at v6.1-rc2 2710 lines 86 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <linux/workqueue.h> 11#include <linux/file.h> 12#include <linux/percpu.h> 13#include <linux/err.h> 14#include <linux/rbtree_latch.h> 15#include <linux/numa.h> 16#include <linux/mm_types.h> 17#include <linux/wait.h> 18#include <linux/refcount.h> 19#include <linux/mutex.h> 20#include <linux/module.h> 21#include <linux/kallsyms.h> 22#include <linux/capability.h> 23#include <linux/sched/mm.h> 24#include <linux/slab.h> 25#include <linux/percpu-refcount.h> 26#include <linux/stddef.h> 27#include <linux/bpfptr.h> 28#include <linux/btf.h> 29#include <linux/rcupdate_trace.h> 30 31struct bpf_verifier_env; 32struct bpf_verifier_log; 33struct perf_event; 34struct bpf_prog; 35struct bpf_prog_aux; 36struct bpf_map; 37struct sock; 38struct seq_file; 39struct btf; 40struct btf_type; 41struct exception_table_entry; 42struct seq_operations; 43struct bpf_iter_aux_info; 44struct bpf_local_storage; 45struct bpf_local_storage_map; 46struct kobject; 47struct mem_cgroup; 48struct module; 49struct bpf_func_state; 50struct ftrace_ops; 51struct cgroup; 52 53extern struct idr btf_idr; 54extern spinlock_t btf_idr_lock; 55extern struct kobject *btf_kobj; 56 57typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 58typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 59 struct bpf_iter_aux_info *aux); 60typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 61typedef unsigned int (*bpf_func_t)(const void *, 62 const struct bpf_insn *); 63struct bpf_iter_seq_info { 64 const struct seq_operations *seq_ops; 65 bpf_iter_init_seq_priv_t init_seq_private; 66 bpf_iter_fini_seq_priv_t fini_seq_private; 67 u32 seq_priv_size; 68}; 69 70/* map is generic key/value storage optionally accessible by eBPF programs */ 71struct bpf_map_ops { 72 /* funcs callable from userspace (via syscall) */ 73 int (*map_alloc_check)(union bpf_attr *attr); 74 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 75 void (*map_release)(struct bpf_map *map, struct file *map_file); 76 void (*map_free)(struct bpf_map *map); 77 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 78 void (*map_release_uref)(struct bpf_map *map); 79 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 80 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 81 union bpf_attr __user *uattr); 82 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 83 void *value, u64 flags); 84 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 85 const union bpf_attr *attr, 86 union bpf_attr __user *uattr); 87 int (*map_update_batch)(struct bpf_map *map, const union bpf_attr *attr, 88 union bpf_attr __user *uattr); 89 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 90 union bpf_attr __user *uattr); 91 92 /* funcs callable from userspace and from eBPF programs */ 93 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 94 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 95 int (*map_delete_elem)(struct bpf_map *map, void *key); 96 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 97 int (*map_pop_elem)(struct bpf_map *map, void *value); 98 int (*map_peek_elem)(struct bpf_map *map, void *value); 99 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 100 101 /* funcs called by prog_array and perf_event_array map */ 102 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 103 int fd); 104 void (*map_fd_put_ptr)(void *ptr); 105 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 106 u32 (*map_fd_sys_lookup_elem)(void *ptr); 107 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 108 struct seq_file *m); 109 int (*map_check_btf)(const struct bpf_map *map, 110 const struct btf *btf, 111 const struct btf_type *key_type, 112 const struct btf_type *value_type); 113 114 /* Prog poke tracking helpers. */ 115 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 116 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 117 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 118 struct bpf_prog *new); 119 120 /* Direct value access helpers. */ 121 int (*map_direct_value_addr)(const struct bpf_map *map, 122 u64 *imm, u32 off); 123 int (*map_direct_value_meta)(const struct bpf_map *map, 124 u64 imm, u32 *off); 125 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 126 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 127 struct poll_table_struct *pts); 128 129 /* Functions called by bpf_local_storage maps */ 130 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 131 void *owner, u32 size); 132 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 133 void *owner, u32 size); 134 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 135 136 /* Misc helpers.*/ 137 int (*map_redirect)(struct bpf_map *map, u32 ifindex, u64 flags); 138 139 /* map_meta_equal must be implemented for maps that can be 140 * used as an inner map. It is a runtime check to ensure 141 * an inner map can be inserted to an outer map. 142 * 143 * Some properties of the inner map has been used during the 144 * verification time. When inserting an inner map at the runtime, 145 * map_meta_equal has to ensure the inserting map has the same 146 * properties that the verifier has used earlier. 147 */ 148 bool (*map_meta_equal)(const struct bpf_map *meta0, 149 const struct bpf_map *meta1); 150 151 152 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 153 struct bpf_func_state *caller, 154 struct bpf_func_state *callee); 155 int (*map_for_each_callback)(struct bpf_map *map, 156 bpf_callback_t callback_fn, 157 void *callback_ctx, u64 flags); 158 159 /* BTF id of struct allocated by map_alloc */ 160 int *map_btf_id; 161 162 /* bpf_iter info used to open a seq_file */ 163 const struct bpf_iter_seq_info *iter_seq_info; 164}; 165 166enum { 167 /* Support at most 8 pointers in a BPF map value */ 168 BPF_MAP_VALUE_OFF_MAX = 8, 169 BPF_MAP_OFF_ARR_MAX = BPF_MAP_VALUE_OFF_MAX + 170 1 + /* for bpf_spin_lock */ 171 1, /* for bpf_timer */ 172}; 173 174enum bpf_kptr_type { 175 BPF_KPTR_UNREF, 176 BPF_KPTR_REF, 177}; 178 179struct bpf_map_value_off_desc { 180 u32 offset; 181 enum bpf_kptr_type type; 182 struct { 183 struct btf *btf; 184 struct module *module; 185 btf_dtor_kfunc_t dtor; 186 u32 btf_id; 187 } kptr; 188}; 189 190struct bpf_map_value_off { 191 u32 nr_off; 192 struct bpf_map_value_off_desc off[]; 193}; 194 195struct bpf_map_off_arr { 196 u32 cnt; 197 u32 field_off[BPF_MAP_OFF_ARR_MAX]; 198 u8 field_sz[BPF_MAP_OFF_ARR_MAX]; 199}; 200 201struct bpf_map { 202 /* The first two cachelines with read-mostly members of which some 203 * are also accessed in fast-path (e.g. ops, max_entries). 204 */ 205 const struct bpf_map_ops *ops ____cacheline_aligned; 206 struct bpf_map *inner_map_meta; 207#ifdef CONFIG_SECURITY 208 void *security; 209#endif 210 enum bpf_map_type map_type; 211 u32 key_size; 212 u32 value_size; 213 u32 max_entries; 214 u64 map_extra; /* any per-map-type extra fields */ 215 u32 map_flags; 216 int spin_lock_off; /* >=0 valid offset, <0 error */ 217 struct bpf_map_value_off *kptr_off_tab; 218 int timer_off; /* >=0 valid offset, <0 error */ 219 u32 id; 220 int numa_node; 221 u32 btf_key_type_id; 222 u32 btf_value_type_id; 223 u32 btf_vmlinux_value_type_id; 224 struct btf *btf; 225#ifdef CONFIG_MEMCG_KMEM 226 struct obj_cgroup *objcg; 227#endif 228 char name[BPF_OBJ_NAME_LEN]; 229 struct bpf_map_off_arr *off_arr; 230 /* The 3rd and 4th cacheline with misc members to avoid false sharing 231 * particularly with refcounting. 232 */ 233 atomic64_t refcnt ____cacheline_aligned; 234 atomic64_t usercnt; 235 struct work_struct work; 236 struct mutex freeze_mutex; 237 atomic64_t writecnt; 238 /* 'Ownership' of program-containing map is claimed by the first program 239 * that is going to use this map or by the first program which FD is 240 * stored in the map to make sure that all callers and callees have the 241 * same prog type, JITed flag and xdp_has_frags flag. 242 */ 243 struct { 244 spinlock_t lock; 245 enum bpf_prog_type type; 246 bool jited; 247 bool xdp_has_frags; 248 } owner; 249 bool bypass_spec_v1; 250 bool frozen; /* write-once; write-protected by freeze_mutex */ 251}; 252 253static inline bool map_value_has_spin_lock(const struct bpf_map *map) 254{ 255 return map->spin_lock_off >= 0; 256} 257 258static inline bool map_value_has_timer(const struct bpf_map *map) 259{ 260 return map->timer_off >= 0; 261} 262 263static inline bool map_value_has_kptrs(const struct bpf_map *map) 264{ 265 return !IS_ERR_OR_NULL(map->kptr_off_tab); 266} 267 268static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 269{ 270 if (unlikely(map_value_has_spin_lock(map))) 271 memset(dst + map->spin_lock_off, 0, sizeof(struct bpf_spin_lock)); 272 if (unlikely(map_value_has_timer(map))) 273 memset(dst + map->timer_off, 0, sizeof(struct bpf_timer)); 274 if (unlikely(map_value_has_kptrs(map))) { 275 struct bpf_map_value_off *tab = map->kptr_off_tab; 276 int i; 277 278 for (i = 0; i < tab->nr_off; i++) 279 *(u64 *)(dst + tab->off[i].offset) = 0; 280 } 281} 282 283/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 284 * forced to use 'long' read/writes to try to atomically copy long counters. 285 * Best-effort only. No barriers here, since it _will_ race with concurrent 286 * updates from BPF programs. Called from bpf syscall and mostly used with 287 * size 8 or 16 bytes, so ask compiler to inline it. 288 */ 289static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 290{ 291 const long *lsrc = src; 292 long *ldst = dst; 293 294 size /= sizeof(long); 295 while (size--) 296 *ldst++ = *lsrc++; 297} 298 299/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 300static inline void __copy_map_value(struct bpf_map *map, void *dst, void *src, bool long_memcpy) 301{ 302 u32 curr_off = 0; 303 int i; 304 305 if (likely(!map->off_arr)) { 306 if (long_memcpy) 307 bpf_long_memcpy(dst, src, round_up(map->value_size, 8)); 308 else 309 memcpy(dst, src, map->value_size); 310 return; 311 } 312 313 for (i = 0; i < map->off_arr->cnt; i++) { 314 u32 next_off = map->off_arr->field_off[i]; 315 316 memcpy(dst + curr_off, src + curr_off, next_off - curr_off); 317 curr_off += map->off_arr->field_sz[i]; 318 } 319 memcpy(dst + curr_off, src + curr_off, map->value_size - curr_off); 320} 321 322static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 323{ 324 __copy_map_value(map, dst, src, false); 325} 326 327static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 328{ 329 __copy_map_value(map, dst, src, true); 330} 331 332static inline void zero_map_value(struct bpf_map *map, void *dst) 333{ 334 u32 curr_off = 0; 335 int i; 336 337 if (likely(!map->off_arr)) { 338 memset(dst, 0, map->value_size); 339 return; 340 } 341 342 for (i = 0; i < map->off_arr->cnt; i++) { 343 u32 next_off = map->off_arr->field_off[i]; 344 345 memset(dst + curr_off, 0, next_off - curr_off); 346 curr_off += map->off_arr->field_sz[i]; 347 } 348 memset(dst + curr_off, 0, map->value_size - curr_off); 349} 350 351void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 352 bool lock_src); 353void bpf_timer_cancel_and_free(void *timer); 354int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 355 356struct bpf_offload_dev; 357struct