * With "approx" set returns the memslot also when the address falls
1623 * in a hole. In that case one of the memslots bordering the hole is
1624 * returned.
1625 */
1626static inline struct kvm_memory_slot *
1627search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1628{
1629 struct kvm_memory_slot *slot;
1630 struct rb_node *node;
1631 int idx = slots->node_idx;
1632
1633 slot = NULL;
1634 for (node = slots->gfn_tree.rb_node; node; ) {
1635 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1636 if (gfn >= slot->base_gfn) {
1637 if (gfn < slot->base_gfn + slot->npages)
1638 return slot;
1639 node = node->rb_right;
1640 } else
1641 node = node->rb_left;
1642 }
1643
1644 return approx ? slot : NULL;
1645}
1646
1647static inline struct kvm_memory_slot *
1648____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1649{
1650 struct kvm_memory_slot *slot;
1651
1652 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1653 slot = try_get_memslot(slot, gfn);
1654 if (slot)
1655 return slot;
1656
1657 slot = search_memslots(slots, gfn, approx);
1658 if (slot) {
1659 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1660 return slot;
1661 }
1662
1663 return NULL;
1664}
1665
1666/*
1667 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1668 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1669 * because that would bloat other code too much.
1670 */
1671static inline struct kvm_memory_slot *
1672__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1673{
1674 return ____gfn_to_memslot(slots, gfn, false);
1675}
1676
1677static inline unsigned long
1678__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1679{
1680 /*
1681 * The index was checked originally in search_memslots. To avoid
1682 * that a malicious guest builds a Spectre gadget out of e.g. page
1683 * table walks, do not let the processor speculate loads outside
1684 * the guest's registered memslots.
1685 */
1686 unsigned long offset = gfn - slot->base_gfn;
1687 offset = array_index_nospec(offset, slot->npages);
1688 return slot->userspace_addr + offset * PAGE_SIZE;
1689}
1690
1691static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1692{
1693 return gfn_to_memslot(kvm, gfn)->id;
1694}
1695
1696static inline gfn_t
1697hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1698{
1699 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1700
1701 return slot->base_gfn + gfn_offset;
1702}
1703
1704static inline gpa_t gfn_to_gpa(gfn_t gfn)
1705{
1706 return (gpa_t)gfn << PAGE_SHIFT;
1707}
1708
1709static inline gfn_t gpa_to_gfn(gpa_t gpa)
1710{
1711 return (gfn_t)(gpa >> PAGE_SHIFT);
1712}
1713
1714static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1715{
1716 return (hpa_t)pfn << PAGE_SHIFT;
1717}
1718
1719static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1720{
1721 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1722
1723 return kvm_is_error_hva(hva);
1724}
1725
1726enum kvm_stat_kind {
1727 KVM_STAT_VM,
1728 KVM_STAT_VCPU,
1729};
1730
1731struct kvm_stat_data {
1732 struct kvm *kvm;
1733 const struct _kvm_stats_desc *desc;
1734 enum kvm_stat_kind kind;
1735};
1736
1737struct _kvm_stats_desc {
1738 struct kvm_stats_desc desc;
1739 char name[KVM_STATS_NAME_SIZE];
1740};
1741
1742#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1743 .flags = type | unit | base | \
1744 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1745 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1746 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1747 .exponent = exp, \
1748 .size = sz, \
1749 .bucket_size = bsz
1750
1751#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1752 { \
1753 { \
1754 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1755 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1756 }, \
1757 .name = #stat, \
1758 }
1759#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1760 { \
1761 { \
1762 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1763 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1764 }, \
1765 .name = #stat, \
1766 }
1767#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1768 { \
1769 { \
1770 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1771 .offset = offsetof(struct kvm_vm_stat, stat) \
1772 }, \
1773 .name = #stat, \
1774 }
1775#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1776 { \
1777 { \
1778 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1779 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1780 }, \
1781 .name = #stat, \
1782 }
1783/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1784#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1785 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1786
1787#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1788 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1789 unit, base, exponent, 1, 0)
1790#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1791 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1792 unit, base, exponent, 1, 0)
1793#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1794 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1795 unit, base, exponent, 1, 0)
1796#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1797 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1798 unit, base, exponent, sz, bsz)
1799#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1800 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1801 unit, base, exponent, sz, 0)
1802
1803/* Cumulative counter, read/write */