bpf_offloaded_map; 358 359struct bpf_map_dev_ops { 360 int (*map_get_next_key)(struct bpf_offloaded_map *map, 361 void *key, void *next_key); 362 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 363 void *key, void *value); 364 int (*map_update_elem)(struct bpf_offloaded_map *map, 365 void *key, void *value, u64 flags); 366 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 367}; 368 369struct bpf_offloaded_map { 370 struct bpf_map map; 371 struct net_device *netdev; 372 const struct bpf_map_dev_ops *dev_ops; 373 void *dev_priv; 374 struct list_head offloads; 375}; 376 377static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 378{ 379 return container_of(map, struct bpf_offloaded_map, map); 380} 381 382static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 383{ 384 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 385} 386 387static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 388{ 389 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 390 map->ops->map_seq_show_elem; 391} 392 393int map_check_no_btf(const struct bpf_map *map, 394 const struct btf *btf, 395 const struct btf_type *key_type, 396 const struct btf_type *value_type); 397 398bool bpf_map_meta_equal(const struct bpf_map *meta0, 399 const struct bpf_map *meta1); 400 401extern const struct bpf_map_ops bpf_map_offload_ops; 402 403/* bpf_type_flag contains a set of flags that are applicable to the values of 404 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 405 * or a memory is read-only. We classify types into two categories: base types 406 * and extended types. Extended types are base types combined with a type flag. 407 * 408 * Currently there are no more than 32 base types in arg_type, ret_type and 409 * reg_types. 410 */ 411#define BPF_BASE_TYPE_BITS 8 412 413enum bpf_type_flag { 414 /* PTR may be NULL. */ 415 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 416 417 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 418 * compatible with both mutable and immutable memory. 419 */ 420 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 421 422 /* MEM was "allocated" from a different helper, and cannot be mixed 423 * with regular non-MEM_ALLOC'ed MEM types. 424 */ 425 MEM_ALLOC = BIT(2 + BPF_BASE_TYPE_BITS), 426 427 /* MEM is in user address space. */ 428 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 429 430 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 431 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 432 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 433 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 434 * to the specified cpu. 435 */ 436 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 437 438 /* Indicates that the argument will be released. */ 439 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 440 441 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 442 * unreferenced and referenced kptr loaded from map value using a load 443 * instruction, so that they can only be dereferenced but not escape the 444 * BPF program into the kernel (i.e. cannot be passed as arguments to 445 * kfunc or bpf helpers). 446 */ 447 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 448 449 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 450 451 /* DYNPTR points to memory local to the bpf program. */ 452 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 453 454 /* DYNPTR points to a kernel-produced ringbuf record. */ 455 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 456 457 /* Size is known at compile time. */ 458 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 459 460 __BPF_TYPE_FLAG_MAX, 461 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 462}; 463 464#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF) 465 466/* Max number of base types. */ 467#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 468 469/* Max number of all types. */ 470#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 471 472/* function argument constraints */ 473enum bpf_arg_type { 474 ARG_DONTCARE = 0, /* unused argument in helper function */ 475 476 /* the following constraints used to prototype 477 * bpf_map_lookup/update/delete_elem() functions 478 */ 479 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 480 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 481 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 482 483 /* Used to prototype bpf_memcmp() and other functions that access data 484 * on eBPF program stack 485 */ 486 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 487 488 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 489 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 490 491 ARG_PTR_TO_CTX, /* pointer to context */ 492 ARG_ANYTHING, /* any (initialized) argument is ok */ 493 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 494 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 495 ARG_PTR_TO_INT, /* pointer to int */ 496 ARG_PTR_TO_LONG, /* pointer to long */ 497 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 498 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 499 ARG_PTR_TO_ALLOC_MEM, /* pointer to dynamically allocated memory */ 500 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 501 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 502 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 503 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 504 ARG_PTR_TO_STACK, /* pointer to stack */ 505 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 506 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 507 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 508 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 509 __BPF_ARG_TYPE_MAX, 510 511 /* Extended arg_types. */ 512 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 513 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 514 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 515 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 516 ARG_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_ALLOC_MEM, 517 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 518 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 519 /* pointer to memory does not need to be initialized, helper function must fill 520 * all bytes or clear them in error case. 521 */ 522 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 523 /* Pointer to valid memory of size known at compile time. */ 524 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 525 526 /* This must be the last entry. Its purpose is to ensure the enum is 527 * wide enough to hold the higher bits reserved for bpf_type_flag. 528 */ 529 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 530}; 531static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 532 533/* type of values returned from helper functions */ 534enum bpf_return_type { 535 RET_INTEGER, /* function returns integer */ 536 RET_VOID, /* function doesn't return anything */ 537 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 538 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 539 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 540 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 541 RET_PTR_TO_ALLOC_MEM, /* returns a pointer to dynamically allocated memory */ 542 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 543 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 544 __BPF_RET_TYPE_MAX, 545 546 /* Extended ret_types. */ 547 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 548 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 549 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 550 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 551 RET_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_ALLOC | RET_PTR_TO_ALLOC_MEM, 552 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_ALLOC_MEM, 553 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 554 555 /* This must be the last entry. Its purpose is to ensure the enum is 556 * wide enough to hold the higher bits reserved for bpf_type_flag. 557 */ 558 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 559}; 560static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 561 562/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 563 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 564 * instructions after verifying 565 */ 566struct bpf_func_proto { 567 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 568 bool gpl_only; 569 bool pkt_access; 570 enum bpf_return_type ret_type; 571 union { 572 struct { 573 enum bpf_arg_type arg1_type; 574 enum bpf_arg_type arg2_type; 575 enum bpf_arg_type arg3_type; 576 enum bpf_arg_type arg4_type; 577 enum bpf_arg_type arg5_type; 578 }; 579 enum bpf_arg_type arg_type[5]; 580 }; 581 union { 582 struct { 583 u32 *arg1_btf_id; 584 u32 *arg2_btf_id; 585 u32 *arg3_btf_id; 586 u32 *arg4_btf_id; 587 u32 *arg5_btf_id; 588 }; 589 u32 *arg_btf_id[5]; 590 struct { 591 size_t arg1_size; 592 size_t arg2_size; 593 size_t arg3_size; 594 size_t arg4_size; 595 size_t arg5_size; 596 }; 597 size_t arg_size[5]; 598 }; 599 int *ret_btf_id; /* return value btf_id */ 600 bool (*allowed)(const struct bpf_prog *prog); 601}; 602 603/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 604 * the first argument to eBPF programs. 605 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 606 */ 607struct bpf_context; 608 609enum bpf_access_type { 610 BPF_READ = 1, 611 BPF_WRITE = 2 612}; 613 614/* types of values stored in eBPF registers */ 615/* Pointer types represent: 616 * pointer 617 * pointer + imm 618 * pointer + (u16) var 619 * pointer + (u16) var + imm 620 * if (range > 0) then [ptr, ptr + range - off) is safe to access 621 * if (id > 0) means that some 'var' was added 622 * if (off > 0) means that 'imm' was added 623 */ 624enum bpf_reg_type { 625 NOT_INIT = 0, /* nothing was written into register */ 626 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 627 PTR_TO_CTX, /* reg points to bpf_context */ 628 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 629 PTR_TO_MAP_VALUE, /* reg points to map element value */ 630 PTR_TO_MAP_KEY, /* reg points to a map element key */ 631 PTR_TO_STACK, /* reg == frame_pointer + offset */ 632 PTR_TO_PACKET_META, /* skb->data - meta_len */ 633 PTR_TO_PACKET, /* reg points to skb->data */ 634 PTR_TO_PACKET_END, /* skb->data + headlen */ 635 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 636 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 637 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 638 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 639 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 640 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 641 /* PTR_TO_BTF_ID points to a kernel struct that does not need 642 * to be null checked by the BPF program. This does not imply the 643 * pointer is _not_ null and in practice this can easily be a null 644 * pointer when reading pointer chains. The assumption is program 645 * context will handle null pointer dereference typically via fault 646 * handling. The verifier must keep this in mind and can make no 647 * assumptions about null or non-null when doing branch analysis. 648 * Further, when passed into helpers the helpers can not, without 649 * additional context, assume the value is non-null. 650 */ 651 PTR_TO_BTF_ID, 652 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 653 * been checked for null. Used primarily to inform the verifier 654 * an explicit null check is required for this struct. 655 */ 656 PTR_TO_MEM, /* reg points to valid memory region */ 657 PTR_TO_BUF, /* reg points to a read/write buffer */ 658 PTR_TO_FUNC, /* reg points to a bpf program function */ 659 PTR_TO_DYNPTR, /* reg points to a dynptr */ 660 __BPF_REG_TYPE_MAX, 661 662 /* Extended reg_types. */ 663 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 664 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 665 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 666 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 667 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 668 669 /* This must be the last entry. Its purpose is to ensure the enum is 670 * wide enough to hold the higher bits reserved for bpf_type_flag. 671 */ 672 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 673}; 674static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 675 676/* The information passed from prog-specific *_is_valid_access 677 * back to the verifier. 678 */ 679struct bpf_insn_access_aux { 680 enum bpf_reg_type reg_type; 681 union { 682 int ctx_field_size; 683 struct { 684 struct btf *btf; 685 u32 btf_id; 686 }; 687 }; 688 struct bpf_verifier_log *log; /* for verbose logs */ 689}; 690 691static inline void 692bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 693{ 694 aux->ctx_field_size = size; 695} 696 697static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 698{ 699 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 700 insn->src_reg == BPF_PSEUDO_FUNC; 701} 702 703struct bpf_prog_ops { 704 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 705 union bpf_attr __user *uattr); 706}; 707 708struct bpf_verifier_ops { 709 /* return eBPF function prototype for verification */ 710 const struct bpf_func_proto * 711 (*get_func_proto)(enum bpf_func_id func_id, 712 const struct bpf_prog *prog); 713 714 /* return true if 'size' wide access at offset 'off' within bpf_context 715 * with 'type' (read or write) is allowed 716 */ 717 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 718 const struct bpf_prog *prog, 719 struct bpf_insn_access_aux *info); 720 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 721 const struct bpf_prog *prog); 722 int (*gen_ld_abs)(const struct bpf_insn *orig, 723 struct bpf_insn *insn_buf); 724 u32 (*convert_ctx_access)(enum bpf_access_type type, 725 const struct bpf_insn *src, 726 struct bpf_insn *dst, 727 struct bpf_prog *prog, u32 *target_size); 728 int (*btf_struct_access)(struct bpf_verifier_log *log, 729 const struct btf *btf, 730 const struct btf_type *t, int off, int size, 731 enum bpf_access_type atype, 732 u32 *next_btf_id, enum bpf_type_flag *flag); 733}; 734 735struct bpf_prog_offload_ops { 736 /* verifier basic callbacks */ 737 int (*insn_hook)(struct bpf_verifier_env *env, 738 int insn_idx, int prev_insn_idx); 739 int (*finalize)(struct bpf_verifier_env *env); 740 /* verifier optimization callbacks (called after .finalize) */ 741 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 742 struct bpf_insn *insn); 743 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 744 /* program management callbacks */ 745 int (*prepare)(struct bpf_prog *prog); 746 int (*translate)(struct bpf_prog *prog); 747 void (*destroy)(struct bpf_prog *prog); 748}; 749 750struct bpf_prog_offload { 751 struct bpf_prog *prog; 752 struct net_device *netdev; 753 struct bpf_offload_dev *offdev; 754 void *dev_priv; 755 struct list_head offloads; 756 bool dev_state; 757 bool opt_failed; 758 void *jited_image; 759 u32 jited_len; 760}; 761 762enum bpf_cgroup_storage_type { 763 BPF_CGROUP_STORAGE_SHARED, 764 BPF_CGROUP_STORAGE_PERCPU, 765 __BPF_CGROUP_STORAGE_MAX 766}; 767 768#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 769 770/* The longest tracepoint has 12 args. 771 * See include/trace/bpf_probe.h 772 */ 773#define MAX_BPF_FUNC_ARGS 12 774 775/* The maximum number of arguments passed through registers 776 * a single function may have. 777 */ 778#define MAX_BPF_FUNC_REG_ARGS 5 779 780/* The argument is a structure. */ 781#define BTF_FMODEL_STRUCT_ARG BIT(0) 782 783struct btf_func_model { 784 u8 ret_size; 785 u8 nr_args; 786 u8 arg_size[MAX_BPF_FUNC_ARGS]; 787 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 788}; 789 790/* Restore arguments before returning from trampoline to let original function 791 * continue executing. This flag is used for fentry progs when there are no 792 * fexit progs. 793 */ 794#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 795/* Call original function after fentry progs, but before fexit progs. 796 * Makes sense for fentry/fexit, normal calls and indirect calls. 797 */ 798#define BPF_TRAMP_F_CALL_ORIG BIT(1) 799/* Skip current frame and return to parent. Makes sense for fentry/fexit 800 * programs only. Should not be used with normal calls and indirect calls. 801 */ 802#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 803/* Store IP address of the caller on the trampoline stack, 804 * so it's available for trampoline's programs. 805 */ 806#define BPF_TRAMP_F_IP_ARG BIT(3) 807/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 808#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 809 810/* Get original function from stack instead of from provided direct address. 811 * Makes sense for trampolines with fexit or fmod_ret programs. 812 */ 813#define BPF_TRAMP_F_ORIG_STACK BIT(5) 814 815/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 816 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 817 */ 818#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 819 820/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 821 * bytes on x86. 822 */ 823#define BPF_MAX_TRAMP_LINKS 38 824 825struct bpf_tramp_links { 826 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 827 int nr_links; 828}; 829 830struct bpf_tramp_run_ctx; 831 832/* Different use cases for BPF trampoline: 833 * 1. replace nop at the function entry (kprobe equivalent) 834 * flags = BPF_TRAMP_F_RESTORE_REGS 835 * fentry = a set of programs to run before returning from trampoline 836 * 837 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 838 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 839 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 840 * fentry = a set of program to run before calling original function 841 * fexit = a set of program to run after original function 842 * 843 * 3. replace direct call instruction anywhere in the function body 844 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 845 * With flags = 0 846 * fentry = a set of programs to run before returning from trampoline 847 * With flags = BPF_TRAMP_F_CALL_ORIG 848 * orig_call = original callback addr or direct function addr 849 * fentry = a set of program to run before calling original function 850 * fexit = a set of program to run after original function 851 */ 852struct bpf_tramp_image; 853int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 854 const struct btf_func_model *m, u32 flags, 855 struct bpf_tramp_links *tlinks, 856 void *orig_call); 857/* these two functions are called from generated trampoline */ 858u64 notrace __bpf_prog_enter(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx); 859void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx); 860u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx); 861void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, 862 struct bpf_tramp_run_ctx *run_ctx); 863u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, 864 struct bpf_tramp_run_ctx *run_ctx); 865void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, 866 struct bpf_tramp_run_ctx *run_ctx); 867u64 notrace __bpf_prog_enter_struct_ops(struct bpf_prog *prog, 868 struct bpf_tramp_run_ctx *run_ctx); 869void notrace __bpf_prog_exit_struct_ops(struct bpf_prog *prog, u64 start, 870 struct bpf_tramp_run_ctx *run_ctx); 871void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 872void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 873 874struct bpf_ksym { 875 unsigned long start; 876 unsigned long end; 877 char name[KSYM_NAME_LEN]; 878 struct list_head lnode; 879 struct latch_tree_node tnode; 880 bool prog; 881}; 882 883enum bpf_tramp_prog_type { 884 BPF_TRAMP_FENTRY, 885 BPF_TRAMP_FEXIT, 886 BPF_TRAMP_MODIFY_RETURN, 887 BPF_TRAMP_MAX, 888 BPF_TRAMP_REPLACE, /* more than MAX */ 889}; 890 891struct bpf_tramp_image { 892 void *image; 893 struct bpf_ksym ksym; 894 struct percpu_ref pcref; 895 void *ip_after_call; 896 void *ip_epilogue; 897 union { 898 struct rcu_head rcu; 899 struct work_struct work; 900 }; 901}; 902 903struct bpf_trampoline { 904 /* hlist for trampoline_table */ 905 struct hlist_node hlist; 906 struct ftrace_ops *fops; 907 /* serializes access to fields of this trampoline */ 908 struct mutex mutex; 909 refcount_t refcnt; 910 u32 flags; 911 u64 key; 912 struct { 913 struct btf_func_model model; 914 void *addr; 915 bool ftrace_managed; 916 } func; 917 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 918 * program by replacing one of its functions. func.addr is the address 919 * of the function it replaced. 920 */ 921 struct bpf_prog *extension_prog; 922 /* list of BPF programs using this trampoline */ 923 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 924 /* Number of attached programs. A counter per kind. */ 925 int progs_cnt[BPF_TRAMP_MAX]; 926 /* Executable image of trampoline */ 927 struct bpf_tramp_image *cur_image; 928 u64 selector; 929 struct module *mod; 930}; 931 932struct bpf_attach_target_info { 933 struct btf_func_model fmodel; 934 long tgt_addr; 935 const char *tgt_name; 936 const struct btf_type *tgt_type; 937}; 938 939#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 940 941struct bpf_dispatcher_prog { 942 struct bpf_prog *prog; 943 refcount_t users; 944}; 945 946struct bpf_dispatcher { 947 /* dispatcher mutex */ 948 struct mutex mutex; 949 void *func; 950 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 951 int num_progs; 952 void *image; 953 void *rw_image; 954 u32 image_off; 955 struct bpf_ksym ksym; 956}; 957 958static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 959 const void *ctx, 960 const struct bpf_insn *insnsi, 961 bpf_func_t bpf_func) 962{ 963 return bpf_func(ctx, insnsi); 964} 965 966#ifdef CONFIG_BPF_JIT 967int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 968int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 969struct bpf_trampoline *bpf_trampoline_get(u64 key, 970 struct bpf_attach_target_info *tgt_info); 971void bpf_trampoline_put(struct bpf_trampoline *tr); 972int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 973#define BPF_DISPATCHER_INIT(_name) { \ 974 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 975 .func = &_name##_func, \ 976 .progs = {}, \ 977 .num_progs = 0, \ 978 .image = NULL, \ 979 .image_off = 0, \ 980 .ksym = { \ 981 .name = #_name, \ 982 