1804#define STATS_DESC_COUNTER(SCOPE, name) \
1805 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1806 KVM_STATS_BASE_POW10, 0)
1807/* Instantaneous counter, read only */
1808#define STATS_DESC_ICOUNTER(SCOPE, name) \
1809 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1810 KVM_STATS_BASE_POW10, 0)
1811/* Peak counter, read/write */
1812#define STATS_DESC_PCOUNTER(SCOPE, name) \
1813 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1814 KVM_STATS_BASE_POW10, 0)
1815
1816/* Instantaneous boolean value, read only */
1817#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1818 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1819 KVM_STATS_BASE_POW10, 0)
1820/* Peak (sticky) boolean value, read/write */
1821#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1822 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1823 KVM_STATS_BASE_POW10, 0)
1824
1825/* Cumulative time in nanosecond */
1826#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1827 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1828 KVM_STATS_BASE_POW10, -9)
1829/* Linear histogram for time in nanosecond */
1830#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1831 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1832 KVM_STATS_BASE_POW10, -9, sz, bsz)
1833/* Logarithmic histogram for time in nanosecond */
1834#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1835 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1836 KVM_STATS_BASE_POW10, -9, sz)
1837
1838#define KVM_GENERIC_VM_STATS() \
1839 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1840 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1841
1842#define KVM_GENERIC_VCPU_STATS() \
1843 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1844 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1845 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1846 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1847 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1848 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1849 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1850 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1851 HALT_POLL_HIST_COUNT), \
1852 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1853 HALT_POLL_HIST_COUNT), \
1854 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1855 HALT_POLL_HIST_COUNT), \
1856 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1857
1858extern struct dentry *kvm_debugfs_dir;
1859
1860ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1861 const struct _kvm_stats_desc *desc,
1862 void *stats, size_t size_stats,
1863 char __user *user_buffer, size_t size, loff_t *offset);
1864
1865/**
1866 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1867 * statistics data.
1868 *
1869 * @data: start address of the stats data
1870 * @size: the number of bucket of the stats data
1871 * @value: the new value used to update the linear histogram's bucket
1872 * @bucket_size: the size (width) of a bucket
1873 */
1874static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1875 u64 value, size_t bucket_size)
1876{
1877 size_t index = div64_u64(value, bucket_size);
1878
1879 index = min(index, size - 1);
1880 ++data[index];
1881}
1882
1883/**
1884 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1885 * statistics data.
1886 *
1887 * @data: start address of the stats data
1888 * @size: the number of bucket of the stats data
1889 * @value: the new value used to update the logarithmic histogram's bucket
1890 */
1891static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1892{
1893 size_t index = fls64(value);
1894
1895 index = min(index, size - 1);
1896 ++data[index];
1897}
1898
1899#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1900 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1901#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1902 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1903
1904
1905extern const struct kvm_stats_header kvm_vm_stats_header;
1906extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1907extern const struct kvm_stats_header kvm_vcpu_stats_header;
1908extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1909
1910#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1911static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1912{
1913 if (unlikely(kvm->mmu_invalidate_in_progress))
1914 return 1;
1915 /*
1916 * Ensure the read of mmu_invalidate_in_progress happens before
1917 * the read of mmu_invalidate_seq. This interacts with the
1918 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1919 * that the caller either sees the old (non-zero) value of
1920 * mmu_invalidate_in_progress or the new (incremented) value of
1921 * mmu_invalidate_seq.
1922 *
1923 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1924 * than under kvm->mmu_lock, for scalability, so can't rely on
1925 * kvm->mmu_lock to keep things ordered.
1926 */
1927 smp_rmb();
1928 if (kvm->mmu_invalidate_seq != mmu_seq)
1929 return 1;
1930 return 0;
1931}
1932
1933static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1934 unsigned long mmu_seq,
1935 unsigned long hva)
1936{
1937 lockdep_assert_held(&kvm->mmu_lock);
1938 /*
1939 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1940 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1941 * that might be being invalidated. Note that it may include some false
1942 * positives, due to shortcuts when handing concurrent invalidations.