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 983 }, \ 984} 985 986#ifdef CONFIG_X86_64 987#define BPF_DISPATCHER_ATTRIBUTES __attribute__((patchable_function_entry(5))) 988#else 989#define BPF_DISPATCHER_ATTRIBUTES 990#endif 991 992#define DEFINE_BPF_DISPATCHER(name) \ 993 notrace BPF_DISPATCHER_ATTRIBUTES \ 994 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 995 const void *ctx, \ 996 const struct bpf_insn *insnsi, \ 997 bpf_func_t bpf_func) \ 998 { \ 999 return bpf_func(ctx, insnsi); \ 1000 } \ 1001 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1002 struct bpf_dispatcher bpf_dispatcher_##name = \ 1003 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1004#define DECLARE_BPF_DISPATCHER(name) \ 1005 unsigned int bpf_dispatcher_##name##_func( \ 1006 const void *ctx, \ 1007 const struct bpf_insn *insnsi, \ 1008 bpf_func_t bpf_func); \ 1009 extern struct bpf_dispatcher bpf_dispatcher_##name; 1010#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1011#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1012void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1013 struct bpf_prog *to); 1014/* Called only from JIT-enabled code, so there's no need for stubs. */ 1015void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 1016void bpf_image_ksym_del(struct bpf_ksym *ksym); 1017void bpf_ksym_add(struct bpf_ksym *ksym); 1018void bpf_ksym_del(struct bpf_ksym *ksym); 1019int bpf_jit_charge_modmem(u32 size); 1020void bpf_jit_uncharge_modmem(u32 size); 1021bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1022#else 1023static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1024 struct bpf_trampoline *tr) 1025{ 1026 return -ENOTSUPP; 1027} 1028static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1029 struct bpf_trampoline *tr) 1030{ 1031 return -ENOTSUPP; 1032} 1033static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1034 struct bpf_attach_target_info *tgt_info) 1035{ 1036 return ERR_PTR(-EOPNOTSUPP); 1037} 1038static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1039#define DEFINE_BPF_DISPATCHER(name) 1040#define DECLARE_BPF_DISPATCHER(name) 1041#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1042#define BPF_DISPATCHER_PTR(name) NULL 1043static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1044 struct bpf_prog *from, 1045 struct bpf_prog *to) {} 1046static inline bool is_bpf_image_address(unsigned long address) 1047{ 1048 return false; 1049} 1050static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1051{ 1052 return false; 1053} 1054#endif 1055 1056struct bpf_func_info_aux { 1057 u16 linkage; 1058 bool unreliable; 1059}; 1060 1061enum bpf_jit_poke_reason { 1062 BPF_POKE_REASON_TAIL_CALL, 1063}; 1064 1065/* Descriptor of pokes pointing /into/ the JITed image. */ 1066struct bpf_jit_poke_descriptor { 1067 void *tailcall_target; 1068 void *tailcall_bypass; 1069 void *bypass_addr; 1070 void *aux; 1071 union { 1072 struct { 1073 struct bpf_map *map; 1074 u32 key; 1075 } tail_call; 1076 }; 1077 bool tailcall_target_stable; 1078 u8 adj_off; 1079 u16 reason; 1080 u32 insn_idx; 1081}; 1082 1083/* reg_type info for ctx arguments */ 1084struct bpf_ctx_arg_aux { 1085 u32 offset; 1086 enum bpf_reg_type reg_type; 1087 u32 btf_id; 1088}; 1089 1090struct btf_mod_pair { 1091 struct btf *btf; 1092 struct module *module; 1093}; 1094 1095struct bpf_kfunc_desc_tab; 1096 1097struct bpf_prog_aux { 1098 atomic64_t refcnt; 1099 u32 used_map_cnt; 1100 u32 used_btf_cnt; 1101 u32 max_ctx_offset; 1102 u32 max_pkt_offset; 1103 u32 max_tp_access; 1104 u32 stack_depth; 1105 u32 id; 1106 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1107 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1108 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1109 u32 ctx_arg_info_size; 1110 u32 max_rdonly_access; 1111 u32 max_rdwr_access; 1112 struct btf *attach_btf; 1113 const struct bpf_ctx_arg_aux *ctx_arg_info; 1114 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1115 struct bpf_prog *dst_prog; 1116 struct bpf_trampoline *dst_trampoline; 1117 enum bpf_prog_type saved_dst_prog_type; 1118 enum bpf_attach_type saved_dst_attach_type; 1119 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1120 bool offload_requested; 1121 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1122 bool func_proto_unreliable; 1123 bool sleepable; 1124 bool tail_call_reachable; 1125 bool xdp_has_frags; 1126 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1127 const struct btf_type *attach_func_proto; 1128 /* function name for valid attach_btf_id */ 1129 const char *attach_func_name; 1130 struct bpf_prog **func; 1131 void *jit_data; /* JIT specific data. arch dependent */ 1132 struct bpf_jit_poke_descriptor *poke_tab; 1133 struct bpf_kfunc_desc_tab *kfunc_tab; 1134 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1135 u32 size_poke_tab; 1136 struct bpf_ksym ksym; 1137 const struct bpf_prog_ops *ops; 1138 struct bpf_map **used_maps; 1139 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1140 struct btf_mod_pair *used_btfs; 1141 struct bpf_prog *prog; 1142 struct user_struct *user; 1143 u64 load_time; /* ns since boottime */ 1144 u32 verified_insns; 1145 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1146 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1147 char name[BPF_OBJ_NAME_LEN]; 1148#ifdef CONFIG_SECURITY 1149 void *security; 1150#endif 1151 struct bpf_prog_offload *offload; 1152 struct btf *btf; 1153 struct bpf_func_info *func_info; 1154 struct bpf_func_info_aux *func_info_aux; 1155 /* bpf_line_info loaded from userspace. linfo->insn_off 1156 * has the xlated insn offset. 1157 * Both the main and sub prog share the same linfo. 1158 * The subprog can access its first linfo by 1159 * using the linfo_idx. 1160 */ 1161 struct bpf_line_info *linfo; 1162 /* jited_linfo is the jited addr of the linfo. It has a 1163 * one to one mapping to linfo: 1164 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1165 * Both the main and sub prog share the same jited_linfo. 1166 * The subprog can access its first jited_linfo by 1167 * using the linfo_idx. 1168 */ 1169 void **jited_linfo; 1170 u32 func_info_cnt; 1171 u32 nr_linfo; 1172 /* subprog can use linfo_idx to access its first linfo and 1173 * jited_linfo. 1174 * main prog always has linfo_idx == 0 1175 */ 1176 u32 linfo_idx; 1177 u32 num_exentries; 1178 struct exception_table_entry *extable; 1179 union { 1180 struct work_struct work; 1181 struct rcu_head rcu; 1182 }; 1183}; 1184 1185struct bpf_prog { 1186 u16 pages; /* Number of allocated pages */ 1187 u16 jited:1, /* Is our filter JIT'ed? */ 1188 jit_requested:1,/* archs need to JIT the prog */ 1189 gpl_compatible:1, /* Is filter GPL compatible? */ 1190 cb_access:1, /* Is control block accessed? */ 1191 dst_needed:1, /* Do we need dst entry? */ 1192 blinding_requested:1, /* needs constant blinding */ 1193 blinded:1, /* Was blinded */ 1194 is_func:1, /* program is a bpf function */ 1195 kprobe_override:1, /* Do we override a kprobe? */ 1196 has_callchain_buf:1, /* callchain buffer allocated? */ 1197 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1198 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1199 call_get_func_ip:1, /* Do we call get_func_ip() */ 1200 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1201 enum bpf_prog_type type; /* Type of BPF program */ 1202 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1203 u32 len; /* Number of filter blocks */ 1204 u32 jited_len; /* Size of jited insns in bytes */ 1205 u8 tag[BPF_TAG_SIZE]; 1206 struct bpf_prog_stats __percpu *stats; 1207 int __percpu *active; 1208 unsigned int (*bpf_func)(const void *ctx, 1209 const struct bpf_insn *insn); 1210 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1211 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1212 /* Instructions for interpreter */ 1213 union { 1214 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1215 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1216 }; 1217}; 1218 1219struct bpf_array_aux { 1220 /* Programs with direct jumps into programs part of this array. */ 1221 struct list_head poke_progs; 1222 struct bpf_map *map; 1223 struct mutex poke_mutex; 1224 struct work_struct work; 1225}; 1226 1227struct bpf_link { 1228 atomic64_t refcnt; 1229 u32 id; 1230 enum bpf_link_type type; 1231 const struct bpf_link_ops *ops; 1232 struct bpf_prog *prog; 1233 struct work_struct work; 1234}; 1235 1236struct bpf_link_ops { 1237 void (*release)(struct bpf_link *link); 1238 void (*dealloc)(struct bpf_link *link); 1239 int (*detach)(struct bpf_link *link); 1240 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1241 struct bpf_prog *old_prog); 1242 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1243 int (*fill_link_info)(const struct bpf_link *link, 1244 struct bpf_link_info *info); 1245}; 1246 1247struct bpf_tramp_link { 1248 struct bpf_link link; 1249 struct hlist_node tramp_hlist; 1250 u64 cookie; 1251}; 1252 1253struct bpf_shim_tramp_link { 1254 struct bpf_tramp_link link; 1255 struct bpf_trampoline *trampoline; 1256}; 1257 1258struct bpf_tracing_link { 1259 struct bpf_tramp_link link; 1260 enum bpf_attach_type attach_type; 1261 struct bpf_trampoline *trampoline; 1262 struct bpf_prog *tgt_prog; 1263}; 1264 1265struct bpf_link_primer { 1266 struct bpf_link *link; 1267 struct file *file; 1268 int fd; 1269 u32 id; 1270}; 1271 1272struct bpf_struct_ops_value; 1273struct btf_member; 1274 1275#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1276struct bpf_struct_ops { 1277 const struct bpf_verifier_ops *verifier_ops; 1278 int (*init)(struct btf *btf); 1279 int (*check_member)(const struct btf_type *t, 1280 const struct btf_member *member); 1281 int (*init_member)(const struct btf_type *t, 1282 const struct btf_member *member, 1283 void *kdata, const void *udata); 1284 int (*reg)(void *kdata); 1285 void (*unreg)(void *kdata); 1286 const struct btf_type *type; 1287 const struct btf_type *value_type; 1288 const char *name; 1289 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1290 u32 type_id; 1291 u32 value_id; 1292}; 1293 1294#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1295#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1296const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1297void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1298bool bpf_struct_ops_get(const void *kdata); 1299void bpf_struct_ops_put(const void *kdata); 1300int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1301 void *value); 1302int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1303 struct bpf_tramp_link *link, 1304 const struct btf_func_model *model, 1305 void *image, void *image_end); 1306static inline bool bpf_try_module_get(const void *data, struct module *owner) 1307{ 1308 if (owner == BPF_MODULE_OWNER) 1309 return bpf_struct_ops_get(data); 1310 else 1311 return try_module_get(owner); 1312} 1313static inline void bpf_module_put(const void *data, struct module *owner) 1314{ 1315 if (owner == BPF_MODULE_OWNER) 1316 bpf_struct_ops_put(data); 1317 else 1318 module_put(owner); 1319} 1320 1321#ifdef CONFIG_NET 1322/* Define it here to avoid the use of forward declaration */ 1323struct bpf_dummy_ops_state { 1324 int val; 1325}; 1326 1327struct bpf_dummy_ops { 1328 int (*test_1)(struct bpf_dummy_ops_state *cb); 1329 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1330 char a3, unsigned long a4); 1331}; 1332 1333int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1334 union bpf_attr __user *uattr); 1335#endif 1336#else 1337static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1338{ 1339 return NULL; 1340} 1341static inline void bpf_struct_ops_init(struct btf *btf, 1342 struct bpf_verifier_log *log) 1343{ 1344} 1345static inline bool bpf_try_module_get(const void *data, struct module *owner) 1346{ 1347 return try_module_get(owner); 1348} 1349static inline void bpf_module_put(const void *data, struct module *owner) 1350{ 1351 module_put(owner); 1352} 1353static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1354 void *key, 1355 void *value) 1356{ 1357 return -EINVAL; 1358} 1359#endif 1360 1361#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1362int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1363 int cgroup_atype); 1364void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1365#else 1366static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1367 int cgroup_atype) 1368{ 1369 return -EOPNOTSUPP; 1370} 1371static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1372{ 1373} 1374#endif 1375 1376struct bpf_array { 1377 struct bpf_map map; 1378 u32 elem_size; 1379 u32 index_mask; 1380 struct bpf_array_aux *aux; 1381 union { 1382 char value[0] __aligned(8); 1383 void *ptrs[0] __aligned(8); 1384 void __percpu *pptrs[0] __aligned(8); 1385 }; 1386}; 1387 1388#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1389#define MAX_TAIL_CALL_CNT 33 1390 1391/* Maximum number of loops for bpf_loop */ 1392#define BPF_MAX_LOOPS BIT(23) 1393 1394#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1395 BPF_F_RDONLY_PROG | \ 1396 BPF_F_WRONLY | \ 1397 BPF_F_WRONLY_PROG) 1398 1399#define BPF_MAP_CAN_READ BIT(0) 1400#define BPF_MAP_CAN_WRITE BIT(1) 1401 1402/* Maximum number of user-producer ring buffer samples that can be drained in 1403 * a call to bpf_user_ringbuf_drain(). 1404 */ 1405#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1406 1407static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1408{ 1409 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1410 1411 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1412 * not possible. 1413 */ 1414 if (access_flags & BPF_F_RDONLY_PROG) 1415 return BPF_MAP_CAN_READ; 1416 else if (access_flags & BPF_F_WRONLY_PROG) 1417 return BPF_MAP_CAN_WRITE; 1418 else 1419 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1420} 1421 1422static inline bool bpf_map_flags_access_ok(u32 access_flags) 1423{ 1424 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1425 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1426} 1427 1428struct bpf_event_entry { 1429 struct perf_event *event; 1430 struct file *perf_file; 1431 struct file *map_file; 1432 struct rcu_head rcu; 1433}; 1434 1435static inline bool map_type_contains_progs(struct bpf_map *map) 1436{ 1437 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1438 map->map_type == BPF_MAP_TYPE_DEVMAP || 1439 map->map_type == BPF_MAP_TYPE_CPUMAP; 1440} 1441 1442bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1443int bpf_prog_calc_tag(struct bpf_prog *fp); 1444 1445const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1446const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1447 1448typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1449 unsigned long off, unsigned long len); 1450typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1451 const struct bpf_insn *src, 1452 struct bpf_insn *dst, 1453 struct bpf_prog *prog, 1454 u32 *target_size); 1455 1456u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1457 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1458 1459/* an array of programs to be executed under rcu_lock. 1460 * 1461 * Typical usage: 1462 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1463 * 1464 * the structure returned by bpf_prog_array_alloc() should be populated 1465 * with program pointers and the last pointer must be NULL. 1466 * The user has to keep refcnt on the program and make sure the program 1467 * is removed from the array before bpf_prog_put(). 1468 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1469 * since other cpus are walking the array of pointers in parallel. 1470 */ 1471struct bpf_prog_array_item { 1472 struct bpf_prog *prog; 1473 union { 1474 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1475 u64 bpf_cookie; 1476 }; 1477}; 1478 1479struct bpf_prog_array { 1480 struct rcu_head rcu; 1481 struct bpf_prog_array_item items[]; 1482}; 1483 1484struct bpf_empty_prog_array { 1485 struct bpf_prog_array hdr; 1486 struct bpf_prog *null_prog; 1487}; 1488 1489/* to avoid allocating empty bpf_prog_array for cgroups that 1490 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1491 * It will not be modified the caller of bpf_prog_array_alloc() 1492 * (since caller requested prog_cnt == 0) 1493 * that pointer should be 'freed' by bpf_prog_array_free() 1494 */ 1495extern struct bpf_empty_prog_array bpf_empty_prog_array; 1496 1497struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1498void bpf_prog_array_free(struct bpf_prog_array *progs); 1499/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1500void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1501int bpf_prog_array_length(struct bpf_prog_array *progs); 1502bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1503int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1504 __u32 __user *prog_ids, u32 cnt); 1505 1506void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1507 struct bpf_prog *old_prog); 1508int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1509int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1510 struct bpf_prog *prog); 1511int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1512 u32 *prog_ids, u32 request_cnt, 1513 u32 *prog_cnt); 1514int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1515 struct bpf_prog *exclude_prog, 1516 struct bpf_prog *include_prog, 1517 u64 bpf_cookie, 1518 struct bpf_prog_array **new_array); 1519 1520struct bpf_run_ctx {}; 1521 1522struct bpf_cg_run_ctx { 1523 struct bpf_run_ctx run_ctx; 1524 const struct bpf_prog_array_item *prog_item; 1525 int retval; 1526}; 1527 1528struct bpf_trace_run_ctx { 1529 struct bpf_run_ctx run_ctx; 1530 u64 bpf_cookie; 1531}; 1532 1533struct bpf_tramp_run_ctx { 1534 struct bpf_run_ctx run_ctx; 1535 u64 bpf_cookie; 1536 struct bpf_run_ctx *saved_run_ctx; 1537}; 1538 1539static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1540{ 1541 struct bpf_run_ctx *old_ctx = NULL; 1542 1543#ifdef CONFIG_BPF_SYSCALL 1544 old_ctx = current->bpf_ctx; 1545 current->bpf_ctx = new_ctx; 1546#endif 1547 return old_ctx; 1548} 1549 1550static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1551{ 1552#ifdef CONFIG_BPF_SYSCALL 1553 current->bpf_ctx = old_ctx; 1554#endif 1555} 1556 1557/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1558#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1559/* BPF program asks to set CN on the packet. */ 1560#define BPF_RET_SET_CN (1 << 0) 1561 1562typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1563 1564static __always_inline u32 1565bpf_prog_run_array(const struct bpf_prog_array *array, 1566 const void *ctx, bpf_prog_run_fn run_prog) 1567{ 1568 const struct bpf_prog_array_item *item; 1569 const struct bpf_prog *prog; 1570 struct bpf_run_ctx *old_run_ctx; 1571 struct bpf_trace_run_ctx run_ctx; 1572 u32 ret = 1; 1573 1574 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1575 1576 if (unlikely(!array)) 1577 return ret; 1578 1579 migrate_disable(); 1580 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1581 item = &array->items[0]; 1582 while ((prog = READ_ONCE(item->prog))) { 1583 run_ctx.bpf_cookie = item->bpf_cookie; 1584 ret &= run_prog(prog, ctx); 1585 item++; 1586 } 1587 bpf_reset_run_ctx(old_run_ctx); 1588 migrate_enable(); 1589 return ret; 1590} 1591 1592/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1593 * 1594 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1595 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1596 * in order to use the tasks_trace rcu grace period. 1597 * 1598 * When a non-sleepable program is inside the array, we take the rcu read 1599 * section and disable preemption for that program alone, so it can access 1600 * rcu-protected dynamically sized maps. 1601 */ 1602static __always_inline u32 1603bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1604 const void *ctx, bpf_prog_run_fn run_prog) 1605{ 1606 const struct bpf_prog_array_item *item; 1607 const struct bpf_prog *prog; 1608 const struct bpf_prog_array *array; 1609 struct bpf_run_ctx *old_run_ctx; 1610 struct bpf_trace_run_ctx run_ctx; 1611 u32 ret = 1; 1612 1613 might_fault(); 1614 1615 rcu_read_lock_trace(); 1616 migrate_disable(); 1617 1618 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1619 if (unlikely(!array)) 1620 goto out; 1621 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1622 item = &array->items[0]; 1623 while ((prog = READ_ONCE(item->prog))) { 1624 if (!prog->aux->sleepable) 1625 rcu_read_lock(); 1626 1627 run_ctx.bpf_cookie = item->bpf_cookie; 1628 ret &= run_prog(prog, ctx); 1629 item++; 1630 1631 if (!prog->aux->sleepable) 1632 rcu_read_unlock(); 1633 } 1634 bpf_reset_run_ctx(old_run_ctx); 1635out: 1636 migrate_enable(); 1637 rcu_read_unlock_trace(); 1638 return ret; 1639} 1640 1641#ifdef CONFIG_BPF_SYSCALL 1642DECLARE_PER_CPU(int, bpf_prog_active); 1643extern struct mutex bpf_stats_enabled_mutex; 1644 1645/* 1646 * Block execution of BPF programs attached to instrumentation (perf, 1647 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1648 * these events can happen inside a region which holds a map bucket lock 1649 * and can deadlock on it. 1650 */ 1651static inline void bpf_disable_instrumentation(void) 1652{ 1653 migrate_disable(); 1654 this_cpu_inc(bpf_prog_active); 1655} 1656 1657static inline void bpf_enable_instrumentation(void) 1658{ 1659 this_cpu_dec(bpf_prog_active); 1660 migrate_enable(); 1661} 1662 1663extern const struct file_operations bpf_map_fops; 1664extern const struct file_operations bpf_prog_fops; 1665extern const struct file_operations bpf_iter_fops; 1666 1667#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1668 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1669 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1670#define BPF_MAP_TYPE(_id, _ops) \ 1671 extern const struct bpf_map_ops _ops; 1672#define BPF_LINK_TYPE(_id, _name) 1673#include <linux/bpf_types.h> 1674#undef BPF_PROG_TYPE 1675#undef BPF_MAP_TYPE 1676#undef BPF_LINK_TYPE 1677 1678extern const struct bpf_prog_ops bpf_offload_prog_ops; 1679extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1680extern const struct bpf_verifier_ops xdp_analyzer_ops; 1681 1682struct bpf_prog *bpf_prog_get(u32 ufd); 1683struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1684 bool attach_drv); 1685void