1943 */
1944 if (unlikely(kvm->mmu_invalidate_in_progress) &&
1945 hva >= kvm->mmu_invalidate_range_start &&
1946 hva < kvm->mmu_invalidate_range_end)
1947 return 1;
1948 if (kvm->mmu_invalidate_seq != mmu_seq)
1949 return 1;
1950 return 0;
1951}
1952#endif
1953
1954#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1955
1956#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1957
1958bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1959int kvm_set_irq_routing(struct kvm *kvm,
1960 const struct kvm_irq_routing_entry *entries,
1961 unsigned nr,
1962 unsigned flags);
1963int kvm_set_routing_entry(struct kvm *kvm,
1964 struct kvm_kernel_irq_routing_entry *e,
1965 const struct kvm_irq_routing_entry *ue);
1966void kvm_free_irq_routing(struct kvm *kvm);
1967
1968#else
1969
1970static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1971
1972#endif
1973
1974int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1975
1976#ifdef CONFIG_HAVE_KVM_EVENTFD
1977
1978void kvm_eventfd_init(struct kvm *kvm);
1979int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1980
1981#ifdef CONFIG_HAVE_KVM_IRQFD
1982int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1983void kvm_irqfd_release(struct kvm *kvm);
1984void kvm_irq_routing_update(struct kvm *);
1985#else
1986static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1987{
1988 return -EINVAL;
1989}
1990
1991static inline void kvm_irqfd_release(struct kvm *kvm) {}
1992#endif
1993
1994#else
1995
1996static inline void kvm_eventfd_init(struct kvm *kvm) {}
1997
1998static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1999{
2000 return -EINVAL;
2001}
2002
2003static inline void kvm_irqfd_release(struct kvm *kvm) {}
2004
2005#ifdef CONFIG_HAVE_KVM_IRQCHIP
2006static inline void kvm_irq_routing_update(struct kvm *kvm)
2007{
2008}
2009#endif
2010
2011static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2012{
2013 return -ENOSYS;
2014}
2015
2016#endif /* CONFIG_HAVE_KVM_EVENTFD */
2017
2018void kvm_arch_irq_routing_update(struct kvm *kvm);
2019
2020static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2021{
2022 /*
2023 * Ensure the rest of the request is published to kvm_check_request's
2024 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2025 */
2026 smp_wmb();
2027 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2028}
2029
2030static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2031{
2032 /*
2033 * Request that don't require vCPU action should never be logged in
2034 * vcpu->requests. The vCPU won't clear the request, so it will stay
2035 * logged indefinitely and prevent the vCPU from entering the guest.
2036 */
2037 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2038 (req & KVM_REQUEST_NO_ACTION));
2039
2040 __kvm_make_request(req, vcpu);
2041}
2042
2043static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2044{
2045 return READ_ONCE(vcpu->requests);
2046}
2047
2048static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2049{
2050 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2051}
2052
2053static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2054{
2055 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2056}
2057
2058static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2059{
2060 if (kvm_test_request(req, vcpu)) {
2061 kvm_clear_request(req, vcpu);
2062
2063 /*
2064 * Ensure the rest of the request is visible to kvm_check_request's
2065 * caller. Paired with the smp_wmb in kvm_make_request.
2066 */
2067 smp_mb__after_atomic();
2068 return true;
2069 } else {
2070 return false;
2071 }
2072}
2073
2074extern bool kvm_rebooting;
2075
2076extern unsigned int halt_poll_ns;
2077extern unsigned int halt_poll_ns_grow;
2078extern unsigned int halt_poll_ns_grow_start;
2079extern unsigned int halt_poll_ns_shrink;
2080
2081struct kvm_device {
2082 const struct kvm_device_ops *ops;
2083 struct kvm *kvm;
2084 void *private;
2085 struct list_head vm_node;
2086};
2087
2088/* create, destroy, and name are mandatory */
2089struct kvm_device_ops {
2090 const char *name;
2091
2092 /*
2093 * create is called holding kvm->lock and any operations not suitable
2094 * to do while holding the lock should be deferred to init (see
2095 * below).