bpf_prog_add(struct bpf_prog *prog, int i); 1686void bpf_prog_sub(struct bpf_prog *prog, int i); 1687void bpf_prog_inc(struct bpf_prog *prog); 1688struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1689void bpf_prog_put(struct bpf_prog *prog); 1690 1691void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock); 1692void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock); 1693 1694struct bpf_map_value_off_desc *bpf_map_kptr_off_contains(struct bpf_map *map, u32 offset); 1695void bpf_map_free_kptr_off_tab(struct bpf_map *map); 1696struct bpf_map_value_off *bpf_map_copy_kptr_off_tab(const struct bpf_map *map); 1697bool bpf_map_equal_kptr_off_tab(const struct bpf_map *map_a, const struct bpf_map *map_b); 1698void bpf_map_free_kptrs(struct bpf_map *map, void *map_value); 1699 1700struct bpf_map *bpf_map_get(u32 ufd); 1701struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1702struct bpf_map *__bpf_map_get(struct fd f); 1703void bpf_map_inc(struct bpf_map *map); 1704void bpf_map_inc_with_uref(struct bpf_map *map); 1705struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 1706void bpf_map_put_with_uref(struct bpf_map *map); 1707void bpf_map_put(struct bpf_map *map); 1708void *bpf_map_area_alloc(u64 size, int numa_node); 1709void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 1710void bpf_map_area_free(void *base); 1711bool bpf_map_write_active(const struct bpf_map *map); 1712void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 1713int generic_map_lookup_batch(struct bpf_map *map, 1714 const union bpf_attr *attr, 1715 union bpf_attr __user *uattr); 1716int generic_map_update_batch(struct bpf_map *map, 1717 const union bpf_attr *attr, 1718 union bpf_attr __user *uattr); 1719int generic_map_delete_batch(struct bpf_map *map, 1720 const union bpf_attr *attr, 1721 union bpf_attr __user *uattr); 1722struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 1723struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 1724 1725#ifdef CONFIG_MEMCG_KMEM 1726void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1727 int node); 1728void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 1729void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 1730 size_t align, gfp_t flags); 1731#else 1732static inline void * 1733bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1734 int node) 1735{ 1736 return kmalloc_node(size, flags, node); 1737} 1738 1739static inline void * 1740bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 1741{ 1742 return kzalloc(size, flags); 1743} 1744 1745static inline void __percpu * 1746bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 1747 gfp_t flags) 1748{ 1749 return __alloc_percpu_gfp(size, align, flags); 1750} 1751#endif 1752 1753extern int sysctl_unprivileged_bpf_disabled; 1754 1755static inline bool bpf_allow_ptr_leaks(void) 1756{ 1757 return perfmon_capable(); 1758} 1759 1760static inline bool bpf_allow_uninit_stack(void) 1761{ 1762 return perfmon_capable(); 1763} 1764 1765static inline bool bpf_allow_ptr_to_map_access(void) 1766{ 1767 return perfmon_capable(); 1768} 1769 1770static inline bool bpf_bypass_spec_v1(void) 1771{ 1772 return perfmon_capable(); 1773} 1774 1775static inline bool bpf_bypass_spec_v4(void) 1776{ 1777 return perfmon_capable(); 1778} 1779 1780int bpf_map_new_fd(struct bpf_map *map, int flags); 1781int bpf_prog_new_fd(struct bpf_prog *prog); 1782 1783void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 1784 const struct bpf_link_ops *ops, struct bpf_prog *prog); 1785int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 1786int bpf_link_settle(struct bpf_link_primer *primer); 1787void bpf_link_cleanup(struct bpf_link_primer *primer); 1788void bpf_link_inc(struct bpf_link *link); 1789void bpf_link_put(struct bpf_link *link); 1790int bpf_link_new_fd(struct bpf_link *link); 1791struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 1792struct bpf_link *bpf_link_get_from_fd(u32 ufd); 1793struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 1794 1795int bpf_obj_pin_user(u32 ufd, const char __user *pathname); 1796int bpf_obj_get_user(const char __user *pathname, int flags); 1797 1798#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 1799#define DEFINE_BPF_ITER_FUNC(target, args...) \ 1800 extern int bpf_iter_ ## target(args); \ 1801 int __init bpf_iter_ ## target(args) { return 0; } 1802 1803/* 1804 * The task type of iterators. 1805 * 1806 * For BPF task iterators, they can be parameterized with various 1807 * parameters to visit only some of tasks. 1808 * 1809 * BPF_TASK_ITER_ALL (default) 1810 * Iterate over resources of every task. 1811 * 1812 * BPF_TASK_ITER_TID 1813 * Iterate over resources of a task/tid. 1814 * 1815 * BPF_TASK_ITER_TGID 1816 * Iterate over resources of every task of a process / task group. 1817 */ 1818enum bpf_iter_task_type { 1819 BPF_TASK_ITER_ALL = 0, 1820 BPF_TASK_ITER_TID, 1821 BPF_TASK_ITER_TGID, 1822}; 1823 1824struct bpf_iter_aux_info { 1825 /* for map_elem iter */ 1826 struct bpf_map *map; 1827 1828 /* for cgroup iter */ 1829 struct { 1830 struct cgroup *start; /* starting cgroup */ 1831 enum bpf_cgroup_iter_order order; 1832 } cgroup; 1833 struct { 1834 enum bpf_iter_task_type type; 1835 u32 pid; 1836 } task; 1837}; 1838 1839typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 1840 union bpf_iter_link_info *linfo, 1841 struct bpf_iter_aux_info *aux); 1842typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 1843typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 1844 struct seq_file *seq); 1845typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 1846 struct bpf_link_info *info); 1847typedef const struct bpf_func_proto * 1848(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 1849 const struct bpf_prog *prog); 1850 1851enum bpf_iter_feature { 1852 BPF_ITER_RESCHED = BIT(0), 1853}; 1854 1855#define BPF_ITER_CTX_ARG_MAX 2 1856struct bpf_iter_reg { 1857 const char *target; 1858 bpf_iter_attach_target_t attach_target; 1859 bpf_iter_detach_target_t detach_target; 1860 bpf_iter_show_fdinfo_t show_fdinfo; 1861 bpf_iter_fill_link_info_t fill_link_info; 1862 bpf_iter_get_func_proto_t get_func_proto; 1863 u32 ctx_arg_info_size; 1864 u32 feature; 1865 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 1866 const struct bpf_iter_seq_info *seq_info; 1867}; 1868 1869struct bpf_iter_meta { 1870 __bpf_md_ptr(struct seq_file *, seq); 1871 u64 session_id; 1872 u64 seq_num; 1873}; 1874 1875struct bpf_iter__bpf_map_elem { 1876 __bpf_md_ptr(struct bpf_iter_meta *, meta); 1877 __bpf_md_ptr(struct bpf_map *, map); 1878 __bpf_md_ptr(void *, key); 1879 __bpf_md_ptr(void *, value); 1880}; 1881 1882int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 1883void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 1884bool bpf_iter_prog_supported(struct bpf_prog *prog); 1885const struct bpf_func_proto * 1886bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 1887int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 1888int bpf_iter_new_fd(struct bpf_link *link); 1889bool bpf_link_is_iter(struct bpf_link *link); 1890struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 1891int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 1892void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 1893 struct seq_file *seq); 1894int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 1895 struct bpf_link_info *info); 1896 1897int map_set_for_each_callback_args(struct bpf_verifier_env *env, 1898 struct bpf_func_state *caller, 1899 struct bpf_func_state *callee); 1900 1901int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 1902int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 1903int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 1904 u64 flags); 1905int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 1906 u64 flags); 1907 1908int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 1909 1910int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 1911 void *key, void *value, u64 map_flags); 1912int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 1913int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 1914 void *key, void *value, u64 map_flags); 1915int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 1916 1917int bpf_get_file_flag(int flags); 1918int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 1919 size_t actual_size); 1920 1921/* verify correctness of eBPF program */ 1922int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr); 1923 1924#ifndef CONFIG_BPF_JIT_ALWAYS_ON 1925void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 1926#endif 1927 1928struct btf *bpf_get_btf_vmlinux(void); 1929 1930/* Map specifics */ 1931struct xdp_frame; 1932struct sk_buff; 1933struct bpf_dtab_netdev; 1934struct bpf_cpu_map_entry; 1935 1936void __dev_flush(void); 1937int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 1938 struct net_device *dev_rx); 1939int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 1940 struct net_device *dev_rx); 1941int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 1942 struct bpf_map *map, bool exclude_ingress); 1943int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 1944 struct bpf_prog *xdp_prog); 1945int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 1946 struct bpf_prog *xdp_prog, struct bpf_map *map, 1947 bool exclude_ingress); 1948 1949void __cpu_map_flush(void); 1950int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 1951 struct net_device *dev_rx); 1952int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 1953 struct sk_buff *skb); 1954 1955/* Return map's numa specified by userspace */ 1956static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 1957{ 1958 return (attr->map_flags & BPF_F_NUMA_NODE) ? 