2096 */
2097 int (*create)(struct kvm_device *dev, u32 type);
2098
2099 /*
2100 * init is called after create if create is successful and is called
2101 * outside of holding kvm->lock.
2102 */
2103 void (*init)(struct kvm_device *dev);
2104
2105 /*
2106 * Destroy is responsible for freeing dev.
2107 *
2108 * Destroy may be called before or after destructors are called
2109 * on emulated I/O regions, depending on whether a reference is
2110 * held by a vcpu or other kvm component that gets destroyed
2111 * after the emulated I/O.
2112 */
2113 void (*destroy)(struct kvm_device *dev);
2114
2115 /*
2116 * Release is an alternative method to free the device. It is
2117 * called when the device file descriptor is closed. Once
2118 * release is called, the destroy method will not be called
2119 * anymore as the device is removed from the device list of
2120 * the VM. kvm->lock is held.
2121 */
2122 void (*release)(struct kvm_device *dev);
2123
2124 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2125 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2126 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2127 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2128 unsigned long arg);
2129 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2130};
2131
2132void kvm_device_get(struct kvm_device *dev);
2133void kvm_device_put(struct kvm_device *dev);
2134struct kvm_device *kvm_device_from_filp(struct file *filp);
2135int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2136void kvm_unregister_device_ops(u32 type);
2137
2138extern struct kvm_device_ops kvm_mpic_ops;
2139extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2140extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2141
2142#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2143
2144static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2145{
2146 vcpu->spin_loop.in_spin_loop = val;
2147}
2148static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2149{
2150 vcpu->spin_loop.dy_eligible = val;
2151}
2152
2153#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2154
2155static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2156{
2157}
2158
2159static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2160{
2161}
2162#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2163
2164static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2165{
2166 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2167 !(memslot->flags & KVM_MEMSLOT_INVALID));
2168}
2169
2170struct kvm_vcpu *kvm_get_running_vcpu(void);
2171struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2172
2173#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2174bool kvm_arch_has_irq_bypass(void);
2175int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2176 struct irq_bypass_producer *);
2177void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2178 struct irq_bypass_producer *);
2179void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2180void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2181int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2182 uint32_t guest_irq, bool set);
2183bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2184 struct kvm_kernel_irq_routing_entry *);
2185#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2186
2187#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2188/* If we wakeup during the poll time, was it a sucessful poll? */
2189static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2190{
2191 return vcpu->valid_wakeup;
2192}
2193
2194#else
2195static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2196{
2197 return true;
2198}
2199#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2200
2201#ifdef CONFIG_HAVE_KVM_NO_POLL
2202/* Callback that tells if we must not poll */
2203bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2204#else
2205static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2206{
2207 return false;
2208}
2209#endif /* CONFIG_HAVE_KVM_NO_POLL */
2210
2211#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2212long kvm_arch_vcpu_async_ioctl(struct file *filp,
2213 unsigned int ioctl, unsigned long arg);
2214#else
2215static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2216 unsigned int ioctl,
2217 unsigned long arg)
2218{
2219 return -ENOIOCTLCMD;
2220}
2221#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2222
2223void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2224 unsigned long start, unsigned long end);
2225
2226void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2227
2228#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2229int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2230#else
2231static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2232{
2233 return 0;
2234}
2235#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2236
2237typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2238
2239int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2240 uintptr_t data, const char *name,
2241 struct task_struct **thread_ptr);
2242
2243#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2244static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2245{
2246 vcpu->run->exit_reason = KVM_EXIT_INTR;
2247 vcpu->stat.signal_exits++;
2248}
2249#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2250
2251/*
2252 * If more than one page is being (un)accounted, @virt must be the address of
2253 * the first page of a block of pages what were allocated together (i.e
2254 * accounted together).
2255 *
2256 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2257 * is thread-safe.
2258 */
2259static inline void kvm_account_pgtable_pages(void *virt, int nr)
2260{
2261 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2262}
2263
2264/*
2265 * This defines how many reserved entries we want to keep before we
2266 * kick the vcpu to the userspace to avoid dirty ring full. This
2267 * value can be tuned to higher if e.g. PML is enabled on the host.
2268 */
2269#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2270
2271/* Max number of entries allowed for each kvm dirty ring */
2272#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2273
2274#endif