1959 attr->numa_node : NUMA_NO_NODE; 1960} 1961 1962struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 1963int array_map_alloc_check(union bpf_attr *attr); 1964 1965int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 1966 union bpf_attr __user *uattr); 1967int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 1968 union bpf_attr __user *uattr); 1969int bpf_prog_test_run_tracing(struct bpf_prog *prog, 1970 const union bpf_attr *kattr, 1971 union bpf_attr __user *uattr); 1972int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 1973 const union bpf_attr *kattr, 1974 union bpf_attr __user *uattr); 1975int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 1976 const union bpf_attr *kattr, 1977 union bpf_attr __user *uattr); 1978int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 1979 const union bpf_attr *kattr, 1980 union bpf_attr __user *uattr); 1981bool btf_ctx_access(int off, int size, enum bpf_access_type type, 1982 const struct bpf_prog *prog, 1983 struct bpf_insn_access_aux *info); 1984 1985static inline bool bpf_tracing_ctx_access(int off, int size, 1986 enum bpf_access_type type) 1987{ 1988 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1989 return false; 1990 if (type != BPF_READ) 1991 return false; 1992 if (off % size != 0) 1993 return false; 1994 return true; 1995} 1996 1997static inline bool bpf_tracing_btf_ctx_access(int off, int size, 1998 enum bpf_access_type type, 1999 const struct bpf_prog *prog, 2000 struct bpf_insn_access_aux *info) 2001{ 2002 if (!bpf_tracing_ctx_access(off, size, type)) 2003 return false; 2004 return btf_ctx_access(off, size, type, prog, info); 2005} 2006 2007int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 2008 const struct btf_type *t, int off, int size, 2009 enum bpf_access_type atype, 2010 u32 *next_btf_id, enum bpf_type_flag *flag); 2011bool btf_struct_ids_match(struct bpf_verifier_log *log, 2012 const struct btf *btf, u32 id, int off, 2013 const struct btf *need_btf, u32 need_type_id, 2014 bool strict); 2015 2016int btf_distill_func_proto(struct bpf_verifier_log *log, 2017 struct btf *btf, 2018 const struct btf_type *func_proto, 2019 const char *func_name, 2020 struct btf_func_model *m); 2021 2022struct bpf_kfunc_arg_meta { 2023 u64 r0_size; 2024 bool r0_rdonly; 2025 int ref_obj_id; 2026 u32 flags; 2027}; 2028 2029struct bpf_reg_state; 2030int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 2031 struct bpf_reg_state *regs); 2032int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 2033 struct bpf_reg_state *regs); 2034int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 2035 const struct btf *btf, u32 func_id, 2036 struct bpf_reg_state *regs, 2037 struct bpf_kfunc_arg_meta *meta); 2038int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 2039 struct bpf_reg_state *reg); 2040int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2041 struct btf *btf, const struct btf_type *t); 2042 2043struct bpf_prog *bpf_prog_by_id(u32 id); 2044struct bpf_link *bpf_link_by_id(u32 id); 2045 2046const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 2047void bpf_task_storage_free(struct task_struct *task); 2048bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2049const struct btf_func_model * 2050bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2051 const struct bpf_insn *insn); 2052struct bpf_core_ctx { 2053 struct bpf_verifier_log *log; 2054 const struct btf *btf; 2055}; 2056 2057int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2058 int relo_idx, void *insn); 2059 2060static inline bool unprivileged_ebpf_enabled(void) 2061{ 2062 return !sysctl_unprivileged_bpf_disabled; 2063} 2064 2065/* Not all bpf prog type has the bpf_ctx. 2066 * For the bpf prog type that has initialized the bpf_ctx, 2067 * this function can be used to decide if a kernel function 2068 * is called by a bpf program. 2069 */ 2070static inline bool has_current_bpf_ctx(void) 2071{ 2072 return !!current->bpf_ctx; 2073} 2074 2075void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2076#else /* !CONFIG_BPF_SYSCALL */ 2077static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2078{ 2079 return ERR_PTR(-EOPNOTSUPP); 2080} 2081 2082static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2083 enum bpf_prog_type type, 2084 bool attach_drv) 2085{ 2086 return ERR_PTR(-EOPNOTSUPP); 2087} 2088 2089static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2090{ 2091} 2092 2093static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2094{ 2095} 2096 2097static inline void bpf_prog_put(struct bpf_prog *prog) 2098{ 2099} 2100 2101static inline void bpf_prog_inc(struct bpf_prog *prog) 2102{ 2103} 2104 2105static inline struct bpf_prog *__must_check 2106bpf_prog_inc_not_zero(struct bpf_prog *prog) 2107{ 2108 return ERR_PTR(-EOPNOTSUPP); 2109} 2110 2111static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2112 const struct bpf_link_ops *ops, 2113 struct bpf_prog *prog) 2114{ 2115} 2116 2117static inline int bpf_link_prime(struct bpf_link *link, 2118 struct bpf_link_primer *primer) 2119{ 2120 return -EOPNOTSUPP; 2121} 2122 2123static inline int bpf_link_settle(struct bpf_link_primer *primer) 2124{ 2125 return -EOPNOTSUPP; 2126} 2127 2128static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2129{ 2130} 2131 2132static inline void bpf_link_inc(struct bpf_link *link) 2133{ 2134} 2135 2136static inline void bpf_link_put(struct bpf_link *link) 2137{ 2138} 2139 2140static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2141{ 2142 return -EOPNOTSUPP; 2143} 2144 2145static inline void __dev_flush(void) 2146{ 2147} 2148 2149struct xdp_frame; 2150struct bpf_dtab_netdev; 2151struct bpf_cpu_map_entry; 2152 2153static inline 2154int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2155 struct net_device *dev_rx) 2156{ 2157 return 0; 2158} 2159 2160static inline 2161int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2162 struct net_device *dev_rx) 2163{ 2164 return 0; 2165} 2166 2167static inline 2168int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2169 struct bpf_map *map, bool exclude_ingress) 2170{ 2171 return 0; 2172} 2173 2174struct sk_buff; 2175 2176static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2177 struct sk_buff *skb, 2178 struct bpf_prog *xdp_prog) 2179{ 2180 return 0; 2181} 2182 2183static inline 2184int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2185 struct bpf_prog *xdp_prog, struct bpf_map *map, 2186 bool exclude_ingress) 2187{ 2188 return 0; 2189} 2190 2191static inline void __cpu_map_flush(void) 2192{ 2193} 2194 2195static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2196 struct xdp_frame *xdpf, 2197 struct net_device *dev_rx) 2198{ 2199 return 0; 2200} 2201 2202static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2203 struct sk_buff *skb) 2204{ 2205 return -EOPNOTSUPP; 2206} 2207 2208static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2209 enum bpf_prog_type type) 2210{ 2211 return ERR_PTR(-EOPNOTSUPP); 2212} 2213 2214static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2215 const union bpf_attr *kattr, 2216 union bpf_attr __user *uattr) 2217{ 2218 return -ENOTSUPP; 2219} 2220 2221static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2222 const union bpf_attr *kattr, 2223 union bpf_attr __user *uattr) 2224{ 2225 return -ENOTSUPP; 2226} 2227 2228static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2229 const union bpf_attr *kattr, 2230 union bpf_attr __user *uattr) 2231{ 2232 return -ENOTSUPP; 2233} 2234 2235static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2236 const union bpf_attr *kattr, 2237 union bpf_attr __user *uattr) 2238{ 2239 return -ENOTSUPP; 2240} 2241 2242static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2243 const union bpf_attr *kattr, 2244 union bpf_attr __user *uattr) 2245{ 2246 return -ENOTSUPP; 2247} 2248 2249static inline void bpf_map_put(struct bpf_map *map) 2250{ 2251} 2252 2253static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2254{ 2255 return ERR_PTR(-ENOTSUPP); 2256} 2257 2258static inline int btf_struct_access(struct bpf_verifier_log *log, 2259 const struct btf *btf, 2260 const struct btf_type *t, int off, int size, 2261 enum bpf_access_type atype, 2262 u32 *next_btf_id, enum bpf_type_flag *flag) 2263{ 2264 return -EACCES; 2265} 2266 2267static inline const struct bpf_func_proto * 2268bpf_base_func_proto(enum bpf_func_id func_id) 2269{ 2270 return NULL; 2271} 2272 2273static inline void bpf_task_storage_free(struct task_struct *task) 2274{ 2275} 2276 2277static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2278{ 2279 return false; 2280} 2281 2282static inline const struct btf_func_model * 2283bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2284 const struct bpf_insn *insn) 2285{ 2286 return NULL; 2287} 2288 2289static inline bool unprivileged_ebpf_enabled(void) 2290{ 2291 return false; 2292} 2293 2294static inline bool has_current_bpf_ctx(void) 2295{ 2296 return false; 2297} 2298 2299static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2300{ 2301} 2302#endif /* CONFIG_BPF_SYSCALL */ 2303 2304void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2305 struct btf_mod_pair *used_btfs, u32 len); 2306 2307static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2308 enum bpf_prog_type type) 2309{ 2310 return bpf_prog_get_type_dev(ufd, type, false); 2311} 2312 2313void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2314 struct bpf_map **used_maps, u32 len); 2315 2316bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2317 2318int bpf_prog_offload_compile(struct bpf_prog *prog); 2319void bpf_prog_offload_destroy(struct bpf_prog *prog); 2320int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2321 struct bpf_prog *prog); 2322 2323int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2324 2325int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2326int bpf_map_offload_update_elem(struct bpf_map *map, 2327 void *key, void *value, u64 flags); 2328int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2329int bpf_map_offload_get_next_key(struct bpf_map *map, 2330 void *key, void *next_key); 2331 2332bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2333 2334struct bpf_offload_dev * 2335bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2336void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2337void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2338int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2339 struct net_device *netdev); 2340void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2341 struct net_device *netdev); 2342bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2343 2344void unpriv_ebpf_notify(int new_state); 2345 2346#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2347int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr); 2348 2349static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2350{ 2351 return aux->offload_requested; 2352} 2353 2354static inline bool bpf_map_is_dev_bound(struct bpf_map *map) 2355{ 2356 return unlikely(map->ops == &bpf_map_offload_ops); 2357} 2358 2359struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2360void bpf_map_offload_map_free(struct bpf_map *map); 2361int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2362 const union bpf_attr *kattr, 2363 union bpf_attr __user *uattr); 2364 2365int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2366int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2367int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2368int sock_map_bpf_prog_query(const union bpf_attr *attr, 2369 union bpf_attr __user *uattr); 2370 2371void sock_map_unhash(struct sock *sk); 2372void sock_map_destroy(struct sock *sk); 2373void sock_map_close(struct sock *sk, long timeout); 2374#else 2375static inline int bpf_prog_offload_init(struct bpf_prog *prog, 2376 union bpf_attr *attr) 2377{ 2378 return -EOPNOTSUPP; 2379} 2380 2381static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux) 2382{ 2383 return false; 2384} 2385 2386static inline bool bpf_map_is_dev_bound(struct bpf_map *map) 2387{ 2388 return false; 2389} 2390 2391static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2392{ 2393 return ERR_PTR(-EOPNOTSUPP); 2394} 2395 2396static inline void bpf_map_offload_map_free(struct bpf_map *map) 2397{ 2398} 2399 2400static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2401 const union bpf_attr *kattr, 2402 union bpf_attr __user *uattr) 2403{ 2404 return -ENOTSUPP; 2405} 2406 2407#ifdef CONFIG_BPF_SYSCALL 2408static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2409 struct bpf_prog *prog) 2410{ 2411 return -EINVAL; 2412} 2413 2414static inline int sock_map_prog_detach(const union bpf_attr *attr, 2415 enum bpf_prog_type ptype) 2416{ 2417 return -EOPNOTSUPP; 2418} 2419 2420static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2421 u64 flags) 2422{ 2423 return -EOPNOTSUPP; 2424} 2425 2426static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2427 union bpf_attr __user *uattr) 2428{ 2429 return -EINVAL; 2430} 2431#endif /* CONFIG_BPF_SYSCALL */ 2432#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2433 2434#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2435void bpf_sk_reuseport_detach(struct sock *sk); 2436int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2437 void *value); 2438int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2439 void *value, u64 map_flags); 2440#else 2441static inline void bpf_sk_reuseport_detach(struct sock *sk) 2442{ 2443} 2444 2445#ifdef CONFIG_BPF_SYSCALL 2446static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2447 void *key, void *value) 2448{ 2449 return -EOPNOTSUPP; 2450} 2451 2452static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2453 void *key, void *value, 2454 u64 map_flags) 2455{ 2456 return -EOPNOTSUPP; 2457} 2458#endif /* CONFIG_BPF_SYSCALL */ 2459#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2460 2461/* verifier prototypes for helper functions called from eBPF programs */ 2462extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2463extern const struct bpf_func_proto bpf_map_update_elem_proto; 2464extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2465extern const struct bpf_func_proto bpf_map_push_elem_proto; 2466extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2467extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2468extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2469 2470extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2471extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2472extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2473extern const struct bpf_func_proto bpf_tail_call_proto; 2474extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2475extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2476extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 2477extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2478extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2479extern const struct bpf_func_proto bpf_get_current_comm_proto; 2480extern const struct bpf_func_proto bpf_get_stackid_proto; 2481extern const struct bpf_func_proto bpf_get_stack_proto; 2482extern const struct bpf_func_proto bpf_get_task_stack_proto; 2483extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2484extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2485extern const struct bpf_func_proto bpf_sock_map_update_proto; 2486extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2487extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2488extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2489extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 2490extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2491extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2492extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2493extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2494extern const struct bpf_func_proto bpf_spin_lock_proto; 2495extern const struct bpf_func_proto bpf_spin_unlock_proto; 2496extern const struct bpf_func_proto bpf_get_local_storage_proto; 2497extern const struct bpf_func_proto bpf_strtol_proto; 2498extern const struct bpf_func_proto bpf_strtoul_proto; 2499extern const struct bpf_func_proto bpf_tcp_sock_proto; 2500extern const struct bpf_func_proto bpf_jiffies64_proto; 2501extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2502extern const struct bpf_func_proto bpf_event_output_data_proto; 2503extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2504extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2505extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2506extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2507extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2508extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2509extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2510extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2511extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2512extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2513extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2514extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2515extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2516extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2517extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2518extern const struct bpf_func_proto bpf_copy_from_user_proto; 2519extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2520extern const struct bpf_func_proto bpf_snprintf_proto; 2521extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2522extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2523extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2524extern const struct bpf_func_proto bpf_sock_from_file_proto; 2525extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2526extern const struct bpf_func_proto bpf_task_storage_get_proto; 2527extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2528extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2529extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2530extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2531extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2532extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2533extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2534extern const struct bpf_func_proto bpf_find_vma_proto; 2535extern const struct bpf_func_proto bpf_loop_proto; 2536extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2537extern const struct bpf_func_proto bpf_set_retval_proto; 2538extern const struct bpf_func_proto bpf_get_retval_proto; 2539extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 2540 2541const struct bpf_func_proto *tracing_prog_func_proto( 2542 enum bpf_func_id func_id, const struct bpf_prog *prog); 2543 2544/* Shared helpers among cBPF and eBPF. */ 2545void bpf_user_rnd_init_once(void); 2546u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2547u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2548 2549#if defined(CONFIG_NET) 2550bool bpf_sock_common_is_valid_access(int off, int size, 2551 enum bpf_access_type type, 2552 struct bpf_insn_access_aux *info); 2553bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2554 struct bpf_insn_access_aux *info); 2555u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2556 const struct bpf_insn *si, 2557 struct bpf_insn *insn_buf, 2558 struct bpf_prog *prog, 2559 u32 *target_size); 2560#else 2561static inline bool bpf_sock_common_is_valid_access(int off, int size, 2562 enum bpf_access_type type, 2563 struct bpf_insn_access_aux *info) 2564{ 2565 return false; 2566} 2567static inline bool bpf_sock_is_valid_access(int off, int size, 2568 enum bpf_access_type type, 2569 struct bpf_insn_access_aux *info) 2570{ 2571 return false; 2572} 2573static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2574 const struct bpf_insn *si, 2575 struct bpf_insn *insn_buf, 2576 struct bpf_prog *prog, 2577 u32 *target_size) 2578{ 2579 return 0; 2580} 2581#endif 2582 2583#ifdef CONFIG_INET 2584struct sk_reuseport_kern { 2585 struct sk_buff *skb; 2586 struct sock *sk; 2587 struct sock *selected_sk; 2588 struct sock *migrating_sk; 2589 void *data_end; 2590 u32 hash; 2591 u32 reuseport_id; 2592 bool bind_inany; 2593}; 2594bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2595 struct bpf_insn_access_aux *info); 2596 2597u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2598 const struct bpf_insn *si, 2599 struct bpf_insn *insn_buf, 2600 struct bpf_prog *prog, 2601 u32 *target_size); 2602 2603bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2604 struct bpf_insn_access_aux *info); 2605 2606u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2607 const struct bpf_insn *si, 2608 struct bpf_insn *insn_buf, 2609 struct bpf_prog *prog, 2610 u32 *target_size); 2611#else 2612static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 2613 enum bpf_access_type type, 2614 struct bpf_insn_access_aux *info) 2615{ 2616 return false; 2617} 2618 2619static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2620 const struct bpf_insn *si, 2621 struct bpf_insn *insn_buf, 2622 struct bpf_prog *prog, 2623 u32 *target_size) 2624{ 2625 return 0; 2626} 2627static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 2628 enum bpf_access_type type, 2629 struct bpf_insn_access_aux *info) 2630{ 2631 return false; 2632} 2633 2634static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2635 const struct bpf_insn *si, 2636 struct bpf_insn *insn_buf, 2637 struct bpf_prog *prog, 2638 u32 *target_size) 2639{ 2640 return 0; 2641} 2642#endif /* CONFIG_INET */ 2643 2644enum bpf_text_poke_type { 2645 BPF_MOD_CALL, 2646 BPF_MOD_JUMP, 2647}; 2648 2649int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2650 void *addr1, void *addr2); 2651 2652void *bpf_arch_text_copy(void *dst, void *src, size_t len); 2653int bpf_arch_text_invalidate(void *dst, size_t len); 2654 2655struct btf_id_set; 2656bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 2657 2658#define MAX_BPRINTF_VARARGS 12 2659 2660int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 2661 u32 **bin_buf, u32 num_args); 2662void bpf_bprintf_cleanup(void); 2663 2664/* the implementation of the opaque uapi struct bpf_dynptr */ 2665struct bpf_dynptr_kern { 2666 void *data; 2667 /* Size represents the number of usable bytes of dynptr data. 2668 * If for example the offset is at 4 for a local dynptr whose data is 2669 * of type u64, the number of usable bytes is 4. 2670 * 2671 * The upper 8 bits are reserved. It is as follows: 2672 * Bits 0 - 23 = size 2673 * Bits 24 - 30 = dynptr type 2674 * Bit 31 = whether dynptr is read-only 2675 */ 2676 u32 size; 2677 u32 offset; 2678} __aligned(8); 2679 2680enum bpf_dynptr_type { 2681 BPF_DYNPTR_TYPE_INVALID, 2682 /* Points to memory that is local to the bpf program */ 2683 BPF_DYNPTR_TYPE_LOCAL, 2684 /* Underlying data is a kernel-produced ringbuf record */ 2685 BPF_DYNPTR_TYPE_RINGBUF, 2686}; 2687 2688void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2689 enum bpf_dynptr_type type, u32 offset, u32 size); 2690void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2691int bpf_dynptr_check_size(u32 size); 2692u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr); 2693 2694#ifdef CONFIG_BPF_LSM 2695void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 2696void bpf_cgroup_atype_put(int cgroup_atype); 2697#else 2698static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 2699static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 2700#endif /* CONFIG_BPF_LSM */ 2701 2702struct key; 2703 2704#ifdef CONFIG_KEYS 2705struct bpf_key { 2706 struct key *key; 2707 bool has_ref; 2708}; 2709#endif /* CONFIG_KEYS */ 2710#endif /* _LINUX_BPF_H */